New Paradigms for Exploiting Parallel Experiments in

Bayesian Optimization
Leonardo D. Gonzélez and Victor M. Zavala®

Department of Chemical and Biological Engineering
University of Wisconsin-Madison, 1415 Engineering Dr, Madison, WI 53706, USA

Abstract

Bayesian optimization (BO) is one of the most effective methods for closed-loop experimen-
tal design and black-box optimization. However, a key limitation of BO is that it is an inher-
ently sequential algorithm (one experiment is proposed per round) and thus cannot directly
exploit high-throughput (parallel) experiments. Diverse modifications to the BO framework
have been proposed in the literature to enable exploitation of parallel experiments but such
approaches are limited in the degree of parallelization that they can achieve and can lead to
redundant experiments (thus wasting resources and potentially compromising performance).
In this work, we present new parallel BO paradigms that exploit the structure of the system
to partition the design space. Specifically, we propose an approach that partitions the design
space by following the level sets of the performance function and an approach that exploits par-
tially separable structures of the performance function found. We conduct extensive numerical
experiments using a reactor case study to benchmark the effectiveness of these approaches
against a variety of state-of-the-art parallel algorithms reported in the literature. Our compu-
tational results show that our approaches significantly reduce the required search time and
increase the probability of finding a global (rather than local) solution.

Keywords: Bayesian optimization, high-throughput experiments, parallelization.

1 Introduction

The use of high-throughput experimental (HTE) platforms is accelerating scientific discovery in
diverse fields such as catalysis [18], pharmaceuticals [16], synthetic biology [25], and chemical
engineering [21]. Such platforms permit large numbers of experiments to be executed in paral-
lel, sometimes automatically; this enables the exploration of wider design spaces, reduces time to
discovery, and can potentially decrease the use of resources. However, due to the large number
of design variables involved, determining optimal conditions manually is often infeasible. As a

“Corresponding Author: victor.zavala@wisc.edu.

http://zavalab.engr.wisc.edu

result, HTE platforms rely on the use of design of experiments (DoE) algorithms, which aim to
systematically explore the design space.

Screening is a simple DoE approach in which experiments are performed at points on a dis-
cretized grid of the design space [23]; this approach is intuitive but does not scale well with the
number of design variables and can ultimately lead to significant waste of resources (conduct
experiments that do not provide significant information). The central aim of advanced DoE ap-
proaches is to maximize the value provided by each experiment and ultimately reduce the number
of experiments and resources used (e.g., experiment time). The value of an experiment is usually
measured either by information content (e.g., reduces model uncertainty) or if it results in a desir-
able outcome (e.g., improves an economic objective) [2]. A widely used DoE approach that aims
to tackle this problem is response surface methodology or RSM [3]; this approach is generally
sample-efficient (requires few experiments) but uses second-degree polynomial surrogate models
that can fail to accurately capture system trends. In addition, parameters used in the RSM surro-
gate model are subject to uncertainty and this uncertainty is not resolved via further experiments
[12] (i.e., RSM is an open-loop DoE technique).

Another powerful approach to DoE that aims to maximize value of experiments is Bayesian
experimental design [5]. Recently, the machine learning (ML) community has been using variants
of this paradigm to conduct closed-loop experimental design [7]. One of the most effective varia-
tions of this paradigm is the Bayesian optimization (BO) algorithm [1]; BO has been shown to be
sample-efficient and scalable (requires minimal experiments and can explore large design spaces)
[28]. BO is widely used in applications such as experimental design, hyper-parameter tuning, and
reinforcement learning. Of particular interest is the flexibility of the BO paradigm as it is capable
of accommodating both continuous and discrete (e.g., categorical) design variables as well as con-
straints (which help encode domain knowledge and restrict the design space) [4]. Additionally,
BO uses probabilistic surrogate models (e.g. Gaussian process models) which greatly facilitates
the quantification of uncertainty and information in different regions of the design space [9]; this
feature is particularly useful in guiding experiments where information gain can be as important
as performance. BO can also be tuned to emphasize exploration (by sampling regions with high
uncertainty) over exploitation (by sampling from regions with high economic performance) [17];
this trade-off is achieved by tuning the so-called acquisition function (AF), which is a composite
function that captures uncertainty and performance.

A fundamental caveat of BO is that it is inherently a sequential algorithm (samples a single
point in the design space at each iteration), limiting its ability to exploit HTE platforms. Modi-
fications to the BO algorithm have been proposed in the literature to overcome these limitations
[10, 6, 15]. Relevant variants include Hyperspace partitioning [33], batch Bayesian optimization
[31], NxMCMC [26], and AF optimization over a set of exploratory designs [11]. These parallel
BO approaches have been shown to perform better than sequential BO in terms of search time

2

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

[34]; however, these approaches are limited in the degree of parallelization that can be achieved
and can lead to redundant experiments, thus wasting resources and potentially getting trapped in
local solutions.

In this work, we propose a set of new parallel BO paradigms that exploit the structure of
the system in order to guide partitioning of the design space (see Figure 1). Our first approach,
which we call level-set partitioning, decomposes the design space by following the level sets of the
performance function. Because the performance function cannot be evaluated (it is unknown), a
key feature of this approach is that it leverages a reference function (which can be a low-fidelity
model or a physics model) to approximate the level sets and guide the partitioning. Our second
approach, called variable partitioning, partitions the design space by exploiting partially separable
structures that typically result when a system is composed of multiple subsystems (e.g., a chemical
process is composed of multiple units). We benchmark the performance of our approaches over
sequential BO and state-of-the-art parallel BO variants from the literature using a reactor system.
Our results show that the proposed approaches can achieve significant reductions in search time;
in addition, we observe improvements in performance values found and in search robustness

(sensitivity to initial guess).

Figure 1: Schematic of proposed BO parallelization paradigms using level set partitioning (left)
and variable partitioning (right).

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

2 Sequential Bayesian Optimization

2.1 Standard BO (S-BO)

The aim of closed-loop DoE is to identify experimental inputs that achieve optimal performance;
we cast this as the optimization problem:

min () (1a)

st.z€X (1b)

where f : X — R is a scalar performance function, z € X C R?is a given experiment (trial) point;
and X is the experimental design space (of dimension d). Generally, an explicit relationship be-
tween the design variables = and performance function f is not known a priori and motivates the
need to evaluate the performance at a selected set of trial points to build a surrogate model of the
performance function that can be used to optimize the system.

The open-loop DoE approach most commonly used in HTE platforms is screening; this is a
grid-search method that discretizes the design space X into a set of experiments z;, € X, k € K :=
{1, ..., K} (we denote this set compactly as zx); the performance of the system is then evaluated
(potentially in parallel) at these points to obtain fx and the experiments that achieve the best per-
formance are selected. This screening approach provides good exploratory capabilities, but it is
not scalable in the sense that the number of trial experiments needed to cover the design space
grows exponentially with the number of design variables d and with the width of the space X.
Moreover, this approach cannot be guaranteed to find an optimal solution.

To derive our closed-loop DoE approach based on S-BO, we assume that we have a set of
experimental data D¢ = {z%., ff-} at the initial iteration £ = 1. We use this data to develop a proba-
bilistic surrogate model f¢ : X — R (a Gaussian process - GP) that approximates the performance
function f over the design space X. The GP generates this approximation by first constructing a
prior over f(x1.,) of the form f(x1.,) ~ N(m(x),K(z,2')). Here m(z) € R?is the prior mean func-
tion and is commonly set equal to 0. The prior covariance matrix, K(z,z") € R%%d is constructed
using a kernel function, h(xz,), such that K; ; = h(x;, z;). There exists a large selection of kernel
functions (e.g, rotational quadratic, squared exponential, Métern), and determining which to use
is largely dependent on identifying a choice for h(z, 2’) that will fit the generated data well. The
GP then uses these elements to construct a predictive posterior distribution at a new experimen-
tal point x that generates an estimate fY(x) of the value of the performance function at . This
estimate can be shown to be Gaussian random variable f¢(z) ~ A (M?(l’), ofe(w)) with mean and

variance:
,LL?(I’) = K(x,xfg)K(x%,x@_lfé, reX (2a)
o' (x) := K(z,z) — K(z, 2j) " K(a, vk) 'K(a, 2), = € X. (2b)

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

The mean and variance of the prediction capture the expected performance and its uncertainty /information;
these measures are used to construct an acquisition function (AF), which is used to guide the se-
lection of the next experiment. Here, we use an AF of the form:

AFJf(:U;h;) = ,ufc(x) — K- Ufc(:c), reX 3)

where k € R, is a hyperparameter that prioritizes exploration (information) over exploitation

(performance). The next experiment, 21 € X, is obtained by solving the AF optimization prob-
lem:

2 argmin AFf(x; K) (4a)

st xeX (4b)

Once the experiment 2/*! has been computed, the system performance is evaluated at this point
(by running the experiment) to obtain the new data point {z/*!, f(x**!)}; this point is added
to the data collection D! « D U {z*1 f(2**1)}. The GP model is re-trained using this new
data collection to obtain f‘*(z) ~ N (,u?rl(a;), a?“l(x)) and the acquisition function is updated

42 This process is repeated over multiple

to AFJfJrl and minimized to obtain a new design x
cycles/iterations ¢ = 1,2, ..., L until a satisfactory performance is obtained (or no additional im-
provement in performance is observed). We highlight that the standard BO algorithm (which we
refer to as S-BO) does not have a natural stopping criterion and can get stuck in a local solution

(as opposed to finding a global solution). The pseudocode for S-BO can be found in Algorithm 1.

