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Abstract

It was recently proposed that the electric field oscillation as a result of self-consistent e™ pair production may be the
source of coherent radio emission from pulsars. Direct particle-in-cell simulations of this process have shown that
the screening of the parallel electric field by this pair cascade manifests as a limit cycle, as the parallel electric field
is recurrently induced when pairs produced in the cascade escape from the gap region. In this work, we develop a
simplified time-dependent kinetic model of ¢™ pair cascades in pulsar magnetospheres that can reproduce the limit-
cycle behavior of pair production and electric field screening. This model includes the effects of a magnetospheric
current, the escape of e™, as well as the dynamic dependence of pair production rate on the plasma density and
energy. Using this simple theoretical model, we show that the power spectrum of electric field oscillations averaged
over many limit cycles is compatible with the observed pulsar radio spectrum.

Unified Astronomy Thesaurus concepts: Radio pulsars (1353); Plasma astrophysics (1261); Neutron stars (1108);

Radio sources (1358)

1. Introduction

Pulsars are rapidly rotating, highly magnetized neutron stars
that produce coherent radio emission with enormous brightness
temperature (see, e.g., Philippov & Kramer 2022, for a review).
Very quickly after its discovery, it was realized that the
magnetic field near the surface of a pulsar can be strong enough
to initiate a QED e* pair cascade (Sturrock 1971). It was
believed that pulsars can fill their surroundings with plasma
through this e™ pair production process, screening the electric
field E); along the magnetic field and creating a smooth force-
free magnetosphere (Contopoulos et al. 1999; Spit-
kovsky 2006). The regions in the magnetosphere with
unscreened E - B are called “gaps” and they are the main
locations for pair production activity (see, e.g., Ruderman &
Sutherland 1975; Arons 1983; Cheng et al. 1986).

Arguably, the most important pair-producing gap is located
at the pulsar’s polar cap, since it supplies the plasma on open
field lines that is believed to be the source of coherent radio
emission (Sturrock 1971). Beloborodov (2008) demonstrated
theoretically that the pair production process at the polar cap
must be inherently time-dependent when the magnetospheric
current is spacelike, and Levinson et al. (2005) showed that this
process tends to produce large-amplitude oscillations of the
accelerating electric field. Numerical simulations performed by
Timokhin (2010) demonstrated such oscillations from first
principles, and showed that pair production happens in
quasiperiodic bursts. Subsequent 1D and 2D particle-in-cell
(PIC) simulations all showed the limit-cycle behavior of the
pair production process (e.g., Timokhin & Arons 2013; Cruz
et al. 2021), and it was proposed that this pair production
oscillation may directly produce coherent radio waves
(Philippov et al. 2020). A better understanding of the e™*
discharge physics may help us finally solve the decades-old
puzzle of the origin of pulsar radio emission.
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Recently, it was also realized that the intense parallel electric
field in the gap region may be the strongest source of persistent
oscillatory E - B in the Universe. Pseudoscalar particles such as
QCD axions interact with the electromagnetic sector through
their coupling to E - B; therefore the spark gaps in the pulsar
magnetosphere may be one of the most promising regions for
producing these axion-like particles (ALPs; Prabhu 2021). The
QCD axions and ALPs are physically motivated and form a
popular class of dark matter candidates (Abbott & Sikivie 1983;
Dine & Fischler 1983; Preskill et al. 1983). Recent work by
Noordhuis et al. (2023) used the pair cascade process at pulsar
polar caps to derive novel constraints on axion signals. A better
understanding of the complex plasma physics behind ¢ pair
cascade oscillations may be able to further improve the existing
constraints on axion properties.

Driven by the need to explain pulsar radio emission,
semianalytic models motivated by first-principles simulations
have been constructed recently (Cruz et al. 2021; Tolman et al.
2022). These models improved over the work by Levinson
et al. (2005) by taking into account kinetic effects. However, no
single semianalytic model so far can properly reproduce the
limit-cycle behavior of the pair cascade process, which includes
the growth of the inductive electric field and its subsequent
screening from pair production. Numerical simulations, on the
other hand, are extremely expensive when the full QED
cascade physics is taken into account, and it is impossible to
simulate the parameter regime of realistic pulsars in 2D or 3D
with current computational capabilities.

