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Abstract 13 

Although our understanding of how life emerged on Earth from simple organic precursors is 14 
speculative, early precursors likely included amino acids. The polymerization of amino acids into 15 
peptides and interactions between peptides are of interest because peptides and proteins 16 
participate in complex interaction networks in extant biology. However, peptide reaction 17 
networks can be challenging to study because of the potential for multiple species and systems-18 
level interactions between species. We developed and employed a computational network model 19 
to describe reactions between amino acids to form di-, tri-, and tetra-peptides. Our experiments 20 
were initiated with two of the simplest amino acids, glycine and alanine, mediated by 21 
trimetaphosphate-activation and drying to promote peptide bond formation. The parameter 22 
estimates for bond formation and hydrolysis reactions in the system were found to be poorly 23 
constrained due to a network property known as sloppiness. In a sloppy model, the behavior 24 
mostly depends on only a subset of parameter combinations, but there is no straightforward way 25 
to determine which parameters should be included or excluded. Despite our inability to 26 
determine the exact values of specific kinetic parameters, we could make reasonably accurate 27 
predictions of model behavior. In short, our modeling has highlighted challenges and 28 
opportunities toward understanding the behaviors of complex prebiotic chemical experiments.  29 
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Introduction 33 

The emergence of life on the early Earth is believed to have been preceded by the 34 
accumulation of an increasingly diverse and complex set of organic molecules (Orgel 2010). The 35 
reaction networks developed by these molecules laid the groundwork of functions critical for 36 
life, like energy and information processing. Understanding how the systems-level molecular 37 
interactions required for life-like behavior could emerge from simple precursors remains one of 38 
the key questions of prebiotic chemistry, but since this question is primarily about collective 39 
behaviors, complexity presents an ongoing challenge (Schwartz 2007; Johnson & Hung 2019). 40 
While studying a single type of molecule or a single reaction to establish its properties can be 41 
useful, it limits what conclusions can be drawn about potential broader community behavior. 42 
Experiments involving a greater variety of molecules and reactions can probe more interesting 43 
interactions, but have a large search space of variables, and the complexity of the systems make 44 
them inherently more difficult to analyze.  45 

Models are useful for understanding complex systems because they can reveal the systematic 46 
dependence of various properties on each other and allow us to describe and make predictions 47 
about the system behavior. Computational models have been used to explore hypothetical 48 
prebiotic chemical networks for many years and have produced many interesting insights 49 
(Covney et al. 2012). However, our current interest is in models that are based on experimental 50 
data. Prior experimental works mainly used basic kinetic and thermodynamic governing 51 
equations to describe individual reactions or small networks involving fewer than five reactions. 52 
For example, Arrhenius expressions have been used to determine the free energies of activation 53 
for reactions in a small network (Sakata et al. 2010; Yu et al. 2016; Lee et al. 1996). More 54 
abstractly, parameters have been fit to empirical rate equations to describe specific elements of 55 
system behavior or distinguish between candidate models (von Kiedrowski 1986; Rout et al. 56 
2022). These methods work well for small systems, but may not apply to larger systems with 57 
multiple reactions occurring simultaneously and potentially more intricate network interactions. 58 
Serov et al. (2020) approximated the parameters for multiple reactions simultaneously in a 59 
peptide reaction network, but the parameter fitting was performed manually, and the network 60 
was small. Manual approaches are less rigorous than using a computational strategy and can be 61 
difficult to implement for even moderately sized networks. On the other hand, results from more 62 
complex experiments have been analyzed using statistical methods, but these do not capture the 63 
system dynamics (Surman et al. 2019; Jain et al. 2022).  There is a need for approaches to study 64 
the dynamical behavior of more complex experimental networks (Ruiz-Mirazo et al. 2014).  65 

Complex network models are broadly applicable and have already been developed 66 
extensively for other fields (Newman 2003). One notable example is in systems biology, which 67 
has significant parallels to the origins of life. Both involve large interaction networks with 68 
potentially limited available data and may include community interactions that are critical to 69 
understanding system behavior. Bioinformatics models can be used to analyze experimental data 70 
and help understand the molecular interaction networks within living cells (Gauthier et al. 2019). 71 
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Similar approaches could be useful for furthering experimental chemical origins of life research, 72 
but aside from a few reviews and computational investigations, they have generally been 73 
overlooked (Johnson & Hung 2019; Ludlow & Otto 2008; Goldman et al. 2013).  74 

Our goal in this study was to investigate how dynamical models, described by ordinary 75 
differential equations (ODEs), might be useful for studying origins of life chemistry. These 76 
models are theoretically generalizable, but as with all modeling approaches, there are limitations 77 
that make them more difficult to apply in some situations. Presenting the benefits and limitations 78 
of a model approach in a way that is accessible to experimentalists, which we aim to do, is an 79 
important step for linking theory and experiment. Differential equation models are not always 80 
suitable for large systems, since constructing them can become difficult, but in well-defined 81 
systems they can be used to study detailed mechanistic behavior (Maria 2004). Computational 82 
methods can be used to estimate all the parameters efficiently and simultaneously in a 83 
moderately complex dynamical network, but validating the physical meaning of the results can 84 
be more challenging since these problems may not have a unique and stable solution (Transtrum 85 
et al. 2015). However, parameter fitting has still been used to describe nonlinear networks in a 86 
variety of fields, including in systems biology for biochemical pathways (Raue et al. 2013; 87 
Rodriguez-Fernandez et al. 2006).  88 

We focus specifically on fitting parameters to a set of nonlinear ODEs describing the kinetics 89 
of short peptide formation. Peptides are interesting candidates for emergent behavior because 90 
they can engage in a variety of intermolecular interactions and their development was likely an 91 
important step during the origin of life (Frenkel-Pinter et al. 2020). We studied a simplified 92 
network describing peptide formation in a system starting with only two amino acid species, 93 
glycine and alanine. By limiting ourselves to two amino acids, we were able to obtain 94 
quantitative data on the concentrations of most peptide species as they formed through a possible 95 
prebiotic reaction mechanism involving an inorganic phosphate activating agent, 96 
trimetaphosphate (TP) (Sibilska et al. 2018).  97 

