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Abstract

Stochastic reaction networks, which are usually modeled as continuous-time Markov

chains on Z
d
≥0, and simulated via a version of the “Gillespie algorithm,” have proven

to be a useful tool for the understanding of processes, chemical and otherwise, in

homogeneous environments. There are multiple avenues for generalizing away from

the assumption that the environment is homogeneous, with the proper modeling choice

dependent upon the context of the problem being considered. One such generalization

was recently introduced in Duso and Zechner (Proc Nat Acad Sci 117(37):22674–

22683 , Duso and Zechner (2020)), where the proposed model includes a varying

number of interacting compartments, or cells, each of which contains an evolving

copy of the stochastic reaction system. The novelty of the model is that these compart-

ments also interact via the merging of two compartments (including their contents),

the splitting of one compartment into two, and the appearance and destruction of

compartments. In this paper we begin a systematic exploration of the mathemati-

cal properties of this model. We (i) obtain basic/foundational results pertaining to

explosivity, transience, recurrence, and positive recurrence of the model, (ii) explore

a number of examples demonstrating some possible non-intuitive behaviors of the

model, and (iii) identify the limiting distribution of the model in a special case that

generalizes three formulas from an example in Duso and Zechner (Proc Nat Acad Sci

117(37):22674–22683 , Duso and Zechner (2020)).
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1 Introduction

Stochastic reaction networks are now commonly utilized to model various types of

systems in the biological sciences. These mathematical models are often continuous-

time Markov chains and are used when the counts of at least some of the underlying

“species,” which are most commonly different molecule types, are low. In this low

copy-number case, the state of the model is a vector giving the integer counts of the

different species and transitions are governed by the different possible “reactions”

that can take place. These models are typically simulated via the Gillespie algorithm

(Gillespie 1976, 1977) or the next reaction method (Gibson and Bruck 2000; Anderson

2007). See Anderson and Kurtz (2015), and references therein, for more on this type

of model.

One potential drawback to the standard model is that it assumes a homogeneous

environment. There are multiple ways to generalize, however. One common general-

ization is to split the environment into different fixed pieces (often called “voxels”)

and then allow for transitions between adjacent voxels Isaacson (2013); Popovic et al.

(2011). Thinking of the size of the voxels going to zero leads naturally to a model with

continuous space in which the state of the system is given by the type, position, veloc-

ity, etc. of each particle in the system. A reaction can then only take place when the

necessary constituent molecules are near each other (with the precise mechanism for

defining when they are “near enough” left to the modeler). One of the first examples of

such a continuous space model was introduced by Doi (1976). More generally, there

are a whole class of continuous space models known as reaction-diffusion models. For

a brief overview of such models, see Erban and Othmer 2014. For a comparison of two

specific such models, with an approachable introduction, see Agbanusi and Isaacson

(2014); for a more general approach, see the introduction of del Razo et al. (2023).

A different approach to generalize from the homogeneous case is to imagine some

fixed collection of compartments and model the dynamics within each compartment in

the usual way (as a continuous-time Markov chain as described in the first paragraph

above) while also allowing for interactions between adjacent compartments. This is

the approach taken in McKane and Newman (2004) in an ecological context (their

“patches" are our “compartments"). However, ideally one might like to also account

for situations like in biological tissue, where reactions take place in cells that are not

static but, for example, can appear, divide, possibly merge, or even be destroyed. That is

the approach presented in a recent paper by Duso and Zechner, where they developed a

Markov model for stochastic reaction networks within interacting compartments (Duso

and Zechner 2020). In particular, their model consists of two basic components:

1. a stochastic model of a chemical reaction network;

2. a dynamic model of compartments, or cells, which themselves undergo basic tran-

sitions such as (i) arrivals, (ii) departures, (iii) mergers, and (iv) divisions. In the

context of Duso and Zechner (2020), these four transition types are referred to as

inflows, exits, coagulations, and fragmentations, respectively.

Each compartment, or cell, contains a copy of the (evolving) chemical reaction net-

work. When two cells merge, their contents are combined. When a cell divides, its

contents are randomly split among the two new daughter cells. Beyond the framework
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itself, their paper focuses on the framework’s practical use, using moment closure

methods to derive estimates for various population statistics which are then validated

by simulation. They also derive stationary distributions for some special cases.

In the present paper, we attempt to lay the groundwork for exploration of mathemat-

ical questions about the Markov chain model developed in Duso and Zechner (2020).

We focus on the special case where the compartments can only enter, leave, merge,

and divide, all according to mass action kinetics and unaffected by their contents.

Questions pertaining to recurrence, transience, and explosivity are all considered. We

show that in most, but not all, parameter regimes the overall qualitative behavior of

the model (i.e., recurrence, transience, or explosivity) is the same as that of one of the

associated stochastic reaction networks. We also analyze myriad examples that, taken

together, demonstrate some of the non-intuitive (and interesting) possible behaviors

of the model. Moreover, we derive the stationary distribution for the model in the case

where the chemistry inside the compartments is well understood in the sense that a

formula for the distribution is known for all time (e.g., the DR models of Anderson

et al. (2020)) and the compartments themselves are not allowed to interact (but are not

totally static, being allowed to enter and leave the system). Two special cases of this

stationary distribution are provided as illustration, both of which generalize formulas

from an example in Duso and Zechner (2020).

Before moving on, we warn the reader that in the field of epidemiology, the term

“compartment model" has a different meaning. There the compartments are what

we would call species. For example, they would speak of an SIR model as dividing

individuals into a susceptible compartment, an infected compartment, and a recovered

compartment. See e.g. (Brauer 2008).

A standard knowledge of continuous-time Markov chains is assumed. See for exam-

ple Norris (1997) for a detailed introduction to the topic. For notational convenience,

we will use the following shorthand notations: for any two vectors v,w ∈ R
d
≥0 and

any vector x, y ∈ Z
d
≥0 we denote

vw =

d
∏

i=1

(vi )
wi and x ! =

d
∏

i=1

(xi )! and

(

x

y

)

=

d
∏

i=1

(

xi

yi

)

,

with the conventions that 00 = 1 and that
(

x
y

)

= 0 for y < 0 or y > x . Moreover,

we will always use d to represent the number of species in the model. Finally, for

x ∈ Z
d
≥0 we define ex : Z

d
≥0 → Z to be the function taking the value of one at x and

zero otherwise.

The remainder of the paper is outlined as follows. In Sect. 2, we fully specify

the model. Further, we give two different mathematical representations that are both

useful and prove some first basic properties. In the brief Sect. 3, we prove that the

full model is explosive if and only if the associated reaction network is. In Sect. 4, we

give conditions for when the full model is recurrent, positive recurrent, or transient.

Finally, in Sect. 5, we provide the stationary distribution for a special class of models.
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A + B 0 B A + 2B A

2B

Fig. 1 The CRN with species A and B and reactions A + B → 0, 0 → B, B → 0, 2B → 0, and

A + 2B → A. Note that 0 here denotes the linear combination 0A + 0B

2 The Reaction NetworkWithin Interacting Compartments (RNIC)
Model

As discussed in the introduction, the full model we consider here consists of two sub-

models: (i) a stochastic reaction network and (ii) a dynamic model of compartments, or

cells, each of which contains an evolving copy of the stochastic reaction network. We

first describe these sub-models individually and then specify how they are combined

to make the full model.

2.1 Stochastic Reaction Networks

Suppose we have a finite set S, whose elements we shall call species, and a directed

graph whose vertices are unique linear combinations of species with non-negative

integer coefficients. The edges of the graph are called reactions; let R denote the set

of reactions. The linear combinations which appear as vertices in the graph are called

complexes; the set of complexes will be denoted C. A chemical reaction network (or

just reaction network; CRN for short) is the tuple I = (S, C,R), where S, C and R
are as above. See Fig. 1 for an example reaction network.

When talking about specific reaction networks, the species will usually be rep-

resented by capital Latin letters. When talking generally, there will be d species

S1, . . . , Sd . In this case we will identify Z
d with the space of linear combinations

of species with integer coefficients. That is, we naturally identify ν ∈ C with the vec-

tor in Z
d whose i th element is the coefficient of Si in ν. We will speak of reactions

ν → ν′ ∈ R, or sometimes, when we wish to enumerate the reactions as {νr → ν′
r },

we will simply write r ∈ R.

There are multiple ways to associate a mathematical model to a given reaction

network, including the use of a deterministic ODE (Shinar and Feinberg 2010), a

diffusion process (Leite and Williams 2019; Anderson et al. 2019), and a continuous-

time Markov chain (Anderson and Kurtz 2015). The only one of concern to us here

is the continuous-time Markov chain model with stochastic mass-action kinetics, in

which the state of the system is a vector giving the number of each species present

and transitions are determined by the reactions. To fully specify the model, positive

(or sometimes, merely non-negative) numbers, called rate constants, are assigned to

each reaction. If the reaction ν → ν′ has rate constant κ , then in state x that particular

reaction occurs with rate κ
(

x
ν

)

and when it occurs the chain transitions to state x+ν′−ν.

So the reactions will happen with rate proportional to the number of ways the chemicals

can combine to allow them to happen, and κ is the constant of proportionality. If K
is a set of rate constants, one for each reaction, we denote by IK = (S, C,R,K) the
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corresponding stochastic mass-action system. If we let κν→ν′ be the rate constant for

the reaction ν → ν′, then the Markov chain transitions from state x ∈ Z
d
≥0 to state

y ∈ Z
d
≥0 with rate

q(x, y) =
∑

ν→ν′∈R

ν′−ν=y−x

κν→ν′

(

x

ν

)

=
∑

ν→ν′∈R

ν′−ν=y−x

κν→ν′

d
∏

j=1

(

x j

ν j

)

(1)

where the sum is over those reactions for which ν′−ν = y−x . For r = νr → ν′
r ∈ R,

we denote the rate of the reaction r in state x ∈ Z
d
≥0 by λr (x):

λr (x) = κr

(

x

νr

)

(2)

Note that λν→ν′(x) = 0 if xi < νi for some i , since
(

m
k

)

= 0 for k > m. Note also

that not all authors take the same conventions as we do here. In fact, the convention

we use here pertaining to our rate constants is more in line with the biology literature

(Wilkinson 2018). In the mathematical literature it is more common to use a falling

factorial λν→ν′(x) = κν→ν′

∏

j (x j )(x j − 1) · · · (x j − ν j + 1) = κν→ν′
x !

(x−ν)! , at

the cost that their rate constant κ is no longer the constant of proportionality when

the reaction takes multiple inputs (Anderson and Kurtz 2015). This choice plays no

fundamental role in our results, but makes certain expressions cleaner in the present

context.

We note here that many of the results found in this paper can be generalized to

systems with kinetics, i.e., rate functions λr , other than mass-action. See Remark 4.7.