In this paper, we attempt to construct a minimal time-
dependent theoretical model that can reproduce all salient
features of the pulsar e™ pair cascade process. This model takes
into account the highly relativistic and nonlinear plasma
physics governing the pair plasma near the pulsar polar cap,
and uses a physically motivated prescription to incorporate pair
production and escape. In Section 2, we outline this theoretical
model and derive the differential equations governing it. In
Section 3, we discuss our choice of the pair production source
term in the equations and compare a few different alternatives.
In Section 4, we present numerical solutions to this model and
discuss their parameter dependence. Finally, in Section 5 we
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discuss the observational implications and how this model can
be improved in the future.

2. Theoretical Model

2.1. Equations and Closure

We start from the coupled Vlasov—Maxwell system in 1D,
along the local magnetic field, with a source term for pair
production. Using x to denote the coordinate along the field
line, the system reads
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where + denotes the electron or positron species, and S-. is the
source term due to e pair production. Assuming the magnetic
field is static and does not couple to the dynamics in the spark
gap, we write jp = ¢(V x B);/4m. Ampere’s law becomes
OF
=4y — ). 3)
o Jg —J

The electric current density j in Equation (3) can be
computed directly from the distribution function:

J= 2.4 | vdp. “4)
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Taking the time derivative of the current and using the Vlasov
Equation (2), we can write down the evolution equation for j:
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where we have used integration by parts to move J, onto v.
Since dv/dp = 1/m~’, the last term can be written as
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where n, = [ fidp is the number density of the particle species,
and the angular bracket means taking the expectation value
with respect to the distribution function.

Our goal is to construct a set of coupled time-dependent
ordinary differential equations that can be solved numerically.
Therefore, we specialize to one point in space where particle
acceleration, pair production, and electric field screening are
happening, similar to the approach adopted by Cruz et al.
(2021) and Tolman et al. (2022). To this end, we postulate a
macroscopic length scale L for the variation of plasma density
and approximate the spatial derivative as 0, ~ 1/L. We further
assume that pairs flow away from the point of interest at the
speed of light, v &~ ¢. The Vlasov equation then becomes
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This is our attempt to approximately model the effect of plasma
escape. Using this approximation, the time evolution
Equation (5) for the current becomes
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Two extra quantities appear in Equation (8): the number
density of each species n. and the expectation value of 1/ +
for each species. The time evolution of n,. can be written down
by simply integrating the Vlasov Equation (7) over the
momentum space:
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However, the (1/+°) term requires an additional equation for
closure, which invariably involves higher moments of the
distribution function. In this paper, we make the simplest
hydrodynamic approximation, (1/9°) ~ 1/(v)?, and use (p.)
for closure by computing (v,) = /1 + (p.)?/m*c*. Addi-
tional discussion about this choice is included in Appendix A,
where we outline a systematic way to improve this approx-
imation. Similar to the current Equation (8), the time evolution
of (p+) can be obtained by substituting the Vlasov equation
and Equation (9), and then using integration by parts:
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Equations (8)—(10) involve an integral of the pair production
source term S, which we have not specified. In this paper, we
assume all pairs are produced at a single energy, but the pair
production rate may be a general function of E, n_, and (p.), in
order to take into account the feedback from electric field
screening:

Si =8 =S(E. ns, (p2))6(p — Ppur)- (11

We will discuss our specific choices for the function S in
Section 3. Since electrons and positrons are accelerated in
opposite directions in the gap, the pairs produced from ~-ray
photons emitted by them have opposite momenta. In addition,
the pairs produced from curvature radiation emitted from
primary particles have much lower energies than the acceler-
ated electrons and positrons. Therefore we set pp,ir = 0 in this
model, which significantly simplifies the integrals of the
source term.

