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Abstract:  2-(((2,7-Dihydroxynaphthalen-1-yl)methylene)amino)-3’,6’-bis(ethylamino)-2’,7’-dime-
thylspiro[isoindoline-1,9’-xanthen]-3-one was synthesized using Rhodamine 6G hydrazide (pre-
pared by literature methods) and commercially available 2,7-dihydroxynaphthalene-1-carbalde-
hyde via imine condensation. Structural characterization was performed using FT-IR, 'H-NMR, 13C-
NMR, X-Ray, and HRMS. This Schiff base shows promise as a ligand for colorimetric analysis of

uranium in water.
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1. Introduction

Schiff bases are a class of compounds derived from the reaction of primary amines
with carbonyl compounds, resulting in the formation of an imine (C=N) [1]. Structurally
these compounds are well suited for binding transition metals [2,3,4], and Schiff bases
have commonly been used as fluorescent or colorimetric probes for metal ions [5,6]. These
molecules are highly tunable due to their modular synthesis, and varying the structure
has been shown to result in high selectivity for a particular metal ion in solution, even in
the presence of competing metal ions [6].

Industrially, Schiff bases have been used as catalysts, dyes, or stabilizers [7]. These
compounds have also been thoroughly investigated for their high levels of biological ac-
tivity as metal complexes [8] or as small molecule candidates for anticancer activity [9] as
well antiviral, antibacterial, and anti-inflammatory properties, among others [7].

The following work demonstrates the synthesis and characterization of 2-(((2,7-dihy-
droxynaphthalen-1-yl)methylene)amino)-3’,6’-bis(ethylamino)-2’,7’-dimethylspiro[isoin-
doline-1,9’-xanthen]-3-one (PROM1), a Schiff base synthesized from Rhodamine 6G hy-
drazide and 2,7-dihydroxynaphthalene-1-carbaldehyde. A related Schiff base was previ-
ously reported and shown to have high uranium binding affinity [10]. PROM1 was also
tested as a ligand for colorimetric sensing of uranium in water.

2. Results and Discussion

2.1 Synthesis of 2-(((2,7-dihydroxynaphthalen-1-yl)methylene)amino)-3’,6’-bis(ethylamino)-
2',7’-dimethylspiro[isoindoline-1,9"-xanthen]-3-one (PROM1)

Schiff base PROM1 was synthesized in two steps. First, rhodamine 6G hydrazide was
prepared using literature methods (Scheme 1a)[11]. This starting material was then used
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for imine condensation with commercially available 2,7-dihydroxynaphthalene-1-
carbaldehyde via overnight reflux (Scheme 1b).
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Scheme 1. A) Synthesis of Rhodamine 6G hydrazide via literature procedure [11]. B)
Synthesis of PROM1 ligand.

PROM1 was recrystallized by slow evaporation in a mixture of acetonitrile and ethanol.
The crystalline product was analyzed by X-Ray, FT-IR, high-resolution ESI-MS, 'H- and
1BC-NMR (for spectra see Supplementary Materials, Figures S1-56). Structural
determination of PROM1 was performed via X-ray crystallography (Figure 1), and the
structure was confirmed by NMR spectroscopy.

Figure 1. Molecular structure of PROM1e2 MeCN with thermal ellipsoids drawn at a
30% probability level. The solvent molecules are not shown, and H atoms are omitted
except on heteroatoms for clarity.
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2.2 Colorimetric Detection of Uranium 60
Uranium is a chemically and radiologically toxic element that occurs naturally in 61
groundwater, and may have increased concentrations due to mining operations, 62
processing for nuclear power, or improper nuclear waste management [12]. A simple 63
colorimetric test for the presence of uranium in drinking water may prevent accidental 64
exposure to uranium, which can result in kidney disease, kidney failure, or cancer [13]. 65
A stock solution of PROM1 was dissolved in dimethylsulfoxide. When mixed with 66
aqueous solutions of uranyl nitrate, a color change from yellow to pink could be 67
observed (Figure 2). 68
69
| fo— f—

70

71

Figure 2. A) A stock solution of PROM1 in DMSO. B) PROM1 and 500 pg/L uranyl 72
nitrate in 50/50 DMSO and water. C) PROM1 and 5,000 pg/L uranyl nitrate in 50/50 73
DMSO and water. 74
75

3. Materials and Methods 76
3.1 General 77

All starting materials were purchased from commercial suppliers. Rhodamine 6G 78
and 2,7-dihydroxynaphthalene-1-carbaldehyde were purchased from Sigma Aldrich, 80% 79
hydrazine from TCI (VWR), and uranyl nitrate hexahydrate from Fisher Scientific. Sol- 80
vents were reagent/ACS grade and were purchased from VWR. Rhodamine 6G hydrazide 81
was synthesized as described previously in the literature [11]. 82

The IR spectrum was recorded on a Perkin Elmer Spectrum 100 FT-IR, UV-Vis spec- 83
tra were recorded on a Shimadzu UV-2600i, mass spectrometry was run by direct infusion 84
in pos ESI on an Agilent 6530 QToF HRMS, NMR spectra were collected on a Bruker AXR 85
500 MHz spectrometer in dimethylsulfoxide-ds solution with reference to residual solvent 86
signals (DMSO-ds, 6 = 2.50 ppm for 'H and 39.52 ppm for 1°C). X-ray diffraction data was 87

collected on a Bruker APEX 2 CCD platform diffractometer [Mo Ka (A = 0.71073 A)]. 88
89
3.2 2-(((2,7-dihydroxynaphthalen-1-yl)methylene)amino)-3',6 -bis(ethylamino)-2',7"-dimethyl- 90
spirolisoindoline-1,9"-xanthen]-3-one (PROM1) 91
92

