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Abstract

In� this� review� we� consider� the� Hamiltonian� analysis� of� Yang-Mills� theory� and� some� vari-
ants� of� it� in� three� spacetime� dimensions� using� the� Schr¨�odinger representation.� This� rep-
resentation,� although� technically� more� involved� than� the� usual� covariant� formulation,�

may� be� better� suited� for� some� nonperturbative� issues.� Specifically� for� the� Yang-Mills�

theory,� we� explain� how� to� set� up� the� Hamiltonian� formulation� in� terms� of� manifestly�

gauge-invariant� variables� and� set� up� an� expansion� scheme� for� solving� the� Schr¨�odinger
equation.� We� review� the� calculation� of� the� string� tension,� the� Casimir� energy� and� the�

propagator� mass� and� compare� with� the� results� from� lattice� simulations.� The� computa-
tion� of� the� first� set� of� corrections� to� the� string� tension,� string� breaking� effects,� exten-
sions� to� the� Yang-Mills-Chern-Simons� theory� and� to� the� supersymmetric� cases� are� also�

discussed.� We� also� comment� on� how� entanglement� for� the� vacuum� state� can� be� formu-
lated� in� terms� of� the� BFK� gluing� formula.� The� review� concludes� with� a� discussion� of� the�

status� and� prospects� of� this� approach.

This� is� an� expanded� version� of� the� lectures� given� at� Understanding� Confinement: Prospects

in� Theoretical� Physics� Summer� School� at� the� Institute� for� Advanced� Study,� Princeton,
July� 2023.
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1� Introduction

Gauge� theories� have� a� foundational� role� in� physics� since� they� are� the� basic� paradigm� for�

the� formulation� of� the� Standard� Model� (SM)� of� fundamental� particles� and� their� inter-
actions.� The� great� success� of� the� SM� therefore� makes� it� imperative� that� we� understand�

the� structure� of� gauge� theories� in� different� environments� and� kinematic� regimes.� Co-
variant� perturbation� theory� for� gauge� theories� is� by� now� a� well-developed� and� powerful�

technique� and� it� is� adequate� for� the� analysis� of� the� electroweak� sector� of� the� SM� for�

most� questions� of� interest.� The� situation� for� the� strong� nuclear� forces,� described� by�

Quantum� Chromodynamics� (QCD),� is� very� different.� The� high� energy� regime� of� QCD�

(energies� &� 10� GeV)� can� be� analyzed� using� perturbation� theory� by� virtue� of� asymptotic�

freedom.� But� the� low� energy� regime,� where� the� interaction� strength� is� large� and� where�

perturbation� theory� is� no� longer� applicable,� remains� a� real� challenge.� Decades� of� work�

have� led� to� a� fairly� good� qualitative� understanding� of� the� low� energy� regime� of� non-
abelian� gauge� theories,� but� quantitative� analysis� of� important� questions� such� as� how�

quarks� bind� together� to� form� hadrons,� what� the� nucleonic� and� nuclear� matrix� elements�

for� the� electroweak� transitions� of� hadrons� are,� etc.,� is� difficult.� Lattice� gauge� theory,�

combined� with� large� scale� numerical� simulations,� has� been� the� reliable� workhorse� for�

most� questions� of� a� nonpertrubative� nature� and,� indeed,� it� has� produced� a� number� of�

useful� results.� However,� it� is� important� to� correlate� these� results� with� an� analytical� ap-
proach� to� arrive� at� a� complete� or� more� comprehensive� understanding� of� the� physics� of�

gauge� theories.

In� this� review,� we� will� describe� an� approach� which� is� very� different� from� covariant�

perturbation� theory,� namely,� the� Schr¨�odinger representation� in� field� theory� where� we�

use� Hamiltonians� and� seek� wave� functions� (actually� functionals)� which� are� solutions� of�

the� Schr¨�odinger equation.� Although� this� representation� goes� back� to� the� early� days� of�

field� theory,� and� has� the� conceptual� simplicity� of� elementary� quantum� mechanics,� it� has�

rarely� been� used� because� of� many� perceived� difficulties.� Nevertheless,� it� may� be� more�

suitable� for� certain� types� of� questions� in� field� theory.� To� cite� an� elementary� example,�

recall� that� a� spacetime� approach� in� terms� of� path� integrals� can� be� used� to� work� out�

the� bound� state� energy� levels� and� transition� matrix� elements� for� the� Hydrogen� atom,�

but,� as� anyone� who� tries� to� do� so� will� realize� immediately,� it� is� much� simpler� to� use� the�

Hamiltonian� and� the� Schr¨�odinger equation.

We� will� be� considering� the� application� of� this� method� mainly� to� the� three� (or� 2+1)�

dimensional� Yang-Mills� (YM)� theory.� However,� it� is� useful� to� start� with� a� few� general
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observations.� Consider� a� simple� scalar� field� theory� with� a� classical� action� of� the� form�

1

S =�

Z�

dtdV�

�

1

2�

@�µ� @�

µ����

m�

2

2
��

2� �� ���

4�

��

(1.1)

In� the� canonical� quantization� of� this� theory,� we� start� with� the� equal-time� commutation�

rules,� say� at� time� t� =� 0,

[�(~x,� 0),��(~y,� 0)] = 0

[�(~x,� 0),�⇡(~y,� 0)] = i �(~x �� ~y) (1.2)

[⇡(~x,� 0),�⇡(~y,� 0)] = 0

where� ⇡(~x,� 0)� = �̇(~x,� 0). This� suggests� that� we� can� define� a� set� of� �-diagonal� states� |'i
obeying� �(~x,� 0)� |'i� =� '(~x)� |'i,� where� '(~x)� is� a� c-number� function.� A� Schr¨�odinger wave�

function� for� a� state� |↵i� will� take� the� form

 �↵�

[']� =� h'|↵i� (1.3)�

It� is� a� functional� of� '.� The� commutation� rules� (1.2)� can� then� be� represented� as

h'|��(~x,� 0)� |↵i = '(~x) �↵�

[']

h'|�⇡(~x,� 0)� |↵i = �i
�

�'(~x)
 �↵�

['] (1.4)

This� is� the� Schr¨�odinger representation� of� the� commutation� rules.�

The� Hamiltonian� corresponding� to� the� action� (1.1)� has� the� form

H =�

Z�

dV�


1

2
⇡�

2� +�

1�

2
�(�r�

2� + m�

2�)�� +� ���

4�

�
(1.5)

The� idea� is� that� we� can� use� this� to� write� down� and� solve� the� Schr¨�odinger equation.� The�

vacuum� state� of� the� theory,� represented� by� the� wave� function�  �0�

['],� would� thus� satisfy

H �0�

[']� =�

Z�

V�

�

�1�

2

✓
��

2

�'(~x)�'(~x)

◆
+�

1

2
'(x)!�

2�(x,� y)'(y)� +� �'�

4�(x)�

��

 �0�

[']

=� 0 (1.6)Z�

x,y

'(x)!�

2�(x,� y)'(y)� ⌘�

Z�

x�

'(x)(�r�

2� + m�

2�)'(x)

where� we� have� used� the� Schrödinger representation� to� write� H� as� a� functional� differen-
tial� operator� which� can� act� on�  �0�

['].
1�We� use� dV� to� denote� the� volume� element� for� the� spatial� manifold.
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A� number� of� potential� problems� are� evident� at� this� stage.� As� with� any� field� the-
ory,� we� need� regularization� and� renormalization.� In� covariant� perturbation� theory,� the
regularized� action� has� the� form�

S =�

Z�

�

Z�3�


1

2�

@�µ� @�

µ����

m�

2�

2
��

2� +�

�m�

2

2
��

2�

��

� Z�1�

���

4�

��

(1.7)

where� Z�1�

,� Z�3�

and� �m�

2� will� depend� on� the� regularization� parameter� ⇤� (upper� cutoff
on� momenta)� and� are� chosen� so� as� to� render� all� correlation� functions� finite� as� ⇤� !�

1.� The� situation� in� the� Schr¨�odinger representation� is� more� complicated.� We� have�

functional� derivatives� at� the� same� point� ~x� in� the� ��

2�/�'�

2�-term,� so� it� needs� regularization�

and� a� Z-factor.� A� similar� statement� applies� to� the� '(�r�

2�')-term.� The� mass� term� will�

need� an� additive� renormalization� as� well,� so� we� need� a� term�

1�

2
�m�

2�'�

2�.� And� finally� we�

need� regularization� and� a� Z-factor� for� the� interaction� term.� At� this� stage,� we� could�

envisage� independent� regularizations� for� the� terms� ��

2�/�'�

2� and� '(�r�

2�'),� since� we� have�

a� separation� of� space� and� time� and� Lorentz� invariance� is� not� manifest.� The� requirement�

of� Lorentz� invariance� will� relate� the� Z-factors� for� these� two� terms.� The� regularization�

must� be� so� chosen� as� to� ensure� this,� Lorentz� invariance� is� not� automatic� as� in� covariant
perturbation� theory.� This� is� one� of� the� complications� of� the� Schrödinger representation
for� field� theories.

There� is� one� other� issue� associated� with� Poincaré� invariance.� One� of� the� commuta-
tion� rules� for� the� Poincaré� algebra� is

[K�i�

, P�j�

] = i ��ij�

H� (1.8)

where� P�j is� the� total� momentum� and� K�i�

is� the� generator� of� Lorentz� boosts.� Taking
the� expectation� value� of� this� with� the� vacuum� state� shows� that� if� the� vacuum� is� to� be�

Lorentz� invariant,� we� must� have� h0|� H� |0i� =� 0.� So,� for� maintaining� Poincaré� invariance,�

H� must� be� redefined� by� subtracting� a� certain� c-number� term� to� ensure� this;� this� is� the�

version� of� the� familiar� normal� ordering� in� the� present� context.

In� addition� to� the� Hamiltonian,� we� must� ensure� that� the� wave� functions� (which�

are� functionals� of� the� field)� are� well-defined.� In� general,� this� will� require� additional�

counterterms.� One� way� to� understand� the� genesis� of� such� counterterms� is� to� think� of�

the� wave� function� at� time� t�1�

as� defined� by� a� path� integral� over� the� region� t� <� t�1�

as� in

 [',� t�1�

] =�

Z�

[D'̃] e�

iS[ ˜�',t1�

,t�0�

]� ['�

0�, t�0�

],� '̃(~x,� t�1�

)� =� '(~x),� '̃(~x,� t�0�

) = '�

0�(~x)� (1.9)

The� functional� integration� is� over� all� paths� '̃(~x,� t)� with� the� boundary� values� shown.� In�

the� course� of� carrying� out� calculations� using� this� form,� we� will� be� renormalizing� an
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action� defined� on� a� spacetime� region� with� boundaries� (the� time-slices� at� t�0�

and� t�1�

)� and�

it� will� require� counterterms� on� the� boundaries.� These� take� the� form� [1]

 � !� exp�

�

i�

Z�

dV�

��

Z�5'@�0�

'� +�'�

2�

��

��

 � (1.10)

The� Hamiltonian� itself� takes� the� form�

H� =�

Z
dV�

1

2

"�

� 1�

Z3Z0

✓
��

2

�'(~x)�'(~x)�

◆�

reg

+ Z�3�

Z�0�

⇣�

(r')�

2� + (m�

2� �� �m�

2�)'�

2�

⌘�

reg�

#�

+�

Z�

dV Z�1�

⇣�

�'(x)�

4�

⌘�

reg

� E�0 (1.11)

The� factor� Z�0�

is� proportional� to� Z�5�

introduced� in� (1.10).�

2� The� boundary� counterterms
are� another� complication,� in� general,� for� the� Schr¨�odinger representation.

With� the� formalism� as� outlined� above,� and� using� a� point-splitting� regularization,�

Symanzik� was� able� to� prove� the� renormalizability� of� the� ��

4�-theory� in� the� Schr¨�odinger
representation� [1].� (While� renormalizability� of� this� theory� in� the� covariant� formalism�

was� relatively� straightforward� and� known� for� many� years,� there� was� even� a� general� feel-
ing,� before� Symanzik’s� work,� that� the� theory� was� not� renormalizable� in� the� Schr¨�odinger
representation.� There� is� some� new� physics� which� emerges� in� this� formalism� as� well.�

Symanzik� used� the� Schr¨�odinger representation� to� analyze� Casimir� energies.� Further,
the� additional� Z-factor� (Z�5�

)� introduced� by� Symanzik� can� also� be� related� to� a� new� criti-
cal� exponent,� see� [3].)

A� useful� observation� worth� mentioning� at� this� stage� is� that� the� vacuum� wave� function�

for� the� free� theory� (with� �� =� 0)� is� given� by

 �0�

['] =

2

4det�

 p�

k�

2� + m�

2

⇡�

!�

reg

3

5

1

2�

exp�

✓�

�1

2

Z�

x,y

'(x)�

⇥�

p�

k�

2� + m�

2�

⇤�

x,y,reg�

'(y)�

◆�

(1.12)

with� E�0�

=�

1�

2

⇥�

p�

k2� + m�

2�

⇤�

x,x,reg�

.

Given� the� additional� complications� with� regard� to� regularization� and� renormaliza-
tion,� compared� to� covariant� perturbation� theory,� one� might� wonder� whether� it� is� worth�

the� trouble� to� pursue� the� Schr¨�odinger representation� in� field� theory.� For� certain� ques-
tions� of� a� nonperturbative� nature,� the� answer� seems� to� be� a� qualified� yes.� The� kinetic�

operator� in� the� Hamiltonian� may� be� viewed� as� the� Laplace� operator� on� the� infinite-
dimensional� space� of� field� configurations� and� if� we� have� some� knowledge� of� the� geom-
etry� and� topology� of� this� space,� it� can� shed� light� on� the� spectrum� of� the� Hamiltonian.

2�The� one-loop� calculation� of� Z�0 is� outlined� in� [2].
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A� key� inspirational� paper� in� this� context� was� by� Feynman,� who� analyzed� Yang-Mills�

theory� in� 2+1� dimensions� [4].� These� theories� are� rather� optimal� candidates� for� the�

Schr¨�odinger representation� since� there� is� no� renormalization� of� the� coupling� constant,�

so� some� of� the� aforementioned� problems� can� be� avoided.� Feynman� tried� to� argue� that�

the� space� of� gauge-invariant� configurations� (gauge� potentials� modulo� gauge� transfor-
mations)� is� compact� and� hence� can� lead� to� a� discrete� spectrum� for� the� Laplacian� and�

ultimately� a� mass� gap� for� the� theory.� This� is� not� quite� true,� the� configuration� space�

is� not� compact,� as� shown� by� Singer,� who� however� argued� that� the� sectional� curvature
of� the� space� is� positive� [5].�

3� This� is� suggestive� in� view� of� the� Lichnerowicz� bound� on
the� lowest� eigenvalue� of� the� Laplacian.� Explicitly,� if� the� Ricci� tensor� R�↵��

of� a� compact�

Riemannian� manifold� of� dimension� n� has� a� positive� lower� bound

R�↵��

� µ�

2�(n� �� 1)� g�↵��

,� (1.13)

where� µ�

2� is� a� constant� parameter� of� dimension� (length)�

�2�,� then� the� lowest� eigenvalue�

of� the� (�Laplacian)� satisfies� the� bound

� � µ�

2� n.� (1.14)

In� the� present� case,� a� simple� extension� of� this� argument� is� not� possible� since� we� are�

dealing� with� an� infinite� dimensional� manifold.� So� regularizations� are� needed� to� define
the� Laplacian,� Ricci� tensor,� etc.� before� we� can� even� consider� the� proper� formulation� of
a� similar� bound.

Feynman’s� arguments� and� Singer’s� analysis� were� carried� out� before� we� had� an� exact�

expression� for� the� volume� element� for� the� configuration� space.� What� we� shall� do� here� is�

to� revisit� this� problem� in� the� light� of� later� developments.� The� basic� analysis� and� results�

are� from� [7]-[9],� [10].� We� will� see� that,� modulo� certain� approximations� and� caveats�

as� explained� in� detail� below,� there� are� a� few� key� quantitative� (and� encouraging)� results�

which� emerge� from� our� analysis:

1.� There� is� an� analytic� formula� for� the� string� tension� which� compares� very� favorably�

with� numerical� estimates� from� lattice� simulations.

2.� One� can� calculate� the� Casimir� energy� for� a� parallel� plate� arrangement;� this� too�

compares� very� favorably� with� the� lattice� simulations.

There� are� also� some� additional� insights� obtained� regarding� supersymmetric� theories,�

entanglement,� etc.,� which� we� will� comment� on� later.
3�Feynman’s� analysis� was� modeled� on� his� earlier� very� successful� analysis� of� superfluid� Helium.� The� comparison�

of� the� two� cases� and� some� of� the� nuances� of� the� gauge� theory� are� outlined� in� [6].
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Unlike� the� 1+1� dimensional� cases,� the� 2+1� dimensional� Yang-Mills� theories� have�

propagating� degrees� of� freedom,� so� one� might� consider� them� to� be� closer� to� the� 4d�

Yang-Mills� theories;� this� is� an� added� motivation� for� analyzing� these� theories.� But� they�

are� also� relevant� for� the� high� temperature� (T)� limit� of� 4d� Yang-Mills� theories.� In� this�

limit,� the� 4d� (or� 3+1� dimensional)� theory� reduces� to� a� (Euclidean)� 3d� Yang-Mills� theory�

with� coupling� constant� e�

2� =� g�

2�T,� where� g� is� the� coupling� constant� of� the� 4d-theory.�

Electric� fields� and� time-dependent� processes� become� irrelevant.� The� mass� gap� of� the�

3d� theory,� from� the� point� of� view� of� the� 4d� theory,� becomes� the� magnetic� mass� since� it�

controls� the� screening� of� magnetic� fields� in� the� gluon� plasma� [11].� So� the� identification�

of� the� propagator� mass� in� the� 3d� theory� (either� analytically� or� via� the� lattice� simulation�

of� the� Casimir� effect,� as� explained� in� section� 9)� will� be� important� for� the� 4d� theory� at�

high� temperatures.

Three� dimensional� space� is� also� famous� as� the� home� ground� of� the� 3d� Chern-Simons�

(CS)� theory,� with� all� its� ramifications� including� knot� theory,� conformal� field� theory,�

etc.� For� the� CS� theory� also,� a� beautiful� analysis� can� be� carried� out� in� the� Schr¨�odinger
representation.� For� a� review,� see� [12].� Some� facets� of� the� Hamiltonian� analysis� of� the�

CS� theory� will� also� be� discussed� in� section� 12.

Since� there� are� diverse� concepts� involved� as� well� as� a� number� of� comments� and�

digressions,� it� may� be� useful� to� give� a� layout� of� what� is� to� follow� before� getting� to�

the� technical� details.� Just� for� the� (2+1)-dimensional� YM� theory,� the� analysis� and� the�

main� results� are� given� in� sections� 4,� 5,� 6,� 8� and� 9.� In� section� 4,� we� will� give� various�

arguments� to� show� that� the� complex� components� of� the� gauge� potentials,� for� an� SU�(N�)�

gauge� theory,� can� be� parametrized� as

A =� �@M� M�

�1�, Ā = M�

†�1�@̄M�

† (1.15)

where� M� is� an� SL(N,� C)� matrix.� As� the� next� step� in� setting� up� the� Hamiltonian� formula-
tion,� the� gauge-invariant� volume� element� dµ(C)� on� the� space� of� the� fields� (A,�

¯�A)� modulo
gauge� transformations� is� calculated� in� section� 5� using� the� parametrization� (1.15).� This�

serves� to� define� the� inner� product� for� wave� functions� as

h1|2i =�

Z�

dµ(C)� �

⇤�

1
 �2 (1.16)

As� the� next� logical� step� in� setting� up� the� Schr¨�odinger formulation,� we� will� work� out� the�

form� of� the� Hamiltonian� H� in� terms� of� a� set� of� gauge-invariant� variables.� The� relevant�

variables� will� turn� out� to� be� a� current� of� the� form� J� ⇠� @H� H�

�1�,� H� =� M�

†�M�.� Once� we�

have� the� Hamiltonian� in� a� form� where� the� redundant� gauge� degrees� of� freedom� have
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been� eliminated,� one� can� proceed� to� the� Schr¨�odinger equation.� In� section� 8,� we� will
explain� how� a� systematic� expansion� scheme� for� solving� the� Schrödinger equation� can
be� set� up� and� we� will� work� out� the� solution� to� the� lowest� two� orders. The� resulting
vacuum� wave� function� will� then� be� used� to� calculate� the� string� tension� and� the� Casimir
energy� for� the� nonabelian� gauge� theory� in� section� 9;� we� will� also� compare� these� results
with� numerical� estimates� based� on� lattice� simulations.� These� sections,� namely,� 4,� 5,� 6,� 8
and� 9,� will� constitute� the� main� thread� of� arguments� regarding� the� use� of� the� Schrödinger
representation� for� the� Yang-Mills� theory� in� 2+1� dimensions.

Sections� 2� and� 3� discuss� key� ideas� from� the� general� formulation� of� gauge� theories�

useful� for� the� analysis� of� YM(2+1).� The� discussion� of� the� propagator� mass� in� section�

7� is� meant� primarily� for� the� analysis� of� the� Casimir� energy� in� section� 9,� but� also� serves�

to� formulate� the� alternate� argument� for� the� wave� function� given� in� section� 8.� We� have�

also� commented� on� the� Casimir� scaling� versus� the� sine-law� for� string� tensions� in� section�

9.� Section� 10� is� about� string-breaking� and� screenable� representations.

The� main� thrust� of� the� remainder� of� the� text� is� about� extensions� of� the� Yang-Mills�

theory,� with� a� Chern-Simons� term� added� to� the� action� as� well� as� supersymmetric� the-
ories.� The� analysis� is� presented� mainly� in� section� 13.� The� integration� measure� for� the�

inner� product� plays� a� crucial� role� in� our� approach� to� these� theories.� We� present� an� in-
direct� way� to� calculate� this� measure� in� terms� of� the� Knizhnik-Zamolodchikov� equation�

and� the� finite� renormalization� of� the� level� number� of� the� Chern-Simons� term.� In� the�

spirit� of� staying� within� the� Schr¨�odinger representation,� and� for� a� sense� of� completeness,�

we� have� added� a� short� section� (12)� on� the� Chern-Simons� theory� where� we� show� how�

this� renormalization� arises� within� the� Hamiltonian� approach.

There� have� been� suggestions� about� the� form� of� the� vacuum� wave� function� other� than�

our� solution� to� the� Schr¨�odinger equation.� Some� of� these� are� reviewed� and� commented�

on� vis-a-vis� our� solution� in� section� 11.� Entanglement� is� the� one� concept� in� the� quantum�

theory� which� is� presented� most� directly� in� terms� of� states� or� wave� functions� and� hence�

the� Schr¨�odinger representation� is� the� most� natural� framework� for� understanding� this�

feature.� We� discuss� entanglement� in� the� Yang-Mills� theory� in� section� 14;� the� focus� here�

is� on� the� so-called� contact� term� and� how� it� can� be� related� to� the� BFK� gluing� formula.�

The� last� section� (15)� is� on� prospects� as� well� as� a� status� report.

There� are� four� Appendices.� Appendix� A� just� outlines� some� conventions.� Appendix� B�

is� on� the� geometry� and� topology� of� the� configuration� space� and� is� not� essential� for� a� first�

reading.� It� does� however,� touch� upon� the� issue� of� the� Gribov� problem� [13].� Appendix�

C� is� on� regularization� of� the� operators.� While� regularization� is� rather� technical� and

9



hence� relegated� to� an� Appendix,� it� is� important� for� the� results� derived� in� the� main� text.�

Appendix� D� is� on� the� calculation� of� corrections� to� the� vacuum� wave� function� and� string�

tension.� It� shows� that� the� first� set� of� corrections� (within� the� expansion� scheme� of� section�

8)� to� the� string� tension� are� small,� a� result� which� is� crucial� for� the� eventual� justification�

of� the� expansion� procedure.

2� The� gauge� principle

The� quintessential� example� of� a� gauge� theory� is� quantum� electrodynamics� describing�

the� interaction� of� electrons� and� positrons� with� the� electromagnetic� field.� The� starting�

point� for� this� theory� is� the� Lagrangian

L( ,�

¯� ,� A)� =�  ̄� [i��

µ�(@�µ �� iA�µ�

) � m] � 1

4e�

2�

F�µ⌫F�

µ⌫ (2.1)

where�  � is� a� 4-component� spinor� field� in� four� dimensions� representing� the� electron-
positron� field, ¯� � =�  �

†���

0�,� and� A�µ is� the� vector� potential� for� the� electromagnetic� field.�

Also� F�µ⌫ is� the� field� strength� tensor� defined� as� F�µ⌫�

= @�µ�

A�⌫�

� @�⌫�

A�µ�

.� The� components� of
F�µ⌫ are� related� to� the� electric� (E�i)� and� magnetic� (B�i�

)� fields� as� F�0i�

=� E�i�

,� F�ij�

=� ✏�ijk�

B�k�

.
The� charge� of� the� electron� is� e� and� its� mass� is� m.� Also,� ��

µ� are� the� Dirac� �-matrices�

obeying�

4

��

µ� ��

⌫� + ��

⌫� ��

µ� = 2 ⌘�

µ⌫� 1� (2.2)

The� key� property� of� the� Lagrangian� (2.1)� for� our� analysis� is� gauge� invariance.� If� we�

make� a� change� of� variables� as

 !  �

g� =� g� ,�  ̄ !�

¯� �

g =�  ̄ g

A�µ�

! A�

g

µ
=� g A�µ�

g�

�1� �� i@�µ�

g g�

�1� = A�µ + @�µ�

✓,� (2.3)

where� g� =� e�

i✓�,� we find

L( �

g�, ¯� �

g�, A�

g)� =� L( ,�

¯� ,� A)� (2.4)

Notice� that� F�µ⌫�

(i.e.,� E�i�

,� B�i�

)� is� unchanged� by� the� transformation� (2.3).� Classically� the
motion� of� a� charged� particle� is� governed� by� the� Lorentz� force� law� which� involves� only
E�i�

,� B�i�

.� Hence,� classically� the� entire� dynamics� is� insensitive� to� the� transformation� (2.3).
Therefore,� the� gauge� degree� of� freedom,� namely� ✓(x),� represents� a� redundancy� in� the

4�Our� conventions� and� specific� realizations� are� discussed� in� Appendix� A.
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dynamical� variables� used� to� describe� the� theory.� Going� to� the� quantum� theory,� notice�

that� we� can� set� A�

g� to� zero� along� a� line� by� defining� ✓(x)� as

✓(x) =

Z
x�

x0�

,C�

dx�

µ�A�µ =

Z
x

x0,C�

A (2.5)

where� C� denotes� a� path� connecting� the� point� xµ

0
to� x�

µ�. In� this� case,�  � acquires� a� phase
factor� e�

i✓� =� e�

i�

R�

C�

A�.� But� the� value� of� ✓(x)� depends� on� the� path� C� and� not� just� the� end-
point� x�

µ� of� the� path.� So,� in� general,� we� cannot� eliminate� A�µ�

;� we� would� need� A�µ�

to� set�

up� the� theory� rather� than� just� F�µ⌫�

.

The� function� g� =� e�

i✓� used� in� (2.3)� is� an� element� of� the� group� U�(1),� so� the� gauge�

symmetry� in� (2.3),� (2.4)� is� a� U�(1)� gauge� symmetry.� The� generalization� of� this� to� an�

arbitrary� Lie� group� G� is� as� follows.� Consider� a� set� of� fields�  �

i�,� i� =� 1,� 2,� ·� ·� ·� ,� N� which�

transform� as� an� N�-dimensional� representation� R� of� the� group� G;� i.e.,

( �

i�)�

g� = g�

ij�  �

j� (2.6)

We� define� a� covariant� derivative� D�µ�

 � as�

(D�µ )�

i� = @�µ�

 �

i� + (A�µ�

)�

ij�  �

j� (2.7)

where� A�µ�

is� an� element� of� the� Lie� algebra� of� G,� with� (A�µ�

)� as� its� matrix� representative� in
the� chosen� representation� R.� Thus,� if� {T�

a�}� denote� a� basis� for� the� Lie� algebra� of� G,� with�

a� =� 1,� 2,� ·� ·� ·� ,� dim� G,� realized� as� matrices� in� the� representation� R,

(A�µ�

)�

ij =� �iA�

a�

µ
(T�

a�)�

ij (2.8)

We� also� define� the� gauge� transform� of� A� as�

A�

g

µ
= g A�µ�

g�

�1� � @�µ�

g g�

�1� (2.9)

This� is� also� in� the� matrix� notation.� The� derivative� D�µ�

 � is� covariant� in� the� sense� that�

(Dg

µ
 �

g�)�

i� =�

⇥�

@�µ�

(g )� +� (g� A�µ�

g�

�1� � @�µ�

g g�

�1�)(g )�

⇤�i

=� g�

ij�(@�µ + A�µ�

 )�

j� = g�

ij�(D�µ�

 )�

j (2.10)

A� particular� case� of� interest� would� be� for� fields� transforming� according� to� the� adjoint�

representation� of� the� group.� In� this� case,� (T�

a�)�

ij� =� �if�

aij�,� where� f�

aij� are� the� structure�

constants� of� the� Lie� algebra� of� G� in� the� chosen� basis.� Thus� they� are� given� by� [T�

a�, T�

b�] =

if�

abc�T�

c�.� In� this� case� (D�µ�

 )�

a� = @�µ�

 �

a� + fabc�A�

b�

µ
 �

c�.
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The� commutator� of� covariant� derivatives� defines� the� field� strength� tensor� as

[D�µ�

, D�⌫�

]� =� F�µ⌫�

=� (�iT�

a�) F a

µ⌫

F�

a

µ⌫
= @�µ�

A�

a�

⌫
� @�⌫�

A�

a�

µ
+ fabc�A�

b�

µ
A�

c

⌫
(2.11)

By� construction,� F�µ⌫�

transforms� homogeneously� under� gauge� transformations� as

F�

g

µ⌫
= g F�µ⌫�

g�

�1� (2.12)

If� we� have� a� unitary� representation� of� the� group� on� the� fields�  ,� we� have�  ̄�

g� =  ̄g�

†� =
¯� g�

�1�,� so� that� a� Lagrangian� consistent� with� gauge� invariance� is

L( ,�  ̄,� A)� =  ̄� [i��

µ�D�µ�

� m] � 1

4e�

2
F�

a�

µ⌫
F�

aµ⌫ (2.13)

This is the kind of� Lagrangian we use for coupling of� quarks to the gluons (particles
corresponding� to� A�

a�

µ
) in quantum chromodynamics (QCD). The left and right chiral

components� of� the� fermion� field� couple� to� the� gauge� field� in� an� identical� fashion,� so�

the� coupling� is� vectorial� in� nature.� The� Standard� Model� also� involves� chiral� or� axial�

couplings� of� the� quarks� and� leptons� to� various� gauge� fields.� Most� of� of� our� analysis�

will� be� for� the� pure� gauge� theory,� and� when� we� discuss� gauge� fields� in� interaction� with�

matter,� we� will� mostly� consider� vectorial� couplings.� The� action� for� the� gauge� field� part�

of� the� Lagrangian� (2.13)� is� the� Yang-Mills� action

S�YM = � 1�

4e�

2�

Z
dtdV� F�

a

µ⌫
F�

aµ⌫

=
1

2e�

2�

Z
dtdV� (Ea

i
E�

a

i
� B�

a

i
B�

a

i
)� (2.14)

For� the� special� case� of� a� U�(1)� gauge� theory� where� dim� G� =� 1,� this� action� agrees� with� the�

action� for� the� electric� and� magnetic� fields� in� electrodynamics.� The� nonabelian� analogs�

of� these� fields� can� be� written� out� as

E�

a�

i
= F�

a

0i
=
@Aa

i

@t
� @�i�

A�

a�

0
+ fabc�A�

b�

0
A�

c

i

=
@Aa

i

@t
� (D�i�

A�0�

)�

a (2.15)

Ba

i�

=
1

2�

✏�ijkF
a

jk
=�

1�

2�

✏�ijk�

(@�j�

Aa

k
� @�k�

A�

a�

j
+ fabc�A�

b�

j
A�

c

k
) (3+1� dim)

B�

a =
1

2�

✏�jkF
a

jk
=

1

2�

✏�jk�

(@�j�

Aa

k
� @�k�

A�

a�

j
+ fabc�A�

b�

j
A�

c

k
) (2+1� dim)

The� equations� of� motion� for� the� Yang-Mills� theory� are

(D�i�

E�i�

)�

a� =� 0
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@Ea

i

@t�

=

8
<

:
�✏�ijk�

(D�j�

B�k)�

a� 3+1� dim�

�✏�ij�

(D�j�

B)�

a 2+1� dim�

(2.16)

The� first� of� these� is� the� Gauss� law� familiar� from� electrodynamics,� now� generalized� to�

the� nonabelian� case.� The� second� is� an� equation� of� motion,� in� the� sense� of� defining
time-evolution,� for� the� field� E�

a�

i�

.

Our� aim� is� to� consider� the� Hamiltonian� formulation� of� the� YM� theory� using� the�

functional� Schr¨�odinger formulation.� From� now� on,� unless� specifically� indicated,� we�

will� consider� 2� +� 1� dimensions.� As� a� first� step,� by� extending� the� action� in� (2.14)� to� a
general� curved� manifold� with� metric� g�µ⌫ as� F�

a�

µ⌫
F�

aµ⌫� !�

p�

�g gµ↵�g⌫��F�

a�

µ⌫
F a

↵�
and� taking

the� variation� with� respect� g�

µ⌫�,� we� find� the� energy-momentum� tensor� for� the� theory� as

T�µ⌫ =
1

e�

2�

�

�⌘�

↵��F�

a�

µ↵
F�

a

⌫�
+

1

4�

⌘�µ⌫F
a

↵�
F�

a↵��

�
(2.17)

This� identifies� the� Hamiltonian� as�

H =�

Z�

dV T�00�

=
1

2e�

2�

Z
dV (Ea

i
E�

a

i
+ B�

a�B�

a�) (2.18)

To� obtain� the� Poisson� brackets,� or� the� commutation� rules� for� the� fields� in� the� quantum�

theory,� we� need� the� canonical� or� symplectic� structure� for� the� fields.� From� the� term
involving� time-derivatives� of� the� fields� in� (2.14),� we� can� identify� this� as�

5�

!�symp�

=
1�

e�

2

Z
dV� �Ea

i
�Aa

i
=�

Z�

dV �⇧a

i
�A�

a

i
, ⇧a

i�

=
E�

a

i

e�

2�

(2.19)

This� is� to� be� interpreted� as� a� differential� two-form� in� the� space� of� field� configurations�

(Ea

i
, A�

a

i
);� we� use� �� to� denote� the� exterior� derivative� on� the� space� of� fields.� On� the� spatial

manifold� at� a� fixed� time,� E�

a�

i
is� to� be� treated� as� an� independent� variable� since� it� involves

the� time-derivative� of� A�

a

i
. It� is� proportional� to� the� canonical� momentum� ⇧�

a

i
conjugate

to� A�

a�

i
.� The� equal-time� commutation� rules� defined� by� (2.19)� are

[Aa

i
(x), A�

b

j
(y)] = 0

5�This� can� be� obtained� as� follows.� Consider� the� action,� which� depends� on� a� set� of� fields� which� we� denote�

generically� as� ��

a�,� and� which� is� defined� over� the� time-interval� [t,� t�0�

].� A� general� variation� of� S� will� have� the� form

�S� =�

Z�

dV↵�a�

���

a�

i�t

t0�

+�

Z�

dtdV�E�a�

(�)���

a

The� first� term� is� the� surface� term� on� the� time-slices� at� t� and� at� t�0�

.� The� second� term� is� an� integral� over� the

spacetime� region.� The� equation� of� motion� is� then� given� by� E�a�

(�)� =� 0.� The� quantity�

R�

dV↵�a�

���

a� is� the� canonical

or� symplectic� one-form� on� the� space� of� fields.� Its� exterior� derivative� on� the� space� of� fields� is� the� canonical� structure

!�symp�

. In� the� present� case,� from� the� action,� with� Aa
0 =� 0,� we� get� ↵� =� (1/e�

2�)�

R�

dVE�

a
i �Aa

i which� leads� to� 2.19).
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[Ea

i
(x), Eb

j
(y)] = 0

[Ea

i
(x), Ab

j
(y)] = �i� e�

2���ij�

��

ab���

(2)�(x� �� y) (2.20)

The� commutation� rules� (2.20)� show� that� ⇧�

a�

i
is� the� variable� canonically� conjugate� to� A�

a

i�

.
There� is� no� variable� conjugate� to� A�

a�

0
.� Put� another� way,� the� canonical� momentum� for� A�

a

0

is� zero. If� we� augment� !�symp�

by� the� addition� of� a� term�

R�

�⇧a

0
�Aa

0
,� then� we� must� carry

out� a� reduction� of� the� phase� space� by� setting� ⇧�

a�

0
to� zero� as� a� constraint,� ⇧�

a�

0
⇡� 0� (in� the

sense� of� Dirac’s� theory� of� constraints). As� a� conjugate� constraint,� we� can� use� A�

a�

0
⇡� 0.

Thus� the� pair� (⇧�

a

0
, A�

a

0
)� will� be� eliminated� from� the� theory.

The� Hamiltonian� equations� of� motion� which� follow� from� the� canonical� brackets� are�

obtained� as

@Aa

i

@t
= E�

a�

i

@Ea

i

@t�

= �✏�ij�

(D�j�

B)�

a (2.21)

Notice� that� the� first� of� these� equations� requires� A�

a

0
=� 0� for� consistency� with� the� def-

inition� in� (2.15). If� we� did� not� set� A�

a

0
to� zero,� we� would� need� to� add� a� term� to� the

Hamiltonian� to� obtain� the� result� (2.15).� The� canonical� Hamiltonian� and� the� Hamilto-
nian� defined� by� T�00 would� differ� by� terms� proportional� to� the� constraint. With� A�

a

0
= 0,

the� first� of� the� equations� in� (2.21)� reproduces� the� definition� of� E�

a�

i
.� The� second� equation

agrees� with� the� second� of� the� Lagrangian� equations� of� motion� in� (2.16).�

In� terms� of� the� canonical� momentum,� the� first� of� the� Lagrangian� equations� in� (2.16)
reads� (D�i�

⇧�i�

)�

a� =� 0,� so� it� does� not� involve� time-derivatives.� Therefore� it� cannot� be� re-
produced� as� a� Hamiltonian� equation� of� motion.� For� equivalence� of� the� Hamiltonian
formulation� to� the� Lagrangian� given� as� (2.16),� we� have� to� impose� (D�i�

⇧�i�

)�

a� =� 0� as� an
additional� condition. It� should� be� viewed� as� a� constraint� on� the� phase� space� variables
or� on� the� initial� data.

We� have� restricted� the� field� variables� (by� use� of� the� freedom� of� gauge� transforma-
tions)� to� some� extent� by� setting� A�

a

0
= 0. But� the� theory� would� still� allow� for� gauge

transformations� g� which� do� not� depend� on� time,� so� that� they� preserve� the� condition
A�

a

0
=� 0.� The� constraint� D�i�

E�i =� 0� may� be� viewed� as� the� statement� of� this� residual� gauge
freedom.� We� can� then� choose� a� constraint� conjugate� to� D�i�

E�i�

,� say� r ·�A� ⇡� 0� for� example,
and� carry� out� a� further� canonical� reduction� to� obtain� !�symp�

on� the� reduced� phase� space�

(where� D�i�

E�i =� 0� and� r�i�

A�i�

=� 0).� We� can� then� formulate� Poisson� brackets� and� commu-
tators� in� terms� of� this� reduced� !�symp�

.� This� is� the� approach� of� gauge-fixing,� r�i�

A�i�

=� 0
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being� the� gauge-fixing� condition.� Alternatively,� in� the� quantum� theory� we� can� impose
D�i�

E�i�

=� 0� not� as� an� operator� condition� but� as� a� condition� on� states� or� wave� functions.
This� is� the� approach� we� will� be� pursuing.

As� is� well-known,� conditions� imposed� in� terms� of� operators� should� be� understood�

as� valid� with� suitable� smearing� using� test� functions.� The� nature� of� the� test� functions� is
crucial� to� determining� the� physical� consequences� of� the� theory. We� consider� the� smeared
operator

G�0�

(✓) =�

Z�

dV ✓�

a�(D�i�

⇧�i)�

a� (2.22)

If� we� impose� the� condition

G�0�

(✓) � =� 0 (2.23)

on� the� wave� functions� � in� the� theory,� for� consistency,� we� will� also� need� the� commutator�

[G�0�

(✓), G�0�

(✓�

0�)]� to� vanish� on�  .� From� the� canonical� commutation� rules� (2.20)� it� is� easy�

to� check� that

[G�0�

(✓), G�0�

(✓�

0�)] = iG�0�

(✓ ⇥ ✓�

0�) + i

I�

@V

(✓ ⇥ ✓�

0�)a�⇧�

a�

i
dS�i (2.24)

(✓ ⇥ ✓�

0�)�

a ⌘ f�

abc�✓�

b�✓�

0c

We� see� that� we� cannot� consistently� impose� (2.23)� unless� ⇧�

a

i
vanishes� fast� enough� as� we

approach� @V� or� at� spatial� infinity.� This� would� in� turn� amount� to� requiring� all� charges� to
vanish� (this� will� be� clearer� soon),� which� is� not� something� we� can� impose� a� priori� in� the
theory.� The� only� other� option� is� to� require� the� test� functions� to� vanish� on� @V.� In� this�

case,� the� surface� term� in� (2.24)� will� vanish� and� we� have� a� closed� algebra� for� the� G�0�

(✓)’s
and� the� condition� (2.23)� can� be� consistently� imposed.� In� terms� of� its� action� on� fields,
we� find

e�

iG�0�

(✓)�

Z
dV Aa�

i
v�i�

��

e�

�iG�0�

(✓)� =�

Z�

dV Aa

i
v�i�

+ i[G�0�

(✓),�

Z
dV Aa

i
v�i�

] + · · ·�

=�

Z
dV Aa

i
v�i�

+�

Z�

dV ✓�

a�(r�i�

v�i�

) � f�

abc�

Z�

dV Ab

i
✓�

c�v�i�

+ · · ·

=�

Z
dV Aa

i
v�i�

��

Z�

dV (D�i�

✓)�

a�v�i�

+ · · · +�

I�

@V�

✓�

a�v�i�

dS�i

=�

Z
dV (A�i � D�i�

✓)�

a�v�i�

, if� ✓�

a !� 0 on� @V (2.25)

For� the� electric� field� we� find�

e�

iG�0�

(✓)�

Z
dV Ea�

i
w�i�

��

e�

�iG�0�

(✓)� =�

Z�

dV Ea

i
w�i�

+ f�

abc�

Z�

dV ✓b�E�

c�

i
w�i�

+� ·� ·� ·� (2.26)
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(In� (2.25)� and� (2.26),� v�i�

and� w�i are� test� functions� for� A�

a

i
and� E�

a�

i
.)� The� right� hand�

sides� of� these� equations� are� of� the� form� of� infinitesimal� gauge� transformations� (2.9),�

(2.12)� with� g� =� e�

�it�

a�

✓�

a� ⇡� 1� �� it�

a�✓�

a�.� This� means� that� the� operator� G�0�

(✓)� will� generate
infinitesimal� gauge� transformations� of� (A�

a

i
, E�

a

i
)� provided� ✓�

a� vanishes� at� spatial� infinity
(or� on� the� boundary� of� the� spatial� volume� under� consideration).� Since� the� Hamiltonian�

is� invariant� under� gauge� transformations,� [G�0�

(✓),� H]� =� 0,� and� hence� the� requirement�

G�0�

(✓) � =� 0� will� be� preserved� under� time-evolution� as� well.� The� closed� algebra� (2.24)�

is� a� statement� of� the� group� property� that� a� sequence� of� infinitesimal� transformations� of�

the� form� (2.25),� (2.26)� can� be� used� to� generate� a� finite� transformation.� We� can� now�

define� an� infinite� dimensional� group� G�⇤�

as� follows:

G�⇤�

=� {Set� of� g(x)� :� Space� !� G� such� that� g(x)� !� 1� on� @V� }� (2.27)

If� we� consider� all� of� R�

2�,� we� may� define� G�⇤�

as

G�⇤ =� {Set� of� g(x)� :� R�

2� !� G� such� that� g(x)� !� 1� as� |~x|� !� 1} (2.28)

The� condition� (2.23)� is� the� statement� that� all� wave� functions� in� the� theory� are� invariant�

under� gauge� transformations� g� 2� G�⇤�

.� In� this� sense,� G�⇤�

is� the� true� gauge� group� of� the�

theory.� To� distinguish� wave� functions� or� states� which� are� more� general� and� do� not�

necessarily� obey� (2.23),� we� refer� to� states� satisfying� (2.23)� as� “physical� states”.

Given� that� states� or� wave� functions� obey� (2.23),� for� the� matrix� element� of� an� opera-
tor� O� we� can� write

h �1�

| O | �2�

i� =� h �1�

| e�

iG�0�

(✓)�Oe�

�iG�0�

(✓)� | �2�

i
=� h �1�

| O | �2�

i + i h �1�

| [G�0�

(✓), O] | �2�

i� +� ·� ·� ·� (2.29)

This� will� give� an� inconsistent� result� unless� we� have� [G�0�

(✓),� O]� =� 0.� Therefore,� we� can�

say� that� an� operator� O� is� an� observable� and� can� have� well-defined� matrix� elements� only�

if� it� weakly� commutes� with� G�0�

(✓),� i.e.,� if� h �1�

| [G�0�

(✓), O] | �2�

i� =� 0,� for� all� physical� states
 �1�

,�  �2�

.