Put more succinctly, we have a Markov process on Z
d
≥0 with infinitesimal generator

L f (x) =
∑

r∈R

λr (x)( f (x + ν′
r − νr ) − f (x)),

where λr is determined via (2), and the above is valid for all functions f that are

compactly supported (Ethier and Kurtz 2009). The Kolmogorov forward equation,

often called the chemical master equation in the context of reaction networks, is then

d

dt
Pµ(x, t) =

∑

r∈R

λr (x − (ν′
r − νr ))Pµ(x − (ν′

r − νr ), t) −
∑

r∈R

λr (x)Pµ(x, t),

where Pµ(x, t) = Pµ(X(t) = x) is the probability the process X is in state x ∈ Z
d
≥0

at time t , given an initial distribution of µ. We take the convention that Pµ(x, t) = 0

for x /∈ Z
d
≥0.

One way to represent the solution to the stochastic model described above is via a

representation developed and popularized by Thomas Kurtz. Let {Yr }r∈R be a collec-

tion of independent, unit-rate Poisson processes, one for each possible reaction, and
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let X(t), t ≥ 0, be the solution to

X(t) = X(0) +
∑

r∈R

Yr

(∫ t

0

λr (X(s))ds

)

(ν′
r − νr ), (3)

then X is a continuous-time Markov chain that satisfies the conditions of the model

specified above (Anderson and Kurtz 2015; Ethier and Kurtz 2009; Kurtz 1978).

Example 2.1 Suppose we assign rate constants to the example CRN in Fig. 1 as follows:

A + B 0 B A + 2B A

2B

10 2

κ

8

6
(4)

Let x = (a, b) ∈ Z
2
≥0 denote an arbitrary state of the system. For the particular choice

of rate constants given above the positive transition rates q((a, b), ·), for a, b ∈ Z≥0,

are

Reaction(s) Transition Rate

A + B → 0 (a, b) &→ (a − 1, b − 1) 10ab

0 → B (a, b) &→ (a, b + 1) 2

2B → 0 and A + 2B → A (a, b) &→ (a, b − 2) 6
b(b − 1)

2
+ 8a

b(b − 1)

2
B → 0 (a, b) &→ (a, b − 1) κb

We chose to write 6 b(b−1)
2

+8a
b(b−1)

2
instead of 3b(b −1)+4ab(b −1) to emphasize

our choice of intensity functions. Note that all other rates, such as q((a, b), (a +1, b))

or q((a, b), (a + 12, b − 3)), are zero. '(

2.2 Compartment Model

Having fully specified our CRN, IK = (S, C,R,K), we turn to our next sub-model:

the compartment model. As mentioned in the introduction, we will assume that com-

partments, or cells, can arrive, depart, merge, and divide. We can use the notation of

chemical reaction networks to describe the four possibilities visually via a reaction

network,

0 C 2C

with 0 → C representing arrivals, C → 0 representing departures, C → 2C

representing division, or fragmentation, and 2C → C representing mergers, or coag-

ulations. Moreover, we assume that the stochastic model tracking the number of

compartments behaves as a standard stochastic reaction network as already described

in the previous section (however, see Remark 4.7 for an allowable generalization to the
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choice of kinetics). We will term this reaction network the compartment network, and

denote it by H = (Scomp, Ccomp,Rcomp). Note that Scomp = {C} and Ccomp is a subset

of {0, C, 2C} (depending on which rate constants are non-zero). If rate constants are

added as follows,

0 C 2C
κI

κE

κF

κC

where each κE , κI , κC , κF ≥ 0, then we will denote the corresponding stochastic

mass-action system by HK = (Scomp, Ccomp,Rcomp,Kcomp). According to (3), if we

denote by MC (t) the number of compartments at time t , then one way to represent

this model is as the solution to

MC (t) = MC (0) + YI (κI t) − YE

(∫ t

0

κE MC (s)ds

)

+ YF

(∫ t

0

κF MC (s)ds

)

− YC

(∫ t

0

κC

MC (s)(MC (s) − 1)

2
ds

)

,

where YI , YE , YF , and YC are independent unit-rate Poisson processes.

2.3 Specifying the Full, CombinedModel

Our full model, which we will term a reaction network within interacting com-

partments (RNIC), begins with two networks, one representing the dynamics of the

compartments themselves and one representing the chemistry taking place inside the

compartments.

• A CRN HK of the form 0 ! C ! 2C , called the compartment network. The state

of this CRN (in Z≥0) will be the number of compartments.

• An CRN IK, called the chemistry (or I nternalnetwork), with d species.

The behavior of the model between transitions of the compartment model is straight-

forward: the CRN within each compartment evolves independently as a Markov chain

with transition rates specified by (1). All that remains is to specify what happens to

the full model at the transition times of the compartment model. Hence, there are four

cases to consider.

• An arrival: 0 → C . We assume the existence of a probability measure µ on Z
d
≥0.

Each time an arrival event occurs, we add a new compartment whose initial state

is chosen according to µ, independent of the past. (Note that µ is not necessary

when κI = 0.)

• A departure: C → 0. When a departure event occurs, we choose one of the

compartments, uniformly at random, for deletion.

• A merger: 2C → C . When a merger event occurs, we select two compartments,

uniformly at random. We replace the chosen compartments with a single com-

partment. The state of the new compartment is the sum of the states of the two it

replaced.

• A division: C → 2C . When a division event occurs, we select a compartment,

uniformly at random. We replace the chosen compartment with two new com-
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partments, whose initial states are determined by having each molecule from the

chosen compartment select one of the two new compartments uniformly. For exam-

ple, if there are n A type A species in the chosen compartment, then one of the new

compartments will get a number of A molecules given by a binomial distribution

with parameters n A and p = 1
2

, and the other compartment will get n A minus that

value.

This whole system will be denoted F = (IK,HK, µ).

Remark 2.2 Above, we assume that when divisions, i.e., compartment transitions of

the form C → 2C , happen, each molecule picks a new compartment uniformly at

random. This assumption makes the constructions in this paper easier. However, our

proofs only require that the total number of each species across compartments is

preserved when each division happens.

Similar to our network representations for reaction networks, we can specify the

above model through a picture of the following form:

IK 0 C 2C µ
κI

κE

κF

κC

(5)

where “IK” is a stand-in for a standard CRN diagram, such as the one in (4).

Example 2.3 If IK is exactly the network diagrammed in Example 2.1 and µ is the

point mass with 3 molecules of A and 4 molecules of B, we would write

A + B 0 B A + 2B A

2B

10 2

κ

3

5
0 C 2C

κI

κE

κF

κC

δ(3,4)(a, b)

'(

See also Example 2.8 for another specific example.

There are multiple avenues for generalizations. For example, when a merger occurs

it could be that not all the molecules make it into the new compartment, or when a

division occurs it could be that some molecules are lost, or there is a non-uniform

mechanism for distributing the molecules. Moreover, it could be that the rate of com-

partment fragmentation or exit depends on the internal state of the compartment. These

models all fall under the more general framework given in Duso and Zechner (2020)

and could be studied mathematically in the future if there is a desire, but for the initial

development of the mathematics we choose to keep things simpler.

2.3.1 Simulation Representation

There are multiple ways to describe a Markov model satisfying the information given

in the ingredients F = (IK,HK, µ). The first we give is what we term a “simulation”
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representation in which we enumerate the compartments and track the counts of the

species in each compartment.

The simulation representation will be a Markov chain F sim whose state is a finite

vector of elements of Z
d
≥0, where d, as always, is the number of species. We first

describe the model via an example. Afterwards we will provide the mathematical

details.

Example 2.4 Consider again the model from Example 2.3. Suppose that at time T there

are 4 compartments, where the first has two A and two B, the second has no A and

one B, the third again has two of each, and the last has one A and twelve B. Then the

state of the model F sim would be the vector

([

2

2

]

,

[

0

1

]

,

[

2

2

]

,

[

1

12

])

.

We now suppose that at time T a transition occurs. We first consider four possibilities

if the transition is due to a reaction of the compartment model.

• Suppose first that the compartment transition is an inflow event. We will make

the convention that the new compartment due to an inflow reaction will always be

placed at the end of the vector of states. Hence, because the initial distribution for

arriving compartments is a point mass at (3, 4) the new state of the full system is

([

2

2

]

,

[

0

1

]

,

[

2

2

]

,

[

1

12

]

,

[

3

4

])

.

• Next suppose that the compartment transition is an exit event. In this case we must

choose a compartment at random, delete it from the vector, and re-index the other

components. Thus, we start by choosing from {1, 2, 3, 4}, each with probability

1/4. Suppose that the value 3 is chosen so that the third compartment will be

deleted. In this case, the new state of the full system is

([

2

2

]

,

[

0

1

]

,

[

1

12

])

.

• Now suppose that the compartment transition is a merger, or coagulation. Now

we must select two compartments at random and combine their contents. We will

always choose that the combined contents of the compartments will be placed

within the compartment with the lower index and will delete the compartment

with the higher index. Thus, assuming we choose the compartments indexed 1 and

2, we then merge the first and second compartments and place their contents into

compartment 1 (since it has the smaller index of the two chosen) and then delete

the second compartment. The resulting state is

([

2

3

]

,

[

2

2

]

,

[

1

12

])

.
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• Finally, we suppose that the compartment transition is a fragmentation. The pro-

cedure will be as follows. We will first choose the index of the compartment that

fragments, we then create two new compartments and will then split the con-

tents between these new compartments (with each particular molecule choosing

between the new compartments with equal probability). The originally chosen

compartment will be deleted and the two new compartments will be placed at the

end of the vector of states.

For example, suppose we choose compartment 3 for fragmentation (which occurs

with probability 1/4). We then split the contents of the original third compartment

(four molecules total, 2 of A and 2 of B) uniformly at random between the two

new compartments. Suppose for concreteness that we split as

[

1

2

]

and

[

1

0

]

. Then,

after deleting the 3rd compartment and adding these two onto the end we have a

new state for the full model of

([

2

2

]

,

[

0

1

]

,

[

1

12

]

,

[

1

2

]

,

[

1

0

])

.

It is also possible that the transition at time T was due to a reaction taking place

within one of the compartments. For example, if the reaction A + 2B → A happens

inside the fourth compartment, then the state of the whole system, F sim, will become

([

2

2

]

,

[

0

1

]

,

[

2

2

]

,

[

1

10

])

.

'(

Now we give the formal mathematical description of F sim. First, let {MC (t)}t≥0 be

the Markov chain associated to the compartment network HK. Then MC (t) will be the

number of compartments at time t . Let {Ti }
∞
i=0 be the jump times for this Markov chain,

where T0 = 0. For any i ≥ 0 and any j = 1, . . . , MC (Ti ), let {X i
j (t)}t∈[Ti ,Ti+1] be

realizations of the Markov chain associated to IK with initial distributions (at time Ti )

specified below. Suppose that for any i1, i2 and j1, j2 with either i1 *= i2 or j1 *= j2,

the chains X
i1

j1
and X

i2

j2
are independent conditional on their initial conditions, and

suppose that the initial distributions are chosen in the following manner (which are

just formal characterizations of the details provided in the example above):

• If the compartment transition at time Ti+1 was an inflow event (0 → C), then

let X i+1
j (Ti+1) = X i

j (Ti+1) for j = 1, . . . , MC (Ti ), and for j = MC (Ti+1) =

MC (Ti )+1 let X i+1
j (Ti+1) be distributed according to µ, independently of every-

thing in the past.