2.2. Numerical Units

In order to solve the coupled Equations (3), (8), (9), and (10)
together numerically, we introduce a unit system that is
motivated by the physics at the pulsar polar cap. In the rest of
this paper, dimensionless variables are expressed with tildes,
and their units are expressed with the subscript O,
e.g., X = x/xo.
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We normalize the electron and positron densities n.. with the
Goldreich—Julian density (Goldreich & Julian 1969):

B - Qs
ngy = —/——
2mec
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~6.9 x 1010( )(—)cm*, 12
102G J\ P (12)

where B is the local magnetic field strength, and € is the
angular rotation frequency of the neutron star. The units of
length and time are determined by the plasma frequency
associated with ng;y:

2
W2 = dmae (13)

Mme

We then set the unit of time to be #o = 1/wp and the unit of
length to be xo = ¢/wp. Using the nominal value of ngj, our
length unit is close to x5 ~ 2 cm. Note that the real plasma
frequency after pair production sets in is going to be
significantly higher, and this w, simply sets a lower bound
for the plasma frequency.

For electron momentum, we set p, = m.c, and the
dimensionless momentum is simply p = (3. The unit of the
electric field Ey = mc/ety is then determined as the strength of
the electric field that increases p = 3 by 1 in the unit time #,.
The unit electric current density jo = eng;jc is equivalent to jo =
Eq /4ty due to our choice of #g. Lastly, we define the units of
the electron distribution function and pair production rate as f;
= ngy/po and Sy = fo/ 1o, respectively. In summary, our choice
of units is listed below:

to = (4melngy/me) % =~ 6.7 x 107s
Do = mec, ng = ngy, Eg= mc/ety
Jo = engic, fo = nai/pys So = fy/to- (14)

After incorporating the source term (11) and using the units
listed above, these are the equations that we solve numerically:
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Apart from the pair production source function § to be
discussed in Section 3, there are two dimensionless parameters
in this model, L and Jjs- The length scale L parameterizes
plasma escape and will be taken to be approximately of the
same order as the polar cap size rp.. The magnetospheric
current fB provides a driving term for the electric field and is
responsible for its growth after the pair plasma has advected
away. We typically take jp to be a few times engyc, which is
consistent with the magnetospheric current near the polar cap
seen in global force-free and PIC simulations (see, e.g., Bai &
Spitkovsky 2010; Gralla et al. 2017).
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Combining Equations (15) and (16), the equation for E is
essentially a damped oscillator with a constant forcing term:
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We define the effective frequency of the oscillation:

w2:ZﬁS<L3>. (20)
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The growth and screening of the electric field depend on the
value of this effective frequency. Initially, when @ is very
small, the particular solution to the equation is linear growth,
E ochf . As the electric field increases, the plasma is
accelerated and pair production sets in, which increases @.
The nature of the solution changes when & becomes large
enough to start oscillations, which initiates the electric field
screening phase.

Equation (19) also shows that the evolution of £ and j
somewhat separates from the other two equations, and the
plasma properties only affect the effective frequency in the
particular combination of Equation (20). This provides some
robustness to the model, which separates the dynamics of the
electric field from the detailed microphysics model we use for
pair production.

3. Modeling the Pair Production Source Term

The main goal of this paper is to construct a self-contained
theoretical model that can reproduce the limit-cycle behavior of
¢ pair production. To achieve this goal, we need to find a
suitable function S in Equation (11). The pair cascade process
is a complicated (and potentially nonlocal) sequence of
curvature radiation, synchrotron radiation, and magnetic pair
production or photon—photon annihilation. Although numerical
simulations have succeeded in describing these processes
accurately, it is impossible to include their full effects in a zero-
dimensional model. Therefore, we try to find a simple
qualitative source function using a trial-and-error process.

Since the source function S may generally depend on E, 7,
and (p,.), we experimented with a number of different types of
functional forms (in all cases g is a dimensionless parameter):

(i) Constant pair production rate: § = g;

(i) Proportional to plasma density: § = 8> is;

(iii) Proportional to average momentum: § = g3 [{f.)[;

(iv) Proportional to local electric field: § = g|E|;

(v) Proportional to electric field and plasma den-
sity: §= glElzv i}

(vi) Proportional to average momentum and plasma den-
sity: S = g> 7| (B.)].

