
Vol.:(0123456789)

Automated Software Engineering (2024) 31:62

https://doi.org/10.1007/s10515-024-00460-x

1 3

Revisiting file context for source code summarization

Chia-Yi Su
1
 · Aakash Bansal

2
 · Collin McMillan

1

Received: 17 August 2023 / Accepted: 7 July 2024

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature

2024

Abstract

Source code summarization is the task of writing natural language descriptions of

source code. A typical use case is generating short summaries of subroutines for

use in API documentation. The heart of almost all current research into code sum-

marization is the encoder–decoder neural architecture, and the encoder input is

almost always a single subroutine or other short code snippet. The problem with

this setup is that the information needed to describe the code is often not present in

the code itself—that information often resides in other nearby code. In this paper,

we revisit the idea of “file context” for code summarization. File context is the idea

of encoding select information from other subroutines in the same file. We propose

a novel modification of the Transformer architecture that is purpose-built to encode

file context and demonstrate its improvement over several baselines. We find that

file context helps on a subset of challenging examples where traditional approaches

struggle.

Keywords Source code summarization · Program comprehension · Software and

its documentation · Information systems · Natural language processing · Machine

translation

 * Chia-Yi Su

 csu3@nd.edu

 Aakash Bansal

 abansal1@nd.edu

 Collin McMillan

 cmc@nd.edu

1 Department of Computer Science, University of Notre Dame, Holy Cross Dr, Notre Dame,

IN 46556, USA

2 Division of Computer Science, Louisiana State University, Baton Rouge, USA

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 2 of 32

1 Introduction

A source code “summary” is a short description of that code in natural language.

Code summaries have long been at the center of documentation for programmers

such as JavaDocs and PyDocs (Kramer 1999), though recent interest is balloon-

ing for interactive programmer tools and educational systems. Tools with code

summarization features such as Github Copilot and ChatGPT have captured the

public imagination with their ability to read and describe code. Even a short sum-

mary such as “books a seat on an airplane flight” can help a programmer quickly

understand what a snippet of source code does without having to read the code

itself.

The beating heart of almost all source code summarization research is the neu-

ral encoder–decoder architecture (Sutskever et al. 2014). The setup is simple. The

input to the encoder is the source code to be summarized, while the decoder gen-

erates a summary one word at a time. Usually in laboratory settings, the code

to be summarized is a single subroutine. The problem with this setup is that not

all of the information needed to write a summary of a subroutine is included in

that subroutine. Software engineering literature has documented for decades how

programmers need summaries to include high-level rationale about why the code

exists rather than just restating words from the code itself (Holmes and Murphy

2005; Hill et al. 2009). Current approaches struggle to find the right words to pro-

vide this rationale because it often does not exist in single subroutine.

An alternative model was proposed by Haque et al. (2020) using “file context.”

File context means the other subroutines in the same file as a subroutine under

investigation. Haque et al. built an encoder based on recurrent neural networks

(RNN) to augment the attention component of the RNN-based encoder–decoder

architectures that were prevalent at the time. Experimental results in the original

paper and replicated by Bansal et al. (2021) showed how the file context encoder

could be added to and improves several RNN-based baselines.

Since then, transformer-based architectures superseded RNN-based ones in

nearly all respects. Transformer models tended to be able to outperform RNNs

even with the file context encoder, when performance is measured by automated

metrics over a whole dataset. E.g., BLEU scores were higher over popular bench-

mark datasets. Yet these results are slightly misleading. In fact, there is a sub-

set of code for which file context helps, and a subset where it does not. Newer

models achieve higher BLEU score by boosting performance on part of the data-

set, but not in the way in which file context can help. Unfortunately, there is not

a clear means to augment transformer-based models with the encoder proposed

by Haque et al. (2020) due to the differences in how transformer and RNN-based

architectures handle attention.

In this paper, we introduce a novel modification to the transformer architec-

ture for code summarization designed to encode file context. In a nutshell, our

approach has two transformer-based encoders: one for file context and one for

the code being described. On the decoder side we use a stack two transformer-

based decoders. The “lower” decoder receives the output of the file context

1 3

Automated Software Engineering (2024) 31:62 Page 3 of 32 62

encoder. The “upper” decoder receives the output of the first decoder and the

code encoder. This dual encoder design is an alternative to standard transformers

that use a giant context window because we cannot simply use this off-the-shelf

method. This architecture can further serve as a foundation of the large language

models because this transformer architecture allows longer context windows and

has better efficiency with better hardware support for scaling up to large language

models compared with the RNN-based models.

We show experimentally that our approach outperforms several baselines over

three datasets, two in Java and one in Python. We also show how the design deci-

sion of a separate encoder for file context helps performance. We show that our

approach outperforms other transformer architecture that use a large context window

or “prompt”. But more importantly, we show that the performance increase is due

to the file context instead of other factors such as scale. We also conduct a human

study and report programmer opinions on the quality of summaries generated by our

approach, when compared against the best performing baseline.

2 File context

“File context” is a term in Software Engineering research literature that means the

other information in the same file as a section of code under investigation (Holmes

and Murphy 2005; Hill et al. 2009; Guerrouj et al. 2014; Ding et al. 2022). In this

paper, as in the earlier work by Haque et al. (2020), the sections of code under inves-

tigation are subroutines, and the file context includes a few of the other subroutines

in the same file. File context has been cited for decades as a key source of informa-

tion for understanding source code, since code lives in an ecosystem of interdepend-

ent software components.

Consider Example 1 from Haque et al. (2020). The Java method setInter-

mediate() is a simple setter type function. Most baselines are capable of writing

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 4 of 32

a summary to this effect, such as the example from LeClair et al. (2019) shown.

But this summary is not that useful because even a novice programmer is likely to

expend almost no effort reading the code. What is useful is to know is why the value

is set (Roehm et al. 2012).

In Example 1, this why-information is only evident when we consider the file

context. Note the file context consists of terms such as “airline”, “flight”, and “des-

tination” in the signature of other methods. The model using file context was able to

find and learn to use the word “flight” correctly, thus predicting a more useful sum-

mary for the method.

Cases like these are very common in code summarization samples and have a

strong impact on model performance. Consider the distribution of our dataset pre-

sented in Table 1. The term wo refers to the number of words that are in both the

reference summary and file context, but are not present in the method itself:

Here, FCW is the set of words in the file context, MW is the set of words in the

method, and SW is the set of words in the summary. Note that only around 35% of

methods have wo = 0 , a majority contain at least one word in the file context that is

not present in the method itself.

Meanwhile, the column METEOR refers to the METEOR score of a Transformer

approach proposed by Ahmad et al. (2020). This baseline approach does not see or

use file context. The METEOR score is 41.44 for when wo = 0 , but drops over 25%

to 30.78 for when wo = 1 . We observe that the METEOR score continues to decline

for subsets with a higher wo. This means summaries that use more words from the

file context are often more difficult to write for standard approaches.

3 Related work

In Fig. 1 we provide an overview of selected related work from the last 5 years. The

related work can be broadly classified into four families.

(1)wo = |(FCW − MW) ∩ SW|

Table 1 Model performance declines as word overlap between the code summary and the file context

increases

The first column shows wo which is the number of words in the summary that are in the file context but

not in the subroutine. The second column shows METEOR scores for a typical Transformer baseline

1 3

Automated Software Engineering (2024) 31:62 Page 5 of 32 62

AST-Flat is a family of approaches marked by Column A in Fig. 1 that uses the

Abstract Syntax Tree (AST) as a sequence of nodes. In 2018, Hu et al. (2018a)

introduced DeepCom, a model that encodes code tokens and AST nodes together

using LSTMs. In 2019, LeClair et al. (2019) introduced a similar model ast-

attendgru, except that they use GRUs instead of LSTM and they decoupled the

AST and source code sequence to separate encoders. They found that learning

separate representations of code and structure helps generate better natural lan-

guage summaries.

AST-GNN is a family of approaches marked by Column G in Fig. 1 that use

Graph Neural Networks (GNN). In 2020, LeClair et al. (2020) introduced a

hybrid GNN-RNN model that encodes AST as a graph using a GNN layer and

combines it with a GRU based source code sequence encoder. They found that,

compared to a flat representation of AST, a GNN can learn to better place AST

nodes in the embedding space by using the edges of the AST. Since that land-

mark paper, a few approaches have been introduced that use GNNs to encode

code structure for code summarization (Kuang et al. 2022; Liu et al. 2021).

