Automated Software Engineering (2024) 31:62
https://doi.org/10.1007/510515-024-00460-x

q

Check for
updates

Revisiting file context for source code summarization

Chia-Yi Su’ - Aakash Bansal? - Collin McMillan’

Received: 17 August 2023 / Accepted: 7 July 2024
©The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract

Source code summarization is the task of writing natural language descriptions of
source code. A typical use case is generating short summaries of subroutines for
use in API documentation. The heart of almost all current research into code sum-
marization is the encoder—decoder neural architecture, and the encoder input is
almost always a single subroutine or other short code snippet. The problem with
this setup is that the information needed to describe the code is often not present in
the code itself—that information often resides in other nearby code. In this paper,
we revisit the idea of “file context” for code summarization. File context is the idea
of encoding select information from other subroutines in the same file. We propose
a novel modification of the Transformer architecture that is purpose-built to encode
file context and demonstrate its improvement over several baselines. We find that
file context helps on a subset of challenging examples where traditional approaches
struggle.

Keywords Source code summarization - Program comprehension - Software and
its documentation - Information systems - Natural language processing - Machine
translation

< Chia-Yi Su
csu3@nd.edu

Aakash Bansal
abansall @nd.edu

Collin McMillan
cmc@nd.edu

Department of Computer Science, University of Notre Dame, Holy Cross Dr, Notre Dame,
IN 46556, USA

Division of Computer Science, Louisiana State University, Baton Rouge, USA

Published online: 27 July 2024 @ Springer

62 Page 2 of 32 Automated Software Engineering (2024) 31:62

1 Introduction

A source code “summary” is a short description of that code in natural language.
Code summaries have long been at the center of documentation for programmers
such as JavaDocs and PyDocs (Kramer 1999), though recent interest is balloon-
ing for interactive programmer tools and educational systems. Tools with code
summarization features such as Github Copilot and ChatGPT have captured the
public imagination with their ability to read and describe code. Even a short sum-
mary such as “books a seat on an airplane flight” can help a programmer quickly
understand what a snippet of source code does without having to read the code
itself.

The beating heart of almost all source code summarization research is the neu-
ral encoder—decoder architecture (Sutskever et al. 2014). The setup is simple. The
input to the encoder is the source code to be summarized, while the decoder gen-
erates a summary one word at a time. Usually in laboratory settings, the code
to be summarized is a single subroutine. The problem with this setup is that not
all of the information needed to write a summary of a subroutine is included in
that subroutine. Software engineering literature has documented for decades how
programmers need summaries to include high-level rationale about why the code
exists rather than just restating words from the code itself (Holmes and Murphy
2005; Hill et al. 2009). Current approaches struggle to find the right words to pro-
vide this rationale because it often does not exist in single subroutine.

An alternative model was proposed by Haque et al. (2020) using “file context.”
File context means the other subroutines in the same file as a subroutine under
investigation. Haque et al. built an encoder based on recurrent neural networks
(RNN) to augment the attention component of the RNN-based encoder—decoder
architectures that were prevalent at the time. Experimental results in the original
paper and replicated by Bansal et al. (2021) showed how the file context encoder
could be added to and improves several RNN-based baselines.

Since then, transformer-based architectures superseded RNN-based ones in
nearly all respects. Transformer models tended to be able to outperform RNNs
even with the file context encoder, when performance is measured by automated
metrics over a whole dataset. E.g., BLEU scores were higher over popular bench-
mark datasets. Yet these results are slightly misleading. In fact, there is a sub-
set of code for which file context helps, and a subset where it does not. Newer
models achieve higher BLEU score by boosting performance on part of the data-
set, but not in the way in which file context can help. Unfortunately, there is not
a clear means to augment transformer-based models with the encoder proposed
by Haque et al. (2020) due to the differences in how transformer and RNN-based
architectures handle attention.

In this paper, we introduce a novel modification to the transformer architec-
ture for code summarization designed to encode file context. In a nutshell, our
approach has two transformer-based encoders: one for file context and one for
the code being described. On the decoder side we use a stack two transformer-
based decoders. The “lower” decoder receives the output of the file context

@ Springer

Automated Software Engineering (2024) 31:62 Page3of32 62

encoder. The “upper” decoder receives the output of the first decoder and the
code encoder. This dual encoder design is an alternative to standard transformers
that use a giant context window because we cannot simply use this off-the-shelf
method. This architecture can further serve as a foundation of the large language
models because this transformer architecture allows longer context windows and
has better efficiency with better hardware support for scaling up to large language
models compared with the RNN-based models.