We� now� turn� to� another� set� of� transformations� of� interest.� Towards� this,� we� first� con-
sider� transformations� of� the� type� (2.9),� (2.12)� where� g� 2� G� is� a� constant� not� necessarily�

equal� to� one� on� the� spatial� manifold;� i.e.,� the� transformations� are

A�i�

! g A�i�

g�

�1�,� E�i�

! g E�i�

g�

�1� (2.30)

The� Hamiltonian� (2.18)� is� clearly� invariant� under� these.� Further,� this� is� not� a� gauge�

transformation� and� cannot� be� removed� by� the� choice� of� a� suitable� element� of� G�⇤�

since
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elements� of� G�⇤�

must� become� the� identity� on� @V� or� at� spatial� infinity.� So� these� trans-
formations� (2.30)� generate� a� Noether-type� symmetry� and� the� states� of� the� system� can�

be� classified� by� representations� of� the� group� G.� In� fact� the� transformations� (2.30)� with�

constant� g’s� correspond� to� charge� rotations� and� the� states� in� the� various� irreducible
representations� of� G� correspond� to� states� with� different� possible� charges.� Notice� that,�

by� choice� of� the� action� of� G�0�

(✓),� we� can� go� from� g� to� g�

0�(x)g� where� g�

0�(x)� !� 1� on� the�

boundary.� This� will� allow� us� to� change� the� value� of� g� in� the� bulk,� but� the� combined�

transformation� g�

0�(x)g� still� has� the� value� g� (which� is� not� necessarily� the� identity)� on�

the� boundary.� Thus� it� is� really� the� asymptotic� value� of� the� group� element� that� defines
the� Noether� symmetry.� With� this� in� mind,� it� is� also� useful� to� consider� another� set� of
operators

G(✓) = ��

Z�

dV (D�i�

✓)a�⇧�

a�

i
(2.31)

These� coincide� with� G�0�

(✓)� for� those� test� functions� ✓�

a� which� vanish� on� @V,� but,� in� gen-
eral,� we� can� consider� G(✓)� even� for� those� functions� ✓�

a� which� do� not� vanish� on� @V.�

(Notationally,� we� distinguish� the� two� by� using� the� subscript� on� G�0�

(✓)� to� indicate� that� it�

is� for� the� case� when� ✓�

a� !� 0� on� @V.)� It� is� easy� enough� to� check� that

i[G(✓),�

Z�

dV Aa

i
vi] =

Z�

dV (A�i�

� D�i�

✓)�

a�v�i

[G(✓), G(✓�

0�)]� =� i� G(✓� ⇥� ✓�

0�)� (2.32)

So� G(✓)� does� generate� gauge� transformations� (as� in� (2.9),� (2.12))� even� for� ✓�

a� 6=� 0� on�

@V.� (But� recall� that� these� are� not� true� gauge� transformations� as� they� are� not� elements
of� G�⇤�

.)� We� can� use� the� freedom� of� gauge� transformations� by� G�0�

(✓�

0�)� to� change� the� value
of� ✓� everywhere� except� on� the� boundary.� Thus� G(✓)� is� characterized� by� the� boundary�

value� ✓� (modulo� the� action� of� G�0�

(✓�

0�)).� The� commutation� rules� also� give

G�0�

(✓�

0�) G(✓) � =� G(✓) G�0�

(✓�

0�)� � +� iG�0�

(✓�

0� ⇥ ✓) 

=� 0� (2.33)

so� that� G(✓) � are� also� states� compatible� with� the� requirement� of� (2.23).� In� other� words,�

the� action� of� G(✓)� on� ’s� will� generate� physical� states� in� the� theory.� Among� the� operators�

G(✓)� there� are� the� ones� mentioned� earlier� where� ✓�

a� on� @V� or� spatial� infinity� is� a� constant�

(that� is,� independent� of� angular� directions),� but� not� necessarily� the� identity.� These�

generate� charge� rotations� and� hence� they� lead� to� the� charged� states� of� the� theory.� More�

generally,� the� operators� G(✓)� for� those� ✓� which� may� have� nontrivial� angular� dependence
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or� is� a� nonconstant� function� on� @V� generate� observable� dynamical� degrees� of� freedom�

localized� on� the� boundary.� They� are� usually� referred� to� as� edge� states.� Notice� that�

[G�0�

(✓�

0�),� G(✓)]� =� 0.

The� fact� that� the� wave� functions� corresponding� to� physical� states� are� gauge� invari-
ant� means� that� their� normalization� has� to� be� defined� with� a� gauge-invariant� volume
element. Since� A�

a

i
at� different� spatial� points� commute,� we� can� consider� A-diagonal

wave� functions�  (A).� (We� can� equally� well� consider� E-diagonal� ones,� but� for� the� mo-
ment� we� stay� with�  (A).)� Thus�  �

⇤�

1
 �2�

for� physical� states� will� be� gauge-invariant� and
integration� over� all� configurations� A� will� clearly� diverge.� To� define� the� proper� volume
element,� we� start� by� defining

A� =� {� Set� of� all� gauge� potentials� such� that� F�ij !� 0� as� |~x|� !� 0}� (2.34)�

We� impose� a� mild� condition� on� the� gauge� potentials.� Also,� here,� by� gauge� potential
we� mean� a� Lie-algebra� valued� one-form� on� the� spatial� manifold,� A = (�it�

a�)Aa

i
dx�

i�.� This
space� is� actually� an� affine� space,� i.e.,� any� two� points� on� A� can� be� connected� by� a� straight�

line� as

A(⌧) = A�

(1)� (1� �� ⌧�)� +� A�

(2)� ⌧� (2.35)

where� ⌧� is� a� real� parameter� 0� � ⌧� � 1.� The� straight� line� (2.35)� connects� A�

(1)� at� ⌧� =� 0� to
A�

(2) at� ⌧� =� 1.� The� key� point� here� is� that,� for� any� value� of� ⌧�,� A(⌧�)� transforms� as� a� gauge�

potential,

A�

g�(⌧) = g A(⌧) g�

�1� �� dg� g�

�1� (2.36)

Hence� the� entire� straight� line� (2.35)� is� in� A.� Because� of� this� property,� the� topology� of� the�

A� is� trivial,� it� is� a� flat� contractible� space.� We� can� then� consider� the� space� C� =� A/G�⇤�

which�

is� the� space� of� all� gauge� potentials� modulo� gauge� transformations.� The� configurations� of
the� form� A�

g� =� gAg�

�1� ��dgg�

�1�,� for� g� 2� G�⇤�

,� give� the� orbit� of� A� under� the� action� of� G�⇤�

.� So� C
will� also� be� referred� to� as� the� space� of� G�⇤�

-orbits� in� A,� or� the� gauge-orbit� space,� for� short.�

This� is� the� space� of� physical� configurations.� (If� we� consider� the� phase� space,� it� will� also�

have� the� momentum� conjugate� to� the� variables� in� C.)� The� wave� functions� are� defined�

as� functions� on� C.� Therefore� the� inner� product� for� states� should� be� defined� with� an�

integration� measure� (or� the� volume� element)� for� the� space� C.� Expressed� mathematically,

h1|2i =�

Z�

dµ(C)� �

⇤�

1
 �2 (2.37)

A� similar� statement� can� be� made� if� we� choose� to� represent� states� by� wave� functions�

which� are� functions� of� E� as� well.
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The Hamiltonian (2.18) in terms� of� its� action� on�  � can be written as

H =�

1�

2

Z�

dV�


�e�

2�

��

2

�A�

a

i
�A�

a

i

+�

B�

a�B�

a

e�

2

��

 (2.38)

where� we� have� used� the� functional� Schr¨�odinger representation� of� E�

a�

i�

,

E�

a�

i
=� �ie�

2�

�

�A�

a

i

(2.39)

The� functional� differential� operator,� or� the� kinetic� energy� term� in� (2.38)� is� the� functional�

Laplace� operator� on� the� space� A.� But� since� it� acts� on�  ’s� which� are� gauge-invariant,� it�

can� be� viewed� as� the� Laplace� operator� on� the� space� C.

We� are� now� in� a� position� to� assemble� the� ingredients� needed� for� the� Hamiltonian�

formulation� of� the� theory.� First� of� all,� the� Hamiltonian� has� the� form

H =�

1�

2

Z�

dV�

�

�e�

2���C�

+�

B�

2

e�

2

��

 � (2.40)

where� ��C�

is� the� Laplace� operator� on� the� configuration� space� C.� The� wave� functions
themselves� are� gauge-invariant,� i.e.,� defined� as� functions� on� C.� Their� inner� product� for�

states� |1i� and� |2i� is� given� by� (2.37),� where� dµ(C)� is� the� volume� element� on� C.�

6

Thus� the� key� ingredients� we� need� to� calculate� are� the� Laplacian� ��C�

and� the� volume
element� dµ(C).� Both� of� these� have� to� be� defined� with� suitable� regularizations,� as� would�

be� the� case� for� any� field� theory.� Further,� as� mentioned� in� section� 1,� since� we� are� using�

the� Hamiltonian� approach,� we� do� not� have� manifest� Lorentz� invariance.� So� we� do� have�

to� verify� that� the� regularizations� are� compatible� with� Lorentz� invariance.� The� final�

ingredient� to� getting� physical� predictions� would� be� a� method� to� solve� the� Schr¨�odinger
equation,� once� we� have� the� inner� product� and� the� regularized� Hamiltonian� operator.

3� Confinement

One� of� the� key� features� of� a� nonabelian� gauge� theory� is� the� possibility� of� confinement�

of� particles� or� fields� in� nontrivial� representations� of� the� gauge� group.� As� indicated� in�

the� last� section,� a� priori� we� should� allow� for� charged� states� which� are� generated� by�

G(✓)� which� was� defined� in� (2.31).� Confinement� refers� to� the� statement� that,� in� the
6�While� the� wave� functions� are� gauge-invariant,� if� we� consider� di↵erent� coordinate� patches� on� C,� they� may�

require� nontrivial� transition� functions� as� we� move� from� one� patch� to� another.� Thus� more� accurately� the� wave�

functions� are� sections� of� a� line� bundle� on� C.� Since� we� will� not� be� considering� di↵erent� coordinate� patches� on� C� for�

most� of� our� discussion,� this� qualification� is� not� important� at� this� point.� See� however,� the� discussion� in� Appendix�

B.
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nonabelian� Yang-Mills� theory,� the� dynamics� is� such� that� there� are� no� charged� states� in�

the� physical� spectrum.� Put� another� way,� such� states� have� infinite� energy� and� therefore�

cannot� be� dynamically� excited.� Although� this� is� not� a� proven� fact,� there� are� strong� indi-
cations� to� support� the� idea� of� confinement.� However,� a� direct� analysis� of� the� spectrum�

of� the� Hamiltonian,� with� a� view� to� elucidating� confinement,� has� not� yet� been� successful.�

A� possible� strategy� would� then� be� to� look� for� observables� which� can� serve� as� useful� di-
agnostics� of� confinement� and� to� try� to� calculate� them� in� some� way.� The� most� important�

among� these� is� the� Wilson� loop� operator� defined� by

W�R(C�)� =� Tr�

�

P� exp�

✓�

��

I�

C

A�µ�

dx�

µ�

◆�
(3.1)

Here� A�µ�

=� �iT�a�

A�

a

µ
and� T�a�

, which are the generators of� the Lie algebra, are in the
representation� R. This� is� indicated� by� the� subscript� on� W� (C). The� integral� is� over� a
closed� curve� C.� The� matrices� A�µ�

at� different� points� along� the� curve� do� not� commute� in
general,� likewise� A�µ�

and� A�⌫�

do� not� commute� in� general.� So� there� has� to� be� an� ordering
prescription� in� how� the� line� integral� is� evaluated.� This� is� taken� to� be� path-ordering,� by�

which� we� mean� the� following.� Let� us� parametrize� the� curve� as� x�

µ�(⌧�),� 0� � ⌧� � 1,� and�

divide� the� interval� of� ⌧� into� a� sequence� of� infinitesimal� segments,� say� n� of� them,� each� of
extent� ✏.� Thus� we� have� a� set� of� points� 0,� ⌧�1�

,� · · ·� ,� ⌧�n�

,� ⌧�i+1�

� ⌧�i�

=� ✏,� with� ⌧�n�

=� 1.� We� take
n� !� 1� and� ✏� !� 0� in� the� end� as� usual.� Then� the� path-ordered� integral� from� x�

µ� = x�

µ�(0)�

to� y�

µ� = x�

µ�(⌧�n�

) = x�

µ�(1)� is� given� by

W� (y,� x,� C) =� P� exp�

✓�

��

Z�

y

x

A�µdx�

µ�

◆

=� exp�

✓�

�
Z

⌧�n

⌧n�1

A�µ

dx�

µ�

d⌧
d⌧�

◆�

exp�

✓�

�
Z

⌧�n�1

⌧n�2

A�µ

dx�

µ

d⌧
d⌧�

◆�

· · ·

·� ·� ·� exp�

✓�

�
Z

⌧�1

⌧0

A�µ

dx�

µ�

d⌧�

d⌧�

◆�

=� exp�

✓�

�
Z

y

x(⌧n�1)�

A�µdx�

µ�

◆�

exp�

 �

�
Z

x(⌧�n�1)

x(⌧n�2)

A�µdx�

µ�

!�

·� ·� ·� (3.2)

For� an� open� interval,� we� have� the� gauge� transformation� property
�

P� exp�

✓�

�
Z

y

x

A�

g�

µ
dx�

µ�

◆��ij�

=�

�

g(y)� P� exp�

✓�

�
Z

y

x

A�µ�

dx�

µ�

◆�

g�

�1�(x)�

��ij

(3.3)

This� follows� from� the� fact� that� W� (y,� x,� C)� obeys�


@�

@yµ�

+ A�µ�

(y)�

��

W� (y,� x,� C)� =� 0� (3.4)
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For� the� closed� curve,� we� have� y�

µ� = x�

µ� and� we� take� the� trace� of� the� resulting� expression�

to� define� W� (C)� as� in� (3.1).� The� transformation� property� (3.3)� shows� that� once� we� close�

the� curve� and� take� the� trace,� we� get� a� gauge-invariant� quantity.� The� Wilson� loop� oper-
ators� are� thus� observables� of� the� theory.� In� fact,� by� choosing� all� possible� closed� curves,�

we� get� an� over-complete� set� of� observables.� All� other� observables� can� be� constructed�

from� W�R�

(C).

The� Wilson� loop� operator� is� important� for� another� reason� as� well.� The� expectation
value� of� W�R�

(C)� is� related� to� the� interaction� energy� of� a� heavy� particle-antiparticle� pair
belonging� to� the� representation� R� and� its� conjugate.� Such� a� pair� can� be� used� as� a� probe�

into� the� dynamics� of� the� gauge� theory.� They� are� taken� to� be� heavy� so� that� their� own�

dynamics� is� trivial� and� does� not� complicate� the� interpretation� of� the� result,� since� the�

focus� is� on� the� gauge� theory.

In� order� to� relate� W�R�

(C)� to� the� energy� of� a� particle-antiparticle� pair,� we� will� start�

by� considering� the� process� where� we� start� with� a� heavy� static� particle-antiparticle� pair�

separated� by� a� spatial� distance� L� at� a� certain� time� x�

0�.� We� will� use� �� and� ��

†� as� the�

annihilation� and� creation� operators� for� the� particle;� �� and� ��

†� will� play� a� similar� role� for�

the� antiparticle.� Since� these� are� taken� to� be� heavy,� the� action� for� these� fields� is� just� the�

usual� nonrelativistic� action,� but� we� can� even� omit� the� (r�

2�/2M)-part.� Thus

S(�,��)� =�

Z�

dtdV�

⇥�

i��

†�D�0�

�� +� i��

†�D�0�

��

⇤�

(3.5)

where� D�0�

� = @�t�

� + A�0�

�� and� D�0�

� = @�t�

+ A�

⇤
0
�� are� the� covariant� derivatives� of� �� and� �,

respectively.� This� is� in� accordance� with� the� fact� that� the� fields� transform� under� gauge�

transformations� as� �� !� g�,� �� !� g�

⇤��.� We� start� with� a� gauge-invariant� state� correspond-
ing� to� the� particle-antiparticle� pair� separated� by� a� spatial� distance� L.� This� state� can� be
represented� as

F�

†�(x�

0�, x�

1�, x�

1� + L) |0i = ��

†i�(x) W�

ij�(x,� y)� ��

†j�(y)� |0i� (3.6)

where� x� =� (x�

0�, x�

1�),� y� =� (x�

0�, x�

1� +� L)� and� W�

ij�(x,� y)� is� as� in� (3.2)� over,� say,� a� straight�

line� segment.� We� have� taken� the� separation� of� the� pair� to� be� along� the� x�

1�-direction,� for�

simplicity.

Let� H� be� the� Hamiltonian� for� the� Yang-Mills� theory� coupled� to� these� matter� fields� �,�

�.� As� usual,� we� can� set� A�0�

to� zero;� the� A�0�

-dependent� terms� in� (3.5)� are� then� zero� but�

will� contribute� to� H� via� the� Gauss� law,� which� now� takes� the� form

(D�i�

E�i)�

a�

e�

2
+ ��

†�T�

a��+ ��

†�(��T̃�

a�)�� =� 0� (3.7)
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Here ˜�T�

a� is� the� transpose� of� t�

a�,� corresponding� to� the� conjugate� representation.� (T�

a� !
��

˜�T�

a� is� the� conjugation� operation� in� the� Lie� algebra.)

We� now� consider� the� time-evolution� of� the� state� (3.6)� by� an� imaginary� amount� �iT�

and� then� take� its� overlap� with� (3.6).� The� amplitude� for� this� is� given� by

h0|F� e�

�HT� F�

†�|0i ⇡ N� e�

�E(L)T� (3.8)

where� N� is� some� prefactor� related� to� the� normalization� of� F� ,� and� E(L)� is� the� energy� of�

the� pair.� We� are� interested� in� taking� T� to� be� large,� so� that� E�(L)� will� be� the� energy� of�

the� lowest� energy� state� which� can� be� created� by� F�

†�.� Since� the� particles� are� heavy� and�

static,� E(L)� is� basically� just� the� interaction� energy� of� the� pair� due� to� the� gauge� field.

By� the� usual� technique� of� the� slicing� of� the� time-interval,� we� can� represent� this�

amplitude� as� a� Euclidean� functional� integral

h0|F� e�

�HT� F�

†�|0i� =�

Z�

[dA� d�� d�]� exp� [�S�E�

(A,��,��)]

��

i�(y�

0�)W�

⇤ji�(y�

0�, x�

0�)��

j�(x�

0�) ��

†r�(x)W�

rs�(x,� y)��

†s�(y)� (3.9)

where� x�

0� =� (x�

0� +� T, x�

1�),� y�

0� =� (x�

0� +� T, x�

1� +� L).� The� (�,��)-part� of� the� Euclidean� action�

which� appears� in� this� functional� integral� is� given� by

S�E�

(�,��)� =�

Z�

d⌧�dV�

�

��

†�

@��

@⌧�

+ �†�

@�

@⌧

��

(3.10)

This� leads� to� the� propagators

h��

i�(x)��

†j�(x�

0�)i = ��

ij ✓(⌧ � ⌧�

0�) �(~x � ~y)

h��

i�(x)��

†j�(x�

0�)i = ��

ij� ✓(⌧ � ⌧�

0�)��(~x� �� ~y) (3.11)

where� ✓(⌧� �� ⌧�

0�)� is� the� step� function� and� ⌧� denotes� the� Euclidean� time-coordinate.� The�

amplitude� in� (3.9)� then� reduces� to

h0|F� e�

�HT� F�

†�|0i� =�

Z�

[dA]� e�

�S�YM W�

ij�(y�

0�, x�

0�) W�

ji�(x,� y)

=

Z
[dA] e�

�S�YM W�R�

(C)

= hW�R�

(C)i (3.12)

where� C� is� the� rectangle� with� vertices� x,� y,� x�

0�, y�

0�.� Since� A�0�

=� 0,� we� can� put� in� the� two�

time-like� segments� for� free� to� complete� the� loop.� Comparing� this� expression� with� (3.8),
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we� see� that

hW�R�

(C)i ⇡ N e�

�E(L)T� (3.13)

This� shows� that� the� Euclidean� expectation� value� of� a� large� Wilson� loop� can� be� used� to�

identify� the� interaction� energy� of� a� heavy� static� particle-antiparticle� pair.� Even� though�

we� used� the� A�0�

=� 0� gauge,� W�R�

(C)� is� gauge-invariant,� and� so� are� energies� of� gauge-
invariant� states.� Thus� the� result� holds� true� in� general.

If� the� interaction� energy� E(L)� increases� with� the� separation� L,� say,� E(L)� !� 1� as�

L� !� 1,� then� it� will� cost� arbitrarily� large� energy� to� remove� a� charged� particle� from� its�

conjugate� to� an� arbitrarily� far� away� point,� if� the� pair� is� created� by� any� process.� This� is�

what� we� expect� if� there� is� confinement.� In� the� case� of� nonabelian� gauge� theories,� the�

expectation� is� that� the� interaction� energy� will� grow� linearly� with� L,� i.e.,� E(L)� =� �L.� The�

coefficient� �� is� known� as� the� string� tension.� In� terms� of� the� Wilson� loop,� this� statement�

is� expressed� as

hW�R�

(C)i� ⇡� N� exp(��� L� T� )

⇡� N� exp(��� A�C�

)� (3.14)�

where� A�C�

is� the� area� of� the� minimal� surface� whose� boundary� is� C.

The� use� of� the� term� “string� tension”� is� related� to� the� following� qualitative� picture� of�

confinement.� If� we� consider� a� heavy� particle-antiparticle� pair,� the� expectation� is� that�

the� chromoelectric� flux� lines� connecting� the� particle� and� the� antiparticle� are� collimated�

to� a� thin� tube� of� flux,� which� we� refer� to� as� the� string,� by� the� properties� of� the� vacuum.�

Since� the� energy� of� a� string� would� increase� linearly� with� the� length,� the� proportionality�

factor� being� the� tension� of� the� string,� this� picture� would� explain� the� linear� rise� of� the�

potential.

Equation� (3.14)� shows� that� the� area-law� behavior� of� the� expectation� value� hW�R�

(C)i�

can� be� used� as� a� test� of� confinement.� This� works� for� all� representations� which� can-
not� be� screened.� Since� the� average� in� hW�R�

(C)i� is� done� with� the� Yang-Mills� action,�

the� theory� allows� for� the� dynamical� generation� of� gluons,� which� belong� to� the� adjoint�

representation� of� the� group� G.� Thus� when� we� impart� energy� to� a� particle-antiparticle�

pair,� separating� the� constituents,� E(L)� can� grow� to� a� point� where� it� becomes� possi-
ble� to� create� a� number� of� gluons� spontaneously.� If� the� representation� R� is� such� that�

R� ⌦� (Adjoint)� (or� R� ⌦� Adjoint� ⌦� Adjoint� ·� ·� ·� )� contains� the� trivial� representation�

7� (these
7�Sometimes� one� needs� the� tensor� product� of� R� with� several� adjoint� representations� to� get� a� trivial� representation

23



are� called� screenable� representations),� then� the� pair-configuration� can� decompose� into�

a� particle-gluon(s)� state� (of� zero� charge)� and� an� antiparticle-gluon(s)� state� (also� of�

zero� charge).� The� interaction� energy� between� these� composites� is� no� longer� E(L),�

since� each� has� zero� charge,� so� they� can� be� separated� far� from� each� other.� Correspond-
ingly,� hW�R�

(C)i� will� not� exhibit� an� area� law.� Thus,� while� confinement� continues� to� be�

true� (since� the� particle-gluon(s)� state� and� the� antiparticle-gluon(s)� state� each� has� zero�

charge),� the� expectation� value� of� the� Wilson� loop� is� no� longer� a� good� diagnostic� tool.

The� picture� in� terms� of� the� string� of� flux� connecting� the� particle-antiparticle� pair� is�

that� the� string� breaks� by� the� spontaneous� production� of� gluons,� which� leads� to� new�

composites� of� zero� charge� and� hence� there� is� no� longer� any� string� of� flux� connecting�

these� states.

From� the� argument� given� above,� we� see� that,� strictly� speaking,� hW�R�

(C)i� is� useful�

only� for� nonscreenable� representations,� namely,� those� for� which� R⌦Adjoint⌦Adjoint� ·� ·� ·�

does� not� contain� the� trivial� representation.� (While� confinement� is� obtained� for� screen-
able� representations� as� well,� hW�R�

(C)i� is� not� a� good� diagnostic� for� it.)� Nevertheless,� our
argument� with� E(L)� shows� that� we� should� expect� the� area� law� to� hold� until� E(L)� be-
comes� large� enough� to� create� a� pair� (or� more� in� some� cases)� of� gluons.� So� for� a� limited
range� of� L,� the� area� law� for� hW�R�

(C)i� can� still� be� obtained� and� can� still� be� useful.

4� Parametrization� of� gauge� fields

In� this� section� we� show� that� the� complex� combinations� of� the� spatial� components� of� the

gauge� potentials� can� be� parametrized� as� A� =� �@MM�

�1�,� Ā� =� M�

†�1�

@̄M�

†�,� where� M� is�

a� complex� invertible� matrix.� This� is� done� by� using� the� Hodge� decomposition� of� a� vector

and� noting� that� it� has� the� form� of� an� infinitesimal� pure� gauge� transformation� with� complex�

parameters.� A� similar� parametrization� is� also� shown� for� the� sphere� S�

2� using� group� theoretic�

arguments.

We� will� now� consider� a� special� parametrization� for� the� gauge� fields� which� will� facilitate�

working� out� the� Hamiltonian� and� the� volume� element� dµ(C)� in� terms� of� manifestly�

gauge-invariant� variables� [14],� see� also� [15].� We� are� primarily� interested� in� Yang-
Mills� theories� on� flat� (2� +� 1)-dimensional� space,� so� the� spatial� manifold� is� R�

2�.� The� two
spatial� coordinates� x�

1�,� x�

2� can� be� combined� into� the� complex� combinations� z� =� x�

1� �� ix�

2�,

upon� reduction.� An� example� is� the� group� G�2�

,� for� which� the� fundamental� representation� 7� can� be� screened� by

three� gluons,� i.e.,� 7� ⌦� Adjoint� ⌦� Adjoint� ⌦� Adjoint� �� 1� �� ·� ·� ·� .� The� product� with� several� Adjoints� in� parentheses� is

included� to� take� care� of� such� possibilities.
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z̄ = x�

1� +� ix�

2�,� with� the� corresponding� derivatives�

@ ⌘ @�z�

=�

1

2�

(@�1 +� i@�2�

),� @̄ ⌘ @�z̄ =�

1�

2�

(@�1 �� i@�2)� (4.1)�

As� explained� before,� we� can� take� A�0�

=� 0. For� the� Abelian� gauge� theory,� for� the� spatial
components� of� A,� we� can� use� the� Hodge� decomposition

A�i = �i(@�i�

✓ + ✏�ij�

@�j') (4.2)

for� real� functions� ✓� and� '� on� R�

2�.� Here� we� use� antihermitian� A�i so� that� the� covariant
derivative� is� (@�i�

+ A�i�

),� similar� in� form� to� what� is� usually� used� for� the� nonabelian� case.
For� the� complex� components,� we� can� write�

A ⌘ A�z =�

1�

2�

(A�1 +� iA�2�

) = �@�z�

⇥,� ⇥� =� '� +� i✓� (4.3)

with ¯�A ⌘ A�¯�z = �(A�z)�

†�.�

The� gauge� potentials� for� the� nonabelian� case� are� of� the� form� A�i =� (�it�a�

)Aa

i
.� We�

will� consider� the� gauge� group� SU�(N�)� for� simplicity,� so� that� t�a�

may� be� taken� as� N� ⇥� N

hermitian� traceless� matrices.� For� a� small� neighborhood� around� A� =� 0,� the� fields� may� be�

considered� as� Abelian� and� we� expect� a� result� similar� to� (4.3).� We� may� thus� write

A ⌘ A�z�

= �@�z�

⇥� +� O(⇥�

2�)� (4.4)

where� ⇥� is� also� an� N� ⇥� N� traceless� matrix.� Because� it� is� complex,� we� may� regard� it� as�

the� group� parameter� of� an� element� of� SL(N,� C)� (represented� as� an� N� ⇥� N� matrix).� The�

expression� (4.4)� is� then� of� the� form� of� a� pure� gauge� near� the� identity� in� SL(N,� C),� i.e.,�

for� an� element� M� =� e�

⇥� ⇡� 1� +�⇥.� We� can� then� “integrate”� (4.4)� (i.e.,� compose� it� with� a�

series� of� infinitesimal� group� translations� in� SL(N,� C))� and� write� it� in� the� form

A� =� �@M� M�

�1�,� M� 2� SL(N,� C)� (4.5)

With� A�¯�z = �(A�z�

)�

†�,� the� full� parametrization� is� thus

A� =� �@M� M�

�1, Ā = M�

†�1@̄M�

† (4.6)

While� we� have� obtained� this� result� for� the� group� SU�(N�),� it� is� easy� to� see� how� it� will�

generalize.� For� a� Lie� group� G,� ⇥� is� combination� of� the� generators� of� the� group� with�

complex� coefficients,� so� the� parametrization� (4.6)� will� hold� in� general� with� M� as� an�

element� of� the� complexification� G�

C� of� the� group� G.� (It� may� be� worth� emphasizing� that�

while� A� has� the� form� of� a� pure� gauge� for� G�

C�,� it� is� not� a� pure� gauge� when� the� allowed�

gauge� transformations� are� in� G.)
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In� (4.2),� the� term� @�i�

✓� denotes� the� gauge� transformation� for� the� group� U�(1).� More�

generally,� for� the� nonabelian� case,� gauge� transformations� take� the� form�

8

M� !� g� M,� g� 2� SU�(N�)� (or� more� generally� 2� G)� (4.7)�

The� gauge� invariant� degrees� of� freedom� are� thus� given� by�

H = M�

†�M� (4.8)

The� factors� of� g� and� g�

†� in� the� transformation� of� M�,� M�

†� cancel� out� and� H� is� invariant.�

Since� M� modulo� the� SU�(N�)� transformations� g� define� SL(N,� C)/SU�(N�),� the� gauge-
invariant� degrees� of� freedom� can� be� taken� as� the� set� of� mappings� from� R�

2� to� this�

coset� space� SL(N,� C)/SU�(N�)� (or� more� generally� to� G�

C�/G).� The� hermitian� matrix� H�

parametrizes� the� coset� SL(N,� C)/SU�(N�).

The� advantage� of� the� parametrization� (4.6)� is� precisely� that� the� gauge� transforma-
tions� take� the� homogeneous� form� in� (4.7),� as� left� translations� by� G� on� the� matrix� M�,� so�

that� we� can� easily� identify� all� gauge-invariant� degrees� of� freedom.

There� is� another� way� to� argue� for� the� parametrization� (4.6).� We� can� obtain� a� similar�

parametrization� on� S�

2�,� viewed� as� the� complex� projective� space� CP�

1�,� and� then� take� a�

large� radius� limit� to� get� the� result� (4.6)� for� R�

2�.� (The� parametrization� of� gauge� fields� for�

this� case� has� been� worked� out� in� [16].)� The� space� CP�

1� ⇠ S�

2� is� equivalent� to� the� coset�

space� SU�(2)/U�(1).� We� can� thus� use� an� element� u� of� SU�(2)� as� coordinates� for� CP�

1�,� with�

the� identification� u� ⇠� u� h,� h� 2� U�(1)� ⇢� SU�(2).� Local� coordinates� z,� ¯�z can� be� related� to
this� using� the� parametrization�

u =�

1�p
1� +� ¯�zz

 
1� z

�¯�z 1

! 
e�

i↵/2� 0�

0 e�

�i↵/2

!�

(4.9)

The� U�(1)� angle� ↵� can� be� eliminated� via� the� identification� u� ⇠� uh.� We� can� define� three�

coordinates� x�

a� by� u��

3�u�

�1� =� ���

a� x�

a�.� Clearly� x�

a� are� invariant� under� u� !� uh,� so� they�

can� be� viewed� as� coordinates� on� the� coset� space� SU�(2)/U�(1).� Further,� �� ·� x��� ·� x� =�

u��

3�u�

�1�u��

3�u�

�1� =� 1,� so� that� x�

a�x�

a� =� 1.� Explicitly,� for� the� parametrization� (4.9),

x�

1� =
z + ¯�z

1� +� z̄z
,� x�

2� = i
z � ¯�z

1� +� ¯�zz
,� x�

3� =�

¯�zz �� 1

1� +� ¯�zz
(4.10)

(x�

1�)�

2� + (x�

2�)�

2� + (x�

3�)�

2� = 1

8�There� are� other� ways� to� parametrize� A’s.� One� could� even� use� A�z�

=� �@�z�

⇥,� without� any� further� terms� of�

order� ⇥�

2�.� In� this� case,� ⇥� will� transform� in� a� rather� complicated� way� under� gauge� transformations.� The� simple�

transformation� law� (4.7)� is� the� real� advantage� of� using� the� SL(N,� C)� version.
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These� correspond� to� the� embedding� of� S�

2� in� R�

3�,� with� a� stereographic� projection� onto�

the� complex� plane,� with� the� south� pole� mapped� to� z� =� 0� and� the� north� pole� mapped� to�

|z|� !� 1.� These� coordinates� cover� S�

2� except� for� a� small� region� around� the� north� pole.� (A
second� coordinate� patch� can� be� used� around� the� north� pole,� by� choosing� e�

i↵/2� =�

p�

z/¯�z

(away� from� the� south� pole,� so� z� 6=� 0).� Effectively� this� amounts� to� an� inversion� of� z.� The
two� coordinate� patches� will� give� full� coverage� of� the� sphere.)� The� metric� on� the� coset
space� SU�(2)/U�(1)� is� the� Fubini-Study� metric� for� CP�

1� given� by

ds�

2� =�

dz� dz̄

(1� +� z̄z)�

2
(4.11)

We� now� consider� unitary� irreducible� representations� (UIR)� of� SU�(2).� A� basis� for� the�

Lie� algebra� of� SU�(2)� in� the� defining� 2� ⇥� 2� matrix� representation� is� given� by� ��a�

/2,� so� that�

we� may� write� u� as

u = e�

i��a�

⇠�

a�

/2� (4.12)

where� the� parameters� ⇠�

a� can� be� taken� as� functions� of� z,� z̄,� ↵� or� vice� versa.� Let� T�a�

denote�

the� generators� of� the� group� SU�(2)� in� an� arbitrary� representation,� corresponding� to�

1�

2�

��a�

.�

Then� a� general� UIR� is� specified� by� the� spin� value� s,� defined� by� T�a�

T�a�

=� s(s� +� 1).� The�

matrix� corresponding� to� u� is� given� by

D�

(s)�

m,m0�

(u)� =� hs,� m|� ˆ�u |s,� mi� ,� ˆ�u =� e�

iT�a�

⇠�

a�

(4.13)

The� states� within� the� representation� are� labeled� by� m,� m�

0� which� are� the� eigenvalues� of�

T�

3� and� take� the� values� m,� m�

0� =� �s,� �s� +� 1,� ·� ·� ·� ,� s.

The� matrix-valued� functions� D�

(s)

m,m0�

(u)� form� a� complete set� for� SU�(2), so� that� any
function� on� SU�(2)� can� be� expanded� as

f(u) =�

X

s,m,m�

0

C�

(s)�

mm0 hs,� m|� ˆ�u |s,� m�

0�i (4.14)

The� action� of� the� U�(1)� transformation� u� !� uh,� h� =� e�

i⇠�

3�

��3�

/2� is� represented� as

f�(uh)� =�

X

s,m,m�

0

C�

(s)�

m,m0 hs,� m|� ˆ�ueiT�3�

✓�

3� |s,� m�

0�i =�

X

s,m,m�

0

C�

(s)�

m,m0 hs,� m|� ˆ�u |s,� m�

0�i e�

im�

0�

⇠�

3
(4.15)

Functions� on� the� coset� SU�(2)/U�(1)� must� be� invariant� under� these� transformations.�

Therefore� they� have� a� similar� mode� expansion� with� the� state� on� the� right� side� |s,� m�

0�i�

having� m�

0� =� 0.� Thus,� a� function� on� CP�

1� has� the� expansion,

f(u) =�

X

s,m

C�

(s)�

m
hs,� m|� ˆ�u |s,� 0i (4.16)
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The� coefficients� C�

(s)

m define� the� function.� (The� mode� functions� hs,� m|� ˆ�u |s,� 0i� are� propor-
tional� to� the� usual� spherical� harmonics,� so� this� expansion� is� the classic expansion of� a
function� on� the� sphere� in� terms� of� the� spherical� harmonics.)

To� define� derivative� operators,� we� define� the� right� translation� operators� R�a�

by�

R�a�

u = u�

��a

2
(4.17)

This� can� be� lifted� to� any� representation� by� using� ˆ�u and� T�a�

in� this� equation.� Further,� the�

left-invariant� one-forms� E�

a� on� SU�(2)� are� given� by

u�

�1�du� =� �i�

��a

2�

E�

a

k
d✓�

k

E1 = i
dz� �� dz̄

1� +� ¯�zz
,� E�

2� = �dz� +� dz̄

1� +� z̄z
,� E�

3� = i
zd¯�z �� ¯�zdz

1� +� z̄z
(4.18)

E�

1�,� E�

2� are� the� frame� fields� for� the� coset� space� CP�

1�.� From� this� equation,� we� see� that� we�

can� realize� R�a�

as� the� differential� operators

R�a�

= i(E�

�1�)�

k

a

@�

@✓�

k
(4.19)

In� particular,� we� find

R�+�

= (R�1�

+� iR�2�

)� =� (1� +� ¯�zz)@,� R���

= (R�1�

�� iR�2�

)� =� �(1� +� ¯�zz)�

¯�@� (4.20)

From� (4.19)� we� see� that� R�3�

generates� the� U�(1)� transformation� on� the� right� of� u.� It� corre-
sponds� to� the� isotropy� group� and� is� thus� the� analog� of� the� Lorentz� group� for� Minkowski�

space.� In� particular,� while� functions� are� invariant� under� R�3�

,� vectors� should� transform�

nontrivially,� with� the� same� transformation� properties� as� R�±�

.� Since� [R�3�

, R�±�

]� =� ±R�±�

,� a�

vector� corresponding� to� holomorphic� components� will� have� the� mode� expansion

A�+�

=�

X

s,m

a�

(s)�

m
hs,� m|� ˆ�u |s,� 1i (4.21)

Since� the� state� |s,� 1i� can� be� obtained� from� |s,� 0i� as� |s,� 1i� ⇠� R�+�

|s,� 0i,� we� can� write� (4.21)�

as

A�+ = R�+�

X

s,m

a�

(s)�

m
hs,� m|� ˆ�u |s,� 0i =� �R�+�

⇥� (4.22)

where� ⇥� is� the� function� ��

P�

s,m�

a�

(s)

m hs,� m|� ˆ�u |s,� 0i. This A�+�

is written using a tangent
frame.� Using� (4.20)� and� going� to� the� coordinate� frame,� (4.22)� becomes

A� =� �@�⇥� (4.23)
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This� is� adequate� for� an� Abelian� gauge� potential,� with�

¯�A = �(A)�

†�.� The� generalization� to
the� nonabelian� case� follows� the� arguments� given� after� (4.3)� and� we� arrive� at

A� =� �@MM�

�1�, Ā = M�

†�1�@̄M�

† (4.24)

These� are� still� on� the� space� CP�

1� in� terms� of� components� in� the� coordinate� frame.� (For�

the� components� in� the� tangent� frame,� these� will� be� multiplied� by� (1� +� ¯�zz).)� If� we� now�

scale� z� !� z/r� and� take� the� large� r� limit,� CP�

1� approximates� to� the� flat� space� R�

2� and� we�

recover� the� parametrization� (4.6)� for� the� flat� case� as� well.

We� close� this� section� with� a� comment� on� what� we� shall� refer� to� as� the� holomorphic
ambiguity� or� holomorphic� invariance. From� the� definition� in� (4.6)� it� is� clear� that,� for
a� given� A,� M� is� not� unique.� It� is� easy� to� see� that� M� and� M�V̄� ,� where� V̄� =� V̄� (z̄)� is�

an� SL(N,� C)-matrix� whose� matrix� elements� are� antiholomorphic� functions,� lead� to� the
same� potential.� Similarly,� M�

†� and� V� (z)M�

†� lead� to� the� same�

¯�A,� where� V� is� holomorphic
in� its� dependence� on� the� coordinates.� For� the� two-sphere� or� for� the� Riemann� sphere,
the� only� (nonsingular� and� globally� defined)� antiholomorphic/holomorphic� function� is�

a� constant� by� Liouville’s� theorem,� Thus� V̄� has� to� be� constant.� We� can� eliminate� the
ambiguity� by� requiring� a� condition� like� M� !� 1� at� spatial� infinity.

However,� in� general,� this� global� view� is� not� adequate.� The� (M,� M�

†�)� or� H� =� M�

†�M�

corresponding� to� given� potentials� (A,� Ā)� can� have� singularities.� To� avoid� these� and
obtain� a� nonsingular� description,� one� has� to� resort� to� a� patchwise� definition� of� (M,� M�

†�)

with� transition� functions� on� the� intersections� of� coordinate� patches.� Notice� that� (A,� Ā)�

are� themselves� defined� only� patchwise� in� general,� with� gauge� transformations� acting� as�

the� transitions� on� intersections.� By� using� H� which� is� gauge-invariant� we� avoid� this� issue,�

but� we� may� still� need� to� modify� (M,� M�

†�)� or� H� as� we� move� from� one� coordinate� patch� to
another.� The� values� on� coordinate� patches� U�1�

and� U�2�

will� be� related� on� the� intersection
by� M�1�

=� M�2V̄�12,� etc.,� or� H�1 =� V�12�

H�2V̄�12. Since� this� is� an� ambiguity� of� choice� of� field
variables,� all� observable� results� must� be� invariant� under� this.� In� particular,� we� will�

choose� regularizations� in� such� a� way� as� to� preserve� this� invariance.� This� holomorphic�

ambiguity� in� the� choice� of� H� and� the� need� for� antiholomorphic/holomorphic� transition�

functions� also� play� a� role� in� connection� with� the� Gribov� problem,� we� discuss� this� briefly�

in� Appendix� B.

5� The� volume� element� for� the� gauge-orbit� space

We� calculate� the� volume� element� for� the� physical� configuration� space� starting� with� the� vol-

ume� for� the� space� of� gauge� potentials.� The� change� of� variables� from� A,�

¯�A� to� M�,� M�

†� has� a
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Jacobian� determinant� det(�DD̄), where D, ¯�D� are� covariant� derivatives.� This� is� calculated

exactly� in� terms� of� the� Wess-Zumino-Witten� action.� The� volume� for� M�,� M�

†� is� the� Haar� mea-

sure� for� the� complex� group� and� is� calculated� by� writing� the� top� rank� differential� form.� Gauge�

transformations� can� be� exactly� factored� out� to� obtain� the� volume� for� the� gauge-invariant�

space,� given� in� (5.31).� This� volume� defines� the� inner� product� for� the� wave� functions.

The� next� logical� step� for� us� should� be� to� make� the� change� of� variables� from� A,�

¯�A� to� M

and� M�

†� and� obtain� the� volume� element� of� the� configuration� space� C.� Our� strategy� will�

be� to� start� with� the� space� of� gauge� potentials� A� and� divide� out� the� volume� of� gauge�

transformations.� (The� calculation� we� present� is� from� [17,� 15,� 7].� See� also� [8]� for�

more� details� regarding� regularization.)� As� mentioned� earlier,� A� is� an� affine� space� and�

we� would� expect� the� metric� on� this� space� to� be� the� standard� flat� Euclidean� one.� We�

can� confirm� that� this� is� indeed� the� relevant� metric� for� the� dynamics� by� considering� the
Yang-Mills� action.� With� A�0�

=� 0,� we� have

S�Y-M =�

Z�

dtd�

2�x�


1�

2

@Aa

i

@t

@A�

a

i

@t
� 1

2
B�

2�

��

(5.1)

A� field� theory� can� be� thought� of� as� describing� the� dynamics� of� a� point-particle� moving�

in� an� infinite� dimensional� ambient� space� of� fields.� Thus� comparing� (5.1)� to� the� action�

for� a� point-particle,� namely,

S =�

Z�

dt�


1

2�

g�µ⌫

dx�

µ�

dt

dx�

⌫

dt
� V�

��

,� (5.2)

we� see� that� (5.1)� does� indeed� correspond� to� the� case� where� the� ambient� space� has� the�

Euclidean� metric�

9

ds�

2� =�

Z�

d�

2�x� (�Aa

i
�Aa

i
) = �8�

Z�

d�

2�x� Tr(�A���Ā) (5.3)

This� is� our� starting� point.� Now� we� can� use� the� parametrization� (4.6)� to� write

�A� =� ��

��

@(�MM�

�1�)� +� [�@MM�

�1�,��MM�

�1�]�

�

=� �D(�MM�

�1�)� (5.4)

��Ā� = D̄(M�

†�1��M�

†�)

where� D,� D̄� denote� covariant� derivatives� D�� =� @�� +� [A,��],� D̄�� = @̄� + [�

¯�A,��]. Using
these� expressions� we� find

ds�

2� =� 8�

Z�

d�

2�x� Tr�

⇥�

D(�MM�

�1�) ¯�D(M�

†�1��M�

†�)�

⇤

9�Our� convention� is� A� =�

1
2 (A�1�

+� iA�2�

)�

a�(�it�a�

), Ā =�

1
2 (A�1�

�� iA�2�

)�

a�(�it�a�

),� with� Tr(t�a�

t�b�

) = 1
2��ab.
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=� 8�

Z�

d�

2�x� Tr�

⇥�

(�MM�

�1�)(�D�

¯�D)(M�

†�1��M�

†�)�

⇤�

(5.5)

As� shown� in� section� 4,� M� and� M�

†� can� be� thought� of� as� elements� of� SL(N,� C).� The�

Cartan-Killing� metric� for� SL(N,� C)� viewed� as� the� complexification� of� SU�(N�)� is� of� the�

form� Tr(�MM�

�1� M�

†�1��M�

†�).� In� extending� this� to� SL(N,� C)-valued� functions� on� R�

2�,� we�

must� include� an� integral� over� all� space� (which� is� the� continuum� version� of� summing�

over� indices),� so� the� metric� is� given� as

ds2

SL(N,C)
= 2�

Z�

d�

2�x� Tr(�MM�

�1� M�

†�1��M�

†�) (5.6)

We� now� see� that,� given� the� structure� of� (5.5)� and� the� SL(N,� C)� metric,� the� volume�

element� for� A� can� be� written� as

dµ(A)� =� det(�D�

¯�D)� dµ(M,� M�

†�)� (5.7)

where� dµ(M,� M�

†�)� is� the� volume� element� associated� with� the� metric� (5.6)� for� M�,� M�

†�.�

(We� have� ignored� some� possible� constant� multiplicative� factors.� These� are� irrelevant� for�

us,� since� we� will� be� using� this� to� normalize� the� wave� functions.� Any� such� factor� will�

cancel� out� in� matrix� elements.)

There� are� two� further� simplifications� to� be� done.� We� must� write� dµ(M,� M�

†�)� in� terms�

of� H� =� M�

†�M� and� a� unitary� part� which� corresponds� to� the� SU�(N�)� gauge� degrees� of
freedom.� Secondly,� we� have� to� calculate� the� Jacobian� determinant� det(�D�

¯�D)� arising
from� the� change� of� variables� from� A,�

¯�A� to� M�,� M�

†�.

The� volume� element� for� SL(N,� C)� is� given� by� the� top-rank� differential� form� con-
structed� from� dMM�

�1� and� M�

†�1�dM�

†�.� It� is� given� by

dV� (M,� M�

†�) / ✏�a�1...an�

(dMM�

�1�)�a�1�

^� ·� ·� ·� ^� (dMM�

�1�)�a�n

⇥✏�b�1...bn�

(M�

†�1�dM�

†�)�b�1 ^ · · · ^ (M�

†�1�dM�

†�)�b�n (5.8)

where� n� =� dimG� =� N�

2� �� 1.� (Again� we� use� a� proportionality� relationship,� some� constant�

numerical� factors,� which� are� irrelevant� for� us,� are� ignored.)� The� components� indicated�

are� of� the� form� (dMM�

�1�)�a�

=� 2Tr(t�a�

dMM�

�1�),� (M�

†�1�dM�

†�)�b�

=� 2Tr(t�b�

M�

†�1�dM�

†�).