Fig. 1 Overview of select related work. Column R denotes use of RNNs such as GRU/LSTM. A denotes

using Abstract Syntax Tree. G denotes graph neural networks based encoder. T denotes Transformer

based encoder. C denotes the use of context

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 6 of 32

Transformers is a family of approaches marked by Column T in Fig. 1. In

2020, Ahmad et al. (2020) introduced a Transformer based approach for code

summarization. They found that the self-attention mechanism helps transform-

ers better map words in the encoder to words in the decoder. Since then, several

approaches have been introduced that use a network of transformers (Ahmad et al.

2021; Tang et al. 2022; Kuang et al. 2022). In 2022, Li et al. (2022) introduced

SeTransformer that encodes decoupled AST and source code, using a network of

transformers and CNNs.

Context is a family of approaches marked by Column C in Fig. 1 that mainly

relies on contextual information. In 2020, Haque et al. (2020) introduced an encoder

“FC”, that encodes file context, i.e., the summaries around the target function in

the same file as a separate encoder. They add this encoder to several RNN based

baselines. They found that sometimes the important information needed to gener-

ate accurate summaries is not present in the target function, but can be found in the

functions around it in the same file. Our paper is an extension of that work.

The ideas of integrating the context into the model have been used in different

program comprehension tasks. For example, Li et al. (2021); Wang et al. (2021)

integrated the file context to improve the results of method name suggestions. How-

ever, the workhorse of those papers is RNN-based models. We designed a novel

approach to integrate file context into transformer-based models because of the dif-

ference in attention mechanism.

In 2021, Bansal et al. (2021) introduced another context-based encoder “PC”

that encodes several files from the project as project context. They disclosed that the

computational cost of their encoder is exponentially higher than “FC”. Therefore,

we leave “PC” for transformer-based models as our future works.

Since 2020, Large Language Models (LLMs) have become increasingly popular

in several domains of applied NLP research. In 2020, Feng et al. (2020) introduced

CodeBERT that uses a stack of Transformers which are bidirectionally trained. The

network models source code syntax by learning to predict randomly masked tokens

proposed. In 2021, Ahmad et al. (2021) proposed PLBART, using graph neural net-

works to learn programming language generation. Both report modest improvements

in performance for code summarization, while reporting high training costs, which

are critical for academic research.

In 2020, Wei et al. (2020) introduced an approach to use AST and exemplar rep-

resentations of source code as context. They used these representations to fetch simi-

lar methods from a database to help refine the search for a more accurate summary.

In 2021, Liu et al. (2021) introduced an approach to retrieve similar code properties

from a data as context, then model that context as a property graph using GNNs.

These are examples of retrieval-based techniques that use summaries from similar

methods as an input to the model. In contrast, we make every effort to remove com-

ments and doc-strings from our context input. Retrieval-based techniques are also

more susceptible to data leaks between the training and test set that could skew the

results over unseen samples. Therefore, we do not replicate their work as a baseline.

Overall, we observe a clear trend from GRU/LSTM based models that mainly

relied on source code and AST—to transformer based techniques, with a few

approaches increasingly incorporating some contextual information in their design.

1 3

Automated Software Engineering (2024) 31:62 Page 7 of 32 62

This paper is a natural evolution of that trend, in that we present an in-depth analysis

of how transformers and file context can be used to improve the state-of-the-art in

source code summarization.

4 Model design

Our model is essentially the basic Transformer architecture, but with two key

changes. First, we add a File Context Encoder to learn a representation of the other

subroutines in the same file as the target subroutine. Second, we add another multi-

head attention and fully-connected layer unit (which we call an XFormBlock) to the

decoder, and use the output of the File Context Encoder as an input to this unit.

The “target subroutine” is the subroutine for which we are writing a summary. The

XFormBlock is an abstraction of common attention, FCN, and normalization/regu-

larization operations used in Transformer-like models (see the next section for more

details).

The intuition behind our changes is two fold: (1) to allow the model to “see”

the file context prior to the target subroutine’s source code when learning to pre-

dict words in the summary, and (2) to avoid using giant context windows such as

large prompts. The expectation for giant context windows is that a large model will

eventually learn context from all the information. But, that approach is computation-

ally expensive and requires much a large amount of data. We show Sect. 6.3 that

giant context window approach does not provide expected improvements, at least

not out-of-the-box.

Fig. 2 Overview of our model design. Area 1 and 2 denote the target subroutine encoder. Area 3 high-

lights the novel addition of the file context encoder. Area 4 denotes the summary decoder. Area 5 and 6

denote out novel modifications to use dual encoders to improve the output prediction

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 8 of 32

Consider the overview in Fig. 2. There are two encoders and one decoder. One

encoder is the target subroutine encoder, shown in Fig. 2, area 1 and 2. The input to

this encoder is the first t tokens of the target subroutine’s source code (area 2). These

are encoded using L XFormBlock units, as recommended by Ahmad et al. (2020) for

code summarization (area 2).

Another encoder is the file context encoder shown in area 3. The input is a matrix

containing the first m tokens for n subroutines from the same file. The vocabulary for

both of these encoders is the same, though unlike Haque et al. (2020), we use separate

embedding spaces for each encoder. We used the same preprocessing technique as pro-

posed by Bansal et al. (2021), which is very light with only the following operations:

(1) extract all tokens based on the language specification (e.g., a “token” in Java is what

the Java lexical analyzer sees), (2) split all tokens by underscore and camel case, and

(3) change all tokens to lower case.

The input to the decoder a sequence of words in the summary for the target sub-

routine (area 4). The output is the next word in the summary. The architecture of the

decoder is the same as a typical Transformer model, except that for each XFormBlock

in the original model, we have two. One takes as input the File Context Encoder out-

put (area 5) while another takes the Target Subroutine Encoder’s output (area 6). As in

other encoder–decoder architectures, we build the output summary one word at a time

by feeding the summary predicted up to that point, back into the decoder. We use the

teacher forcing strategy during training.

In the following subsections, we provide a formal definition of our model in Named

Tensor Notation, formalized and proposed by Chiang et al. (2021). In our experiments,

we call our approach transformer-fc .

4.1 File context encoder

The file context encoder forms a representation of the other subroutines in the same file

as the target subroutine. The input to the file context encoder is an n x m matrix where n

is the maximum number of other subroutines the encoder can intake and m is the maxi-

mum number of tokens per subroutine. We define the space in which the file context

encoder operates as:

where Xfc is the input with each element as an entry in the source code vocabulary,

P
fc and Tfc are position and token embeddings, and Efc is the combined embedding

space. A is the file encoder output space. We use a learnable position embedding

proposed as “Method 3” by Huang et al. (2020), in which we assign each position in

each subroutine (e.g., [0..m) for each subroutine, rather than [0..nm) across the entire

X
fc
∈ ℕ

���[n]×�����[m]

P
fc
∈ ℝ

���[n]×�����[m]×���[e]

T
fc
∈ ℝ

���[n]×�����[m]×���[e]

E
fc
∈ ℝ

��������[nm]×���[e]

A ∈ ℝ
��������[nm]×���[e]

1 3

Automated Software Engineering (2024) 31:62 Page 9 of 32 62

file). The token embedding is a typical learned space, and Efc is the elementwise

sum of Pfc and Tfc , reshaped to a 2d nm × e matrix from 3d n × m × e:

We apply Transformer-like operations via L layers of self-attention and fully-con-

nected networks, with dropout and layer normalization. For brevity, we abstract

these operations as the function XFormBlock(Q, K, V), as it has been described as an

“Encoder Block” with parameters Query, Key, and Value by numerous authors start-

ing with Vaswani et al. (2017).

4.2 Target subroutine encoder

The target subroutine encoder forms a representation of the target subroutine itself.

This encoder is a essentially a Transformer-like encoder described by Vaswani et al.