We show experimentally that our approach outperforms several baselines over
three datasets, two in Java and one in Python. We also show how the design deci-
sion of a separate encoder for file context helps performance. We show that our
approach outperforms other transformer architecture that use a large context window
or “prompt”. But more importantly, we show that the performance increase is due
to the file context instead of other factors such as scale. We also conduct a human
study and report programmer opinions on the quality of summaries generated by our
approach, when compared against the best performing baseline.

2 File context

“File context” is a term in Software Engineering research literature that means the
other information in the same file as a section of code under investigation (Holmes
and Murphy 2005; Hill et al. 2009; Guerrouj et al. 2014; Ding et al. 2022). In this
paper, as in the earlier work by Haque et al. (2020), the sections of code under inves-
tigation are subroutines, and the file context includes a few of the other subroutines
in the same file. File context has been cited for decades as a key source of informa-
tion for understanding source code, since code lives in an ecosystem of interdepend-
ent software components.

public void setIntermediate(String intermediate)
{ this.intermediate = intermediate; 1}

reference sets the intermediate value for this flight
LeClair et al (2019) sets the intermediate value for this <UNK>
Haque et al (2020) sets the intermediate value for this flight

. public void set airline name string airline

. public void set destination string destination

. public long get flight id return flight id

. public void set flight id long flight id this flight id
5. public void set flight number string flight number

=W N

Example 1: (upper) Source code for method ID 26052502 in the java-long dataset. (mid) Reference
summary and summaries generated by an RNN baseline and the same baseline enhanced with file context.
(lower) The file context.

Consider Example 1 from Haque et al. (2020). The Java method setInter—
mediate () is a simple setter type function. Most baselines are capable of writing

@ Springer

62 Page 4 of 32 Automated Software Engineering (2024) 31:62

a summary to this effect, such as the example from LeClair et al. (2019) shown.
But this summary is not that useful because even a novice programmer is likely to
expend almost no effort reading the code. What is useful is to know is why the value
is set (Roehm et al. 2012).

In Example 1, this why-information is only evident when we consider the file
context. Note the file context consists of terms such as “airline”, “flight”, and “des-
tination” in the signature of other methods. The model using file context was able to
find and learn to use the word “flight” correctly, thus predicting a more useful sum-
mary for the method.

Cases like these are very common in code summarization samples and have a
strong impact on model performance. Consider the distribution of our dataset pre-
sented in Table 1. The term wo refers to the number of words that are in both the
reference summary and file context, but are not present in the method itself:

wo = |(FCW — MW) n SW| 1)

Here, FCW is the set of words in the file context, MW is the set of words in the
method, and SW is the set of words in the summary. Note that only around 35% of
methods have wo = 0, a majority contain at least one word in the file context that is
not present in the method itself.

Meanwhile, the column METEOR refers to the METEOR score of a Transformer
approach proposed by Ahmad et al. (2020). This baseline approach does not see or
use file context. The METEOR score is 41.44 for when wo = 0, but drops over 25%
to 30.78 for when wo = 1. We observe that the METEOR score continues to decline
for subsets with a higher wo. This means summaries that use more words from the
file context are often more difficult to write for standard approaches.

3 Related work

In Fig. 1 we provide an overview of selected related work from the last 5 years. The
related work can be broadly classified into four families.

Table 1 Model performance declines as word overlap between the code summary and the file context
increases

Word overlap METEOR Portion of dataset

wo =0 41.44 |
wo = 1 30.78 |
wo = 2 29.26 O
wo =3 28.65 O
wo >=4 21.88 O

The first column shows wo which is the number of words in the summary that are in the file context but
not in the subroutine. The second column shows METEOR scores for a typical Transformer baseline

@ Springer

Automated Software Engineering (2024) 31:62 Page50f32 62

R A G T C
Hu et al (2018b) X
Hu et al (2018a) X X
Wan et al (2018) X
Liang and Zhu (2018) X
Alon et al (2019) X X
LeClair et al (2019) X X
Nie et al (2019) X
Haldar et al (2020) X X