We found that our model exhibited “sloppiness”, a term originally used by the Sethna lab 98 
to describe models based on a set of highly imprecise parameters that still return reasonably 99 
accurate predictions (Gutenkunst et al. 2007a). Such models are significantly more sensitive to 100 
changes in certain parameter values while remaining largely unaffected by changes in others 101 
(Waterfall et al. 2006). We suspect sloppiness may be a common feature in networks relevant to 102 
the chemical origin of life. It is known to be extremely common in systems biology, and many of 103 
the features that contribute to it, like reversibility of reactions and limited experimental 104 
observations, are also common features of prebiotic chemistry networks (White et al. 2016). 105 

Sloppiness occurs when parts of the parameter fitting problem are poorly constrained, 106 
resulting in highly imprecise parameter estimates. Our computational study reveals that the 107 
peptide network model is sloppy. Due to their high uncertainty, parameters fitted to a sloppy 108 
model cannot be treated as true kinetic reaction rates, limiting the hypotheses a sloppy model can 109 
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be used to evaluate (Gutenkunst et al. 2007a). However, the collective behavior predicted by 110 
fitting a sloppy model can be accurate even when fit to relatively sparse experimental data. This 111 
makes them useful for tasks such as exploring theoretical long-term behavior and model 112 
falsification (Brown et al. 2004; Gutenkunst et al. 2007b; Hettling & van Beek 2011). For these 113 
reasons, we concluded that this system was worth investigating and disseminating despite the 114 
high variability observed in the parameter estimates.   115 

We attempted to reduce sloppiness using model reduction and statistical design of 116 
experiments, but without improvements. As such, it is important to recognize the inherent 117 
limitations of the model structure and of the experimental setup. We conclude that fitting 118 
accurate kinetic parameters using the approach we present might be difficult. However, ODE 119 
models can still be useful tools for characterizing the behavior and stability of prebiotic chemical 120 
reaction networks.  121 

Methods 122 

 We studied the formation of peptides from amino acids using trimetaphosphate (TP) as an 123 
activating agent. For simplicity, our experiments only included two amino acids: glycine and 124 
alanine. To maximize peptide bond formation within 24 hours, samples at alkaline pH were 125 
allowed to dry completely (Sibilska et al. 2018). Various combinations of initial concentrations 126 
of glycine and alanine were used to increase the amount of relevant data for parameter fitting, 127 
and cover a larger range of potential conditions in the network, since concentrations of each 128 
species should not affect the values of the kinetic constants. The concentrations of each peptide 129 
product were determined using HPLC (see Experimental Methods for details). Each 130 
experimental data point is the average of three experimental replicates. 131 

 Parameters were fit to an ODE model describing peptide formation and decomposition in 132 
a mass-action style network, depicted in Fig. 1. The complete time-dependent ODEs for the 133 
model are provided in Supplementary Information 1. To keep the network a manageable size, we 134 
omitted many mechanistic details of peptide formation and only includes canonical peptides, not 135 
intermediates or possible side products. For example, no phosphate salts or intermediate products 136 
of TP activation were quantifiable in our analysis, so TP was not explicitly included anywhere in 137 
the network. To minimize any effect the concentration of TP might have on the kinetics studied, 138 
we used a constant ratio of TP to amino acids across all experiments. Isomers such as GGA, 139 
GAG, and AGG were grouped together to further reduce the number of parameters and avoid the 140 
need to resolve isomers, which tend to co-elute during HPLC analysis. A complete list of fitted 141 
parameters, organized by figure, are available on Github at 142 
https://github.com/haboigenzahn/OoL-KineticParameterEstimation. 143 
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 144 

Figure 1: Peptide network. Double-headed arrows represent a reversible reaction connecting 145 
two species. Note that many edges share the same reaction parameter, such as the G → GGG and 146 
GG → GGG edges representing the reaction G+GG → GGG.   147 

We expected that the network would provide a good baseline for understanding which 148 
reactions were occurring at higher rates. To improve the precision of the parameter estimates, we 149 
applied model reduction and statistical experimental design. Details about these approaches can 150 
be found in the Computational Methods section. Here we will describe the results of these tests 151 
and assess the feasibility of obtaining a predictive model and accurate parameter estimates from 152 
experimental data.  153 

Results & Discussion 154 

Parameter Estimation 155 

Parameter fitting is performed by tuning the model parameters to minimize a cost 156 
function (ℒ) that calculates the difference between the model predictions and experimental data;	157 
ℒis	also	called	a	loss	function	or	a	residual.	We	minimized	ℒ	using	the	L-BFGS-B	algorithm	158 
from	Scipy’s	minimize	function	(Virtanen	et	al.	2020).	We were also able to approximate the 159 
parameter uncertainties, which represent how well the parameters are constrained by 160 
experimental data using an asymptotic Gaussian approximation (Vanlier et al. 2013). Parameters 161 
determined using sparse or noisy experimental data are less precise than parameters fit with 162 
abundant, high precision data, but the structure of the model itself can also significantly 163 
contribute to the parameter uncertainty. Validating that the model can theoretically be solved can 164 
save time and experimental effort.  165 

We first estimated the parameters for simulated data in the absence of noise, and we were 166 
able to accurately recover the parameters used to generate the data (Fig. 2a). When we applied 167 
the model to experimental data, it was able to capture general trends. However, the parameter 168 
uncertainties were undesirably high (Fig. 2b). For some species, the 95% confidence envelope 169 
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for the model prediction was larger than the peptide concentrations themselves. Since the 170 
optimization can find a local minimum, we repeated the parameter estimation for several 171 
different initial guesses. Although the number of initial guesses was limited by the fact that the 172 
parameter estimation method can take a full day to finish when all of the experimental data is 173 
included, we observed that none of the different initial guesses significantly improved the 174 
precision of the parameter estimates and that there did not appear to be any positive correlation 175 
between the MSE and the number of highly uncertain parameters (Supplementary Information 176 
2). Trying many initial guesses to find the lowest possible value for the cost function may 177 
slightly improve the model predictions, but it does not seem to cause an improvement in the 178 
precision of the parameter estimates. Despite the extremely high parameter uncertainties, the 179 
accuracy of the model predictions initially seemed promising, so we began to explore the 180 
parameter fitting process in more detail to determine how to decrease the parameter uncertainty, 181 
starting with the identifiability of the network.  182 

  183 
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Figure 2: Comparison of fitting data and model predictions. Results are shown for (a) 184 
simulated data and (b) experimental data, using initial conditions of 75 mM glycine and 25 mM 185 
alanine. Both the simulated and experimental data sets included 65 data points and the simulated 186 
data had no artificially added noise.  187 