Algorithm 1: Standard Bayesian Optimization (5-BO)
Given k, L, and DY;
Train GP ff using initial dataset D! and obtain AF]{ ;
for/{=1,2,....,L do

Compute experiment x

1« argmin_ AFJf(:U; k)st.x € X;
Evaluate performance at z°*! to obtain f+1;

Update dataset D1 « DY U {zf+1] fEH1};

Train GP using D**! to obtain 1 and A Ff“;

end

2.2 Reference-Based BO (Ref-BO)

Recent work has shown that allowing the BO algorithm to exploit available preexisting informa-
tion can improve its performance. One approach found in [19], for example, exploits the fact that
the performance function is usually a known composite function that can be expressed as f(y(x))
where a set of intermediate variables, y(x), are the unknowns. As a result, the performance func-

tion can be optimized using derivative-based methods, allowing one to set targets for the various

5

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

AF Optimization Model Training

1 argmin AFy(z;)
zeX

‘"

System Evaluation

{41

DZ-H . Dl U (‘,L,E+17 f(l,é-‘rl))

Figure 2: Workflow of a standard Bayesian optimization (5-BO) framework. A new experiment
2**1 is obtained from the optimization of the acquisition function. The system performance is
evaluated at the experiment and the collected data is added to the database. The database is used
to re-train the probabilistic GP model (which captures performance and uncertainty). The GP

model is used to construct the acquisition function, which balances performance and uncertainty.

y(x) which are modeled by the BO algorithm to determine the appropriate input x values. An-
other approach uses a low fidelity estimate of f(z) to identify promising regions in X and then
increases the fidelity of the estimate while sampling from this reduced space; this process is then
repeated iteratively. This method, known as multi-fidelity BO (MFBO), gradually zeros in on an
optimal region, reducing the number of experiments that have to be performed with the real sys-
tem [29, 13, 32]. The approach we have opted to use, which we refer to as reference-based BO or
Ref-BO, is based on the framework presented in [14], and is similar to MFBO. Specifically, Ref-BO
initializes the BO algorithm with an approximation of f(z) in order to highlight promising regions
in the design space where the solution might be located; BO can then focus sampling in such re-
gions from the start and avoid unnecessary experiments. We refer to this initial approximation
as the reference model, and it can be obtained through various means (e.g., physics models, em-
pirical correlations, or low-fidelity simulators). Unlike MFBO, Ref-BO always samples from the
real system and does not use the low-fidelity model to restrict sampling to any one region of the
design space; additionally, the reference model is not modified after it has been loaded into the al-
gorithm. As a result, the Ref-BO algorithm is simple to implement. Once the reference model has
been obtained, only a few minor modifications to S-BO are required without the need to make any
additional assumptions or set additional hyperparameters beyond those associated with S-BO.

6

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

To incorporate a reference model in the BO search, we reformulate the optimization problem

in (1) as:
min g(x) +e(x) (5a)
st. ze X (5b)

where g : X — R is the reference model and ¢ : X — R is the residual or error model satisfying
e(x) = f(z) — g(x), = € X. The reference model g is assumed to be a deterministic function that
captures features of the performance function f. We also assume that, during the BO search, the

reference model is fixed and unaffected by new data collected.

f(x)

g(x) e(z)

|

Figure 3: Reference-based BO decomposes the performance function f into a reference model g
and a residual model ¢. The coarse features of f are often captured by g and thus the residual ¢ is
typically easier to learn using a GP model.

The form of the residual model ¢ is not known (because f is not known) and thus a surrogate
needs to be built from experimental data. Given a set of data D! := {z%., ek}, with el := {f(z%) —
9(z%) }rex, we construct a GP model for the residual; the prediction of the residual at a new point
x is the Gaussian &¢(z) ~ N (pt(2), ot(z)) with:

I3
pé (@) = Kz, aje)K(zj, aic) ek, © € X (6)
oc(w) = K(z, 2) — K(z, 25) K(ag, of) " Kz, 2), € X. (6b)

£

We build the surrogate f = g + & of the performance function based on the surrogate of the
residual; because g is assumed to be deterministic, we have that:

Fi(@) ~ N(g(x) + pl(e), ol(2)?))
This indicates that we need to modify the AF used in S-BO as:
AF! (2 5) = (9(2) + pl(2)) — - 0(a), w € X ®)

This AF is minimized to obtain the next experiment and residual evaluation {z‘*!, ¢(z**1)}, with
e(zh) = g(z+1) — f(2**1), and we use this data point to update the data set D*!. We can thus
see that BO with a reference model is analogous to standard BO. The general Ref-BO framework
is presented in Algorithm 2.

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

Algorithm 2: Reference-Based Bayesian Optimization (Ref-BO)

Given reference model g, x, L, and Dﬁ ;
Train GP é¢ using D! and obtain AF);
for¢{=1,2,...,Ldo

Compute experiment ziH

+ argmin, AF!(z;5) st. 2 € X;
Evaluate performance at z°*! to obtain f*! and residual e‘*};

Update dataset DIF! < DL U {1, 41,
+1

7

Train GP using D+ to obtain &

end

3 Parallel Bayesian Optimization

The S-BO and Ref-BO frameworks discussed are sample efficient (typically require few experi-
ments to identify optimal performance) but they are inherently sequential. Several approaches
for proposing multiple experiments per cycle have been developed, each with varying degrees of
complexity and sample efficiency. These parallel BO variants can grouped into four main paral-
lelization paradigms: AF optimization over a set of hyperparameters, design space partitioning,
fantasy sampling, and AF optimization over a batch of points. The most used approach is the
NxMCMC method, which falls under the fantasy sampling paradigm, and is used in popular BO
packages such as Spearmint [27]. We now proceed to discuss the specifics of different existing
algorithms that are based on these parallelization paradigms.

3.1 Hyperparameter Sampling Algorithm (HP-BO)

The hyperparameter sampling algorithm (which we refer to as HP-BO) identifies a new batch of
experiments m}%ﬂ by optimizing the acquisition function AF*(z; ;) using K different values of
the exploratory hyperparameter i, £ € K. In other words, we obtain the new experiments by
solving:

xﬁ“ ¢ argmin Ach(a:; Kk) (9a)

st. zxe X (9b)

for k € K. The hyperparameter values i, k € K, can be selected manually or sampled from a
distribution. In the approach that we consider here, we generate the values by sampling from an
exponential distribution x ~ £(\) with rate parameter A = 1 as shown in [11]. Once the batch
of experiments has been determined, we can evaluate their performance (in parallel) to obtain

,f“ = f(a:i“), k € K and update the data D**! < D U {xf@rl, ffg“l}. The updated data is then

used to train a new GP f“*!, which is used to form a new acquisition AF]{“, and to compute a

8

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

next batch of experiments 242 The process is repeated over multiple cycles. The pseudocode for

implementing HP-BO is shown in Algorithm 3.

K1 = 0.1 Ro = 1.0 R3 = 10

£+1 1+1

mﬁ“) T3

Figure 4: HP-BO optimizes the AF for a set of hyperparameters xj, k € K to obtain experiments
xy, k € K that can be evaluated in parallel. Here, we show an example with K = 3.

The main advantages of HP-BO are that it is easy to implement, that it is highly parallelizable,
and that it allows for the selection of experiments under various exploration and exploitation
settings (eliminating the need for tuning). The effect of the hyperparameter x on the AF is
highlighted in Figure 4. However, in this approach it is not possible to prevent the proposal of
redundant experiments and, as the algorithm converges, the suggested experiments can begin to
cluster in a region of low uncertainty (this can cause the algorithm to get trapped at local solu-
tions). The HP-BO algorithm can be easily be extended to incorporate a reference function g; in
this case, the GP learns the residual instead of the performance function.