• If the compartment transition at time Ti+1 was an exit event (C → 0), then let Ji be

chosen uniformly at random from {1, · · · , MC (Ti )}, independently of everything

in the past. Let X i+1
j (Ti+1) = X i

j (Ti+1) for j < Ji , and let X i+1
j (Ti+1) =

X i
j+1(Ti+1) for j ≥ Ji .

• If the compartment transition at time Ti+1 was a merger, or coagulation,

event (2C → C), then let J 1
i and J 2

i be chosen uniformly at random from
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{1, · · · , MC (Ti )} and {1, · · · , MC (Ti )}\{J 1
i }, respectively, independent of every-

thing in the past. Let X i+1
j (Ti+1) = X i

j (Ti+1) for j < max{J 1
i , J 2

i } with

j *= min{J 1
i , J 2

i }, let X i+1
j (Ti+1) = X i

j+1(Ti+1) for j ≥ max{J 1
i , J 2

i }, and

let X i+1
j (Ti+1) = X i

J 1
i

(Ti+1) + X i

J 2
i

(Ti+1) for j = min{J 1
i , J 2

i }.

• If the compartment transition at time Ti+1 was a fragmentation event (C → 2C),

then let Ji be chosen uniformly at random from {1, · · · , MC (Ti )}, independently

of everything in the past. Let {Z i
k(x) : x ∈ Z

d , k = 1, . . . , d} be a collec-

tion of random variables, independent of each other and everything else, with

Z i
k(x) ∼ Binom (0.5, xk). Let Z i (x) denote the vector

(

Z i
1(x), · · · , Z i

d(x)
)

.

Let X i+1
j (Ti+1) = X i

j (Ti+1) for j < Ji , let X i+1
j (Ti+1) = X i

j+1(Ti+1) for

j = Ji , . . . , MC (Ti ) − 1, and for j = MC (Ti ) let X i+1
j (Ti+1) = Z i (X i

Ji
(Ti+1))

and X i+1
j+1(Ti+1) = X i

Ji
(Ti+1) − X i+1

j (Ti+1).

Let F sim(t) be the vector
(

X i
1(t), X i

2(t), · · · , X i
MC (t)(t)

)

, where i is such that

Ti ≤ t < Ti+1.

Lemma 2.5 The process {F sim(t)}t≥0 is a continuous time Markov chain with state

space
⋃

m≥0

(

Z
d
≥0

)m

, the space of finite tuples of elements of Z
d
≥0.

Proof To show that this is a Markov process we have to show that the holding times

are exponential and the updates are independent of the holding times. To see that the

holding times are exponential, notice that since MC is a Markov chain it has exponential

holding times, and similarly for each X i
j . But the holding times for these processes are

independent, and the minimum of independent exponential random variables is itself

exponential.

Furthermore, the minimum of a (finite) collection of independent exponential ran-

dom variables is independent of the index at which the minimum occurs, so the updates

are indeed independent of the holding times.

The fact that F sim takes values in the space of finite tuples is equivalent to MC

being finite for all time, which in turn is equivalent to the fact that MC is not explosive,

regardless of the choice of rate constants in HK. This is a standard result in the theory

of 1-d mass action stochastic reaction networks; see for instance (Xu et al. 2022). '(

2.3.2 An Explicit Construction of the Simulation Representation

We discuss one way of constructing the model described in Sect. 2.3.1, in the spirit of

the Kurtz representation (3). Here, by “construction” we mean an explicit detailing of

the random processes and random variables needed to generate a single realization of

the process. The construction is of interest since it is amenable to analysis, coupling

methods, simulation methods, etc. The construction will be used later in this paper to

verify some behaviors of Example 4.23.
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Let F = (IK,HK, µ) be as above. Suppose that MC (0) is the initial number of

compartments in the system and further suppose that MC is given as the solution to

MC (t) = MC (0) + YI (κI t) − YE

(∫ t

0

κE MC (s)ds

)

+ YF

(∫ t

0

κF MC (s)ds

)

− YC

(∫ t

0

κC

MC (s)(MC (s) − 1)

2
ds

)

,

(6)

where YI , YE , YF , and YC are independent unit-rate Poisson processes. Then MC

is the Markov chain on Z≥0 associated to HK, so that MC (t) gives the number of

compartments at any time t ≥ 0.

The jump times of the counting processes RI (t) = YI

(

κI t
)

, RE (t) = YE

( ∫ t

0 κE

MC (s)ds
)

, RF (t) = YF

(

∫ t

0 κF MC (s)ds
)

, and RC (t)=YC

(

∫ t

0 κC
MC (s)(MC (s)−1)

2
ds

)

determine when the RNIC model transitions due to changes in the count of the com-

partments. To each such transition we will also require a collection of random variables

needed to carry out the updates in the RNIC model. We detail these random variables

below. Before proceeding, we remind the reader that a uniform random variable can

be used to generate a sample from a given distribution in a number of ways. For some

standard transformation methods see, for example, (Anderson et al. 2017, Sect. 5.2).

In the description below all random variables are independent of each other and of

the Poisson processes YI , YE , YF , YC . We require:

• A collection of independent uniform random variables {u I
i }, i = 1, 2, . . . . When

RI (T ) − RI (T −) = 1, the random variable u I
RI (T )

is used to generate a sample

from µ.

• A collection of independent uniform random variables {uE
i }, i = 1, 2, . . . . When

RE (T ) − RE (T −) = 1, the random variable uE
RE (T )

is used to determine which

compartment exits at that time.

• Two collections of independent uniform random variables: (i) {uF
i }, i = 1, 2, . . . ,

and (ii) an array {ûF
i, j }, i, j ∈ {1, 2, . . . }. When RF (T ) − RF (T −) = 1, the

random variable uF
RF (T )

is used to determine which compartment fragments. We

then utilize the finite collection {ûF
RF (T ), j }, j = 1, . . . , M , where M is the total

number of molecules in the chosen compartment, to divide the different molecules

between the two new cells.

• A collection of independent uniform random variables {uC
i }, i = 1, 2, . . . . When

RC (T ) − RC (T −) = 1, the random variable uC
RC (T )

is used to determine which

two compartments are chosen to merge.

Note that the collections detailed above are chosen before a realization is generated.

Said differently, the realization of the RNIC model is a function of these independent

random variables.

All that remains is to give the timing of the different chemical reactions. One method

is the following. Let {Yr }r∈R be a collection of independent (of each other, and all other

random objects so far), unit-rate Poisson processes, one for each possible reaction in

123



Stochastic Reaction Networks Within Interacting Compartments Page 13 of 39    87 

IK. Moreover, for each r ∈ R, let {ur
i }, i = 1, 2, . . . be a collection of independent

uniform random variables. Then, for r ∈ R, we let

Rr (t) = Yr









∑

i≥0

Ti ≤t

∫ Ti+1∧t

Ti

MC (Ti )
∑

j=1

λr (X i
j (s))ds









,

where the Ti are the jump times of the process MC , X i
j (s) is the state of the process

in compartment j at time s, and λr is given as in (2). Then Rr is the counting process

that jumps by +1 when the r th reaction takes place in some compartment. When

Rr (T )− Rr (T −) = 1, meaning a reaction has taken place somewhere, we use ur
Rr (T )

to determine the compartment within which the reaction took place. In particular, the

probability that it took place in compartment k is simply

λr (X i
k(T −))

∑MC (Ti )
j=1 λr (X i

j (T −))
.

2.3.3 A Coarse-Grained Representation

While the description (and construction) above is often convenient for the sake of

analysis and simulation, it is sometimes not the most natural way to think about these

models. For example, suppose we have a model with a single species, denoted S, and

for which there are two compartments at time t , so that MC (t) = 2. It is reasonable to

think that we would not care to distinguish the situation in which there are 6 molecules

of species S in the first compartment and 2 in the second, which is the state (6, 2),

versus the situation of 2 molecules of S in the first and 6 in the second, which is the

state (2, 6). In this situation, we would simply care that we have one compartment

with two S molecules, another with six, and there are no other compartments.

To handle this, we consider a function n : Z≥0 → Z≥0 in which nx := n(x)

gives the number of compartments present with precisely x molecules of S (hence

the notation that “n” gives the number of compartments with different counts). In this

case, the state of the example system described above would simply be the function

with

nx =







1, ifx = 2

1, ifx = 6

0, else.

Note that in this one-dimensional case we can also think of n as an “infinite vector.”

For example, in our example above we would have

n = (0, 0, 1, 0, 0, 0, 1, 0, 0, . . . ),

with only zeros continuing on.
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For another example, we could consider the case discussed in Example 2.4, where

there are two species A and B and the state for the simulation representation was

([

2

2

]

,

[

0

1

]

,

[

2

2

]

,

[

1

12

])

.

In this case, the state could naturally be described by the function

nx =























































2, if x =

[

2

2

]

1, if x =

[

0

1

]

1, if x =

[

1

12

]

0, else.

Note that in this example, it is not natural to view n as an “infinite vector.” Instead, it

would be natural to view it as an “infinite array” with a two in the (2, 2) component,

ones in the (0, 1) and (1, 12) components, and zeros elsewhere.

Thus, we may take the following approach, as done in Duso and Zechner (2020).

The state space of the coarse-grained model will be

N := {functions n : Z
d
≥0 → Z≥0 with compact support}

= {functions n : Z
d
≥0 → Z≥0 with finite support}

= {functions n : Z
d
≥0 → Z≥0 with finite %1 norm},

(7)

where we observe that all three sets are the same. Given n : Z
d
≥0 → Z≥0, we write

n = (nx )x∈Z
d
≥0

. For each possible state x ∈ Z
d
≥0 of the chemistry, nx ∈ Z≥0 represents

the number of compartments whose chemistry has that particular state. Given Markov

chains MC and X i
j as defined in Sect. 2.3.1, let N be the process where Nx (t) is the

number of compartments in state x ∈ Z
d
≥0 at time t ≥ 0:

Nx (t) =

∞
∑

i=0

I{t ∈ [Ti , Ti+1)}

MC (Ti )
∑

j=1

I{X i
j (t) = x}.

Note that the total number of compartments at time t ≥ 0 can be recovered from

N (t) via

MC (t) = ‖N (t)‖%1 :=
∑

x∈Z
d
≥0

Nx (t).

123



Stochastic Reaction Networks Within Interacting Compartments Page 15 of 39    87 

Note also that the process N transitions iff F sim does. This fact is important enough

that we state it as a lemma:

Lemma 2.6 Let F sim and N be as above. Then N undergoes a transition at time t iff

F sim does.