We� now� use� a� polar� decomposition� for� the� matrices� M�,� M�

†�,� given� as� M� =� U�⇢,�

M�

†� =� ⇢U�

†�,� where� ⇢� is� hermitian� and� U� is� unitary.� Since� gauge� transformations� act� on�

M� as� M�

g� =� gM�,� we� see� that� U� corresponds� to� the� gauge� degree� of� freedom� in� M�.� By�

direct� substitution� of� M� =� U�⇢,� (5.8)� becomes

dV� (M,� M�

†�) / ✏�a�1...an�

(d⇢⇢�

�1� + ⇢�

�1�d⇢)�a�1 ^� ... ^� (d⇢⇢�

�1� + ⇢�

�1�d⇢)�a�n
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⇥✏�b�1...bn�

(U�

�1�dU�)�b�1�

^� ... ^� (U�

�1�dU�)�b�n

/ ✏a1...an�

(H�

�1�dH)�a�1 ^ ... ^ (H�

�1�dH)�a�n�

dV�U (5.9)

Here� dV�U is� the� Haar� measure� for� SU�(N�).� If� we� parametrize� H� as� H� =� e�

t�k�

'�

k� in� terms� of�

the� real� functions� '�

k� we� can� also� write� the� H-dependent� terms� in� (5.9)� as

✏�a�1...an�

(H�

�1�dH)�a�1 ...(H�

�1�dH)�a�n�

=� (det� r)� d'�

1�d'�

2� ·� ·� ·� d'�

n� (5.10)

where� H�

�1�dH� =� d'�

a�r�ak�

(') t�k�

.� This� is� the� volume� element� for� SL(N,� C)/SU�(N�)� ob-
tained� by� reduction� from� the� Cartan-Killing� metric� for� SL(N,� C).

An� important� feature� of� (5.9)� is� that� the� volume� of� SU�(N�),� namely,� dV�U�

factors� out�

from� the� terms� involving� H.� There� is� no� topological� obstruction� to� this� factorization,�

because� SL(N,� C)/SU�(N�)� is� a� contractible� space.

Upon� taking� the� product� of� dV�U�

and� the� expression� in� (5.10)� over� all� points� of� space
to� convert� to� a� functional� integration� measure� for� SL(N,� C)-valued� fields,� we� can� write

dµ(M,� M�

†�)� =�

Y�

x

dV� (M,� M�

†�) =�

⇥�

(det� r)� d'�

1�d'�

2� ·� ·� ·� d'�

n�

⇤�

Y�

x

dV�U

=� dµ(H)� dµ(U�)� (5.11)�

dµ(H)� =�

Q�

x�

(det� r)d'�

1�d'�

2� ·� ·� ·� d'�

n� is� the� Haar� measure� for� hermitian� matrix-valued
fields.� We� also� note� that� dµ(U�)� =�

Q�

x�

dV�U�

gives� the� volume� of� G�⇤�

.� The� volume� ele-
ment� in� (5.7)� can� now� be� written� as�

dµ(A)� =� det(�D�D̄)� dµ(H)� dµ(U�)� (5.12)

It� is� now� straightforward� to� factor� out� the� volume� of� gauge� transformations� (dµ(U�))
and� write� the� volume� element� for� C� =� A/G�⇤�

as

dµ(C)� =�

⇥�

dµ(A)/dµ(U�)�

⇤�

=� det(�D�

¯�D)� dµ(H)� (5.13)

The� real� advantage� of� our� parametrization� (4.6)� is� in� this� expression� where� we� can� fac-
tor� out� the� volume� of� gauge� transformations� exactly.� The� remaining� task� is� to� calculate�

the� determinant� of� the� operator� (�D�D̄).� Towards� this,� we� start� with

�� =� log� det� D̄� =� Tr� log� D̄� (5.14)

Taking� a� variation� of� Ā� we� find

��� =� Tr(�D̄�

�1��Ā) =�

Z�

d�

2�x� Tr�

⇥�

(D̄�

�1�)�x,y�

� ¯�A(y)�

⇤�

y!x�

(5.15)
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(Here� Tr� on� the� right� hand� side� denotes� the� trace� over� the� Lie� algebra� while� Tr� on� the�

left� hand� side� of� (5.15)� denotes� the� full� functional� trace.)� We� see� from� this� equation�

that� the� result� for� ��� will� depend� on� the� coincident� point� limit� of� the� Green’s� function
¯�D�

�1�.� It� is� easy� to� verify� that

Ḡ(x, y) = (@̄)�1

x,y�

=
1�

⇡(x � y)�

,� x = x�1�

�� ix�2�

,� y = y�1�

�� iy�2

G(x, y) = (@)�1

x,y�

=
1�

⇡(x̄� �� ȳ)
(5.16)

For� the� gauge-covariant� Green’s� functions� we� then� find

(�

¯�D�

�1�)�x,y�

=� M�

†�1�(x)�


1

⇡(x � y)

��

M�

†�(y)

(D�

�1�)�x,y�

=� M(x)�


1�

⇡(x̄� �� ȳ)�

��

M�

�1�(y) (5.17)

The� coincident� point� limit� of� D̄�

�1� is� singular� and� so� we� need� regularized� expressions� in
place� of� (5.17).� We� will� take� up� this� issue� in� more� detail� later,� but� for� now,� notice� that�

for� small� infinitesimal� but� nonzero� separations�

(�D̄�

�1�)�x,y ⇡�

1

⇡(x � y)
+�

1

⇡�

@M�

†�1� M�

†�(y) +
x̄ � ȳ

⇡(x � y)
¯�@M�

†�1�M�

†�(y)� +� ·� ·� ·� (5.18)

Since� Tr���

¯�A� =� 0,� the� use� of� this� expression� in� (5.15)� gives

�� =�

1

⇡

Z�

d�

2�x�

⇢�

Tr�

⇥�

(@M�

†�1�M�

†�)��Ā(y)�

⇤
+�

x̄ � ȳ

(x � y)�

Tr�

⇥�

@̄M�

†�1�M�

†���

¯�A(y)�

⇤�

+ · · ·�

��

y!x�

(5.19)

If� we� now� take� the� limit� y ! x� in� a� rotationally� symmetric� fashion,� (so� that� (x̄� �� ȳ)/(x� �
y)� !� 0),� we� find

��� =� ��

1

⇡�

Z�

d�

2�x� Tr�

⇥�

M�

†�1�@M�

†�)� ¯�A�

⇤

=
1

⇡�

Z�

d�

2�x� Tr�

⇥
¯�D(M�

†�1�@M�

†�) M�

†�1��M�

†�

⇤�

(5.20)

The� Wess-Zumino-Witten� action� for� a� matrix-valued� field� M� is� defined� as�

S�wzw(M) =�

1

2⇡

Z�

Tr�

��

@M� @̄M�

�1�

�
+�

i

12⇡�

Z�

Tr�

��

M�

�1�dM�

��3�

(5.21)

The� first� term� on� the� right� hand� side� involves� the� integral� over� the� 2-manifold� while�

the� last� term� is� the� integral� of� the� 3-form� over� a� 3-manifold� whose� boundary� is� the�

2-manifold� of� interest.� By� direct� calculation� we� can� verify� that�

S�wzw(NM)� =� S�wzw�

(N) + S�wzw(M) ��

1

⇡�

Z�

Tr�

��

N�

�1�@̄N� @MM�

�1�

��

(5.22)

33



This� result� is� known� as� the� Polyakov-Wiegmann� identity� [18].� The� key� point� about� it� is�

the� chiral� splitting� in� the� last� term;� N� has� only� the� antiholomorphic� derivative,� M� has�

only� the� holomorphic� derivative.� By� taking� NM� !� M�

†�(1� +� ✓),� we� find

S�wzw(M�

†�(1� +� ✓))� �� S�wzw�

(M�

†�)� =� ��

1

⇡

Z�

Tr�

��

M�

†�1�@̄M�

†� @✓�

�

=
1

⇡

Z
Tr�

��

@(M�

†�1@̄M�

†�) ✓�

�

=
1

⇡

Z
Tr�

�
D̄(M�

†�1�@M�

†�) M�

†�1��M�

†�

�
(5.23)

where� we� have� used� the� identity

@(M�

†�1�@̄M�

†�) � D̄(M�

†�1�@M�

†�)� =� 0� (5.24)�

and� the� fact� that� ✓� =� M�

†�1��M�

†�.� Comparing� with� (5.20),� we� see� that� we� can� identify

�� = 2 c�A�

�S�wzw�

(M�

†�)� (5.25)

where� c�A�

is� the� value� of� the� quadratic� Casimir� operator� in� the� adjoint� representation.�

(The� trace� in� (5.20)� is� over� the� adjoint� representation,� while� we� wrote� the� WZW� action�

using� traces� in� the� fundamental� representation.� The� identity� Tr(T�a�

T�b�

)�A�

= 2 c�A�

Tr(t�a�

t�b�

)�F�

leads� to� the� factor� 2c�A�

in� (5.25).)� The� integrated� version� of� (5.25)� then� gives� the� result

�� = Tr� log� D̄ = 2 c�A�

S�wzw�

(M�

†�), (5.26)

up� to� an� additive� constant.� Although� we� used� a� simple� expansion� of�

¯�D�

�1�,� what� we
have� is� really� an� anomaly� calculation,� namely,� the� change� of� det� D̄ under� an� SL(N,� C)

transformation.� So,� as� with� anomaly� calculations,� the� answer� is� robust� and� is� obtained�

by� other� regularizations� as� well.� In� a� similar� way� to� how� we� arrived� at� (5.26),� we� get

Tr� log� D� =� 2� c�A�

S�wzw�

(M�)� (5.27)

If� we� write� Tr� log(�D�D̄�) = Tr� log� D� + Tr� log ¯�D� with� (5.26),� (5.27),� the� result� is� not
gauge-invariant.� Basically,� the� regularization� we� used� is� not� gauge-invariant.� However,�

as� with� the� calculation� of� effective� actions� from� quantum� corrections,� changing� regular-
izations� is� equivalent� to� adding� local� counterterms.� In� the� present� case� we� can� add� the�

local� counterterm

S�counter =�

2 c�A

⇡�

Z�

Tr(�Ā A) = �2 c�A

⇡

Z�

Tr�

��

M�

†�1�@̄M�

†� @MM�

�1�

��

(5.28)

With� this� counterterm,� or� with� the� corresponding� choice� of� regularization,

log� det(�D�D̄�)� =� Tr� log� D� +� Tr� log D̄ +
2 c�A

⇡

Z�

Tr(�Ā A)
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=� 2 c�A

�

S�wzw(M) + S�wzw�

(M�

†�) ��

1

⇡�

Tr�

��

M�

†�1 ¯�@M�

†� @MM�

�1�

��

�

=� 2 c�A S�wzw(M�

†�M)

=� 2 c�A�

S�wzw�

(H)� (5.29)

where� we� have� used� the� Polyakov-Wiegmann� identity� again� to� combine� terms.� Since� H�

is� gauge-invariant,� we� have� a� gauge-invariant� result� for� the� determinant.� Since� we� used�

the� variation� of� the� determinant,� this� calculation� does� not� fix� an� overall� multiplicative�

constant� for� the� determinant.� The� constant� can� be� evaluated� by� considering� the� case�

where� M� =� M�

†� =� 1,� i.e.,� to� det(�@�

¯�@).� Combining� all� results,� we� can� then� write

det(�D�D̄) =�


det�

0�(�@@̄)�R�

d�

2�x

��dim� G

e�

2 c�AS�wzw(H)� (5.30)

The� prime� on� det�

0�(�@ ¯�@)� indicates� that� the� constant� modes,� which� are� zero� modes� of� the
Laplacian� are� not� to� be� included� in� the� determinant.� The� division� by�

R�

d�

2�x� is� to� take�

account� of� the� normalization� of� the� same� zero� modes.� Using� this� back� in� (5.13),� we� get�

the� volume� for� the� gauge-orbit� space� as

dµ(C)� =� N� dµ(H)� e�

2 c�AS�wzw(H)�,� N� =�


det�

0�(�@@̄)�R�

d�

2�x

��dim� G

(5.31)

A� worthwhile� remark� regarding� this� result� is� that� S�wzw�

(V H ¯�V )� =� S�wzw�

(H).� This
follows� from� the� Polyakov-Wiegmann� identity� (5.22).� We� also� have� dµ(V� H�

¯�V� )� =� dµ(H),
since� V� ,�

¯�V� are� matrices� of� unit� determinant.� Thus� the� volume� element� (5.31)� has� the
required� holomorphic� invariance.

6� The� Hamiltonian� for� the� Yang-Mills� theory

The� kinetic� energy� T� ,� which� involves� functional� derivatives� with� respect� to� A, Ā, is first

written� in� terms� of� derivatives� with� respect� to� the� parameters� of� M�,� M�

†�.� We� then� argue�

that� the� wave� functions� can� be� taken� to� be� functions� of� a� current� J� ⇠� @HH�

�1� and� write� T�

in� terms� of� derivatives� with� respect� to� J� using� the� chain� rule� for� differentiation.� A� different�

argument� is� also� given,� using� the� Gauss� law� to� eliminate� one� of� the� components� of� the� electric�

field,� and� setting� M�

†� to� 1� by� a� complex� gauge� transformation.� The� potential� energy� is� also�

written� in� terms� of� J .� The� final� result� for� the� Hamiltonian,� in� a� form� appropriate� for� the�

Schr¨�odinger equation,� is� in� (6.26).
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In� section� 5,� we� obtained� the� volume� element� of� the� gauge� orbit� space.� As� discussed� in�

section� 2,� the� wave� functions� for� the� physical� states� must� obey� the� invariance� condition�

G�0�

(✓) � =� 0.� The� inner� product� is� then� given� by� integration� with� dµ(C),� see� (2.37).� For�

the� present� case,� with� the� volume� element� from� section� 5,� it� can� be� written� out� as

h1|2i =�

Z�

dµ(H)� e�

2 c�AS�wzw(H)� �

⇤�

1
 �2 (6.1)

The� next� step� is� to� work� out� the� expression� for� the� Hamiltonian� H.� It� has� the� form�

given� in� (2.38)� or� (2.40).� Since� it� involves� products� of� operators� at� the� same� point,� a�

regularized� version� has� to� be� defined,� consistent� with� all� the� symmetries� which� have� to�

be� maintained.� (The� construction� of� the� Hamiltonian,� including� regularization� issues,
is� discussed� in� detail� in� [8].) Towards� this,� we� first� define� translation� operators� on� the
SL(N,� C)� group� elements� M and� M�

†� by

[p�a�

(~x),� M�(~y)]� =� M�(~y)(�it�a�

) ��

(2)�(~x � ~y)

[p̄�a�

(~x), M�

†�(~y)]� =� (�it�a�

)M�

†�(~y) ��

(2)�(~x� �� ~y)� (6.2)

Here� M� and� M�

†� are� taken� to� be� N� ⇥� N� matrices,� corresponding� to� the� fundamental�

representation� of� SL(N,� C).� Correspondingly,� t�a�

are� hermitian� N� ⇥� N� matrices� which�

form� a� basis� for� the� Lie� algebra� of� SU�(N�).� We� take� them� to� be� normalized� as� Tr(t�a�

t�b�

) =�

1

2
��ab.� Parametrizing� M,� M�

†� in� terms� of� ⇥�

a�(~x),� ⇥̄�

a�(~x)� respectively,� we� can� write

M�

�1��M� =� �⇥�

a�R�ab�

(⇥)� t�b�

,� �M�

†�M�

†�1� = ��⇥̄�

a�R⇤
ab

(�⇥̄)t�b�

(6.3)

These� equations� define� R�ab�

(⇥)� and� R⇤
ab

(�⇥̄).�

10 From� the� parametrization� of� the� gauge
potentials,� we� can� work� out� the� variation� of� A,� Ā� as

�A� =� �D(�MM�

�1�),� ��Ā = D̄(M�

†�1��M�

†�)� (6.4)

Using� these� relations,� we� can� solve� for� ⇥�

a� and� ⇥̄�

a� in� terms� of� �A�

a� and� ��Ā�

a� and� identify
the� functional� derivatives� (which� are� the� electric� fields� up� to� a� factor� of� e�

2�)� as

� i

2

��

�Ā�k�

(~x)�

=
i

2
M�

†�

ak
(~x)�

Z�

y�

Ḡ(~x,�~y)� ¯�pa�

(~y)

� i

2

�

�A�k�

(~x)�

=� � i

2
M�ka(~x)�

Z�

y�

G(~x,�~y)� p�a�

(~y)� (6.5)

where� M�ab�

=� 2� Tr(t�

a�Mt�

b�M�

�1�)� is� the� adjoint� representation� of� M�.� The� kinetic� energy
operator� in� (2.40)� can� now� be� written� down� as�

T� =� �e2

2�

��C = �e2

2

Z�

x

�2

�A�k�

(~x)�Ā�k(~x)
10�They� are� basically� the� frame� fields� on� the� group� SL(N,� C).
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=
e�

2

2

Z�

x�

K�ab(~x)(�

¯�G¯�pa)(~x)(Gp�b�

)(~x)� (6.6)

where� K�ab�

= M�

†�

ak
M�kb =� 2� Tr(t�

a�Ht�

b�H�

�1�)� and� Gp�b�

(~x) ⌘�

R�

y�

G(~x,�~y)p�b�

(~y),� etc.

Another� way� to� write� T� ,� which� shows� explicitly� that� it� is� a� symmetric� operator,� is� to
write� its� matrix� element� as

h1|T |2i =�

e�

2

4�

Z�

dµ(H)e�

2c�AS�wzw(H)�


� �

⇤
1

�Ā�k

� �2�

�A�k

+�

� ⇤
1

�A�k

� �2

�Ā�k�

�

=
e�

2

4

Z�

dµ(H)e�

2c�AS�wzw(H)�

h�

Gp�a�

 �1�

K�ab (Gp�b�

 �2�

) + Ḡ¯�pa�

 �1�

K�ba ( ¯�G¯�pb�

 �2�

)�

i

=hT1|2i

=
e�

2

4

Z�

dµ(H)e�

2c�AS�wzw(H)� �

⇤�

1

Z�

x

e�

�2c�AS�wzw(H)�

h
¯�G¯�pa(~x)K�ab�

(~x) e�

2c�AS�wzw(H)�Gp�b�

(~x)

+� Gp�a�

(~x)K�ba(~x) e�

2c�AS�wzw(H) ¯�G¯�pb�

(~x)�

i�

��

 �2�

(6.7)

In� this� expression,� if� we� try� to� move ¯�G¯�pa through� K�ab e�

2c�AS� to� act� on� Gp�b�

(~x) �2�

, we� will
encounter the singular commutator [�Ḡ¯�pa(~x), K�ab�

(~x)].� The� regularized� version� of� (6.7)
should� be� such� that� it� agrees� with� (6.6).

The� regularization� of� a� field� theory� in� the� Schr¨�odinger formulation� in� terms� of� the�

Hamiltonian� and� wave� functions� is� more� involved� (and� less� well-known)� than� the� case�

of� covariant� perturbation� theory.� We� have� discussed� this� and� related� issues� in� some�

detail� separately� in� Appendix� C.� But� for� now,� we� make� an� observation� about� observables�

and� the� wave� function.� Since� we� are� considering� the� gauge� theory� without� matter� fields,�

the� Wilson� loop� operators� W� (C),� over� all� closed� curves� C,� constitute� a� complete� (in� fact,�

overcomplete)� set� of� observables.� These� are� given� by

W� (C�)� =� Tr� P�e�

��

H�

C Adz+Ād¯�z =� Tr� P�e�

H�

C @HH�

�1�

dz� =� Tr� P�e�

(⇡/c�A)�

H�

C Jdz� (6.8)

Here� P� signifies� path-ordering� of� the� matrices� in� the� exponent� and� J� is� the� current� given�

by

J =
cA

⇡�

@H� H�

�1� (6.9)

This� is� also� the� current� associated� with� the� WZW� action� S�wzw(H)� which� is� part� of� the�

volume� of� the� gauge� orbit� space.� The� result� (6.8)� implies� a� simplification� of� the� nature� of
the� wave� function.� A� priori,� we� are� starting� with� wave� functions� which� are� functions� of�

A,� Ā,� or� equivalently,� M� and� M�

†�.� Since� they� must� be� gauge-invariant� by� the� Gauss� law
condition� G�0�

(✓) � =� 0,� we� can� take� them� to� be� functions� of� H.� But� since� all� observables
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can� be� given� in� terms� of� J ,� we� can� further� assume�  ’s� to� be� functions� of� J .� Thus� it
is� advantageous� to� express� the� Hamiltonian� entirely� in� terms� of� J .� The� kinetic� energy
operator� then� takes� the� form

T  (J) = m

Z
Ja(~z)

�

�Ja(~z)
+

Z

z,w

⌦ab(~z, ~w)
�

�Ja(~w)

�

�Jb(~z)

�
 (J)

⌦ab(~z, ~x) =

✓
cA

⇡2

1

(z � w)2
+ ifabc

J c(w)

⇡(z � w)

◆
+ O(✏) (6.10)

where� m� =� (e�

2�c�A�

/2⇡�).� We� have� done� the� regularization� using� ✏� as� a� short-distance�

cutoff.� Although� a� detailed� discussion� of� the� regularization� is� given� in� Appendix� C,� we�

will� just� state� here� that� our� regularization� amounts� to� a� point-splitting� where� the� Dirac�

�-function� is� replaced� by

�(~x,�~y;� ✏)� =
e�

�|~x�~y|�

2�

/✏

⇡✏
(6.11)

This� shows� that� the� regularization� parameter� ✏� is� essentially� a� short-distance� cutoff.� We�

recover� the� �-function� as� ✏� !� 0.� This� has� to� be� augmented� by� certain� factors� involving�

K�ab to� preserve� various� invariances,� as� discussed� later.� The� terms� displayed� in� (6.10)
are� the� finite� regularized� terms,� with� O(✏)� indicating� terms� which� are� negligible� as� the�

cutoff� ✏� !� 0.� (In� Appendix� C,� we� show� the� equivalence� between� the� regularized� forms�

of� (6.6)� and� (6.7)� and� how� the� expression� reduces� to� what� is� given� (6.10)� when� acting�

on� functions� of� J .)

The� two� terms� appearing� in� the� expression� for� T� are� of� some� interest� in� their� own�

right.� The� first� term� is� essentially� due� to� the� anomaly� in� the� two-dimensional� case.� We�

can� see� this� by� calculating

T� J�a�

(~x)� =� ��

e�

2

2�

Z�

d�

2�y
��

2�J�a�

(~x)

�Ā�

b�(~y)�A�

b�(~y)
=

e2cA

2⇡
M�

†
am

Tr�

⇥�

T�

m ¯�D�

�1�(~y,�~x)�

⇤�

~y!~x

=� m J�a(~x) (6.12)

The coincident point limit of� D̄�

�1�(~y,�~x) which appears here is exactly the same as in
the� calculation� of� the� gauge-invariant� measure� of� integration.� Therefore,� calculating� it
exactly� as� in� that� case,� i.e.,� using� (5.19),� leads� to� the� second� line� in� (6.12).� The� result
in� (6.10)� then� follows� by� the� chain� rule� for� functional� differentiation.

The� second� term� involving� ⌦�ab�

(~z,�~x)� gives� the� singular� pole� terms� in� the� operator�

product� expansion� for� the� current� of� the� WZW� model� S�wzw�

(H),� from� a� conformal� field�

theory� point� of� view.� Its� appearance� is� again� very� natural.
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There� is� another� way� to� obtain� the� result� (6.10)� for� the� operator� T� ,� which� is� also�

illuminating� in� some� ways.� For� this� we� first� write� the� Gauss� law� operator,� defined� in�

(2.22)� as�

G�0�

(✓) =

Z�

d�

2�x ✓�

a�

(D�i�

E�i)�

a

e�

2
=�

Z�

d�

2�x ✓�

a�I�

a

I�

a =
(D�i�

E�i)�

a

e�

2�

=�

2�

e�

2�

(DĒ + D̄E)�

a� (6.13)

The� idea� then� is� to� regard ¯�E�

a� and� I�

a� as� independent� invariables� and� eliminate� E�

a�.� We
can� solve� (6.13)� for� E� in� terms� of� (�Ē�

a�, I�

a�)� as

E(~x) =�

Z�

y�

(�D̄�1�)�x,y�

✓
e�

2�

2�

I � DĒ�

◆�

(6.14)

The� fundamental� commutation� rules� are

[E�

a�(~x),� Ā�

b�(~y)]� =� [Ē�

a�(~x), A�

b(~y)] =� � ie�

2

2
��

ab��(~x � ~y)

[I�

a�(~x), A�

b(~y)] = �iD�

ab�

x
�(~x� �� ~y) (6.15)

It� is� easy� to� check� that� this� is� consistent� with� the� solution� for� E,� so� that� we� may� take�

(6.14)� as� an� operator� identity.� We� can� thus� write� the� kinetic� energy� operator� as

T� =
2

e�

2

Z�

x

E�

a�(~x)�Ē�

a�(~x)� =
2

e�

2

Z�

x,y

"�

(D̄�

�1�)�

ab�(~x,�~y)�

✓�

e2

2�

I � D�Ē�

◆�b�

(~y)�

#�

Ē�

a�(~x) (6.16)

We� then� notice� that� we� can� move� the� Gauss� law� operator� to� the� right� end� of� this� expres-
sion;� this� gives

1�

2

Z�

y

(�D̄�

�1�)�

ab�(~x,�~y)I�

b�(~y) ¯�E�

a�(~x)� =
1

2

Z�

y

( ¯�D�

�1�)�

ab�(~x,�~y) ¯�E�

a�(~x)I�

b�(~y)

� i�

2

Z�

y�

(�D̄�

�1�)�

ab�(~x,�~y)f�

abc�Ē�

c�(~y)�(~x � ~y)

=
1

2

Z�

y

(�D̄�

�1�)�

ab�(~x,�~y) ¯�E�

a�(~x)I�

b�(~y)

��

1�

2�

Tr�

⇥�

T�

c�(�

¯�D�

�1�)(~x,�~y)�

⇤�

~y!~x

¯�E�

c�(~x)� (6.17)

Notice� that,� once� again,� the� coincident� point� involved� is� exactly� what� we� had� for� the�

calculation� of� the� volume� element� and� in� (6.12)� as� well.� We� can� evaluate� it� as� done�

previously� to� write

��

1�

2�

Tr�

⇥�

T�

c�( ¯�D�

�1�)(~x,�~y)�

⇤�

~y!~x
Ē�

c�(~x) =
ic�A

2⇡

��

A � M�

†�1�@M�

†�

��c�

(6.18)
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We� can� now� write� T� from� (6.16)� as

T� =� 2im�

Z�

x�

(A � M�

†�1�@M�

†�)�

a�(~x)�

¯�E�

a�(~x)� �� 2e�

2�

Z�

x,y

⇥�

(�

¯�D�

�1�)(~x,�~y)D�Ē(~y)�

⇤�a�

Ē�

a�(~x)

+ e�

2�

Z�

x,y

(�D̄�

�1�)�

ab�(~x,�~y)�

¯�E�

a�(~x)I�

b�(~y) (6.19)

where� m� =� e�

2�c�A�

/(2⇡).� On� physical� states� annihilated� by� the� Gauss� law,� the� last� term�

gives� zero.� This� simplification� for� T� did� not� require� any� wave� function,� and� is� valid� for
both� the� E-diagonal� and� A-diagonal� representation.�

11� We� can� reduce� this� expression
for� T� further� if� we� choose� wave� functions� in� the� A-representation.� Towards� this,� write�

the� parametrization� of� the� fields� as

A = M�

†�1�(�@HH�

�1�)M�

†� + M�

†�1�@M�

†�, Ā = M�

†�1@̄M�

† (6.20)

This� displays� our� parametrization� for� (A,�

¯�A)� as� a� complex� gauge� transformation� of
(�@HH�

�1�,� 0),� by� the� SL(N,� C)� group� element� M�

†�. We� may� therefore� take� the� wave
function�  (A,�

¯�A)� as� a� function� of� J� =� (c�A�

/⇡)@HH�

�1� and� M�

†�.� Since� a� change� of� M�

†� is
equivalent� to� an� SL(N,� C)� gauge� transformation,� we� may� write,� for� infinitesimal� ✓,�

 (M�

†�e�

✓�,� J)� ⇡�  (M�

†�, J) +�

Z�

✓�

a�I�

a�  (M�

†�,� J)� (6.21)

This� shows� that,� even� though� ✓� is� complex,� the� Gauss� law� condition� is� enough� for� us� to�

conclude� that

 (M�

†�e�

✓�,� J)� =�  (M�

†�,� J)� (6.22)

We� see� that,� by� a� sequence� of� such� transformations,� we� can� set� M�

†� to� the� identity.�

(In� two� spatial� dimensions,� all� configurations� M�

†� are� homotopic� to� the� identity,� since
⇧�2�

(SL(N,� C))� =� 0.� So� there� is� no� obstruction� to� this� procedure� of� compounding� in-
finitesimal� transformations.)� In� other� words,� we� can� take� the� physical� wave� functions
to� be� functions� of� J .� In� this� case,� we� can� take� A� =� �@HH�

�1�,�

¯�E� ⇠� (�/�J)� and� T

simplifies� to� the� expression� given� in� (6.10).

It� is� a� simpler� task� to� write� the� potential� energy� term� in� terms� of� the� current� J .� From�

the� structure� of� the� parametrization� of� fields� as� in� (6.20),� we� see� that

B�

a�t�a�

= M�

†�1�

�

�2⇡

c�A

@̄J�

a�t�a�

��

M�

† (6.23)

11�While� we� do� not� discuss� the� E-diagonal� representation� in� detail� here,� see� [8]� for� some� useful� comments� on�

this.
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so� that� we� have
Z�

B�

a�B�

a

2e�

2�

=
⇡

mcA�

Z�

x

: ¯�@J�

a�(~x)@̄J�

a�(~x) : (6.24)

The� normal-ordering� indicates� the� subtraction� of� the� short-distance� singularity.� We� can�

write� this� more� explicitly� as�

Z
BaBa

2e�

2�

=
⇡

mc�A�

Z�

x,y

�(~x,�~y;� ✏)¯�@J�a�

(~x)�

⇥�

K(x,� ȳ)K�

�1�(y,� ȳ)�

⇤�

ab�

¯�@J�b�

(~y) � c�A�

dimG

⇡2✏2

��

(6.25)

Finally,� we� can� combine� the� expression� for� T� from� (6.10)� and� the� potential� energy�

from� (6.24)� to� write� the� full� Hamiltonian� as

H = m�

Z
J�a(~z)

�

�J�a(~z)
+�

Z�

z,w

⌦�ab�

(~z,� ~w)
�

�J�a(~w)�

�

�J�b�

(~z)

�

+
⇡

mcA�

Z�

x

:� @̄J�

a�(~x)¯�@J�

a�(~x) : + O(✏) (6.26)

We� will� use� this� Hamiltonian� to� set� up� the� Schr¨�odinger equation� and� solve� it� for� the�

vacuum� state� in� a� systematic� expansion� scheme� in� section� 8.

7� A� propagator� mass� for� the� gluon

We� consider� the� small� field� version� of� the� Hamiltonian� and� the� measure� of� integration� and�

show� that� it� is� equivalent� to� a� massive� scalar� field� theory.� This� gives� a� gauge-invariant�

description� of� the� gluon� in� a� partially� resummed� perturbation� theory.� The� motivation� for�

this� analysis� is� two-fold:� It� sets� the� stage� for� an� alternate� argument� for� the� lowest� order�

solution� of� the� Schr¨�odinger equation� discussed� in� the� next� section.� It� also� serves� as� a� theory�

which� can� be� used� to� calculate� the� Casimir� energy� in� section� 9.

We� have� obtained� the� Hamiltonian� in� terms� of� the� current� J�.� We� also� have� the� volume�

element� for� the� gauge� orbit� space,� which� is� what� defines� the� inner� product� for� wave�

functions.� Thus� we� are� now� in� a� position� to� write� down� the� Schr¨�odinger equation� and�

solve� it,� in� some� suitable� approximation.� However,� before� we� do� that,� we� will� discuss� the�

theory� from� the� perturbative� limit� as� it� can� provide� some� useful� insights.� From� standard�

perturbation� theory� in� terms� of� Feynman� diagrams,� the� effective� action� �� (which� is� the�

generating� function� for� one-particle� irreducible� vertices),� calculated� to� one-loop� order,
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has� the� form�

12�

� = ��

1

4e2�

Z
F�

a

µ⌫
(x)�


1 ��

7e�

2�c�A

32

1p�

�r2�

��

x,y

F�

aµ⌫�(y)� +� ·� ·� ·� (7.1)

There� is� no� renormalization� of� the� coupling� constant,� so� predictions� for� string� tension,�

masses,� etc.� can� be� made� without� worrying� about� the� scale� at� which� e�

2� is� to� be� defined.
Secondly,� the� correction� shows� clearly� that� the� expansion� parameter� is� e�

2�/�

p�

�r�

2� ⇠�

(e�

2�/k)� where� k� is� the� momentum� of� the� field� F�µ⌫�

.� Thus� in� a� Fourier� decomposition,� the�

modes� of� the� field� for� momenta� high� compared� to� e�

2� can� be� treated� perturbatively,� while�

the� low� momentum� modes� with� k� ⌧� e�

2� have� to� be� treated� nonperturbatively.� There� is�

no� real� expansion� parameter� for� the� theory� as� a� whole,� e�

2� is� only� a� marker� to� signify�

which� modes� can� be,� and� which� modes� cannot� be,� treated� perturbatively.

Based� on� our� Hamiltonian,� we� can� take� this� a� step� further� and� consider� an� improved�

perturbation� theory� where� a� partial� resummation� has� been� carried� out.� (This� has� been
discussed� in� [7,� 8].)� Towards� this,� we� write� H� =� e�

t�

a�

'�

a� in� terms� of� a� set� of� fields� '�

a�.
Then� we� have

J� =� �c�A

⇡�

@H� H�

�1� = ��

c�A

⇡�

Z
1

0

d↵ e�

↵t·'�(t · @')e�

�↵t·'

⇡� �c�A

⇡
t�a�


@'�

a� +�

i

2
f�

abc�'�

b�@'�

c� + · · ·�

�
(7.2)

In� perturbation� theory,� interaction� vertices� arise� from� commutators� and� carry� factors�

of� f�

abc�.� With� this� in� mind,� we� can� consider� a� simplification� of� the� Hamiltonian� where
we� keep� only� the� leading� term� in� (7.2).� With� J�

a ' c�A
⇡
@'�

a�,� the� Hamiltonian� has� the
expansion

H ' m

Z
'�a

�

�'�a

+�

⇡

c�A

Z�

⌦(~x,�~y)
�

�'�a�

(~x)

�

�'�a�

(~y)

�

+
c�A

m⇡�

Z�

@'�a�

(�@@̄)@̄'�a + O('�

3�) (7.3)

⌦(~x,�~y) = ��

Z
d�

2�k

(2⇡)�

2
e�

ik·(x�y)
1

kk̄

The� first� term� in� the� Hamiltonian,� namely,�

R�

'�a�

�/�'�a�

shows� that� every� '� in� a� wave�

function� will� get� a� contribution� of� m� to� the� energy.� This� is� basically� the� origin� of� the�

mass� gap.� To� the� same� order,� with� H� =� e�

t�a�

'�

a� ⇡ 1 + t�a�

'�

a�,� the� volume� element� becomes

dµ(C)� =� dµ(H)� e�

2c�AS�wzw(H)� '� [d']� e��

c�A
2⇡

R
@'�

a
@̄'�

a�

��

1� + O('�

3�)�

�
(7.4)

12�This� is� a� standard� one-loop� calculation� in� Yang-Mills� theory.� It� can� also� be� read� o↵� from� the� calculations� in�

[19]� by� keeping� just� the� contributions� from� the� Yang-Mills� vertices.
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The� exponential� factor� with� the� WZW� action,� can� be� absorbed� into� the� wave� function�

by� defining

� = e�

c�AS�wzw(H)� ' e��

c�A
4⇡

R�

@'@̄'� � (7.5)

In� terms� of� the� wave� functions� �,� the� inner� product� is� given� by

h1|2i ⇡�

Z
[d']� ��

⇤�

1
(H)��2�

(H) (7.6)

We� defined� H� to� act� on� the�  ’s.� As� an� operator� acting� on� the� wave� functions� �,� the
Hamiltonian� should� be

H�

0� = e�

c�AS�wzw(H)� H e�

c�AS�wzw(H)� ' e�

��

c�A�

4⇡

R�

@'@̄'� H e
c�A
4⇡

R�

@'�@̄'

' 1

2

Z�

x

�

� ��

2

��2
a
(~x)

+ ��a�

(~x)�

��

m�

2� � r�

2�

��

��a�

(~x)�

��

+ · · · (7.7)

where� ��a�

(�

~k) =�

p�

cA�

k�k̄/(2⇡m)� '�a�

(~�k).� This� is� exactly� the� free� part� of� a� Hamiltonian� for
a� field� of� mass� m� =� e�

2�c�A�

/2⇡.� Thus,� to� this� order,� the� gauge-invariant� version� of� the�

gluons� are� represented� by� ��a�

and� behave� as� a� field� of� mass� m.� It� is� then� straightforward�

to� realize� that� the� propagator� corresponding� to� ��a�

is�

13�

hT� ��a�

(x)��b�

(y)i = ��ab

Z
d3k

(2⇡)3�

e�

�ik·(x�y)
i

k�

2� � m�

2� +� i✏�

(7.8)

Since� m� =� (e�

2�c�A�

/2⇡),� this� is� not� the� result� at� the� lowest� order� in� the� usual� perturbation�

theory.� We� must� expand� this� in� powers� of� m� to� make� the� comparison.� The� terms� of�

order� (m�

2�)�

n� in� such� an� expansion� may� be� viewed� as� arising� from� the� diagrams� of� order�

(e�

2�)�

n� in� perturbation� theory,� so� that� (7.8)� can� be� taken� to� be� the� result� of� a� selective�

resummation� of� the� perturbation� expansion,� where� a� set� of� specific� terms� (and,� in� fact,�

a� particular� kinematic� limit� of� such� terms)� are� summed� up.

Thus� in� setting� up� perturbation� theory� using� our� Hamiltonian� and� expanding� H� in�

powers� of� '� to� any� order,� what� we� get� is� an� “improved”� perturbation� theory,� where� a�

selective� resummation� has� been� done� even� at� the� lowest� order.� The� theory� at� this� lowest�

order� is� a� free� scalar� field� theory� of� mass� m.� This� does� give� a� useful� starting� point�

for� some� calculations.� In� fact,� we� will� use� this� version� later� to� calculate� the� Casimir�

energy� for� a� parallel� plate� geometry� in� the� nonabelian� theory� and� compare� with� lattice�

simulations.
13�Here� T� denotes� the� usual� time-ordering.
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8� The� Schr¨�odinger equation:� An� expansion� scheme

In� this� section,� we� set� up� a� systematic� expansion� scheme� for� the� solutions� of� the� Schr¨�odinger

equation� in� powers� of� the� current� J� where� (the� nonpertubative)� mass� generation� is� included�

exactly,� but� some� interaction� terms� are� treated� in� a� power� series.� After� setting� up� the� general�

scheme,� the� solution� is� obtained� for� the� vacuum� wave� function� to� the� lowest� and� next-to-

lowest� order� in� the� expansion.� An� alternate� argument� for� the� lowest� order� result,� using� the�

results� of� section� 7,� is� also� given.

In� this� section,� we� shall� return� to� the� full� version� of� the� Hamiltonian� in� terms� of� the�

currents,� write� down� the� Schr¨�odinger equation� and� develop� a� recursive� scheme� for�

solving� it� for� the� vacuum� wave� function.� A� priori� this� is� a� difficult� task� since� there�

is� no� natural� expansion� parameter� in� the� theory.� As� explained� earlier,� the� modes� of,�

say,� J� with� momenta� k� ⌧� m� can� be� considered� low� momentum� modes� and� those� with�

k� �� m� can� be� considered� as� high� momentum� modes,� with� the� coupling� constant� e�

2�

only� serving� to� separate� the� modes� into� these� two� domains.� Our� aim� will� be� to� focus�

on� the� nonperturbative� part� due� to� the� low� k� modes.� Towards� this,� we� will� adopt� the�

following� strategy� to� set� up� the� expansion� scheme.� We� will� consider� an� extension� of� the�

theory� defined� by� the� Hamiltonian� as� in� (6.26)� with� m� and� e� considered� as� independent�

parameters.� This� will� require� a� rescaling� of� the� current� as� explained� below.� We� can� then�

develop� a� series� expansion� for� the� vacuum� wave� function,� writing�  �0�

= e�

1�

2�

F� where� F� is�

a� power� series� in� e.� Mathematically,� this� framing� of� the� problem,� with� m� and� e� treated�

as� independent� parameters,� gives� us� a� way� to� systematize� the� solution� for� the� vacuum�

wave� function.� At� the� end,� we� will� set� m� =� (e�

2�c�A�

/2⇡)� to� regain� the� gauge� theory� of�

interest.� (The� solution� for� the� vacuum� wave� function� to� the� lowest� order� was� given� in�

[9]� and� used� to� calculate� the� string� tension.� The� systematic� expansion� scheme� and� the�

solution� with� the� first� set� of� corrections� were� given� in� [20].)

It� is� worth� emphasizing� again� that� this� is� very� different� from� perturbation� theory�

since� m� is� included� exactly� in� the� lowest� order� result� for� F�.� Further� in� the� present� case,�

we� are� not� expanding� J� in� terms� of� '� either.� The� resulting� recursive� procedure� will
still� be� some� sort� of� resummed� theory.� The� resummation� involves� collecting� A,�

¯�A� in� an
appropriate� series� to� define� J� and� then� including� m� at� the� lowest� order� which� is� another�

series.� Getting� to� details,� we� first� do� a� scale� transformation� on� J� as� J� !� (ec�A�

/2⇡)J .� In�

terms� of� the� new� J ,� we� can� write

H = H0 + H1
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H�0 = m�
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H�1 = +ie
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��

�J�a(~w)

�

�J�b(~z)

As� stated� before,� in� the� expression� for� H,� we� take� m� and� e� to� be� independent� parameters�

for� now.� The� interaction� term� H�1�

is� to� be� treated� as� a� perturbation.� In� the� vacuum� wave�

function�  �0�

=� e�

1�

2�

F�,� F� is� an� arbitrary� functional� of� J .� Therefore� it� can,� in� general,� be�

taken� to� be� of� the� form

F� =�

Z
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a�3�(x�3�
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a�4�(x�4�

) + · · · (8.2)

In� accordance� with� the� idea� of� treating� H�1�

perturbatively,� each� of� the� coefficient� func-
tions� will� also� be� taken� to� have� an� expansion� in� powers� of� e�

2�,� so� that� we� can� write

f (2)

a�1�

a2�

(x�1�

, x�2�

) = f (2)
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, x�2�

) + e�
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f (4)
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, x�4) = f (4)
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) + · · ·�

The� Schr¨�odinger equation� for� the� vacuum� wave� function� takes� the� expected� form�

(H�0�

+ H�1�

) �0�

=� 0 (8.4)

We� can� now� substitute� for�  �0�

with� F� as� in� (8.2)� into� the� Schr¨�odinger equation� (8.4)�

and� equate� the� coefficients� of� terms� with� similar� powers� of� J� to� obtain� a� set� of� recursion�

relations.� The� term� with� zero� powers� of� J� is� a� constant� which� can� be� removed� by� a�

suitable� normal-ordering� of� the� Hamiltonian.� In� fact,� we� have� already� taken� account� of�

this� as� indicated� by� the� normal-ordering� of� the� potential� energy� term.� Terms� with� only�

one� power� of� J� will� vanish� by� color� contractions.� The� lowest� nontrivial� relation� pertains
to� f (2)
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, x�2�

);� it� is� given� by
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(8.5)

where,� for� brevity,� we� have� used� the� definitions
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In� this� equation,� we� have� also� used� (5.16)� for� Ḡ(x,� y).� For� the� higher� point� functions,
the� recursion� relation� is� given� by
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=� 0� (8.7)

This� applies� for� p� �� 3.� We� must� solve� (8.5)� and� this� set� of� equations� (8.7)� to� calculate�

the� vacuum� wave� function� in� our� scheme.

8.1� The� lowest� order� solution

With� each� f� having� a� series� expansion� in� powers� of� e�

2�,� the� lowest� order� solution� to� (8.5)�

is
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where� E�q =�

p�

m�

2� + q�

2 and� ¯�q =�

1�

2
(q�1�

�� iq�2). Using� this� expression, we� get� the� vacuum
wave� function� to� this� order� as� [9]
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where� N� is� a� normalization� factor.� Even� with� this� lowest� order� result,� we� can� extract�

some� predictions� regarding� physical� quantities.� This� will� be� taken� up� in� the� next� section,�

but� for� now,� we� will� give� the� first� set� of� corrections� to� this� expression.

8.2� The� first� order� corrections� to� the� vacuum� wave� function�

For� the� first� order� corrections� to�  �0�

,� we� will� need� the� lowest� order� results� for� f�

(3)� and
f�

(4). Then using them, get�we can f (2)

2� a�1a�2�

(x�1�

, x�2), which is the term in� f (2)

a�1�

a2�

(x�1�

, x�2�

)� at
order� e�

2�.

The� expressions� for� the� kernels� f�

(3)� and� f�

(4)� obtained� by� solving� the� recursion� rules�

(8.7)� to� the� lowest� order� are

f (3)

0� a�1a�2�
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, k�2�

, k�3�

) = �fa1a2a3

24�
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) g�
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, k�2, k�3)� (8.10)

f (4)
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where�

g�

(3)�(k�1�

, k�2, k�3�

) =
16

E�k�1�

+ E�k2�

+ E�k�3�

⇢ ¯�k�1k̄2(k̄�1 � k̄2)
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)(m� +� E�k2�
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+� cycl.� perm.�

�
(8.12)

g�
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We have displayed the kernels in terms of� their Fourier� transforms�
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dµ(k)�n =
d2k1

(2⇡)�

2�

· · · d2kn

(2⇡)�

2
(8.15)

Note� also� that� f�

(4)

a�1�

a2�

;b�1�

b�2�

(k�1�

, k�2; q�1, q�2�

)� as� defined� in� (8.11,8.13)� is� symmetric� under� in-
dependent� exchange� of� the� first� and� second� pairs� of� indices� as� well� as� under� the� si-
multaneous� exchange� ({a�1�

, k�1�

}, {a�2�

, k�2�

}) $ ({b�1�

, q�1�

}, {b�2�

, q�2�

}).� It� could� have� been� made
completely� symmetric� but� it� is� notationally� simpler� to� leave� it� as� it� is� for� now.