Algorithm 3: Hyperparameter Sampling BO (HP-BO)
Given ki, k € K, L, and D;
Train GP f* using D’ and obtain AFJf (z; k), k € K;
for/=1,2,....,L do
fork € K do
Compute experiment xi“ < argmin_, AFJ{ (z; k) stz e X;

Evaluate performance at 2§ to obtain f;
end

Update data D**! + D' U {x?l, flch}P
Train GP using D‘*! to obtain f¢*;

end

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

3.2 HyperSpace Partitioning Algorithm (HS-BO)

The HyperSpace partitioning algorithm (which we refer to as HS-BO) was presented in [33]; this
parallelizes BO by partitioning the design space X into K equally-sized blocks X}, C X, k € K.
Importantly, this approach does not use a surrogate GP model over the entire design space; in-
stead, a separate GP model is constructed at each partition X} and is updated using only in-
formation collected within this partition. Specifically, each partition & € K builds a GP f,ﬁ ~
N (,ujff o (), a? (z)) that is used to construct an acquisition function AF]@’ (x5 k). With this, we can
obtain a set of new experiments by solving the following subproblems:

:cf;“ + argmin AF?k(x; K) (10a)

xT

stz € X, (10b)

for k € K. The domain partitions can also be constructed to have a certain degree of overlap;
specifically, an overlap hyperparameter ¢ € [0,1] is introduced to allow the partitions to share
a fraction of the design space. A value of ¢ = 0 indicates that the partitions X, are completely
separate, while a value of ¢ = 1 indicates that X}, = X for k € K (the partitions are copies of the
full design space); this is shown in Figure 5. The overlap hyperparameter provides a communi-
cation window, allowing the GP model of a given partition to observe system behavior beyond
its prescribed partition (share information with other partitions). This, however, introduces a
fundamental trade-off; from a parallelization perspective it is desirable that ¢ is small, but from
convergence perspective (e.g., reducing number of iterations) it might be desirable that ¢ is large.
A similar trade-off is observed as one decreases or increases the number of partitions K; as such,
there is a complex interplay between the hyperparameters K, ¢, and these need to be tuned. In the
implementation reported in [33], the number of partitions is set to K = 2. Similar types of trade-
offs have been observed in the context of overlapping decomposition approaches for optimization
problems defined over graph domains [24].

The HS-BO approach, summarized in Algorithm 4, is easy to implement, is scalable to high-
dimensional spaces, and enables the development of GP models for systems that may exhibit
different behaviors at various regions of the design space (compared to using a single GP model
that captures the entire design space). HS5-BO also eliminates redundant sampling by forcing the
algorithm to sample from distinct regions of the design space. This also results in a more thorough
search, which improves the probability that the global solution will be located; domain partition-
ing is, in fact, a paradigm widely used in global optimization. A limitation of HS-BO is that the
partitions are boxes of equal size (this can limit capturing complex shapes of the performance
function); moreover, one needs to tune K and ¢. In principle, it might be possible to extend this
approach to account for automatic tuning and adaptive partitions, but this would require much
more difficult implementations that carefully trade-off parallelization and convergence (this is left
as a topic of future work). The HS-BO approach can also be easily executed using a reference
model by learning the residual instead of the performance function.

10

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

Figure 5: HS-BO partitions the domain X into K = 2¢ subdomains and runs a separate instance of
S-BO within each partition. A hyperparameter ¢ is introduced to define the degree of overlap in
the partitions (the overlapping region aims to share information across subdomains). When ¢ = 0
there is no overlap between the partitions and when ¢ = 1 we have that all partitions are the entire
domain X.

Algorithm 4: HyperSpace Partitioning (HS-BO)
Given k, K, L, ¢, and DY;
Partition X into Xj, C X, k € K with overlap ¢;
Split initial data into domains Dj, k € K;
fork € K do
Train GP fk in X}, using Di ;
end
for/=1,2,...,L do
fork € K do
Compute experiment

ol argmin,, AFﬁk(:n; k) stz € Xy,

Evaluate performance at 2¢1! to obtain f/+;
P k k

Update data Di“ +~ DL U {xiﬂ’ £+1}’,

Train GP using Dﬁ“ to obtain A,f“;

end

end

3.3 NxMCMC Algorithm (MC-BO)

The NxMCMC (N times Markov Chain Monte Carlo) algorithm is a popular approach used for
proposing multiple experiments [22]. We refer to this approach simply as MC-BO. Assume that
we currently have a set of experimental data D'; we use this to generate the GP f¢, acquisition
function AFJf, and to compute the next experiment 24 for k& = 1. Our goal is now to obtain
the remaining set of experiments :vi“, k = 2,..., K that we can use to evaluate performance. To
do so, we consider a set of fantasy predictions obtained by generating S samples from the GP

1t (:zci“), s € S. The term fantasy alludes to the fact that the evaluation of performance is based on

11

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

the GP (and not on the actual system). The fantasy data has the goal of creating an approximate
AF; specifically, for each sample s, we generate a data point D, := {xf"!, f/(™)} and this is
appended to the existing dataset D! U D,; this data is then used to obtain a GP fS and associated
acquisition function AF f.s- The AFs for all samples s € S are collected and used to compute the
mean AF:
AF f(z; k) ZAFfS T3 kK), T € X. (11)
seS

The new experiment is then obtained by solving:

aptl argmm AF ¢(z; k) (12a)

st. zeX (12b)

To generate another experiment, we repeat the sampling process (using a new set of S samples)
and create a different mean acquisition function AF 7, and we minimize this to obtain a:ifQ The
sampling process is repeated until we have the full batch of new experiments z{!. Once we
have these, we evaluate the performance function at these points (in parallel) to obtain the dataset

24, £}, which we append to the data collection D+« Df U {z/™, f5). We use this data
collection to re-train the GP of the performance function and repeat the process. The framework

for the MC-BO algorithm is presented in Algorithm 5.

The MC-BO algorithm has proven to be an effective parallel extension of the BO algorithm;
however, computing the mean AF requires significant computational time (as the GP model needs
to be retrained continuously). This algorithm also has the tendency to propose experiments that
are close in the design space, especially when it begins to converge. This does not necessarily pose
an issue if the algorithm is converging to global solution; however, if the solution approached
is local, this behavior can limit the ability of the algorithm to escape this region. The MC-BO
approach can be executed using a reference model by simply learning the residual instead of the

performance function.

12

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

Algorithm 5: NxMCMC BO Algorithm (MC-BO)

Given k, S, L, and D;
Train GP f* using initial dataset D;
for¢{=1,2,...,Ldo
Compute 2™ « argmin, AFJf(:p; k)st.x € Xfork=1;
fork=1,...K —1do
fors € Sdo
Generate fantasy data point D, = {xiﬂ, Fhat } ;
Use dataset D U D; to train GP fs and obtain AF fs(T3R);

end

Set ﬁf(x; K) < %ESES AAFLS(.Z‘; K);

Compute experiment x| < argmin, AF(z; k) s.t. z € X;

end
fork € K do
Evaluate performance at x?’l to obtain ,ﬁ“ ;
end
Update data D! + DU {x%rl7]€C+1};
Train GP using Dt to obtain f/*;

end

13

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

3.4 Batch Bayesian Optimization Algorithm (q-BO)

The g-BO or batch Bayesian optimization algorithm uses a multipoint acquisition function, AF} (zx; k),
like the q-LCB presented in [31], to select a batch of g experiments that can be run in parallel. Un-
like most adaptations of BO where the AF is optimized over a single point, the q-LCB is optimized
over a set of ¢ points. By selecting the experiments in a batch rather than independently, as in
HP-BO, or sequentially, as in MC-BO, q-LCB is able to measure the correlation between the sug-
gested sample locations, allowing it to more easily avoid the issue of redundant sampling. Given

a desired batch size, the value of a particular set of experiments zx is measured according to:

S
AF (axi r) = g S max (1 (o) — - |46 (o) =) 13)
s=1

where ,ug (xx) € R?7and Ag (xx) € R?7*? are the GP mean and Cholesky factor of the GP covariance
(AAT = %) at a batch of points zx respectively, z; € R? is a random variable with z; ~ N(0,1),
and | - | is the absolute value (element-wise) operator. The new batch is then selected by solving:

:pf@rl < argmin AFqZ (xKc; K) (14a)
zK
st. o € X (14b)

where, again, the optimization is done over the entire batch of ¢ points in zx.. The experiments are
then run (in parallel) and the collected performance measurements are used to update the dataset
D DIU{a f5). This data is used to retrain the model which enables the selection of the

next batch of experiments. The pseudocode for q-BO is summarized in Algorithm 6.

The g-BO algorithm has proven to be especially popular in the multi-objective optimization
setting and is, in principle, not difficult to implement. However, unlike single-point AFs, multi-
point AFs do not have a closed-form representation and, as a result, constructing and optimizing
AF;(:BK; k) requires the use of numerical methods like Monte Carlo, as seen in (13), making this
an intensive process, especially as ¢ increases. Additionally, while the use of the Cholesky fac-
tor ensures that the algorithm cannot select redundant experiments, safeguards must be placed
when constructing the AF optimization problem to ensure that the optimizer cannot select identi-
cal points as this will result in the covariance matrix ¥ (zx) being singular and cause the optimizer
to fail. In this work, that safeguard was implemented as a tolerance value € that set the minimum
allowable distance between any two points within zx. We should note that while using this strat-
egy we observed that g-BO can and does occasionally select points that are within e of each other.
This can be practically as undesirable as redundant sampling, depending on the value of e. A
reference model can also be easily incorporated into the q-BO approach by having the algorithm
learn the residual instead of the performance function.