(2017), except with the learned position embedding we also use in the file encoder. The

operation space is:

where Xs is the input where each element is an entry in the vocabulary, Ps and Ts are

position and token embeddings, and Es is the combined embedding space:

(2)

I
1
= [0..n), J

1
= [0..m)

∀i,∀j, i ∈ I
1
, j ∈ J

1

P
fc

���(i),�����(j)
= W1

⊙
���

J
1
+ b1

T
fc

���(i),�����(j)
= W2

⊙
�����

X
fc

���(i),�����(j)
+ b2

E
fc
= (P

fc
+ T

fc
)(fcn,token)→fcntoken

W1 ∈ ℝ
������[e]×���[�] b1 ∈ ℝ

������[e]

W2 ∈ ℝ
������[e]×�����[�] b2 ∈ ℝ

������[e]

(3)A
0
= XFormBlock0(E

fc
, E

fc
, E

fc
)

(4)

⋮

A
L
= XFormBlock

L−1(A
L−1

, A
L−1

, A
L−1

)

A = A
L

X
s

∈ ℕ
�����[m]

P
s

∈ ℝ
�����[m]×���[e]

T
s

∈ ℝ
�����[m]×���[e]

E
s

∈ ℝ
�����[nm]×���[e]

B ∈ ℝ
�����[nm]×���[e]

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 10 of 32

Followed by L XFormBlock layers:

4.3 Decoder

Our decoder is a Transformer-like decoder, except with two XFormBlock layers for

each one in the typical design. In most Transformer-like decoders, there is a self-

attention layer followed by XFormBlock layers. However in our decoder, we have an

XFormBlock that receives A and another that receives B:

The decoder word embedding space:

(5)

J
2
= [0..t)

∀j, j ∈ J
2

P
s

�����(j)
= W3

⊙
���

J
2
+ b3

(6)T
s

�����(j)
= W4

⊙
�����

X
s

�����(j)
+ b4

(7)

E
s
= P

s
+ T

s

W
3 ∈ ℝ

������[e]×���[�]
b

3 ∈ ℝ
������[e]

W
4 ∈ ℝ

������[e]×�����[�]
b

4 ∈ ℝ
������[e]

(8)

B
0
= XFormBlock

0(E
s
, E

s
, E

s
)

⋮

B
L
= XFormBlock

L−1(B
L−1

, B
L−1

, B
L−1

)

B = B
L

(9)

Y
d
∈ ℕ

����[w]

P
d
∈ ℝ

����[m]×���[e]

T
d
∈ ℝ

����[m]×���[e]

E
d
∈ ℝ

����[nm]×���[e]

C ∈ ℝ
����[nm]×���[e]

(10)

J
3
= [0..w)

∀j, j ∈ J
3

P
d

�����(j)
= W5

⊙
���

J
3
+ b5

(11)T
d

�����(j)
= W6

⊙
����

X
s

����(j)
+ b6

1 3

Automated Software Engineering (2024) 31:62 Page 11 of 32 62

And the XFormBlocks:

Followed by an output layer to predict the next word in the summary sequence,

where Yp is the output prediction space:

In practice, the output is a vector with the length z of the summary vocabulary. We

apply a softmax activation to this vector. During prediction, an argmax operation on

this vector indicates the index of the predicted word in the vocabulary.

4.4 Hyperparameters

For reproducibility and transparency, we list key model hyperparameters in Table 2.

(12)

E
d
= P

d
+ T

d

W
5 ∈ ℝ

������[e]×���[�]
b

5 ∈ ℝ
������[e]

W
6 ∈ ℝ

������[e]×����[�]
b

6 ∈ ℝ
������[e]

(13)C
0
= XFormBlock

0(E
t
, E

t
, E

t
)

(14)C
1
= XFormBlock

1(C
0
, A, A)

(15)
C

2
= XFormBlock

2(C
1
, B, B)

C = C
2

Y
p
∈ ℕ

�����[w]

Y
p
= �(W7

⊙
�����

C
s

(word,dim)→vocab
+ b7)

W7 ∈ ℝ
������[e]×�����[�] b7 ∈ ℝ

������[e]

Table 2 Hyperparameters for

our model
Parameter Description Java Python

n Subroutines in file context 20 20

m Tokens per subroutine 25 25

t Tokens in target subroutine 50 50

w Words in summary 13 13

v Source code vocabulary size 75 k 100 k

z Summary vocabulary size 10908 11000

e Embedding dimensions 128 128

L Stacked XFormBlock layers 3 1

h Attention heads 3 3

b Batch size 8 50

r Learning rate 3e−4 3e−4

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 12 of 32

We chose n, m, t, and w as recommendations from Haque et al. (2020) and Bansal

et al. (2021). We chose v and z as recommended by LeClair and McMillan (2019).

We chose e, L, h, b, and r from our own pilot studies and hardware limitations. Note

that hyperparameters differ between Java and Python datasets because of semantic

differences between the two languages, which require different parameters for com-

parable performance. Java and Python model performances must also be considered

independent of each other.

5 Experiment design

This section describes our experiment to evaluate our model, including our

research questions, methods, datasets, baselines, metrics, hardware and software

versions, and threats to validity.

5.1 Research questions

Our research objective is to determine the degree of difference in performance

between our model and baseline models. Thus, We ask the following Research

Questions (RQs):

RQ1 What is the difference between our dual encoder design models and base-

line models over all summaries in a dataset including the summaries contain

words in file context and do not contain words in file context, in terms of

automated metrics?

RQ2 What is the difference between our dual encoder design model and baseline

models when we consider the summary that includes words from the file

context only?

RQ3 What is the impact of our dual encoder design on model performance, when

compared against combining inputs into one giant file as the current prompt

methods?

The rationale behind RQ1 is to be consistent with years of related work.

Almost all code summarization papers over the past decade have used automated

metrics to measure improvement over baselines. This methodology is popular

because any meaningful improvement should be observable over a whole dataset.

The rationale behind RQ2 is that model changes to add file context may pro-

vide more improvement in the subset of the dataset in which words in the sum-

mary are only present in the file context. We seek to evaluate our approach, when

compared with the baselines, over these subsets of our datasets.

1 3

Automated Software Engineering (2024) 31:62 Page 13 of 32 62

The rationale behind RQ3 is to evaluate the impact of our dual encoder design

against a single input approach such as those popularized by Large Language

Models (LLMs). State-of-Practice in industry and now research venues, is to use

these LLMs, which are designed for instructional and conversational use. These

models accept a single input sequence which contains all the information as a

user query.

5.2 Research methods

Our research method is typical of many papers on code summarization and

encoder–decoder models such as LeClair et al. (2019):

To answer RQ1, we first train our approach and each of the baselines mod-

els independently on different datasets for a maximum of ten epochs using the

hyperparameters in Sect. 4. Then, we choose the epoch with the highest valida-

tion accuracy. We load the model at that epoch to predict the summaries for the

unseen test set, which is 4–5% of the whole dataset. Then, we compute auto-

mated metric scores between predicted summaries and the reference summaries

(described in Sect. 5.6).

To answer RQ2, we start with the same predictions we computed for RQ1.

While computing metrics, we partition the test set based on the value of wo. We

then report average metric scores for each subset.

To answer RQ3, we implemented two alternative approaches for modeling file

context as described in Sect. 5.5. We follow the same procedures for evaluation

of these models as RQ1, except that we only train llama-lora for one epoch,

which takes roughly 60 h. We report metric scores for comparison against our

approach and a previous approach that uses file context.

5.3 Datasets

We use three datasets in this paper. One is called funcom-java and contains

around 2 m Java methods. The dataset originates from LeClair and McMillan

(2019) and uses a split-by-project configuration to reduce the risk of data dupli-

cation. The version we use is from Bansal et al. (2021) who apply additional

filters to reduce code clones as recommended by Allamanis (2019).

The second dataset is called funcom-java-long which was created

by Bansal et al. (2023b) and consists of the top 10% longest methods from fun-

com-java in terms of number of tokens and implement fixes recommended

by Shi et al. (2022). We focus on these longer functions due to an observation

by Haque et al. (2021) that many Java methods in the funcom-java dataset

are short getters/setters. This observation was corroborated by Bansal et al.

(2023b). The found that longer methods are more challenging while shorter

methods are easy to summarize using even the most basic code summarization

models. This dataset consists of roughly 190k java methods.

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 14 of 32

Finally, we create a new dataset we call funcom-python that we extracted

from a data dump of 40k Python projects downloaded from Github. We use

the same cleaning and splitting procedures as LeClair and McMillan (2019)

and Bansal et al. (2021). We also favor Python functions that are top 10% long-

est methods as recommended by Haque et al. (2021) and Bansal et al. (2023b).

The final dataset consists of 270k python functions and the corresponding AST

sequence, AST graphs, file context, and header summaries.