Finally,� using� the� expressions� (8.10)-(8.13)� for� f�

(3)

0
,� f�

(4)

0
in� the� recursion� rule� (8.5),

the� term� of� order� e�

2� in� f�

(2)� is� given� by� [20]
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(2)
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32⇡
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64⇡
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(8.16)

This� completes� the� calculation� of� F� to� order� e�

2�.� The� kernels� f�

(n)�,� n� �� 5,� are� zero� to� this
order,� becoming� nonzero� starting� only� at� the� next� order� in� e�

2�.

To� summarize,� to� the� lowest� order� in� our� expansion� scheme,� the� vacuum� wave� func-
tion� is� given� in� (8.9).� Equations(8.10-8.13)� and� (8.16)� then� give� the� first� set� of� correc-
tions� to� the� wave� function,� i.e.,� to� order� e�

2�.

8.3� Another� route� to� the� vacuum� wave� function

We� have� already� seen� in� section� 7� how� we� can� define� an� improved� perturbation� theory�

where� the� lowest� order� result� gives� the� Hamiltonian� for� a� free� massive� scalar� field.� The�

Hamiltonian� given� in� (7.3)� has� the� term� m'�

a�(�/�'�

a�),� which� assigns� a� mass� m� to� each�

power� of� '.� The� existence� of� this� term� is� directly� related� to� the� integration� measure

dµ(C)� =� dµ(H)� e�

2c�AS�wzw(H)� '� [d']� e��

c�A
2⇡

R�

@'�

a
@̄'�

a�

��

1� + O('�

3�)�

�
(8.17)

Given� this� integration� measure,� the� term� m'�

a�(�/�'�

a�)� is� necessary� for� self-adjointness
of� the� Hamiltonian.� We� can� now� use� this� to� give� an� alternative� approach� to� the� wave
function� (8.9).

Since� it� corresponds� to� a� free� massive� scalar� field,� the� Hamiltonian� H�

0� from� (7.7)� has�

the� vacuum� wave� function

��0�

⇠� exp�

✓�

��

1

2�

Z�

��

a�

p�

m�

2� � r�

2���

a�

◆
, ��a�

(�

~k) =�

q�

cA�

kk̄/(2⇡m) '�a�

(�

~k) (8.18)

Converting� this� back� to�  � =� e
c�A
4⇡

R�

@'@̄'��,� we� find
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The� key� argument� is� then� the� following.� We� know,� from� other� considerations,� that� the�

wave� functions� can� be� taken� to� be� functionals� of� the� current� J .� For� small� ',� H� ⇡� 1� +� '�

and� J� ⇡�

c�A�

⇡
@'.� So� we� ask:� Is� there� a� functional� of� J� which� reduces� to� the� form� (8.19)�

for� J� ⇡�

c�A
⇡
@'?� There� is� a� unique� answer,� it� is� given� by� (8.9),
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⇡� N� exp�
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(8.20)

It� is� useful� to� restate� the� simple� logic� leading� to� this� result.� The� measure� of� integra-
tion� for� the� inner� product� is� exact,� being� determined� by� an� anomaly� calculation.� This� in�

turn� fixes� the� form� of� H� for� the� small� '� version� of� the� Hamiltonian,� and� gives� the� wave
function� (8.19).� The� requirement� that�  � be� a� function� of� the� current� then� ties� it� down
to� the� form� (8.20).� This� argument� shows� that� there� is� a� certain� robustness� to� the� form
of�  �0�

in� (8.20).

9� Analytic� results,� comparison� with� numerics

We� obtain� results� for� some� physical� quantities� and� compare� with� numerical� estimates.� An�

analytic� formula� for� the� string� tension� is� calculated,� the� result� is� given� in� (9.10).� This� is�

compared,� for� various� groups� and� representations,� with� numerical� estimates;� the� agreement�

is� within� about� 2%.� There� has� been� some� discussion� in� the� literature� on� Casimir� scaling�

of� the� string� tension� versus� what� is� called� the� sine-law� and� possible� incompatibility� with

expectations� from� the� diagrammatic�

1
N

-expansion.� We� comment� on� these� problems� and� the

resolution� of� compatibility� with� the 1
N

-expansion.� The� Casimir� energy� for� a� parallel� plate�

arrangement� is� then� calculated,� based� on� the� massive� scalar� field� version� given� in� section�

7.� The� result� is� given� in� (9.28);� it� is� then� compared� with� numerical� estimates� based� on�

lattice� simulations.� There� is� also� a� significant� body� of� literature� on� the� propagator� mass.

We� discuss� various� calculational� methods� briefly� and� compare� with� the� result� of� our� analysis�

from� section� 7.

In� the� previous� section� we� have� obtained� the� solution� of� the� Schr¨�odinger equation� for�

the� vacuum� wave� function� up� to� the� lowest� two� orders� in� our� expansion� scheme.� In�

this� section� we� will� use� this� result� to� calculate� the� string� tension� and� compare� it� with�

numerical� studies.� In� section� 7,� we� have� also� identified� an� approximate� description� of�

the� gluons� by� a� massive� scalar� field.� The� generation� of� mass� is� a� nonperturbative� effect,�

even� though� we� expect� the� approximate� description� given� in� section� 7� to� be� valid� in�

a� kinematic� regime� where� the� momenta� are� in� some� intermediate� range,� high� enough
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to� neglect� some� of� the� interactions� from� the� vertices� but� not� so� high� as� to� neglect� the�

mass� terms.� In� this� section� we� will� also� use� this� approximate� description� in� terms� of�

the� massive� scalar� field� for� the� calculation� of� the� Casimir� energy� and� compare� it� with�

numerical� estimates.

9.1� String� tension

Since� confinement� has� been� the� aspirational� goal� of� many� attempts� at� the� nonpertur-
bative� analysis� of� gauge� theories,� first,� we� will� consider� the� calculation� of� the� string�

tension� ��R�

for� the� representation� R.� As� explained� in� section� 3,� this� is� related� to� the�

vacuum� expectation� value� of� the� Wilson� loop� operator� as

hW�R�

(C)i ⇡ N e�

���R�

A�C� (9.1)

Since� we� are� interested� in� loops� of� large� area,� we� will� consider� the� vacuum� wave� func-
tion� for� the� low� momentum� modes� of� the� fields.� From� (8.9),� the� lowest� order� result� for�

this� is
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where,� in� going� to� the� second� line,� we� have� simplified� the� kernel� as� it� applies� to� the� low�

momentum� modes,� with� momenta� k� ⌧� m.� The� expectation� value� of� the� Wilson� loop�

operator� W�R�

(C),� where� C� is� purely� spatial,� can� be� written� as

hW�R(C)i =
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(9.3)

where� g�

2� =� me�

2�.� This� is� exactly� the� Euclidean� path-integral� version� of� the� expectation�

value� in� a� two-dimensional� Yang-Mills� theory,� with� a� coupling� constant� g�

2�.� By� the� argu-
ments� presented� in� section� 3,� we� can� also� calculate� this� as� the� interaction� energy� for� a�

heavy� particle-antiparticle� pair� in� the� 1+1� dimensional� Yang-Mills� theory.� Using� �� and
�� to� represent� the� heavy� particles� as� in� section� 3,� the� action� we� need� is

S =�
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2�x�
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� 1
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(9.4)

50



This� is� a� fairly� trivial� theory� to� investigate.� Since� the� canonical� momentum� ⇧�

a�

0
is� zero,

we� can� choose� A�

a�

0
= 0 as the conjugate constraint and eliminate the pair. There is no

magnetic� field� in� 1+1� dimensions,� so� the� Hamiltonian� in� the� A�

a�

0
=� 0� gauge� is�

H =�

1

2g�

2�

Z�

dx� E�

a�E�

a� (9.5)

We� also� have� the� Gauss� law� constraint�

(DE)�

a� + g�

2�(��

†�T�

a��� ��

†�T̃�

a��)� =� 0� (9.6)

(This� is� the� same� as� (3.7),� but� now� for� the� 1+1� dimensional� theory� which� defines� the�

equal-time� matrix� elements� for� the� 2+1� dimensional� YM� theory.)� As� the� conjugate�

constraint,� we� can� take� @�x�

A� =� 0.� If� we� take� A� to� vanish� at� spatial� infinity,� the� only�

solution� is� A� =� 0.� The� Gauss� law� (9.6)� then� constrains� E�

a� in� terms� of� the� charge�

densities.� Thus� there� are� no� propagating� degrees� of� freedom� associated� to� the� Yang-
Mills� field.� There� will� be� just� the� Coulomb� interaction.� To� identify� this� term,� notice� that�

the� solution� of� the� Gauss� law� condition� is� E�

a� =� @f�

a�,� with

f�
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2
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The� Hamiltonian� now� becomes
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Acting� on� the� state� |0,� Li� =� �†
i
(0)��

†
i
(L)� |0i� we� find

H |0, Li� =�
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2
L (��
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(��

†�T̃�
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g2cR
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L |0, Li

=�

e�

4�c�A�

c�R

4⇡
L� |0,� Li� (9.9)

where� c�R�

is� the� value� of� the� quadratic� Casimir� operator� for� the� representation� R.� The�

string� tension� can� now� be� read� off� from� this� result� as

�R =
e4cAcR

4⇡
(9.10)

This� is� an� analytic� prediction� for� the� string� tension� for� the� Wilson� loop� operators� in� any�

representation� [9].

An� interesting� observation� regarding� this� result� is� that� we� have� not� used� any� simpli-
fication� of� the� gauge� theory� that� might� arise� from� the� large� N� approximation.� However,
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Group Representations

k=1 k=2 k=3 k=2 k=3 k=3
Fund. antisym antisym sym sym mixed

SU�(2)
0.345

0.335

SU�(3)
0.564

0.553

SU�(4)
0.772 0.891 1.196

0.759 0.883 1.110

SU�(5)
0.977

0.966

SU�(6)
1.180 1.493 1.583 1.784 2.318 1.985

1.167 1.484 1.569 1.727 2.251 1.921

SU(N)
0.1995� N

N�!1 0.1976� N

Table� 1:� Comparison� of�

p�

�/e�

2� as� predicted� by� (9.10)� (upper� entry)� and� lattice� estimates� (lower�

entry,� in� red)� from� [21,� 22,� 23].� k� is� the� rank� of� the� representation.

the� final� result� (9.10)� is� consistent� with� large� N� expectations.� For� example,� for� the�

fundamental� representation� of� SU�(N�),� we� find

��F�

=�

(e�

2�N)�

2

4⇡�

N�

2� � 1�

2N�

2�

! ��

2

8⇡�

,� as� N� !� 1� (9.11)

where� �� =� e�

2�N� is� the� ’t� Hooft� coupling� constant.

9.2� Comparison� of� string� tension� with� numerical� estimates

Even� though� we� obtained� the� result� (9.10)� for� the� string� tension� using� the� wave� function�

to� the� lowest� order� in� our� expansion� scheme,� it� is� useful� at� this� stage� to� pause� and�

compare� the� values� given� by� (9.10)� with� numerical� simulations.� In� the� Table� 1,� we�

show� the� results� for� a� number� of� different� gauge� groups� and� representations� carried� out�

by� Teper� and� collaborators� [21,� 22,� 23].� It� is� clear� that� the� values� are� very� close� to� the�

predictions� from� (9.10),� the� difference� being� less� than� 3%.� In� addition� to� these,� there�

has� been� a� high� precision� calculation� for� the� fundamental� representation� (k� =� 1)� of
SU�(2)� which� gives� value� of� 0.33576(24)� for�

p�

�/e�

2� [24].� Again� this� compares� favorably�

with� our� value� of� 0.3455.� An� independent� numerical� estimate� of� the� large� N� result� has
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also� been� carried� out� in� [25],� giving� a� value� of� 0.1964� N�.

An� especially� fascinating� group� is� G�2�

,� since� all� representations� of� this� group� are�

screenable.� Lattice-based� calculations� of� the� string� tension� for� the� representations� 7,�

14,� 27,� 64,� 77,� 77�

0�,� 182� and� 189� have� been� carried� out� in� [26].� They� have� verified� the
relation� ��R�

=� ��7�

(c�R�

/c�7�

)� (which� follows� from� (9.10)� )� to� within� 1%.� The� value� of�

p�

��7

itself� agrees� with� (9.10)� to� within� 1.8%.

The� fact� that� the� predictions� from� (9.10)� and� the� results� of� the� numerical� calculations�

do� match� rather� well� is� very� nice,� but� one� could� ask� whether� there� are� corrections� and,�

if� so,� whether� they� do� remain� small� so� as� not� to� vitiate� the� agreement� we� find� here.� We�

will� consider� the� corrections� due� to� the� terms� of� the� next� order� (i.e.,� to� order� e�

2�)� in� the�

wave� function� and� show� that� the� corrections� are� indeed� small.� Since� these� calculations�

are� rather� long,� and� all� too� technical,� we� will� defer� this� to� Appendix� D.� For� now,� we� will�

make� some� comments� regarding� the� string� tension� and� then� move� on� to� the� Casimir�

effect� and� to� the� propagator� masses.

9.3� Comments� regarding� string� tension

There� are� a� couple� of� interesting� and� important� comments� to� be� made� about� the� string�

tension.

As� mentioned� earlier,� G�2�

is� a� group� for� which� all� representations� are� screenable.� The�

fundamental� representation� of� G�2�

is� 7-dimensional� while� the� adjoint� representation� is�

14-dimensional.� The� product� (7� ⇥� Adjoint� ⇥� Adjoint� ⇥� Adjoint)� contains� a� singlet� or� the�

trivial� representation,� ensuring� that� all� representations� are� screenable.� Generally� the�

form� of� the� potential� for� static� sources� in� screenable� representations� will� show� a� linear�

increase� with� distance� up� to� a� certain� critical� value� R�b�

and� will� become� flat� for� r� >� R�b�

.�

The� distance� R�b�

is� referred� to� as� the� string-breaking� distance.� The� lattice� estimate� of� the�

string� tension� for� G�2�

(and� for� screenable� representations� for� other� groups)� is� the� slope�

of� the� linearly� rising� part,� before� the� flattening,� i.e.,� for� r� <� R�b�

.� These� are� the� values� for�

which� we� make� the� comparison� for� the� screenable� cases.

In� a� larger� context,� we� can� ask� whether� it� makes� sense� to� consider� the� string� picture�

of� confinement� in� a� situation� where� the� string� can� eventually� break.� The� lattice� simu-
lation� in� [27]� considered� 3d� Yang-Mills� theory� coupled� to� a� number� of� scalar� fields� in�

the� fundamental� representation,� so� that� all� representations� are� screenable� (by� suitable�

binding� with� the� scalar� fields).� The� results� show� that� an� effective� string� description� is�

still� valid� for� the� confining� part� of� the� potential;� even� boundary� terms� and� higher� or-
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der� corrections� from� the� Nambu-Goto� string� action� can� be� correctly� reproduced� by� the�

simulation.

The� second� comment� is� about� Casimir� scaling� versus� the� sine-law� for� the� string� ten-
sion,� an� issue� which� took� some� time� to� be� clarified.� Here� one� considers� the� k-string�

corresponding� to� the� antisymmetric� rank� k� representation� of� SU�(N�).� The� value� of� the�

quadratic� Casimir� operator� for� this� representation� is� easily� calculated� as

c�k�

=�

N + 1�

2N�

k(N� �� k)� (9.12)

If� the� string� tensions� are� proportional� to� c�k�

(as� we� found� in� (9.10)),� and� as� argued� by�

others� as� well,� then

��k

��F

=�

k(N � k)

N � 1
(9.13)

This� is� the� Casimir� scaling� law.� An� important� feature� of� this� ratio� is� that,� in� a� large� N

expansion,� we� have

��k�

��F

⇡ k�

✓
1 ��

k � 1

N
� k + 1

N�

2
+ · · ·�

◆�

(9.14)

Thus� one� can� get� odd� powers� of� 1/N� in� this� case.�

The� sine-law� for� the� k-string� is� the� statement� that�

��k

��F

=�

sin(⇡k/N�)

sin(⇡/N�)
⇡ k�

✓
1 ��

(k�

2� �� 1)⇡�

2

6N�

2
+ · · ·�

◆�

(9.15)

In� this� case,� we� have� only� even� powers� of� 1/N�,� evident� from� the� symmetry� of� the� ratio�

of� the� sines� under� N� !� �N�.

The� sine-law� was� recognized� as� a� possibility� that� one� needs� to� consider� following�

the� work� of� Douglas� and� Shenker� who� derived� it� in� N� =� 1� supersymmetric� Yang-Mills�

(SYM)� theory� in� 4� dimensions� [28].� This� theory� can� be� obtained� by� adding� a� super-
symmetry� breaking� term� to� the� N� =� 2� SYM� theory� whose� nonperturbative� analysis�

was� carried� out� by� Seiberg� and� Witten,� and� who� obtained� the� exact� low� energy� effec-
tive� action� [29].� A� similar� result� was� obtained� in� [30]� using� a� 5-brane� construction� in�

M�-theory,� the� so-called� MQCD.� Within� the� context� of� holography,� one� can� obtain� the�

k-string� tension� as� the� value� of� the� Hamiltonian� for� a� classical� supergravity� configura-
tion� in� the� holographic� dual� description.� The� sine-law� is� then� obtained� for� the� 4d� SYM�

for� the� Maldacena-Nunez� dual� and� an� approximate� sine-law� for� the� Klebanov-Strassler�

background� [31].
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While� these� results� were� obtained� for� the� supersymmetric� theory� using� the� gravity�

dual,� a� general� argument� for� the� sine-law� was� suggested� in� [32],� see� [33]� for� a� review.�

The� basic� argument� is� the� following.� Since� representations� with� zero� N�-ality� can� all�

be� screened,� the� asymptotic� formula� for� the� string� tension� should� depend� only� on� the�

N�-ality� of� the� representation.� The� rank� k� antisymmetric� representation� and� the� rank�

(N� �k)� antisymmetric� representation� are� conjugates� of� each� other.� Therefore� we� should�

further� expect� the� tensions� to� be� invariant� under� k� !� N� �� k.� This� means� that� the� ratio
��k�

/��F�

,� which� is� a� dimensionless� function� depending� only� on� k� and� N�,� should� be� a�

function� of� |� sin(⇡k/N�)|;� we� can� represent� it� as� a� power� series� of� the� form
��k

��F

= c�1�

|� sin(⇡k/N�)|� +� c�2�

|� sin(⇡k/N�)|�

2� +� ·� ·� ·� (9.16)

Further,� we� know� that� counting� powers� of� N� in� terms� of� diagrams� in� perturbation� theory�

show� that� at� fixed� k,� one� should� only� have� even� powers� of� 1/N�.� The� limit� N� !� 1� with�

fixed� k� should� also� exist,� as� we� expect� confinement� at� large� N� with� a� finite� and� nonzero�

string� tension.� (This� is� after� everything� is� expressed� in� terms� of� the� ’t� Hooft� coupling� e�

2�N�

as� in� (9.11).)� These� properties� require� that� c�2n+1�

⇠ N�

1� and� c�2n�

⇠ N�

0�.� The� terms� with�

odd� powers� have� the� property� that,� in� the� limit� k� !� 1,� N� !� 1� with� k/N� fixed,� ��k�

/k�

is� a� function� of� x� =� ⇡k/N�.� The� authors� of� [32]� refer� to� this� as� the� saturation� property.�

Keeping� only� such� terms,� one� ends� up� with� an� odd� series� in� |� sin(⇡k/N�)|,� with� c�2n+1�

⇠ N .�

By� comparison� with� the� gravity� dual� arguments� and� fitting� to� some� numerical� data,� one�

can� then� argue� that� a� single� power� of� |� sin(⇡k/N�)|� suffices.� The� emerging� suggestion�

from� this� line� of� reasoning� was� that� Casimir� scaling� should� be� ruled� out� as� not� being�

compatible� with� the� (1/N�)-expansion� of� Yang-Mills� theory.

However,� the� data� from� lattice� simulations� were� fairly� decisively� in� favor� of� Casimir�

scaling.� This� follows� from� the� results� of� [21]-[25]� and� also� from� the� specific� check� of�

Casimir� scaling� done� for� G�2�

in� [26].� Simulations� done� for� the� high� temperature� (T)�

limit� of� 4d� Yang-Mills� theory,� which� should� reduce� to� the� zero-temperature� 3d� theory�

with� a� redefined� coupling� e�

2� = g�

2�T,� also� shows� Casimir� scaling� [34].� A� calculation� using�

the� gravity� dual� for� the� 3d� SYM� also� supports� Casimir� scaling� [35].� Detailed� analyses�

with� the� gravity� dual,� for� the� string� tension� and� for� the� Luscher� term,� were� carried� out�

in� [36],� [37];� the� results� seem� to� lie� in� between� the� Casimir� law� and� the� sine-law,� and�

close� to� both� cases.

It� would� seem� from� the� previous� two� paragraphs� that� there� is� a� possible� conflict�

between� the� standard� (1/N�)-expansion� and� Casimir� scaling� (which� seems� to� hold� for�

a� number� of� cases� and� which� can� include� odd� powers� of� (1/N�)).� However,� this� is� not�

the� case,� there� is� a� loophole� in� the� arguments� presented� in� [32],� as� shown� by� [38].
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The� essence� of� this� resolution� is� that,� for� the� string� tension,� one� is� calculating� a� matrix�

element� of� the� form� h0|F� e�

�HT� F�

†�|0i,� as� shown� in� section� 3.� Using� a� complete� set� of�

energy� eigenstates,� we� can� write� this� in� the� form

h0|F� e�

�HT� F�

†�|0i =�

X

↵

C�↵ e�

�E�↵T (9.17)

where� C�↵�

and� E�↵�

are� functions� of� the� coupling� constant,� N�,� etc.� Generally� there� is� also
a� representation� dependence� arising� from� the� choice� of� F� .� Consider� now� the� (1/N�)-
expansion� of� various� terms� in� the� sum.� It� is� possible� for� the� individual� C�↵�

and� E�↵

to� have� odd� powers� of� (1/N�).� When� we� expand� in� (1/N�)� at� finite� T� ,� there� can� be�

cancellation� of� the� odd� powers� between� different� terms� in� the� sum,� thus� rendering� the�

(1/N�)-expansion� of� the� correlator� consistent� with� expectations� from� the� diagrammatic�

side.� However,� if� we� take� large� T� first,� then� the� term� which� dominates� is� the� term� with
the� lowest� energy,� say,� e�

�E�0�

T� .� This� is� what� is� done� both� in� our� analytic� calculation� and� in
the� lattice� simulations,� with� the� string� tension� extracted� from� E�0�

.� As� mentioned� earlier,
E�0�

can� have� odd� powers� of� (1/N�),� but� in� taking� the� large� T� limit� first,� the� possible
cancellants� of� the� odd� powers� of� (1/N�)� from� higher� C�↵�

,� E�↵�

are� discarded,� so� the� odd�

powers� in� E�0�

are� retained.� This� argument� shows� that� there� does� not� have� to� be� any�

contradiction� between� Casimir� scaling� and� the� (1/N�)-expansion.

The� point� is� that� the� two� limits,� namely� large� T� and� large� N�,� do� not� necessarily�

commute.� (In� [38]� the� authors� give� a� specific� example� of� how� such� a� scenario� can� be�

realized,� with� the� cancellation� of� the� odd� powers� in� the� correlator,� while� retaining� odd�

powers� in� E�0�

,� in� a� lattice� model� in� the� strong� coupling� expansion.)� The� conclusion� is�

that� Casimir� scaling� is� compatible� with� the� expectations� from� the� (1/N�)-expansion� in�

terms� of� diagrams.

9.4� Casimir� effect:� Calculation

In� section� 7� we� argued� that� our� analysis� leads� to� an� “improved”� perturbation� theory�

where,� at� the� lowest� order� the� gauge-invariant� version� of� the� gluon� is� described� by� a�

scalar� field� ��

a� with� mass� m� =� (e�

2�c�A�

/2⇡).� The� Hamiltonian� for� this� was� given� in� (7.7)�

and� it� corresponds� to� the� action�

S =�

Z�

d�

3�x
1�

2

h
�̇�

a��̇�

a� � (r��

a�)(r��

a�) � m�

2���

a���

a�

i�

+� ·� ·� · (9.18)

We� can� now� use� this� to� calculate� the� Casimir� energy� for� the� nonabelian� gauge� theory,� in�

the� usual� classic� set-up� of� two� parallel� conducting� plates� or,� rather,� wires� since� we� are
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in� two� spatial� dimensions.� This� calculation� is� from� [10],� the� numerical� estimate� of� the�

Casimir� energy� is� from� [39].� We� consider� the� fields� in� a� square� box� of� side� L,� with� two�

parallel� wires� separated� by� a� distance� R.� Eventually,� we� can� take� L,� b�1�

, b�2�

!� 1� keeping�

R� fixed.� The� relevant� geometry� is� shown� in� Fig.� 1.� In� the� small� '�

a� expansion,� the� gauge�

potentials� have� the� form

A�

a�

i
⇡ 1

2
[�@�i✓�

a� + ✏�ij�

@�j'�

a� +� ·� ·� ·� ]� ,� M� =� exp�

✓�

� i

2
t�a�

(✓�

a� +� i'�

a�)�

◆�

(9.19)

(The� field� ��

a� is� related� to� '�

a� as� ��a�

(�

~k) =�

p�

cA�

k�k̄/(2⇡m)� '�a�

(�

~k).)� The� boundary� condition
appropriate� to� perfectly� conducting� wires� is� that� the� tangential� component� of� the� electric�

field� should� vanish;� i.e.,

✏�ij�

n�iF�

a

0j
=� 0, (9.20)

where� n�i�

is� the� unit� vector� normal� to� the� wire. For� small� '�

a�,� we� see� that� this� is� equivalent
to� the� condition

n�i�

✏�ij�

✏�jk�

@�k ˙�'a� = �n�i�

@�i ˙�'a� =� 0� (9.21)

Since� the� time-derivative� does� not� affect� the� spatial� boundary� conditions,� this� can� be�

satisfied� by� imposing� the� Neumann� boundary� condition� n� ·� @'�

a� =� 0� on� the� scalar� field
'�

a� or,� equivalently,� on� ��

a�.� This� gives� us� a� simple� strategy� for� calculating� the� Casimir�

energy� within� our� improved� perturbation� theory:� We� just� calculate� the� Casimir� energy�

of� a� free� massive� scalar� field,� of� mass� m,� with� Neumann� boundary� conditions� on� the�

wires.� (It� may� be� worth� re-emphasizing� that,� even� though� we� use� a� free� field� theory,�

interactions� and� some� nonperturbative� effects� are� folded� in� since� there� is� a� nonzero�

mass� m.)� Accordingly,� the� field� in� the� region� between� the� wires� has� the� expansion

��

a� =�

Z
dk

2⇡

1X

n=0

Ca

n,k

r
2

R
cos�

⇣n⇡x�1

R

⌘�

e�

ikx�2�,� (9.22)
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Figure� 1:� The� set-up� for� Casimir� e↵ect�
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consistent� with� the� Neumann� boundary� conditions.� The� action� is� then� obtained� as�

S =�

Z
dt�

dk

2⇡

X�

n

1

2

h
Ċa

n,k
Ċa

n,k
� ⌦2

n,k
Ca

n,k
C�

a

n,k

i�

+� ·� ·� · (9.23)

where� ⌦2

n,k
= k�

2� + (n⇡/R)�

2� + m�

2�. Here� n� is� an� integer� �� 1.� (Notice� that� n� =� 0� will� not
give� an� R-dependent� term.)� The� unrenormalized� zero-point� energy� can� be� easily� read
off� as

E� =
L�

2
dimG�

Z
dk

2⇡

X

n

⌦�n,k

=
L

2
dimG�

Z
dk

2⇡

X

n

✓
@�

2

@x2

0

◆Z
dk�0

⇡

e�

ik�0�

x�0

k�

2

0
+ ⌦2

n,k

��

x�0�

=0

(9.24)

The� summation� can� be� done� using� the� formula

1X�

n=1

1

k2

0
+ ⌦2

n,k

= � 1

2!�

2
+�

R

2!
+�

R

!

1

e�

2!R� � 1�

(9.25)

where� !�

2 =� k2

0
+ k�

2� + m�

2�.� Thus� E� splits� into� three� terms.� The� contribution� from� the
first� term� on� the� right� hand� side� of� (9.25)� is� independent� of� R� and� will� disappear� when�

we� take� E(R)� �� E(R� !� 1)� to� obtain� the� renormalized� energy.� As� for� the� second� term,
there� will� be� similar� contributions� from� the� regions� of� extent� b�1�

and� b�2�

,� so� that� together�

we� get� (R� +� b�1�

+ b�2�

)/(2!)� =� L/(2!).� So� its� contribution� is� also� independent� of� R.� The�

expression� for� the� energy� now� becomes�

E� =� ��

LR�

4⇡�

dimG

Z� 1

0

dp
p�

3

p�

p�

2� + m�

2�

1

e�

2R�

p�

p2�+m�

2� � 1

=� �dimG
L

4⇡R�

2
(mR)�

3

Z 1

1

dz�

(z�

2� �� 1)

e�

2mRz� � 1

=� �dimG
L�

16⇡R�

2�

⇥�

2mR� Li�2�

(e�

�2mR�)� +� Li�3�

(e�

�2mR�)�

⇤�

(9.26)

In� going� from� (9.24),� (9.25)� to� the� first� line� of� this� equation,� we� have� carried� out� the
angular� integration� over� the� angle� ↵,� taking� k�0�

=� p� cos�↵,� =� p� sin�↵,� where� p� =�

p�

k2

0
+ k�

2�.�

By� using� p� =� m� sinh� q,� and� z� =� cosh� q� we� get� to� the� second� line.� The� expansion� of� this�

in� powers� of� e�

�2mRz� leads� to� the� last� line� of� (9.26)� in� terms� of� the� polylogarithms,

Li�s�

(w) =�

1X�

1

w�

n

n�

s�

(9.27)
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Using� the� expression� (9.10)� for� the� string� tension,� we� can� re-express� (9.26)� in� terms� of
x =�

p�

��F�

R� as

E
L��F

= �dimG

16⇡

"
2�

p�

c�A�

/⇡c�F

x
Li�2�

⇣�

e�

�2

p
cA/⇡c�F�

x�

⌘
+�

1�

x�

2
Li�3�

⇣�

e�

�2

p
cA/⇡c�F�

x�

⌘�

#
(9.28)

This� is� the� analytic� result� we� get� for� the� Casimir� energy� as� a� function� of� the� separation�

of� the� wires.

9.5� Casimir� effect:� Comparison� with� lattice� data�

The� formula� for� the� Casimir� energy� given� in� (9.28)� is� in� a� form� that� can� be� compared
to� the� lattice� simulations.� In� fact,� for� the� case� of� G� =� SU�(2),� such� a� simulation� and�

extraction� of� the� Casimir� energy� for� the� parallel� wire� geometry� have� been� carried� out� in�

[39].� Using� the� appropriate� values� of� c�A�

and� c�F�

,� the� specialization� of� formula� (9.28)� to�

SU�(2)� is

E
L��F

= �A�

dimG�

16⇡


1.84

x
Li�2�

��

e�

�1.84� x�

�
+�

1

x�

2
Li�3�

��

e�

�1.84� x�

��

��

(9.29)

We� have� also� included� a� prefactor� A.� The� motivation� for� a� possible� change� of� the
prefactor� (from� the� value� of� A� =� 1� as� in� (9.28))� is� the� following.� The� prefactor� is�

really� a� measure� of� the� number� of� degrees� of� freedom.� This� is� clear� from� the� dimG�

factor.� However,� lattice� simulations� of� Yang-Mills� theories� have� shown� that� the� number�

of� degrees� of� freedom� do� not� quite� reach� a� value� corresponding� to� a� gas� of� free� gluons�

even� at� very� high� temperatures,� where� we� expect� a� deconfined� gluon� plasma.� This� has
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Figure� 2:� Comparison� of� (9.29)� (solid� blue� line)� and� (9.30)� (dashed� red� line).
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known� for� a� fairly� long� time.� (A� recent� review� which� gives� updated� results� is� [40];�

in� particular,� see� figure� 4� of� this� reference.)� There� could� also� be� higher� order� effects�

(interactions� among� the� '�

a� fields,� corrections� to� the� wave� function,� etc.)� which� could�

contribute� to� A.� The� exponential� fall-off� is� however� controlled� by� the� mass� m.� So� we�

do� not� tamper� with� that;� the� value� from� our� analysis,� namely� m� =� (e�

2�c�A�

/2⇡),� has� been�

used� in� (9.29).

As� for� the� comparison� with� lattice� data,� the� authors� of� [39]� fitted� the� data� points� to�

a� phenomenologically� motivated� formula

E�

L��F

=� �dimG�

⇣(3)

16⇡
x�

�⌫� e�

�M� x/�

p�

�F� ,� (9.30)

the� best� fit� values� being� ⌫� =� 2.05� and� M� =� 1.38�

p�

��F�

.� in� Fig.� 2,� we� show� the� curve�

corresponding� to� (9.30)� as� the� dashed� red� line,� using� the� best� fit� values� quoted� above.�

It� is� very� clear� that� our� formula� (9.29)� is� at� least� as� good� a� fit� to� the� lattice� data� as� the�

phenomenological� formula� (9.30).� We� have� used� only� one� fitting� parameter,� namely� A.�

Its� best� fit� value� is� A� =� 0.9715.� If� we� used� (9.28)� without� allowing� for� a� change� of� the�

prefactor� (which� means� A� =� 1),� the� agreement� would� still� be� rather� good,� since� this�

would� only� give� a� small� change� in� the� overall� coefficient.� Notice� that� the� exponential�

factors� are� just� as� predicted� from� (9.28).� Even� a� small� error� in� the� mass� m� could� give� a�

significant� deviation� in� the� profile� of� the� function� since� it� is� in� the� exponent.

Why� is� our� result� for� the� Casimir� energy� so� accurate� considering� that� it� is� obtained�

using� the� “free� theory”,� albeit� including� the� mass� which� is� nonperturbatively� generated?�

Obtaining� a� lattice� estimate� of� the� Casimir� energy� at� large� separations� is� problematic�

because� of� the� exponential� damping.� The� numerical� values� are� lost� in� the� noise.� At�

the� other� end,� for� very� short� distances,� lattice� artifacts� get� in� the� way.� So� the� lattice�

estimates� are� by� necessity� confined� to� a� certain� range� (roughly� between� x� =� 0.1� and�

x� =� 0.7� in� the� graph).� This� is� the� kinematic� regime� which� we� might� expect� to� be� more�

or� less� accessible� by� perturbation� theory,� but� improved� to� incorporate� a� mass� which� is�

necessary� to� include� the� exponential� fall-off.

9.6� Propagator� mass:� Alternate� approaches

The� Casimir� effect,� as� discussed� above,� may� be� the� most� accurate� way� to� test� the� predic-
tion� about� the� propagator� mass� for� gluons.� But� there� are� a� few� other� ways� to� attempt�

the� calculation� or� the� numerical� estimate� of� this� quantity.

First� of� all,� since� we� argued� that� our� analysis,� in� the� high� momentum� regime,� could
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be� viewed� as� a� resummation� of� a� select� series� of� Feynman� diagrams,� one� could� attempt�

a� direct� resummation� within� standard� covariant� perturbation� expansion.� In� such� an�

approach,� the� difficulty� we� might� face� is� that� the� selection� of� the� terms� to� be� resummed�

has� to� respect� gauge� invariance� or� BRST� invariance.� This� means� that� the� chosen� set� of�

terms� should� form� a� closed� set� with� respect� to� the� relevant� Ward-Takahashi� identities.�

Ensuring� this� feature� can� be� cumbersome� in� practice.� However,� since� we� are� primarily�

interested� in� the� mass,� not� full-blown� off-shell� amplitudes,� there� is� a� simpler� method�

we� can� use.� The� idea� is� to� first� construct� a� possible� gauge-invariant� mass� term� for� the�

gauge� fields.� This� will� be� of� the� form�

S�mass =
1

2

Z
d3k

(2⇡)�

3
A�

a

i
(�k)A�

a

j
(k)�

✓�

��ij � kikj

~k�

2

◆�

+ O(A�

3�)� (9.31)

The� quadratic� term� shows� that� this� is� truly� a� mass� term� for� the� transverse� gauge� fields,�

but� is� not� gauge-invariant.� However,� one� can� add� to� it� a� suitable� series� involving� A’s�

to� get� a� gauge-invariant� completion� of� this� term.� Since� the� completion� is� not� uniquely�

defined,� we� can� have� different� possible� choices� for� S�mass�

.� All� such� mass� terms� are� nec-
essarily� sums� of� nonlocal� monomials� of� the� fields.� Once� we� have� chosen� a� mass� term�

S�mass,� we� consider� the� action�

14

S = S�YM�

+ M�

2�S�mass�

�� S�mass (9.32)�

where� S�YM�

is� the� usual� Yang-Mills� action.� We� take� �� to� have� a� loop� expansion� starting
at� the� 1-loop� order,� writing

� =�

X

1

~�

n���

(n) (9.33)

After� adding� gauge� fixing� and� ghost� terms,� we� can� calculate� the� effective� action� �.� This�

will� have� the� form

� = S�YM�

+ M�

2�S�mass ��

X

1

~�

n���

(n) S�mass + ~��

(1)�(~) + ~�

2���

(2)�(~)� +� ·� ·� ·� (9.34)

Notice� that� while� ��

(1)� is� obtained� from� terms� which� are� graphically� of� the� 1-loop� topol-
ogy,� it� contains� terms� of� arbitrary� order� in� ~� since� the� propagators� involve� �� and� are� of�

the� form� (k�

2� + M�

2� ���)�

�1�.� Thus� ��

(1)� has� the� expansion

��

(1) = ��

(1)�

0
+�

X

1

~�

n���

(1)�

n
(9.35)

14�For� the� rest� of� this� section,� we� use� the� Euclidean� theory� in� keeping� with� the� fact� that� this� signature� is� used�

in� diagrammatic� perturbation� theory.
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In� a� similar� way,� additional� ~� dependence� arises� for� the� 2-loop� vertices.� The� terms� of
order� ~�

2� in� ��

(2)� are� due� to
a)� 2-loop� graphs� with� the� propagators� ⇠ (k�

2 + M�

2�)�

�1

b)� terms� from ��

(1)

1
.

Collectively� we� will� denote� these� terms� by� ��

(2)�

0
.� Just� to� clarify,� we� may� note� that� the

second� set� of� terms� can� arise� from� 1-loop� diagrams� with� vertices� from� S�YM�

+ M�

2�S�mass

(plus� similar� ghost� vertices)� and� propagators� expanded� to� ��

(1)� order� or� from� 1-loop
diagrams� with� propagators� ⇠ (k�

2 + M�

2�)�

�1�, but� with� vertices� from� ��

(1)S�mass. Similar
reasoning� will� hold� for� higher� order� terms.� The� expansion� (9.34)� thus� takes� the� form

�� =� S�YM�

+ M�

2�S�mass + ~�

⇣
��

(1)�

0
���

(1)S�mass

⌘�

+ ~�

2

⇣�

��

(2)�

0
���

(2)S�mass

⌘�

+ · · ·
+gauge-fixing� terms� +� ghost� terms� (9.36)

We� take� M�

2� to� be� the� propagator� mass;� this� is� so� at� the� tree� level� with� the� pole� appearing�

at� k�

2�+M�

2� =� 0.� It� can� be� kept� at� the� same� point� to� order� ~� by� choosing���

(1)� to� cancel� any
shift� of� the� pole� induced� by� ��

(1)�

0
.� This� will� determine� ��

(1)� as� a� function� of� M�.� Likewise,
we� choose���

(2) to� cancel� any� shift� of� the� pole� at� order� ~�

2�,� etc.� Finally,� we� are� not� seeking
to� change� the� theory,� it� should� still� be� the� usual� Yang-Mills� theory.� So� we� should� at� the�

end� set

M�

2� = � = ��

(1)� +��

(2)� +� ·� ·� ·� ,� (9.37)

so� that� the� starting� action� (9.32)� is� just� the� Yang-Mills� action.� This� equation� becomes� a�

gap� equation� for� the� theory� determining� M� in� terms� of� the� coupling� constant.

The� procedure� we� have� outlined� gives� a� systematic� and� gauge-invariant� way� to� carry�

out� a� resummation� of� the� select� set� of� terms� and� identify� the� propagator� mass.� It� can�

also� be� implemented� order� by� order;� for� example,� M�

2� =� ��

(1)� will� be� the� 1-loop� gap�

equation,� M�

2� = ��

(1)� + ��

(2)� is� the� 2-loop� gap� equation,� etc.� The� series� of� terms� which�

are� selected� to� be� resummed� is� determined� by� the� choice� of� S�mass�

,� with� different� choices�

corresponding� to� different� series� being� resummed.� This� method� of� obtaining� the� gap�

equation� has� been� explained� in� some� detail� in� [19,� 41].

Calculations� along� these� lines� have� been� carried� out� for� several� different� choices� of�

S�mass.� In� [42],� a� Higgs� field� was� used� to� generate� a� gauge-invariant� mass� term,� in� a�

way� similar� to� how� the� Higgs� mechanism� gives� a� mass� to� vector� bosons.� In� [19],� we
have� used� a� different� mass� term� inspired� by� the� 2d-WZW� action� and� also� by� the� Debye�

screening� mass� term� in� 4d-Yang-Mills� theory� at� high� temperatures.� This� mass� term� and�

its� properties� are� discussed� in� [43].)� There� is� also� has� an� interesting� geometrical� side� to
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it,� in� terms� of� Sasakian� structures� on� three-dimensional� spaces� [44].� Jackiw� and� Pi� used�

a� more� conventional� mass� term� of� the� form� F� (1/D�

2�)F� in� their� analysis� in� [41].� A� Chern-
Simons� term,� although� parity-violating,� has� also� been� used� [45].� In� the� references� cited�

so� far,� the� calculations� were� done� to� 1-loop� order� and� the� resulting� gap� equation� was�

then� solved� to� obtain� the� value� of� the� propagator� mass.� The� calculations� of� [42]� have�

also� been� extended� to� obtain� the� 2-loop� gap� equation� in� [46,� 47].� The� values� of� the�

propagator� mass� obtained� using� these� mass� terms� are� given� in� Table� 2.

A� second� method� is� to� use� the� Schwinger-Dyson� formulation� of� the� theory� [48].� This�

is� effectively� a� reorganization� and� resummation� of� the� perturbation� expansion� and� so�

it� is� ideologically� related� to� the� resummation� method� discussed� above.� By� combining�

the� Schwinger-Dyson� equation� with� the� pinch� technique� [49,� 50],� it� is� possible� to� get�

gluon� propagators� and� identify� the� mass.� (The� pinch� technique� is� a� way� of� adding� a�

certain� kinematic� limit� (the� pinching� limit)� of� some� Feynman� diagrams� to� other� n-point�

functions� to� obtain� gauge-invariant� n-point� functions.� See� the� references� quoted� for� the

Group m/e�

2 Method

SU�(2)

0.38 Resummation,� 1-loop� [19]

0.28 Resummation,� 1-loop� [42,� 41]

0.35 Lattice,� common� factor� for� glueball� masses� [42]

0.34 Two-loop� gap� equation� [46]

0.33 Two-loop� gap� equation� [47]

0.25 Resummation� of� perturbation� theory� [51]

0.51 Lattice,� maximal� abelian� gauge� [52]

0.52 Lattice,� Landau� gauge� [52]

0.44 Lattice,� ��3�

=� 2� gauge� [52]

0.456 Lattice,� Landau� gauge� [53]

0.37 Gauge-invariant� lattice� definition� [54]

0.36 Gauge-invariant� correlation� length� [55]

0.32 Calculation� via� our� Hamiltonian� method

SU�(3)

0.568 Resummation,� 1-loop� [19]

0.42 Resummation,� 1-loop� [42,� 41]

0.515 Lattice,� Landau� gauge� [56]

0.482 Lattice,� Landau� gauge� [57]

0.48 Calculation� via� our� Hamiltonian� method

Table� 2: Comparison� of� propagator� mass� calculations
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details� of� how� this� can� be� implemented.)� The� Schwinger-Dyson� equations� are� nonlinear�

and� in� the� end,� in� this� approach,� some� numerical� work� is� needed� to� solve� them.� The�

result� seems� to� give� a� value� close� to� what� is� obtained� by� the� other� methods,� as� seen�

from� Table� 2.

Yet� another� approach� is� to� use� lattice� simulations� again.� Arguably,� the� best� feature�

of� lattice� gauge� theory� is� the� ease� of� preserving� manifest� gauge� invariance.� However,�

to� define� the� gluon� propagators� and� the� propagator� mass� one� needs� to� do� gauge-fixing.�

This� will� also� bring� in� issues� like� the� Gribov� problem.� Nevertheless,� calculations� have�

been� done� using� the� Landau� gauge,� the� maximal� Abelian� gauge� and� for� what� we� shall�

refer� to� as� the� ��3�

=� 2� gauge.� (See� the� quoted� reference� for� details.)

Finally,� we� point� out� that� Philipsen� [55]� has� also� calculated� the� propagator� mass� by�

considering� the� correlation� length� and� fall-off� of� gauge-invariant� partonic� correlators�

in� the� 4d-Yang-Mills� theory� at� high� temperatures� (which� is� equivalent� to� the� 3d-theory�

with� a� redefinition� of� the� coupling� constant).

The� values� obtained� by� all� these� different� methods� vary� by� some� amount,� but� they�

are� not� very� far� from� what� we� obtain� using� our� Hamiltonian� method.

10� Screenable� representations� and� string� breaking

For� screenable� representations,� the� interaction� energy� between� a� particle� and� antiparticle�

should� become� independent� of� the� separation� beyond� a� certain� point,� as� each� can� combine�

with� a� number� of� gluons� and� form� composites� (glue� lumps)� of� zero� charge,� a� process� referred�

to� as� string-breaking.� We� obtain� an� approximate� Schr¨�odinger equation� for� the� glue� lump,�

calculate� the� string-breaking� energy� and� compare� with� lattice� estimates,� commenting� on�

some� of� the� subtleties� in� interpreting� the� lattice� data.� We� also� give� a� qualitative� argument�

about� how� string-breaking� can� appear� in� the� calculation� of� the� expectation� value� of� the�

Wilson� loop� operator.

Screenable� representations� are� representations� R� such� that� R� ⌦� Adjoint� ⌦� Adjoint� ·� ·� ·�

contains� the� trivial� (or� singlet)� representation.� For� G� =� SU�(N�),� these� are� representa-
tions� of� zero� N�-ality.� As� discussed� in� section� 3,� if� we� consider� a� particle-antiparticle� pair�

in� a� screenable� representation,� the� potential� between� them� will� flatten� out� at� some� point�

as� the� separation� between� the� two� is� increased.� Thus,� for� screenable� representations� R,�

the� formula� for� the� string� tension� should� apply� only� up� to� this� critical� separation.