Proof On the one hand, N is defined as a function of F sim and so N cannot transition

if F sim does not. On the other hand, all possible transitions of F sim cause a change

in N : If F sim transitions because MC does, then ‖N‖%1 = MC changes, whereas if

F sim changes otherwise then the contents of some single compartment updated, which

changes N . '(

For the lemma below, we recall that for x ∈ Z
d
≥0 we define ex to be the function

taking the value of one at x and zero otherwise.

Lemma 2.7 Let N (t) be as defined above. Then {N (t)}t≥0 is a Markov chain taking

values in N , defined in (7). Moreover, for n ∈ N , the transitions rates are as follows:

where

Transition type Rate

Compartment inflow n &→ n + ex κI µ(x)

Compartment exit n &→ n − ex κE nx

Compartment coagulation, x *= y n &→ n + ex+y − ex − ey κC nx ny

Compartment coagulation n &→ n + e2x − 2ex κC

(

nx

2

)

Compartment fragmentation n &→ n − ex+y + ex + ey κF nx+yϕ(x + y, x)

(x = y allowed here)

Internal reaction r ∈ R n &→ n − ex + ex+ν′
r −νr

nx κr

(

x

νr

)

ϕ(z, x) :=

d
∏

k=1

(

zk

xk

)

2−zk

so that the distribution of the resulting compartments after a fragmentation is indepen-

dently binomial in each species. Note that each row mentioning x or y corresponds

to an infinite family of transitions and in the last row r ∈ R also ranges over all

reactions of the reaction network I.

Proof The fact that N has finite support follows from the fact that F sim is always a

finite tuple, proved in Lemma 2.5.

The fact that N is Markovian with the rates given follows from consideration of

the infinitesimal behavior of F sim. For example, for x *= y ∈ Z
d
≥0,

P(N (t + h) = n + ex+y − ex − ey |N (t) = n) = κC nx nyh + o(h), as h → 0,
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since, to leading order, the probability that some compartment in state x merges with

a compartment in state y in the time interval [t, t + h) is κC nx nyh. The other rows of

the table follow similarly. '(

Example 2.8 Consider the following possible compartment model:

0 S 0 C 2C 1
2
δ5 + 1

2
δ17

κb

κd

κI

κE

κC

Here we are keeping track of some chemical S which forms with rate κb and degrades

with rate κd . Compartments are allowed to enter with rate κI , and new compartments

that enter this way have either 5 or 17 molecules of S, each with probability 1/2.

Compartments can also exit with rate constant κE , and merge (or coagulate) with

rate constant κC . Since there is only one species, the state space for the chemistry is

Z
1
≥0 = Z≥0. As we detail below, we will be assuming mass-action kinetics; in this

case that means when the model is in state n ∈ N the transition rates are given by As

Transition type Rate

Compartment inflow n &→ n + e5 κI /2

Compartment inflow n &→ n + e17 κI /2

Compartment exit n &→ n − ex κE nx

Compartment coagulation (x *= y) n &→ n + ex+y − ex − ey κC nx ny

Compartment coagulation n &→ n + e2x − 2ex κC

(

nx

2

)

S birth n &→ n − ex + ex+1 κbnx

S death n &→ n − ex + ex−1 κd nx x

before, each row mentioning x or y corresponds to an infinite family of transitions,

one for each x *= y ∈ Z
d
≥0, and as always ex is the unit vector in direction x . /

3 Non-explosivity

A Markov Chain is explosive if it can undergo infinitely many transitions in finite

time. The formal definition is below (Norris 1997).

Definition 3.1 (Explosivity) Let {X(t)}t≥0 be a continuous-time Markov chain with

countable state space S. For each m ∈ Z≥0, let τm be the time of the m-th transition

of X (formally, τ0 = 0 and τm = inf{t > τm−1 : X(t) *= X(τm−1)}), and let

τ∞ = limm→∞ τm . We say that X explodes if τ∞ < ∞. If there is some state x ∈ S

such that with positive probability X explodes when started in state x , we say that X

is explosive.

We will show that explosivity for the RNIC model F = (IK,HK, µ) is determined

by explosivity for the internal reaction network IK. But to even talk about explosivity

for F instead of just the Markov chains F sim or N , we need the following simple

proposition.
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Proposition 3.2 Suppose we have a RNIC F = (IK,HK, µ). Let F sim and N be the

corresponding simulation and coarse-grained representations. Then F sim is explosive

iff N is explosive.

Proof This is immediate from lemma 2.6, which says that F sim and N transition at

the same times. '(

In light of the proposition, we will speak merely of F = (IK,HK, µ) being

explosive, and check the explosivity of either F sim or N depending on convenience.

As it turns out, it will be most convenient to check explosivity for F sim. (Indeed, the

fact that explositivity is more easily checked for F sim is one of the major reasons for

introducing F sim in the first place.)

Theorem 3.3 Suppose we have a RNIC F = (IK,HK, µ). Then F is explosive iff IK

is explosive.

Proof First, suppose that IK is explosive. As discussed above, we intend to show

that F sim is explosive. By assumption, there is some x ∈ Z
d such that when the

Markov chain corresponding to IK is started in state x it explodes with positive

probability. In particular, there is some finite (nonrandom) time t so that the chemistry

undergoes infinitely many transitions before time t with positive probability. Start

F sim in the state with one compartment whose state is x . With positive probability,

no compartment transitions happen before time t . But the compartment transition

times are independent of what is happening inside them by construction, and the

compartment evolves according to IK, so on the event that no compartment transition

happens before time t the compartment undergoes infinitely many transitions before

time t with positive probability. It follows that F sim is explosive.

Conversely, suppose that IK is not explosive. Note that H, the compartment net-

work, is not explosive for any choice of rate constants (see e.g. Xu et al. 2022). So

with probability one F sim undergoes only finitely many compartment transitions in

finite time. But between each pair of consecutive compartment transitions there are

finitely many compartments each evolving according to IK, and by assumption each

of these undergoes only finitely many reactions in finite time a.s.. It follows that F sim

undergoes only finitely many transitions total in finite time, and hence is not explosive.

'(

4 Transience, Recurrence, and Positive Recurrence

The following definitions are standard. For example, see Norris (1997).

Definition 4.1 Let M be a Markov chain with countable state space S, and for x ∈ S let

Tx = inf{t > 0 : Mt = x but ∃s ∈ [0, t], Ms *= x} be the first time the process returns

to x (or just arrives at x , if the process does not start from x). If Px (Tx < ∞) = 1,

we say that the state x is recurrent, and if Ex (Tx ) < ∞ we say that the state x is

positive recurrent. A state which is not recurrent is called transient, and a recurrent

state which is not positive recurrent is null recurrent. If Px (Ty < ∞) > 0 we say

that y is reachable from x . If every state x ∈ S is positive recurrent, null recurrent, or

transient, we say M is positive recurrent, null recurrent, or transient, respectively.

123



   87 Page 18 of 39 D. F. Anderson et al.

Table 1 The possibly dynamics for N , classified in terms of the dynamics for HK and IK. In the above

“NR” and “PR” stand for “null recurrent” and “positive recurrent”, respectively, whereas “Trans.” stands

for “transient”

Chemistry (IK)
Transient (Trans.) Null Recurrent (NR) Positive Recurrent (PR)

Transient
N must be Transient

Remark 4.4

C
om

p
ar

tm
en

ts
(H

K
)

NR
κE = 0

Impossible

Lemma 4.3

κE > 0
N must be Null Recurrent

Theorem 4.5

PR
κE = 0

N can be Trans. N can be Trans. N can be Trans.
Ex 4.11 Ex 4.21 Ex 4.17, 4.19, 4.23

N can be PR N can be PR N can be PR
Ex 4.13 Ex 4.15 Ex 4.19

κE > 0
N must be Positive Recurrent

Theorem 4.5

A standard fact about (positive) recurrence is that it is a class property:

Proposition 4.2 (Theorems 3.4.1(iv) and 3.5.3(i) ⇐⇒ (ii) in Norris (1997)) Suppose

that y is reachable from x and x is recurrent (resp. positive recurrent). Then y is

recurrent (resp. positive recurrent).

In other words, if you can get between x and y with positive probability (in both

directions), then x and y are either both transient, both null recurrent, or both positive

recurrent. So for irreducible chains (ones where you can pass between any two points

of the state space with positive probability), the chain M is always positive recurrent,

null recurrent, or transient.

Before proceeding with the theory, we summarize the results of this section with a

table. The way to read Table 1 is as follows:

• Suppose we have a RNIC (IK,HK, µ), and N is the associated coarse-grained

model.

• The top row indicates possible dynamics (transient, null recurrent, or positive

recurrent) for IK, the chemical model, and the left column indicates possible

dynamics for HK, the compartment model. Since the possible dynamics for N

will turn out to depend crucially on whether the compartments can exit (κE > 0)

or not (κE = 0), the left column is further subdivided along these lines.

• Several cells are marked “Impossible", because HK cannot be null recurrent if

κE = 0.

• The numbers inside each cell refer to the relevant theorems, lemmas, or examples

that demonstrates the result.

Note that in all cases where we give an example of a recurrent N , the example is

actually positive recurrent. We suspect that null recurrent examples will also exist, but

we felt it more interesting to cover the behavioral extremes.
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Moving to our theory, we begin by considering the dynamics of the compartment

model of Sect. 2.2, which takes the form of a relatively simple reaction network,

namely,

0 C 2C
κI

κE

κF

κC

(8)

The (positive) recurrence of this model is already completely classified (Xu et al.

2022). We state this classification now as a lemma.

Lemma 4.3 Consider the CRN in (8).

• Suppose κI = 0. Then 0 is an absorbing state. If some other rate constant is non-

zero then all other states are transient, whereas if all four rate constants are zero

then all states are absorbing.

• Suppose κI > 0 and κE > 0. The irreducible state space is {0, 1, 2, . . . } and:

– If κC > 0, then the chain is positive recurrent.

– If κC = 0 but κF < κE , then the chain is positive recurrent.

– If κC = 0 and κF > κE , then the chain is transient.

– If κC = 0 and κF = κE , then either κI ≤ κE and the chain is null recurrent,

or κI > κE and the chain is transient.

• Suppose κI > 0 and κE = 0. Then all statements remain the same as in the case

κI > 0 and κE > 0 except the irreducible state space is now {1, 2, . . . } (and the

state 0 is transient).

Now we begin with our positive results. The first fact is simple enough to be stated

as a remark:

Remark 4.4 Notice that if N is the course-grained representation for F = (IK,HK, µ)

and n is a (positive) recurrent state for N , then the number of compartments in n, ‖n‖%1 ,

is a (positive) recurrent state for HK, since the return time to ‖n‖%1 is bounded by the

return time to n.