5.4 Baseline models

We compare our model to the following baselines. We reimplemented all base-

lines in our own framework to control experimental variables such as software ver-

sion. We chose these baselines as they are representative of different families of

approaches (see Sect. 3) which have different advantages and disadvantages.

transformer-alt This is a baseline of our own design using the same architecture

of our proposed model in Sect. 4. The only difference is that we substitute the file

context input with the subroutine code itself (repeated n times so model size is iden-

tical). More formally, prior to Eq. (2), we set Xfc
= [X

s
×n] . The reason for this base-

line is that our model is larger than the normal transformer, so it is possible that

improvements come from scale and not file context.

ast-attendgru An approach by LeClair et al. (2019) that mainly benefits from a

flat representation of the code’s Abstract Syntax Tree (AST) generated by the Struc-

ture-Based-Traversal (SBT) method. The model architecture consists of two GRU-

based encoders, one for the source code tokens and the other for the AST.

ast-attendgru-fc The original approach by Haque et al. (2020) that this paper

extends. The model architecture consists of three GRU based encoders—two for the

source code tokens and AST tokens respectively, and a third to encode the file con-

text using a number of GRUs consistent with the number of methods from the file

being represented as context.

codegnngru A graph neural network-based approach by LeClair et al. (2020).

This model architecture consists of two encoders, a GRU to encode the flat sequence

of the AST graph, and GNN-GRU hybrid encoder to encode a graphical representa-

tion of the AST using the edges between AST tokens and source code.

transformer An approach by Ahmad et al. (2020). Essentially this approach uses

a vanilla Transformer encoder–decoder design. The model architecture consists of a

single encoder that uses a positional encoding and two attention heads.

setransformer A recent approach by Li et al. (2022) that uses a Transformer-CNN

hybrid model to learn representation of the AST. The model architecture consists of

two Transformer-based encoders, one for the source code and the other for the AST.

Each of these encoders also consists of a CNN layer for feature reduction to reduce

computational load.

1 3

Automated Software Engineering (2024) 31:62 Page 15 of 32 62

5.5 Alternate approaches

We also test two alternate approaches for encoding file context as stand-ins for trans-

formers and large language models with a giant context window. We combine the

source code of the target subroutine and file context into one input. We use these two

baselines exclusively to answer RQ3:

transformer-comb This is a Transformer-based encoder–decoder baseline, where

we combine the source code and the file context into a single input. The model

architecture is similar to transformer, scaled up for a much longer input, such

that the file context is concatenated to the source code after tokenization.

llama-lora A recent approach by Hu et al. (2021) that proposes a framework for

fine-tuning LLaMA, an instructional Transformer-Based Large Language Model

(LLM) by Touvron et al. (2023). This is a decoder-only instructional and conver-

sational LLM that accepts a single prompt and predicts the most likely words to

complete the prompt. We fine tune the 7 billion parameter LLaMA model for one

epoch. We create a fine-tuning prompt following the typical strategy by Hu et al.

(2021):

1. Instruction: the text “describe the following function”

2. Input: < source code for the target method>

3. FC: < source code of the functions in the file context>

4. Output: < the reference summary sequence>

Note, the purpose of these approaches is to compare our model against an off-the-

shelf approach by Hu et al. (2021) which consists of taking a large model and feed-

ing it all the data in a single input. The llama-lora model is considerably larger

than any of our other baselines. Therefore, we only run this baseline over the smaller

datasets, namely funcom-java-long and funcom-python. Each of these

datasets took roughly 110 h of training and inference. Estimated duration for train-

ing and inference over funcom-java would be 980 h (∼ 6 weeks).

5.6 Metrics

We use three metrics to compare predicted summaries to their reference in the

datasets:

METEOR is a well-known metric that calculates the harmonic mean of unigram

precision and recall, introduced by Banerjee and Lavie (2005). We use this metric

because Roy et al. (2021) conducted a study with human experts and found that it

better correlates to human judgement compared to BLEU.

USE is an encoder-based semantic similarity metric proposed by Haque et al.

(2022). They conducted a human study and found encoder-based metrics have a rel-

atively high correlation with the judgement of human experts compared to BLEU.

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 16 of 32

BLEU is an n-gram based popular metric used to evaluate code summarization by

almost all related work over the last decade. We report BLEU to be consistent with

related work, though with the caveat that METEOR and USE are now preferred.

5.7 Hardware and software

The hardware we used for training and inference for our approach and baselines:

AMD 5900x CPU, 2xTITAN RTX with 24GB VRAM each, and 128GB system

memory.

Software that we used includes CUDA 11.2, Tensorflow 2.9.2, Python 3.10, Pan-

das 1.4, NLTK 3.6, Ubuntu LTS 22.04.

5.8 Threats to validity

Like all experiments, this paper carries threats to validity that could change our con-

clusions under different experimental conditions. There are three main threats we try

to mitigate in the design of our experiment:

The first threat lies in the datasets. We attempt to mitigate this risk by using large

datasets in two different programming languages extracted from a diverse set of

repositories. We also clean and process the dataset using techniques recommended

in related work (LeClair and McMillan 2019; Bansal et al. 2021), in an attempt to

mitigate the risk of data leaks and skewed results.

The second threat lies in the automated metrics we use to evaluate the perfor-

mance of our approach against the baselines. We attempted to mitigate this risk by

reporting three metrics, following recommendations by latest related work.

The third threat lies in the hyperparameters of our model. We chose these hyper-

parameters based on limited pilot studies and related work, as we do not have

resources for a large grid search. In theory, different hyperparameters could alter our

Table 3 Metric scores for the three datasets. Our model is transformer-fc, while transformer-

alt is our model without file context input

The best results across all models are given in bold

Model funcom-java funcom-java-long funcom-python

M U B M U B M U B

ast-attendgru 35.30 52.89 18.33 33.21 50.12 18.94 26.80 43.75 16.92

ast-attendgru-fc 35.71 52.94 18.94 33.52 50.48 18.91 27.72 44.93 16.82

codegnngru 35.82 53.26 18.77 32.98 49.85 18.75 26.11 42.36 17.33

transformer 35.68 54.03 18.29 33.18 51.27 18.52 26.74 43.86 15.68

setransformer 36.01 53.43 18.71 32.47 49.60 18.51 27.35 43.70 17.60

transformer-alt 35.84 53.98 18.54 33.98 52.62 19.67 28.47 45.64 17.58

transformer-fc 37.12 54.61 20.18 34.67 52.77 19.90 28.58 45.45 18.21

1 3

Automated Software Engineering (2024) 31:62 Page 17 of 32 62

results and conclusions. To promote transparency and reproducibility, we report and

discuss these hyperparameters in Sect. 4.4.

In additional to these threats, minor variations in performance can be seen due

to different hardware and software versions. Therefore, we report the hardware and

software versions used for this paper in Sect. 5.7.

6 Experiment results

In this section we discuss our experimental results for the four research questions.

6.1 RQ1: overall performance

Table 3 shows the overall performance for each model and each dataset. We found

that performance for transformer-fc was around 3%, 1%, and 6.5% higher than

the nearest baseline for METEOR, USE, and BLEU, respectively, over the fun-

com-java dataset. The differences were narrower for the funcom-java-long

dataset: 2%, 0.3%, 1%. Results are mixed in Python, as transformer-fc had the

highest scores for METEOR and BLEU, but not USE.

We make a few observations in these results. First, BLEU scores for our approach

tend to show more improvement than other scores. One possible explanation for this

difference is BLEU’s dependence on exact word matches, while METEOR and USE

have mechanisms for reducing this dependence. It is likely that our model is able to

find more exact matches due to the additional information in the file context. Sec-

ond, the difference between our model and baselines is greatest in funcom-java.

There are two likely explanations: (1) funcom-java has around ten times more

examples and therefore may be providing more opportunity for transformer-fc

to learn from a more diverse dataset, and (2) that dataset has more short samples,

which have less internal context and therefore may benefit more from file context.

Finally, we observe that the overall scores are not as high as other papers

report (Li et al. 2022; Wei et al. 2019). We attribute this observation to our use of

the split-by-project dataset design and duplicate removal techniques, which are rec-

ommended procedures from related work (Allamanis 2019; LeClair and McMillan

2019), that are unfortunately not used in many papers. The results we report are

internally comparable but not comparable against those in other papers.

6.2 RQ2: effects of file context

We report metric scores at different levels of wo in Tables 4 and 5. We make a few

key observations. First, for the Java datasets, we observe a decline in performance

as wo increases across all baselines and all metrics. We attribute this decline to the

difficulty of generating summaries which include ever more information from out-

side the method being described (see Sect. 2). This decline is prominent in fun-

com-java-long, where METEOR scores when wo >= 4 tend to be around half

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 18 of 32

compared to wo = 0. However, the decline is not consistent in the Python dataset.