 188 
Identifiability & Sloppiness 189 
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Identifiability analysis determines the possibility of a unique and precise estimate of the 190 
unknown parameters in a network (Cobelli & DiStefano, 1980; Wieland et al. 2021). If a unique 191 
solution cannot be obtained, then the model is said to be structurally unidentifiable. A model is 192 
practically unidentifiable if its parameters cannot be estimated at an acceptable level of 193 
precision. The exact definition of what is considered an acceptable level of precision varies from 194 
case to case. Practical unidentifiability indicates that regions of the objective function are 195 
relatively flat, making it difficult to find a minimum and it typically results from overfitting 196 
(White et al. 2016). Finally, some models exhibit a property known as sloppiness, which occurs 197 
when its behavior is highly sensitive to changes in certain combinations of parameters and 198 
almost completely insensitive to changes in others (Gutenkunst et al. 2007a). Generally, 199 
sloppiness is a consequence of the model structure and its input range (White et al. 2016). 200 
Although sloppiness and practical unidentifiability are not synonymous, in practice they often 201 
coincide (Chis et al. 2014).  202 

Sloppiness can be recognized by examining the spectrum eigenvalues of the Hessian 203 
matrix, sometimes called the sensitivity eigenvalues (see Computational Methods section for 204 
further detail) (Gutenkunst et al. 2007a). The sensitivity eigenvalues are an indirect estimate of 205 
the sensitivity of the cost function to changes in the parameter values and represents the 206 
confidence in the estimate of the parameter combination in the direction of the corresponding 207 
eigenvector. Small eigenvalues represent high uncertainties and large confidence intervals. 208 
Sloppy models have sensitivity eigenvalues that are roughly evenly spaced across three or more 209 
orders of magnitude. When the eigenvalue spectrum is this large, the smallest sensitivity 210 
eigenvalues tend to correspond to parameter combinations that have minimal effect on the model 211 
behavior – these combinations are ‘sloppy’ eigenvectors. The eigenvectors of the largest 212 
eigenvalues are referred to as ‘stiff’ and control most of the model behavior. In some models, 213 
there is a clear division between the large and small eigenvalues, usually corresponding to a clear 214 
separation in length or time scales that renders some of the physical details of the system 215 
irrelevant – for example, the kinetic models of many chemical reactions can be simplified when 216 
there is a known rate-limiting step (White et al. 2016). In sloppy models, no clear division exists, 217 
and the small eigenvalues are rarely united by a single physical phenomenon.    218 

Since rigorously checking for structural identifiability in nonlinear models can be 219 
challenging, we tested the identifiability of our model by determining if it could recover the 220 
parameters used to generate a set of noiseless, simulated data. We found that all parameters could 221 
be recovered with acceptably high accuracy, suggesting that the model was identifiable. Here, we 222 
define acceptable accuracy to be when a parameter’s standard deviation is at least one order of 223 
magnitude smaller than value of the associated parameter. However, when we examined the 224 
effect of noise on model performance, we observed that the parameter standard deviations rise 225 
rapidly when even a small amount of noise is introduced (Fig. 3a). The error of the model 226 
predictions, on the other hand, rose relatively slowly as noise increased. This suggests that 227 
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despite the high parameter uncertainties, the general behavior predicted by the model can be 228 
accurate even when it is fit using noisy data (Fig. 3b).  229 

Figure 3: Comparison of parameter accuracy and mean squared error (MSE) for two 230 
different network structures at various noise levels. For the full reaction network, as the noise 231 
in the input data is increased, (a) the number of parameters with standard deviations within one 232 
order of magnitude of the parameter value rises rapidly compared to (b) the error of the model 233 
predictions. When the hydrolysis reactions are removed from the full network, the parameter 234 
estimates remain relatively precise as noise is introduced. The MSE of the model predictions are 235 
normalized to the MSE of the full network with no artificial noise (2.85e-11). All data sets used 236 
simulated experiments created from 25 different initial conditions and 125 data points. The 237 
added noise was normally distributed with a constant signal-to-noise ratio, and all negative 238 
values were set to zero to prevent negative concentrations.  239 

Given that this behavior is typical in sloppy models, we checked the sensitivity 240 
eigenvalues for both our simulated data and experimental data (Fig. 4a, b). We found that the 241 
peptide reaction network is unambiguously sloppy, because the sensitivity eigenvalues of the 242 
simulated and experimental data span nearly nine and seven orders of magnitude respectively. To 243 
compare the behavior of the peptide reaction network with a similar model that was not sloppy, 244 
we modified the network to exclude all hydrolysis reactions (Supplementary Information 3a). 245 
Removing reversible pathways from the network eliminates many combinations of parameters 246 
that can compensate for one another, which significantly reduced sloppiness (Fig. 4c). To 247 
demonstrate that it was the modifications to the structure of the model, rather than its smaller 248 
size, that were responsible for the reduction in sloppiness, we also compared it to an even smaller 249 
network describing reversible homopolymer reactions (Supplementary Information 3b); this 250 
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model was determined to have a much larger eigenvalue span (Fig. 4d). To investigate whether 251 
the grouping of some species in the peptide network was responsible for the sloppiness of the 252 
model, we also checked the sensitivity eigenvalues for a network with the trimer species 253 
separated using simulated data (Supplementary Information 3c), and found it made the 254 
eigenvalue spread larger (Fig. 4e).   255 

The parameter standard deviations were far more sensitive to noise in the full, sloppy 256 
network than in the network with no hydrolysis reactions (Fig. 3a). Despite the difference in the 257 
confidence of the parameter fits, the prediction accuracy was not significantly different between 258 
the two models until significant noise was added to the data (Fig. 3b). This demonstrates a 259 
previously mentioned key consequence of sloppy models – although they can make reasonably 260 
accurate predictions of system behavior, they should not be used to calculate the values of 261 
individual parameters, since the precision required for accurate parameter estimations cannot be 262 
experimentally realized.  263 