14

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

Algorithm 6: Batch Bayesian Optimization Algorithm (q-BO)
Given k, S, L, and D;
Train GP f* using initial dataset D;
for¢{=1,2,...,Ldo
Compute xf@“l < argmin__ AFqé(x;g; K)s.t. g € X;
fork € K do
Evaluate performance at 2} to obtain f; ;

end
Update data D! + D' U {:c@l,]éc+1};
Train GP using D‘*! to obtain f¢*1;

end

4 Parallel Bayesian Optimization using Informed Partitioning

We propose new paradigms for parallel BO that conduct informed partitioning of the design space.
Specifically, we propose a domain partitioning approach (analogous to HS-BO) that conducts par-
titioning by following the level sets of the performance function. Because the performance func-
tion cannot be easily evaluated, we use a reference model to guide the partitioning; this approach
allows us to leverage expert or physical knowledge, which might highlight certain regions of the
design space that are promising or non-promising (and with this prioritize). We also propose a
variable partitioning approach that aims to exploit partially separable structures that are com-
monly found in complex systems; specifically, in these systems, the performance function is com-
posed of a collection of functions for different subsystems (but the functions are coupled together
via common variables). The key idea is then to search the design space by following this separable
structure, while sharing information between the coupling variables. We refer to these paradigms
as level-set partitioning (LS-BO) and variable partitioning (VP-BO).

4.1 Level-Set Partitioning Algorithm (LS-BO)

LS-BO uses domain partitions of the design space X that follow the levels sets of the reference
function g. We recall that the a-level set (sublevel) of this scalar function is:

X(a):={r e X|g(x) <a}C X (15)

for any a € R. We now note that solving the AF optimization problem:
min AF(x) (16a)
stz e X(a) (16b)

would force the BO algorithm to restrict the search over a restricted subdomain X (). However,
solving this optimization problem can be difficult if g does not have an explicit algebraic form (e.g.,

15

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

low-fidelity simulator) or has a complex form (e.g., physics model). To overcome this limitation,
we construct a GP model g of g to define the approximate level set:

X(a) :={z e X[§(z) < a}. (17)
We use the previous basic observations to derive our domain partitioning approach; we construct
a set of domain partitions XeCX, kek by following different level-sets of the function. Specif-
ically, we construct the subdomains:

Xp={z e X|ap < §(z) <app}, kek, (18)

We note that the subdomains are upper and lower bounded in order to obtain non-overlapping
partitions. The level set thresholds oy, are set by discretizing the range of §(z). The simplest
method for generating the subdomains is to uniformly discretize the interval between the extreme
lower and upper values of the reference model as follows:

ap=a1+k-1D)A k=2,...K (19)

where A = -2) = mingey §(z), and agq1 = maxzex §(x). In cases where additional

specificity is desired, the partitions can be further adapted by setting the intervals according to
various factors such as a focus on a particular region of the design space, the desired level of
exploration vs exploitation, the level of confidence in the quality of the reference model, the ge-
ometry of §(x), and so on. The partitioning approach is illustrated in Figure 6.

Xrrr

g(

Figure 6: Level set partitioning (LS-BO) uses the a-level sets of the reference g to split X into
subdomains X, k € K. Depending on the complexity of g, enforcing level set constraints in
the AF optimization problem can be difficult; therefore, the level sets are approximated using the
surrogate model g.

As in S-BO, we begin with dataset Dl = {zK, fxc} and build a GP fg and the acquisition func-
tion AF*. We then obtain a new set 2 by solving the following collection of optimization prob-

lems:

2t argmin AF(x) (20a)

16

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

stz e Xy (20b)

for k € K. Using the new experiments a:fé“l we evaluate system performance f,é“ (in parallel)

and we append the collected data to the dataset D! < D U {2, f&™'}. The new dataset is
used to update the GP f**! and the acquisition function AF*t!. A summary of this procedure is
presented in Algorithm 7.

Algorithm 7: Level-Set Partitioning BO (LS-BO)

Givenk, g, L, K;

Build surrogate g of g;

Construct partitions X, CX, kek using level sets of g;

Train GP f with initial dataset D*;

for/{=1,2,....,L do

fork € K do
Compute experiment z; " « argmin, AFf(x;) s.t. & € Xy;
Evaluate performance at xi“ to obtain f,f“ :

end

Update D+ < D U {xf&“, fg’l};

Retrain GP using Dt to obtain f¢*;

end

It is important to highlight that the LS-BO approach that we propose uses a GP model of the
performance function and an AF that are defined over the entire design space X; this approach
thus differs from HS-BO (which uses a different GP and AF in each partition X}). Moreover, we
note that the partitioning of the space follows the level sets of the reference function, and this
allows us to concentrate experiments over regions that are most promising. The proposed LS-BO
approach can also be implemented in such a way that the reference function is exploited to learn
the residual (as opposed to learning the performance function). As such, we can leverage the
reference function for constructing the domain partitions and for guiding the search.

4.2 Variable Partitioning Algorithm (VP-BO)

Many physical systems are typically composed of individual components that are partially inter-
connected (e.g., they are modular). For instance, a chemical process includes units (e.g., reactors
and separations) that are interconnected, and the performance of each unit contributes to the total
system performance. Moreover, the performance of each unit is typically strongly affected by the
unit variables and less affected by variables of other units. This partially separable structure can
be captured as the following optimization problem:

min > frlzrix_p) (21a)

kel

17

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

st.ze€X (21b)

where f; : X — R is the performance contribution of component k, the entire set of decision
variables is split into K subsets as x := {x1, 2,, vk }, and we define x_, := = \ {1} (entire set
of variables that does not include z). We should note that the variable partitions should be non-
overlapping subsets (i.e., z; Nx;-; = {0},4, j € K). Additionally, we assume that that performance
function can be decomposed as f = Z fr-
ke

VP-BO follows a Gauss-Seidel paradigm; assume we have an initial set of data Dt = {xf%, f,‘%} ;
Here, we assume that we measure f1, ..., fx in each experimental module so that ffc e R>K rather
than R’ as in the previous algorithms; note that this means that f,f corresponds to the k" column
of ff.. We optimize the individual performance of subcomponent k using the variables z, while
keeping the rest of the variables x_ constant (to the values of the previous iteration ¢):

H%in fr(zr xty) (22a)

st (zp;x%,) € X (22b)

for k € K. Accordingly, we decompose the AF optimization problem into the subproblems:

24 argmin Aka (zp; x4, k) (23a)
Tp
st (zp;xt,) € X. (23b)

for k € K. Here, Aka is the acquisition function of component k which is built using the GP f;
of the performance fi,. Moreover, x° , is the value of the variables not in partition k at the current
iteration (which are held fixed when optimizing the Aka).

We partition the variables by leveraging the reference model g; specifically, we use this the
reference to identify which variables have the most impact on individual components of the sys-
tem; this can be done in various ways. The most straightforward method would be via inspection
using a combination of information provided by the reference model and any available expert
knowledge over the importance of the various inputs on the subsystems. If such information is
not available, g(z) can instead be analyzed with an appropriate feature importance technique such
as sparse principal components analysis (SPCA) [35], automatic relevance determination (ARD)
[30], model class reliance (MCR) [8], etc., to determine the appropriate variable-subsystem pair-
ings. Because the partitions must not overlap, the results of this analysis should be checked for
instances where an input is paired with multiple subsystems. If this occurs, we recommend that
the input in question be paired with the subsystem where it has the highest relative importance.
The pseudocode for implementing VP-BO is shown in Algorithm 8.

One of the advantages of the VP-BO approach is that the AF optimization over each partition
only uses a subset of variables; this can significantly reduce the computational time. Moreover,

18

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

this approach is amenable for implementation in a distributed manner (e.g., each unit of a pro-
cess has its own separate BO algorithm). The VP-BO approach (and the LS-BO approach) also
takes system-specific behavior into account when developing partitions (informed by the refer-
ence model). As we will show in the next section, the use of prior knowledge can lead to signif-
icant reductions in computational time and in the number of experiments performed. Moreover,
we will see that such knowledge can help identify solutions and surrogate models of higher qual-
ity. VP-BO can also be implemented in such a way that reference model is also used to guide
the construction of the performance function (by learning the residual instead of the performance
function). We also highlight that the VP-BO approach proposed is implemented in a way that each
partition has its own GP model and AF; however, it is also possible to implement this approach by
building a central GP and AF that are optimized in each partition using a different set of variables.