METEOR and USE scores decline for ast-attendgru, codegnngru, and

transformer-alt, but increase for ast-attendgru-fc and trans-

former-fc. These results may be expected because the two file context models

may improve using file context.

However, transformer and setransformer also rise from wo = 0 to

wo >= 1 . One likely explanation is that Python contains fewer functions with refer-

ence explanations where file context is present: while in Java, around 65% of the

methods have wo >= 1 , in Python only around 20% do. The number of functions

where wo >= 2 is only 4% of the dataset, compared to around 12% in Java. The

number of functions in Python where wo >= 3 is less than 0.5% – only 53 functions

in the test set, so low that we do not report metric scores due to possible unreliabil-

ity. It is likely that factors other than file context are more important to model per-

formance in Python, perhaps causing underperformance when wo = 0 . In Java, we

Fig. 3 Visual depiction of data for METEOR from Table 4(a). The file context model performance delta

increases above 5% as wo increases, but the delta of the non-file context model does not

Fig. 4 Visual depiction of data for USE from Table 4(a). The file context model performance delta

decreases when wo=0, but increases when wo ≥ 1 . File context is a key factor in overall model improve-

ment

1 3

Automated Software Engineering (2024) 31:62 Page 19 of 32 62

note relatively high scores when wo = 0 , likely due to many “easy” summaries such

as “records a music file” for a subroutine recordMusicFile().

A second observation is that the models which use file context tend to outper-

form models without it, and the delta between these models tends to increase as

the threshold for wo increases. For example, we are able to replicate the result of

Haque et al. Haque et al. (2020) in showing that ast-attendgru-fc improves

over ast-attendgru. But we especially note that our model transformer-

fc improves over transformer and transformer-alt. We present the data

from Table 4 in a graphical format in Figs. 3 and 4. These show that the differences

in METEOR and USE scores between transformer-fc and transformer

rise above 5% when wo >= 1 in the funcom-java dataset. So even though the

overall performance improvement from our model is around 3%, we note that the

Table 4 Raw METEOR and USE scores for different values of wo

We omit BLEU for brevity because it is less favored than other metrics (see Sect. 5.6). Note overall

diminished performance for higher thresholds of wo.The term wo means the number of words that are

in both the reference summary of a method and its file context, but not in the method itself (see Sect. 2)

Model METEOR USE

wo=0 wo≥1 wo≥2 wo≥3 wo≥4 wo=0 wo≥1 wo≥2 wo≥3 wo≥4

(a) funcom-java dataset

 ast-attendgru 39.25 33.24 30.67 30.14 25.06 56.30 52.01 49.27 48.69 44.34

 ast-attendgru-fc 38.90 34.05 31.78 31.32 26.25 55.74 52.45 49.83 49.18 44.95

 codegnngru 40.18 35.55 31.02 30.54 25.50 56.99 52.36 49.82 49.18 44.97

 transformer 40.15 33.35 30.67 29.96 24.73 57.45 53.22 50.36 49.61 45.38

 setransformer 39.94 33.97 31.42 30.77 25.83 56.47 52.65 50.17 49.56 45.52

 transformer-alt 40.38 33.48 30.92 30.40 25.21 57.35 52.87 50.33 49.74 45.49

 transformer-fc 40.37 35.43 33.04 32.50 27.19 57.88 53.44 51.61 51.04 47.01

(b) funcom-java-long dataset

 ast-attendgru 40.02 29.63 28.21 27.49 20.50 55.42 47.33 45.73 44.76 39.25

 ast-attendgru-fc 40.33 29.94 28.46 28.11 21.45 55.79 47.70 46.15 45.39 39.68

 codegnngru 39.85 29.38 27.88 27.14 20.47 55.13 47.08 45.46 44.48 38.78

 transformer 39.98 29.62 28.24 27.70 20.95 56.62 48.46 46.89 45.94 40.48

 setransformer 39.39 28.84 27.63 26.90 20.18 54.90 46.81 45.26 44.42 39.07

 transformer-alt 41.02 30.29 28.96 28.33 21.21 57.73 49.93 48.28 47.28 41.83

 transformer-fc 41.71 30.98 29.70 29.08 21.88 57.88 50.09 48.84 47.85 42.38

(c) funcom-python dataset

 ast-attendgru 26.74 27.06 25.33 – – 43.58 44.44 42.08 – –

 ast-attendgru-fc 27.61 28.15 27.98 – – 44.79 45.52 45.39 – –

 codegnngru 26.20 25.78 24.57 – – 42.33 42.49 41.85 – –

 transformer 26.61 27.25 27.36 – – 43.62 44.82 44.14 – –

 setransformer 27.17 28.06 27.80 – – 43.36 45.08 44.01 – –

 transformer-alt 28.50 28.34 28.02 – – 45.58 45.90 45.16 – –

 transformer-fc 28.49 28.92 28.81 – – 45.22 46.37 44.66 – –

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 20 of 32

Table 5 Difference between a given model and a comparison model for each dataset

Rows indicated for M=METEOR, U=USE, B=BLEU. For example, the BLEU score for trans-

former-fc is 27.90% higher than transformer when wo >= 4 for the funcom-java dataset. We

do not report wo >= 3 for Python because the number of test samples is very small at those levels (<60)

Model Comparison All (%) wo=0 (%) wo≥ 1 (%) wo≥ 2 (%) wo≥ 3 (%) wo≥ 4 (%)

(a) funcom-java dataset

M transformer-fc transformer 4.04 0.55 6.24 7.73 8.48 9.95

transformer-fc transformer-alt 3.57 −0.02 5.82 6.86 6.91 7.85

transformer-alt transformer 0.45 0.57 0.39 0.82 1.47 1.94

U transformer-fc transformer 1.07 −0.64 0.41 2.48 2.88 3.59

transformer-fc transformer-alt 1.17 −0.47 1.08 2.54 2.61 3.34

transformer-alt transformer −0.09 −0.17 −0.66 −0.06 0.26 0.24

B transformer-fc transformer 10.33 2.53 15.14 16.57 16.86 27.90

transformer-fc transformer-alt 8.85 1.48 13.31 13.73 13.28 18.85

transformer-alt transformer 1.37 1.03 1.61 2.50 3.17 7.62

(b) funcom-java-long dataset

M transformer-fc transformer 4.49 4.33 4.59 5.17 4.98 4.44

transformer-fc transformer-alt 2.03 1.68 2.28 2.56 2.65 3.16

transformer-alt transformer 2.41 2.60 2.26 2.55 2.27 1.24

U transformer-fc transformer 4.12 4.01 4.16 4.75 4.50 4.02

transformer-fc transformer-alt 0.29 0.26 0.32 1.16 1.21 1.31

transformer-alt transformer 2.21 2.22 2.21 2.56 2.30 1.33

B transformer-fc transformer 7.45 2.95 9.80 9.22 9.24 13.91

transformer-fc transformer-alt 1.17 −2.69 3.23 3.40 3.70 9.98

transformer-alt transformer 6.21 5.80 6.36 5.64 5.34 3.57

(c) funcom-python dataset

M transformer-fc transformer 3.03 8.57 6.13 5.30 – –

transformer-fc transformer-alt 0.39 1.37 2.05 2.82 – –

transformer-alt transformer 2.63 7.10 4.00 2.41 – –

U transformer-fc transformer 3.63 3.67 3.46 1.18 – –

transformer-fc transformer-alt −0.42 −0.79 1.02 −1.11 – –

transformer-alt transformer 4.06 4.49 2.41 2.31 – –

B transformer-fc transformer 16.14 17.22 12.88 3.97 – –

transformer-fc transformer-alt 3.58 2.15 8.94 13.31 – –

transformer-alt transformer 12.12 14.75 3.61 −8.24 – –

Table 6 Training time

of transformer-fc,

transformer-alt, and

transformer in different

datasets in minutes

model funcom-java fun-

com-java-

long

fun-

com-

python

transformer 90 10 15

transformer-alt 135 15 20

transformer-fc 635 60 90

1 3

Automated Software Engineering (2024) 31:62 Page 21 of 32 62

improvement is concentrated among a small set of especially challenging summaries

that primarily benefit from file context. Although wo >= 4 only accounts for tiny

part of the dataset, this part of the dataset is particularly difficult for the problem.

The improvement over this part of the dataset futher shows the effectiveness of our

method.