Ahmad et al (2020) x
Haque et al (2020)
LeClair et al (2020)
Feng et al (2020) X
Wei et al (2020) X X b'e
Bansal et al (2021)
Zigner et al (2021) X
Ahmad et al (2021)

Liu et al (2021)

Li et al (2022)

Kuang et al (2022)

Tang et al (2022)

Ahmed and Devanbu (2022)

this paper

S
>
>

"

»
"
>
>

XMW M

T B I

X

Fig. 1 Overview of select related work. Column R denotes use of RNNs such as GRU/LSTM. A denotes
using Abstract Syntax Tree. G denotes graph neural networks based encoder. T denotes Transformer
based encoder. C denotes the use of context

AST-Flat is a family of approaches marked by Column A in Fig. 1 that uses the
Abstract Syntax Tree (AST) as a sequence of nodes. In 2018, Hu et al. (2018a)
introduced DeepCom, a model that encodes code tokens and AST nodes together
using LSTMs. In 2019, LeClair et al. (2019) introduced a similar model ast-
attendgru, except that they use GRUs instead of LSTM and they decoupled the
AST and source code sequence to separate encoders. They found that learning
separate representations of code and structure helps generate better natural lan-
guage summaries.

AST-GNN is a family of approaches marked by Column G in Fig. 1 that use
Graph Neural Networks (GNN). In 2020, LeClair et al. (2020) introduced a
hybrid GNN-RNN model that encodes AST as a graph using a GNN layer and
combines it with a GRU based source code sequence encoder. They found that,
compared to a flat representation of AST, a GNN can learn to better place AST
nodes in the embedding space by using the edges of the AST. Since that land-
mark paper, a few approaches have been introduced that use GNNs to encode
code structure for code summarization (Kuang et al. 2022; Liu et al. 2021).

@ Springer

62 Page 6 of 32 Automated Software Engineering (2024) 31:62

Transformers is a family of approaches marked by Column T in Fig. 1. In
2020, Ahmad et al. (2020) introduced a Transformer based approach for code
summarization. They found that the self-attention mechanism helps transform-
ers better map words in the encoder to words in the decoder. Since then, several
approaches have been introduced that use a network of transformers (Ahmad et al.
2021; Tang et al. 2022; Kuang et al. 2022). In 2022, Li et al. (2022) introduced
SeTransformer that encodes decoupled AST and source code, using a network of
transformers and CNNGs.

Context is a family of approaches marked by Column C in Fig. 1 that mainly
relies on contextual information. In 2020, Haque et al. (2020) introduced an encoder
“FC”, that encodes file context, i.e., the summaries around the target function in
the same file as a separate encoder. They add this encoder to several RNN based
baselines. They found that sometimes the important information needed to gener-
ate accurate summaries is not present in the target function, but can be found in the
functions around it in the same file. Our paper is an extension of that work.

The ideas of integrating the context into the model have been used in different
program comprehension tasks. For example, Li et al. (2021); Wang et al. (2021)
integrated the file context to improve the results of method name suggestions. How-
ever, the workhorse of those papers is RNN-based models. We designed a novel
approach to integrate file context into transformer-based models because of the dif-
ference in attention mechanism.

In 2021, Bansal et al. (2021) introduced another context-based encoder ‘“PC”
that encodes several files from the project as project context. They disclosed that the
computational cost of their encoder is exponentially higher than “FC”. Therefore,
we leave “PC” for transformer-based models as our future works.

Since 2020, Large Language Models (LLMs) have become increasingly popular
in several domains of applied NLP research. In 2020, Feng et al. (2020) introduced
CodeBERT that uses a stack of Transformers which are bidirectionally trained. The
network models source code syntax by learning to predict randomly masked tokens
proposed. In 2021, Ahmad et al. (2021) proposed PLBART, using graph neural net-
works to learn programming language generation. Both report modest improvements
in performance for code summarization, while reporting high training costs, which
are critical for academic research.

In 2020, Wei et al. (2020) introduced an approach to use AST and exemplar rep-
resentations of source code as context. They used these representations to fetch simi-
lar methods from a database to help refine the search for a more accurate summary.
In 2021, Liu et al. (2021) introduced an approach to retrieve similar code properties
from a data as context, then model that context as a property graph using GNNS.
These are examples of retrieval-based techniques that use summaries from similar
methods as an input to the model. In contrast, we make every effort to remove com-
ments and doc-strings from our context input. Retrieval-based techniques are also
more susceptible to data leaks between the training and test set that could skew the
results over unseen samples. Therefore, we do not replicate their work as a baseline.