The� process� of� the� flattening� out� of� the� potential� can� be� visualized� as� follows.� Since
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R� ⌦� Adjoint� ⌦� Adjoint� ·� ·� ·� contains� a� singlet,� we� could� have� a� bound� state� of� zero� charge�

made� of� the� particle� with� a� certain� number� of� gluons.� This� bound� state� is� usually� re-
ferred� to� as� a� glue� lump.� Similarly� one� can� have� a� glue� lump� for� the� antiparticle� with�

some� gluons.� As� we� increase� the� separation� between� the� particle� and� the� antiparticle,�

at� some� point,� it� becomes� energetically� favorable� to� convert� the� interaction� energy� into�

creating� a� glue� lump� pair.� Once� this� is� achieved,� there� is� no� further� energy� cost� to�

separating� the� lumps,� since� each� of� them� has� zero� charge.� The� energy� of� the� pair� re-
mains� what� it� was� at� the� point� of� the� glue� lump� formation.� This� is� the� flattening,� which�

can� also� be� thought� of� as� the� breaking� up� of� the� string� connecting� the� particle� and� the�

antiparticle.

The� ideal� scenario� theoretically� would� be� to� see� this� directly� in� the� calculation� of� the�

expectation� value� of� the� Wilson� loop.� This� has� not� been� possible� so� far� using� the� vacuum�

wave� function� we� have� obtained,� namely,� the� result� to� the� lowest� two� orders� within� our�

expansion� scheme.� The� reason� for� this� will� be� clear� and� commented� upon� later� in� this�

section.� But� as� a� first� attempt,� what� we� will� do� is� an� approximate� calculation� of� the�

ground� state� energy� of� a� glue� lump� and� then� argue� that� the� energy� needed� to� create� a�

glue� lump� pair� in� their� ground� state� is� the� critical� value� V�⇤�

of� the� potential� energy� at� the�

string-breaking� point.

10.1� A� Schr¨�odinger equation� for� the� glue� lump

We� will� first� outline� the� calculation� of� the� glue� lump� ground� state� energy.� Recall� that�

we� can� consider� the� Wilson� loop� as� a� process� involving� the� propagation� of� a� heavy�

particle-antiparticle� pair,� each,� say,� of� mass� M�.� The� simplest� case� to� consider� is� when� the�

representation� R� for� the� particle� is� the� adjoint� one,� so� that� the� glue� lump� is� the� bound�

state� of� this� particle� (or� antiparticle)� with� the� gluon� [58].� If� ��

a� is� the� field� representing�

the� heavy� particle,� then� its� gauge-invariant� version,� denoted� by� ��

a�,� is� given� by

��

a�t�a�

= M�

†���

a�t�a�

M�

�1� (10.1)�

The� wave� function� of� a� glue� lump� state� will� then� have� the� form

 �G�

=�

Z�

x,y

f�(~x,�~y)�

¯�@J�

a�(x)�

fW�

ab�(x,� y)��

b�(y) �0

f�W�

ab�(x,� y)� =�

⇥�

K(x,� ȳ)K�

�1�(y,� ȳ)�

⇤�ab�

(10.2)

Here� ��

a� represents� the� particle� and� J�

a� the� gluon.� f�(~x,�~y)� is� the� two-body� wave� function�

for� the� gluon� and� the� heavy� particle.�  �0�

is� the� wave� function� for� the� ground� state,� which
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is� given� by

 �0�

=� N� exp�

✓�

�1

2
F�

◆
exp�

✓�

�1

2�

M�

Z�

��

a���

a�

◆�

(10.3)

with� F� as� given� in� section� 8.� The� second� exponential� is� the� ground� state� wave� function�

for� a� heavy� particle� of� mass� M.

Our� aim� now� is� to� act� on� this� wave� function� with� the� Hamiltonian.� In� some� ap-
proximation,� as� explained� below,� this� will� lead� to� an� ordinary� two-body� Schr¨�odinger
equation� for� f�(~x,�~y�).� We� can� then� estimate� the� ground� state� energy� as� we� do� in� quan-
tum� mechanics.� The� Hamiltonian� is� given� by� H� from� section� 6,� or� the� expression� (8.1),�

with� the� Hamiltonian� for� the� scalar� field� added� to� it.� The� result� is� H� =� H�YM�

+ H���

,� with

H�YM = m�
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where

(D�w�

)�ab�

=
c�A

⇡
@�w�

��ab + if�abc�
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⇤�cd�
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(10.5)

The� propagators� given� in� the� last� two� lines� of� (10.5)� are� the� regularized� form� of� the� cor-
responding� propagators.� H���

is� normally� ordered� so� that� there� is� no� zero-point� energy,�

as� indicated� in� (10.4).

We� can� now� consider� the� action� of� H� on�  �G�

.� Before� we� give� details,� we� will� make�

some� observations� which� are� useful� in� understanding� the� genesis� of� various� terms� in� the�

resulting� Schr¨�odinger equation.� We� have� already� seen� that� T� J�

a� =� mJ�

a� in� (6.12).� When
we� include�  �0�

as� well,� we� find�

T J�

a�(x) �0�

=�

✓�
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2
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◆
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a�(x) �0�

+�

2i⇡�

mc�A

f�abcJ�

b ¯�@J�

c� �0�

+� ·� ·� · (10.6)
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If� we� ignore� the� terms� of� order� J�

2�,� this� is� like� an� eigenvalue� equation,� the� eigenvalue
itself� being� (m� �� r�

2�/2m),� which� is� the� nonrelativistic� version� of�

p�

m�

2� + k�

2�.�

15

Notice� that� we� also� have
Z�
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2
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a����
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+�

1
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: ��

b �0�

= M��

b� �0�

(10.7)

The� action� of� the� operator� on� the� left� also� produces� a� term�

1

2
M��

b� �0�

,� but� a� similar� result�

is� obtained� for� just�  �0�

as� well;� it� is� the� vacuum� energy� which� is� removed� by� the� normal
ordering.� From� these� two� statements� and� the� fact� that�  �G�

contains�

¯�@J�

a� and� ��

b�,� we
expect� that� the� action� of� the� Hamiltonian� will� produce� a� contribution� of� (M+m�r�

2�/2m)�

to� the� eigenvalue.� (One� could� also� have� �r�

2�/2M,� but� this� is� negligible� as� we� take� M�

very� large.)� There� will� also� be� the� energy� of� the� interaction� between� the� charged� factors
¯�@J�

a� and� ��

b� in�  �G�

.� These� expectations� are� born� out� by� the� explicit� calculations,� with� the
result

H  �G�

=�

Z�

�

M + m � r�

2

x

2m
+ ��A�

|~x � ~y|�

��

f�(~x,�~y)�

¯�@J�

a�(~x)�

fW�

ab�(~x,�~y)��

b�(~y) �0�

+� ·� ·� ·� (10.8)

Here� ��A�

is� the� string� tension� for� the� adjoint� representation� and� the� ellipsis� stands� for�

a� number� of� terms� we� have� neglected.� The� approximations� involved� in� arriving� at� this�

equation� are� the� following.

1.� First� of� all,� there� is� the� obvious� approximation� of� using� the� leading� solution� (8.9)�

for� the� vacuum� wave� function;� i.e.,� F� in� (10.3)� is� taken� to� be� the� leading� kernel�

for� the� quadratic� term� in� the� J ’s.

2.� There� are� terms� which� correspond� to� new� operator� structures,� i.e.,� they� are� not� of�

the� form� of�  �G�

and� have� more� powers� of� J .� These� are� possible� new� states� in� the
theory.� The� glue� lump� state�  �G�

=�

¯�@JfW� �0�

given� in� (10.2)� can� have� overlap� with�

such� states� since� they� have� the� same� quantum� numbers.

The� fact� that� the� Hamiltonian� acting� on�  �G�

can� produce� these� other� structures�

shows� that� there� can� be� mixing.� But,� as� is� well� known� in� quantum� mechanics,�

the� effect� of� nondiagonal� terms� in� H� comes� with� energy� denominators� and� can� be�

taken� to� be� small� if� the� differences� between� the� energies� of� the� lowest� glue� lump�

state� (which� is� what� we� are� interested� in)� and� higher� states� are� large� enough.� We�

expect� this� to� be� the� case� at� large� enough� coupling,� since� the� differences� must� go
15�Actually� one� can� recover� the� fully� relativistic� expression�

p�

m�

2� + k�

2� by� summing� up� a� series� in� 1/m.� The�

situation� is� very� similar� to� what� happens� with� quantum� fluctuations� around� a� static� soliton.� A� series� of� terms�

produced� by� the� zero� modes� of� the� Hessian� of� the� action� at� the� soliton� solution� has� to� be� summed� up� to� get� the�

relativistic� formula.
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like� m.� But� ultimately� it� is� to� be� justified� a� posteriori.�

16� For� more� details� on� these�

issues,� see� [58].

Accepting� the� caveats� mentioned� above,� we� can� now� see� that� the� glue� lump� state�

(10.2)� will� be� an� eigenstate� of� the� Hamiltonian� if� f�(~x,�~y)� obeys� the� ordinary� Schr¨�odinger
equation

�

M + m ��

r�

2

x

2m
+ ��A�

|~x � ~y|�

��

f�(~x,�~y)� =� E� f�(~x,�~y)� (10.9)

Removing� the� center� of� mass� motion� (which� is� zero� as� M� !� 1),� we� see� that� this�

equation� is� the� one� obtained� by� minimizing� the� energy� functional

E = M + m +
1

N

Z
d�

2�x


|rf�|�

2

2m
+ ��A�

|~x| |f |�

2�

�

N =

Z
d�

2�x |f |�

2 (10.10)

The� simplest� way� to� proceed� further� is� to� use� a� variational� procedure.� We� consider� an�

ansatz� of� the� form

f� =� exp(��|x|�

µ�)� (10.11)

where� �� and� µ� are� to� be� treated� as� variational� parameters.� Calculating� E(�,� µ)� and�

extremizing� it� we� find� that� the� minimum� occurs� at� �� =� ��⇤�

,� with

E(��⇤�

, µ) = M + m +

"
2�

�(2µ+1)/µ

2m�(2/µ)

✓
2�

(µ�3)/µ�2m��A�

�(3/µ)

µ�

2�

◆��1/3

⇥�

✓�

8m��A�

�(3/µ)� +� 8�

1/µ�µ�

2�

✓�

2�

(µ�3)/µ�2m��A�

�(3/µ)

µ�

2

◆◆#
(10.12)

��⇤ =�

✓
2�

(µ�3)/µ�(2m��A�

)�(3/µ)

µ�

2

◆�µ/3

The� minimization� with� respect� to� µ� has� to� be� done� numerically.�

A� seemingly� more� general� ansatz� for� f� is

f� =
e�

��|x|�

µ

(1� +� |x|)�

⌫
(10.13)

16�The� transition� amplitude� from� the� Wilson� loop� without� string-breaking� to� the� glue� lumps� is� seen� to� be� very�

small� from� lattice� data,� even� for� SU�(2)� [59,� 60].� This� is� another� indication� for� the� expectation� that� the� o↵-diagonal�

elements� mentioned� above� should� be� small.
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with� �,� µ,� ⌫� as� variational� parameters.� This� may� seem� better� motivated� since� the� solu-
tions� of� the� Schr¨�odinger equation� with� a� linear� potential� involve� the� Airy� functions� Ai�

and� we� have� [58]

Ai�

��

(2m��A�

)�

1/3�|x|�

�
p�

|x|
⇡�

exp�

h�

��

2�

3

��

(2m��A�

)�

1/3�|x|�

��3/2�

i

|x|�

3/4
(10.14)

for� large� |x|.� However� the� minimization� of� E(�,� µ,�⌫)� shows� that� the� minimum� occurs�

at� ⌫� =� 0,� so,� in� the� end,� this� is� equivalent� to� (10.11).

10.2� Comparison� with� lattice� simulations

The� calculation� of� string-breaking� given� above� is� admittedly� rather� crude.� As� stated,�

there� are� several� terms� which� have� been� neglected.� Even� after� this,� the� Schr¨�odinger
equation� (10.9)� has� only� the� linear� potential� ��A�

|~x� �� ~y|.� At� short� distances� one� should�

expect� a� Coulomb� potential� (logarithmic� in� 2+1� dimensions)� as� in� perturbation� theory.�

In� the� glue� lump,� since� the� wave� function� has� some� nonzero� probability� at� short� separa-
tion� between� the� constituents,� the� Coulomb� potential� can� have� an� impact� on� the� energy.�

There� is� also� the� L¨�uscher term� (⇡/24|~x��~y|)� for� the� potential� energy� [61].� Finally� we� are�

only� carrying� out� a� variational� estimate� of� the� ground� state� energy.� So,� all� things� consid-
ered,� the� calculation� presented� above� should� be� viewed� as� primarily� being� of� qualitative�

value,� demonstrating� the� possibility� of� string-breaking.� Nevertheless,� it� is� interesting� to�

compare� with� lattice� estimates,� keeping� in� mind� all� the� caveats� mentioned� above.

Minimizing� the� energy� in� the� formula� (10.12)� with� respect� to� µ� and� using� the� value�

of� the� adjoint� string� tension� given� by� (9.10),� namely,� ��A�

=� (e�

4�c�

2

A
/4⇡)� =� ⇡m�

2�,� we� find
E(��⇤�

, µ�⇤�

)� =� M� +� 3.958m.� Since� we� had� two� masses� M� initially,� the� extra� energy� needed
to� create� a� glue� lump� pair� is� 2⇥3.958m� =� 7.916m.� Thus� we� should� expect� that� the� string�

breaking� should� occur� when� the� interaction� energy� is� V�⇤cal�

=� 7.916m.

A� point� of� internal� consistency� of� the� calculation� is� the� following.� Taking� the� value�

7.916m� for� V�⇤cal�

,� the� separation� between� the� constituents� of� the� glue� lump� at� the� point�

of� breaking� is� r�⇤�

=� (V�⇤�

/��A�

)� &� 2.52/m� and� so,� the� typical� momentum� at� this� separa-
tion� .� (m/2.52).� While� this� does� not� make� an� unassailable� case� for� the� nonrelativistic�

treatment,� it� is� not� inconsistent.

Turning� to� the� lattice� numbers,� an� early� estimate� of� string-breaking� in� SU�(2)� by�

Philipsen� and� Wittig� [59]� gave� a� value� of� the� breaking� separation� R�b�

as� 13.6/M�g�

where
M�g�

is� the� mass� of� the� lightest� glueball.� Taking� this� to� be� the� 0�

++� with� a� mass� of� 5.17� m
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Figure5:Theadjointandfundamentalstaticpotentials V ( � R � )(thelattermultiplied �
bytheCasimirfactor 8

3
)versus R usingWilsonloopsonly.Theadjointstatic

potentialremainsapproximatelyconstantfor R � � � R b ⇡ 10 a � provingstringbreaking. �
Theunbroken-stringstateenergyisalsodrawn.Thehorizon tallineat2 � . � 06(3) � a � � 1

representstwicethemassofagluelump.

arealreadystronglysuppressed.Buttheyareclearlyseeni ntheadjointcasefor �
distanceslargerthanthestringbreakingdistancesinceth eWilsonloophasvery �
goodoverlapwiththeunbroken-stringstatewhichisanexci tedstatefor R>R b .

MoreaboutexcitedstatescanbefoundinSubsection5.1.2.

5.1.1Staticpotential

Westartourdiscussionwiththeextractionofthefundament alstaticpotential
V fund ( � R ).Weconsideronlyoneleveloffundamentalsmearing(30ite rationsof

Eq.(21))ofthefundamentalspatiallinksanddonotconside raWilsonloopmatrix
inthesenseofEq.(55).Asingle-massAnsatzworksnicelyat all R inthetemporal
range T min =12 a  T  60 a � ,wherewehavenomeasurablecontributionofexcited

states.Theextracted V fund ( � R )isinfullagreementwiththeliterature.
Fromthestaticpotentialwecanextractthestringtension � � � .Thisgivesusa �

crosscheckwithpreviousdeterminations[20]andawaytoex � pressthelatticespacing �
inphysicalunits.Weuseastring-motivatedAnsatz

V ( � R ) ⇠ V � 0 + l � ln
R

a
� �

R
+ � � R (53)

20

Figure� 3:� The� adjoint� and� fundamental� static�

potentials� V� (R)� (the� latter� multiplied� by� the�

Casimir� factor� 8/3)� versus� R� using� Wilson�

loops� only.� The� adjoint� static� potential� re-

mains� approximately� constant� for� R� �� R�b�

=�

10a� proving� string� breaking.� The� unbroken-

string� state� energy� is� also� drawn.� The� hori-

zontal� line� at� 2.06(3)a�

�1 represents� twice� the

mass� of� a� glue� lump.� This� is� graph� is� from

[60].
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FIG.7.Continuumscalingoftheadjointstaticpotential: �
datahavebeenobtainedonlatticeswith � L � =32( � � � =6 � . � 0), �

L � =48( � � � =8 � . � 34688)and � L � =64( � � � =11 � . � 3138).The �
potentialbetweentwofundamentalchargesfor � � � =6 � . � 0is �

alsoreportedforcomparison.

fitdatafor � V adj accordingtotheansatz

V
adj ( � d � )= � � � d � + � k

⇡ �

24 � d
, � (15)

where k isafreeparameter.Suchanansatzisreasonable
onlyfor d<R c � however,justlikeinstandardEST,values
of d whicharetoosmallhavetobeexcludedfromthefit,
sincetheyarecontaminatedbytheCoulombinteraction
betweenthesources(thatinourcaseislogarithmic).

InFig. � 6 � weshowourestimatesfortheparameter � k � en-
teringEq.( 15 ),obtainedbyfittingdatafor V adj ( � d � )com-

putedona64 3 latticeatcoupling � � =11 . � 3138.Accord-
ingtoEq.( 3 � )thelatticespacingcorrespondingtothis

valueofthecouplingisabouthalftheoneat � � =6 . � 0,so
weexpect R c ⇡ 20 a � ,andindeedupto d =18 a wefound

nosignalofstringbreaking.InFig. 6 wealsoreportesti-
matesobtainedbyfittingthetwo-pointfinitedi ↵ � erence
approximationofthederivativeof V adj

d � V adj

d � r �
( � r � + � a/ � 2) � ' V

adj ( � r � + a � ) � � V adj ( � r � )
a

(16)

insteadofthestaticpotentialitself,whichgiveconsis-
tentresults.FromFig. � 6 weseethat k isdefinitelynot

consistentwith1,andthisfactcanbeinterpretedasa �
signalfor � d<R c thatthestringwillbreakbyincreasing
thedistancebetweenthesources.

Finally,inFig. � 7 � weshowthecontinuumscalingof � V � adj

forthreedi ↵ � erentvaluesofthelatticespacing(which �
goesfrom a � ⇡ � 0 � . � 11fmat � � =6 . � 0to a ⇡ 0 � . � 057fmat � � =

11 . � 3138),withthestaticpotentialbetweenfundamental

chargesbeingalsoshownforcomparison.Additivecon-
stantshavebeenfixedbyimposing � V adj (2 / �

p
� � )=7 �

p �
� � , �

andanalmostperfectscalingisobserved,whichimplies �
alsointhiscasetheabsenceofsignificantcut-o ↵ � e � ↵ � ects.

IV.CONCLUSIONS

Inthispaperwehavestudiedcolorfluxtubesina
theorywhichdisplaysstringbreaking,andinparticular �
theirbehaviorwhentheseparationbetweenthestatic
sourcesapproachesthestringbreakingdistance � R c � .For

thispurposeweusedastestbedthethree-dimensional �
SU(2)Yang-Millstheorywithchargestransformingin �
theadjointrepresentationofthegaugegroup.

Wehaveshownthattheadjointfluxtube,likethe
fundamentalone,consistsmainlyofthelongitudinal
chromoelectricfieldfordistances � d betweenthesources
thataresmallerthan � R � c � .Asthecriticaldistance � R � c

isapproached,thelongitudinalchromoelectricfieldgets �
stronglysuppressed,becomingofthesamesizeofthe �
transversefieldsat R � c � .Thedisappearanceoftheflux

tubeisquiteabrupt,andthevalueof � R 10 ( � d,x t =0)
(whichisrelatedtosquareoflongitudinalchromoelec-
tricfieldinsidethefluxtube)decreasesapproximately �
byafactorof3whentherelativedi ↵ � erencebetween d
and R c reducesbelow10%.

Thisrapiddisappearanceistheonethatcouldhave �
beennaivelyguessedfromthebehavioroftheadjoint �
staticpotential V adj ( � d � ),whichsuddenlyswitchesfrom
anapproximatelylineargrowtoaconstantplateauat �
d � ' � R � c � .Wehavehoweverseenthatprecursorsofstring
breakingarepresentfor � d � smallerthan � R � c � ,whichareba-
sicallyrelatedtothefailureofstandarde � ↵ � ectivestring �
theory.Thescalingofthesquarewidth � w � 2 � ( � d � )ofthe �

fluxtubewiththedistance � d � follows(atleastwithinthe
presentaccuracy)theexpectedlogarithmicbehaviour, �
butthevalueofthecoe � � � cientdi ↵ � ersfromtheuniversal
e � ↵ � ectivestringprediction.Similarly,ananalogousofthe
Luschertermispresentalsoin � V adj � ( � d � ),butagainnumer-

icaldataarenotcompatiblewiththeexpecteduniversal �
coe � � � cient. �

Futurestudiesshouldbeaimedatextendingthisanal-
ysistoothermodels,tounderstandtowhichamount �
thephenomenologyatstringbreakingobservedinthe �
three-dimensionalSU(2)Yang-Millscaseisgenericand, �
inparticular,isrelevantforQCD.Forthesamereason �
itwouldbeveryinterestingtoinvestigateifthereisa �
relationbetweenthevaluesofthecoe � � � cients � k � w and k

inEqs.( � 12 ),( 15 )(orbetter,theirdeviationsfromthe
ESTpredictions)andsomenonuniversalpropertyofthe
theory,likeitsspectrum. �
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stablefitparameterwasfound.

Figure� 4:� Continuum� scaling� of� the� adjoint�

static� potential:� data� have� been� obtained� on�

lattices� with� L� =� 32(�� =� 6.0),� L� =� 48(�� =�

8.34688)� and� L� =� 64(�� =� 11.3138).� The� po-

tential� between� two� fundamental� charges� for

�� =� 6.0� is� also� reported� for� comparison.� This�

is� graph� is� from� [65].

as� given� by� [21],� this� translates� to� V�⇤lat�

=� 8.26m.� The� calculated� value� agrees� with� the�

lattice� estimate� up� to� |V�⇤lat�

� V�⇤cal�

|/V�⇤lat =� 4.16%.17

In� the� lattice� estimate� by� Kratochvila� and� de� Forcrand� [60],� the� value� of� V�⇤ for
G� =� SU�(2)� was� obtained� as� V�⇤lat = 2.063a�1,� while� the� fundamental� string� tension
is� ��F�

=� 0.0625a�

�2�,� where� a� is� a� lattice� spacing� used� in� the� simulation.� This� implies
V�⇤lat =� 2.06m�

p�

(⇡c�F�

/0.0625c�A)� =� 8.68m,� fairly� close� to� the� value� obtained� by� [59].� The�

deviation� of� this� from� the� calculated� value� of� 7.916m� is� approximately� 8.76%.� However,�

the� form� of� the� potential� which� emerges� from� the� simulations� in� [60]� do� display� the�

Coulomb� term� and� the� L¨�uscher term� in� addition� to� the� linear� potential,� so� a� direct� com-
parison� with� (10.12)� is� not� really� appropriate.� A� more� meaningful� quantity� might� be�

the� distance� at� which� breaking� occurs,� signaled� by� the� flattening� of� the� potential.� This�

happens� at� about� 10a� for� �� =� 6,� where� �� is� the� parameter� which� appears� in� the� lattice�

action� (Wilson� action)� and� a� is� the� lattice� spacing.� These� are� related� to� the� coupling� e�

2

as� a� = (2N/�e�

2�). We� then� find� ��A�

⇥� (10a)� =� 6.67m. This� is� about� 19%� below� our� esti-
mate.� (The� flattening� of� the� potential� is� very� clearly� seen� in� many� lattice� simulations.�

We� display� two� examples,� just� to� illustrate� this� point,� in� Fig.� 3� and� Fig.� 4.)
17�String-breaking� was� also� clearly� demonstrated� in� [62],� but� the� authors� considered� the� theory� with� quarks� in�

the� fundamental� representation.� This� is� di↵erent� from� our� case� of� adjoint� static� charges,� so� a� comparison� is� not�

obtained.
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Another� recent� estimate� is� the� one� reported� in� [63].� These� authors� show� that� the�

breaking� occurs� at� a� value� of� 1.3� (which� is� twice� the� mass� of� a� “constituent� gluon”� in�

their� terminology).� The� units� used� are� such� that� the� 0�

++� glueball� has� a� mass� of� 1.198.�

Taking� M�0�

++� =� 5.17m� as� in� [21],� we� find� that� V�⇤lat�

=� (1.3/1.198)� ⇥� 5.17m� =� 5.61m.

We� also� mention� [64],� where� the� authors� again� demonstrate� string-breaking� for� a�

bound� state� of� a� quark� and� an� antiquark.� As� in� the� case� of� [62],� the� quarks� being� in�

the� fundamental� representation,� we� are� not� able� to� obtain� a� comparison� with� the� value�

calculated� here.

An� interesting� recent� simulation� for� SU�(2)� lattice� gauge� theory� considered� the� lon-
gitudinal� and� transverse� chromoelectric� fields� as� the� distance� between� the� particle� and
antiparticle� static� sources� is� increased� [65].�

18� The� longitudinal� fields� suddenly� drop� to
almost� zero� as� the� separation� approaches� the� string-breaking� value.� This� happens� at
about� 10a� for� �� =� 6,� in� agreement� with� [60].� So,� as� in� that� case,� ��A�

⇥� (10a)� =� 6.67m.� It�

is� however� worth� mentioning� that� the� focus� of� [65]� was� not� so� much� on� the� value� of� the
energy.� The� key� result� is� about� how� the� breaking� occurs,� signaled� by� the� rapid� decay� of
of� the� longitudinal� contribution� to� the� energy� (for� which� they� find� clear� evidence).�

10.3� A� comment� on� hW�R�

(C)i� and� string� breaking

We� will� close� this� section� with� a� comment� on� string-breaking� as� it� should� appear� in� the�

calculation� of� the� expectation� value� of� the� Wilson� loop� operator.� The� formation� of� the
18�I� thank� Claudio� Bonati� for� a� useful� comment� and� for� sharing� some� of� their� data.

Figure1:Exampleofacorrectionfrom F (3) termtotheWilsonloopexpectationvalue

= � �

2

Figure� 5:� Showing� an� example� of� how� hW�R�

(C)i� can� break� up� into� the� disconnected� product� of�

expectation� values� of� separate� segments.� The� helical� lines� represent� possible� contractions� of� the

currents� J� from� integration� over�  �

⇤
0
 �0�

.
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glue� lump� shows� how� a� particle-antiparticle� pair� can� break� up� as� it� propagates� forward�

in� time.� This� will� appear� naturally� in� the� computation� of� hW�R�

(C)i� where� C� traces� out�

a� spacetime� area.� The� question� that� arises� naturally� is� how� a� purely� spatial� Wilson�

loop� will� show� the� effect� of� string-breaking.� The� glue� lump� tells� us� that,� for� screenable�

representations,� a� segment� of� a� Wilson� loop� can� form� a� state� of� zero� charge.� Therefore�

we� should� expect� that� in� calculating� the� expectation� value� of� a� purely� spatial� Wilson�

loop,� we� will� find� disconnected� terms� where� segments� of� the� loop� combine� with� the�

currents� J� to� give� a� nonzero� expectation� value.� In� other� words,� as� shown� in� Fig.� 5,� the�

expectation� value� of� W�R�

(C)� breaks� up� into� a� number� of� disconnected� diagrams.

This� argument� also� shows� why� we� did� not� see� string-breaking� when� we� calculated�

the� string� tension� in� section� 9.� We� did� not� consider� possible� disconnected� expectation�

values.� And� that� is� the� correct� procedure� for� representations� which� are� not� screenable,�

for� which� we� cannot� have� disconnected� expectation� values.� However,� for� screenable�

representations,� we� must� allow� for� such� a� possibility.� But� since� there� is� a� minimum�

energy� needed� for� a� glue� lump,� we� expect� a� similar� lower� cutoff� on� the� size� of� the�

individual� segments� which� can� have� a� nonzero� expectation� value.� We� do� thus� obtain� a�

string� tension� even� for� screenable� representations� which� should� be� valid� for� separations�

smaller� than� the� string-breaking� distance.

11� Alternate� candidates� for� the� vacuum� wave� function

There� have� been� some� other� proposals� for� candidate� vacuum� wave� functions,� partially� mo-

tivated� by� our� solution.� We� review� two� of� them� here,� commenting� on� similarities� and� dif-

ferences� with� our� solution� (8.9).� A� cautionary� comment� regarding� the� use� of� variational�

calculations� in� a� field� theory� is� also� given.

The� procedure� we� have� described� in� section� 8� gives� a� systematic� expansion� scheme�

for� solving� the� Schr¨�odinger equation.� The� solution� was� then� used� in� arriving� at� the�

formula� for� the� string� tension.� But� there� have� been� a� few� other� suggestions� regarding
the� vacuum� wave� function� for� the� 3d� Yang-Mills� theory. We� will� briefly� review� some� of
them� here.

In� a� couple� of� very� interesting� papers,� Leigh,� Minic� and� Yelnikov� (LMY)� considered�

an� alternate� method� of� solving� the� Schr¨�odinger equation� [66].� The� starting� observation�

was� to� note� that� the� kernel� given� in� the� solution� (8.9)� can� be� expanded� in� powers� of
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As� a� result,� the� exponent� of� the� wave� function� (8.9)� can� be� viewed� as� a� sum� of� terms�

involving� monomials� of� the� form

O�

0
n

=�

Z�

@̄J�

a�(@@̄)�

n@̄J�

a� (11.2)

Based� on� this� observation,� LMY� introduced� a� set� of� operators� [66]�

O�n�

=�

Z�

@̄J�

a�

⇥�

(D@̄)n�

⇤�ab

@̄J�

b�,� D�

ab� =�

c�A

⇡�

@ ��

ab� +� if�

abc�J�

c� (11.3)

(The� operator� D�

ab� was� previously� introduced� in� (10.5).)� The� motivation� for� this� has�

to� do� with� invariance� under� holomorphic� transformations� of� H,� namely,� under� H� !�

V (z)H�V̄� (z̄).� The� operator� D� is� a� covariant� derivative� for� this� and� leads� to� manifest
invariance� for� O�n�

under� the� holomorphic� transformations.� The� next� step� in� [66]� was� to�

postulate� an� ansatz� for� the� wave� function� of� the� form�  �0�

= e�

1�

2�

F�,� with

F� =�

X�

n

c�n�

O�n�

(11.4)

To� evaluate� the� action� of� the� Hamiltonian,� they� assumed� that� O�n�

are� eigenvectors� of� the�

kinetic� operator,

T O�n�

=� (2� +� n)m� O�n�

(11.5)

This� relation� can� actually� be� proved� for� n� =� 0,� 1,� but� there� are� additional� terms� in
general� for� higher� n. Nevertheless,� if� one� neglects� any� correction� to� (11.5),� one� can
solve� the� Schrödinger equation� and� arrive� at� a� wave� function

 �0�

=� exp�

�

� 1

4m

Z
¯�@J� K[L] ¯�@J�

��

,� K[L] =
J�2(4�

p�

L)p
L J1(4�

p�

L)
(11.6)

where� L� =� �D�@̄/m�

2� and� J�1,� J�2�

are� Bessel� functions� of� orders� 1� and� 2� respectively.� Given
the� possibility� of� extra� terms� in� (11.5),� we� may� take� this� as� an� approximate� solution,�

maybe� even� a� good� approximate� solution,� of� the� Schr¨�odinger equation.

It� turns� out� that� the� kernel� K� which� appears� in� (11.6)� is,� despite� appearances,� very�

close� to� the� kernel� in� our� solution� (8.9).� In� Fig.� 6,� we� show� a� comparision� of� the� two�

kernels.�

19�.
19�I� thank� A.� Yelnikov� for� this� comparison� graph.
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2

Figure� 6:� Comparison� of� the� kernel� from� (8.9)� and� (11.6)� for� the� Gaussian� term� of� the� vacuum�

wave� function� as� a� function� of� the� momentum� p

The� value� of� the� string� tension� does� not� change� compared� to� (8.9),� since� the� low�

momentum� limit� of� the� kernel� is� the� same.� However,� LMY� were� able� to� use� this� wave�

function� (11.6)� to� calculate� a� number� of� glueball� masses� as� well.� These� were� obtained�

from� the� two-point� function� for� different� color-singlet� composite� operators,� character-
ized� by� spin,� parity� and� charge� conjugation� properties� (J�

PC�-notation).� The� results,� in
units� of�

p�

��F�

,� are� shown� in� Table� 3.� Again,� there� is� reasonable� agreement� with� the�

State LMY� Calculation Lattice

0�

++ 4.098 4.065� ±� 0.055

0�

++⇤ 5.407 6.18� ±� 0.13

0�

++⇤⇤ 6.716 7.99� ±� 0.22

0�

++⇤⇤⇤ 7.994 9.44� ±� 0.38

0�

�� 6.15 5.91� ±� 0.25

0�

��⇤ 7.46 7.63� ±� 0.37

0�

��⇤⇤ 8.77 8.96� ±� 0.65

2�

++ 6.72 6.88� ±� 0.16

2�

++⇤ 7.99 8.62� ±� 0.38

2�

++⇤⇤ 9.26 9.22� ±� 0.32

2�

+� 8.76 8.04� ±� 0.50�

2�� 8.76 7.89 ± 0.35

2+�⇤ 10.04 9.97 ± 0.91

2��⇤ 10.04 9.46 ± 0.46

Table� 3: Comparison� of� glueball� mass� estimates� from� [66]� and� lattice� calculations� from� [21,� 22].
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lattice� data� of� references� [21,� 22].

Since� two-dimensional� Yang-Mills� theory� leads� to� an� area� law� for� the� Wilson� loop,� it�

has� long� been� suspected� that� a� similar� form� for� the� wave� function� might� be� applicable�

in� higher� dimensions� [67].� The� form� of� the� wave� function� we� find,� namely� (8.9),� is� in�

accordance� with� this.� We� find� F� ⇠� F�

2� for� modes� of� the� field� with� low� momenta,� while
F� ⇠� F� (1/�

p�

�r�

2�)F� at� high� momenta,� in� agreement� with� the� expected� perturbative�

behavior.� An� interpolation� between� these� two� limiting� behaviors,� different� from� our�

result� (8.9),� was� suggested� by� Samuel� [68]� and� used� to� estimate� the� 0�

++� glueball� mass.�

Essentially� the� same� form� (with� a� small� variation)� was� suggested� more� recently� as� a

candidate� variational� ansatz� for� the� wave� function� [69].� Specifically� it� reads�  �0�

= e�

1�

2�

F ,
with

F� = �1

2

Z�

x,y

F�

a�

ij
(x)�

✓
1p�

�D�

2 � ��0�

+ M�

2�

◆ab

x,y

F�

b�

ij
(y) (11.7)

Here� D�

2� is� the� square� of� the� covariant� derivative� in� the� adjoint� representation,� ��0�

is� the�

lowest� eigenvalue� of� �D�

2� and� M� is� a� parameter� with� the� dimension� of� mass,� treated�

as� a� variational� parameter.� A� number� of� quantities� can� be� calculated� after� fixing� M� by�

minimizing� the� ground� state� energy.� In� [70],� Monte� Carlo� simulations� of� the� kernel� in�

a� Gaussian� ansatz� for� the� wave� function� were� carried� out� and� then� compared� against�

kernels� in� our� wave� function� (8.9)� and� the� variational� ansatz� (11.7),� see� Fig.� 7.� For�

the� two� cases,� the� kernel� for� the� quadratic� Gaussian� part� may� be� written� in� terms� of�

momentum� variable� p� as

!�KKN =
1

e�

2�

p�

2

p�

p�

2� + m�

2� + m�

,� (from� (8.9)�

!�GO =
1

e�

2

p�

2

p�

p�

2� + M2�

(from� [69])� (11.8)

The� fit� to� the� Monte� Carlo� data� is� designated� as� !�MC�

.� From� the� figure,� it� seems� clear
that� both� agree� rather� well� with� the� simulations.

The� close� match� between� the� wave� function� we� calculated,� namely� (8.9),� and� the�

other� candidate� functionals� is� rather� nice,� but� the� variational� approach� comes� with� a�

word� of� caution.� The� exact� vacuum� wave� function� has� zero� energy,� for� reasons� of�

Lorentz� invariance,� as� already� explained� in� the� Introduction.� For� the� variational� ap-
proaches,� one� calculates� the� expectation� value� of� the� energy� and� minimizes� it� with�

respect� to� the� variational� parameters.� This� is� almost� always� nonzero,� unless� one� is� so�

lucky� as� to� hit� on� the� exact� vacuum� functional� as� the� guess� for� the� variational� ansatz.
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FIG.2.Cumulativedatafor ω MC vs. � p 2 inphysicalunits,onlattices
ofextensions L � = � 16 , 24 , 32 , 40 � , � 48,andEuclideanlatticecouplings
β E = � 6 , 9 � , 12.Thecurveslabeled“GOfit”and“KKNfit”(thereare
actuallytwocurves,difficulttodistinguishfromoneanoth er),are
thetheoreticalvaluesfor ω GO ( � p � 2 � ) � ,and ω KKN ( � p � 2 � ) � ,usingtheparam-

etersof m and g � 2 � inTableI.Thelinelabeled“Coulombgauge”is
obtainedfromtheansatzfortheCoulombgaugevacuumwavefu nc-
tional Ψ CG [ � A � ] � (eq.51)asdescribedinSectionIVB.

Withtheparametersobtainedfromthefit,wecanusedi-
mensionalreduction(naively,intheKKNcase,asexplained �
insectionIIC)tocomputethestringtension,andcompareit �
withourinputvalueof(440MeV) � 2 � .Dimensionalreduction �
gives

σ = mg 2 ⇥

8
<

:

3
16 GO

3
8 KKN

. � (81)

Theparameters � g � 2 , � m � fromthebestfit,and
p

σ fromobtained
dimensionalreduction,intheGOandKKNcasesareshown �
inTableI.Thevaluesof

p
σ shouldbecomparedwiththe

givenvalueof
p

σ = � 0 � . � 44GeV,whichwasusedtosetthe

latticespacingateach β E .TheGOresultiswithin5%ofthat
value,andtheKKNresultisalmostexactlyright.

variant � m � g � 2 �
p �

σ from
dimlred.

GO � 0.771 � 1.465 � 0.460
KKN � 0.420 � 1.237 � 0.441

TABLEI.Theparameters m , � g � 2 fortheGOandKKNwavefunction-
als,determinedfromabestfittotheabelianplanewavedatai nFig.
2,with

p �
σ derivedfromdimensionalreduction.Allvaluesarein

unitsofGeV.

Theproductof � m and g � 2 � ,ineithertheGOorKKNap-
proach,determinesthestringtension σ ineitherapproach.

Thedimensionlessratio g � 2 � / � m isanoutputoftheKKNap-
proach,whereitispredictedtobe � π .If m and g 2 arede-

terminedfromabestfittothedata,thentheactualratiois
g � 2 � / � m = 2 . � 95.Itisnotclear,atthisstage,whetherthissmall

discrepancyissignificant,orshouldjustbeattributedtod � evi-
ationsfromthecontinuumscalingduetoafinitelatticespac -
ing.

B.TestsoftheCoulombgaugewavefunctional

Totestthewavefunctionaleq.(51),wefirsthavetotrans-
ferittothelattice.Webeginbyrescalingthegaugefield
A i ��! � A � i � / � g � sothataprefactor � g � � � 2 � appearsintheexponent

ofeq.(51),and � A � i � ( � x � ) � hasengineeringdimensionofamass.
Withtheseconventions,theFouriertransformedkernel � ω ( � k � )
andcurvature χ ( � k � ) � alsohavedimensionsofmass.

Nextwelatticizeasineq.(70)andrescalethegaugefield
againtoobtainthedimensionlessfield � 8 �A ck ( ˆ �x � ) ⌘ aA ck ( � a � ˆ �x ) � .For

Coulombgaugefixedconnections,itis,inprinciple,impor-
tanttousetheso-calledmidpointrulewhenextractingthe �
gaugefieldsfromthelatticelinks U k :

U k � ( � ˆ �x � )= a 0k ( � ˆ �x ) + ia
c
k ( � ˆ �x ) � σ c

= � � �A � ck ( � ˆ �x + ˆk � / � 2 � )= � � 2 � a ck ( � ˆ �x ) · η ( � a 0k ( � ˆ �x � )) . (82)
Ascomparedtosimplerprescriptionssuchaseq.(72),we
havetwomodifications:

1.Theshiftintheargumentonthelhsensuresthatthe
resultinglatticeconnectionisexactlylatticetransvers � al �
ifthelinkfieldsare,

∇ � · �A ( � ˆ �x � )= ∑ �
j

h
�A � j � ( � ˆ �x + ˆj � ) � � �A � j � ( � ˆ �x ) �

i �
= 0 � .

AfterFouriertransformation,theshiftleadstoaphase �
factorintheconnectionwhichaffectsgeneralobserv-
ablesbuthappenstodropoutinthe(quadratic)expo-
nent � R � [ � A � ] � testedhere.

8 Throughoutthissection,wewilldenotedimensionlesslatt � iceobjectswith �
acaret.

Figure� 7:� Comparison� of� cumulative� data� for� !MC versus� p�

2 on� lattices� of� extensions� L� =�

16,� 24,� 32,� 40,� 48� and� Euclidean� lattice� couplings� ��E =� 6,� 9,� 12. The� curve� labeled� “GO� fit”� refers

to� the� ansatz� in� [69]� while the curve labeled “KKN-fit” refers to our result from (8.9). This

graph� is� from� [70].

Recall� that� the� variational� estimate� is� an� upper� bound� on� the� true� ground� state� en-
ergy,� so� we� generally� have� E�var,min�

>� 0.� One� could� try� to� subtract� this� out� by� using
H � E�var,min as� our� notion� of� a� “normally� ordered”� Hamiltonian.� While� this� will� give
(H � E�var,min) �var�

=� 0,� for� the� true� ground� state� we� will� get

(H � Evar,min�

) �0�

= �E�var,min �0�

(11.9)

This� is� problematic� regarding� Lorentz� invariance. So� H� �� Evar,min cannot� be� taken� to
be� the� true� normally-ordered� Hamiltonian� to� be� used� in� the� Schr¨�odinger equation.� So,�

basically,� this� means� that� we� have� to� live� with� a� nonzero� vacuum� energy� in� the� varia-
tional� approach.� Then� the� question� is:� Is� this� acceptable?� When� we� set� up� a� relativistic�

field� theory,� the� aim� is� to� solve� for� the� vacuum� state� preserving� all� the� isometries� of�

the� spacetime� on� which� it� is� defined,� namely,� full� Poincaré� invariance� in� flat� space.� So,�

with� variational� ans¨�atze, there� is� a� contradiction� between� the� premise� and� the� end� re-
sult.� (One� cannot� view� E�var,min�

as� a� cosmological� constant� or� anything� of� that� sort;� that
would� require� a� spacetime� with� a� different� group� of� isometries,� such� as� the� de� Sitter� or�

anti-de� Sitter� space.� This� would� again� imply� a� discord� between� the� starting� spacetime�

and� the� one� consistent� with� the� final� results.)� This� is� not� to� say� the� variational� approach�

is� not� useful,� but� it� should� be� used� with� caution.
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12� A� short� aside� on� the� Chern-Simons� theory

In� this� section,� we� consider� the� pure� Chern-Simons� theory.� The� main� motivation� is� to� derive�

the� finite� renormalization� of� the� level� number� k� as� k� !� k� +� c�A�

,� entirely� within� the� Hamil-

tonian� analysis.� A� second� useful� result� is� that� the� factor� e�

2c�A�

S�wzw�

(H)� in� the� measure� for� the�

inner� product� of� wave� functions� is� changed� to� e�

(k+2c�A�

)S�wzw�

(H)�.� Both� these� results� will� be�

useful� in� considerations� related� to� supersymmetric� theories� in� section� 13.

We� will� now� consider� some� features� in� the� Schr¨�odinger quantization� of� the� pure� Chern-
Simons� theory.� This� is� primarily� meant� as� a� prelude� to� the� Yang-Mills-Chern-Simons�

theory� as� well� as� to� the� discussion� of� some� supersymmetric� extensions.

The� Chern-Simons� (CS)� action� is� given� by

S�CS = � k

4⇡

Z�

d�

3�x� Tr�

✓�

A�µ�

@�⌫�

A�↵�

+�

2�

3�

A�µ�

A�⌫�

A�↵�

◆�

✏�

µ⌫↵ (12.1)

The� action� S�CS�

is� the� integral� of� the� Chern-Simons� (CS)� 3-form.� Although� it� had� been�

known� in� the� mathematics� literature� in� the� context� of� secondary� characteristic� classes,�

the� CS� 3-form� was� initially� introduced� in� physics� literature� as� a� possible� mass� term� for�

gauge� fields� in� three� dimensions� [71,� 72],� see� the� section� on� the� YMCS� theory.� The�

parameter� k� is� known� as� the� level� number� of� the� Chern-Simons� term.

Under� a� gauge� transformation,� the� CS� action� changes� as

CS(A�

g�)� =� CS(A)� � k

4⇡

Z�

d�

⇥�

Tr(g�

�1�dg� A)�

⇤�

� k

12⇡

Z�

Tr(g�

�1�dg)�

3� (12.2)

For� transformations� g� such� that� g� !� 1� at� the� spacetime� boundary,� we� see� that� the� total�

derivative� will� integrate� to� zero.� The� boundary� condition� means� that� g(x)� is� equivalent�

to� a� map� from� S�

3� to� G.� Such� maps� can� be� homotopically� nontrivial� since� ⇧�3�

(G)� is� Z� for�

a� simple� Lie� group,� see� (B3).� The� last� term� is� then� 2⇡� times� the� winding� number� of� this�

map.� For� the� invariance� of� the� theory� under� all� such� gauge� transformations,� we� need�

invariance� of� e�

iS�.� This� requires� that� the� level� number� k� should� be� an� integer.� (There� are�

other� related� ways� to� understand� the� quantization� of� the� level� number,� see� for� example�

[73].� An� argument� which� is� entirely� in� the� Hamiltonian� framework� is� also� given� below.)