Said succinctly, if n is a positive recurrent state of the full model, then so is ‖n‖%1

for the compartment model. One might hope that the converse would be true, and it

turns out under relatively mild assumptions it is:

Theorem 4.5 Consider a non-explosive model F = (IK,HK, µ) where κE > 0, and

let N be its course-grained representation. Then a state n is (positive) recurrent for

N iff n is reachable from the empty state 0 for N and the state ‖n‖%1 is (positive)

recurrent for HK.

Proof If κI = 0 the conclusions of the theorem are clear, since by Lemma 4.3 the

state with no compartments is absorbing for both N and HK and all other states are

transient. From here on we assume κI > 0.

Let MC = ‖N‖%1 be the number of compartments; recall that MC is a Markov

chain which evolves according to HK. Suppose first that n is recurrent for N . By

Remark 4.4, ‖n‖%1 is recurrent for HK. Since κE > 0 and κI > 0, by Lemma 4.3

HK is irreducible, so HK eventually hits zero with probability one when started from
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‖n‖%1 . But when MC hits zero, N = 0. Since n is recurrent for N , it must be that N

eventually returns to state n after hitting state 0. This proves that n is reachable from

0 for N .

Now suppose that n is reachable from 0 and the state ‖n‖%1 is positive recurrent

(resp. recurrent) for HK. Since HK is irreducible as in the previous paragraph, it

follows that zero is positive recurrent (resp. recurrent) for HK. But N = 0 exactly

when MC is 0, so 0 is positive recurrent (resp. recurrent) for N . But positive recurrence

(resp. recurrence) is a class property and by assumption n is reachable from 0, so we

conclude that n is positive recurrent (resp. recurrent) for N , as desired. '(

The same theorem holds, mutatis mutandis, for F sim. The proof is the same so we

omit it.

Theorem 4.6 Consider a non-explosive model F = (IK,HK, µ) where κE > 0,

and let F sim be its simulation representation. Then a state (x1, . . . , xk) is (positive)

recurrent for Fsim iff (x1, · · · , xk) is reachable from the empty vector () for F sim and

the state k is (positive) recurrent for HK.

Remark 4.7 Theorems 4.5 and 4.6 hold under more general assumptions. Note that the

key idea of both is that 0 is (positive) recurrent for HK. Hence, one can generalize to

the situation in which F = (IK,HK, µ) has non-mass action kinetics for either IK

or HK, so long as the system is non-explosive and 0 is (positive) recurrent for HK.

4.1 Lyapunov Functions

In what follows we will need to make use of the theory of Lyapunov functions for

Markov chains. This short section is devoted to introducing the extent of the theory

we will use.

The following theorem is well-known. In full generality, it is due to Meyn and

Tweedie (1993). The version below is a specialization to the countable state space

case. For a proof of the version given below, see the later paper (Anderson et al. 2020).

Theorem 4.8 Let X be a continuous-time Markov chain on a countable state space S

with generator L. Suppose there exists a finite set K ⊂ S and a positive function V

on S such that

LV(x) ≤ −1

for all x ∈ S \ K . Suppose further that V is “norm-like,” in the sense that {x ∈

S : V (x) < B} is finite for every B > 0. Then each state in a closed, irreducible

component of S is positive recurrent. Moreover, if τx0 is the time for the process to

enter the union of the closed irreducible components given an initial condition x0,

then Ex0 [τx0 ] < ∞.

We will also need the following, which provides a method to check for transience.
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Theorem 4.9 Let X be a non-explosive continuous-time Markov chain on a countable

discrete state space S with generator L. Let B ⊂ S, and let τB be the time for the

process to enter B. Suppose there is some bounded function V such that for all x ∈ Bc,

LV(x) ≥ 0.

Then Px0(τB < ∞) < 1 for any x0 such that

sup
x∈B

V (x) < V (x0).

For a version of the theorem above that applies in much greater generality, see

Theorem 3.3(i) in Tweedie (1994). Our theorem is not an immediate corollary of

theirs (they define restricted versions of the chain X and state their theorem in terms

of the generators of the restricted processes), so we will provide a proof of Theorem

4.9 in the appendix.

4.2 Instructive Examples

We now consider some examples. The first is an application of Theorem 4.5, and the

rest show the various ways the conclusion of the theorem can fail if the hypothesis

κE > 0 is not satisfied. These examples also serve to illustrate various techniques

that are useful for analysing recurrence and transience of RNIC models. In Example

4.13, positive recurrence for the RNIC is shown via a Lyapunov function, applying

Theorem 4.8. In Example 4.21, transience for the RNIC is shown via a Lyapunov

function, applying Theorem 4.9. And in Example 4.23, transience for the RNIC is

shown with the help of the construction of F sim given in Sect. 2.3.2.

In the following, any rate constants not specified are assumed to be positive.

Example 4.10 Consider the following RNIC.

0 2S 0 C 2C δ0
κb

κI

κE
κC

where δ0 is the point mass at zero (so each compartment enters empty). Even though

IK is transient, by Theorem 4.5 the empty state is positive recurrent for N . Any state

where every compartment has an even number of S molecules is reachable from the

empty state, hence positive recurrent. Any state where any compartment has an odd

number of S molecules is not reachable from the empty state, hence transient. '(

In all of the remaining examples in this section, we have κE = 0 and hence the

state 0 will be transient for HK. Hence, when discussing the properties of the model

we restrict ourselves to the state space N \{0} that does not include the state with zero

compartments.

The case where κE = 0 is more complicated than the κE *= 0 case. For one thing,

it is no longer enough just to look at HK to decide if all states are transient. Indeed, if
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Example 4.10 is modified so that κE = 0 then every state becomes transient, despite

the fact that all states are positive recurrent for the compartment network HK:

Example 4.11 Consider the model F = (IK,HK, µ) described by

0 2S 0 C 2C δ0
κb κI κC

(9)

where δ0 is again the point mass at zero.

We reiterate that this is exactly the same as the previous example but with κE set

to zero. However, that is enough to make every state transient for F :

Proposition 4.12 In the RNIC model (9), IK is transient, HK is positive recurrent on

the irreducible state space {1, 2, . . . }, and N (the coarse-grained model corresponding

to F) is transient.

Proof Except for the zero-compartment state (which cannot be returned to), all states

are positive recurrent for HK by Lemma 4.3. However, the total number of S molecules

across all compartments can never shrink, and grows with some positive rate (at least

κb, and larger if there are more compartments), so all states are transient for N . '(

Thus we see that, in this example, the long-term behavior of HK and the course-grained

model N are different. '(

The above example shows that when κE = 0 and IK is transient, F may be

transient even if HK is not. However, this need not always be the case. Below we have

an example that demonstrates that, when κE = 0 and IK is transient, it is still possible

for F to be positive recurrent.

Example 4.13 Consider the model F = (IK,HK, µ) described by

2A + B B 0 A 0 C 2C δ(0,1)(a, b)
1 1 1 1 6

(10)

where δ(0,1) is a point mass with zero A molecules and one B molecule. We will

show that the chemical model IK is transient but that the course-grained model, N , is

positive recurrent. Intuitively, this can be understood in the following manner: B should

be thought of as an enzyme that degrades the substrate A. Without the compartment

model, the enzyme would simply disappear over time, and then the substrate would

grow without bound (from the reaction 0 → A). However, each compartment brings

in a new enzyme allowing for the further degradation of A.

Proposition 4.14 In the RNIC model (10), IK is transient, HK is positive recurrent on

the irreducible state space {1, 2, . . . }, and N (the coarse-grained model corresponding

to F) is positive recurrent.

Proof HK is positive recurrent by Lemma 4.3. IK is transient by the discussion above.

It just remains to check positive recurrence of N . For n ∈ N , let C(n) =

‖n‖%1 =
∑∞

a=0

∑∞
b=0 n(a,b) denote the number of compartments, and let A(n) =
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∑∞
a=0

∑∞
b=0 an(a,b) and B(n) =

∑∞
a=0

∑∞
b=0 bn(a,b) be the total number of A and B

molecules, respectively, across all compartments. Define V : N → [0,∞) via

V (n) =

{

A(n) + B(n) + 5C(n) − 1 B(n) *= 0

A(n) + B(n) + 5C(n) + 7 B(n) = 0.

We claim that this is a Lyapunov function for N . An upper bound for LV(n), the

generator applied to V at n, is given by

LV(n) ≤































−B(n) + 7 − 15C(n)(C(n) − 1) B(n) ≥ 2 and C(n) ≥ 2

14 − 15C(n)(C(n) − 1) B(n) = 1 and C(n) ≥ 2

−1 − 15C(n)(C(n) − 1) B(n) = 0

−A(n)(A(n) − 1)B(n) − B(n) + 7 B(n) ≥ 2 and C(n) = 1

−A(n)(A(n) − 1) + 14 B(n) = 1 and C(n) = 1

Note that the first two rows are upper bounds and the last three rows are exact. Specif-

ically, in the first two rows we neglected the contribution of the 2A + B → B reaction

— unlike everything else it crucially depends on how the A and B molecules are

distributed across the compartments.

We see that LV(n) ≤ −1 for all n outside a finite set of states—for instance, you

could take the states where there is exactly one compartment and it has at most 7 B

and at most 4 A. So V is indeed a Lyapunov function for N , and hence N is positive

recurrent by Theorem 4.8. '(

In the previous example we saw that even when κE = 0, positive recurrent com-

partments HK can still tame transient chemistry IK. It should not be surprising, then,

that positive recurrent compartments can tame null recurrent chemistry in the same

manner. For the sake of filling in Table 1 completely, we present a modification of

Example 4.13 where IK is null recurrent instead of transient.

Example 4.15 Consider the model F = (IK,HK, µ) described by

2A + B B 0 A 2A 0 C 2C δ(0,1)(a, b)
1 1 1

1

1 1 6

(11)

where δ(0,1) is a point mass with zero A molecules and one B molecule.

The verification of this example is similar enough to that of Example 4.13 that we

provide only a sketch.

Proposition 4.16 In the RNIC model (11), IK is null recurrent on the irreducible

state space {0, 1, 2, . . . }× {0}, HK is positive recurrent on the irreducible state space

{1, 2, . . . }, and N (the coarse-grained model corresponding toF) is positive recurrent.
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Proof Sketch Similarly to Example 4.13, HK is positive recurrent and IK is eventually

reduces (after all the B molecules degrade) to the network

0 A 2A.
1

1

1

This model is null recurrent by Lemma 4.3.

As for N , let V be the very same Lyapunov function used to prove positive recur-

rence in Example 4.13. The only difference between this example and that one is the

addition of the reactions A → 0 and A → 2A. But notice that the contribution of

A → 0 in LV(n) is −A(n), and the contribution of A → 2A is A(n). These are equal

and opposite, so LV(n) is exactly the same in this example and Example 4.13. Thus

the remainder of the proof is identical. '(

Examples 4.11 and 4.13 showed that F = (IK,HK, µ) can be either positive

recurrent or transient when κE = 0 and IK is transient. The next few examples are

dedicated to showing the same when IK is recurrent. First, if new compartments

enter with a huge number of molecules, it can overwhelm otherwise positive recurrent

chemistry:

Example 4.17 Consider the RNIC model F = (IK,HK, µ) described by

0 S 0 C 2C µ,
κb

κd

κI
κF

κC

(12)

where µ is not yet specified.