Overall, we observe a clear trend from GRU/LSTM based models that mainly
relied on source code and AST—to transformer based techniques, with a few
approaches increasingly incorporating some contextual information in their design.

@ Springer

Automated Software Engineering (2024) 31:62 Page70f32 62

This paper is a natural evolution of that trend, in that we present an in-depth analysis
of how transformers and file context can be used to improve the state-of-the-art in
source code summarization.

4 Model design

Our model is essentially the basic Transformer architecture, but with two key
changes. First, we add a File Context Encoder to learn a representation of the other
subroutines in the same file as the target subroutine. Second, we add another multi-
head attention and fully-connected layer unit (which we call an XFormBlock) to the
decoder, and use the output of the File Context Encoder as an input to this unit.
The “target subroutine” is the subroutine for which we are writing a summary. The
XFormBlock is an abstraction of common attention, FCN, and normalization/regu-
larization operations used in Transformer-like models (see the next section for more
details).

The intuition behind our changes is two fold: (1) to allow the model to “see
the file context prior to the target subroutine’s source code when learning to pre-
dict words in the summary, and (2) to avoid using giant context windows such as
large prompts. The expectation for giant context windows is that a large model will
eventually learn context from all the information. But, that approach is computation-
ally expensive and requires much a large amount of data. We show Sect. 6.3 that
giant context window approach does not provide expected improvements, at least
not out-of-the-box.

LR}

File Context Code/Text Summary
® | @ | ® |
I Position Embed. | | Tok./Pos. Embed. | | Tok./Pos. Embed. |
y
I Flatten | XFormBlock | @ Y
XFormBlock I I Multihead Attn. |
| XFormBlock |
Token Embed. I J
Y
®>| XFormBlock |
XFormBlock |
XFormBlock | ! @ Y

XFormBlock I =I XFormBlock |

I

| Output |

Fig.2 Overview of our model design. Area 1 and 2 denote the target subroutine encoder. Area 3 high-
lights the novel addition of the file context encoder. Area 4 denotes the summary decoder. Area 5 and 6
denote out novel modifications to use dual encoders to improve the output prediction

@ Springer

62 Page 8 of 32 Automated Software Engineering (2024) 31:62

Consider the overview in Fig. 2. There are two encoders and one decoder. One
encoder is the target subroutine encoder, shown in Fig. 2, area 1 and 2. The input to
this encoder is the first ¢ tokens of the target subroutine’s source code (area 2). These
are encoded using L XFormBlock units, as recommended by Ahmad et al. (2020) for
code summarization (area 2).

Another encoder is the file context encoder shown in area 3. The input is a matrix
containing the first m tokens for n subroutines from the same file. The vocabulary for
both of these encoders is the same, though unlike Haque et al. (2020), we use separate
embedding spaces for each encoder. We used the same preprocessing technique as pro-
posed by Bansal et al. (2021), which is very light with only the following operations:
(1) extract all tokens based on the language specification (e.g., a “token” in Java is what
the Java lexical analyzer sees), (2) split all tokens by underscore and camel case, and
(3) change all tokens to lower case.

The input to the decoder a sequence of words in the summary for the target sub-
routine (area 4). The output is the next word in the summary. The architecture of the
decoder is the same as a typical Transformer model, except that for each XFormBlock
in the original model, we have two. One takes as input the File Context Encoder out-
put (area 5) while another takes the Target Subroutine Encoder’s output (area 6). As in
other encoder—decoder architectures, we build the output summary one word at a time
by feeding the summary predicted up to that point, back into the decoder. We use the
teacher forcing strategy during training.

In the following subsections, we provide a formal definition of our model in Named
Tensor Notation, formalized and proposed by Chiang et al. (2021). In our experiments,
we call our approach transformer-fc.