To Rhodamine 6G hydrazide (0.1915g, 0.45 mmol) was added a solution of ethanol (15ml), 93
and acetic acid (5-6 drops). The mixture was stirred to dissolve, then 2,7- 94
dihydroxynaphthalene-1-carbaldehyde (0.0837g, 0.44 mmol) was added. The resulting 95
solution was stirred for 24 hr under reflux at 72 °C. The yellow solid product was 9
separated by hot vacuum filtration (0.1839, 68.8%). A portion of the product was 97
redissolved in warm acetonitrile, layered with ethanol and recrystallized by slow 98
evaporation at 5 °C. The yellow crystalline product was used directly for X-Ray, 'H and 99
13C NMR, and HRMS. HRMS m/z calcd. for Cs7HzaN4Oa: 598.26. Found(M+H*): 599.2641. 100
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TH-NMR (DMSO-ds): 9.57 (s, 1H, imine-H), 8.00 (d, J=7.3, 1H, Ar-H), 7.73 (d, ] =8.9, 1H, 101
Ar-H), 7.70-7.63 (m, 3H, Ar-H), 7.13-7.11 (overlapping m, 2H, Ar-H), 6.95 (dd, ] =8.70,1.96, 102
1H, Ar-H), 6.82 (d, ] = 8.9, 1H, Ar-H), 6.40 (s, 2H, Ar-H), 6.27 (s, 2H, Ar-H), 3.46 (residual 103
water), 3.16 (q, ] = 6.58, 4H, N-Et CH>), 2.54 (DMSO), 2.10 (s, MeCN), 1.87 (s, 6H, Ar-CHs), 104
1.22 (t, ] =7.09, 6H N-Et CHs), 1.09 (t, ] = 7, EtOH). 3C-NMR (DMSO-ds): 163.5 (s), 158.5 (s), 105
157.4 (s), 151.4 (s), 151.2 (s), 148.1 (s), 147.2 (s), 134.1 (s), 133.7 (s), 133.1 (s), 130.8 (s), 129.0 106
(s), 128.6 (s), 127.0 (s), 124.0 (s), 123.1 (s), 122.2 (s), 118.7 (s), 118.1 (s, MeCN), 115.6 (s), 115.2 107
(s), 107.0 (s), 103.9 (s), 102.7 (s), 95.7 (s), 65.6 (s), 56.1 (s, EtOH), 39.5 (g, DMSO), 37.5 (s), 108

18.6 (s, EtOH), 17.0 (s), 14.1 (s), 1.22 (s, MeCN). 109
110
3.3 X-Ray Data 111

X-ray diffraction data were collected on a Bruker APEX 2 CCD platform diffractometer 112
(Mo Ka (A =0.71073 A)) at 150(2) K. A suitable yellow crystal, grown from acetonitrileand 113
ethanol, was mounted on a MiTiGen micromount with Paratone-N cryoprotectant oil. The 114
structure was solved by direct methods using SHELXT and refined by full-matrix least- 115
squares methods against F? by SHELXL-2018/3 [14, 15]. All non-hydrogen atoms were 116
refined with anisotropic displacement parameters. All hydrogen atoms were refined with 117
isotropic displacement parameters. H1 and H2 were refined freely. Hydrogen atoms on 118
carbon were included in calculated positions and were refined using a riding model. 119

Crystallographic data for the structure reported here have been deposited with the 120
Cambridge Crystallographic Data Centre [16]. CCDC 2287758 contain the supplementary 121
crystallographic data for this paper. These data can be obtained free of charge from The 122
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. The final 123
CIF file was generated using FinalCif [17]. 124

Crystal Data for Cs1H4NeOs (M = 680.79g/mol): triclinic, space group P-1 (no. 2),a= 125
11.37(3) A, b=11.51(3) A, c =14.38(3) A, a. = 80.06(3) °, P =74.82(3)°, v=85.75(3)°, V= 126
1789(7) A3, 72=2,T= 150(2) K, p(MoKa) = 0.083 mm-!, Deale = 1.264 g/cm?, 14714 reflections 127
measured (3.59° < 20 < 47.48°), 5320 unique (Rint=0. 0799, Rsigma = 0.0952) which 128
were used in all calculations. The final R1 was 0.0450 (I > 20(I)) and wR2 was 0.1066 (all 129

data). 130

131
3.4 Colorimetric Analysis of Uranium Binding 132
Stock solutions of uranyl nitrate in water were prepared by dissolving the appropriate 133

amounts of solid uranyl nitrate hexahydrate in DI water. The PROM1 stock solution was 134
prepared by dissolving 0.0200 g (0.033 mmol) in 100 mL of DMSO. Equal amounts of the 135
ligand stock solution (in DMSO) and uranyl nitrate hexahydrate solution (in water) were 136

then mixed resulting in the yellow to pink color change upon uranium binding (Figure 137
2). 138

139
4. Conclusions 140

Novel Schiff base 2-(((2,7-dihydroxynaphthalen-1-yl)methylene)amino)-3’,6’-bis(ethylamino)-2’,7’- 141
dimethylspiro[isoindoline-1,9’-xanthen]-3-one (PROM1) was synthesized from Rhodamine 6G 142
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hydrazide and 2,7-dihydroxynaphthalene-1-carbaldehyde. PROM1 was shown to bind uranium in 143
water and is a plausible ligand for colorimetric analysis of uranium in drinking water. 144

Supplementary Materials: The following supporting information can be downloaded online. The 145
supplementary materials contain the NMR spectra of PROM1 (Figures S1-54), IR spectrum (Figure 146
S5) and HRMS (Figure S6). 147
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