Figure 4: Sensitivity eigenvalues for different models: (a) simulated data for the full network 264 
(22 parameters, 35 data points), (b) experimental data generated from a mixture of glycine and 265 
alanine (22 parameters, 65 data points), (c) simulated data for a variation of the main network 266 
that excludes all hydrolysis reactions (11 parameters, 35 data points),  (d) simulated data for 267 
network including only one amino acid forming peptides up to tetramer length with hydrolysis 268 
reactions included (8 parameters, 35 data points) and (e) simulated data for a network with 269 
separated trimers (40 parameters, 80 data points). Each system is normalized to its largest 270 
eigenvalue (λ1). All simulated data has no additional noise included. 271 
 272 

Sloppiness is a common property in systems biology models, and some of the 273 
characteristics that result in sloppiness are likely shared by prebiotic chemistry systems. 274 
Reversible reactions and cyclic behaviors can increase the likelihood of sloppiness because they 275 
create situations where a particular combination of parameters (for example, the ratio between 276 
forward and reverse rates defining an equilibrium constant) is more important for describing the 277 
system behavior than the individual parameters themselves. The parameters may become 278 
‘sloppy’ because their individual values can essentially vary freely without affecting the overall 279 
model behavior, as long changes in other parameters can compensate to produce a similar overall 280 
prediction. Reaction networks that are mostly or entirely reversible, like the peptide reaction 281 
network, can therefore become significantly more difficult to fit with high precision than models 282 

1E-111E-101E-91E-81E-71E-61E-51E-41E-31E-21E-11E+0

λ/λ1

(a)
(b)
(c)
(d)
(e)
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with comparable sizes, but fewer reversible reactions (Maity et al. 2020). The emergence of 283 
cycles and reversible reactions are expected to be important features in the emergence of life-like 284 
chemistry (Varfolomeev & Lushchekina 2014; Mamajanov et al. 2014). Therefore, we anticipate 285 
that sloppiness may be a common and potentially unavoidable feature of ODE models found in 286 
prebiotic chemistry, and its implications should be examined. 287 

Consequences of Collective Fitting 288 

Sloppy models can provide surprisingly accurate predictions despite having low 289 
confidence parameter estimates. The collective fit of all the parameters tends to be more accurate 290 
and require less data than the individual parameter uncertainties might suggest, since only the 291 
stiff parameter combinations must be constrained to achieve accurate predictions. One of the 292 
consequences of collective fitting is that the numerical values of parameters estimated for sloppy 293 
models cannot be treated as independent kinetic parameters whose quantitative values have 294 
physical meaning. Situations where a reaction occurs faster in the presence of one molecule than 295 
another are of interest to the chemical origins of life because of their semblance to catalysis. 296 
Unfortunately, in sloppy models, the numerical values of the parameters fit in each case are often 297 
not comparable. For example, even if the rate constant of one reaction in the peptide network 298 
was significantly higher than another, that is not necessarily good evidence that one reaction 299 
proceeds faster than the other. The parameters are only meaningful when the entire system is 300 
used to describe the specific environment to which they were fit. Fixing individual parameter 301 
values to reflect direct measurements or literature values can potentially break the collective fit 302 
and significantly increase the error of the prediction, often to the point that it is no longer useful. 303 
The lack of physical meaning of the individual parameter values is a significant drawback of 304 
sloppy models. However, such models can still be useful for certain tasks. For example, a sloppy 305 
model can still be used if the goal is to generate predictions about the behavior of a similar 306 
system with slightly different initial conditions, or to predict responses at longer time spans. 307 
Moreover, we highlight that sloppiness might simply be a fundamental property of the actual 308 
reaction network, that arises from inherent redundancies in the system. 309 



12 
 

 310 

Figure 5: MSE of model predictions depend on quantity of experimental and simulated 311 
data. Except for the final points, which include all applicable data, parameters were estimated 312 
for three arbitrarily selected data subsets of varying sizes, then the average MSE of those models 313 
was determined. Noise was neglected. Error bars show the standard deviation of the three 314 
subsets, but are too small to be visible for the simulated data. 315 

To estimate the minimal data required to get relatively accurate predictions, we created at 316 
least three different subsets of the data, trained the model individually with each subset, and 317 
compared their MSEs (Fig. 5). The simulated data was sampled at time intervals analogous to the 318 
experimental results, since those were the points that were physically relevant. When training the 319 
model using simulated data, increasing the amount of data used improved the model predictions 320 
up to about 40 data points, but with even 25 data points, the error was negligible compared to the 321 
experimental results. Similarly, when we repeated the process with experimental data, the 322 
average error did not decrease as more data was added beyond 25 data points.  323 

We also investigated the effect of using more frequent measurements, as opposed to using 324 
a greater number of simulated experiments with different initial conditions. We compared the 325 
results of simulated data with a similar number of total data points, but double the usual 326 
sampling frequency to the simulated results in Fig. 5. Increasing the sampling frequency was 327 
comparable or slightly worse than including data from additional simulated initial conditions, 328 
except possibly when there is little data available overall (Supplementary Information 4). It did 329 
not improve the model’s sensitivity to noise. 330 

Different subsets of the data with the same number of data points could have fairly 331 
different MSEs, suggesting that some combinations of experiments may be better for parameter 332 
fitting than others. This subject will be discussed further in the section on the design of 333 
experiments (DoE). Overall, these results suggest that as few as 25 to 30 data points are required 334 
to fit the system as accurately as the model constraints allow; therefore reasonably accurate 335 
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predictive fits can be achieved with a realistically obtainable amount of data. The ability to 336 
extrapolate accurate model predictions from short-term experiments has some uses for studying 337 
prebiotic chemical reactions, since long time spans are potentially relevant. Models like the one 338 
we present here could be used to predict the expected equilibrium outcome of slow reactions 339 
based on data from a shorter time span and compare candidate model structures. They may also 340 
be a useful way to predict the outcomes of sequential or cyclic processes, provided that the 341 
parameters are fit in compatible experimental conditions. Sensitivity analysis can be used to 342 
validate the predictions from sloppy models independently from the parameter uncertainties 343 
(Gutenkunst et al. 2007a). Model selection, which involves comparing two or more different 344 
model structures to determine which one reflects the experimental data most accurately, can also 345 
still be performed with sloppy models (Brown & Sethna 2003). However, if finding physically 346 
meaningful terms for the parameter values is an important goal, then the aim should be to reduce 347 
the sloppiness of the model. 348 