An alternative interpretation is that the delta only seems larger because the base-

line scores are lower as the threshold of wo increases—a 1 METEOR point improve-

ment is 3.3% of 30 but 5% of 20. However, consider the transformer-alt

scores compared to transformer (the green lines in Figs. 3 and 4). METEOR

scores do improve between zero and two percent for METEOR, but are essentially

flat for USE. The transformer-alt model does not include file context but

does have architectural differences over transformer. The improvements from

the scale of transformer-alt are spread across all levels of wo. Therefore,

the evidence suggests that transformer-fc improves due to file context when

wo >= 1 , and not due to architectural differences or mathematical illusions.

In Table 6 and 7, we reported the training time and the memory usage of

transformer, transformer-fc, and transformer-alt. Although

transformer-fc shows the file contexts help to improve the performance, the

computational time and the memory usage increase. This is because of the extra

Table 7 Memory usage

of transformer-fc,

transformer-alt, and

transformer during training

in different datasets in GB

model funcom-

java

funcom-java-

long

fun-

com-

python

transformer 3 3 3

transformer-alt 3 3 3

transformer-fc 9 9 9

Table 8 Metric scores over

the three datasets comparing

different model designs for

incorporating file context

The best results across all models in that bin are given in bold

Model METEOR USE BLEU

(a) funcom-java dataset.

 ast-attendgru-fc 35.71 52.94 18.94

 transformer-comb 26.07 40.68 12.67

transformer-fc (ours) 37.12 54.61 20.18

(b) funcom-java-long dataset.

 ast-attendgru-fc 33.52 50.48 18.91

 transformer-comb 26.24 41.18 14.09

 llama-lora 20.37 38.63 6.99

transformer-fc (ours) 34.67 52.77 19.90

(c) funcom-python dataset.

 ast-attendgru-fc 27.72 44.93 16.82

 transformer-comb 19.86 34.93 11.15

 transformer-fc (ours) 28.58 45.45 18.21

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 22 of 32

computation to process the file context data in our models. Overall, we observed that

the file contexts improve performance, but requiring more training time and compu-

tational resources.

6.3 RQ3: alternate approaches to model file context

In Table 8, we report the metric scores for transformer-comb and llama-

lora, compared against our approach and a previous GRU based file context base-

line ast-attendgru-fc. We observe that transformer-comb achieves

scores 23-30% lower than our approach as well as ast-attendgru-fc for all

three datasets. We posit that combining both method and file context into a single

input may not be providing the model with enough information to learn how to place

the method in the file context. Therefore, these scores suggest that our model design

is better suited for the task of using file context to improve code summarization,

when compared to a single input Transformer that is provided with the file context

simply appended to the source code.

Recall, we only test llama-lora on funcom-java-long and funcom-

python due to high estimated training and inference time over the larger data-

set. We observe that for funcom-java-long, llama-lora achieves scores

40–65% lower than our approach as well as ast-attendgru-fc. We do not

report the scores for funcom-python because the scores were less than 1 point

for each metric, which means the model is obviously not learning anything. Upon

manual inspection we found that the model was prone to predicting code from the

target function as the “response”. It appears the model learned to simply fetch code

from the function and file context to reduce training loss. We think that the poor per-

formance of llama-lora is because it is originally pre-trained primarily on con-

versational English data (Touvron et al. 2023). Now it is true that recent work such

as the short study by Ahmed and Devanbu (2022) shows promise using LLMs and

few-shot learning for code summarization. However, it may simply be that the data

we used to fine-tune the model is not enough for the model to re-adjust the learned

conversational word embeddings in favor of programming-language specific word

associations.

Given ever-increasing model and prompt length size, it may seem like the “obvi-

ous” solution is to simply include the entire file context with the target function.

However, we find that that solution is not effective off-the-shelf. We posit that care-

ful model design and improvements are required, when using decoder-only LLMs to

learn from file context for source code summarization. In our view, a likely solution

is a novel neural architecture, like transformer-fc that we propose. Addition-

ally, our model can be scaled up to an arbitrary number of layers and attention heads

by adjusting our model parameters L and h (see Sect. 4), just like the original Trans-

former architecture.

1 3

Automated Software Engineering (2024) 31:62 Page 23 of 32 62

7 Human study

In this section we describe parameters and results of our human study. This study

adds a qualitative evaluation to complement our quantitative evaluation in the last

section.

7.1 Research questions

To design our human study and evaluation, we asked two additional research

questions:

RQ4 When comparing summaries generated by transformer-fc and

transformer-alt, which ones do programmers give higher rates in

terms of accuracy, conciseness, completeness, and similarity to reference?

RQ5 When comparing summaries generated by transformer-fc and

transformer-alt, which ones do programmers prefer in terms of over-

all preference?

The rationale behind RQ4 is to compare our approach against the best perform-

ing baseline, in terms of the most important qualities of a summary from related

work Sridhara et al. (2010); Bansal et al. (2023a). These qualities are accuracy, con-

ciseness, completeness, and similarity to reference. Although automated metrics are

the standard for evaluation in related work, programmer opinion is important as an

Fig. 5 A screenshot of our human study interface

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 24 of 32

indicator of qualities of a summary which automated metrics may not necessarily

represent (Haque et al. 2022).

The rationale behind RQ5 is that programmers may prefer one summary over the

other for reasons not formalized by RQ4. Although the qualities we ask subjects to

rate in RQ4 are extensively used in related work, there may be other qualities that

programmers prefer in summaries.

7.2 Interface

For our human study, we designed a web interface, a screenshot of which is in

Fig. 5. The interface showed Java source code on the left and two summaries on

the top right, comment 1 on top and comment 2 under it. To prevent demand char-

acteristic bias (Dell et al. 2012), we do not reveal the source of the comments eval-

uated. Source of comments 1 and 2 were randomly selected and anonymized for

each method and participant. For example, for some methods comment 1 is from

our approach transformer-fc and comment 2 from the baseline transformer-

alt, while it is the opposite for other methods seen by the same participant. For each

method, participants were asked 5 questions on the bottom right:

Q1 Independent of other factors, which summary is more accurate?

Q2 Which summary is missing more information that is important for understand-

ing the method?

Q3 Which summary contains more unnecessary information?

Q4 Overall, which summary is better in your opinion?

Q5 Which summary is more similar to this third summary on the left?

For Q5, the participants are shown the reference summary on the bottom left

below the code. For each question the participants are presented with three choices:

(1) “comment 1”, (2) “comment 2”, and (3) “I really cannot decide”.

7.3 Dataset

The dataset we use for our human study consists of summaries generated for 35 Java

methods from the test set of funcom-java. We used funcom-java as the data-

set for human study because this dataset has the largest improvement in terms of

automatic metrics. Roy et al. (2021) found that human programmers may not be able

to differentiate two summaries when the improvement is less than two points and

the results are mixed i.e. mixing the results of Java with Python. We select a small

subset for human evaluation, because while the automated metrics in Sect. 6 are

computed over large test sets, human studies are time-restrictive. Extended studies

1 3

Automated Software Engineering (2024) 31:62 Page 25 of 32 62

can lead to fatigue bias, a decrease in quality, and reliability of the data (Jeong et al.

2023).

To select these summaries, we filtered the test set for methods where the pre-

dicted summaries from transformer-fc and transformer-alt differ by

at least 2 words. Then, we picked 35 random methods. We restrict the dataset to

35 methods to keep the study duration to around 1 h, to prevent fatigue bias. The

average evaluation time reported by similar studies is 1.5 min/method (Bansal et al.

2023a).

7.4 Participants

We recruited 15 Java programmers using Prolific, a web service that facilitates

screening and recruitment of research study participants from the UK and USA. We

compensated each participant at a flat rate of $20 for roughly a one hour session.

7.5 Threats to validity

Like any human study, the biggest threats to validity are from participant exhaustion

or bias and data selection. To mitigate the threat of participant exhaustion we restrict

the time of our study to around 1 h as recommended in related work (Sievertsen

et al. 2016). To mitigate the threat of participant bias, we designed our interface as

a blind test, without revealing the source of comments. We randomly generate the

order of samples shown, which is different for each of the 15 participants. We also

analyze their answers in a post-processing step to look for suspicious patterns such

as same option for successive choices or identical choices between participants. We

did not find any samples that exhibit these patterns. To mitigate the threat of data

Fig. 6 Qualitative comparison of transformer-fc and transformer-alt. The participants were

also given a third option–cannot decide

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 26 of 32

selection, we select the data with the highest improvement in automatic metrics, so

the participants can see the difference as suggested by Roy et al. (2021).

8 Human study results

In this section we report and discuss the results of the two additional RQs we asked

for the human study.