4.1 File context encoder

The file context encoder forms a representation of the other subroutines in the same file
as the target subroutine. The input to the file context encoder is an n x m matrix where n
is the maximum number of other subroutines the encoder can intake and m is the maxi-
mum number of tokens per subroutine. We define the space in which the file context
encoder operates as:

Xfc e Nfcn[n]xtoken[m]

Pfc c Rfcn[n]xtoken[m]xdim[e]

ch e Rfcn[n]xtoken[m]xdim[e]

Efc e Rfcntoken[nm]xdim[e]

Ae Rfcntoken[nm]xdim[e]

where X is the input with each element as an entry in the source code vocabulary,
P and T are position and token embeddings, and E is the combined embedding
space. A is the file encoder output space. We use a learnable position embedding

proposed as “Method 3” by Huang et al. (2020), in which we assign each position in
each subroutine (e.g., [0..m) for each subroutine, rather than [0..nm) across the entire

@ Springer

Automated Software Engineering (2024) 31:62 Page90f32 62

file). The token embedding is a typical learned space, and E” is the elementwise
sum of P and T, reshaped to a 2d nm X e matrix from 3d n X m X e:

I' = [0.n),J' = [0..m)
vi,vj,iel',je]
P* =w'oJ +b'

fen(i),token(j)

pos
e — w2 fe 2 2
chn(i),token(j) =W to?en Xfcn(i),token(j) +b &)
Efc = (Pf “+ ch)(fcn,token)efbnloken
Wl = Rhidden[e]xpos[m] bl c Rhidden[e]
W2 = Rhidden[e]xtoken[m] b2 c Rhidden[e]

We apply Transformer-like operations via L layers of self-attention and fully-con-
nected networks, with dropout and layer normalization. For brevity, we abstract
these operations as the function XFormBlock(Q, K, V), as it has been described as an
“Encoder Block™ with parameters Query, Key, and Value by numerous authors start-
ing with Vaswani et al. (2017).

Al = XFormBlocko(Ef < Ef < Efc) 3)
AL = XFormBlock* \(AF!, AL"!, ALY “4)
A =Af

4.2 Target subroutine encoder

The target subroutine encoder forms a representation of the target subroutine itself.
This encoder is a essentially a Transformer-like encoder described by Vaswani et al.
(2017), except with the learned position embedding we also use in the file encoder. The
operation space is:

X c Ntoken[m]

P c Rtoken[m]xdim[e]
T c Rtoken[m]xdim[e]
E’ c Rtoken[nm]xdim[e]
Be R‘token[nm]xdim[e]

where X’ is the input where each element is an entry in the vocabulary, P* and T* are
position and token embeddings, and E’ is the combined embedding space:

@ Springer

62 Page 10 of 32 Automated Software Engineering

(2024) 31:62

J>=10.9)
vj.j € J
X _ 3 2 3
Ptv:oken(j) =W p?s'] +b
s - 3 4
T;oken(j) =W to?en X;oken(j) +b
E=P+T

W3 c Rhidden[e]xpos[m] b3 c Rhidden[e]
W4 c Rhidden[e]xtoken[m] b4 c Rhidden[e]

Followed by L XFormBlock layers:

B° = XFormBlock®(E*, E’, E’)

B: = XFormBlockL_l(BL_1 s B! s BL_l)
B = B-

4.3 Decoder

)

(6)

@)

®)

Our decoder is a Transformer-like decoder, except with two XFormBlock layers for
each one in the typical design. In most Transformer-like decoders, there is a self-
attention layer followed by XFormBlock layers. However in our decoder, we have an

XFormBlock that receives A and another that receives B:
¢ e yoraln]
P! ¢ Rvordimixdinle]
T¢ g Rvordlmixdinie]
Ed g Rvordlnmixdinle]
C e Rvordlnmixdinle]

The decoder word embedding space:

P =10.w)
vj,je
d —_ wS 3 5
Ptoken(j) =W P?SJ +b
d _ 6 s 6
Ttoken(/') =W wgd Xword(i) +b

@ Springer

©)

(10)

(1)

Automated Software Engineering (2024) 31:62 Page110f32 62

E‘=P'+T¢
WS c Rhidden[e]xpos[w] bS c Rhidden[e] (12)
W6 = Rhidden[e]xword{w] b6 = Rhidden[e]

And the XFormBlocks:

C° = XFormBlock’(E',E', E") (13)
C' = XFormBlock' (C°, A, A) (14)

C? = XFormBlock*(C', B, B) as)
C=C?