Model Reduction 349 

To address high parameter uncertainty, one may seek to simplify the structure of the 350 
model, ideally without compromising the accuracy of the model predictions. This task is referred 351 
to as model reduction or network reduction, and it can be an effective way to improve 352 
overparameterized models (Apri et al. 2012; Transtrum et al. 2015). However, model reduction 353 
methods are generally based on statistical principles and not physical knowledge, and the results 354 
should be interpreted within an experimental context. The user must ensure that parameters that 355 
might be statistically problematic but are known to be physically significant are not removed 356 
from the model. 357 

Since one of the main features of sloppy models is that they contain parameter 358 
combinations that are insensitive to changes, model reduction may initially appear to be a 359 
straightforward task for sloppy models. However, the fact that the sensitivity eigenvalues are 360 
evenly distributed over multiple orders of magnitude poses a challenge for accurate model 361 
reduction, as there is no clear cut-off between the parameter combinations that are important and 362 
those that are not. Additionally, in practice some parameters are so poorly constrained that they 363 
are randomly distributed throughout the sensitivity eigenvectors, so the components of the 364 
sensitivity eigenvectors are not entirely reliable indicators of what parameters are influencing 365 
them (Gutenkunst et al. 2007a).  366 

  We attempted model reduction with the peptide reaction network to determine if it was 367 
over-parameterized and if it might be possible to reduce the reactions considered. For example, 368 
we expected that some of the hydrolysis reactions could be ignored. Since we wanted to use a 369 
model reduction technique that is accessible and easily interpretable for experimentalists, we 370 
used sparse principal component analysis (SPCA). SPCA is an extension of principal component 371 
analysis (PCA), a popular dimensionality reduction method for linear models (Zou et al. 2006). 372 
Using SPCA, we can identify the inputs that capture most of the information in the data. It has 373 
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been used successfully in control theory and gene network analysis, and there are existing 374 
implementations of it in MATLAB and Python (Ma & Dai 2011).  375 

When SPCA was applied to the peptide reaction network, the results were highly variable 376 
and unable to adequately represent the data. SPCA frequently suggested removing reactions 377 
known to be physically significant, such as the formation of dimers from monomers 378 
(Supplementary Information 5). Not only does this not make physical sense, but because these 379 
are the initial reactions that occur in the system, removing them severely limits the pathways for 380 
longer species to form. Other methods of network reduction may be more effective for sloppy 381 
models, but are less commonly used and may be more difficult to implement (Transtrum & Qiu 382 
2014; Maiwald et al. 2016). If we choose to pursue additional model reduction efforts, one 383 
logical next step may be to inspect the inverse of the covariance matrix to identify which 384 
parameters are the most correlated and least constrained by the data (Wasserman, L. 2004). This 385 
information may be useful for determining which parameters are best to remove or to combine 386 
into a single term.  387 
 388 
Design of Experiments 389 
 390 

If the model structure cannot be altered, another method for reducing sloppiness is to 391 
determine if experimental data can be gathered strategically to explore the variable space more 392 
thoroughly (Apgar et al. 2010). However, to reduce parameter uncertainty, the selected 393 
experiments must provide new information not already captured in the model. Design of 394 
experiments (DoE), or experimental design, seeks to identify the experiments that would provide 395 
the most useful information for improving prediction accuracies. DoE methods such as factorial 396 
design (Fisher 1935), response surface methodology (Box & Wilson 1951), and screening 397 
(Shevlin 2017), have been widely adopted across various fields. However, there are several 398 
notable caveats in relation to sloppy models (Jagadeesan et al. 2022). First, the precision of 399 
parameter fitting for sloppy models is limited by the least accurately determined eigenvectors, so 400 
more data measured with the same uncertainty may not help. Second, there is some debate over 401 
whether DoE can be used with approximate models without risking the collective fit, as it can 402 
inadvertently place too much importance on details not included in the model (White et al.  403 
2016). 404 

In this work, we use a Bayesian experimental design (BED) method that selects 405 
experimental designs based on the expected reduction in parameter uncertainty as quantified by 406 
the determinant of the Fisher information matrix (FIM) (Transtrum et al. 2012; Thompson et al. 407 
2022). To determine if there was any significant benefit obtained using DoE, we compared the 408 
reduction in parameter uncertainty from performing experiments suggested by the BED method 409 
to the reduction achieved from performing arbitrarily chosen experiments (Fig. 6). We evaluated 410 
the results using a couple of matrices – the percentage of parameters with standard deviations 411 
that were large (within an order of magnitude of the relevant parameter) to indicate the overall 412 



15 
 

precision of the parameter estimates, and by the MSE to indicate the accuracy of the model’s 413 
predictions.   414 

 415 

Figure 6: DoE slightly improved the precision of the parameter estimates and the model 416 
prediction accuracy. (a) Using simulated data with 15% noise, the percentage of large 417 
parameter uncertainties (standard deviation within one order of magnitude of the parameter 418 
value) remained consistent and (b) the MSE did not change significantly compared to the initial 419 
tests. (c) Using experimental data, the percentage of large parameter uncertainties decreased 420 
slightly and (d) the model predictions improved relative to the initial tests, but did not continue 421 
to improve as more data was added. Each round added 3 additional experiments, consisting of 5 422 
time points measured for each experiment. For the DoE rounds, 3 experiments chosen from the 423 
top 20 experiments suggested by the DoE algorithm were added. For the control rounds, data 424 
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from 3 initial conditions not included in the DoE suggestions were added (50 mM Gly, 25 mM 425 
Gly and 25 mM Ala, and 50 mM Ala).  426 

In our preliminary tests using simulated data with artificial noise, adding results from 427 
experiments suggested by the DoE method did not reduce the number of parameters with large 428 
standard deviations or improve the accuracy of the model predictions. This suggests that the poor 429 
precision of the parameter estimates may not be caused by poor data coverage, and is instead a 430 
consequence of the model structure. When applied to our experimental data, the addition of 431 
results suggested by the algorithm did decrease the number of parameters with large standard 432 
deviations and improved the model predictions relative to the initial tests, however, there was 433 
significantly less improvement from the second round of additional experiments than there was 434 
in the first. The simulated results suggest a limit to how much additional data can improve the 435 
parameter estimates and highlight that the model structure is responsible for sloppiness. Even 436 
after nearly doubling the amount of data included in our original tests, neither the experimental 437 
nor the simulated system ever had fewer than 60% of parameters with large standard deviations 438 
and the model predictions were essentially unchanged. Overall, it seems unlikely that continued 439 
cycles would significantly improve the parameter estimates to the extent that it would allow us to 440 
attach any physical significance to their numerical values.  441 