Type (i), a constant pair production rate, is similar to the pair
production function used by Tolman et al. (2022). Since it does
not allow for any feedback from the evolution of £ and (), we
expect the gap to be screened and never grow again. It is a good
choice for studying the screening phase, but we do not expect it
to lead to a limit cycle. Similarly, type (ii) only depends on the
plasma density, and we expect the electric field will not grow
again after the initial screening phase. The other four types of
pair production function take into account feedback from the
field evolution in different ways, and it is not immediately
obvious which one leads to a limit-cycle behavior.
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Figure 1. A zoomed-in plot of the time evolution of the electric field and the charged current in “symlog” scale, with a blue dotted line showing the threshold between
linear and logarithmic scales. Left and right columns show the beginning of the screening phase and the transition to the next phase of electric field growth,
respectively. The escape length scale L is set as L = 10*, and the pair production parameter is g = 10~'". The value of Jp is chosen to be 2 and is shown as red dotted

lines.

Note that we have not included a source function type that
involves a pair production threshold 7y, as was done by
Levinson et al. (2005) and Cruz et al. (2021). We found that
since Equations (15)—(18) are already quite stiff, a threshold
condition often leads to discontinuous transitions that can
easily cause the solutions to run away. A more physical
justification is that, since Equation (18) evolves the average
momentum that exponentially decreases when pair production
sets in, it is not appropriate to use a threshold condition on this
value directly. An additional function that tracks the energies of
primary particles in the gap may be better suited for applying
the threshold condition, but we will leave the experimentation
of such a model to future works.

After extensive experimentation, we found that the only
source function that can consistently reproduce the pair
discharge limit-cycle behavior is type (vi), where S is
proportional to both the plasma density and the average
particle momentum. A solution with this type of source
function is plotted in Figure 1, which depicts different parts of
one pair discharge cycle. We will discuss this solution and its
parameter dependence in Section 4.

We believe this model successfully captures the limit-cycle
behavior for two main reasons: (i) if the source function does
not depend on the number density 7, then from Equation (17),
fip tends to relax to a constant value exponentially; (ii) this
model has a built-in feedback mechanism in that § o< (p,),
which allows pair production to respond to particle acceleration
(or lack thereof). More discussion about how other models fail
is included in Appendix B.

Coincidentally, type (vi) of the source function is applicable
to pairs produced by curvature photons, which may be the
primary channel for pair production at pulsar polar caps. The
energy loss rate of an electron of Lorentz factor v undergoing

curvature radiation is (see, e.g., Jackson 1999)

2
&R—giﬁf, 1)

c

where p, is the field line curvature radius. The characteristic
photon energy from curvature radiation is

nglww% 22)

c

where A is the reduced electron Compton wavelength. There-
fore, the number of curvature photons ncg ~ Pcr/€cr emitted
by an ultrarelativistic primary electron per unit time scales as -,
and each photon converts to an ™ pair. Additional synchrotron
cascade may increase the total number of pairs produced by a
single primary electron (Daugherty & Harding 1983), butitis a
reasonable first approximation to set the pair production rate to
be proportional to n. 7., which is our source function type (vi).

This correspondence to curvature radiation is also our way to
choose the numerical parameter g in the expression of the
source function. The constant g has the physical meaning of
number of pairs produced per time 7y per primary particle,
divided by its Lorentz factor:

Pcr 1ty 4 e?
= " = —_to
ECR Y 9 Xp.m.c
~1
~6.5 x 10—“(—1()8pzm) B, /P2, (23)

where By, = B/10'> G and P, = P/1 s. For our reference
model in Section 4, we use g = 10"
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4. Numerical Solutions and Parameter Dependence

We solve the set of six coupled ordinary differential
equations (15)—(18) wusing the Python library function
scipy.integrate.solve\inferior ivp. Anticipat-
ing a stiff set of equations, we use the library-provided
“Radau” method, which is an implicit Runge—Kutta method of
the Radau ITA family of order 5 (Hairer et al. 1993). Since the
method is adaptive, the results are interpolated through a cubic
polynomial to a dense output array of at least 500,000 points,
which allows for fast Fourier transform calculations to analyze
the power spectrum of electric field oscillations.