8.1 RQ4: qualitative comparison

In Fig. 6, we report the distribution of all human ratings. The total number of human

ratings is 525, i.e., all 35 methods rated by each of the 15 participants. Note that we

phrased completeness and conciseness questions negatively in the interface. During

post-processing, we flip those ratings (except where participants could not decide) to

Fig. 7 This Box-plot shows distribution for accuracy, completeness, conciseness, and similarity (to refer-

ence). The whiskers indicate maximum and minimum values across all 15 participants. The red line in

each box indicates median and the black line indicates mean

1 3

Automated Software Engineering (2024) 31:62 Page 27 of 32 62

obtain positive scores to compare with other qualities. Additionally we present box-

plots showing the distribution of these ratings in Fig. 7.

In terms of accuracy, we found that 62% of individual ratings picked summaries

generated by our approach transformer-fc as more accurate than the baseline

transformer-alt. In comparison, only 32% of the individual ratings picked

the baseline as more accurate. This re-affirms our hypothesis that file context helps

most for a subset of cases, while overall metric scores might be affected by some

cases where it may not improve the summary. In Fig. 7, we observe a small standard

deviation indicating general consensus between participants, with high median value

of 22 samples out of 35 for transformer-fc. Overall, we observe that trans-

former-fc generates more accurate summaries than transformer-alt for

majority of samples.

In terms of completeness, we see similar trends as accuracy, where 58% of all

ratings indicated that our approach generated more complete summaries. In Fig. 7

we observe that each participant indicated that transformer-fc generated

summaries were more complete for at least 17 of the 35 samples, with a median of

20 samples. These values are also seen to be higher than the maximum values for

transformer-alt, where each participant found summaries generated by the

baseline to be better in 14 or less samples, with a median of 11. Overall, we find that

for a majority of samples, participants favored summaries generated by our approach

with file context.

In terms of conciseness, we observe closer aggregate scores of 43% in favor of

transformer-fc, 37% in favor of transformer-alt, and 20% could not

decide. A possible reason for this is that our summaries are limited to 13 words. We

posed this question negatively in the study, asking which summary had more unnec-

essary information. Due to the short length of our summaries, it may have been

harder for participants to decide which information was unnecessary. In Fig. 7, we

Fig. 8 Overall preference of each participant when presented with summaries generated by trans-

former-fc and transformer-alt. The participants were unaware of the source of the summaries.

The y-axis denotes number of samples marked each answer and x-axis denotes the participants

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 28 of 32

observe a lot of overlap in the distributions. Overall, transformer-fc achieves

a higher median and mean when compared to transformer-alt, albeit with a

smaller margin than other qualities.

In terms of similarity to reference, we observed that the participants found it dif-

ficult to decide similarity to reference for 13% of all samples. One possibility is that

even though one of the generated summaries was more accurate, the reference sum-

mary may be completely different, such as generic summaries from Javadocs. In

Fig. 7 we observe that the minimum number of methods in favor of our approach is

higher than the mean and median values for the distribution of the baseline. Also,

the median value for our approach is higher than the maximum value for the base-

line. Overall, a majority of participants found transformer-fc generated sum-

maries to be more similar to reference by a considerable margin.

In short, we observe that subjects of our human study found summaries gener-

ated by transformer-fc to be more accurate, complete, and similar to refer-

ence when compared to transformer-alt. For conciseness, the results are not as clear,

which maybe attributed to the fact that we limit our summaries to a maximum of 13

words.

8.2 RQ5: overall preference

In Fig. 8 we report the distribution of overall preference for each of the 15 par-

ticipants. We observe that 13 out of 15 participants found summaries generated

by transformer-fc to be better overall for a majority of the samples (50% or

more). For participant numbers 2 and 15, our approach did not reach the majority

threshold of 18 samples, but neither did the baseline. A few outliers are expected in

human studies such as participant 2, but a vast majority of participants favored sum-

maries generated by transformer-fc when compared with summaries gener-

ated by transformer-alt.

We also performed a Mann–Whitney U test to measure the statistical signifi-

cance of this difference in our distribution of participants. We computed values of

U1 = 223 and p − val = 4.6e−6 . As p <<< 0.05 , we reject the null hypothesis and

find that the difference is statistically significant. Overall, participants preferred

summaries generated by our approach transformer-fc, with a statistically sig-

nificant margin, when compared to summaries generated by the best performing

baseline of the same model size without file context, transformer-alt.

9 Conclusion

This paper advances the state of the art in four ways: First, we present a neural model

for source code summarization that augments a standard Transformer encoder/

decoder architecture to accept file context. We propose a novel architecture as an

alternative to the popular practice of using large context window that rely on model

size alone. We evaluate our model against several baselines over three datasets in

1 3

Automated Software Engineering (2024) 31:62 Page 29 of 32 62

two programming languages. We show that our model outperforms these baselines

under our experimental conditions according to three metrics from related work.

Second, we demonstrate that file context is a key factor in source code summari-

zation and the improvements gained by our model. We report model performance at

different levels of the overlap between file context and the summaries, for words not

appearing in the code being summarized (we denote this value wo according to the

formula in Sect. 2). We find that in the Java datasets, a marked decrease in perfor-

mance occurs as thresholds of wo increases. The relationship is less clear in Python,

though we still note generally increasing improvement between our approach and

the baselines for METEOR and BLEU.

Third, we we demonstrate that our model design is well-suited to use the file con-

text. We directly compare our model design against the aforementioned large con-

text window approaches. We evaluate two such alternate approaches. One is a single

encoder and decoder Transformer-based network. The other is a decoder-only LLM

fine-tuned over one of our datasets. We find that these off-the-shelf approaches that

simply combines target source code and file context into a giant context window

perform considerably worse than our design.

Fourth, we conduct a human study to add a qualitative aspect to our evaluation.

We find that when presented by two different summaries for the same method, a

majority of participants favored summaries generated by our approach compared

to the best performing baseline. The participants found summaries generated with

file context to be more accurate, complete, similar to reference, and better overall in

their opinion. We note that we did not see clear consensus on whether our approach

generates more concise summaries than the baseline.

Reproducibility To ensure maximum reproducibility of the results, we release

all datasets in Data Availability Section. Also, we provide an online reproducibility

guide with step-by-step instructions showing how we produced the our results and

source code in Code Availability Section.

Acknowledgements This work is supported in part by the NSF CCF-2100035 and CCF-2211428. Any

opinions, findings, and conclusions expressed herein are the authors’ and do not necessarily reflect those

of the sponsors.

Author contributions C.S., A.B., and C.M. all worked on the paper together. All authors reviewed the

manuscript.

Data availability We released the datasets that we created to APCL Hugginface repository, https:// huggi

ngface. co/ datas ets/ apcl/ funcom- python

Code availability We release our code for experiments in our APCL Github repository, https:// github.

com/ apcl- resea rch/ Trans forme rFC

Declarations

Competing interests The authors declare no competing interests

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 30 of 32

References

Ahmad, W., Chakraborty, S., Ray, B., et al.: A transformer-based approach for source code summariza-

tion. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,

pp. 4998–5007 (2020)

Ahmad, W.U., Chakraborty, S., Ray, B., et al.: Unified Pre-training for Program Understanding and Gen-

eration (2021). arXiv preprint arXiv: 2103. 06333

Ahmed, T., Devanbu, P.: Few-shot training LLMs for project-specific code-summarization (2022). arXiv

preprint arXiv: 2207. 04237

Allamanis, M.: The adverse effects of code duplication in machine learning models of code. In: Proceed-

ings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and

Reflections on Programming and Software, pp. 143–153 (2019)

Alon, U., Zilberstein, M., Levy, O., et al.: code2vec: learning distributed representations of code. In: Pro-

ceedings of the ACM on Programming Languages 3(POPL):1–29 (2019)

Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with improved correlation

with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation

Measures for Machine Translation and/or Summarization, pp. 65–72 (2005)

Bansal, A., Haque, S., McMillan, C.: Project-level encoding for neural source code summarization of

subroutines. In: 2021 IEEE/ACM 29th International Conference on Program Comprehension

(ICPC), pp. 253–264. IEEE (2021)

Bansal, A., Eberhart, Z., Karas, Z., et al.: Function call graph context encoding for neural source code

summarization. IEEE Trans. Softw. Eng. (2023a). https:// doi. org/ 10. 1109/ TSE. 2023. 32797 74

Bansal, A., Sharif, B., McMillan, C.: Towards modeling human attention from eye movements for neutral

source code summarization. iN: Proceedings of ACM Human–Computer Interaction, vol. 7 (2023b)