Data suggested by the DoE algorithm typically had similar or better performance than the 442 
data that was added arbitrarily. However, we cannot conclude there is a significant improvement 443 
from using the DoE algorithm, because during the second round of experiments using arbitrary 444 
data produced very similar results in all cases. Concerning the experimental results, conclusively 445 
determining whether the selections of the DoE algorithm are an improvement over randomly 446 
selected conditions would require performing many additional experiments. Within the existing 447 
results, we noted that model prediction errors occasionally increased when more data was added, 448 
which can be a consequence of overfitting, however, there was no consistent trend of samples 449 
outside of the training data set having significantly higher prediction errors, suggesting 450 
overfitting is not likely (Supplementary Information 6). Because the increases in prediction error 451 
are small, they are probably an incidental consequence of the noise in the data and the limited 452 
sample size. 453 

  There are several possible reasons why DoE did not consistently improve the precision 454 
of the parameter estimates this model. The precision of a sloppy model is limited by the most 455 
variable parts, so experimental noise may be preventing key features from being determined 456 
more precisely (Gutenkunst et al. 2007a). The prescribed range of initial conditions may have 457 
also been too restrictive. We only included initial conditions with various concentrations of 458 
monomers because amino acids and peptides can participate in different reaction mechanisms 459 
with TP. Since these mechanisms were not being explicitly separated in the model, initial 460 
conditions with large concentrations of peptides could have inadvertently led to measuring the 461 
parameters for a different reaction mechanism. Rather than risk measuring the kinetics of a 462 
different mechanism, which would undermine the assumption that each experiment had the same 463 
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kinetic parameter value, we chose to use a more limited system definition. However, this also 464 
may have limited our ability to constrain some parts of the network. Finally, as DoE methods are 465 
statistically based approaches that rely on existing results, they can be sensitive to noise in the 466 
data. As a result, it may be difficult to predict how parameter uncertainties will change as 467 
additional data is added. Therefore, because sloppy networks tend to be better at producing 468 
accurate predictions than accurate parameter estimates, approaches that aim to improve 469 
predictions rather than parameter uncertainties may be more useful.  470 

Model Limitations 471 

The mass-action style model used here is a significant simplification of the reactions 472 
occurring in the actual experimental system. TP-activated peptide bond formation involves not 473 
only multiple intermediates but likely multiple reaction mechanisms, which were not fully 474 
described in this model (Boigenzahn & Yin 2022). Certain products, like the cyclic dimers 2,5-475 
diketopiperazine were not detectable or quantifiable in our analysis. Merging the isomeric 476 
peptide species also may have increased the experimental error slightly, since not all isomers 477 
have the same absorbance. However, on average, the species balances of glycine and alanine 478 
were about 90% accurate, suggesting that any products missed by our analysis were probably not 479 
dominant products in the system. While we acknowledge the simplifications and sources of noise 480 
in our experiments, it is important to note that the model generated high parameter standard 481 
deviations when extremely small amounts of noise were added to simulated data. It may not be 482 
possible to fit the current version of the peptide network with high precision from experimental 483 
data.  484 

It might be possible to alleviate sloppiness by replacing the generic reversible reactions in 485 
this model with more detailed descriptions and measurements of intermediates. However, this 486 
would significantly increase the resources needed for experimental and statistical analysis. 487 
Additionally, this model does not account for increasing concentration of all species as the 488 
sample dries. The volume could be included as a dynamic term in the network model, but it 489 
complicates parameter estimation because of the infinite limits that occur as the volume 490 
approaches zero. There are also potential reactions that occur almost exclusively in the solid 491 
phase (Napier & Yin, 2006). We chose to neglect any concentration effects or details of the TP 492 
reaction mechanism and instead explored the feasibility of creating a model that predicted 493 
overall peptide production.   494 

Conclusion 495 

Although we were able to fit kinetic parameters to the peptide reaction network in our 496 
simulated tests, in practice the parameter estimations were poorly constrained due to sloppiness. 497 
Neither network reduction nor statistical design of experiments were particularly successful for 498 
reducing sloppiness or improving the precision of the parameter estimates for this example. 499 
Sloppiness precludes us from drawing any physical conclusions based on the individual values of 500 
the parameters estimated in these models, but this approach is still an effective way to make 501 
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model predictions based on relatively few time points. The predictive capacity of the model may 502 
be useful for forming hypotheses about the behavior of systems that pass through multiple 503 
conditions sequentially, or simply estimating equilibrium conditions based on short-term 504 
experiments. 505 

Our goal was not only to explore the kinetics of these specific reactions, but to evaluate the 506 
potential challenges and opportunities of applying mathematical tools, which were originally 507 
developed for biological networks to prebiotic chemical systems. Sloppiness is a challenge when 508 
studying the kinetics of complex nonlinear system models but may be an interesting property in 509 
the broader context of the chemical origins of life; sloppiness has been suggested as a possible 510 
non-adaptive explanation for the robustness of many multiparameter biological systems (Daniels 511 
et al. 2008). This idea suggests that many complex networks, ranging from those found in 512 
biology to those that are randomly generated, have similar behavior across large areas of the 513 
parameter space. This implies that robustness, in this case a reaction network’s ability to achieve 514 
similar outcomes despite variation in its parameter values, can emerge from complexity even 515 
when it is not specifically selected for. The feature of intrinsic robustness in sufficiently large 516 
multiparameter networks observed in deep neural networks, which can be dramatically complex 517 
but highly accurate, and is an open area of investigation in the machine learning community 518 
(Belkin, et al. 2019). As a result, there is a significant incentive to work towards studying more 519 
complex experimental origins of life systems.  520 

Adapting systems biology tools to study complex origins of life experiments lends itself to an 521 
interdisciplinary approach, since many methods can be difficult to implement or even approach 522 
without expert assistance. Demonstrative studies like this one can improve experimentalists’ 523 
understanding of what data analysis approaches are available, what their limitations are, and 524 
what results they can provide. We hope that using computational networks to analyze 525 
experiments will become more commonplace and enable the study of more complex origins of 526 
life reaction networks.   527 