Proposition 4.18 Let N be the coarse-grained model associated with the RNIC model

(12). For any choice of non-negative rate constants such that κI > 0, there is a

distribution µ on the non-negative integers such that N is transient.

Proof We will show that in the case κb = 0, µ can be chosen so that the total number

of S molecules is itself a transient Markov chain. The case of κb > 0 then immediately

follows by a coupling argument. That portion of the proof is straightforward and is

omitted.

Let M(t) denote the number of S molecules across all compartments at time t .

Under the assumption that κb = 0, M is a Markov chain which transitions from state

m ∈ N to state m − 1 with rate κdm and to state m + j with rate κI µ( j).

Our plan is the following: we will recursively define an increasing sequence of

integers mk for k = 1, 2, 3, . . . , and define µ(mk) = 2−k and µ( j) = 0 otherwise.

For k = 2, 3, 4, . . . , we will let Ak denote the event that the process M reaches mk−1

before it reaches (or exceeds) mk+1. It then suffices to show that supk Pmk
(Ak) < 1/2

to prove transience of M .

Continuing, we begin by letting m1 = 0. Now suppose m1, . . . , mk−1 have been

defined. We will show that for any ε > 0 it is possible to pick mk so that Pmk
(Ak) <

ε regardless of the values chosen for mk+1, mk+2, . . . . To show this, we make the

following observations.
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1. Since M can only go down by one at a time, to get from mk to mk−1 before

hitting a state equal to or larger than mk+1, the process must visit every state

mk, mk − 1, · · · , mk−1 + 1 at least once.

2. On the event Ak , during each visit to each of the states mk−1 + 1, . . . , mk there

was no transition of size +mk+1 (for in that case the state of M would would

necessarily reach or exceed mk+1).

The probability of the process M transitioning up by mk+1 while in state m is 2−(k+1)κI

κI +κd m
because the total rate out of state m is κI + κdm, and the rate of inflows of size mk+1

in state m is µ(mk+1)κI = 2−k−1κI . Hence, combining the above observations we

see

Pmk
(Ak) ≤

mk
∏

m=mk−1+1

(

1 −
2−(k+1)κI

κI + κdm

)

≤

mk
∏

m=mk−1+1

exp

(

−
2−(k+1)κI

κI +κdm

)

= exp



−2−(k+1)κI

mk
∑

m=mk−1+1

1

κI +κdm



 ,

where above we use the bound 1 − x ≤ e−x .

If mk−1 is fixed and we send mk → ∞ in the sum above, we get ∞ (it’s a tail of a

harmonic series). Therefore, Pmk
(Ak) can be made as small as we like by choosing mk

big enough. We conclude that for appropriate choice of mk , the process M is transient,

and hence so is N . '(

Hence, so long as κE = 0, a distribution µ that is “bad enough” can cause the whole

model to be transient even if the chemical model IK is positive recurrent. '(

In the previous example, the distribution µ of incoming compartments was

unbounded. As it turns out, F = (IK,HK, µ) can be transient even when IK and HK

are positive recurrent and µ is bounded. The simplest, though not only, reason this can

occur is the existence of some conservation law, as the next example demonstrates.

Put simply, the total amount of species A and B is preserved by the chemistry, so any

inflow of those species, no matter how small, will overwhelm it.

Example 4.19 Consider the RNIC model F = (IK,HK, µ) described by

A B 0 C 2C µ
κa

κb

κI
κF

κC

(13)

where µ is not yet specified.

Proposition 4.20 Let N be the coarse-grained model associated with the system F
from (13). If µ is any measure on Z

2
≥0 other than the trivial measure δ(0,0), then N is

transient even though all states are positive recurrent for IK. On the other hand, if

µ = δ(0,0) then N is positive recurrent.

Proof IK is not irreducible, but when it is partitioned into closed irreducible commu-

nicating classing, all are finite, and hence all states are positive recurrent. As always

123



   87 Page 26 of 39 D. F. Anderson et al.

when κE = 0 but κC > 0, the empty state is transient for HK but all other states are

positive recurrent.

For n ∈ N , let S(n) =
∑∞

a=0

∑∞
b=0(a + b)n(a,b) denote the sum of the number of

A and B molecules, combined across all compartments in n.

First suppose that µ *= δ(0,0). Then S(N (t)) cannot shrink, and grows with positive

probability every time a compartment enters. So N is transient in this case.

Now suppose µ = δ(0,0). For n ∈ N , let C(n) = ‖n‖%1 be the number of compart-

ments in state n, and let V (n) = 2C(n). Then

LV(n) = 2κI + 2κF C(n) − κC C(n)(C(n) − 1),

where L is the generator of N . This is less than −1 outside a finite set because it is

quadratic in C(n) with negative leading term, provided we restrict the state space to

{n ∈ N : S(n) = S(N (0))}. So Theorem 4.8 applies and N is positive recurrent, as

claimed. '(

A natural question at this point is whether, if the behaviors in the last two examples

are ruled out, N can still be transient when IK and HK are both separately recurrent.

Specifically, if IK and HK are both recurrent, there are no conservation laws, and the

number of molecules that an incoming compartment can have is bounded, can N be

transient? The answer is yes, as the next example demonstrates.

Example 4.21 Consider the RNIC model F = (IK,HK, µ) described by

0 S 2S 0 C 2C δ1,
1

1

1 1 1
(14)

where δ1 is the point mass at one S.

Proposition 4.22 Let N be the coarse-grained model associated to the network F =

(IK,HK, µ) from (14). Then IK is recurrent with no conservation laws and the

number of molecules in new compartments is bounded, however every state is transient

for N.

Proof IK is (null) recurrent, and HK is positive recurrent on the irreducible state space

{1, 2, . . . }, by Lemma 4.3.

It remains to show that every state is transient for N . As in all examples with

κE = 0, the state with zero compartments can never be returned to and we restrict the

state space of the chain to N \ {0}. With this assumption the state space is a closed

irreducible set, so it suffices to pick one state and show that it is transient. We will show

e0 (the state with one empty compartment) is transient. Denoting a state of N by n, let

C(n) =
∑∞

x=0 nx and S(n) =
∑∞

x=0 x · nx denote the total number of compartments

and S molecules, respectively. Define V : N → [0, 1] by

V (n) =
S(n)

1 + S(n)
.
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If L denotes the generator of N , notice that

LV(n) = (C(n) + S(n) + 1)

(

S(n) + 1

S(n) + 2
−

S(n)

S(n) + 1

)

+ S(n)

(

S(n) − 1

S(n)
−

S(n)

S(n) + 1

)

=
C(n) + S(n) + 1

(S(n) + 2)(S(n) + 1)
−

1

S(n) + 1

=
C(n) − 1

(S(n) + 2)(S(n) + 1)

≥ 0

for all n ∈ N \ {0}. In particular, if B = {e0}, we can apply Theorem 4.9 to conclude

that when N is started from e0 + e1 (the state with two compartments, one empty and

the other with one S), then the probability of reaching B is less than 1. But when N is

started from e0, it reaches e0 + e1 with positive probability (the transition from e0 to

e0 +e1 corresponds to an inflow event). Putting these together, when N is started from

e0 it fails to return with positive probability, and hence e0 is transient. As discussed,

this is enough to conclude that all states are transient for N . '(

In the previous example IK was null recurrent. One may still be tempted to think

that perhaps if it were positive recurrent then the whole process must be. The next

example demonstrates that even this is not guaranteed.

Example 4.23 Consider the compartment model described by

A + B 0 B 0 C 2C δ(m,0)(a, b)

2B A

10 2

1

1 2

10

(15)

where m is some non-negative integer and δ(m,0) is the point mass at m molecules of A

and zero of B. Let γ > 0 denote the expected number of compartments in stationarity.

Proposition 4.24 Let F = (IK,HK, µ) be the compartment model from (15), and let

N be the associated coarse-grained model. Then IK is positive recurrent, but N is

transient when m > γ .

Proof That IK is positive recurrent is witnessed by the Lyapunov function

V (a, b) =

{

3a + 3 b = 0

3a + 3b − 2 b ≥ 1
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Indeed, if A denotes the generator of IK, then

AV (a, b) =



















3(1) − 2(2) b = 0

3(1) + 3(2) − 1(10a) b = 1

3(1) + 3(2) − 6(20a) − 1(10) b = 2

3(1) + 3(2) − 6(10ab) − 6(5b(b − 1)) b ≥ 3

=



















−1 b = 0

9 − 10a b = 1

−1 − 120a b = 2

9 − 60ab − 30b(b − 1) b ≥ 3

This is at most −1 away from (0, 1), so by Theorem 4.8 IK is positive recurrent.

Now regarding transience of N , let F sim be the simulation representation of F ,

so that N is a fuction of F sim. Let X A and X B denote the total number of A and B

molecules, respectively, across all compartments in N (equivalently, across all com-

partments in F sim). To show that N is transient, we will show that X A(t) → ∞ a.s., as

t → ∞. To do this, we will make use of the construction of F sim from Sect. 2.3.2. Let

YI and YC be as in that section, so that the process MC for the number of compartments

is given by

MC (t) = MC (0) + YI (t) − YC

(∫ t

0

MC (s)(MC (s) − 1)

2
ds

)

.

Similarly, for r ∈ {A + B → 0, 0 → B, 2B → 0, 0 → A} let Yr be as in Sect. 2.3.2,

and let Rr be the associated counting process for the number of times reaction r has

occurred across all compartments, so that

Rr (t) = Yr









∑

i≥0

Ti ≤t

∫ Ti+1∧t

Ti

MC (Ti )
∑

j=1

λr (X i
j (s))ds









,

where the Ti are the jump times of the process MC , X i
j (s) is the state of the process

in compartment j at time s, and λr is given as in (2). Then

X A(t) = X A(0) + R0→A(t) + mYI (t) − RA+B→0(t)

= X A(0) + Y0→A

(∫ t

0

MC (s)ds

)

+ mYI (t) − RA+B→0(t).

Notice that in the last line above we were able to simplify the expression for R0→A

in terms of Y0→A from the expression given above for Rr in general. This was done

by making use of the fact that the total rate of this reaction across all compartments,
∑

j λ0→A(X i
j (s)), is exactly the total number of compartments MC (s). We cannot
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hope to do the same for RA+B→0 because the rate of that reaction depends on how

the molecules are distributed across the compartments. However, notice that the total

number of times the reaction A + B → 0 fires is at most the total number of B

molecules ever present in the system:

RA+B→0(t) ≤ X B(0) + R0→B(t)

= X B(0) + Y0→B

(

2

∫ t

0

MC (s)ds

)

.