There are only three numerical parameters in this model. j, is
the magnetospheric current in units of engyc, which is usually
of order unity at pulsar polar caps. Note that although we
normalize plasma density with ngj, the system mainly operates
in the regime of p ~ 0 and the current is therefore always
spacelike. L is the dimensionless parameter that roughly
characterizes the size of the pair-producing region and controls
how quickly plasma escapes from the region. We take it to be
comparable to or smaller than the radius of the pulsar polar cap.
The constant g in the source function S parameterizes the pair
production rate, and we use curvature radiation for typical
pulsar parameters to choose its value in our reference model, as
discussed in Section 3.

Figure 1 shows the evolution of electric field £ and current
density j over time for a particular set of parameters. Initially,
the system is filled with n, = n_ = ngy with both species at
rest. The electric field E and electric current j are initially also
zero. Due to the magnetospheric current jg, the electric field
starts to grow linearly with time, accelerating both species of
charges. Electron—positron pairs are continuously produced
during this time, exponentially increasing the number densities
ny. Electric field screening happens when the effective
W= \/Z‘ﬁsﬂ/f)
@ > 1/L. This is when the solution transitions to an oscillatory
nature, at which point the electric field screening is well
described by a weakly damped oscillator with slowly changing
frequency. The damping effect drives the electric field to 0 and
the electric current to j;. The electric field grows again when
the plasma exits the region and the effective frequency drops
far below 1/L.

Figure 2 shows the full solution for three models with
different pair production parameters g. The electric field growth
and screening limit cycle are observed in all three cases.
However, the three models differ in their maximum electric
field strength E,,., the quasi-period of the limit cycle, and the
maximum effective frequency wn.x. We see that a lower pair
production efficiency leads to a larger E,,.x in the gap, and the
electrons and positrons are accelerated to much higher
maximum energies. The maximum effective frequency for
electric field oscillations @p.x is also lower when pair
production is less efficient, due to the much higher plasma
Lorentz factors.

One interesting feature of this model is that, even though j
changes sign rapidly as the electric field is screened, the mean
momentum (p..) just decreases but never changes sign again.
We believe this is physical, as (p.) can be dominated by a
population of high-energy particles, while these particles do not
contribute as much to {5.). As a result, the current density can
become close to zero and change sign due to large numbers of
pairs being produced. Note that |(p, )| and n. are completely

frequency becomes large enough,
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symmetric with |[(p )| and n_ in all solutions. This is simply a
consequence of the symmetry n, < n_and (p,) < —(p_) in
Equations (17) and (18).

Another feature of the model is that it predicts an extremely
high pair multiplicity of ny/ng; > 10'®, far greater than
previous more rigorous studies (e.g., Timokhin & Hard-
ing 2019). This is a limitation of the model that stems from
our choice of closure, where (1/v.) ~ 1/(y.)%, as well as the
very simplified pair production source function discussed in
Section 3. Our hydrodynamic closure may be reasonable during
the phase of electric field growth, where all particles are
accelerated together, but it significantly underestimates this
value when pair production is significant. Since electric field
screening is controlled by the effective frequency &, the system
develops an unreasonably high plasma density to compensate.
Experimentation with higher-order closures shows that a better
estimate of (1/~°) does tend to reduce the number density (see
Appendix A). Our source term for pair production is also quite
crude, therefore we believe the model should not be used to
directly study the pair multiplicities from pair cascades at
pulsar polar caps.

Figure 3 illustrates the dependence of the electric field
solution on initial conditions and other numerical parameters.
Experimenting with significantly different initial conditions, we
find that the initial condition does not affect the later recurrent
behavior of the solution, as all initial conditions are attracted to
the same limit cycle. Different initial electric fields and number
densities of charged particles just result in different times of
onset of the electric field screening.

On the other hand, the different choices of parameters lead to
the different time evolutions of the electric field. The growth
rate of the electric field before its screening is only governed by
Jg» as that part of the solution is described by E o j, 7. Systems
with larger j, or g start screening the electric fields at earlier
times, as pair production becomes more efficient in both cases.
L describes how slowly or quickly charged particles escape
from the pair-producing region, and thus a smaller L leads to an
increased duty cycle for the gap. This is because when pairs
escape more quickly, the system spends less time before the
electric fields start growing again.