 528 

Computational Methods 529 

The usefulness of a parametric model is limited by our ability to accurately determine the 530 
values of the corresponding parameters. A large body of work has detailed various parameter 531 
fitting or regression techniques that can be used to build these models (Bard 1974). The most 532 
popular parameter estimation method is maximum likelihood estimation (MLE). In MLE, the 533 
noise from experimental measurements (D) is treated as a random variable that captures the error 534 
between the model predictions and the observed output values: 535 

E = G(H; J) + L	 (M) 536 

Where D ∈ ℝ!, P is the number of observations (measurements) available, G is the model and 537 
J ∈ ℝ" are its Q parameters. The set of output observations is stored in the vector R ∈ ℝ!, and 538 
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H ∈ ℝ!×$, known as the design or feature matrix, is structured so that the S%& row corresponds to 539 
the S%& observation, T', and the U%& column corresponds to the U%& input variable V(. Combining 540 
MLE’s assumption that J and H are deterministic variables with the most common noise model, 541 
the Gaussian or normal distribution (WD ∼ Y(0, Σ)\, where Σ is the covariance of the noise) 542 
allows us to exploit the fact that the sum of normal distributions is also a normal distribution. We 543 
can use this to calculate the distribution for the observations vector, R ∼ Y(G(H, J), Σ). The 544 
goal of MLE is then to find the values of J that best account for the experimental observations, 545 
or the values for J that best parameterize this output distribution. This is done by determining the 546 
values that maximize the log-likelihood function, ](J): 547 

J∗ = argmax	
*

](J) = argmax
*

_`a b(E|H, J, d) (2) 548 

where bWe│H, J, Σ\ is the likelihood (or conditional probability) that the outputs in e would be 549 
observed given values for H, J, and Σ. For the given distribution of e: 550 

b(e|H, J, Σ) = g(2h)+
!
,|Σ|+

-
,i exp j−

1
2 WE −G

(H; J)\.Σ+-WE − G(H; J)\m	 (3) 551 

The well-known ordinary least squares regression problem is a special case of MLE where the 552 
model is linear and Σ is a diagonal matrix composed of identical values (o,). 553 

 A common issue with MLE is that (2) can have multiple solutions (](J)	is nonconvex), 554 
as is often the case with nonlinear models. However, some of these solutions may contain 555 
parameter values that are not physically sensible, making the solution invalid. One way to 556 
overcome this limitation is to shift the goal of (2) from maximizing the probability of measuring 557 
the observed outputs given a set of parameters to maximizing the probability of a set of 558 
parameters being correct given a set of observations. Mathematically, this is done using Bayes’ 559 

theorem, bWJ│e\ ∝ 	bWe│J\b(J), and changes the likelihood function to: 560 

J∗ = argmax
*

log b(e|H, J, d) + log b(J)	 (4) 561 

where now we no longer assume that J is deterministic but instead has some distribution (e.g., 562 
J	~	Y(Js, Σ*)) that is captured by the prior b(J). This term can be used to input any prior 563 
knowledge or expectation one might have over the values of the model parameters (e.g., must 564 
have a certain sign, lay within a specified range, etc.) and thereby constrain the search to values 565 
of J that satisfy the desired criteria. If e and J are normally distributed, then (4) can be 566 
expressed as: 567 

J∗ = argmin
*

1
2
We − G(H; J)\.Σ+-We − G(H; J)\ +

1
2
(J − Js).Σ/+-(J − Js)	 (5) 568 

Note that the first term will be minimized when the model predictions exactly match the output 569 
observations, while the second term will be minimized when θ = Js. To perform the optimization 570 
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of model parameters, we use the L-BFGS-B algorithm from SciPy’s minimize function with a 571 
tolerance for termination of 1e-3. As a result, Bayes’ estimation seeks to balance the fit of the 572 
model with the prior knowledge over the parameters that is available. We use an Expectation-573 
Maximization (EM) algorithm to determine the covariance matrix of the measurement noise and 574 
the parameter prior that maximizes the model evidence (Thompson et al. 2022). 575 

Due to the randomness in e, the selected parameters J∗ will exhibit an inherent 576 
uncertainty that is determined by how well the estimates are constrained by experimental data. 577 
The parameter uncertainty is largely controlled by the model structure as well as the quality and 578 
quantity of the available data. If a model is selected where certain inputs are not strong predictors 579 
of the outputs or are dependent on other inputs, or if the dataset is too small or contains 580 
redundant samples, then J∗ will be imprecise. This is a major issue as it can lead to overfitting, 581 
where G is not able to make accurate predictions at values of V that are outside of the dataset.  582 

An estimate of the parameter uncertainty can be obtained from the eigenvalues of the 583 
Hessian matrix, ℋ(e; J) , also known as the Fisher information matrix (FIM) in the context of 584 
parameter estimation, which is defined as: 585 

ℋ0,2 =
3!4

3/"3/#
(6)  586 

The eigenvalues of the Hessian serve as an estimate of data sufficiency. From calculus we know 587 
that the second derivative of a function, b′′, determines if a critical point (b′ = 0) is a maximum 588 
(b′′ < 0), a minimum (b′′ > 0), or an inflection point (b′′ = 0), which could be either a 589 
minimum, a maximum, or neither. Additionally, we can also estimate how sharp or defined an 590 
extremum is from the value of b". As a result, we can use ℋ(e; J) to gauge the quality of the 591 
obtained solution. For example, if all the eigenvalues of ℋ(e; J) are large and positive (≫ 0), 592 
this implies that J∗ sits in a well-defined minimum and provides a precise estimate of the 593 
parameters. If all the eigenvalues are positive and one or more are small (≪ 1), then the 594 
minimum is not sharp, and the parameter estimates will be ill-defined and exhibit high 595 
variability. Finally, if ℋ(e; J) has any eigenvalues equal to zero, then J∗ lays on a flat surface 596 
and cannot be uniquely estimated from the data; in other words, J∗ has infinite variability.  597 

If the precision of J∗ is deemed to be too low, there are two methods that can be used to 598 
improve the quality of the estimates. The first, known as system identification, involves the 599 
structure of the model and the selection of the input variables. We can determine the relative 600 
importance of the input variables using a feature importance technique such as automatic 601 
relevance determination (ARD), or model class reliance (MCR), or as used in this paper, sparse 602 
principal component analysis (SPCA) (Zou et al. 2006). This information can then be used to 603 
restructure m to eliminate any redundant inputs.  604 