Algorithm 8: Variable Partitioning BO (VP-BO)
Given k, K, L, and DY;
Decompose f(z) into fi(z,x_i) for k € K;
Use D! to train GPs fi, k € K;
for/=1,2,....,L do

fork € K do
Compute experiment a:i“ ¢+ argmin_ Aka (2 x84, k) st (z,x8) € X5
Evaluate fi, ..., fx at 2" to obtain fi [k, :];
end
fork € K do
r+1 . C+17, 7.
‘ X7y, «argmin_ fii" [k
end

Update D! < D U {x?l, ff;“};
Retrain GPs f, k € K using D+
end

5 Numerical Case Studies

We now present numerical results using the different BO strategies discussed; our goal is to
demonstrate that the parallel BO approaches proposed provide significant advantages over S-
BO and over other state-of-the-art parallel approaches. Our study simulates the performance of a
pair of reactors connected in series; the operating cost of this system is a complex function of the
operating temperatures. The detailed physical model used to simulate the performance of the sys-
tem is discussed in the Appendix. To guide our partitioning approaches, we develop a reference
model that approximates the physical model. All data and code needed to reproduce the results
can be found at https://github.com/zavalab/bayesianopt.

19

http://zavalab.engr.wisc.edu
https://github.com/zavalab/bayesianopt

http://zavalab.engr.wisc.edu

The optimization problem that we aim to solve with BO can be written as:
min f(T1,T3) = fi(Th, T2) + f2(Th, T2) (24a)
1,42
st. (TL,Ty) eT (24b)

Figure 7 shows the performance function f(77,7%) over the box domain 7 = [303, 423]2. The
performance function is nonconvex and contains three minima, with local solutions at (7%, 7%) =
(423, 340) and (71, T>) = (423, 423) and a global solution at (77, T%) = (333, 322).

-136

-122.5 —201

—185.0 —266

—247.5 -331

-310.0 —396

Operating cost (1000 USD/yr)
Operating cost (1000 USD/yr)

—-372.5 -461

320 340 360
Ty

Figure 7: Performance function f of the reactor system (left) and reference model (right). Note
that the reference model captures the overall (coarse) structure of the performance function but
misses some finer details.

The reference model g is derived from a simplified physical model (see the Appendix); how-
ever, this model would be difficult to incorporate directly in the AF formulation for the LS-BO and
VP-BO approaches (because the model involves a complex set of algebraic equations). As such,
we approximate this model using a GP, §, and use this as the reference. Figure 8 illustrates that
the GP g is virtually indistinguishable from the simplified physical model g; as such, we can safely
use this to guide our search and to guide our partitioning approaches.

The HS-BO algorithm is restricted to 22 = 4 partitions when dealing with a 2D design space;
as such, and in order to achieve fair comparisons, we limit the number of parallel experiments
collected with MC-BO, HP-BO, q-BO, and LS-BO to 4. The VP-BO algorithm was run using 2 par-
titions (one for each reactor). All algorithms were implemented in Python 3.7 and the GP modeling
was done using the gaussian_process package in Scikitlearn. Specifically, we used the built-in
Matern method as the kernel function. This selection was motivated by the ability of the Matern
kernel to control the smoothness of the resultant function making it highly flexible and capable

20

http://zavalab.engr.wisc.edu

http://zavalab.

engr.wisc.edu

-136

-201

—266

-331

-396

—461

Operating cost (1000 USD/yr)

-136

-201

—266

-331

-396

Operating cost (1000 USD/yr)

—461

320 340 360 380 400 420
Ty Ty

320 340 360 380 400 420

Figure 8: Reference model g (left) and GP approximation g (right); note that the GP provides an
accurate representation and can thus be used to guide partitioning approaches.

of accurately modeling systems that exhibit significant nonlinearity and non-smoothness; we set
the smoothness parameter v = 2.5, which tends to be the standard choice. At every iteration,
the optimal value of the kernel’s hyperparameters, the characteristic length scales [, was updated
using the package’s built-in optimizer that sets [by solving a log-marginal-likelihood (LML) prob-
lem. A more detailed description of the gaussian_process package can be found in [20]. The
optimization of the AF was done in Scipy using an unconstrained minimization solver (based on
L-BFGS-B) for every BO algorithm except LS-BO. The introduction of the reference GP model in
the constraints of the AF minimization problem required the selection of a method capable of con-
strained optimization; for this, we selected SLSQP. Except for HS-BO, the exploratory parameter
of the acquisition function was set to the same fixed value. All algorithms were initialized using
the same starting point and we conducted 25 different runs with different starting points in order
to evaluate robustness. We also ran instances of LS-BO and VP-BO with and without using a refer-
ence in the AF (for learning the residual or the performance function); this allowed us to isolate the
impacts of the use of the reference model and ensure that observed performance improvements
can be attributed to parallel capabilities. For both LS-BO and VP-BO, the reference function was
always used to guide the selection of the partitions.

Figure 9 highlights the level sets that we used to partition the design space for the LS-BO ap-
proach. These partitions were generated by first locating the minima (local and global) of §(x).
After determining that there were two, we discretized the range of §(z) by building a search in-
terval around each of the minima where the lower bound of the interval was the value of the
corresponding minimum. The value of § was then evaluated at various points on a line connect-
ing the two minima to determine the spacing of the level sets. This information was used to select
the upper bound of these search intervals. We were also able to use this analysis to gauge the size

21

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

of both of the partitions and observed that the search region around the global minima appeared
to cover a significant portion of the design space. As a result, this partition was split along the
level set value that resulted in two roughly equal-sized partitions. The fourth and final partition
was constructed to search the remaining space outside of the three existing partitions. Figure 9
also provides an illustrative summary of this workflow. Note that one of the regions is near the
region of the global minimum of f.

-6 9”»),
S

= =380 L o S b SR
-1 5 ° %

<) [)
136 @ —400 ¢ “

o .0. ..q"’

o XN °
—201 g 0 420 ..‘.

7 E &
266 & 5440 o
331 £ d"'.

£ -460 ----------';;..'3 -------------------------
-306 ©

5 -480 ﬂ.'v"'
—461 o™

0 20 40 60 80 100 120

Euclidean distance from (T5, T¥)

Figure 9: Domain partitions for reactor system obtained using reference model § (left); the line
connecting the two minima of the reference model is shown in blue. Values of § along this line
(right) indicate that the level set g = —383 (black line) provides an acceptable split between the two
partitions surrounding the minima, while the level set (red line) § = —461 allows for the partition
surrounding the global minimum (denoted as (75, T5)) to be split into two roughly equal-sized
partitions. Note that domain X;;; is in the region of the global minimum of f.

Given that the reactors are arranged in series, it is clear that the performance of the first reactor
is independent of 75, while the performance of the second reactor will likely have some depen-
dence on T7. Figure 10 demonstrates this partially-separable structure; note how the first function
g1 is not affected by T (vertical lines), while g» does depend on T}. Using ARD, we confirmed that
T3, which had a characteristic length scale of I = 0.145, was a more important input to ¢g; than 75
(I = 1000), while for g2, T5 (I = 0.399) was determined to be more important than 77 (I = 0.498).
We thus implemented the VP-BO approach according to the following variable partitions: z1 = 717,
X_1= TQ and To = TQ, X_9 = Tl.

Figure 11 summarizes the average performance (over the 25 runs) of LS-BO and VP-BO (using
reference models) along with the remaining algorithms; here, we visualize the total experiment

time (wall-clock time needed to evaluate performance function) against the best found perfor-

22

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

420 —650

—700
400

-750

380 _800

F 360 240 80

—295 -900
340

—350 -950

Operating cost (1000 USD/yr)
Operating cost (1000 USD/yr)

320

—405 —1000

—-460 —1050

340 360 380 400 420
Ty

Figure 10: Reference model for the first reactor g; (left) and for the second reactor g» (right). We
can see that g; is not affected by 75; the combination of these functions give rise to the reference
function g = g1 + go.

mance up to the corresponding time. Overall, we observe that all parallel BO variants performed
better than standard BO both in terms of speed and best performance found. The performances
at the local minima for (77, 75) = (423, 340) and (71, T>) = (423, 423) were approximately -395,000
USD/yr and -387,000 USD/yr respectively, while the performance of the global minimum at
(Th,Tz) = (333,322) was -410,000 USD/yr. On average, the best performance obtained using
BO was -394,500 USD/yr, indicating that this approach converges to a local minimum most of the
time. By comparison, all the parallel BO variants found a solution that, on average, was below
-400,000 USD/yr. We should also note that this improvement in performance value also comes
with a significant reduction in the required wall-clock time: BO takes over 500 seconds to con-
verge to its final solution whereas all of the parallel BO variants are able to locate a better solution
in approximately 200 seconds.

We note that, in this work, we use wall-clock time as the comparison metric rather than num-
ber of iterations, which is the metric most commonly used in the BO literature. We believe that
this allows for a more fair comparison between the parallel and non-parallel versions of the BO
algorithm, as every cycle of S-BO and Ref-BO only run one experiment, while every cycle of the
parallel BO algorithms run 3-4 experiments in tandem. As such, the number of iterations of par-
allel BO approaches can be significantly lower than sequential variants (they collect more data
per cycle) but the time per iteration can be significantly higher. The use of wall clock time helps
standardize the benchmarking of sequential vs. parallel approaches. We recognize, however, that

benchmarking algorithms using different metrics can provide valuable insights.