The� action� (12.1)� is� linear� in� the� time-derivatives� of� A� because� of� the� ✏-tensor,� and�

hence� the� Hamiltonian� defined� by� the� usual� Legendre� transformation� is� identically� zero.�

Another� way� to� see� this� result� is� to� note� that� since� S�CS�

is� the� integral� of� a� differential�

form,� it� is� independent� of� the� metric� and� hence� the� energy-momentum� tensor� defined
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by� the� variation� of� the� action� with� respect� to� the� metric� is� zero.� For� the� quantization�

of� the� theory,� the� key� ingredients� are� thus� the� canonical� structure� and� the� constraint� of�

Gauss� law.� The� term� in� the� action� with� the� time-derivative� of� the� gauge� field� is� given� by

S�CS =� � k

8⇡

Z�

dt d�

2�x ✏ij�A�

a�

i
˙�A�

a

j
+ · · ·

=� �i�

k

4⇡

Z�

dtd�

2�x�

⇣�

A�

a ˙̄A�

a � ¯�A�

a ˙�A�

a

⌘�

(12.3)

The� simplest� way� to� quantize� this� theory� is� to� use� coherent� states� or� geometric� quanti-
zation� in� the� holomorphic� polarization.� The� first� step� is� thus� to� read� off� the� canonical�

or� symplectic� structure� of� the� theory� from� (12.3)� as

↵�symp = � k

8⇡

Z
d�

2�x ✏ij�A�

a

i
�Aa

j
= �i�

k

4⇡�

Z�

d�

2�x�

��

A�

a�� ¯�A�

a� �� Ā�

a��A�

a�

�

!�symp = �↵ =
k

4⇡

Z�

Tr(�A�i�

�A�j)dx�

i� ^� dx�

j = �i�

k

2⇡

Z�

d�

2�x��A�

a� ��

¯�A�

a (12.4)

Here� ↵�symp�

is� the� canonical� one-form� and� !�symp�

is� the� canonical� two-form.� As� in� Ap-
pendix� B,� we� use� �� to� denote� the� exterior� derivative� on� the� space� of� fields.� Notice� that�

the� expression� for� the� canonical� two-form� !�symp�

coincides� with� k� times� the� two-form� ⌦�

defined� in� Appendix� B,� equation� (B6).� One� of� the� requirements� of� consistent� quantiza-
tion� in� the� Hamiltonian� framework� is� that� the� integral� of� !�symp�

over� closed� two-surfaces�

in� the� phase� space� should� be� 2⇡� times� an� integer.� (This� is� the� generalization� of� the�

usual� Dirac� quantization� condition� for� magnetic� monopoles� applied� in� the� context� of�

geometric� quantization.)� We� have� already� seen� in� Appendix� B� that� the� integral� of� ⌦� is�

2⇡� times� the� integer� ⌫.� Thus,� in� the� present� case,� we� see� that� consistent� quantization�

requires� that� the� level� number� k� should� be� an� integer.� A� set� of� configurations,� which�

form� a� somewhat� simpler� case� than� the� ones� discussed� in� Appendix� B,� is� the� following.�

We� write

A = ⌧ g�

�1�dg� =� ⌧� g�

�1�@�i�

gdx�

i�,� g = g(x�

1�, x�

2�,��)� (12.5)

The� parameters� ⌧� and� �� define� a� two-surface� in� the� space� of� potentials.� We� take� 0� �

⌧,��� � 1.� Further� we� take� g(x�

1�, x�

2�,��)� to� obey� the� boundary� conditions

g(x�

1�, x�

2�,��)� =� 1� at� �� =� 0,� 1� (12.6)

We� then� see� that� A� =� 0� on� the� three� sides� of� the� square� at� ⌧� =� 0,� �� =� 0,� 1.� At� ⌧� =� 1,�

we� have� a� pure� gauge� A� =� g�

�1�dg.� Since� A� is� gauge-equivalent� to� the� vacuum� on� the
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boundary� of� the� square,� topologically,� we� can� view� (12.5)� as� defining� a� closed� two-
surface� in� A/G�⇤�

.� From� (12.5),

�A� =� d⌧� dx�

i�g�

�1�@�i�

g� +� ⌧� d�dx�

i�@���

(g�

�1�@�i�

g)� (12.7)

Using� this�

20�

Z�

!�symp�

=
k

4⇡

Z
Tr(�A� ^� �A)

=
k

4⇡

Z
d⌧� ⌧� dx�

i�d�dx�

j� Tr�

⇥�

(g�

�1�@�i�

g)@���

(g�

�1�@�j�

g) + @���

(g�

�1�@�i�

g)(g�

�1�@�jg)�

⇤

=
k

4⇡
(�2)�

Z�

d⌧� ⌧� d�dx�

i�dx�

j� Tr�

⇥�

@���

(g�

�1�@�i�

g)(g�

�1�@�j�

g)�

⇤

=� � k�

4⇡

2

3

Z�

d⌧� ⌧� dx�

µ�dx�

⌫�dx�

↵� Tr�

⇥�

@�µ�

(g�

�1�@�⌫�

g)(g�

�1�@�↵�

g)�

⇤

=
k

12⇡

Z�

Tr�

⇥�

(g�

�1�dg)�

3�

⇤�

=� 2⇡k� Q[g]� (12.8)

Q[g] =
1

24⇡2�

Z�

Tr�

⇥�

(g�

�1�dg)�

3�

⇤

In� going� from� the� third� line� of� this� equation� to� the� fourth� line,� we� have� treated� �� on� an�

equal� footing� with� the� coordinates,� so� we� can� write� it� as� a� differential� form.� Also� Q[g]� in�

this� equation� is� the� winding� number� of� the� map� S�

3� !� G,� and� is� an� integer.� We� thus� see�

that� k� must� be� an� integer� to� satisfy� the� condition� of� the� integral� of� !�symp�

being� 2⇡� times�

an� integer.� From� these� arguments,� we� see� how� the� quantization� of� the� level� number�

emerges� in� a� purely� Hamiltonian� framework.

We� now� turn� to� setting� up� the� quantization� of� the� theory.� There� is� a� large� body�

of� literature� on� this� topic;� some� of� the� early� papers� are� given� in� [74,� 75].� Geometric�

quantization� in� general� is� discussed� in� many� papers� and� books� [76].� Specifically� for� the�

Chern-Simons� theory,� see� [77].� Our� discussion� follows� closely� [15],� see� also� [12,� 78]�

for� the� use� of� the� Schr¨�odinger representation.

We� start� by� noting� that� by� inversion� of� !�symp�

or� by� constructing� Hamiltonian� vector�

fields� corresponding� to� A� and� Ā,� the� commutation� rules� can� be� identified� as

[A�

a�(x), A�

b�(y)]� =� [�Ā�

a(x),� Ā�

b(y)]� =� 0,� [A�

a�(x),� Ā�

b�(y)]� =
2⇡

k
��

ab���

(2)�(x� �� y)� (12.9)

Under� a� canonical� transformation,� ↵�symp�

changes� as� ↵�symp�

!� ↵�symp�

+� �f�,� for� some�

function� f� on� the� phase� space.� Equivalently,� the� action� changes� as� S� !� S� +�

R�

ḟ�.� The
20�Wedge� products� are� left� implicit� in� this� equation� to� avoid� clutter� of� notation.
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pre-quantum� wave� functions� must� correspondingly� transform� as�

 ! e�

if�  � (12.10)

We� can� define� covariant� derivatives� of�  � on� the� phase� space� as�


�

�Aa�

�� i↵�A�

��

 � =�


�

�A�

a�

+�

k

4⇡�

¯�A�

a

��

 �


�

�Ā�

a
�� i↵�Ā�

��

 � =�


�

�Ā�

a
� k�

4⇡�

A�

a

��

 � (12.11)

The� wave� functions� should� only� depend� on� half� of� the� phase� space� degrees� of� freedom.�

They� are� obtained� by� restricting� the� pre-quantum� wave� functions� to� those� satisfying� a
polarization� condition.� The� holomorphic� polarization� is� defined� by� the� condition�

�

�

�A�

a
+�

k�

4⇡�

Ā�

a

��

 � =� 0� (12.12)

The� solution� to� this� equation� is� obviously� of� the� form

 = C e��

k
4⇡

R�

A�

a
Ā�

a
�(Ā) = C e�

k
2⇡

R�

Tr(AĀ)��(Ā)� (12.13)

where� C� is� a� normalization� constant.

The� commutation� rules� (12.9)� can� be� implemented� on� �(�

¯�A)� as

A�

a�(x)��(�Ā) =�

2⇡�

k

��

�Ā�

a(x)
(12.14)

The� operator� corresponding� to�

¯�A�

a is� diagonal� in� this� basis,� with� eigenvalue� Ā�

a�(x).�

21

The� remaining� step� is� to� impose� the� Gauss� law� on� the� wave� functions� to� select� out� the�

physical� states.� In� the� absence� of� any� charges,� this� will� eliminate� all� wave� functions,� ex-
cept� for� the� one� for� the� vacuum� state.� The� theory� is� thus� trivial� with� a� one-dimensional�

Hilbert� space� corresponding� to� the� vacuum.� We� will� therefore� consider� the� theory� with�

a� number� of� point� charges� added.� This� situation� corresponds� to� the� action

S = S�CS�

+�

X�

r

(T�

a�)�r�

⇥�

A�

a�

0
(x�r�

) + A�

a�(x�r�

) ˙�zr�

+�

¯�A�

a(x�r�

)�

˙̄
�zr�

⇤�

(12.15)

Here� x�r�

=� (z�r�

, ¯�zr�

)� correspond� to� the� positions� of� the� particles,� T�

a� are� matrices� for� the
basis� of� the� Lie� algebra� in� the� representations� corresponding� to� the� charged� particles.
The� equation� of� motion� for� A�

a�

0
is� then

k

8⇡
F�

a�

ij
✏�

ij� +�

X�

r

(T�

a�)�r�

��

(2)�(x�x�r�

) = i
k�

2⇡�

⇥�

� ¯�DA� +� @Ā�

⇤a�

+�

X�

r

(T�

a�)�r�

��

(2)�(x�x�r�

)� =� 0� (12.16)

21�These� results� can� be� obtained� in� terms� of� prequantum� operators� acting� on� wave� functions� of� the� form� (12.13),

and� reducing� to� action� on� �( ¯�A);� see� [76]. Alternatively,� one� can� check� that� (12.14)� gives� the� correct� commutation

rule� and� is� the� adjoint� of ¯�A�

a� with� the� given� inner� product� for� �(Ā).�
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The� Gauss� law� condition� on� the� wave� functions� become�

"�✓
D̄

��

�Ā

◆�a

� k

2⇡�

@Ā�

a +�

X�

r

(iT�

a�)�r�

��

(2)�(x � x�r�

)�

#�

� = 0 (12.17)

The� wave� function� �,� being� a� function� of� Ā,� can� be� equivalently� taken� to� be� a� function
of� M�

†�.� Notice� that� under� M�

†� ! M�

†�(1� +� ✓),� Ā ! Ā + D̄✓,� so� that

���

�✓�

a
= ��D̄

✓
�

��Ā

◆�

� (12.18)

The� Gauss� law� condition� is� thus

���

�✓�

a
=�

"�

��

k

2⇡�

@Ā�

a +�

X�

r

(iT�

a�)�r�

��

(2)�(x � x�r�

)�

#�

� (12.19)

To� solve� this� equation,� we� note� that� we� have� already� seen� in� section� 5 that� the WZW
action� defined� in� (5.21)� gives�

S�wzw(M�

†�(1� +� ✓))� �� S�wzw�

(M�

†�)� =� � 1

⇡

Z�

Tr�

��

M�

†�1 ¯�@M�

†� @✓�

�

=
1

⇡

Z�

Tr�

��

@�Ā ✓�

��

= ��

1

2⇡

Z�

✓�

a� @�

¯�A�

a (12.20)

This� is� basically� (5.23)� and� follows from the Polyakov-Wiegmann identity given in
(5.22).� Further� notice� that

�M †�1

�✓a
=� (iT�

a�)M�

†�1�,
�M�

†

�✓�

a�

= M�

†�(�iT�

a�)� (12.21)

Using� these� results,� the� solution� to� the� Gauss� law� (12.19)� can� be� worked� out� as

� = N({x�r�

}) e�

kS�wzw�

(M�

†�

)�

Y�

⌦r

��

M�

†�1�(x�r�

)�

��

(12.22)

The� prefactor� N� can� depend� on� the� coordinates� of� the� charged� particles� but� it� is� inde-
pendent� of� Ā.

Since� we� used� the� holomorphic� polarization,� the� normalization� should� be� done� by�

integrating�  �

⇤� � with� the� volume� for� the� phase� space.� For� the� wave� functions� obeying�

the� Gauss� law,� the� volume� has� to� be� reduced� to� the� gauge-invariant� subspace.� Notice�

that� for� this� theory� the� phase� space� is� the� space� of� the� gauge� potentials,� the� space�

A� mentioned� in� Appendix� B;� this� is� evident� from� the� canonical� two-form� in� (12.4).�

Therefore� the� phase� volume� modulo� gauge� transformations� is� just� the� volume� element
for� A/G�⇤�

which� was� obtained� in� section� 5� as

dµ(C) =� N� dµ(H)� e�

2 c�AS�wzw(H)�, N� =�


det�

0�(�@@̄)�R�

d�

2�x

��dim� G

(12.23)
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The� normalization� condition� for� the� wave� function� �� using� (12.13)� and� this� volume�

element� is

|N({x�r�

})|�

2� N�

Z�

dµ(H)� e�

(k+2� c�A)S�wzw(H)�

��
Y

⌦r

��

M�

†�1�(x�r�

)�

����2�

=� 1� (12.24)

where� we� combined� the� terms� involving� the� level� number� k� as

kS�wzw(M)� +� kS�wzw�

(M�

†�) +�

k

⇡�

Z�

Tr(�ĀA)� =� S�wzw�

(H)� (12.25)

This� is� again� done� by� use� of� the� PW� identity. The� relevant� integration� measure� now
involves e�

(k+2 c�A)S�wzw(H)�.

Once� we� introduce� charges,� there� is� one� more� ingredient� that� comes� into� play,�

namely,� the� Schr¨�odinger equation,� because� the� Hamiltonian� is� no� longer� zero.� From�

the� action� (12.15),� the� Hamiltonian,� as� an� opertaor� on� �,� is� seen� to� be

H = ��

X�

r

(T�

a�)�r�

�

˙�zr�

2⇡�

k

�

�Ā�

a
+ ˙�¯�zr�

Ā�

a

��

(12.26)

The� wave� function� �� must� obey� the� Schr¨�odinger equation� with� this� Hamiltonian.� This�

will� determine� the� x�r�

-dependence� of� the� coefficient� N�({x�r�

})� in� (12.22).� However,� there�

is� a� subtlety� that� arises� in� solving� the� Schr¨�odinger equation� which� leads� to� a� finite� renor-
malization� of� the� level� number� k.� (This� finite� renormalization� of� k� has� been� obtained� in�

terms� of� perturbation� theory� for� the� CS� theory� using� Feynman� diagrams� [79],� it� also� ap-
pears� in� the� context� of� relating� Chern-Simons� theory� and� conformal� field� theory� [74].)�

It� is� interesting� to� see� how� this� finite� renormalization� arises� in� the� Schr¨�odinger repre-
sentation,� so� we� will� go� over� this� in� some� detail.� For� this� it� is� sufficient� to� consider� two�

charged� particles� with� opposite� charges,� i.e.,� in� conjugate� representations.� Since� (�T�

a�)�

T�

are� the� matrices� corresponding� to� T�

a� in� the� conjugate� representation,� the� solution� for� ��

takes� the� form

��ij�

= N(x�1�

, x�2�

) e�

kS�wzw(M�

†�

)�

��

M�

†�1�(x�1�

)M�

†�(x�2�

)�

��

ij�

(12.27)

The� relations� (12.21)� can� be� used� to� verify� that� this� is� indeed� a� solution� to� the� Gauss�

law� (12.19).� The� Schr¨�odinger equation� then� takes� the� form

i�

@��

@t�

=� H�

=� (�T�

a�)�

�

˙�z1

2⇡

k

�

�Ā�

a(x�1�

)�

+ ˙�¯�z1
¯�A�

a(x�1�

)�

��

�+�

�

˙�z2

2⇡

k

�

�Ā�

a(x�2�

)�

+ ˙�¯�z2�

Ā�

a�(x�2�

)�

��

�T�

a

(12.28)
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Using� �� from� (12.27)� and� equating� terms� proportional� to� ˙�z1,� we� get

@� log� N

@z�1

M�

†�1�(1)M�

†�(2) +�

@M�

†�1�(1)

@z�1

M�

†�(2)�

=
2⇡�

k
(iT�

a�)e�

�kS�wzw(M�

†�

)�

�

�Ā�

a(1)

⇣�

M�

†�1�(1)M�

†�(2)e�

kS�wzw�

(M�

†�

)�

⌘�

(12.29)

Towards� further� simplification,� notice� that� since� Ā = M�

†�1�@̄M�

†�,� we� have

��Ā� = @̄(M�

†�1��M�

†�) + Ā (M�

†�1��M�

†�) � (M�

†�1��M�

†�) Ā

�M�

†�� ¯�AM�

†�1� = ¯�@(M�

†��M�

†�1�)� (12.30)

From� this� we� can� identify�

�M�

†�1�(x)

�Ā�

a(y)�

=� �M�

†�1�(x)
1

⇡(x � y)
M�

†�(y)(�iT�

a�)M�

†�1�(y)

�M�

†�(x)

�Ā�

a(y)�

=
1�

⇡(x � y)
M�

†�(y)(�iT�

a�)M�

†�1�(y) M�

†�(x)� (12.31)

We� see� from� the� first� of� these� equations� that� when� we� take� the� functional� derivative�

of� M�

†�1�(1)� with� respect� to� Ā�

a(x�1�

),� we� will� get� a� singular� term� which� is� proportional� to�

c�R�

,� the� quadratic� Casimir� value� for� the� representation� R� corresponding� to� the� particles.�

Therefore� we� need� a� regularization� for� the� right� hand� side� of� (12.29).� We� will� use� a
point-splitting� regularization� defined� by� the� replacement� [15]�

1

k

�

�Ā�

a(x�1�

)
(iT�

a��)� !�

1

�


�

�Ā�

a(x�1�

)�

(iT�

a��) +
c�R�

�

⇡(x�1�

� y)�

��

y!x�1

(12.32)

where� � is� a� parameter� to� be� determined.� The� regularized� version� of� (12.29)� is� thus

@� log� N
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�Ā�
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†�1�(1)M�

†�(2)e�

kS�wzw(M�
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)�

⌘

+�

c�R

⇡(x�1�

� y)�

M�

†�1�(1)M�

†�(2)�

��

y!x�1

(12.33)

For� the� functional� derivative� of� the� WZW� action� we� have� the� result
�S�wzw(M�

†�)�

�Ā�

a
=

1

2⇡�

(M�

†�1�@M�

†�)�

a�,� (12.34)

Thus,� using� (12.31)� for� the� functional� derivatives� of� M�

† and� M�

†�1� and� the� result
(12.34),� we� can� reduce� (12.33)� to� the� form

�

2⇡�

(@�1 log� N�)M�

†�1�(1)M�

†�(2) +�

� k

2⇡
@M�

†�1�(1)M�
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=�

c�A�

2⇡�

@M�

†�1�(1)M�

†�(2)� � c�R

⇡(x�1�

� x2�

)�

M�

†�1�(1)M�

†�(2)� (12.35)

This� equation� is� satisfied� if

 = k + c�A�

,� N� = C�

1

(x�1�

� x�2�

)�

2c�R/(k+c�A�

)
(12.36)

where� C� is� a� constant.� This� is� the� solution� of� the� Schr¨�odinger equation� for� the� two-
particle� case.� We� see� that� the� regularization� of� the� Schr¨�odinger operator� requires� that�

k� should� be� renormalized� to� � =� k� +� c�A�

.� The� solution� also� identifies� the� x-dependence�

of� N�.� We� emphasize� that� x�1�

and� x�2�

in� the� expression� for� N� are� the� holomorphic� coordi-
nates.� The� solution� N� is� the� chiral� block� for� two-point� function� of� the� WZW� theory� with�

level� number� k.

While� the� CS� theory� by� itself� is� not� germane� to� the� discussion� of� the� YMCS� theory,�

the� renormalization� of� k� will� be� important� for� the� supersymmetric� cases.� Our� main�

purpose� here� was� to� show� how� this� happens� in� the� Hamiltonian� framework,� in� the� spirit�

of� staying� within� the� Schr¨�odinger representation.

We� will� close� this� section� with� a� couple� of� useful� remarks.� First� of� all,� we� note� that�

the symplectic form� !�symp is� of� the� K¨�ahler type,� with� a� K¨�ahler potential� K� =�

k

2⇡
AaĀa.

Thus� the� space� of� gauge� potentials� admits� a� K¨�ahler structure;� effectively� the� complex�

structure� of� using� complex� coordinates� in� the� two-dimensional� space� R�

2� is� being� lifted�

to� the� space� of� potentials.� The� K¨�ahler potential� also� enters� in� the� wave� function� (12.13)�

as� expected� for� quantization� in� the� holomorphic� polarization.

We� have� considered� the� Schr¨�odinger equation� for� the� case� of� two� charged� particles.�

Along� similar� lines,� one� can� consider� the� Schr¨�odinger equation� for� multiple� charges.�

This� will� again� reduce� to� an� equation� for� the� prefactor� N�({x�r�

})� in� (� 12.22).� This� is�

the� Knizhnik-Zamolodchikov� (KZ)� equation� familiar� from� conformal� field� theory.� The�

solutions� then� show� that� N� is� the� chiral� block� of� the� appropriate� correlator� of� the� cor-
responding� conformal� field� theory,� which� is� the� WZW� theory� of� level� number� k.

13� Extensions� of� the� Yang-Mills� theory� and� some� comments

We� first� stress� the� role� of� the� integration� measure� in� the� inner� product� in� generating� a� mass�

gap� by� giving� a� general� intuitive� argument� for� it.� We� then� consider� the� quantization� of� the�

Yang-Mills-Chern-Simons� theory� obtaining� the� leading� term� of� the� vacuum� wave� function.�

The� concordance� between� the� integration� measure� and� the� mass� gap� is� again� verified� ex-

plicitly.� An� argument� for� an� indirect� calculation� of� the� integration� measure� is� given.� It� is
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used� to� get� some� features� of� supersymmetric� gauge� theories.� Explicit� quantization� of� the�

supersymmetric� theories� to� verify� these� expectations� is� also� carried� out.

13.1� An� intuitive� argument� for� the� mass� gap

The� emergence� of� the� mass� gap� m� =� (e�

2�c�A�

/2⇡)� is� an� important� feature� which� allowed�

for� the� expansion� scheme� for� solving� the� Schr¨�odinger equation.� It� is� therefore� useful�

to� understand� this,� not� just� in� technical� terms,� but� in� some� intuitive� way.� The� key�

ingredient� for� this� is� the� measure� of� integration� (5.31).� In� some� ways,� its� role� is� already�

evident� in� how� the� propagator� mass� emerged� in� section� 7.� To� bring� out� the� connection�

of� the� volume� element� (5.31)� and� the� mass� gap,� consider� the� Hamiltonian� of� the� theory�

written� simply� as

H =�

1

2e2�

Z� ⇥�

(E�

a�)�

2� + (B�

a�)�

2�

⇤�

(13.1)

There� is� a� simple� argument� based� on� the� uncertainty� principle� which� helps� us� to� get� a�

sense� of� the� low� lying� excitations� of� this� Hamiltonian.� The� basic� commutation� rule� we�

need� is� [Ea

i
, A�

b

j
] = �i��ij�

��

ab�. Let� us� first� consider� the� Abelian� case� of� electrodynamics,
with� B� =� r� ⇥� A.� In� terms� of� components� E�k�

and� B�k�

of� wave� vector� (or� momentum)
k,� the� basic� commutation� rule� becomes� [E�i�

, B] = �e�

2�✏�ij�

k�j�

,� so� that� the� uncertainty� prin-
ciple� reads� �E�k �B�k�

⇠� e�

2�k,� where� �E�k�

,� �B�k�

stand� for� the� root� mean� square� of� the
fluctuations� of� the� electric� field� E�k�

and� the� magnetic� field� B�k�

.� The� expectation� value� of
the� Hamiltonian� for� a� state� with� wave� function�  � with� momentum� k� is� then

E� =�

1

2e�

2�

h �k�

|�

⇥�

E�

2� + B�

2�

⇤�

| �k�

i =
1

2e�

2�

⇥
(�E2

k
)� +� (�B�

2

k
)�

⇤

⇠ 1

2

✓
e�

2�k�

2�

�B�

2

k

+�

�B2

k

e�

2

◆
(13.2)

For� low� lying� states,� we� must� minimize� this� E� with� respect� to� �B�

2�,� which� gives� �B�

2

k,min

⇠ e�

2�k,� giving� E� ⇠� k.� This� corresponds� to� the� familiar� photon� of� the� Abelian� theory.

For� the� nonabelian� theory,� this� is� inadequate� since� the� expectation� value� hHi� =R�

 �

⇤� H� � involves� the� factor� e�

2 c�AS�wzw(H)�.� In� fact,

hHi� ⇠�

1

2e�

2�

Z�

dµ(H)e�

2 c�A S�wzw(H) (E2

k
+ B�

2

k
) (13.3)

In� terms� of� B,� the� behavior� of� the� WZW� action� is

2 c�A�

S�wzw(H) ⇡ � c�A�

2 ⇡

Z�

k

B��k�

✓�

1

k�

2

◆�

B�k�

+� ·� ·� ·� (13.4)
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We� see� that,� in� the� integration� measure� in� (13.3),� we� have� a� Gaussian� distribution� for� B

with� a� width� of��B2

k
⇡� ⇡k�

2�/c�A�

,� for� small� values� of� k.� Evidently,� this� Gaussian� dominates
near� small� k,� since� it� becomes� narrower� and� narrower� as� k� !� 0,� giving��B�

2

k
⇠ k�

2�(⇡/c�A�

).
Another� way� to� see� this� is� to� notice� that� B�

2� ⇠� @̄J� @̄J� and� the� currents� in� the� WZW� theory�

obey

hJ�

a�(x)J�

b�(y)i ⇠ ��

ab�@�

1

(x � y)�

(13.5)

This� translates� to� hJ�

a�(k)J�

b�(�k)i� ⇠� (k/�̄k),� leading� to� �B2

k
⇠ k�k̄(⇡/c�A�

) ⇠ k�

2�(⇡/c�A�

)� again.
What� this� means� is� that,� even� though� E� in� (13.2)� is� minimized� around� �B�

2

k
⇠� k,� proba-

bility� is� concentrated� around� �B2

k
⇠ k�

2�(⇡/c�A�

).� For� the� expectation� value� of� the� energy,
we� then� find� hHi� ⇠� e�

2�c�A�

/2⇡ + O(k�

2�).� Thus� the� kinetic� term,� in� combination� with� the
measure� factor� e�

2c�AS�wzw(H)�,� leads� to� a� mass� gap� of� order� e�

2�c�A�

/2⇡. The� argument� is� ad-
mittedly� not� rigorous,� but� does� capture� the� essential� physics.� The� key� point� is� that� the�

volume� element� (5.31)� cuts� off� the� low� momentum� modes.� This� suggests� that� the� cal-
culation� of� the� volume� element� in� extensions� of� the� theory� with� matter� content� can,� by�

itself,� shed� light� on� the� issue� of� the� mass� gap.� In� fact,� we� shall� briefly� analyze� some�

extensions� of� the� Yang-Mills� theory� from� this� point� of� view.� In� the� case� of� the� Yang-
Mills� theory� modified� by� the� addition� of� a� Chern-Simons� term,� which� will� be� considered�

next,� in� subsection� 13.2,� we� can� carry� out� the� simplification� of� the� Hamiltonian� and� see�

how� this� is� indeed� realized.� We� will� also� consider� some� supersymmetric� extensions� in�

subsection� 13.3.

13.2� Yang-Mills-Chern-Simons� theory

We� consider� the� Yang-Mills� theory� modified� by� the� addition� of� a� Chern-Simons� (CS)�

term,� so� that� the� action� we� start� with� is

S = � 1

4e2�

Z
d�

3�x F�

a

µ⌫
F�

aµ⌫� � k

4⇡

Z�

d�

3�x� Tr�

✓�

A�µ�

@�⌫�

A�↵ +�

2�

3�

A�µ�

A�⌫�

A�↵�

◆�

✏�

µ⌫↵� (13.6)

The� second� term� in� S� is� the� integral� of� the� Chern-Simons� (CS)� 3-form� which� we� have�

discussed� in� section� 12.� As� in� that� case,� the� level� number� k� should� be� quantized� for� a�

consistent� quantum� theory.

The� CS� term� is� odd� under� parity� and� time-reversal.� We� have� already� mentioned� its�

role� as� a� mass� term.� This� is� made� clear� by� considering� the� propagator� for� the� theory.� In
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a� gauge� where� @�µA�µ�

=� 0,� we� find�

h0| T A�

a

i
(x)Ab

j
(y) |0i = ��

ab�

Z
d�

3�p

(2⇡)3�

e�

�ip(x�y)
i�

p�

2� � µ�

2� +� i✏�

✓�

��ij +� iµ
✏�ijk�

p�

k

p�

2

◆�

(13.7)

where� µ� =� (e�

2�k/4⇡). This� shows� that� perturbatively� µ� is� the� mass� of� the� gauge� particle.

As� in� the� case� of� the� pure� Yang-Mills� theory,� we� shall� now� use� the� A�0�

=� 0� gauge� to�

set� up� the� Hamiltonian� formalism� [80].� The� canonical� momenta� can� be� easily� identified
from� the� action� (13.6)� and� are� related� to� the� electric� fields�

˙�A� as

E�

a =
e�

2�

2�

⇧�

a +
ie�

2�k�

8⇡
A�

a = � ie�

2�

2�

��

�Ā�

a�

+
ie�

2�k

8⇡
A�

a

¯�E�

a =
e�

2

2
¯�⇧�

a � ie�

2�k

8⇡
¯�A�

a = � ie�

2

2

�

�A�

a
� ie�

2�k

8⇡
¯�A�

a (13.8)

The� commutation� rule� for� E�

a�, ¯�E�

a� is� given� by

[�

¯�E�

a�(~x), E�

b�(~y)]� =
e�

4�k

8⇡�

��

ab��(~x� �� ~y)� (13.9)

The� Gauss� law� operator� G�0�

(✓)� is� given� by

G�0�

(✓) =�

Z�

✓�

a�

�

(D⇧̄+� D̄⇧)�

a� +
ik�

4⇡�

(@ ¯�A�

a � ¯�@A�

a�)�

��

(13.10)

As� before,� we� can� parametrize� the� fields� A,� Ā� in� terms� of� M� and� M�

†�,� with� wave�

functions� taken� as� functionals� of� M� and� M�

†�.� The� Gauss� law� operator� generates� gauge�

transformations� on� the� argument� (M,� M�

†�)� of� the� wave� functions.� The� Gauss� law� condi-
tion� (2.23)� for� physical� states� is� then� equivalent� to

 (hM,� M�

†�h�

�1�) =�


1 +�

k

2⇡

Z�

Tr�

��

M�

†�1�@̄M�

†� @✓� + ¯�@✓�@MM�

�1�

��

��

 (M,� M�

†�)� (13.11)

where� h(x)� ⇡� 1� +� ✓(x),� ✓� =� �it�

a�✓�

a�.� The� general� form� of� the� wave� function� obeying� this�

condition� can� be� written� as

 (M,� M�

†�)� =� exp�

�

k�

2�

��

S�wzw(M�

†�) � S�wzw(M)�

��

��

�(H)

⌘� e�

i!(M,M�

†�

)��(H)� (13.12)

where� �� is� gauge-invariant,� depending� on� M,� M�

†� only� via� the� combination� H� =� M�

†�M .�

S�wzw(M�)� is� the� familiar� WZW� action� for� M�,� see� (5.21).� The� Chern-Simons� term� may� be�

viewed� as� a� “velocity-dependent”� potential,� since� it� involves� the� time-derivative� of� the
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A’s.� The� appearance� of� a� phase� factor,� e�

i!(M,M�

†�

)� in� (13.12)� is� in� accordance� with� the�

fact� that� the� wave� functions� must� carry� phase� factors� when� we� have� velocity-dependent�

potentials� [81].� The� gauge-invariant� volume� element� is� still� as� given� in� section� 5,� so�

that� the� inner� product� is

h1|2i =�

Z�

dµ(H)� e�

2c�AS�wzw(H)��⇤
1
��2�

(13.13)�

We� can� formulate� the� Schr¨�odinger equation� in� terms� of� �(H�).� But� it� will� turn� out� to

be� simpler� to� use� another� wave� function� �(H)� =� e�

��

1

2
kS�wzw(H)� �(H).� The� original� wave

function�  � is� related� to� �(H)� as

 � =� e�

i!(M,M�

†�

)� exp�

⇥
1

2
kS�wzw(H)�

⇤�

�(H)

=� exp�
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2�

��

S�wzw(M�
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(M) + S�wzw�

(H)�

��

��

�(H)

=� exp�

�

kS�wzw�

(M�

†�) ��

k

4⇡

Z�

A�

a�Ā�

a�

�
�(H) (13.14)

In� going� to� the� last� line� of� this� equation� from� the� second,� we� have� used� the� Polyakov-
Wiegmann� identity� (5.22).� The� inner� product� of� the� states,� expressed� in� terms� of� �’s,� is�

given� by

h1|2i =�

Z�

dµ(H)e�

(k+2c�A)S�wzw(H)� ��

⇤�

1
��2�

(13.15)

This� inner� product� agrees� with� what� is� obtained� for� the� pure� Chern-Simons� theory� as�

well.� Notice� that,� compared� to� the� pure� YM� case,� the� key� difference� in� the� integration
measure� is� in� the� coefficient� of� the� WZW� action� S�wzw�

(H),� with� 2c�A�

! k + 2c�A�

.� Also,� the
integration� measure� is� identical� to� what� is� obtained� for� the� pure� CS� theory.

Since� the� Chern-Simons� term� is� independent� of� the� spacetime� metric,� it� does� not�

contribute� to� the� energy-momentum� tensor� and� the� Hamiltonian.� Thus� H� is� still� of� the�

form

H =�

1�

2e2�

Z� ⇥�

(E�

a�)�

2� + (B�

a�)�

2�

⇤
(13.16)

However,� the� action� of� this� on� the� wave� functions� is� altered� as� the� electric� fields� have�

additional� terms� when� expressed� in� terms� of� functional� derivatives� as� in� (13.8).

There� are� several� steps� involved� in� working� out� the� Hamiltonian� or� the� expression
for� the� kinetic� energy� as� a� functional� differential� operator.� First� of� all,� we� express� the�

derivatives� with� respect� to� A,� Ā� in� terms� of� the� translation� operators� p�a�

,� ¯�pa�

on� M�,� M�

†�,
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as� in� (6.5).� In� E,� Ē,� we� also� have� the� additional� terms� proportional� to� A,�

¯�A.� Finally,� for

the� action� on� �(H),� we� need� H� !� e�

��

1�

2�

kS�wzw(H)�i!�He�

i!+
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2
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,� (13.17)

we� find
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i!� =
e�

2

2

Z�

K�ab(~x)�

Z�

y

¯�G(~x,�~y)p̄(~y)� � ik

4⇡
(@HH�

�1�)(~x)�

��a�

⇥�

Z�

u

G(~x,�~u)p(~u)� +�

ik

4⇡�

(H�

�1@̄H)(~x)�

��b

(13.18)

Including� the� e�

1

2
kS�wzw(H)� factors,� we� then� obtain�
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T̃� ⌘ e�

�1

2
kS�wzw(H)�e�

�i!� T e�

i!�e�

1�

2�

kS�wzw�

(H)

It� is� possible� to� write� this� in� a� more� symmetric� form,� similar� to� the� expression� (6.7)� for�

the� pure� Yang-Mills� case,� but� it� will� not� be� important� for� us� at� this� stage.� (The� relevant�

expressions� are� given� in� [80].)

In� the� Yang-Mills� theory,� the� observables� are� all� obtained� in� terms� of� the� current�

J�

a�.� However,� in� the� YMCS� theory,� there� are� additional� observables.� Notice� that� the�

inner� product� (13.15)� expresses� matrix� elements� of� operators� in� terms� of� a� hermitian�

WZW� model� of� level� (k� +� 2c�A�

).� The� correlators� of� the� hermitian� WZW� model� with� level�

number� (k� +� 2c�A�

)� are� the� analytic� continuation� of� the� correlators� of� the� level� k� SU�(N�)�

WZW-model� with� � =� k� +� c�A�

replaced� by� �� =� �(k� +� c�A�

).� The� level� k� SU�(N�)� WZW�

model� has� integrable� primary� operators� (of� finite� norm)� other� than� the� identity.� These�

are� the� additional� observables� compared� to� the� pure� YM� theory.� However,� we� expect�

that� the� vacuum� wave� function� can� still� be� expressed� in� terms� of� the� currents.� For� a�

wave� function� �� which� depends� on� J ,� rather� than� H� in� general,� the� expression� for� the
Hamiltonian� can� be� written� in� terms� of� functional� derivatives� with� respect� to� J .� The
result� is�

T̃� = T�YM +
e2k

4⇡

Z
J�

a�

�
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a
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T�YM =
e2cA
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+� O(✏) (13.20)

We� see� that� the� coefficient� of� the�

R�

J�/�J-term� is� (k� +� 2c�A�

)e�

2�/4⇡,� giving� a� mass� of� this�

value� to� every� factor� of� J�

a�.� The� perturbative� mass� µ� gets� corrected� by� the� addition� of�

(e�

2�c�A�

/2⇡).� This� is� also� consistent� with� the� shift� 2c�A�

!� k+2c�A�

in� the� integration� measure�

in� (13.15),� and� also� in� accordance� with� the� intuitive� argument� for� the� mass� gap� given�

in� subsection� 13.1.

The� expression� (13.20)� for� T̃� can� be� rewritten� as
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where� ˜�m =� (k� +� 2c�A�

)e�

2�/4⇡� and� ⇠� =�

p�

˜�m/m J .� The� potential� energy�

R�

B�

2� is� as� it� was� in�

the� pure� YM� case.

Given� the� similarity� of� these� expressions� to� what� we� obtained� for� the� YM� theory,
we� can� use� the� expansion� scheme� outlined� in� section� 8� and� work� out� the� lowest� order�

vacuum� wave� function� as
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where� g�

2� =� ˜�me2� = e�

4�(k + 2c�A�

)/4⇡.� In� the� last� line,� we� give� the� expression� for� the� modes�

of� low� momentum� or� long� wave� length.� For� an� observable� O� (involving� long� wave�

length� modes� of� the� fields),� the� expectation� value� is� thus
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where� we� have� used� the� fact� that� e�

kS�wzw�

(H)� can� also� be� expressed� in� terms� of� integration�

over� fermions� (in� two� dimensions)� as

e�

S�wzw(H)� =� det(�D�
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Here� Q’s� are� fermions� in� the� fundamental� representation� of� SU�(N�)� and� we� use� k� flavors�

to� get� the� factor� e�

kS�wzw(H)�.

Effectively,� we� have� the� expectation� value� which� can� be� computed� in� a� two� dimen-
sional� YM� theory� coupled� to� k� flavors� of� fermions� in� the� fundamental� representation.�

(We� are� not� saying� that� there� are� fermions� in� the� spectrum� of� the� theory;� (13.23)� is�

just� a� useful� way� of� expressing� expectation� values.)� These� fermions� can� screen� charges�

in� any� representation� and� hence� the� expectation� value� of� the� Wilson� loop� will� not� dis-
play� an� area� law.� Already,� at� the� level� of� perturbation� theory,� we� have� seen� that� the�

Chern-Simons� term� in� the� action� (13.6)� acts� as� a� mass� term� for� the� gluons.� Therefore�

we� should� expect� that� the� interaction� energy� between� charges� cannot� be� of� long� range.�

The� fact� that� we� do� not� obtain� an� area� law� for� the� Wilson� loop� is� entirely� in� accordance�

with� this� expectation.

13.3� Supersymmetric� theories

In� this� subsection� we� will� make� a� few� observations� about� supersymmetric� Yang-Mills�

theories.� (This� analysis� is� heavily� based� on� [82,� 83].)� In� subsection� 13.1� we� have�

seen� that� the� mass� gap� is� closely� related� to� the� integration� measure� used� for� the� inner�

product� of� the� wave� functions.� We� have� also� seen� that� this� correlation� holds� also� for
the� YMCS� theory� where� the� inner� product� involves� the� integral� of� e�

(k+2c�A)S�wzw(H)�,� see
(13.15),� and� the� mass� ˜�m =� e�

2�(k+2c�A�

)/4⇡.� Further,� the� measure� (13.15)� is� the� same� for�

the� pure� CS� theory� and� for� the� YMCS� theory.� With� these� observations� in� mind,� we� see�

that� we� can� make� some� statements� regarding� supersymmetric� theories� via� the� following�

strategy.� We� calculate� the� integration� measure� for� the� supersymmetric� CS� theory,� taking�

k� !� 0� to� obtain� the� YM� case.� The� key� point� is� that� it� is� possible� to� identify� the� integration�

measure� without� detailed� calculations� by� using� a� set� of� indirect,� although� slightly� intricate,�

arguments.� For� this,� we� will� consider� the� Hamiltonian� analysis� of� the� level� k� CS� theory�

coupled� to� a� set� of� point� charges,� the� charge� matrices� being� T�

a� in� some� representation�

r� of� the� group� G,� as� discussed� in� section� 12.
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Again,� as� in� that� section,� we� will� consider� two� point-charges,� conjugate� to� each
other,� at� positions� ~x�1�

and� ~x�2�

.� Since� we� are� now� using� M�-dependent� wave� functions,� the
solution� to� the� Gauss� law� condition� is�

 = N(z�1�

, z�2�

) M(x�1�

) M�

�1�(x�2�

) �0 (13.25)

where� N�(z�1�

, z�2�

),� which� depends� on� the� positions� of� the� charges,� is� determined� by� the
requirement� that�  � should� obey� the� Schrödinger equation.� The� Hamiltonian� for� the� CS
theory� with� charges� is� given� as

H =�

X�

r

(T�

a�)�r�

�

2⇡�

k
˙̄

�zr

�

�A�

a�(x�r�

)�

+ ˙�zrA�

a�(x�r�

)�

��

(13.26)

When� H� acts� on�  � we� will� encounter� singular� terms� due� to� terms� like� �M�(x�1�

)/�A(x�1�

),�

exactly� as� explained� in� section� 12.� The� properly� regularized� version� then� leads� again� to�

the� following� two� features.� First,� k� in� the� expression� (13.26)� is� shifted� to� � =� k� +�c�A�

.� We�

have� already� obtained� this� shift� entirely� within� the� Hamiltonian� framework� in� section�

12.� (It� is� also� derived� in� a� different� way� in� in� [74].)� The� Schr¨�odinger equation� is� then�

identical� to� the� Knizhnik-Zamolodchikov� (KZ)� equation� [84]� for� the� chiral� blocks� of� the�

WZW� theory� with� parameter� .� Thus� N�(z�1�

, z�2�

)� becomes� a� chiral� block� of� the� level� k�

SU�(N�)-WZW� theory.

Finally,� we� consider� the� normalization� of� the� state�  � in� (13.25).� We� can� write� the�

required� integral� as

|N(z�1�

, z�2�

)|�

2�

Z�

dµ(H)� ek̃ S�wzw(H)� H(x�1�

) H(x�2�

)�

�1� =� 1� (13.27)

We� have� put� in� the� measure� factor� with� an� arbitrary� coefficient�

˜�k� for� S�wzw�

(H)� to� show
how� we� can� determine� it.� There� are� two� points� we� can� make� about� this� normalization:

1.� The� integral� in� (13.27)� will� yield� the� correlator� hH(x�1�

) H(x�2�

)�

�1�i� of� the� hermitian�

WZW� model� (for� SL(N,� C)/SU�(N�))� of� level�

˜�k.� The� (z�1, z�2�

)-dependence� of� this�

correlator� must� exactly� cancel� the� similar� dependence� of� |N�(z�1�

, z�2�

)|�

2� to� allow� for� a�

proper� normalization� of� (13.25).� So� hH(1)� H(2)�

�1�i� should� be� given� by� the� solution�

of� the� KZ� equation� with� � =� (k� +� c�A�

) ! � = �(k + c�A�

).

2.� At� the� same� time,� we� also� know� that� the� correlator� hH(x�1�

) H(x�2�

)�

�1�i� of� the� hermi-
tian� theory� (of� level�

˜�k)� is� the� same� as� the� corresponding� correlator� of� the� SU�(N�)

theory� of� level� �˜�k� [17].
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These� two� statements� together� imply� that�

��̃k� +� c�A�

= � (k + c�A�

)� (13.28)

We� see� that� this� determines� k̃� to� be� k� +� 2c�A�

,� as� expected.

This� illustrates� how� we� can� obtain� the� measure� in� more� general� cases.� First� we�

calculate� the� shift� in� the� level� number� k� to� identify� the� KZ� parameter� .� This� can� be�

done� via� the� Hamiltonian� method,� or� in� an� even� simpler� way,� by� straightforward� use� of�

Feynman� diagrams� [79].� Once� this� is� done,� the� compatibility� of� the� two� requirements�

given� above� for� hH(x�1�

) H(x�2�

)�

�1�i� will� be

KZ� parameter� of� SU�(N�)�

WZW� theory� of� level� �� k̃

)�

= ��

(
KZ� parameter� of� SU�(N�)

WZW� theory� of� level� k
(13.29)

We� are� now� ready� to� look� at� supersymmetric� theories.� From� diagrammatic� calcula-
tion� (for� which� the� supersymmetric� Yang-Mills� term� may� be� viewed� as� a� regulator),� the�

KZ� parameters� are� given� as� [85]

k !

8
><�

>�:

k + c�A N = 0

k +�

1

2
c�A N = 1

k N� � 2

(13.30)

The� normalization� of� the� wave� functions� for� the� supersymmetric� YMCS� theories� are� thus�

given� by

h1|2i =

Z
dµ(H) exp[k̃ S�wzw(H)]� dµ[Fermions]�  �

⇤
1
 �2�

(13.31)

k̃� =

8
>�<

>�:

k + 2 c�A N = 0

k + c�A N = 1

k N� � 2

(13.32)

For� N� =� 0,� we� can� take� k� =� 0� and� obtain� the� result� for� the� pure� YM� case.� For� N� =� 1,
we� cannot� take� k� =� 0� since� there� is� a� parity� anomaly,� so� we� need� k� =� 1� as� the� minimal�

choice� for� a� consistent� theory� [86,� 87].� In� this� case,� the� value� of� k̃� suggests� that� there
will� be� a� mass� gap,� of� a� magnitude� different� from� the� case� of� N� =� 0.� For� N� �� 2,� we� can�

take� k� =� 0.� For� these� cases,� we� should� expect� that� there� will� be� no� mass� gap.

These� statements� are� in� accordance� with� expectations� from� other� analyses.� For� the�

N� =� 4� case,� constraints� of� unbroken� supersymmetry� prevent� a� mass� term� [86],� but� a�

partial� spontaneous� breaking� of� the� gauge� symmetry� is� possible.� For� N� =� 2� theories,� no
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mass� gap� is� expected,� but� there� may� be� no� stable� supersymmetric� vacuum� [86,� 88,� 89].�

The� absence� of� mass� gap� for� N� =� 2� has� also� been� analyzed� by� different� methods� in�

[90,� 91].