Therefore,

X A(t) ≥ X A(0) − X B(0)

+ Y0→A

(∫ t

0

MC (s)ds

)

+ mYI (t) − Y0→B

(

2

∫ t

0

MC (s)ds

)

.

Recall that γ denotes the expected number of C in the CRN HK at stationarity.

By the CTMC ergodic theorem (see Theorem 45 in Chapter 4 of Serfozo (2009)),
1
t

∫ t

0 MC (s)ds → γ almost surely as t → ∞. This will matter in its own right; it also

follows that
∫ t

0 MC (s)ds → ∞ a.s. as t → ∞. It is a standard fact about unit Poisson

processes Y that Y (t)/t → 1 a.s. as t → ∞. Composing this Poisson limit with the

limit from the previous sentence, we get that

Y0→B

(

2
∫ t

0 MC (s)ds
)

2
∫ t

0 MC (s)ds
→ 1

a.s. as t → ∞, and similarly for Y0→A. Putting this all together we have

lim
t→∞

X A(t)

t
≥ lim

t→∞

[Y0→A

(

∫ t

0 MC (s)ds
)

∫ t

0 MC (s)ds
·

1

t

∫ t

0

MC (s)ds + m
YI (t)

t

−
Y0→B

(

2
∫ t

0 MC (s)ds
)

2
∫ t

0 MC (s)ds
·

2

t

∫ t

0

MC (s)ds

]

= γ + m − 2γ .

almost surely. Therefore, as long as the integer m is (strictly) larger than γ , X A(t)/t

is converging almost surely to a positive number. In this case X A(t) → ∞ a.s. as

t → ∞, and hence N is transient. '(

Note that the above example shows the potential usefulness of the RNIC represen-

tation provided in Sect. 2.3.2.

123



   87 Page 30 of 39 D. F. Anderson et al.

5 Stationary Distribution in a Special Case

In light of Theorem 4.5, whenever HK is positive recurrent and κE > 0, then N , the

coarse-grained model associated to F = (IK,HK, µ), is positive recurrent for at least

some states. In this case, the standard theory of Markov chains tells us that there is a

stationary distribution supported on those states. Ideally, it would be possible to write

down a formula for this stationary distribution in terms of information about the CRNs

IK and HK. Under the further assumption that κC = 0 = κF (so that compartments

are not interacting), we are able to do so.

Theorem 5.1 Consider a non-explosive model F = (IK,HK, µ) with κF = κC = 0,

and κE > 0:

IK 0 C µ
κI

κE

Let N be the coarse-grained model associated to F . For x ∈ Z
d
≥0 and t ∈ [0,∞), let

Pµ(x, t) denote the probability that IK is in state x at time t when started from time

zero with initial distribution µ. For x ∈ Z
d
≥0 define α(x) via

α(x) =

∫ ∞

0

Pµ(x, t)κE e−κE t dt,

and define a distribution π on N via

π(n) =







∏

x∈Z
d
≥0

α(x)nx

nx !






·

[

e−κI /κE ·

(

κI

κE

)‖n‖
%1

]

Then π is the unique stationary distribution for N.

Remark 5.2 To apply Theorem 5.1, one needs to know, not just the stationary distri-

bution for the chemistry, but the distribution for all time. This restriction may seem

daunting, and indeed for many models this distribution is not known. One class of

models where it is know are the DR models of Anderson et al. (2020). A second class

of models are monomolecular reaction networks with arbitrary initial conditions —

see Jahnke and Huisinga (2007). Note that Anderson et al. (2020) allows for more

general networks (all monomolecular networks satisfy the DR condition), but Jahnke

and Huisinga (2007) allows for more general initial conditions (the DR paper requires

Poisson initial conditions).

Proof of Theorem 5.1 Note that by Theorem 4.5, any state which is reachable from the

zero state is positive recurrent, and all other states are transient. Furthermore, notice that

N is irreducible if restricted to the set of states which are reachable from the zero state,

since zero is reachable from any state. Thus there is a unique stationary distribution.

To prove that the π given above is indeed this unique stationary distribution, it suffices

to show that π is a distribution and π Q = 0, where Q is the transition rate matrix for
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N . That π is a distribution follows from the fact that α is a distribution, which we will

check later in the proof. So fix n ∈ N ; we wish to show that
∑

n′∈N π(n′)q(n′, n) = 0.

Note that there are only three possible types of transitions: inflow of compartment,

outflow of compartment, and transition of reaction network. Expanding the sum above

into three terms, one for each of these types of transitions, the desired equality can be

written

∑

x∈Z
d
≥0

[

π(n − ex )q(n − ex , n) + π(n + ex )q(n + ex , n)

+
∑

j

π(n − ex + ex−ν′
j +ν j

)q(n − ex + ex−ν′
j +ν j

, n)

]

= π(n)
∑

x∈Z
d
≥0



q(n, n + ex ) + q(n, n − ex ) +
∑

j

q(n, n − ex + ex+ν′
j −ν j

)





or

∑

x∈Z
d
≥0

[

π(n − ex )κI µ(x) + π(n + ex )κE (nx + 1)

+
∑

j

π(n − ex + ex−ν′
j +ν j

)(nx−ν′
j +ν j

+ 1)κ j

(

x − ν′
j + ν j

ν j

)]

= π(n)
∑

x∈Z
d
≥0



κI µ(x) + κE nx +
∑

j

nxκ j

(

x

ν j

)



 (16)

To prove this equality, we will consider two cases. Suppose first that n is such that

ny > 0 for some y ∈ Z
d
≥0 with α(y) = 0, and fix such a y. Then α(y) participates

in the product defining π(n), and hence π(n) = 0. Thus the right-hand side of (16) is

zero; we claim that the left-hand side is also zero. Specifically, we will argue for each

x and each j , each of the three terms in the sum is zero. So fix x and j :

• π(n − ex )κI µ(x): Notice that if x *= y then π(n − ex ) = 0 for the same reason

that π(n) = 0. If x = y then µ(x) = 0, since if µ(y) > 0 it would be the case that

Pµ(y, t) > 0 for all small enough t , and hence the integral defining α(y) would

be positive.

• π(n + ex )κE (nx + 1): Regardless of x , π(n + ex ) = 0 for the same reason that

π(n) = 0.

• π(n − ex + ex−ν′
j +ν j

)(nx−ν′
j +ν j

+ 1)κ j

(x−ν′
j +ν j

ν j

)

: As before, if x *= y then π(n −

ex +ex−ν′
j +ν j

) = 0. Suppose towards a contradiction that π(n−ey+ey−ν′
j +ν j

) *= 0

and that κ j

(y−ν′
j +ν j

ν j

)

*= 0. Then π(n − ey + ey−ν′
j +ν j

) *= 0 implies that α(y −

ν′
j + ν j ) *= 0, and hence Pµ(y − ν′

j + ν j , t) *= 0 for some t . But this means that
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the state y − ν′
j + ν j is reachable for I when started with initial distribution µ.

But κ j

(y−ν′
j +ν j

ν j

)

*= 0 implies that y is reachable from y − ν′
j + ν j for I via the

j-th reaction, so we conclude that y is reachable from µ. But this implies that

Pµ(y, t) *= 0 for t > 0, which in turn means that α(y) > 0. This contradicts

our choice of y, so it must be that our assumption was wrong: either π(n − ey +

ey−ν′
j +ν j

) = 0 or κ j

(y−ν′
j +ν j

ν j

)

= 0. But either of those imply the desired equality

π(n − ey + ey−ν′
j +ν j

)(ny−ν′
j +ν j

+ 1)κ j

(y−ν′
j +ν j

ν j

)

= 0.

This proves that (16) reduces to 0 = 0 in this case. The reminder of the proof will

be devoted to the second case; namely, the case where n is such that ny = 0 for all

y ∈ Z
d
≥0 with α(y) = 0.

Let X = {x ∈ Z
d
≥0 : α(x) *= 0}. We claim that for every x /∈ X and every j , every

summand in (16) is zero. So fix x /∈ X and j :

• π(n −ex )κI µ(x): Since α(x) = 0, by choice of n we have nx = 0. But this means

that n − ex is negative at x and hence n − ex /∈ N , so π(n − ex ) = 0.

• π(n + ex )κE (nx + 1): Notice that α(x) = 0 participates in the product defining

π(n + ex ), and hence π(n + ex ) = 0.

• π(n−ex +ex−ν′
j +ν j

)(nx−ν′
j +ν j

+1)κ j

(x−ν′
j +ν j

ν j

)

: As before, n−ex +ex−ν′
j +ν j

/∈ N

and hence π(n − ex + ex−ν′
j +ν j

) = 0.

• κI µ(x): Since α(x) = 0, it must be the case that µ(x) = 0, as otherwise Pµ(x, t)

would be positive for sufficiently small t .

• κE nx : Since α(x) = 0, by choice of n we have nx = 0.

• nxκ j

(

x
ν j

)

: Once again, nx = 0.

Thus we have shown that terms with x /∈ X do not contribute to (16). So to complete

the proof, we have only to show that

∑

x∈X

[

π(n − ex )κI µ(x) + π(n + ex )κE (nx + 1)

+
∑

j

π(n − ex + ex−ν′
j +ν j

)(nx−ν′
j +ν j

+ 1)κ j

(

x − ν′
j + ν j

ν j

)]

= π(n)
∑

x∈X



κI µ(x) + κE nx +
∑

j

nxκ j

(

x

ν j

)



 . (17)

Let x ∈ X be arbitrary. Integration by parts gives

∫ ∞

0

(

d

dt
Pµ(x, t)

)

κE e−κE t dt

= κE e−κE t Pµ(x, t)

∣

∣

∣

t=∞

t=0
−

∫ ∞

0

Pµ(x, t)(−κ2
E e−κE t )dt

= −κEµ(x) + κEα(x).
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Because Pµ is the distribution for IK, the Kolmogorov forward equations for IK tell

us that

d

dt
Pµ(x, t) =

∑

ν j →ν′
j

κ j

(

x − ν′
j + ν j

ν j

)

Pµ(x − ν′
j + ν j , t) −

∑

ν j →ν′
j

κ j

(

x

ν j

)

Pµ(x, t)

for each t . Plugging this in above and rearranging yields

∑

ν j →ν′
j

κ j

(

x − ν′
j+ν j

ν j

)

α(x − ν′
j + ν j )−

∑

ν j →ν′
j

κ j

(

x

ν j

)

α(x) = −κEµ(x) + κEα(x)

κE

µ(x)

α(x)
+

∑

ν j →ν′
j

κ j

(

x − ν′
j + ν j

ν j

)

α(x − ν′
j + ν j )

α(x)
= κE +

∑

ν j →ν′
j

κ j

(

x

ν j

)

.