23

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

The magnified profiles of Figure 11 provide a better comparison between the parallel BO vari-
ants. It is clear that LS-BO and VP-BO are significantly faster than all other variants. We also
observed that LS-BO, VP-BO, HS-BO and g-BO consistently reached the global minimum. This
illustrates how the redundant sampling seen in MC-BO and HP-BO can degrade performance.
Additionally, while the performances of HS-BO and q-BO were similar to LS-BO and VP-BO, they
required significantly more experiments to reach this performance level. From these observations
we can draw a couple of conclusions: the use of a reference model for both generating system-
specific partitions and simplifying the learning task delivers significant benefit; and allowing the
algorithm to pool the data into a single dataset that is used to build a global surrogate model in-

creases the predictive value of this model, resulting in faster identification of optimal regions.

E —300 — BO — HsS-BO
9) —— RefBO —— HP-BO
5 —320 — LsBO MC-BO
— VP-B g-BO
o oo
S —340
: ___________________
Jg -360
(@)
g —-380
-
©
& —400
S
0 100 200 300 400 500 600

Figure 11: Total experiment time against value of best solution for tested algorithms. LS-BO and
VP-BO were run using the reference model to partition the domain and guide the search.

Figure 12 presents results similar to Figure 11 but we run LS-BO and VP-BO without a refer-
ence model. By comparing with the results in Figure 11, we observe that using the reference model
can help with convergence but not always. LS-BO is 24% slower in the average convergence time,
though it maintains its ability to consistently converge to the global minima. VP-BO, meanwhile,
converges on average 40% faster compared to when the reference model is used; the solution it
returns is also unchanged. These results indicate that g has a similar effect on LS-BO as with tra-
ditional BO, as outlined in [14]. Namely, that it makes the search more targeted, resulting in more
efficient sampling and faster conversion. Meanwhile, with VP-BO, the reference model appears
to encourage more exploration of the domain, which can prevent the algorithm from converging
prematurely and potentially returning a suboptimal solution. We base this claim on the fact that,
when testing VP-BO without a reference, we observed that, while it is not especially sensitive to
the initial values of the design variables in a given partition, it is quite sensitive to variable values
of other partitions. Overall, however, we observe that both LS-BO and VP-BO still outperform the

24

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

-300 -370 — BO —— HS-BO
—— Ref-BO —— HP-BO

-380
— LS-BO MC-BO

|
~320 \ o
_340 N\

-360

—380

-400

Operating cost (1000 USD/hr)

0 100 200 300 400 500 600
Time (s)

Figure 12: Total experiment time against value of best solution for the tested algorithms. LS-BO
and VP-BO were run using the reference model to partition the domain but not to guide the search.

remaining parallel algorithms (without or without a reference). These results highlight that using
the proposed partitioning approaches has a larger effect on overall convergence. This allows us
to confirm that the improvements we observe when using LS-BO and VP-BO can be attributed to
the parallelization schemes.

The results presented in Figure 11 indicate that LS-BO and VP-BO are consistently more ro-
bust and sample efficient than the other approaches. The average values seen in Figures 11 and
12 provide a measure of robustness: deviations between the final reported average value and
one of the three minima are due to the algorithm converging to different solutions during the
various runs. For example, the final average reported value for S-BO of $394,500 USD/yr is the
result of this algorithm converging to the minima at (7%, 72) = (423,340) 13 out of the 25 runs,
(T, T) = (423,423) for 8 runs, and to (11, 73) = (333, 322) the remaining 4 runs. As a result, the
fact that the final reported average values for LS-BO and VP-BO are near to the global minimum
indicate that these algorithms converge to or near the global solution for most if not all runs (they
are robust). The convergence data collected across all runs and shown in Figure 13 confirms this;
we can see that, regardless of where LS-BO and VP-BO were initialized, they are always able to
converge to the same region (unlike S-BO). We also see that convergence of the algorithms is in
general fast but, as expected, it is sensitive to the starting point. The sensitivity to the starting
point is further indication of why it is important to have expert knowledge (e.g., via use of a ref-
erence model) when initializing the search.

Because evaluating the performance function tends to be expensive, reducing the number of
experiments (samples) is also essential. Figure 14 illustrates how S-BO, LS-BO, and VP-BO com-
pare when it comes to sample efficiency. Standard BO samples in a significantly distributed man-

25

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

~100

-200

-300

Operating cost (1000 USD/yr)

—400

0 100 200 300 400 500
Time (s)

-370

—380

-390

—400

Operating cost (1000 USD/yr)

-410

0 25 50 75 100 125 150 175 200
Time (s)

-370

—380

-390

—-400

Operating cost (1000 USD/yr)

0 25 50 75 100 125 150 175 200
Time (s)

Figure 13: Distribution of the performance profiles across the 25 runs for BO (top), LS-BO (middle),
and VP-BO (bottom) with the average algorithm performance is shown in color.

26

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

65.0
2.5
—60.0
-122.5
—185.0
—247.5
-310.0

-372.5

Operating cost (1000 USD/yr)

65.0
2.5
—60.0
-122.5
—185.0
—247.5
-310.0
-372.5

Operating cost (1000 USD/yr)

65.0

Partition 1
Partition 2 / 25

(e}

Combined —-60.0

-122.5

© 00D

—185.0
—247.5

-310.0

-372.5

Operating cost (1000 USD/yr)

Figure 14: Experiment locations across the 25 runs for BO (top), LS-BO (middle), and VP-BO
(bottom).

27

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

ner with a considerable number of samples drawn from the boundaries of the domain. For LS-BO,
we see that in regions where a solution exists (e.g., regions /1 and /I in our case study), sam-
pling is heavily concentrated at or near the solution. In regions where there is not a solution, the
sampling is more distributed, however, the majority of samples tend to cluster around partition
boundaries that are located near a solution. Samples drawn from partition X; appear to be the
most widely distributed, however, this is not surprising as this partition contains a mostly flat re-
gion. Another noticeable difference when compared to traditional BO is that there is significantly
less sampling at the boundaries of the domain where f has unfavorable (high) values; only 8 out
of 2500 samples were taken at the left and bottom bounds. VP-BO exhibits the most clustered
sampling; in fact, the vast majority of the samples are drawn from or near the optimal region.
Note that, while the majority of samples for X; (Partition 1) occur at the top domain boundary,
this partition corresponds to reactor 1 which only depends on 7} as seen in Figure 10. Aside from
these samples, there is a clear lack of sampling happening at the domain boundaries compared
to LS-BO and traditional BO. This result, coupled with exhibiting the lowest convergence time
out of all of the tested algorithms, confirm our belief that the VP-BO algorithm tends to be more
exploitative. This is likely due to fact that the partitions for this algorithm are optimized over a
lower dimensional space and, for a fixed x_j, VP-BO can find the optimal local variables x; much
faster than the remaining algorithms can find an optimal global variables x. As a result, with-
out the reference model to indicate the potential existence of a solution elsewhere, VP-BO seems
more susceptible to settle into the first solution that it finds than algorithms like LS-BO and HS-BO
whose partitions force the algorithm to search more widely.

To estimate the computational cost associated with the different algorithms, we measured the
total wall-clock time (average across the 25 runs). The total wall-clock time includes time for
performance evaluation (experiment time) and all time required to conduct other computations
(e.g., AF optimization, GP training, and reference model evaluation). The results are shown in
Figure 15. The closer this time is to the experimental time, the less computationally expensive the
algorithm is. For instance, the total wall-clock time of S-BO was 12% higher than the experiment
time. We observe that HS-BO and VP-BO are the least computationally intensive methods, with
the total wall-clock time being only 14% and 7% higher than the experimental time, respectively.
We attribute this to the fact that HS-BO runs separate instances of BO across multiple reduced
domains and, because the boundaries are rectangular, ensuring that the AF optimizer stays inside
of the partition only involves bounding the upper and lower limits of z it is allowed to search
over, and those domains tend to be small. VP-BO, on the other hand, only optimizes over a subset
of variables and this greatly reduces the time required for AF optimization. The wall-clock time
of HP-BO was 44% higher than the experiment time, this is because it requires solving multiple
AF optimization problems across the entire design space. LS-BO had a total wall-clock time that
was 46% higher than the experiment time; this is attributed to the more difficult AF optimization
problem that it has to solve (which has constraints defined by a GP model). The total wall-clock
time for g-BO was 64% higher than the experiment time, which we attributed to the fact that

28

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

AF optimization is done over a set of points, increasing the size of the problem that is solved.
Additionally, the calculation involves more complex matrix operations and requires repetitive
sampling. MC-BO was the most computationally intensive algorithm, with a total wall-clock time
that was 384% higher than the experiment time. We attribute this to the repetitive computations
in this algorithm, which require sequential sampling and GP training.