While� the� arguments� presented� above� for� the� measure� bypassed� direct� calculations,�

one� can� ask� whether� the� same� result� is� obtained� in� a� straightforward� Hamiltonian� for-
mulation� of� the� supersymmetric� theories.� This� is� indeed� the� case,� as� discussed� in� some�

detail� in� [82].� Here� we� will� briefly� indicate� the� steps� to� highlight� a� subtle� point� in�

obtaining� the� Hamiltonian.� The� classical� action� for� the� N� =� 1� theory� is� given� by�

S = ��

1�

4 e2�

Z
F�

a

µ⌫
F�

aµ⌫� � i

2e�

2�

Z
 ̄�

a�(��

µ�D�µ�

 )�

a� (13.33)

The supersymmetry transformation is given by�

�✏A�

a�

µ
= �i ✏̄ ��µ�

 �

a�,� ��✏ 
a =

1

2
F�

a�

µ⌫
��

µ⌫�✏ (13.34)

The action is invariant under this transformation with the supercharges given by� �

Q�

†� =�

Z�

(i �

†��i�

��

�A�

i
+�

1

e�

2
 �

†�B),� Q =�

Z�

(i��

i� 
�

�A�

i�

+�

1

e�

2�

 B)� (13.35)

Q� is� a� two-component� spinor,� and� we� make� the� identification� Q�

1� =� q,� Q�

2� =� q�

†�.� As�

mentioned� before,� the� parity� anomaly� will� make� the� partition� function� of� this� theory�

vanish,� rendering� it� trivial� or� inconsistent� [86,� 87].� To� get� a� consistent� theory,� we� must�

include� a� supersymmetric� Chern-Simons� term

S�SCS = � k�

4⇡�

Z�

d�

3�x� Tr�

✓�

A�µ�

@�⌫�

A�↵�

� 2

3
AµA⌫A↵

◆�

✏�

µ⌫↵� +� ie�

2� ¯�  �

��

(13.36)

The� full� action� is� thus� S�SYM = S+S�SCS�

.� Being� a� supersymmetric� theory,� the� Hamiltonian
can� be� obtained� as� the� anticommutator� of� supercharges.� Towards� this,� we� first� define�

the� gauge-invariant� wave� function� �(H)� as� in� (13.14),

 = e�

i!(M,M�

†�

)� exp�

⇥
1

2
kS�wzw(H)�

⇤�

�(H) (13.37)

The� supercharge� in� terms� of� its� action� on� �� is� given� by

q�

0� = i�

Z�

��

†a�(Gp)�

a� ��

1

e�

2

2⇡

c�A

Z�

��

a�@̄J�

a (13.38)

where� G� is� the� regularized� version� of� the� Green’s� function� G� =� @�

�1� and� �� is� the� gauge-
invariant� version� of� the� fermion� field� defined� by� ��

b� = (M�

�1�)�

ab� �

a�,� ��

b†� =  �

a†�M�

ab�.

The� integration� measure� for� the� inner� product� of� the� �’s� is� given� as�

dµ� =� dµ(H)� exp� [(k� +� (2� �� n)c�A�

) S�wzw�

(H)]� (13.39)
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For� the� present� case,� n� =� 1,� but� we� will� leave� it� arbitrary� for� now.� The� adjoint� of�

the� supercharge,� which� is� consistently� the� adjoint� with� (13.39)� defining� the� integration�

measure,� is

q�

0†� = �i�

Z�

��

a�

✓�

( ¯�Gp̄)�

a� � i
k�

2⇡�

(@HH�

�1�)�

a� + i�

nc�A

2⇡
(@HH�

�1�)�

a�

◆�

� 1�

e�

2

2⇡

c�A

Z�

(��

a ¯�@J�

a�)�

†� (13.40)

Recall� that,� by� virtue� of� the� physical� states� being� annihilated� by� the� Gauss� law� operator,�

we� were� able� to� eliminate� E�

a� in� favor� of� Ē�

a� and� the� currents,� in� the� simplification� of� the
kinetic� energy� operator,� see� equations� (6.13)� to� (6.22).� Equivalently,� we� can� eliminate
¯�pa� in� favor� of� p�

a�.� Effectively,� this� amounts� to� the� statement

¯�pa� =� (Kp)�

a� +�

1

e�

2
f�

alm�(K��

†�)�

l���

m� (13.41)

When� this� is� used� in� (13.40),� we� have� to� move� ��

a� to� the� right� end� to� obtain� normal�

ordering.� This� results� in� a� singular� term� Ḡ(x,� x),� exactly� the� same� kind� of� term� we
encountered� in� section� 6.� Evaluating� it� as� before,� we� end� up� with

�i�

Z�

��

a�(x)(�Ḡp̄)�

a�(x) = � i�

Z�

��

a�(x)(ḠKp)�

a�(x) ��

Z�

��

a�(x)J�

a�(x)

+�

i

e�

2

Z
¯�G�

ab�(x,� y)f�

blm�(K��

†�)�

l�(y)��

a�(x)��

m�(y)� (13.42)

The� ��

a�J�

a�-term� arises� from� the� normal� ordering� mentioned� above.� When� this� expression
is� used� for� q�

0†� in� (13.40)� and� the� anticommutator� is� taken,� we� find� the� gauge-invariant�

form� of� the� Hamiltonian� for� the� supersymmetric� theory� as

H =�

1�

2
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0�, q�
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e2cA
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✓Z
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Z
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Z
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◆Z
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(13.43)�

Notice� the� equality� of� the� masses� for� the� J ’s� and� the� �’s,� as� expected� for� a� supersymmet-
ric� theory.�

22� Also� the� value� of� the� mass,� namely,� ((k� +� 2c�A�

�� nc�A�

)e�

2�/4⇡)� is� in� agreement
with� the� measure� of� integration� for� the� inner� product� and� the� intuitive� argument� given�

earlier.� We� see� the� concordance� between� the� measure,� the� mass� gap� and� the� explicit�

quantization� using� gauge-invariant� variables� for� the� supersymmetric� theories.
22�It� may� be� useful� to� keep� in� mind� that� the� anticommutator� is� given� as� {��

a�, ��

b†�} = e�

2���

ab���

(2)�(x� �� y).
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14� Entanglement� in� Yang-Mills� (2+1)

The� main� difference� in� entanglement� in� the� vacuum� state� between� a� matter� field� theory� and�

a� gauge� theory� is� in� the� role� of� the� edge� states� mentioned� in� section� 2.� The� quantization� of� a

gauge� theory� in� a� finite� region� in� space� can� allow� for� edge� states� on� its� boundary.� But� these�

are� factored� out� in� implementing� the� Gauss� law� over� all� of� space.� This� difference� leads� to� the�

so-called� contact� term� in� the� entanglement� entropy.� We� analyze� the� Maxwell� theory� first� to

obtain� this� result� and� then� give� the� analogous� result� for� the� Yang-Mills� theory. The� contact

term� is� also� shown� to� be� related� to� the� surface� terms� in� the� BFK� gluing� formula.

Entanglement� is� a� property� of� the� state� and� can� be� characterized� by� a� reduced� density�

matrix� obtained� by� integrating�  �

⇤�['] ['�

0�]� over� fields� in� some� subregion� of� space.� So� it�

would� seem� that� if� there� is� any� feature� of� the� quantum� theory� for� which� wave� functions�

provide� a� better� framework� than� manifestly� covariant� methods,� it� would� be� entangle-
ment.� And� this� is� indeed� the� case,� although,� for� ease� of� calculation� a� path� integral� with�

a� cut� on� (the� unintegrated)� part� of� space� is� often� used� (with� a� replica� trick� as� well).� In�

the� case� of� gauge� theories,� this� led� to� the� identification� of� an� extra� term� in� the� entan-
glement� entropy,� known� as� the� contact� term� (or� Kabat� term)� [92],� compared� to� what�

is� expected� for� matter� fields.� Here� we� will� consider� the� contact� term� for� YM(2+1)� in� a�

Hamiltonian� formulation� and� relate� it� to� something� familiar� in� mathematics� literature,�

known� as� the� BFK� gluing� formula� [93].� (This� analysis� is� basically� taken� from� [94];� see�

also� [95].)

14.1� Entanglement� in� Maxwell� theory

It� is� simpler� and� conceptually� more� clarifying� to� consider� the� Maxwell� theory� first.� The�

Gauss� law� condition� takes� the� form� G�0�

=� r� ·� E� =� 0.� We� will� choose� a� conjugate
constraint� �� =� r� ·� A.� In� general,� if� we� have� constraints� ⇣�i�

and� conjugate� constraints� ��j�

,
the� Hamiltonian� path� integral� is� given� by�

Z =�

Z�

[dµ]��(⇣)��(�)� det[{⇣�i�

,��j�

}] e�

iS� (14.1)

Here� dµ� is� the� phase� space� measure� of� integration,� the� constraints� are� enforced� by� �-
functions� and� we� also� need� the� determinant� of� the� Poisson� brackets� of� the� constraints.�

Also� S� in� this� formula� is� the� action� expressed� in� terms� of� the� phase� space� variables.� For�

the� Maxwell� theory� we� thus� get

Z =�

Z�

[dµ]��(r� ·� E)��(r� ·� A)� det[�r�

2�] e�

iS� (14.2)
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We� have� already� set� A�0 =� 0,� so� that� the� phase� space� variables� are� E�i and� A�i,� i� =� 1, 2.�

Consider� the� theory� in� some� region� of� space� V� with� a� boundary� @V.� The� fields� can� be
parametrized� as

A�i�

= @�i�

✓ + ✏�ij�

@�j',� E�i = Ȧ�i�

= @�i�

� + ✏�ij�

@�j⇧� (14.3)

We� separate� the� fields� into� a� bulk� part� and� a� boundary� part� by� writing

✓(x) =� ✓̃(x) +�

I�

@V

✓�0�

(y)� n� ·� @G(y,� x), '(x)� = '̃(x)� +

I�

@V

'�0�

(y) n · @G(y,� x)

�(x) = �̃(x) +

I�

@V

��0�

(y)� n� ·� @G(y,� x), ⇧(x)� = ⇧̃(x)� +�

I�

@V

⇧�0�

(y)� n� ·� @G(y,� x)� (14.4)

The� tilde-fields� all� obey� Dirichlet� conditions,� vanishing� on� @V.� The� values� of� the� fields�

on� the� boundary� are� designated� with� a� subscript� 0� and� are� continued� into� the� interior�

of� V� via� Laplace’s� equation,� i.e.,

r�

2

x

I�

@V

✓�0�

(y)� n� ·� @G(y,� x)� =� 0 (14.5)

The� decomposition� of� fields� as� in� (14.4)� follows� from� Green’s� theorem.� The� Green’s�

function� G(y,� x)� for� the� Laplace� operator,�

23� also� obeys� Dirichlet� conditions.� If� we� con-
sider� a� box� of� length� L� along� the� x�1�

-axis,� the� Green’s� function� is� given� by

G(y,� x)� =�

Z�

dp

2⇡�

e�

ip(y�2�

�x�2)�G�p(y�1�

, x�1�

) (14.6)
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,� y�1 < x�1�

where� !� =� |p|.� It� is� easy� to� verify� that� this� is� zero� at� x�1�

=� 0,� L� and� at� y�1�

= 0,� L. By
choosing� L� appropriately,� this� can� be� used� for� the� whole� volume� V� or� for� the� subregions�

V�1�

and� V�2 considered� later.

The� canonical� one-form� is� given� by� A� =�

R�

E�i�

�A�i�

and� by� direct� substitution� of� (14.4),
we� find

A =�

Z�

E�i�

�A�i

=�

Z�

V

h�

(�r�

2��̃) �✓̃ +�

˜�⇧��B�

i�

+�

I�

E� �✓�0�

(x) +�

I�

Q��'�0�

(x)� (14.7)

23G� obeys� i.e.,� r�

2
yG(y,� x)� =� ��

(2)�(y,� x).

97



where� B� =� �r�

2� ˜�' is� the� magnetic� field.� Also� E� and� Q� are� given� by

E(x) =

I

y

��0�

(y)M(y,� x)� +� @�⌧�

⇧�0�

(x)

Q(x) =

I

y

⇧�0�

(y)M(y,� x)� �� @�⌧�

��0�

(x)� (14.8)

M(x,� y) = n� ·� @�x�

n · @�yG(x,� y)�

���
x,� y� on� @V�

(14.9)

M(x,� y)� is� what� is� usually� referred� to� the� Dirichlet-to-Neumann� operator.� This� can� be
worked� out� explicitly� using� (14.6).� For� example,� for� the� boundary� at� x�1�

= y�1�

=� L,� we
find

M(x,� y)� =�

Z
dp

2⇡
e�

ip(y�2�

�x�2�

) ! coth(!L)

!�

Z
dp

2⇡
e�

ip(y�2�

�x�2�

) ! as� L� !� 1 (14.10)

Also� in� (14.8),� @�⌧�

= n�i�

✏�ij�

@�j�

denotes� the� tangential� derivative� on� the� boundary.� E� and� Q

are� not� independent,� but� are� related� by

C = @�y�

I�

E(x)M�

�1�(x,� y)� +� Q(x)� =� 0� (14.11)

This� can� be� verified� directly� using� (14.10).� In� the� sense� of� Dirac’s� theory� of� constraints,�

C� is� of� the� first� class;� one� can� choose� a� conjugate� constraint� '�0�

=� 0� and� eliminate� the�

pair,� so� that

A =�

Z�

V

h�

(�r�

2��̃) �✓̃ + ⇧̃��B�

i�

+�

I�

@V�

E� �✓�0�

(14.12)

The� phase� volume� associated� with� this� canonical� structure� is�

24

dµ� =� [d˜��d✓̃]� [dE� d✓�0�

] [d⇧̃dB]� det(�r�

2�)� (14.13)�

The� constraints� entering� the� path� integral� (14.2)� can� therefore� be� written� out� as

�(r ·� E) = (det(�r�

2�))�

�1� �(�̃), �(r ·� A) = (det(�r�

2�))�

�1� �(�✓̃) (14.14)

Since� ✓̃� vanishes� on� @V,� we� are� imposing� the� Gauss� law� with� test� functions� vanishing� on
@V.� The� value� of� ✓� on� the� boundary� and� its� conjugate� E� represent� physical� degrees� of�

freedom.� Using� (14.13)� and� (14.14),� we� see� that� we� can� set� ˜�� =� ✓̃� =� 0,� and� all� factors
of� det(�r�

2�)� cancel� out,� so� that� Z� in� (14.2)� becomes

Z =�

Z
[dE d✓�0�

] [d⇧̃dB] e�

iS (14.15)

24�The� determinants� of� �r�

2� are� calculated� with� Dirichlet� boundary� conditions.
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Figure� 8:� Showing� division� of� space� into� two� regions� for� entanglement� considerations

The� action� S� also� involves� only� the� fields� ⇧,� B,� E ,� ✓�0�

.� We� see� that� we� have� a� theory� of�

the� bulk� fields� ⇧,� B,� which� constitute� a� single� bulk� field,� with� “edge� modes”� described�

by� E ,� ✓�0�

.

Now� consider� going� through� this� procedure� for� a� region� of� space� divided� into� two�

with� an� interface� (dashed� line)� as� shown� in� Fig.� 8.� We� construct� the� theory� on� the
whole� space� and� then� in� V�1�

and� V�2�

separately,� put� them� together� and� compare� the
results.� Eventually,� we� will� take� L�1�

, L�2�

!� 1,� where� L�1�

,� L�2�

are� the� lengths� along� the
x�1�

-direction� for� V�1�

and� V�2�

,� respectively.� Thus� M(x,� y)� with� L� !� 1� will� be� what� is
relevant.� For� the� theory� on� the� whole� space,� the� result� is� basically� as� we� have� already�

discussed,� with

Z�whole =�

Z�

[d�d✓]� [d⇧dB]� [det� �r�

2�]��(r� ·� E)��(r� ·� A)� det[�r�

2�] e�

iS

=�

Z�

[d⇧dB]� e�

iS (14.16)

We� do� not� consider� any� edge� modes� for� the� boundary� of� the� whole� space� since� our� focus�

will� be� on� entanglement� across� the� interface.� (They� can� be� included� without� changing�

the� essence� of� the� argument.)

Now� consider� building� the� theory� separately� in� V�1�

and� V�2�

.� The� fields� on� the� interface
can� be� continued� into� V�1�

and� V�2�

again� using� Laplace’s� equation,� so� that� we� have

✓(x) =�

8
<

:
✓̃�1�

(x) +
H�

@V1
✓�0�

(y) n� · @G�1�

(y, x) in V�1

✓̃�2�

(x) +
H�

@V2
✓�0�

(y) n� · @G�2�

(y, x) in V�2

(14.17)

with� similar� expressions� for� the� other� fields.� G�1�

and� G�2�

are� Green’s� functions� for� the�

Laplacian� for� regions� V�1�

and� V�2�

,� respectively,� vanishing� on� the� interface.� The� phase�

volume� has� the� form

dµ�split�

=� [d�̃d✓̃]�1 [d�̃d˜�✓]�2�

det(�r�

2�)�1�

det(�r�

2�)�2�

[dEd✓�0�

]� ⇥� [dµ�⇧,B�

-part]� (14.18)
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The� key� issue� is� about� the� constraints.� Using� f,� h� for� test� functions,� with� boundary
values� on� the� interface� designated� as� f�0�

,� h�0�

,� respectively,� the� constraints� are
Z
@�if E�i =

Z�

V1

f̃�1�

(�r�

2�˜��1�

) +�

Z�

V2

f̃�2�

(�r�

2�˜��2�

) +�

I�

f�0�

E ⇡ 0

Z
@�ih A�i =

Z�

V1

˜�h�1�

(�r�

2✓̃�1 +�

Z�

V2

˜�h�2�

(�r�

2✓̃�2�

) +�

I�

h�0�

(M�1�

+ M�2�

) ✓�0�

⇡ 0 (14.19)

M�1�

,� M�2�

are� the� Dirichlet-to-Neumann� operators� for� G�1�

and� G�2�

,� respectively.� For� the�

theory� on� the� full� space,� ✓-dependence� is� eliminated� everywhere� including� the� interface,�

so� each� term� in� (14.19)� must� vanish� separately� and� the� �-functions� for� the� constraints�

must� be� interpreted� as

�(r ·� E)� �(r ·� A) = �[�r�

2�˜��1�

]��[�r�

2�˜��2�

]� �[�r�

2�˜�✓�1�

]��[�r�

2�✓̃�2�

]

⇥�[E ]��[(M�1�

+ M�2�

)✓�0�

]� (14.20)�

We� also� have� the� BFK� gluing� formula� [93]�

25�

det(�r�

2�)� =� det(�r�

2�)�1�

det(�r�

2�)�2�

det(M�1�

+ M�2�

)� (14.21)

If� we� use� results� (14.20)� and� (14.21),� we� get� back� to� (14.16)� as� expected;� splitting� the�

fields� is� only� a� more� involved� way� of� writing� the� path� integral� for� the� full� space.

Consider� now� integrating� out� fields� in� V�2�

.� Since� the� interface� is� a� boundary� to� V�2,�

from� the� point� of� view� of� the� theory� in� V�2�

,� we� can� only� impose� the� Gauss� law� with� test�

functions� which� vanish� on� the� interface.� The� edge� modes� E ,� ✓�0�

are� physical� degrees� of
freedom.� Thus� we� must� take� f�0�

= h�0�

=� 0,� and� the� constraints� become

�(r ·� E)� �(r ·� A) =� �[�r�

2�˜��1�

]��[�r�

2�˜��2�

]� �[�r�

2�✓̃�1�

]��[�r�

2�˜�✓�2�

] (14.22)

The� determinant� det(M�1�

+ M�2�

)� is� not� canceled� out� and� the� reduced� theory� in� V�1�

takes�

the� form

Z�red =� det(M�1�

+ M�2�

)�

Z�

[dEd✓�0�

]dµ�⇧,B�

e�

iS� (14.23)

There� is� an� extra� factor� det(M�1�

+ M�2�

);� since� this� is� part� of� the� phase� volume,� it� is� to� be�

considered� as� a� degeneracy� factor.� Thus� if� we� define� a� reduced� density� matrix,� it� takes�

the� form

⇢ =
1�

det(M�1�

+ M�2�

)�

(⇢�bulk�

)�red�

(14.24)

25�This� formula� tells� us� that� if� a� Riemannian� manifold� is� separated� into� V�1�

, V�2�

,� etc.� by� suitable� hypersurfaces,�

then� the� determinant� of� the� Laplacian� for� the� full� space� can� be� obtained� as� the� product� of� similar� determinants�

with� Dirichlet� boundary� conditions� in� each� of� the� regions� V�1�

, V�2�

,� etc.� times� a� set� of� interface� contributions� which�

are� the� determinants� of� the� Dirichlet-to-Neumann� operators.
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where� (⇢�bulk�

)�red�

refers� to� the� reduced� density� matrix� for� all� the� remaining� physical� de-
grees� of� freedom� and� 1� is� a� matrix� such� that� Tr� 1� =� det(M�1�

+ M�2�

).

This� determinant� log� det(M�1�

+ M�2�

)� is� Kabat’s� contact� term� [92].� Its� origin� is� due� to�

the� simple� fact� that� in� the� full� space� Gauss� law� eliminates� ✓,� E ,� but� for� the� theory� in�

each� region,� these� are� not� eliminated.� The� contact� term� can� also� be� identified� as� the�

interface� term� in� the� BFK� gluing� formula� [93].

14.2� The� case� of� YM(2+1)

It� is� now� straightforward� to� consider� the� situation� for� the� Yang-Mills� theory.� Since� we�

phrased� the� discussion� given� above� in� the� language� of� gauge-fixing,� the� simplest� way�

for� us� is� to� eliminate� E� from� our� considerations� using� the� Gauss� law� as� we� did� in� section�

6,� see� equations� (6.13� to� (6.22).� This� is� like� a� complex� gauge-fixing,� since� M�

†� gets� set
to� 1. The� canonical� one-form� is� A� =�

R�

E�

a�

i
�Aa

i
=� �4�

R�

Tr(�Ē� �A� +� E� ��Ā)� and� the� Gauss
law� takes� the� form�

G�

a� =� 2(�D̄E� +� D ¯�E)�

a� (14.25)

As� the� conjugate� constraint,� we� take� ��

a� = (D�Ā)�

a�.� Eliminating� E,� the� canonical� one-form
can� then� be� written� as�

A = �4�

Z�

Tr�

h�

Ē� �A� +� G(x)� (�D�D̄)�1

x,y
��(y)�

i�

(14.26)

The� corresponding� phase� volume� is

dµ� =� det[(�D�D̄)�

�1�] [dĒdA]� [dGd�]� (14.27)

We� see,� in� a� way� similar� to� what� happens� in� the� Maxwell� case,� that� we� will� get� det[(�D�

¯�D)]�1

and� det[(�D�D̄)]�2�

for� V�1�

and� V�2�

,� and� det[(�DD̄)]�V�1�

[V�2�

for� the� full� space� V� =� V�1�

[ V�2.�

The� contact� term� is� then� given� by

S�contact =� log�


det(�DD̄)�V�1�

[V�2

det(�DD̄)�V�1�

det(�DD̄)V�2�

�
(14.28)

Unlike� the� Abelian� case,� this� expression� depends� on� the� fields.� So� one� has� to� carry� out�

an� averaging� over� the� physical� fields,� i.e.,� do� the� integration� over� H,� to� calculate� the�

entropy.� If� we� ignore� the� field� dependence,� the� contribution� of� (14.28)� is� the� same� as�

the� result� for� (dimG� copies� of)� the� Abelian� theory.

A� noteworthy� point� is� the� following.� The� operator� (�D�

¯�D)� which� comes� into� the
contact� term� is� independent� of� the� mass,� even� though� the� theory� does� have� a� mass� gap.
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In� a� massive� theory,� the� entanglement� tends� to� vanish� as� the� mass� becomes� large.� But� in�

the� gauge� theory� the� contact� term� will� lead� to� nonzero� entanglement� even� in� the� large�

m� limit.

15� Discussion� and� comments

We� have� reviewed� a� number� of� results� for� gauge� theories� in� 2+1� dimensions� obtained�

using� the� Schr¨�odinger representation.� As� mentioned� in� the� Introduction,� the� key� results�

which� could� be� compared� to� numerical� analysis� were� the� string� tension� and� the� Casimir�

energy.� We� have� also� analyzed� propagator� masses,� string� breaking� effects,� supersym-
metric� extensions,� entanglement,� etc.� In� this� section,� we� will� now� make� a� number� of�

comments� on� the� status� and� prospects� of� this� type� of� analysis.

First� and� foremost,� regarding� the� string� tension,� as� explained� in� Appendix� D,� the�

first� set� of� corrections� to� the� lowest� order� result� within� the� expansion� scheme� presented�

in� section� 8� turn� out� to� be� very� small.� While� this� is� encouraging,� it� is� clear� from� the�

cancellations� in� the� partial� sums� shown� in� (D12)� that� there� must� be� a� better� way� to� or-
ganize� the� corrections,� where� corrections� to� the� wave� function� and� the� renormalization�

implicit� in� the� subsequent� integration� over�  �

⇤� � are� combined.� It� will� be� very� illuminat-
ing� to� formulate� such� an� expansion.� Also,� in� Appendix� D� we� have� mentioned� some� of�

the� other� corrections� (higher� order,� representation-dependent,� etc.)� which� we� have� not�

calculated.� It� would� be� very� useful� to� have� some� way� of� estimating� these� to� see� if� they�

are� also� small� and� do� not� vitiate� the� results� for� the� string� tension.

Regarding� the� Casimir� energy,� recall� that� one� could� effectively� use� a� scalar� field�

theory� of� mass� m� =� (e�

2�c�A�

/2⇡)� with� Neumann� boundary� conditions� which� are� equivalent�

to� perfect� conductivity.� It� is� practically� trivial� to� calculate� the� Casimir� energy� with� other�

boundary� conditions.� Lattice� simulations� with� different� boundary� conditions� would� be�

welcome� as� they� can� provide� additional� checks� on� our� analysis.

Going� beyond� the� string� tension� and� the� Casimir� energy,� clearly� the� next� natural�

step� would� be� about� glueballs.� In� section� 11� we� have� already� referred� to� the� work�

of� LMY� [66]� on� estimates� of� glueball� masses� using� correlators� calculated� using� their�

wave� function.� The� existence� of� a� nonzero� string� tension� tells� us� that� some� effective�

string� description� of� glueball� states� should� be� possible,� but� it� is� important� to� describe�

such� excitations� directly� in� terms� of� the� Schr¨�odinger equation.� This� is� necessary� to�

work� towards� a� theory� for� glueball� interactions,� their� possible� decays,� etc.� Similarly,�

the� inclusion� of� fermions� or� quarks� is� a� natural� and� important� next� step.� Some� work
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on� this,� focusing� on� the� fermionic� contribution� to� the� integration� measure� for� the� inner�

product,� has� been� carried� out� [83],� but� formulating� meson� and� baryon� states� in� terms�

of� the� Schr¨�odinger equation� will� be� a� really� useful� advance.

For� most� of� the� analysis� presented� here� we� have� taken� the� spatial� manifold� to� be� R�

2�,
although� we� briefly� mentioned� the� formalism� for� S�

2� at� the� end� of� section� 4.� The� case� of�

the� torus� T�

2� = S�

1� ⇥ S�

1� is� particularly� interesting.� The� theory� on� R� ⇥� T�

2�,� with� a� suitable�

Wick� rotation,� can� be� interpreted� as� the� theory� on� the� spatial� manifold� R� ⇥� S�

1� with�

a� compactified� imaginary� time� direction� S�

1�.� Thus� it� will� describe� the� theory� at� finite�

temperature.� Since� the� torus� has� a� complex� modular� parameter� ⌧�,� one� can� tune� the� real�

and� imaginary� parts� of� ⌧� independently� and,� presumably,� one� can� get� information� about�

the� high� temperature� phase� of� the� theory,� including� the� question� of� the� deconfinement�

transition.� We� may� also� note� that� a� parametrization� for� the� gauge� fields� similar� to� what�

we� have� been� using� exists� for� the� torus;� it� is� of� the� form

A� =� �@MM�

�1� + M�

�

i⇡� a

Im⌧

��

M�

�1� (15.1)

where� a� is� a� (complex)� constant� with� certain� periodic� identifications.� It� defines� a�

point� on� the� Jacobian� of� the� torus� (which� is� itself� a� torus).� Therefore� various� Jacobi�

✓-functions� will� naturally� appear� in� the� analysis.� It� is� then� clear� that� there� will� be� some�

number-theoretic� dimensions� to� the� problem� of� deconfinement.� Any� developments� on�

this� question� will� be� interesting� from� a� mathematical� as� well� as� physical� point� of� view.�

In� this� context,� we� also� note� that� there� has� been� some� interesting� work� on� the� torus�

with� twisted� boundary� conditions� [99].� The� authors� considered� possible� tachyonic� in-
stabilities� and� showed� that� the� absence� of� instabilities� is� related� to� a� problem� in� num-
ber� theory,� specifically,� the� approximation� of� irreducible� fractions� by� other� fractions� of�

smaller� denominator.

Regarding� supersymmetric� theories,� we� note� that� there� are� expectations� on� the� in-
frared� limit� of� extended� supersymmetric� Yang-Mills� theories,� namely,� they� flow� to� super-
symmetric� CS� theories� with� N� =� 6,� 8,� with� gravity� duals� in� terms� of� M2� branes� [100].�

It� will� be� interesting� to� see� the� role� of� the� measure� for� the� inner� product� in� the� context�

of� the� gravity� duals.� There� are� also� a� number� of� duality-related� properties� of� Chern-
Simons� theories� with� matter� [101];� it� may� be� interesting� to� consider� som� eof� these� in�

relation� to� the� inner� product.

In� the� section� on� entanglement,� in� (14.28),� we� have� identified� the� contact� term� of�

the� entanglement� entropy� in� the� 3d� gauge� theory� in� terms� of� the� BFK� formula.� Strictly�

speaking� the� BFK� formula� refers� to� the� case� of� the� Laplace� operator,� but� here� we� are
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dealing� with� D�

¯�D.� It� will� be� interesting� to� see� the� field� dependence� of� the� entropy� since
the� contact� term� is� the� only� long� range� contribution� given� the� existence� of� the� mass�

gap.� The� determinants� can� be� expressed� in� terms� of� the� WZW� action� for� H,� so� the� BFK�

formula� should� be� expressible� in� terms� of� the� WZW� action� as� well.

In� the� Introduction,� we� mentioned� the� Lichnerowicz� bound� on� the� eigenvalues� of� the�

Laplacian.� While� this� is� not� directly� applicable� to� a� field� theory,� a� suitable� generalization�

to� the� infinite� dimensional� context� could� lead� to� an� argument� for� a� nonzero� mass� gap.�

The� volume� element� given� in� (5.31)� is� a� good� start� in� this� direction� since� the� total�

volume� can� then� be� viewed� as� the� partition� function� for� the� hermitian� WZW� theory.� (The�

question� here� is� not� whether� the� integration� needed� to� get� the� total� volume� requires�

regularization,� it� does;� but� the� contrast� to� be� drawn� is� with� the� Abelian� case,� where�

even� for� a� finite� number� of� modes,� the� result� is� divergent� since� there� is� no� damping� from�

the� exponential� factor,� c�A�

being� zero.)� The� natural� next� step� will� be� to� seek� a� properly�

regularized� expression� for� the� Ricci� tensor� and� set� up� a� Lichnerowicz-type� argument�

for� the� eigenvalues.� (The� vacuum� state� has� zero� energy,� so� the� eigenvalue� of� interest�

is� for� the� first� excited� state.)� One� has� to� then� show� that� the� bound� survives� when� the�

regularization� parameter� ✏� is� taken� to� be� zero.� We� note� that� some� progress� along� this�

line� of� reasoning� has� been� made� recently� [102],� although� many� fine� points� remain� to�

be� ironed� out.

We� may� also� note� that� our� parametrization� of� the� fields,� and� the� gauge-invariant� de-
scription� based� on� it,� has� also� been� useful� for� some� problems� beyond� the� usual� variants�

of� the� gauge� theory.� In� quantum� Hall� effect,� the� construction� of� states� of� fractional� fill-
ing� fraction� is� done� via� a� procedure� known� as� flux� attachment;� these� are� used� to� define�

the� so-called� composite� fermions.� The� definition� of� the� gauge-invariant� version� for� the�

matter� fields� in� our� language,� as� in� [83],� shows� that� it� is� basically� multiplication� by� a�

phase� factor.� One� may� view� this� as� a� statement� of� “flux� attachment”.� This� has� proven� to�

be� useful� in� sorting� out� how� the� fractional� states� can� arise,� particularly� with� nonabelian�

fields� [103].

Finally� we� come� to� a� point� we� have� not� touched� upon� at� all.� Although� we� have�

done� everything� in� the� Hamiltonian� approach� and� the� Schr¨�odinger representation,� we�

can� ask,� with� the� benefit� of� hindsight,� whether� there� is� a� more� covariant� description.�

Is� there� an� effective� action� �� which� captures� the� essence� of� the� wave� function� (8.9)?�

The� vacuum� wave� function� contains� enough� information� to� construct� all� excited� states,�

with� some� mild� requirements� on� the� Hamiltonian,� so� one� can� indeed� obtain� an� effective
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action.� This� has� been� done� in� [104]� and� gives� an� effective� action

� =�

Z�

1

4
F a

µ⌫
F a

µ⌫
+ S�mass(A) + (��

µ�D�µ�

��A�

)�

a†�(��

⌫�D�⌫�

��A�

)�

a� +� ·� ·� · (15.2)

Here� S�mass�

(A)� is� a� gauge-invariant� nonlocal� mass� term� for� the� gauge� field.� We� can� take�

it� to� be� of� the� form� given� in� (9.31),

S�mass(A) =�

m�

2

2

Z�

"�

A�

2� + @ ·A(x)�

✓
1

@�

2

◆�

x,y�

@ ·A(y) + · · ·�

#�

(15.3)

where� the� ellipsis� stands� for� terms� with� higher� powers� of� A� needed� for� a� gauge-invariant�

completion� of� the� quadratic� terms.� Only� the� leading� quadratic� terms� suffice� to� deter-
mine� the� leading� expression� (8.9)� for� the� wave� function,� so� the� higher� terms� are� not
important� at� this� stage. The� field� ��

a

A
,� a = 1, 2, · · · , (N�

2� �� 1),� A� =� 1,� 2,� is� complex� and
transforms� according� to� the� adjoint� representation� of� SU�(N�);� it� also� transforms� as� a�

2-component� spinor� under� the� Lorentz� group.� Further,� in� (15.2),� ��

µ�,� µ� =� 1,� 2,� 3,� are
the� Pauli� matrices� and� D�µ�

denotes� the� gauge-covariant� derivative. The� field� �a

A
is� a

Lorentz� spinor� but� it� is� a� bosonic� field� with� a� term� in� the� action� which� is� quadratic� in
spacetime� derivatives. This� is� certainly� unusual,� but� �a

A
is� not� to� be� considered� as� an

observable� field� but� simply� as� a� method� of� capturing� the� physics� of� the� wave� function�

(8.9).� The� action� (15.2)� also� has� an� additional� U�(1)� symmetry� �� !� e�

i✓��,� which� the�

original� Yang-Mills� theory� does� not� have.� This� is� to� be� eliminated� by� requiring� that� all�

physical� operators� must� have� equal� numbers� of� �’s� and� ��

⇤�’s.� It� is� possible� to� show� that�

this� action� leads� to� the� wave� function� (8.9)� [104].

What� is� interesting� is� that� because� of� the� auxiliary� field� ��

a

A
,� one� can� have� Z�N�

-vortex�

solutions� to� the� equations� of� motion.� (These� are� actually� particle-like� since� we� are� in�

two� spatial� dimensions,� but� they� are� not� point-like,� they� may� have� some� extent,� but�

have� spatial� codimension� equal� to� 2.)� However,� one� can� show� that,� because� of� the
spinorial� nature� of� ��

a

A
,� the� total� vortex� number� should� vanish� for� reasons� of� Lorentz� in-

variance� [104].� (The� reduced� action� for� the� parameters� of� the� Lorentz� transformations�

for� a� configuration� of� nonzero� vortex� number� shows� that� the� corresponding� moment�

of� inertia� is� infinite� because� of� the� asymptotic� behavior� of� the� configuration.� There-
fore� Lorentz� transformations� cannot� be� unitarily� implemented.� This� is� similar� to� how�

nonabelian� magnetic� monopoles� break� global� color� symmetry� [105].)� Thus� the� theory�

will� allow� for� configurations� or� states� corresponding� to� a� gas� of� Z�N�

-vortices� but� with�

overall� vortex� number� equal� to� zero.� In� our� considerations� so� far,� all� the� results� were�

due� to� the� geometry� and� topology� of� the� space� A/G�⇤�

;� specific� configurations,� which� are
at� best� a� subspace� of� points� in� A/G�⇤�

of� measure� zero,� have� not� played� any� significant
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role.� Nevertheless,� since� Z�N�

vortices� may� serve� to� illuminate� many� aspects� of� the� theory,�

see� for� example� [106],� this� observation� about� the� possibility� of� their� existence� may� still�

be� of� interest.� Clearly� there� are� issues� to� be� clarified� regarding� any� possible� link� with�

confinement� viewed� in� terms� of� the� Z�N�

vortices.
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work� was� supported� in� part� by� the� U.S.� National� Science� Foundation� Grant� No.� PHY-
2112729.

106



A� Conventions� and� Notations

Summation� over� repeated� indices� is� assumed.� Greek� letters� µ,� ⌫,� etc.� are� used� to� denote�

spacetime� components,� taking� values� 0,� 1,� 2,� 3� in� (3� +� 1)-dimensional� spacetime,� and� 0,�

1,� 2� in� (2� +� 1)-dimensional� spacetime.� The� metric� for� flat� Minkowski� space� is� denoted�

by� ⌘�µ⌫�

;� the� contravariant� version� is� denoted� by� ⌘�

µ⌫�.� The� components� of� ⌘�µ⌫�

are� given� by
⌘�00�

= 1,� ⌘�ij�

= ���ij�

,� and� ⌘�0i�

= ⌘�i0�

= 0.

We� will� also� use� the� abbreviation� @�µ =�

@

@xµ�

.� The� scalar� product� of� two� vectors� with
components� A�µ�

and� B�⌫�

will� be� written� as� A·B� =� ⌘�

µ⌫�A�µ�

B�⌫�

= A�0�

B�0�

�A�i�

B�i�

.� In� some� cases,�

such� as� in� writing� e�

ip·x� we� often� abbreviate� the� scalar� product� as� just� px� ⌘� p�0�

x�0�

� p�i�

x�i�

.

The� Levi-Civita� symbol� in� three� dimensions� is� ✏�

ijk� which� is� totally� antisymmetric�

under� exchange� of� any� two� indices� and� is� normalized� as� ✏�

123� =� 1.� In� 2+1� dimensions,�

we� take� ✏�

012� = 1.� ✏�

µ⌫↵�� is� defined� in� a� similar� way,� with� ✏�

0123� = 1.

The� symbol� @� is� also� used� to� denote� the� boundary� of� a� spatial� or� spacetime� region.�

Thus� @V� denotes� the� boundary� of� the� region� V� .� Differential� forms� will� be� used� for�

certain� discussion� and� have� the� usual� expression� in� terms� of� a� coordinate� basis.� Thus� if�

B� denotes� a� differential� p-form,� it� has� the� local� coordinate� expression

B =�

1�

p!�

B�µ�1�

µ�2�

···µ�p�

dx�

µ�1� ^� dx�

µ�2� ·� ·� ·� ^� dx�

µ�p� (A1)

with� the� wedge� symbol,� as� usual� signifying� the� antisymmetrization� of� the� coordinate�

differentials.� The� symbol� d� will� be� used� for� the� exterior� derivative� of� a� differential� form,

dB� =�

1

p!�

(@�µB�µ�1�

µ�2�

···µ�p�

)� dx�

µ� ^� dx�

µ�1� ^� dx�

µ�2� ·� ·� ·� ^� dx�

µ�p� (A2)

While� a� large� part� of� the� discussions� will� use� flat� space,� there� will� be� occasions� to�

discuss� some� curved� manifolds.� The� appropriate� metric� will� be� given� as� the� occasion�

arises.� In� contexts� where� there� is� no� chance� of� confusion,� we� will� omit� writing� the�

wedge� symbol.� This� is� implied� whenever� we� are� using� differential� forms.� Thus,� for�

example,� Tr(AdA)� will� stand� for

Tr(AdA)� =� Tr(A�µ�

@�⌫�

A�↵�

)� dx�

µ� ^� dx�

⌫� ^� dx�

↵� (A3)

For� spinors,� we� will� need� the� Dirac� �-matrices;� these� are� defined� by

��

µ� ��

⌫� + ��

⌫� ��

µ� = 2 ⌘�

µ⌫� 1� (A4)
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In� the� case� of� nonchiral� spinors� in� four� dimensions,� �’s� can� be� realized� as� 4�⇥�4� matrices.�

Thus� the� 1� on� the� right� hand� side� of� (A4)� denotes� the� 4� ⇥� 4� identity� matrix.� A� specific�

choice� for� the� �’s� is

��

0� =�

 
1 0

0 �1

!�

, ��

i� =�

 
0 ��

i

���

i 0

!
(A5)

Each entry in the matrices in (A5) is a 2� ⇥ 2 matrix.� ��

i� are the Pauli matrices given� as

��

1� =�

 
0 1

1 0

!�

, ��

2� =�

 
0 �i

i 0

!�

,� ��

3� =�

 �

1 0

0 �1

!�

(A6)

In three dimensions (or 2 +� 1 dimensions), the spinors are nonchiral and the� �’s can
be� realized� as� 2� ⇥� 2� matrices.� A� specific� choice� is� ��

0� = ��

3�,� ��

1� =� i��

1�,� ��

2� =� i��

2�.

For� the� group� SU�(N�),� the� generators� of� the� Lie� algebra� in� the� fundamental� (N�-
dimensional)� representation� are� denoted� by� t�a�

,� a� =� 1,� 2,� ·� ·� ·� ,� dimG� =� N�

2� �� 1.� They� are
taken to be normalized as Tr(t�a�

t�b�

) = 1

2
��ab. The commutation rules are [t�a�

, t�b�

] =� if�abc�

t�c�

.
The� corresponding� generators� in� other� representations� are� denoted� by� T�a�

.� The� quadratic�

Casimir� operator� has� the� value� c�F�

=� (N�

2� �� 1)/2N� for� the� fundamental� representation�

and� c�A�

=� N� for� the� adjoint� representation.� For� the� case� of� SU�(2),� the� generators� are�

given� by� t�a =�

1

2
��a�

,� with� the� Pauli� matrices� ��a�

as� in� (A6).

B� The� topology� and� geometry� of� C

The� space� of� gauge-invariant� field� configurations� C� can� be� identified� as� A/G�⇤,� where� A
is� the� space� of� gauge� potentials� (which� are� Lie-algebra� valued� 1-forms)� and� G�⇤�

is� the
set� of� gauge� transformations,� i.e.,� group� elements� g� :� R�

2� !� G,� with� the� condition� that
g(x)� !� 1� as� |~x|� !� 1.� One� can� think� of� A� as� a� fiber� bundle� with� G�⇤�

as� the� structure
group� and� C� =� A/G�⇤�

as� the� base� manifold,

G�⇤�

�!� A?�y

C� =� A/G�⇤

(B1)

These� are� all� infinite� dimensional� spaces.� The� topology� and� geometry� of� these� spaces�

are� clearly� important� for� the� study� of� gauge� theories.� The� bundle� structure� (B1)� shows
that,� locally� on� a� patch� U� of� C,� we� have� the� product� structure� A�U�

⇠� C�U�

⇥ G�⇤�

.� On
the� patch� U� we� have� a� set� of� gauge� potentials� (corresponding� to� points� in� C)� with� a�

fiber� corresponding� to� the� orbit� of� each� such� configuration� by� gauge� transformations.
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One� can� specify� the� gauge-invariant� degrees� of� freedom� by� choosing� a� representative�

configuration� for� each� orbit;� this� is� the� process� of� gauge-fixing� and� is� equivalent� to�

specifying� a� section� of� the� bundle.� While� this� can� be� done� on� a� local� patch� on� C,� A� as
a� G�⇤�

-bundle� is� nontrivial� and� does� not� admit� a� global� section.� Thus� there� is� no� gauge
fixing� which� is� valid� for� all� gauge� potentials.� This� is� the� Gribov� problem� [13];� for� a
more� general� discussion,� see� also� [5].

The� nontriviality� of� the� bundle� can� be� seen� by� a� slight� variant� of� the� reductio� ad�

absurdum� argument� due� to� Singer� [5].� Assume� that� we� can� write� A� =� C� ⇥� G�⇤�

globally,�

i.e.,� for� all� gauge� potentials.� As� mentioned� in� section� 2,� the� space� A� is� an� affine� space
and� all� homotopy� groups� of� A� are� trivial.� If� the� condition� A� =� C� ⇥� G�⇤�

is� correct,
then� we� must� have� trivial� homotopy� groups� for� C� and� for� G�⇤�

.� Consider� now� ⇧�1�

(G�⇤�

).� A�

typical� element� of� this� would� be� a� sequence� of� group� elements� g(x�1�

, x�2�

,��)� where� �� is� a�

parameter� (with� values� in� [0,� 1])� along� the� loop� of� G�⇤�

elements.� Specifically,� we� consider�

a� loop� starting� and� ending� at� the� identity� element,� which� implies� that� g(x�1�

, x�2�

, �) ! 1�

at� �� =� 0,� 1.� From� the� definition� of� G�⇤�

we� also� have� g(x�1�

, x�2�

,��)� !� 1� as� |~x|� !� 1.� Thus� g�

is� a� map� from� a� cylinder� (coordinatized� by� x�1�

,� x�2�

,� �)� to� G,� with� g� =� 1� on� the� boundary.�

Topologically,� this� is� equivalent� to� maps� from� a� sphere� to� G,

g(x�1�

, x�2�

, �) : S�

3� !� G� (B2)

The� homotopy� classes� of� such� maps� are� classified� by� ⇧�3�

(G),� implying� ⇧�1�

(G�⇤�

) = ⇧�3�

(G).
This� is� nontrivial� for� all� nonabelian� Lie� groups;� for� simple� groups,� we� have

⇧�3�

(G) =

8
<

:
Z Any� simple� G, except� SO(4)

Z� ⇥� Z SO(4)
(B3)

The� nontriviality� of� ⇧�1�

(G�⇤�

)� shows� that� the� initial� assumption� that� A� =� C� ⇥� G�⇤ cannot� be�

valid.� This� establishes� the� nontriviality� of� the� bundle� (B1).� There� is� a� Gribov� problem�

for� any� nonabelian� group.