This oscillating electric field in the polar cap has been
suggested as a possible origin for coherent radio emission from
pulsars (Philippov et al. 2020). If this is the case, then the
frequency spectrum of electric field oscillations should be
directly related to the resulting radio waves. Figure 4 shows the
power spectrum of the electric field energy for the three models
that were shown in Figure 2. The spectrum generally follows a
power law, but it has a cutoff that scales with the pair
production parameter g. This cutoff is located near the
maximum @, which is physically the maximum oscillation
frequency of the electric field. The spectrum beyond this cutoff
arises purely due to interpolation onto a dense output grid. The
cutoff frequency is higher for models with more efficient pair
production. For higher values of g, the frequency range
contains what is typically observed in pulsar radio emission.

Compared to the frequency cutoff, we find that the power
law index is only weakly dependent on the model parameters,
and all indices lie within the 1.8-2.0 range. This is largely
compatible with the observed pulsar radio emission spectra of
w410 (Bates et al. 2013). However, even within one single
model, the spectral index seems to vary over the frequency
range. More detailed modeling of the escape of these



THE ASTROPHYSICAL JOURNAL, 970:46 (9pp), 2024 July 20

g=107"

Okawa & Chen

g=10"1"

1
i
el
el
RER

10713

0 5 10 15 0
{ x10%

10 15 0 5 10 15
{ x10% f x10%

Figure 2. Full solution of Equations (15)~(18) (from top to bottom: E, j, | (. ) |. i+, and effective frequency @) as a function of 7. The first two rows are plotted in
“symlog” scale and blue dashed lines denote the transition from linear to logarithmic scales. Each column assumes a different production rate of charged particles in
pair cascades; g = 107°, ¢ =107'° and g = 10" are chosen for the left, central, and right columns, respectively. Initial conditions and model parameters are chosen
as Einit = Jiiw = (P)inie = 0, ficinie = L, jp = 2, and L = 2 x 103, The production rate of charged particles is set to be § = g>°_ 7ii| (5.)|.

oscillations as coherent electromagnetic waves is required to
make definitive predictions about the radio emission spectrum.

5. Summary and Discussion

We have presented a minimal time-dependent theoretical
model that captures the limit-cycle behavior of the e*
production process at the pulsar polar cap. The model has
only three parameters and reproduces correctly the complete
pair discharge cycle, from the induction to the screening of Ej.
The solution is agnostic of initial conditions and always settles
to the same recurrent behavior under the same parameters, as is
characteristic of a true limit cycle. We explored the parameter
dependence of the model and computed the power spectrum of
the electric field oscillations. We found that the spectral index
is around 1.8-2.0, weakly dependent on model parameters
within the range we have experimented with. This result is

largely compatible with the range of spectral indices of
observed pulsar radio emission.

In addition, the frequency range of the oscillations seems to
be compatible with the observed range from 100 MHz to
several GHz. The high-frequency cutoff of the power spectrum
depends sensitively on the efficiency of pair production and
becomes lower when pair production is less efficient. This
dependence may provide an alternative explanation of the
pulsar death line. As a pulsar spins down, its polar cap potential
drops, which decreases the pair production efficiency. This
results in an overall reduction of the high-frequency cutoff of
its radio spectrum, rendering it undetectable by our radio
telescopes, which are sensitive between 100 MHz and a
few GHz.

Although the three numerical parameters in this model have
straightforward physical meanings, their values need to be fine-
tuned by comparing the model with first-principles PIC
simulations such as those by Timokhin & Arons (2013) and
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Figure 3. Plots of electric fields with different choices of one of the initial
conditions or parameters. From top to bottom, each plot compares the behavior
of electric fields with several choices of Ejyi, nm,l, Jg» L, and g, respectively.
The refelr{;tnce model used for comparison is jy =2, L =2 x 10% and
g=10

Cruz et al. (2021). Such a comparison will not only check the
validity of this model, but also provide a guide for choosing the
parameters, potentially allowing for extrapolation to realistic
pulsars. Such a study will be the focus of a future work.