Note that we did not divide by zero in the second line because α(x) *= 0 by definition

of X. Since x ∈ X was arbitrary, we can multiply through by nx and sum over x , which

yields

∑

x∈X

(

nxκE

µ(x)

α(x)
+ nx

∑

ν j →ν′
j

κ j

(

x − ν′
j + ν j

ν j

)

α(x − ν′
j + ν j )

α(x)

)

=
∑

x∈X

(

nxκE + nx

∑

ν j →ν′
j

κ j

(

x

ν j

))

. (18)

Now we claim that µ and α are both probability measures supported on X. We know

that µ is a probability measure by assumption; it is supported on X because if µ(x) > 0

then Pµ(x, t) > 0 for small enough t and hence α(x) > 0. We know that α is supported

on X by definition of X; to see that it is a probability measure, use the fact that the

integrand in the definition of α is non-negative to interchange a sum over x with

the integral and then apply the fact that Pµ(x, t) is a probability measure for each

t . Therefore µ and α are both probability measures supported on X, as claimed; it

follows that
∑

x∈X
κI µ(x) = κI =

∑

x∈X
κI α(x). So adding κI to both sides of (18)

gives

∑

x∈X

(

nxκE

µ(x)

α(x)
+ κI α(x) + nx

∑

ν j →ν′
j

κ j

(

x − ν′
j + ν j

ν j

)

α(x − ν′
j + ν j )

α(x)

)

=
∑

x∈X

(

κI µ(x) + nxκE + nx

∑

ν j →ν′
j

κ j

(

x

ν j

))

. (19)
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Now notice that, directly from the definition of π , we have

π(n − ex )

π(n)
=

nx

α(x)

κE

κI

π(n + ex )

π(n)
=

α(x)

nx + 1

κI

κE

π(n − ex + ex−ν′
j +ν j

)

π(n)
=

α(x − ν′
j + ν j )

α(x)

nx

nx−ν′
j +ν j

+ 1
,

where the last equality holds for each reaction ν j → ν′
j . Applying these three in order

on the left-hand side of (19), we get

∑

x∈X

(

κI µ(x)
π(n − ex )

π(n)
+ κE (nx + 1)

π(n + ex )

π(n)

+
∑

ν j →ν′
j

κ j

(

x − ν′
j + ν j

ν j

)

(nx−ν′
j +ν j

+ 1)
π(n − ex + ex−ν′

j +ν j
)

π(n)

)

=
∑

x∈X

(

κI µ(x) + nxκE + nx

∑

ν j →ν′
j

κ j

(

x

ν j

))

∑

x∈X

(

κI µ(x)π(n − ex ) + κE (nx + 1)π(n + ex )

+
∑

ν j →ν′
j

κ j

(

x − ν′
j + ν j

ν j

)

(nx−ν′
j +ν j

+ 1)π(n − ex + ex−ν′
j +ν j

)

)

= π(n)
∑

x∈X

(

κI µ(x) + nxκE + nx

∑

ν j →ν′
j

κ j

(

x

ν j

))

,

which is exactly the desired equality, (17). '(

Let us now consider some examples of applying this result.

Example 5.3 Let λ ≥ 0, and consider the compartment system

0 S 0 C Poisson(λ)
κb

κd

κI

κE

Then the stationary distribution of the system is given by

π(n) =

(

∞
∏

x=0

α(x)nx

nx !

)

·

[

e−κI /κE ·

(

κI

κE

)‖n‖
%1

]

,
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where α(x) is

∫ ∞

0

exp
{

−(λ − κb/κd)e−κd t − κb/κd

} ((λ − κb/κd)e−κd t + κb/κd)x

x !
κE e−κE t dt .

Proof Check that the distribution

Pλ(x, t) := exp
{

−(λ − κb/κd)e−κd t − κb/κd

} ((λ − κb/κd)e−κd t + κb/κd)x

x !

is Poisson(λ) at time t = 0 and satisfies

d

dt
Pλ(x, t) = κb Pλ(x − 1, t) + κd(x + 1)Pλ(x + 1, t) − κb Pλ(x, t) − κd x Pλ(x, t)

for each x and t , and apply Theorem 5.1. '(

In the previous example, notice that the expected value of α is

∞
∑

x=0

xα(x) =

∫ ∞

0

∞
∑

x=0

exp
{

−(λ − κb/κd)e−κd t − κb/κd

}

((λ − κb/κd)e−κd t + κb/κd)x+1

x !
κE e−κE t dt

=

∫ ∞

0

(λ − κb/κd)κE e−(κd+κE )t +
κbκE

κd

e−κE t dt

=
(λ − κb/κd)κE

κd + κE

+
κb

κd

=
λκE + κb

κd + κE

.

This matches Duso and Zechner (2020), where the same example is consider in section

2.A (see specifically their equation [20] and the following discussion). Note that in

Duso and Zechner (2020), though the expected value of α is calculated in general, an

explicit formula for α(x) (in their notation, P∞(x)) is given in only two cases. The

first is the case where λ = κb/κd , where (in section S7.4 of their SI Appendix) they

remark that α is Poission with mean λ. This matches the formula we give above in

Example 5.3. The second case they cover is the one where κd = 0. In that case they

obtain

α(x) = (1 − ξ)ξ x eλ(1/ξ−1) -(1 + x, λ/ξ)

x !
,

where ξ = κb/(κb + κE ) and - is the upper incomplete Gamma function. One can

check that this agrees with our next example, Example 5.4, in the case where µ is taken

to be Poission with parameter λ by applying the binomial theorem in our formula and

then making a change of variable in the integral.
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The following example is interesting for a few reasons. First, the chemistry is not

converging to any sort of stationary distribution, and yet the whole compartment model

is. Second, notice that when µ is not a Poisson distribution, Pµ(x, t) is not a Poisson

distribution in x for all t unlike the previous example or more generally the DR models

from Remark 5.2. Third, as discussed above, it generalizes an example from Duso and

Zechner (2020).

Example 5.4 Let µ be a probability distribution on Z≥0, and consider the compartment

system

0 S 0 C µ,
κb

κI

κE

Then the stationary distribution of the system is given by

π(n) =

(

∞
∏

x=0

α(x)nx

nx !

)

·

[

e−κI /κE ·

(

κI

κE

)‖n‖
%1

]

,

where

α(x) =

∫ ∞

0

e−κbt

(

x
∑

m=0

κm
b tm

m!
µ(x − m)

)

κE e−κE t dt .

Proof Check that the distribution

Pµ(x, t) := e−κbt

(

x
∑

m=0

κm
b tm

m!
µ(x − m)

)

satisfies

d

dt
Pµ(x, t) = κb Pµ(x − 1, t) − κb Pµ(x, t),

with initial condition Pµ(x, 0) = µ(x), and apply Theorem 5.1. '(
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Appendix

The purpose of this section is to prove Theorem 4.9, which we recall says the following:

Theorem 6.1 Let X be a non-explosive continuous-time Markov chain on a countable

discrete state space S with generator L. Let B ⊂ S, and let τB be the time for the

process to enter B. Suppose there is some bounded function V such that for all x ∈ Bc,

LV(x) ≥ 0.
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Then Px0(τB < ∞) < 1 for any x0 such that

sup
x∈B

V (x) < V (x0).

Just like the theorem itself, the proof draws heavy inspiration from Tweedie (1994).

Before providing the proof, we state the following well-known result:

Lemma 6.2 (Dynkin’s Formula) Suppose X is a Markov chain with finite state space

S, and let L be the generator of X. Then for any a.s. bounded stopping time τ and any

x ∈ S, we have

Ex [ f (Xτ )] = f (x) + Ex

[∫ τ

0

L{(Xs)ds

]

In fact Dynkin’s Formula is well-known in much greater generality than what is

stated above, but as stated it is not hard to prove and is enough for our purposes.

Proof of Theorem 4.9 Define W on S via W = V − supx∈B V (x). Notice that W (x0)

is strictly positive, W is nonpositive on B, and LW = LV . Fix some enumeration of

S in which x0 is the first element, and for m ∈ N let Sm denote the first m elements of

S. Let τm be the first time X is not in Sm . Let . be a new state not in S, and for m ∈ N

define a new Markov chain Xm via

Xm
t =

{

X t t < τm

. t ≥ τm

Notice that Xm has finite state space Sm ∪ {.}. Notice that W is bounded since V is,

let C = supx∈S W (x), and extend W to a function on S ∪ {.} by setting W (.) = C .

Let Lm denote the generator of the process Xm ; we claim that LW(x) ≤ Lm W (x)

whenever x ∈ Sm . Indeed, notice that

Ex [W (X t )] =
∑

y∈S

W (y)Px (X t = y)

=
∑

y∈S

W (y)Px (X t = y, t < τm) +
∑

y∈S

W (y)Px (X t = y, t ≥ τm)

≤
∑

y∈S

W (y)Px (X t = y, t < τm) +
∑

y∈S

CPx (X t = y, t ≥ τm)

=
∑

y∈Sm

W (y)Px (Xm
t = y) + W (.)Px (Xm

t = .)

= Ex [W (Xm
t )],

and hence

LW(x) = lim
t↘0

Ex [W (X t )] − W (x)

t
≤ lim

t↘0

Ex [W (Xm
t )] − W (x)

t
= Lm W (x),
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as claimed. Now for any m, applying Dynkin’s Formula to the chain Xm with finite

stopping time τB ∧ τm ∧ m yields

Ex0 [W (Xm
τB∧τm∧m)] = W (x0) + Ex0

[∫ τB∧τm∧m

0

Lm W (Xm
s )ds

]

.

But for s < τB ∧ τm we have Xm
s = Xs ∈ Bc ∩ Sm and hence

Lm W (Xm
s ) = Lm W (Xs) ≥ LW(Xs) = LV(Xs) ≥ 0.

So the integrand in Dynkin’s Formula is non-negative, and

W (x0) ≤ Ex0 [W (Xm
τB∧τm∧m)]

= Ex0 [W (Xm
τB

)IτB<τm∧m] + Ex0 [W (Xm
τm∧m)IτB≥τm∧m]

≤ Ex0 [W (Xm
τB

)IτB<τm∧m] + CPx0(τB ≥ τm ∧ m).

Note that Xm
τB

∈ B on the event τB < τm ∧ m. Hence W (Xm
τB

)IτB<τm∧m ≤ 0, and

W (x0) ≤ CPx0(τB ≥ τm ∧ m)

Since X is assumed to be non-explosive, τm → ∞ as m → ∞, so taking m → ∞

above gives

W (x0) ≤ CPx0(τB = ∞).

But W (x0) is strictly positive and 0 < W (x0) ≤ C < ∞, so Px0(τB = ∞) *= 0. That

is, Px0(τB < ∞) < 1, as desired. '(

Remark 6.3 Note that the proof above gives us a lower bound for the probability that

the process never returns to the set B:

W (x0)

C
≤ Px0(τB = ∞),

where C = supx∈S W (x) and W = V − supx∈B V (x). We do not make use of this

fact.
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