—-300

-320

-340

-360

—380

—-400

A ANAAANANANAS J\,' \,:,‘
0 100 200 300 400 500 600 700 800 900
Time (s)

Operating cost (1000 USD/hr)

Figure 15: Profiles of wall-clock time against performance. Note that this time is comparable to
the total experiment time for all algorithms; the only exception is MC-BO, indicating that the AF
optimization step (and not the function evaluation) is the bottleneck for this approach.

6 Conclusions and Future Work

We have proposed new decomposition paradigms for BO that enable the exploitation of parallel
experiments. These approaches decompose the design space by following the level sets of the per-
formance function and by exploiting the partially separable structure of the performance function.
A key innovation of these approaches is the use of a reference function to guide the partitions. Us-
ing a case study for a reactor system, we have found that the proposed approaches outperform
existing parallel approaches in terms of time and quality of solution found. When using LS-BO,
we observed that building partitions that are specialized beyond those that would be generated
by the uniform discretization of the range of (), like those we used in our case study, can require
significant user input. Moving forward we would like to explore methods for developing more ef-
ficient and automated protocols for generating the partitions. Additionally, we are also interested
in incorporating an element of adaptivity to LS-BO and VP-BO via live modification/tuning of
the partitions as samples from the system are collected. The proposed parallel paradigms can also
open the door to a number of applications and potentially other decomposition paradigms that we
will aim to explore in the future. Specifically, we are interested in exploring more complex systems

that involve higher-dimensional design spaces and large numbers of parallel experiments. This

29

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

will allow us to investigate the asymptotic properties of the proposed approaches. Moreover, we
are interested in designing alternative paradigms that selectively exchange information between
partitions to accelerate the search and that use different types of reference models to guide the
search. We are also interested in exploring the application of these approaches to the tuning of

complex controllers.

Acknowledgments

We acknowledge financial support via the NSF-EFRI award 2132036 and the Advanced Opportu-
nity Fellowship from the University of Wisconsin-Madison Graduate Engineering Research Schol-
ars program.

A Reactor System Model

A.1 Exact Model

The reactor system consists of a pair of CSTRs operating at steady-state and connected in series.
In the first reactor, reactant A is converted into a desired product P, which can react further to
form an undesired product U. An additional reactant D reacts with U to form A, and is fed to the
tirst reactor to reduce the amount of U formed. In order to further reduce the amount of U present
and increase the value of the product stream, the outlet of the first reactor is then fed to a second
reactor along with an additional reactant B, which can react with U to form a secondary product
E. The reaction mechanism is complex and given by:

2A+— P (25a)
P+—2U (25b)
U+B+—FE (25¢)
U+ D —2A (25d)

The rates of each reaction are assumed to be elementary and thus:

r = kiCh — ki,.Cp (26a)
1o = kaCp — ko, C} (26b)
r3 = k3CyCp — k3, CEg (26¢)
ry = ksCyCp (26d)

where C is the concentration of species i and k; and k;, are the forward and reverse rate constants
of the j" reaction. In our analysis we assumed that kj, = 0.01k;, indicating that the forward
reaction is favored. The material balances are:

0= EnCAm - FoutCA - 2(7'1 - T4)V (273)

30

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

0= FinCp, — FousCp + (r1 —r2)V (27b)
0= F;,,Cu,, — FourCu + (2rg —rg —1rg)V (27¢)
0= FnCpg, — FoutCp —r3V (27d)

0= FinCEg,, — FoutCp + 13V (27e)

0= F;,Cp,, — FousCp — 14V (271)

where Fj,, and Fj,,; are the volumetric flowrates of the reactor feed and outlet respectively, C;,, is
the concentration of species 7 in the feed stream, and V' is the volume of the CSTR. The reactions in
(25) are assumed to be exothermic and a cooling jacket is used to remove excess heat and control
the temperature inside of the reactors. The jacket uses a fluid entering at a temperature 7;. and
flowing at a mass flowrate of 7. as the coolant. The coolant flowrate required to maintain the

desired temperature can be determined from the reactor energy balance:

H;, = pCpFTin (283)

Hyyt = pCyFT (28b)

Q=—-rVAH, —rsVAHy — rsVAHs —rVAH, (28¢)
. Hz - Haut + Q pCpF(Tlm B T) + Q

me = — 28d

Cpc<Toc - Tz) Cpc(Toc - 111) ()

where Tj,, is the temperature of the inlet stream, AH; is the heat of reaction for the 4" reaction,
and C). is the specific heat capacity of the coolant. Additionally, we assume that reactions do
not change the heat capacity C;, or density p;, of the reactor inlet. This allows us to set C,, =
Cpin = Cpout, P = Pin = Pout, and F = F, = F,,;. The relation between the rate constants and
temperature is described by the Arrhenius equation:

-F
k = kgexp < RTA> (29)

where kj is the pre-exponential factor, £4 is the activation energy of the reaction, and R is the

universal gas constant.

The outlet of the second reactor is fed to series of flash separation units to recover the prod-
ucts from the effluent stream. Product E is recovered in the vapor fraction of the first vessel as
stream v, and product P is recovered in the liquid fraction of the second vessel as stream lg.
The relative volatility of the chemicals is set with respect to the vapor-liquid equilibrium ratio K p;
compositions and flows for the exiting streams can be determined from the following vapor-liquid
equilibrium calculation:

2
xTr; = f (KPOzZ' — 1) 1 (303)

where z;, z;, and y; are the molar fractions of species ¢ in the feed, liquid, and vapor streams

respectively. The relative volatility of each chemical is denoted by «; and f is the fraction (on

31

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

a molar basis) of the feed that exits the vessel in the vapor stream. We set f according to the
molar fraction of the recovered product in the feed, f = zg for the first vessel, and f =1 — zp
for the second vessel. The energy required to vaporize the desired fraction of the flash’s feed was
supplied by a heater that uses steam as the heating agent. The required flowrate of steam, 1754,
was determined from the flash vessel energy balance

Qvap = Z Lzyzv (31&)
i€{A,P,U,B,E,D}
T = -2 (31b)
Lu,o

where L; and Ly, 0 are the latent molar heat of species i and water, respectively.

The performance of the system is expressed as a cost function (negative profit) that measures
the quality of the product streams along with the corresponding utility requirements at various
temperatures and is formulated as:

fi(T,Ty) = Z WY1 + Z wizigly + Z w; F;Cyo (32a)
i€{A,P,U,B,E,D} i€{A,P,U,B,E,D} i€{A,B,D}

fo(T1, o) = we (e + ML) + Wetm (Tstm + Mty) (32b)

f(T1,T5) = f1(Th, T2) + fo(T1,T>) (32¢)

where T and 75 are the operating temperatures of the first and second reactor. The molar fraction
of species i in first product stream, v1, is denoted by y;1, and z;» is the molar fraction of species 4
in the second product stream lg. The price of species i is represented by w;, and w. and wg, are
the costs of the cooling and heating utilities respectively. The cost of the reagents supplied to the
network is captured by the final term in (32a) where F; and Cjg are the volumetric flow rate and
inlet concentration respectively of species 7 into the process.

A.2 Reference Model

By substituting the Arrhenius expression (29) into the rate expressions (26), we can determine
that reaction rates are functions of temperature and concentration; this is a major source of non-
linearity in the system. We draw inspiration from the use of inferential sensors that are used in
industry to correlate the rates directly to temperature (bypassing concentrations) in order to de-
velop a reference model. Specifically, in our reference model we develop a polynomial function
that approximates the dependence of the rate on the temperature. We develop our polynomial
model based on the following transformation of the rate expression:

logr:_T]?A%—knlogC (33)
where we ignore the reverse reaction due to the comparatively small k, values used. From the
mass balances, we can also determine that the concentration is an implicit function of the temper-

ature. We choose to capture this relation using higher-order polynomials. During our analysis,

32

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

Fa
Cao) Fg
. Cpo
Me |
Tic \‘ .
U1
FD . Toc .
CDO m/c Mstm
15, o .
f1 U2
/
Toc)
m’

2

Figure 16: Schematic diagram of the serial CSTR reactor system and product recovery system

we determined that a third-order polynomial provided satisfactory performance, resulting in the

following approximation for the rate expression:

toar =6 (2) 2 0n (L) o5 (L) 10 (34)
08:7“—1T 2T 3T 0

where 0y, 01, 02, and 63 are the model coefficients. Using (34), we can rewrite the material balances
purely as functions of temperature and obtain the following expressions for the various species

concentrations:
O = Ca,, —2n(T) ~ ru(T) (352)
Cp = Cp, +(n(T) — ra(T)) (35b)
Cy = o+ (2ra(T) = r5(T) — ra(T)) (350)
Cp = O, —rs(T) % (35d)
Cp = Ch + r;;(T)% (35¢)
Cp = Cp,, — (1) (356)

we then substitute these values into a performance function similar to (32) to obtain the reference
model for the system g. This reference model can be seen as an approximate physical model of the
real system (captured by the exact model) and is much easier to evaluate. However, because this
model is comprised of a complex set of algebraic equations, we further approximate the depen-
dence of the performance function on the temperatures using a GP model.