Chiang, D., Rush, A.M., Barak, B.: Named Tensor Notation (2021). arXiv preprint arXiv: 2102. 13196

Dell, N., Vaidyanathan, V., Medhi, I., et al.: “yours is Better!” Participant Response Bias in HCI. In: Pro-

ceedings of the Sigchi Conference on Human Factors in Computing Systems, pp. 1321–1330 (2012)

Ding, Y., Wang, Z., Ahmad, W.U., et al.: CoCoMIC: Code Completion By Jointly Modeling In-file and

Cross-file Context (2022). arXiv preprint arXiv: 2212. 10007

Feng, Z., Guo, D., Tang, D., et al.: CodeBERT: A Pre-trained Model for Programming and Natural Lan-

guages (2020). arXiv preprint arXiv: 2002. 08155

Guerrouj, L., Di Penta, M., Guéhéneuc, Y.G., et al.: An experimental investigation on the effects of con-

text on source code identifiers splitting and expansion. Empir. Softw. Eng. 19, 1706–1753 (2014)

Haldar, R., Wu, L., Xiong, J., et al.: A Multi-perspective Architecture for Semantic Code Search (2020).

arXiv preprint arXiv: 2005. 06980

Haque, S., LeClair, A., Wu, L., et al.: Improved automatic summarization of subroutines via attention to

file context. In: Proceedings of the 17th International Conference on Mining Software Repositories,

pp. 300–310 (2020)

Haque, S., Bansal, A., Wu, L., et al.: Action word prediction for neural source code summarization. In:

2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER),

pp. 330–341. IEEE (2021)

Haque, S., Eberhart, Z., Bansal, A., et al.: Semantic similarity metrics for evaluating source code summa-

rization. In: Proceedings of the 30th IEEE/ACM International Conference on Program Comprehen-

sion, pp. 36–47 (2022)

Hill, E., Pollock, L., Vijay-Shanker, K.: Automatically capturing source code context of NL-queries for

software maintenance and reuse. In: 2009 IEEE 31st International Conference on Software Engi-

neering, pp. 232–242. IEEE (2009)

Holmes, R., Murphy, G.C.: Using structural context to recommend source code examples. In: Proceed-

ings of the 27th International Conference on Software Engineering, pp. 117–125 (2005)

Hu, E.J., Shen, Y., Wallis, P., et al.: Lora: Low-Rank Adaptation of Large Language Models (2021).

arXiv preprint arXiv: 2106. 09685

Hu, X., Li, G., Xia, X., et al.: Deep code comment generation. In: Proceedings of the 26th Conference on

Program Comprehension, pp. 200–210. ACM (2018a)

Hu, X., Li, G., Xia, X., et al.: Summarizing source code with transferred API knowledge. In: Proceedings

of the 27th International Joint Conference on Artificial Intelligence, pp. 2269–2275. AAAI Press

(2018b)

1 3

Automated Software Engineering (2024) 31:62 Page 31 of 32 62

Huang, Z., Liang, D., Xu, P., et al.: Improve transformer models with better relative position embed-

dings. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 3327–3335

(2020)

Jeong, D., Aggarwal, S., Robinson, J., et al.: Exhaustive or exhausting? Evidence on respondent fatigue in

long surveys. J. Dev. Econ. 161, 102992 (2023)

Kramer, D.: API documentation from source code comments: a case study of Javadoc. In: Proceedings of

the 17th Annual International Conference on Computer Documentation, pp. 147–153 (1999)

Kuang, L., Zhou, C., Yang, X.: Code comment generation based on graph neural network enhanced trans-

former model for code understanding in open-source software ecosystems. Autom. Softw. Eng.

29(2), 43 (2022)

LeClair, A., McMillan, C.: Recommendations for datasets for source code summarization. In: Proceed-

ings of NAACL-HLT, pp. 3931–3937 (2019)

LeClair, A., Jiang, S., McMillan, C.: A neural model for generating natural language summaries of pro-

gram subroutines. In: 2019 IEEE/ACM 41st International Conference on Software Engineering

(ICSE), pp. 795–806. IEEE (2019)

LeClair, A., Haque, S., Wu, L., et al.: Improved code summarization via a graph neural network. In:

Proceedings of the 28th International Conference on Program Comprehension, pp. 184–195 (2020)

Li, Y., Wang, S., Nguyen, T.N.: A context-based automated approach for method name consistency

checking and suggestion. In: Proceedings of the 43rd International Conference on Software Engi-

neering. IEEE Press, ICSE ’21, pp. 574–586 (2021). https:// doi. org/ 10. 1109/ ICSE4 3902. 2021.

00060

Li, Z., Wu, Y., Peng, B., et al.: SeTransformer: A transformer-based code semantic parser for code com-

ment generation. IEEE Trans. Reliab. 72, 258–273 (2022)

Liang, Y., Zhu, K.Q.: Automatic generation of text descriptive comments for code blocks. In: Thirty-

Second AAAI Conference on Artificial Intelligence (2018)

Liu, S., Chen, Y., Xie, X., et al.: Retrieval-augmented generation for code summarization via hybrid

GNN. In: International Conference on Learning Representations (2021). https:// openr eview. net/

forum? id= zv- typ1g PxA

Nie, P., Rai, R., Li, J.J., et al.: A framework for writing trigger-action todo comments in executable for-

mat. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Con-

ference and Symposium on the Foundations of Software Engineering, pp. 385–396. ACM (2019)

Roehm, T., Tiarks, R., Koschke, R., et al.: How do professional developers comprehend software? In:

2012 34th International Conference on Software Engineering (ICSE), pp. 255–265. IEEE (2012)

Roy, D., Fakhoury, S., Arnaoudova, V.: Reassessing automatic evaluation metrics for code summarization

tasks. In: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engineering, pp. 1105–1116 (2021)

Shi, L., Mu, F., Chen, X., et al.: Are we building on the rock? On the importance of data preprocessing

for code summarization. In: Proceedings of the 30th ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering, pp. 107–119 (2022)

Sievertsen, H.H., Gino, F., Piovesan, M.: Cognitive fatigue influences students’ performance on standard-

ized tests. Proc. Natl. Acad. Sci. 113(10), 2621–2624 (2016). https:// doi. org/ 10. 1073/ pnas. 15169

47113

Sridhara, G., Hill, E., Muppaneni, D., et al.: Towards automatically generating summary comments for

java methods. In: Proceedings of the 25th IEEE/ACM international conference on Automated soft-

ware engineering, pp. 43–52 (2010)

Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Adv. Neural

Inf. Process. Syst. 27, 3104–3112 (2014)

Tang, Z., Shen, X., Li, C., et al.: AST-trans: Code summarization with efficient tree-structured attention.

In: Proceedings of the 44th International Conference on Software Engineering, pp. 150–162 (2022)

Touvron, H., Lavril, T., Izacard, G., et al.: LLaMA: Open and Efficient Foundation Language Models

(2023). arXiv preprint arXiv: 2302. 13971

Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30,

6000–6010 (2017)

Wan, Y., Zhao, Z., Yang, M., et al.: Improving automatic source code summarization via deep reinforce-

ment learning. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated

Software Engineering, pp. 397–407. ACM (2018)

Wang, S., Wen, M., Lin, B., et al.: Lightweight global and local contexts guided method name recom-

mendation with prior knowledge. In: Proceedings of the 29th ACM Joint Meeting on European

 Automated Software Engineering (2024) 31:62

1 3

 62 Page 32 of 32

Software Engineering Conference and Symposium on the Foundations of Software Engineering.

Association for Computing Machinery, New York, NY, USA, ESEC/FSE 2021, pp. 741–753 (2021).

https:// doi. org/ 10. 1145/ 34682 64. 34685 67

Wei, B., Li, G., Xia, X., et al.: Code generation as a dual task of code summarization. Adv. Neural Inf.

Process. Syst. 32, 6563–6573 (2019)

Wei, B., Li, Y., Li, G., et al.: Retrieve and refine: exemplar-based neural comment generation. In: Pro-

ceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, pp.

349–360 (2020)

Zügner, D., Kirschstein, T., Catasta, M., et al.: Language-agnostic representation learning of source

code from structure and context. In: International Conference on Learning Representations (2021).

https:// openr eview. net/ forum? id= Xh5eM ZVONGF

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under

a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted

manuscript version of this article is solely governed by the terms of such publishing agreement and

applicable law.