Our time-dependent pair production model not only
describes ¢ discharge at the pulsar polar cap, but should also
be applicable to other systems where a spark gap is expected,
e.g., the twisted flux tubes of a magnetar (e.g., Belobor-
odov 2013) or black hole magnetospheres (e.g., Chen et al.
2018). For other systems, the pair production term may need to
be modified accordingly, but the set of Equations (15)-(18)
should generally remain unchanged.

We have introduced a few simplifying assumptions to make
the problem tractable. One of the most 51gn1ﬁcant was
replacing (1/+°) in Equation (16) by 1/(7)°, which closes
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Figure 4. The power spectra of the electric field £ % for a time interval that
corresponds to four pair production limit cycles. The different plots correspond
to different values of the pair production parameter: g = 10" (top), g = 10~ '°
(middle), and g = 10~? (bottom). The dotted lines are simple estimates of the
spectral indices. The spectral index is only weakly dependent on the pair
production rate, but the frequency cutoff depends sensitively on the
parameter g.

the equations but significantly underestimates the value of this
term. For example, previous studies have found that when
abundant secondary pairs are present, the expectation value
(1/~%) becomes close to 1/(7) (see, e.g., Gedalin et al. 1998;
Cruz et al. 2021). Moreover, our pair production source term is
rather crude, allowing pair production from all particles at a
rate proportional to their energies. As a result, the number
densities ny. from the model are much higher than what was
generally predicted by more sophisticated theoretical and
numerical models of the pair production process (e.g.,
Timokhin & Harding 2019). To improve the estimates of n..,
more moments such as ( pj} can be included in the equations as
discussed in Appendix A. However, more detailed modeling of
the pair production term will also be needed in order to yield a
more reliable prediction. Nevertheless, our results share
common features with those obtained by PIC simulations.
The behavior of electric current (Figure 1) closely resembles
what was seen in simulations by Timokhin (2010). A direct
quantitative comparison with existing PIC simulation results is
more challenging, since we have made simplifying
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assumptions on both the pair production model and the plasma
escape mechanism.

Another limitation of this model is that it assumes local
feedback of pair production on the electric field, which may not
be realistic due to finite photon free paths. In the case of
nonlocal pair production, a zero-dimensional model such as
proposed in this paper is likely no longer applicable. Further
comparison with direct numerical simulations should be able to
measure the effect of nonlocal electric field screening and find
the parameter regimes where local pair production is a good
approximation.

Despite all its limitations, we believe this model elucidates
some of the most important features of the pair cascade process.
In addition, this model can potentially provide a powerful way
to compute the time dependence of parallel electric field E - B
in pair-producing regions in the pulsar magnetosphere over a
long period of time. Such a calculation can be used to estimate
the production rate of ALPs and their spectra. Tracing the
propagation of ALPs and their conversion back to photons can
potentially give more stringent constraints on their allowable
parameter space than what is currently available.
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Appendix A
Computing the Expectation Value (1/7)

In the main text, we have made the bold assumption that
(1/4) ~ 1/(7)* in order to close the set of
Equations (15)—(18). In this appendix, we attempt to justify
our assumption and outline a systematlc way to improve this
estimate. We can actually expand 1/+° around the expectation
value v = (7):

I B I

6
= Y=+ —=(r = (NP + . (AD
Yoo o (7)
This is an asymptotic expansion that may not be convergent,
but it still provides us with a systematic way to approximate the
expectation value of 1/ ~? by truncating the series at the desired
order. Taking the expectation value of Equation (A1), the first-
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order term goes to zero, and we have
1 > 1 i
<”r3 () S —

Therefore, our assumption in the main text is equivalent to only
keeping the zeroth-order term in this expansion. This
assumption is reasonable during the phase of electric field
growth, where all electrons and positrons are accelerated
together and the distribution function has little spread, but it
significantly underestimates (1/ ¥ ) when pair production has
begun and the electric field is screened, as shown by Cruz et al.
(2021) and Tolman et al. (2022).