33

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

References

[1] A. Biswas, A. N. Morozovska, M. Ziatdinov, E. A. Eliseev, and S. V. Kalinin. Multi-objective
Bayesian optimization of ferroelectric materials with interfacial control for memory and en-
ergy storage applications. Journal of Applied Physics, 130(20):204102-1-204102-1, 2021.

[2] G.E.P. Box,].S. Hunter, and W. G. Hunter. Statistics for Experimenters: Design, Innovation, and
Discovery. Wiley, Second edition, 2005.

[3] G.E.P.Boxand K. B. Wilson. On the experimental attainment of optimum conditions. Journal
of the Royal Statistical Society, 13(1):1-38, 1951.

[4] E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on Bayesian optimization of expen-
sive cost functions, with application to active user modeling and hierarchical reinforcement
learning. arXiv preprint arXiv:1012.2599, 2010.

[5] K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Statistical Science,
pages 273-304, 1995.

[6] T. Desautels, A. Krause, and J. W. Burdick. Parallelizing exploration-exploitation tradeoffs
in Gaussian process bandit optimization. Journal of Machine Learning Research, 15(119):4053—
4103, 2014.

[7] A. L. Ferguson and K. A. Brown. Data-driven design and autonomous experimentation in
soft and biological materials engineering. Annual Review of Chemical and Biomolecular Engi-
neering, 13, 2022.

[8] A. Fisher, C. Rudin, and F. Dominici. All models are wrong, but many are useful: Learn-
ing a variable’s importance by studying an entire class of prediction models simultaneously.
Journal of Machine Learning Research, 20(177):1-81, 2019.

[9] R. Garnett. Bayesian Optimization. Cambridge University Press, 2021.

[10] D. Ginsbourger, R. Le Riche, and L. Carraro. Kriging is well-suited to parallelize optimiza-
tion. In Computation Intelligence in Expensive Optimization Problems, pages 131-162. Springer,
2010.

[11] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Parallel algorithm configuration. In International
Conference on Learning and Intelligent Optimization, pages 55-70. Springer, 2012.

[12] D.R. Jones. A taxonomy of global optimization methods based on response surfaces. Journal
of Global Optimization, 21(4):345-383, 2001.

[13] K. Kandasamy, G. Dasarathy, J. Schnieder, and B. P6zcos. Multi-fidelity Bayesian optimisa-
tion with continuous approximations. In Uncertainty in Artifical Intelligence, pages 1799-1808.
PMLR, 2017.

34

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

[14] Q. Lu, L. D. Gonzélez, R. Kumar, and V. M. Zavala. Bayesian optimization with reference
models: A case study in MPC for HVAC central plants. Computers & Chemical Engineering,
154:107491, 2021.

[15] S. Marmin, C. Chevalier, and D. Ginsbourger. Differentiating the multipoint expected im-
provement for optimal batch design. In Machine Learning, Optimization, and Big Data. 2015.

[16] S. M. Mennen, C. Alhambra, C. L. Allen, M. Barberis, S. Berritt, T. A. Brandt, A. D. Campbell,
J. Castafiéon, A. H. Cherney, M. Christensen, D. B. Damon, J. Eugenio de Diego, S. Garcia-
Cerrada, P. Garcia-Losada, R. Haro, J. Janey, D. C. Leitch, L. Li, F. Liu, P. C. Lobben, D. W. C.
MacMillan, J. Magano, E. McInturff, S. Monfette, R. J. Post, D. Schultz, B.]. Sitter,]. M.
Stevens, I. I. Strambeanu, J. Twilton, K. Wang, and M. A. Zajac. The evolution of high-
throughput experimentation in pharmaceutical development and perspectives on the future.
Organic Process Research & Development, 23(6):1213-1242, 2019.

[17] J. Mockus. Bayesian approach to global optimization: theory and applications, volume 37. Springer
Science & Business Media, 2012.

[18] T. N. Nguyen, T. T. P. Nhat, K. Takimoto, A. Thakur, S. Nishimura, J. Ohyama, I. Miyazato,
L. Takahashi, J. Fujima, K. Takahashi, and T. Taniike. High-throughput experimentation and
catalyst informatics for oxidative coupling of methane. ACS Catalysis, 10(2):921-932, 2012.

[19] J. A. Paulson and C. Lu. COBALT: COnstrained Bayesian optimizAtion of computaionaLly
expensive grey-box models exploiting derivaTive information. Computers & Chemical Engi-
neering, 160:107700, 2021.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-

rot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825-2830, 2011.

[21] J. A. Selekman, J. Qiu, K. Tran, J. Stevens, V. Rosso, E. Simmons, Y. Xiao, and J. Janey. High-
throughput automation in chemical process development. Annual Review of Chemical and
Biomolecular Engineering, 8:525-547, 2017.

[22] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. Taking the human out of
the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148-175, 2016.

[23] M. Shevlin. Practical high-throughput experimentation for chemists. ACS Medicinal Chemistry
Letters, 8(6):601-607, 2017.

[24] S. Shin, V. M. Zavala, and M. Anitescu. Decentralized schemes with overlap for solving
graph-structured optimization problems. IEEE Transactions on Control of Network Systems,
7(3):1225-1236, 2020.

35

http://zavalab.engr.wisc.edu

http://zavalab.engr.wisc.edu

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

M. J. Smanski, H. Zhou, B. S. Claesen, M. A. Fischbach, and C. A. Voigt. Synthetic biology to
access and expand nature’s chemical diversity. Nature Reviews Microbiology, 14:135-149, 2016.

J. Snoek, H. Larochelle, and R. P. Adams. Practical Bayesian optimization of machine learning
algorithms. In Advances in Neural Information Processing Systems, volume 25, pages 2951-2959.
Curran Associates, Inc., 2012.

J. Snoek, H. Larochelle, and R. P. Adams. Spearmint. https://github.com/HIPS/
Spearmint, 2012.

J. Snoek, O. Rippel, K. Swersky, R. Kiros, N. Satish, N. Sundaram, M. Patwary, M. Prabhat,
and R. Adams. Scalable Bayesian optimization using deep neural networks. In International
Conference on Machine Learning, pages 2171-2180. PMLR, 2015.

F. Sorourifar, N. Choksi, and J. A. Paulson. Computationally efficient integrated design and
predictive control of flexible energy systems using multi-fidelity simulation-based Bayesian
optimization. Optimal Control Applications and Methods, pages 1-28, 2021.

C. K. I. Williams and C. E. Rasmussen. Gaussian processes for regression. In Advances in
Neural Information Processing Systems, volume 8, pages 514-520. MIT Press, 1996.

J. T. Wilson, R. Moriconi, F. Hutter, and M. P. Deisenroth. The reparameterization trick for
acquisition functions. arXiv preprint arXiv:1712.00424, 2017.

J. Wu, S. Toscano-Palmerin, P. I. Frazier, and A. G. Wilson. Practical multi-fidelity Bayesian
optimization for hyperaparameter tuning. In Uncertainty in Artifical Intelligence, pages 788—
798. PMLR, 2020.

M. T. Young, J. Hinkle, A. Ramanathan, and R. Kannan. Hyperspace: Distributed Bayesian
hyperparameter optimization. In 2018 30th International Symposium on Computer Architecture
and High Performance Computing, pages 339-347. IEEE, 2018.

M. T. Young, J. D. Hinkle, R. Kannan, and A. Ramanathan. Distributed Bayesian optimiza-
tion of reinforcement learning algorithms. Journal of the Parallel and Distributed Computing,
139(1):43-52, 2020.

H. Zou, T. Hastie, and R. Tibshirani. Sparse principal component analysis. Journal of Compu-
tational and Graphical Statistics, 15(2):265-286, 2006.

36

http://zavalab.engr.wisc.edu
https://github.com/HIPS/Spearmint
https://github.com/HIPS/Spearmint

	Introduction
	Sequential Bayesian Optimization
	Standard BO (S-BO)
	Reference-Based BO (Ref-BO)

	Parallel Bayesian Optimization
	Hyperparameter Sampling Algorithm (HP-BO)
	HyperSpace Partitioning Algorithm (HS-BO)
	NMCMC Algorithm (MC-BO)
	Batch Bayesian Optimization Algorithm (q-BO)

	Parallel Bayesian Optimization using Informed Partitioning
	Level-Set Partitioning Algorithm (LS-BO)
	Variable Partitioning Algorithm (VP-BO)

	Numerical Case Studies
	Conclusions and Future Work
	Reactor System Model
	Exact Model
	Reference Model