If system identification is not able to reduce the uncertainty of the parameter estimates to 605 
a desired level, a second approach is to collect additional data. However, the data must provide 606 
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additional information beyond what is already contained in the current dataset to have any 607 
chance of improving the parameter estimates. One way to achieve this is by using a design of 608 
experiments (DoE) algorithm to select experiments that have a maximal value. Depending on the 609 
goal of the experiments (optimization, discovery, or both), their value can be measured by the 610 
information content they provide or by their predicted proximity to a desired set of properties. 611 
There is a rich variety of DoE algorithms to select from such as response surface methodology 612 
(RSM), screening, factorial design, etc. (Fisher 1937; Box & Wilson 1951; Shevlin 2017). A 613 
common metric to evaluate the optimality of candidate experimental designs is the determinant 614 
of the FIM. For any candidate experimental design, H, the FIM is computed as  615 

ℋ0,2 	=
},]
}~0}~2

= Σ/",#
+- +

}G(H, J)
}~0

Σ+-
}G(H, J)
}~2

(7) 616 

where evaluations of the gradient with respect to model parameters is computed using the 617 
forward sensitivity equations (Ma et al. 2021).   618 

While DoE can be very useful for improving parameter uncertainties, there are several 619 
challenges. Calculating the expected information gain (EIG) can be time consuming due to the 620 
number of operations that need to be performed for larger systems. As a result, obtaining a new 621 
batch of experiments can easily take on the order of hours depending on the size of the dataset 622 
and the number of parameters involved. Even for moderately sized models, the quantity or 623 
precision of an experimental system may not be sufficient for accurate predictions of the 624 
information generated by each experiment to be made in the first place, or the experiments that 625 
would provide the information may not be feasible in reality. Both cases seriously hinder the 626 
effectiveness of DoE methods. 627 

  Selection of experiments for the DoE method was performed as in Thompson et al. 628 
(2022). Experimental data was normalized using linear scaling to ensure that the concentration 629 
values for each species spanned [0,1]. Scaling the data ensures that low abundance species still 630 
affect the parameter fits, which was necessary since the experimental results span several orders 631 
of magnitude. Parameters values were limited to [0,10] for simplicity, though we found that 632 
raising the upper bound had no effect if the initial guesses were single digit. Negative values had 633 
no physical meaning since both directions of the reversible reactions were already included. All 634 
computational methods were performed using Python 3.2.2. We used automatic differentiation in 635 
PyTorch to calculate the gradients of the loss function and SciPy to solve the initial value 636 
problems. Relevant code is available at https://github.com/haboigenzahn/OoL-637 
KineticParameterEstimation. 638 

Simulated data for testing was generated in Python 3.2.2 using SciPy 1.7.1 solve_ivp. 639 
The parameters for the simulated data were loosely based on the parameter fits of the 640 
experimental data, but were rounded to integers (Supplementary Information 7). Network figures 641 
were generated using Cytoscape 3.7.2 (Shannon et al. 1971). 642 
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Experimental Materials & Methods 643 

 All chemicals were of analytical grade purity and used without further purification. 644 
Materials were obtained from suppliers as follows: trisodium trimetaphosphate (TP) and 645 
trifloroacetic acid (TFA) from Sigma-Aldrich, sodium hydroxide from Fisher Scientific, acetone 646 
from Alfa Aesar, 9-fluorenylmethoxycarbonyl chloride (FMOC) from Creosalus, acetonitrile 647 
from VWR Chemicals, and sodium tetraborate anhydrous from Acros Organics. Reactions were 648 
carried out in 1.5 mL low-retention Eppendorf tubes. Peptide standards came from various 649 
sources: glycine, diglycine, triglycine, pentaglycine, dialanine and Ala-Gly from Sigma-Aldrich, 650 
tetraglycine from Bachem, Gly-Gly-Ala from Chem-Impex International, Ala-Gly-Gly from 651 
ChemCruz, Ala-Ala-Gly from Pepmic, and Gly-Ala-Gly, Gly-Ala-Ala, Ala-Gly-Ala and 652 
trialanine from Biomatik.  653 

 Samples were prepared with 0.15 M NaOH, various concentrations of glycine and 654 
alanine, and TP in equimolar concentration to the total amount of amino acid. Details of the 655 
initial conditions chosen are included in the supplemental information (Supplementary 656 
Information 8). Samples were placed on a heat block preheated to 90°C with the caps open and 657 
allowed to dry for 24 hours. At the end of each day of drying, samples were rehydrated with 658 
1000 μL milliQ water preheated to about 65°C, capped and vortexed (Pulsing Vortex Mixer, 659 
Fisher Scientific) 3000 rpm until everything was dissolved, which took 1-3 minutes per sample.   660 

To analyze the samples with UV-HPLC, they were first derivatized using FMOC, which 661 
increases the retention time and signal strength of peptide analytes. For the FMOC 662 
derivatization, 25 μL of sample was diluted with 75 μL milliQ water to put the large monomer 663 
peaks in a quantifiable range. Each sample was then mixed with 100 μL 0.1 M sodium 664 
tetraborate buffer for pH control. Finally, 800 μL 3.125 mM FMOC dissolved in acetone was 665 
added to each sample. For a sample of 0.1 M amino acid, this results in an equal concentration of 666 
FMOC and amino acid, and a slight excess of FMOC in any samples where peptide bond 667 
formation had occurred. Linear calibration curves were determined for all species using this 668 
approach (Supplementary Information 9), which were used to estimate peptide concentration 669 
based on the integrated absorbance values of the HPLC peaks of the samples. 670 

Samples were analyzed with a Shimadzu Nexera HPLC with a C-18 column 671 
(Phenomenex Aeris XB-C18, 150 mm x 4.6 mm, 3.6 μL). Products were measured at 254 nm. 672 
UV-HPLC analysis was performed using Solvent A: milliQ water with 0.01% v/v trifluoroacetic 673 
acid (TFA) and Solvent B: acetonitrile with 0.01% v/v TFA.  The following gradient was used: 674 
0-4 min, 30% B, 4-12 min, 30-100% B, 14-15 min, 100-30% B, 15-17 min, 30% B. The solvent 675 
flow rate was 1 mL/min. Peak integration was performed using LabSolutions with the ‘Drift’ 676 
parameter set to 10000. 677 
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