We can improve the estimate by including more terms in the
expansion. For example, if we truncate Equation (A2) at n = 2,
the result becomes

(n + D(n + 2)

2y ((r = (")

(A2)

1 = L L 2\ 2
<—3> BRTE + <7>5(<7> (M. (A3)

At large v, (") ~ (p*), for which we can write down an
evolution equation:

a(p?) iop o, 1 ,0f
== dp + = [p*= 4,
= [p3f dp nfp p

ot
=—2(p) = Z(p

P2) + 24E (p) + % [p*S6(p)dp
—=(p*) + 24E(p), (A4)

where we have assumed that pairs are produced at p = 0, as
was done in the main text. If we assume a nonzero but equal
and opposite £ppqir, then the higher moments will contain pp,
as a parameter. This equation shows that the time evolution of
higher moments of the distribution function depends on lower
moments, and we can repeat this procedure as needed up to nth
order in Equation (A2).

Figure 5 shows a comparison between the solutions with the
zeroth-order closure used in the main text and the second-order
closure defined by Equation (A3), with all parameters identical.
The overall qualitative features of the solution remain similar,
but the second-order closure solution has an overall lower @. It
mainly achieves this by having a lower n.. We expect that
including more moments in the expansion will generally lead to

x10° Electric field £(t) Effective Frequency w(t) Number density n. (¢
) i 1018
—— 0th order 10
10 2nd order 101 \/ /V
SINRYINSAUF
S5 3 \/ \ g 100
2 . ~
R 10764 g
v 106
0.0 - }. r__/ — 10-94 —— 0th order : —— 0th order
2nd order 10 2nd order
0 1 2 3 4 5 0 1 3 4 5 0 i 2 3 4 5
t/to x10° t/to x10” t/to x 107

Figure 5. Comparison of the solution with different closure schemes. Blue curves show the solution with (1/7°) =

the second-order closure defined by Equation (A3).

1/(¥)?, while orange curves show the solution with



THE ASTROPHYSICAL JOURNAL, 970:46 (9pp), 2024 July 20

4_

E/10

0 5 10 15 20

i x10%

Okawa & Chen

4 5
x10%

Figure 6. Plots of the electric field evolution obtained by two different models of the pair production source function. The left and right panels assume §=yg|E| > i
and § = g>°, | (B,) |, respectively. All initial conditions and values of parameters are the same as in the reference model except for the efficiency of charged particle

production rate g: g = 1077 (left) and g = 107> (right).

a more realistic number density. Such a study is beyond the
scope of this paper and will be deferred to future works.

Appendix B
Alternative Pair Production Models

_ Among six models proposed in the main text, only
S = g>, 7| (p,) | reproduces the limit-cycle behavior of electric
fields. The other five models were not sufficient to yield this
behavior (see Figure 6 for some examples) with reasonable
values of initial condition and parameters. Below we briefly
describe where each of the other five models was unsuccessful
in reproducing the limit cycle.

1. S=g;

In this case, Equation (17) predicts that the deviation
of the plasma density from its critical value /i, = Lg is
exponentially suppressed as a function of time. The
number density of charged particles in this model ends up
being nearly constant.

2.8 = gy A

Depending on the sign of the right-hand side of
Equation (17), the plasma density endlessly either grows
or drops regardless of the behaviors of the electric fields,
the charged current, and the averaged momentum.

3.8 =gX (A

See Figure 6, right panel. Numerical simulations
have shown that the averaged momentum tends to be
relaxed to a constant value. Then, the plasma density also
reaches a constant value, similar to the § = constant
case. The electric field never grows appreciably.

4. § = glE);

With this form of the source term S, the averaged
momentum of electrons continues to decrease. That of
positrons is monotonically increased or decreased
depending on the value of g.

5.8 = glElz.vﬁs;

See Figure 6, left panel. A limit cycle tries to form
but settles to an oscillation that is different in nature. In
addition, Equation (18) has a particular solution in this

model: () = g, /eg. Thus, this model cannot describe
the acceleration/deceleration of charged particles due to
the electric fields.
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