Consider� now� a� two-parameter� family� of� gauge� potentials� of� the� form�

A(x,� 1,� x�2�

,��,�⌧�)� =� ⌧� A(x�1�

, x�2�

)� +� (1� �� ⌧�)A�

g�1�(x�1�

, x�2�

,��)� (B4)

The� �-dependence� of� the� potentials� is� due� to� the� �-dependence� of� g�1�

which� we� take� to�

be� a� nontrivial� element� of� G�⇤�

.� Taking� �,� ⌧� as� coordinates� in� A,� this� defines� potentials�

over� a� disc� in� A.� The� potentials� on� the� boundary� of� the� disc� are� A� at� �� =� 0,� 1� and� at
⌧� =� 1,� and� A�

g�1� at� ⌧� =� 0.� Since� these� boundary� values� are� all� gauge-equivalent,� they�

correspond� to� a� single� point� in� C,� so� that� the� disc� is� a� closed� 2-surface� in� C.� If� this
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surface� is� contractible� to� a� point� in� C,� the� pre-image� of� that� point� is� a� disc� in� A� where�

all� potentials� inside� are� also� gauge-equivalent� to� A,� of� the� form� A�

g� with� g(x�1�

, x�2�

,��,�⌧�)�

such� that� g(x�1�

, x�2�

,��,� 0)� =� g�1�

(x�1�

, x�2�

,��)� and� g(x�1�

, x�2�

,��,� 1)� =� 1.� If� such� a� g(x�1�

, x�2�

,��,�⌧�)� were�

possible,� it� would� give� a� homotopy� between� g�1�

(x�1�

, x�2�

,���)� and� the� identity.� We� know� this�

is� impossible� since� g�1�

is� a� nontrivial� element� of� ⇧�3�

(G).� Therefore� the� conclusion� is� that�

the� closed� 2-surface� in� C� is� not� contractible.� Rather� than� this� long� argument,� we� could�

also� have� used� exact� homotopy� sequence

⇧�2�

(A)� !� ⇧�2�

(C)� !� ⇧�1�

(G�⇤�

)� !� ⇧�1�

(A)

0� !� ⇧�2�

(C)� =� ⇧�1�

(G�⇤�

)� !� 0
(B5)

to� arrive� at� the� same� conclusion.� The� implication� of� the� nontrivial� nature� of� the� bundle�

at� the� level� of� using� A� is� the� Gribov� problem� and� the� impossibility� of� a� global� section.�

At� the� level� of� directly� using� C,� it� is� manifest� in� the� nontrivial� topology� of� C,� the� lowest�

dimensional� such� feature� being� ⇧�2�

(C) 6= 0.

Our� aim� now� is� to� construct� an� example� of� the� set� of� configurations� which� form� a�

noncontractible� two-surface,� i.e.,� a� nontrivial� element� of�⇧�2�

(C).� (This� discussion� follows�

[7].)� The� winding� number,� which� we� may� take� as� characterizing� the� element� of� ⇧�2�

(C)�

can� be� related� to� the� instanton� number� of� a� four-dimensional� gauge� theory.� This� can� be�

seen� as� follows.� In� addition� to� the� homotopy� group� ⇧�2�

(C)� being� nontrivial,� the� second�

cohomology� group� of� C� is� nontrivial� as� well.� Thus� there� is� a� closed� but� not� exact� two-
form� on� C.� In� terms� of� the� potentials,� the� generating� element� of� this� cohomology� can�

be� written� as

⌦ =�

1

4⇡

Z�

tr(�A� �A)� (B6)

Here� A� is� a� one-form� on� the� spatial� manifold,� �� denotes� the� exterior� derivative� on� A.�

If� we� use� w,� ¯�w to� denote� the� coordinates� along� the� two-surface� in� C,� �� is� given� by
�� =� dw@�w�

+� d ¯�w@ ¯�w.� The� integration� in� (B6)� is� over� the� spatial� manifold,� making� ⌦� a
two-form� on� C.� The� integral� of� ⌦� over� the� closed� noncontractible� two-surface� in� C� will�

give� a� winding� number� ⌫� by�

R�

⌦� =� 2⇡⌫.

The� two-surface� in� C� (with� the� coordinates� w,� w̄)� and� the� two-dimensional� spatial�

manifold� can� be� considered� together� as� a� four-dimensional� space.� The� instanton� num-
ber� on� this� 4d-space� is� given� by

⌫ =
1

8⇡2�

Z�

Tr(F̃� F̃� ) (B7)

where F̃� = (d+�)Ã+�Ã�

˜�A.� The� operator� (d+�)� denotes� the� full� exterior� derivative� on� the
four-dimensional� space� and�

˜�A� is� the� four-dimensional� gauge� potential.� The� 4d-potential
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can� be� constructed� from� the� two-dimensional� potential� A� as�

˜�A = A+A�

0�,� where� we� take
A�

0� to� be� given� in� terms� of� M�,� M�

†� by

A�

0 = �@�w�

M� M�

�1� dw� +� (M�

†�)�

�1�@� ¯�wM�

†�d ¯�w (B8)

While� A� transforms� as� a� connection� under� gauge� transformations� g(x),� A�

0� is� gauge-
covariant� since� g(x)� does� not� depend� on� w,� w̄.� In� other� words,� �g� =� 0� for� gauge� trans-
formations.� The� field� strength� can� be� written� out� as

˜�F� = F + F�

0� +� �A� +� DA�

0�,� DA�

0� =� dA�

0� +� AA�

0� + A�

0A� (B9)

It� is� then� easy� to� see� that

tr(�F̃ F̃� )� =� tr(�A��A)� +� d� [tr� (A�

0� DA�

0� +� 2��A� A�

0�)]� +� �� [tr(F� A�

0�)]� (B10)

In� integrating� this� expression� over� the� spatial� manifold� and� the� internal� closed� two-
surface,� the� terms� which� are� total� derivatives� give� zero.� (Notice� that� the� integrands�

are� gauge-invariant,� so� there� is� not� problem� of� the� potentials� being� patchwise� defined�

with� transitional� gauge� transformations� on� the� overlap� regions.� Therefore� the� total�

derivatives� indeed� integrate� to� zero.)� From� the� integral� of� (B10),� we� see� that

⌫ =�

Z�

⌦

2⇡�

(B11)

where� ⌦� is� as� given� in� (B6).� Using� the� expression� for� A�

0� from� (B8)� and� the� parametriza-
tion� (4.6)� for� the� spatial� components,� ⌦� takes� the� form�

⌦ =�

1

2⇡

Z�

Tr�

⇥�

@(H�

�1�@̄H)�(H�

�1��̄H)� +� @(H�

�1��̄H)�(H�

�1 ¯�@H)�

⇤�

(B12)

We� can� exploit� this� connection� between� the� two-form� ⌦� on� C� and� the� instanton�

number� to� construct� an� example� of� the� noncontractible� two-surface� of� configurations.�

Towards� this,� we� write� the� standard� instanton� in� R�

4� using� complex� coordinates� and�

interpret� one� pair� of� complex� coordinates� as� internal� coordinates� parametrizing� the�

two-surface� in� C.� Explicitly� this� gives� the� expression

H� =� exp(2fJ�

3�)� =� cosh� 2f� +� J�

3� sinh� 2f� (B13)

Here� J�

3� =� �� ·� n� with� ��

a�,� a� =� 1,� 2,� 3,� being� the� Pauli� matrices� and� the� unit� vector� n�

a� is�

given� by

na =
1

(z̄z� +� ¯�ww)�

(z̄w� +� ¯�wz, i( ¯�wz �� ¯�zw),� ¯�zz �� ¯�ww)� (B14)
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The� function� f� is� given� by�

f� =
1�

2
log�

✓�

¯�zz +� ¯�ww +� µ�

2

¯�zz +� w̄w

◆�

(B15)

µ� is� a� scale� parameter� and� (w,� w̄)� parametrize� the� two-surface� in� C.� Using� the� formula
(B12),� it� is� easy� to� verify� that

⌫ =�

Z�

⌦

2⇡�

=� 3� (B16)

for� this� set� of� configurations� (B13).� Therefore� (B13)� does� correspond� to� a� noncon-
tractible� two-surface� in� C,� although� not� the� minimal� one.

We� have� specified� the� configurations� (B13)� directly� in� terms� of� the� gauge-invariant�

variable� H,� so� there� is� no� Gribov� problem� per� se.� However,� the� existence� of� nontrivial
elements� in�⇧�2�

(C)� means� that� we� have� to� choose� coordinate� patches� (in� C)� to� specify� the
whole� set� of� configurations� in� a� nonsingular� way.� This� will� be� related� to� the� freedom
of� the� holomorphic� transformations� mentioned� earlier.� We� will� illustrate� this� in� our
explicit� example� now.

Notice� that,� as� z̄z !� 1,� H� !� 1. Further,� for� almost� all� w,� w̄,� H� is� nonsingular;
however,� the� particular� configuration� at� w� =� 0� has� a� singularity� at� the� spatial� point
z� =� 0.� We� can� change� the� position� of� this� singularity� by� transformations� of� the� type�

H� !� V HV̄� ,� where� V is� holomorphic� in� z. Consider� the� configuration� for� which� w� =

¯�w =� 0;� it� is� given� by

f� =�

1

2�

log(z̄z� +� µ�

2�/¯�zz)�

H� =� exp(2f��

3�)� =� exp�

��

��

3�

⇥�

log(z̄z� +� µ�

2�)� �� log� z� �� log� ¯�z
⇤�

=� exp�

��

���

3� log� z�

��

exp�

��

��

3� log(z̄z� +� µ�

2�)�

��

exp�

��

���

3� log� ¯�z
�

(B17)

Using� V� =� e�

��

3�

log(z/z�a)�,� we� find

V� H� V̄� =� exp�

��

��

3�[log(z̄z� +� µ�

2�)� �� log(z� �� a)� �� log(z̄� �� ā)]�

��

(B18)

We� see� that� the� singularity� has� been� shifted� from� z� =� 0� to� z� =� a.

This� tells� us� that,� at� least� for� configurations� of� the� type� given� here,� we� can� specify�

field� configurations� by� nonsingular� formulae� for� H� in� different� coordinate� patches� with
transition� relations� given� by� transformations� of� the� form� H� !� V� (z)� H�

¯�V� (z̄).� This� shows
the� importance� of� the� holomorphic� invariance.

Since� the� singularity� in� our� example� is� at� a� point,� namely� at� w� =� 0,� for� this� specific�

case,� even� if� we� simply� use� the� formulae� (B13-B15)� with� the� coordinate� singularity,� the
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effect� on� the� quantum� wave� functions� is� minimal.� This� is� something� that� can� be� verified�

in� terms� of� the� wave� functions� given� later.� Also,� as� remarked� earlier,� the� WZW-action
S�wzw(H)� is� invariant� under� transformations� of� the� type� H� !� V� H�

¯�V� and� therefore� we� do
not� expect� any� pathology� for� the� wave� function.� Explicitly,� for� the� set� of� configurations�

(B13),� the� WZW-action� is� given� by�

S�wzw(H) =�

5µ�

2� + 4ww̄

ww̄ + µ�

2
��

3µ�

2� + 4ww̄

µ�

2
log�


µ�

2� + ww̄

ww̄

�

=� 5� +� 3� log(ww̄)� +� O(ww̄) (B19)

When� w� !� 0,� exp(2c�A�

S�wzw�

)� vanishes� as� (ww̄)�

6c�A�.� The� coordinate� singularity� does� not
lead� to� difficulties,� at� least� for� this� case.

Another� interesting� feature� which� we� alluded� to� in� the� Introduction� is� about� the�

compactness� of� C.� One� can� find� configurations,� i.e.,� points� of� C,� which� are� separated� by�

an� arbitrarily� large� distance.� This� can� be� illustrated� by� a� simple� example.� Consider,� in�

an� SU�(2)� gauge� theory,� the� configuration

A� =� (�it�

3�)� in(zz̄)n�1�

(zd¯�z �� ¯�zdz)

[1� +� (zz̄)�

n�]�

(B20)

where� n� is� an� integer.� This� corresponds� to� the� field� strength�

F� =� (�it�

3�) (�4n�

2�)
(zz̄)n�1

[1� +� (zz̄)n�]�

2�

dx� ^� dy� (B21)

We� can� estimate� the� distance� of� this� configuration� from� another� one,� say� A�

0� as� follows.�

First� consider� the� Euclidean� distance� two� points� on� the� orbits� corresponding� to� A� and�

A�

0�.� This� is� given� by

s�

2� =� �2�

Z�

d�

2�x� Tr�

⇥�

(A�

g�1� � A�

0g2�)�

2�

⇤

=�

Z�

d�

2�x (A � A�

0g�)�

a�(A � A�

0g�)�

a� (B22)

where g = g�2�

g�1

1
. The minimum distance between the two orbits is thus given by

minimizing� this� with� respect� to� g�.� We� can� thus� take�

s2

C(A,� A�

0�)� =� Inf�g�

Z�

d�

2�x (A � A�

0g�)�

a�(A � A�

0g�)�

a� (B23)

The� minimal� distance� of� the� orbit� A� from� the� orbit� of� A� =� 0� is� thus

s2

C(A,� 0) = Inf�g�

Z�

d�

2�x (A � g�

�1�@g)�

a�(A � g�

�1�@g)�

a
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=� Inf�g�

Z�

d�

2�x�

"�✓�

A ��

i(fdf̄ �� f̄df)�

1 + ff̄
+� d'�

◆�2�

+ 4�

@�i
¯�f@�if

(1� +� ff̄)2�

#�

(B24)

where� we� have� parametrized� g� as

g =
1�p�

1 + f�f̄

"
1� f

��f̄ 1

#  
e�

�i'/2� 0�

0 e�

i'/2

!�

(B25)

The� last� term� in� the� brackets� in� (B24)� has� a� minimum� given� by� 8⇡Q[f�], where Q[f�],
which� is� an� integer,� is� the� topological� charge� of� f�,� given� by

Q[f ] =
i�

2⇡

Z�

d�

2�x ✏�

ij�

@�if̄ @�jf

(1� +� ff̄)�

2
(B26)

We� see� that� the� first� term� in� brackets� in� (B24)� is� minimized� by� the� choice� f =� z�

n,
'� = 0. Calculating� Q[f�]� for� this� case,� we� find� s�

2

C(A,� 0)� �� 8⇡n. By� taking� n� large
enough,� we� can� get� arbitrarily� large� distances.� This� shows� that� the� space� C� could� have�

arbitrarily� long� “spikes”� like� these;� compactness� for� C� is� not� obtained.� One� could� then�

envisage� constructing� a� wave� function� of� arbitrarily� long� wavelength� along� such� a� spike�

and� this� could� lead� to� an� infinitesimally� small� eigenvalue� for� the� kinetic� term� of� the�

Hamiltonian.� This� is� essentially� the� counterargument� to� what� Feynman� was� attempting�

to� show.� However,� the� transverse� measure� of� such� spikes� is� important� and� the� total�

volume� of� C� being� the� partition� function� for� the� hermitian� WZW� theory� shows� that� the�

transverse� measure� is� almost� zero,� in� a� regularized� sense.� The� zero-point� fluctuations�

can� then� potentially� lift� the� energy.� Presumably� this� is� how� the� theory� still� leads� to� a�

mass� gap.�

26

C Regularization

C.1 The� regularized� form� of� the� operators

We� will� now� go� over� some� of� the� issues� related� to� defining� the� regularized� form� of� the�

operators� for� the� kinetic� and� potential� energies,� and� the� Hamiltonian.� A� good� regular-
ization� procedure� must� preserve� gauge� invariance.� With� our� choice� of� variables,� it� is�

also� important� to� preserve� the� holomorphic� invariance.� This� property� was� discussed� at
the� end� of� section� 4.� The� matrices� (M,� M�

†�)� and� (M�

0�, M�

0†�)� where� M�

0� = M�

¯�V� ,� M�

0†� = V M�

†

will� give� the� same� potentials� (A,� Ā). Here� V� is� a� holomoprhic� function� of� the� coordi-
nates,� V̄ is� an� antiholomoprhic� function. Generally,� we� need� this� freedom� in� how� we

26�We� may� note� that� the� measure� calculation� did� not� exist� at� the� time� Feynman� worked� on� this,� so� the� needed�

mathematics� for� him� to� complete� the� argument� was� not� available.
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define� M� and� M�

†�,� so� that� configurations� can� be� represented� on� various� coordinate�

patches� without� singularities.� The� calculations� we� do� will� involve� the� Green’s� functions
for� D� =� @� +� A� and� D̄ = @̄ + Ā.� These� were� introduced� in� section� 5� in� the� form

D�

�1�(x,� y)� =� M�(x)G(x,� y)M�

�1�(y),� D̄�

�1�(x,� y)� =� M�

†�1�(x)Ḡ(x,� y)M�

†�(y)� (C1)

where� G� and� Ḡ� are� the� Green’s� functions� for� @� and ¯�@,� respectively.� For� a� particular
coordinate� patch,� we� can� take� these� to� be�

G(x,� y)� =�

1

⇡(x̄� �� ȳ)�

, Ḡ(x,� y)� =
1

⇡(x � y)�

(C2)�

Consider� the� construction� of� D�

�1�(x,� y)� and� D̄�

�1�(x,� y)� using� M�

0� and� M�

0†�.� These
Green’s� functions� are� unchanged� if� we� define

G�

0�(x,� y)� =� V̄�

�1�(x)� G(x,� y) V̄ (y),� Ḡ�

0�(x,� y)� =� V� (x)� Ḡ(x,� y)V�

�1�(y)� (C3)

Notice� that� these� will� still� satisfy� the� required� equations

@xG(x,� y) = @̄xḠ(x,� y)� =� ��

(2)�(x� �� y) (C4)

We� see� that� the� use� of� different� forms� for� the� matrices� M�,� M�

†� must� be� accompanied� by�

the� use� of� different� definitions� for� the� Green’s� functions� G� and� Ḡ.

Our� aim� is� to� use� a� point-splitting� regularization� for� the� Green’s� functions� G(x,� y)�

and� Ḡ(x,� y)� which� preserves� the� transformation� property� (C3).� This� can� be� done� by� use
of� the� Gaussian� approximation� to� the� Dirac� �-function� given� in� (6.11),� namely,�

�(~x,�~y;� ✏)� =�

e�

�|~x�~y|�

2�

/✏

⇡✏
(C5)

Based� on� this� we� define

G(~x, ~y) =

Z

u

G(~x,�~u)�(~u,�~y;� ✏)K�

�1�(y,� ū)K(y,� ȳ)

Ḡ(~x, ~y) =

Z

u

¯�G(~x,�~u)�(~u,�~y;� ✏)K(u,� ȳ)K�

�1�(y,� ȳ)� (C6)

Since� we� will� be� using� the� matrices� M�,� M�

†�,� H� in� the� adjoint� representation� for� most�

of� the� calculations,� we� have� given� these� expressions� in� the� appropriate� form.� Here�

K�ab =� 2Tr(t�a�

Ht�b�

H�

�1�)� is� the� same� as� the� matrix� H� but� in� the� adjoint� representation.� It
is easy enough to verify that� G� and� Ḡ� have� the� same� transformation� as� G� and� Ḡ. By
expanding� the� K ’s� in� (C6),� it� is� possible� to� carry� out� the� integration� and� reduce� these� to�

the� form

G�ma(~x,�~y)� =� G(~x,�~y)[��ma � e�

�|~x�~y|�

2�

/✏�

��

K�

�1�(y,� x̄)K(y,� ȳ)�

��

ma�

]
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Ḡ�ma(~x,�~y)� = ¯�G(~x,�~y)[��ma � e�

�|~x�~y|�

2�

/✏�

��

K(x,� ȳ)K�

�1�(y,� ȳ)�

��

ma�

]� (C7)

The� coincident� point� limit� of�

¯�G� can� be� read� off� from� these� as

¯�G(x,� x)� =� �@KK�

�1

⇡�

(C8)

Correspondingly,� we� have�

¯�D�

�1�(~x,�~x)�reg�

= � 1

⇡
M�

†�1�(~x)(@KK�

�1�)M�

†�(~x) =�

1

⇡
(A � M�

†�1�@M�

†�)(~x)� (C9)

This� reproduces� the� results� in� equations� (5.19)� and� (5.20)� used� in� the� calculation� of� the�

volume� element� for� C.

Turning� to� the� kinetic� energy� operator,� we� start� with� the� form� given� in� (6.7),�

T� =�

e�

2

4

Z�

x

e�

�2c�AS�wzw(H)�

h
Ḡ¯�pa(~x)K�ab(~x) e�

2c�A�

S�wzw(H)�Gp�b�

(~x)+Gp�a�

(~x)K�ba�

(~x) e�

2c�AS�wzw(H) ¯�G¯�pb�

(~x)�

i

(C10)

We� have� put� in� the� regularized� form� of� the� Green’s� functions.� In� this� expression,� we� use�

the� abbreviation

Gp�b�

(~x) =�

Z�

u

G�bc(~x,�~u)p�c�

(~u), Ḡ¯�pa�

(~x) =

Z�

u

Ḡ�ac(~x,�~u)p̄�c�

(~u),� etc.� (C11)

In� (C10),� in� moving� p�a�

and� ¯�pa�

to� the� right,� we� encounter� the� commutators

¯�G[p̄�a(~x), K�ab�

(~x) e�

2c�AS�wzw(H)�], G[p�a�

(~x), K�ba�

(~x) e�

2c�AS�wzw(H)�] (C12)

These� involve� the� coincident� point� limit� of� the� Green’s� functions.� Using� (C7)� we� can�

calculate� the� commutators� and� see� that� they� are� zero� as� ✏� !� 0;� see� [8]� for� more� details.�

The� expression� for� T� can� then� be� brought� to� the� form

T =
e2

2�

Z�

⇧�rs(~u,�~v)p̄�r(~u)p�s�

(~v) (C13)

⇧�rs(~u,�~v)� =�

Z�

x

Ḡ�ar(~x,�~u)K�ab(~x)G�bs�

(~x,�~v)

This� is� the� regularized� version� of� (6.6),� thus� establishing� its� equivalence� with� (6.7)� as�

well.

The� action� of� p� and� ¯�p on� the� current� J� is� given� by�

[p�s�

(~v),� J�a�

(~z)]� =� �i
c�A

⇡
K�as(~z)@�z�

�(~z,~v)
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[p̄�r(~u),� J�b�

(~w�)]� =� �i(D�w�

)�br�

�(~w � ~u),� (D�w�

)�ab�

=
c�A

⇡�

@�w�

��ab�

+� if�abc�

J�c�

(~w�)� (C14)

We� can� then� use� the� form� of� T� from� (C13)� and� work� out� its� action� on� a� functional� of� the�

currents;� basically� this� involves� using� the� chain� rule� and� the� commutators� (C14).� The�

result� is

T�  (J)� =� m�

Z�

z

!�a�

(~z)
�

�J�a�

(~z)
+�

Z�

z,w

⌦�ab�

(~z,� ~w)
�

�J�a(~z)�

�

�J�b(~w)

��

 (J)� (C15)

where

!�a�

(~z)� =� �if�arm�

⇥�

@�z�

⇧�rs�

(~u,�~z)�

⇤�

~u!~z
K�

�1�

sm
(~z)� =� if�arm⇤�rm�

(~u,�~z)
���

~u!~z

⌦�ab�

(~z,� ~w)� =� ��

hhc�A

⇡
@�w�

��br + if�brm�

J�m(~w)�

i�

@�z�

⇧�rs�

(~w,� ~z)�

i
K�

�1�

sa
(~z)

=� D�w br�

⇤�ra�

(~w,� ~z) (C16)

⇤�ra�

(~w,� ~z) = �(@�z�

⇧�rs�

(~w,� ~z))K�1

sa
(~z) (C17)

Using� ⇧�rs�

(~u,�~v)� from� (C13),� the� expression� for� ⇤�ra�

can� be� written� out� as

⇤�ra�

(~w,� ~z)� =�

Z�

x�

Ḡ�mr(~x,� ~w�)G(~x,�~z)e�

�|~x�~z|�

2�

/✏�

h�x̄ � ¯�z

✏�

K(x,� x̄)K�

�1�(z,� x̄)

+K(x,� x̄)@�z�

(K�

�1�(z,� x̄)K(z,� z̄))K�

�1�(z,� z̄)�

i�

ma�

(C18)

Because� of� the� exponential� e�

�|~x�~z|�

2�

/✏�,� the� region� |~x� ��~z|�

2�.� ✏� is� what� is� relevant� for� !�a�

(~z).�

Expanding� around� z,� we� get

!�a�

(~z) = J�a�

(~z)� +� O(✏)� (C19)

If we use the expression (C7) for Ḡ�mr(~x,� ~w�) in (C18), the expression for ⇤�ra will split
into� four� terms.� One� can� expand� the� integrands� in� powers� of� x� �� w,� ¯�x�� ¯�w and� carry� out�

the� x-integration� to� generate� an� expansion� in� powers� of� ✏.� We� then� find

⇤�ra�

(~w,� ~z)� =�

1

⇡(z � w)

⇥�

��ra ��

��

K(~w)K�

�1�(z,� w̄)�

��

ra�

e�

�|z�w|�

2�

/2✏�

⇤

+(terms� of� higher� order� in� ✏� or� (z� �� w), (z̄� �� w̄))

⌘ ¯�G�

0
ra

(~z,� ~w�)� +� ·� ·� ·� (C20)

Here ¯�G�

0� is� the� transpose� of ¯�G� with� ✏� replaced� by� 2✏.� We� can� use� this� expression� in� (C16)
for ⌦�ab�

(~z,� ~w�) and� write� the� kinetic� energy� operator� as�

T� (J)� =� m�

Z�

J�a�

(~z)
�

�J�a(~z)
+�

Z� ��

D�wḠ�

0�(~z, ~w)�

��

ab

�

�J�a(~w)

�

�J�b(~z)

��

 (J)� +� O(✏)
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=� m�

Z�

z,w


¯�@J�a(~w) ¯�G(~z,� ~w)

��

�J�a(~z)�

+�

��

D�w
¯�G�

0�(~z,� ~w)�

��

ab

�

�J�a(~w)�

�

�J�b(~z)

��

 (J)� +� O(✏)�

(C21)

It� is� easy� to� see� that� as� ✏� !� 0,� ⇤(~w,� ~z)� ! ¯�G(~z,� ~w�).� The� first� line� of� (C21)� then� reproduces
the� expression� (6.10)� in� text.� In� simplifying� (C16)� for� !�a�

to� get� (C19),� we� have� cancelled�

powers� of� (z� �� w)� against� Ḡ(~z,� ~w�).� This� can� lead� to� expressions� which� seemingly� do� not
have� the� holomorphic� invariance.� The� second� line� of� (C21)� shows� T� in� a� manifestly
holomorphic� invariant� form.

As� for� the� potential� energy,� we� can� do� a� point-splitting� and� write

V�(��

0�)�

=
⇡

mc�A�

Z�

x

: @̄J�a(~x)�@̄J�a(~x) :

=
⇡

mcA�

h�

Z�

x,y

�(~x,�~y;���

0�)�@̄J�a(~x)(K(x,� ȳ)K�

�1�(y,� ȳ))�ab
¯�@J�b(~y) � c�A�

dimG

⇡�

2���

02

i�

(C22)

A� priori� we� have� the� freedom� to� choose� a� different� value� ��

0�,� rather� than� ✏,� for� the� width�

of� �(~x,�~y;���

0�),� so� we� have� displayed� the� expression� for� such� a� choice.� The� action� of� T�

on� V� is� important� for� solving� the� Schr¨�odinger equation.� Since� we� have� regularized� all�

operators,� it� is� straightforward� to� work� this� out� and� obtain

T�(✏)�

V�(�0�)�

= 2m�

⇥
1 +�

1

2
log(��

0�/2✏)�

⇤�

V�(��

0�)�

+� ·� ·� ·� (C23)

Since� it� is� different� from� ��

0�,� we� display� the� regularization� parameter� ✏� for� T as� a� sub-
script.

To� understand� how� ✏� and� ��

0� may� be� related,� we� first� note� that� since� we� are� using�

the� A�0�

=� 0� gauge,� the� Coulomb� potential� at� short� distances� will� be� obtained� from� the�

action� of� the� kinetic� term� on� wave� functions.� In� 2+1� dimensions,� the� Coulomb� potential�

is� logarithmic� and� so� a� subtraction� point� needs� to� be� chosen� to� define� the� zero� of� the�

potential.� The� freedom� of� choosing� this� point� is� also� a� reflection� of� the� fact� that� the�

kinetic� operator� is� scale� invariant� as� ✏� !� 0.� In� terms� of� the� regularized� version,� this�

means� that� we� can� define

T�(�) = T�(✏) +
e�

2�

2
log(2✏/�) Q

Q = ✏�

Z
�(~u,�~v;� ✏)K�rs(u,� v̄)

⇣
p̄r(~u) � i�@̄J�r(~u)�

⌘�

p�s�

(~v)� (C24)

Acting� on� V� ,� we� now� get�

T�(�)�

V�(�0�)�

= 2m�

⇥
1 +�

1

2
log(��

0�/�)�

⇤�

V�(�0�)�

+� ·� ·� ·� (C25)
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The� addition� of� Q� to� T� can� be� interpreted� as� follows.� Recall� that,� in� covariant� pertur-
bation� theory,� the� addition� of� local� counterterms� is� equivalent� to� a� change� of� regular-
ization.� The� addition� of� Q� in� (C24)� may� be� viewed� as� the� analogous� procedure� for� the�

Hamiltonian� formulation.

C.2� A� Lorentz-invariance� argument�

We� have� regularized� T� and� V� with� different� parameters,� �� (or� ✏)� and� ��

0�.� Each� expression
will� thus� involve� fields� with� modes� of� momenta� larger� than� 1/�

p�

�� and� 1/�

p�

��

0�,� respec-
tively.� Being� short-distance� regularization� parameters,� we� need� �,� ��

0� to� be� much� smaller
than� any� physical� scales� such� as� 1/(e�

2�)�

2�.

The� key� missing� ingredient� in� treating� T� and� V� separately� is� Lorentz� invariance.�

Recall� that� under� a� Lorentz� transformation� corresponding� to� velocity� v�i�

,� the� electric� and�

magnetic� fields� transform� as

�E�i�

⇡ �✏�ij�

v�j�

B,� �B� ⇡� ✏�ij�

v�i�

E�j�

,� |v|� ⌧� 1� (C26)

The� Hamiltonian� is� the� integral� of� the� energy� density� T�00�

.� The� momentum� and� stress�

densities� are� given� by

T�0i�

= ✏�ij�

E�jB,� T�ij�

= �E�i�

E�j�

+ ��ij�

T�00�

(C27)

Under� a� Lorentz� transformation,� we� have

�T�0i�

= v�i�

T�00�

+ v�j�

T�ij�

(C28)

If� we� use� the� transformation� (C26)� for� the� fields,

�T�0i�

= �(✏�ij�

E�j�

B) = v�i�

(E�

2� + B�

2�) � v�k�

E�k�

E�i (C29)�

This� is� in� agreement� with� (C28).� But� it� also� shows� that� if� we� regularize� the� momentum
P�i�

=�

R�

✏�ij�

E�j�

B� with� a� parameter� �,� Lorentz� invariance� will� require� that� both� terms
in� the� energy� (on� the� right� hand� side� of� (C29)� should� be� regularized� with� the� same�

parameter.� (A� variant� of� this� argument� was� given� in� [96].)� Thus,� although� a� priori�

we� could� use� different� regularizations� for� T� and� V� ,� consistency� with� Lorentz� symmetry
requires� �� =� ��

0� (with� 1/�

p�

� � e�

2�).� In� this� case,� (C25)� simplifies� to

T�(�)�

V�(�) = 2m V�(�)�

+� ·� ·� ·� (C30)

At� this� point,� we� can� also� go� back� and� use� ✏� in� place� of� �� as� we� did� for� the� potential�

energy� in� (6.25).
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Another� version� of� this� argument,� where� the� action� of� T� on� V� and� the� vacuum� wave�

function� are� considered,� is� given� in� [96].� We� may� note� that� the� issue� of� regulariza-
tion� and� how� it� relates� to� Lorentz� invariance� is� somewhat� tricky.� For� a� discussion� with
different� points� of� view,� see� [97,� 98].

D� Corrections� to� string� tension

In� this� Appendix,� we� will� calculate� the� first� set� of� corrections� to� the� formula� (9.10)� for�

the� string� tension� using� the� first� order� corrections� to� the� vacuum� wave� function� obtained�

in� section� 8,� equations� (8.10)-(8.16).� From� the� recursive� solution� of� the� Schr¨�odinger
equation,� the� correction� to� the� quadratic� kernel� in� the� wave� function� is

e�

2 f (2)

2
(q) =

m

E�q�

Z
d2k

32⇡

✓
1�

k̄
g�

(3)�(q,� k,� �k� �� q)� +
k

2k̄
g�

(4)�(q,� k;� �q,� �k)�

◆

⇡ ¯�q2

2m
(1.1308)� + . . . (D1)

In� the� second� line� we� give� the� lowest� order� (quadratic� in� q�

2�)� term,� as� this� is� what� is�

relevant� for� the� calculation� of� the� string� tension.� Seemingly,� this� is� a� 113%� correction,�

but� there� are� important� additional� terms� which� should� be� included.� In� calculating� the�

vacuum� expectation� value� of� an� operator� as� hOi� =�

R�

 �

⇤� � O,� we� have� to� do� a� functional�

integration� over� H,� so� this� can� be� viewed� as� a� two-dimensional� field� theory.� It� is� then�

clear� that� there� are� loop� corrections,� in� the� 2d� field� theory� sense,� to� the� quadratic� kernel.�

So� we� start� with� a� procedure� for� simplifying� and� systematizing� these� contributions.� (The�

interpretation� of� hOi� =�

R�

 �

⇤� � O� as� equivalent� to� calculating� the� functional� integral� of�

a� 2d� field� theory� was� also� used� in� the� calculation� of� the� string� tension� in� section� 9.)

Since� the� measure� of� integration� has� the� WZW� action,� our� first� step� will� be� to
transform� the� functional� integration� over�  �

⇤�

0
 �0 =� e�

F� into� the� integration� over� a� two-
dimensional� chiral� boson� field� ',� '̄.� (Although� we� use� the� same� letter,� this� is� not� the� '�

we� used� in� parametrizing� H� as� e�

t�a�

'�

a�.)� The� key� point� is� that� F� is� given� in� terms� of� cur-
rents,� so� consider� the� calculation� of� the� current� correlators� in� just� the� hermitian� WZW�

theory.� We� can� write

1

Z

Z�

dµ(H)e�

2c�AS�wzw(H)�e�

��

c�A
⇡

R
¯�C�

a�

(@HH�

�1�

)�

a
=

1

Z

Z�

dµ(H)e�

2c�AS�wzw(UH)�2c�AS�wzw(U)

=� e�

�2c�AS�wzw(U) (D2)

120



where ¯�C = U�

�1@̄U and� we� have� used� the� Polyakov-Wiegmann� identity

S�wzw(H) ��

1

⇡

Z�

Tr( ¯�C@HH�

�1�) = S�wzw(UH)� �� S�wzw�

(U�) (D3)

(Here� Z� is� just� a� normalization� factor;� it� is� the� partition� function� of� the� hermitian� WZW
theory.)� Since� exp(�2c�A�

S�wzw�

(U�))� is� the� inverse� of� the� chiral� Dirac� determinant� in� two
dimensions,� we� can� use� the� formula

exp(�2c�A�

S�wzw�

(U�))� =�

Z�

[d'd'̄]� e�

��

R�

'̄(@̄+�C̄)'� (D4)�

The� complex� boson� field� '� transforms� in� the� adjoint� representation� of� SU�(N�). For� the
YM� case,� including�  �

⇤�

0
 �0�

,� we� have

hOi� =�
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2⇡/mc�A�

¯�'ta�') (D5)

where Ĵ�

a� =� ��

p�

2⇡/mc�A
�

�C̄a�

and,� after� introducing� the� representation� (D4),� we� have
evaluated� the� action� of� the Ĵ�

a�’s� and� set�

¯�C� to� zero.� The� action� S(')� is� given� by

S(') =�

Z�

¯�'@̄'� �� F(�

p�

2⇡/mc�A�

¯�'ta�')� (D6)

There� is� a� correction� to� be� made� to� this� formula� once� we� have� F� which� will� introduce�

additional� interactions� for� the� '-field.� If� we� think� of� this� as� a� 2d� field� theory,� it� is�

easy� to� see� that� we� will� need� renormalization� constants� (Z-factors)� for� the� chiral� boson�

action.� The� representation� of� the� determinant� which� is� applicable� in� the� presence� of�

interactions� is� thus

exp(�2c�A�

S�wzw�

(U�))� =�

Z�

[d'd'̄]� exp�

�

��

Z�

'̄(Z�2
¯�@ + Z�1�

C̄)'�

��

(D7)�

For� the� expectation� values,� we� still� get� the� formula� (D5),� but� now� with� the� action

S(') =�

Z�

(Z�2�

'̄¯�@'� +� Z�1'̄ ¯�C')� �� F(Z�1

p�

2⇡/mc�A�

¯�'ta�')� (D8)

(We� can� set�

¯�C� to� zero� at� the� end,� once� the� renormalization� constants� Z�1�

, Z�2�

have� been
calculated;� see� [20]� for� more� details.)� In� this� representation� in� terms� of� ',� effectively,
the� current� J�

a� is� replaced� by� Z�1�

p�

2⇡/mc�A�

¯�'ta�'.� The� function� F�(Z1

p�

2⇡/mc�A�

¯�'ta�')

contains� vertices,� F�

(2)� with� two� currents� (quartic� in� ',� '̄),� F�

(3)� with� three� currents,� etc.
For� example,� we� may� diagrammatically� represent� F�

(2)�,� with� two� '’s� and� two� '̄’s,� as
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h � ¯ �� t � a � � � ( � x � )¯ � � � t � b � � � ( � y � ) � i � = yx + � x y � + �

+ � x y � + � ···

Figure2:Correctionstothetwo-pointfunctionofcurrentsduetothevertex � F � (2)

equation,is

h � ¯ �� t a � � ( � x � )¯ � � � t b � � ( � y � ) � i � =Tr( t a t b )
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(46)

Using(26),thecontributionofthetermwithoneinsertionofthe � F (2) -vertexis

h � ¯ �� t � a � � � ( � x � )¯ � � t � b � � � ( � y � ) � i � (1) = � � � ab c � A
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m

�
(47)

Thesummationoftheseriesoftermsshowninfigure2isthusgivenby

h � ¯ �� t a � � ( � x � )¯ � � � t b � � ( � y � ) � i � = � � ab c A
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¯k �

✓
m

E k

◆
(48)

Thepresenceofthe � m/E k factorimprovesultravioletconvergenceofintegralsanditwill

alsosuppressthenumericalvaluesofvariouscorrections.Inanydiagram,thevertexcor-

respondingtoacurrent¯ � � t a � willhavesuchafactorof m/E k .Thisfollowsfromnoticing

thatthecurrentinanydiagramhasaseriesofterms(duetoinsertionsof F (2) )correcting

it,asshowninfigure3.Thesummationofthesetermsgivestheresult
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Forthetwo-pointfunctionforthecurrents,wemustusethecorrectedcurrentgivenbythis

equationonlyatonevertex;otherwise,therewillbedouble-counting.Thisissimilartothe

caseofSchwinger-Dysonequationsin,say,electrodynamics,wherethevertexcorrections

tothevacuumpolarizationonlyapplyatonevertex.

14

Figure� 9:� The� current-current� correlator� including� all� contributions� from� F (2)

0

F�

(2) = 2⇡

mc�A

R
('̄ta')x f (2)(x,� y)('̄ta')y =

The� corrections� to� F�

(2)�,� which� is� what� we� are� interested� in,� may� be� viewed� as� loop
corrections� to� the� quartic� vertex� in� this� two-dimensional� field� theory.

In calculating the corrections to� F (2), the vertices� F (3),� F (4), etc., can be included
perturbatively� since� they� carry� powers� of� e.� However,� the� lowest� term� in� the� vertex
F�

(2),� corresponding� to� f�

(2)

0a1a2
(x�1, x�2),� has� no� powers� of� e� and� hence� its� contributions� will

have� to� be� included� to all orders and summed up. The result for the� � current-current
correlator� is

h ¯�'ta�'(x)� ¯�'tb'(y)i = �ab�
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(D9)

Here� E�k�

=�

p�

k�

2� + m�

2�;� the� (m/E�k)� factor� arises� from� the� summation� of� corrections� due
to� F (2)

0
,� shown� diagrammatically� in� Fig.� 9.� Any� vertex� can� acquire� a� series� of� corrections

from� F�

(2)

0
,� so� that� we� may� consider� an� effective� vertex

¯�'ta�'(x)
i�

e↵

=�

Z
d2k�

(2⇡)2
eik(x�z)

m

E�k

( ¯�'ta')(z) (D10)

This� is� shown� diagrammatically� in� Fig.� 10.� As� a� result,� all� corrections� acquire� powers� of
(m/E�k�

)� in� the� integrands� and� in� fact,� we� can� classify� contributions� in� powers� of� (m/E�k�

).
Since� (m/E�k�

)� � 1,� the� numerical� values� will� decrease� as� we� go� down� the� series.

The� basic� strategy� for� calculating� corrections� may� then� be� summarized� as� follows:

1.� Construct� loop� diagrams� generated� by� F�

(3)� (3� factors� of� ¯�'ta�')� and� F�

(4)� (4� factors
of� ¯�'ta�').
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2.� They� can� have� arbitrary� insertions� of� F�

(2)

0
’s,� leading� to� a� factor� of� (m/E�k�

),� as� in
Fig.� 11.

3.� Sum� up� F (2)

0
insertions� in� all� diagrams� (of� order� e�

2�)� generated� by� F�

(3)� and� F�

(4)�.

4.� Classify� and� group� these� by� the� number� of� factors� of� (m/E�k�

).

There� will� be� corrections� generated� to� the� terms� ¯�'@̄'� and� ¯�'C̄'� in� the� action;� these� are
renormalization� effects� due� to� F (2)

0
. These� have� to� be� cancelled� by� Z�1�

Z�2�

factors. They
are� discussed� in� more� detail� in� [20].�

We� have� calculated� corrections� to� order� e�

2� and� up� to� 4� powers� of� (m/E�k�

).� Denot-
ing� the� factors� of� (m/E�k�

)� by� shaded� circles� at� the� vertices,� the� corrections� to� the� low
momentum� limit� of� f�

(2)� may� summarized� as� in� Fig.� 12.� We� show� the� coefficients� of
¯�q2�/2m,� for� small� q,� ¯�q for� each� diagram.� The� low� momentum� limit� of� f�

(2)�,� including� the
renormalization� corrections,� can� be� written� as�

e�

2�f�

(2)�(q) =
¯�q2

2m
(C�0�

+ d�1�

+ d�2�

+� ·� ·� ·� )� (D11)

where� C�0�

=� 1.1308� from� the� recursive� procedure� as� in� (8.16� or� as� quoted� in� (D1).�

d�1�

corresponds� to� the� contribution� from� the� term� with� one� power� of� (m/E�k�

)� in� the�

integrand� corresponding� to� the� diagrams� in� Fig.� 12,� d�2�

is� the� contribution� from� all� terms
with� two� powers� of� (m/E�k�

)� in� the� integrand� and� so� on.� Let� C�n�

denote� the� partial� sum
of� corrections� up� to� terms� with� (m/E�k�

)�

n�,� i.e.,� C�1�

= C�0�

+ d�1�

,� C�2�

= C�0�

+ d�1�

+ d�2�

,� etc.� Then
we� find

C�1 =� 0.5496�

C�2 =� 0.2730�

C�3 =� 0.0373�

C�4 =� �0.05843� to� �� 0.00583� (D12)

V 1 V 2

¯ �' t � a � ' � ( � x � ) �
i �

e � ↵ �

= � x � + � x �

+ � x + � ···

Figure3:Thee � � � ectivecurrentvertex

3

Figure� 10:� The� e↵ective� current� vertex
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Figure� 11:� Corrections� from� F�

(2)�

0
summed� up� as� a� factor� of� m/E�k�

(shaded� circle� at� vertex)� and

sample� renormalization� diagrams

�0.58118� �0.47835� 0.20169� �0.23569

0 0.02083 �0.06893

�0.01216 0.06824 (�0.1037)� to� (�0.166)

Figure� 12:� Corrections� to� the� low� momentum� limit� of� the� F�

(2)� vertex

Many� of� the� integrals� have� to� be� evaluated� numerically.� There� is� a� small� ambiguity� in�

one� of� the� integrals� for� the� last� diagram� in� Fig.� 12� [20],� which� is� why� a� range� of� values
is� indicated� for� C�4�

.

Notice� that� the� partial� sums� are� systematically� decreasing� in� value,� showing� that�

the� ordering� of� diagrams� by� powers� of� m/E�k�

does� constitute� a� viable� expansion.� The�

cumulative� value� of� the� corrections� to� the� order� we� have� calculated� is� indeed� small.� For�

the� string� tension,� we� then� find

p�

��R�

= e�

2�

r
cAcR

4⇡

(��

1� �� 0.02799� +� ·� ·� ·�

�
��

1� �� 0.0029� +� ·� ·� ·�

� (D13)

This� correction,� of� the� order� of� �2.8%� to� �0.03%,� is� entirely� consistent� with� lattice�

calculations.� Terms� of� order� (m/E�k�

)�

5� are� expected� to� contribute� at� the� level� of� a� fraction�

of� 1%.
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Figure1:Examplesofrepresentation-independent(left)andrepresentation-dependent

(right)correctionstostringtension

2

Figure� 13:� Example� of� a� correction� from� F�

(3)� term� to� the� Wilson� loop� expectation� value.

Each“gluon”� stands� for� a� hJ�

a�

J�

b�i� propagator.

The� corrections� seem� to� play� out� in� an� intriguing� way� here.� The� first� term� C�0�

is� rather�

large,� but� is� then� mostly� cancelled� out� by� the� “loop� corrections”.� This� suggests� that� there�

must� be� a� different� way� to� organize� the� corrections� so� that� many� of� the� cancellations�

are� packaged� together.

There� are� also� several� types� of� corrections� we� have� not� calculated.� First� of� all,� there� is
the� issue� of� corrections� to�  �0�

due� to� the� next� set� of� terms� (of� order� e�

4�)� in� the� solution� of�

the� Schr¨�odinger equation,� as� in� section� 8.� Secondly,� even� to� the� order� we� are� calculating�

here,� there� are� diagrams� with� two� or� more� current� loops� in� the� effective� 2d� theory�

of� the� '-fields.� Finally,� there� could� also� be� corrections� which� do� not� appear� as� loop�

corrections� to� the� quadratic� terms� in�  �0�

but� have� to� be� included� in� the� computation� of�

the� expectation� value� of� the� Wilson� loop� operator.� An� example� of� such� a� diagram� is�

shown� in� Fig.� 13.� These� types� of� corrections� can� also� be� representation-dependent� in�

general� and� they� can� be� important� for� string-breaking� effects� as� well.
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