Followed by an output layer to predict the next word in the summary sequence,
where Y is the output prediction space:

Yp c Nvocab[w]
P — 7 s 7
Y = O-(W Vo(?ab C(word,dim)—»vncab +b)

W7 c Rhidden[e]xvocab[m] b7 c Rhidden[e]
In practice, the output is a vector with the length z of the summary vocabulary. We

apply a softmax activation to this vector. During prediction, an argmax operation on
this vector indicates the index of the predicted word in the vocabulary.

4.4 Hyperparameters

For reproducibility and transparency, we list key model hyperparameters in Table 2.

Table 2 Hyperparameters for

our model Parameter Description Java Python
n Subroutines in file context 20 20
m Tokens per subroutine 25 25
t Tokens in target subroutine 50 50
w Words in summary 13 13
v Source code vocabulary size 75k 100 k
z Summary vocabulary size 10908 11000
e Embedding dimensions 128 128
L Stacked XFormBlock layers 3 1
h Attention heads 3 3
b Batch size 8 50
r Learning rate 3e—4 3e—4

@ Springer

62 Page 12 of 32 Automated Software Engineering (2024) 31:62

We chose n, m, t, and w as recommendations from Haque et al. (2020) and Bansal
et al. (2021). We chose v and z as recommended by LeClair and McMillan (2019).
We chose e, L, h, b, and r from our own pilot studies and hardware limitations. Note
that hyperparameters differ between Java and Python datasets because of semantic
differences between the two languages, which require different parameters for com-
parable performance. Java and Python model performances must also be considered
independent of each other.

5 Experiment design

This section describes our experiment to evaluate our model, including our
research questions, methods, datasets, baselines, metrics, hardware and software
versions, and threats to validity.

5.1 Research questions

Our research objective is to determine the degree of difference in performance
between our model and baseline models. Thus, We ask the following Research
Questions (RQs):

RQ1 What is the difference between our dual encoder design models and base-
line models over all summaries in a dataset including the summaries contain
words in file context and do not contain words in file context, in terms of
automated metrics?

RQ2 What is the difference between our dual encoder design model and baseline
models when we consider the summary that includes words from the file
context only?

RQ3 What is the impact of our dual encoder design on model performance, when
compared against combining inputs into one giant file as the current prompt
methods?

The rationale behind RQ1 is to be consistent with years of related work.
Almost all code summarization papers over the past decade have used automated
metrics to measure improvement over baselines. This methodology is popular
because any meaningful improvement should be observable over a whole dataset.

The rationale behind RQ2 is that model changes to add file context may pro-
vide more improvement in the subset of the dataset in which words in the sum-
mary are only present in the file context. We seek to evaluate our approach, when
compared with the baselines, over these subsets of our datasets.

@ Springer

Automated Software Engineering (2024) 31:62 Page130f32 62

The rationale behind RQ3 is to evaluate the impact of our dual encoder design
against a single input approach such as those popularized by Large Language
Models (LLMs). State-of-Practice in industry and now research venues, is to use
these LL.Ms, which are designed for instructional and conversational use. These
models accept a single input sequence which contains all the information as a
user query.

5.2 Research methods

Our research method is typical of many papers on code summarization and
encoder—decoder models such as LeClair et al. (2019):

To answer RQ1, we first train our approach and each of the baselines mod-
els independently on different datasets for a maximum of ten epochs using the
hyperparameters in Sect. 4. Then, we choose the epoch with the highest valida-
tion accuracy. We load the model at that epoch to predict the summaries for the
unseen test set, which is 4-5% of the whole dataset. Then, we compute auto-
mated metric scores between predicted summaries and the reference summaries
(described in Sect. 5.6).

To answer RQ2, we start with the same predictions we computed for RQI.
While computing metrics, we partition the test set based on the value of wo. We
then report average metric scores for each subset.

To answer RQ3, we implemented two alternative approaches for modeling file
context as described in Sect. 5.5. We follow the same procedures for evaluation
of these models as RQ1, except that we only train 1 1ama-1lora for one epoch,
which takes roughly 60 h. We report metric scores for comparison against our
approach and a previous approach that uses file context.

5.3 Datasets

We use three datasets in this paper. One is called funcom-java and contains
around 2 m Java methods. The dataset originates from LeClair and McMillan
(2019) and uses a split-by-project configuration to reduce the risk of data dupli-
cation. The version we use is from Bansal et al. (2021) who apply additional
filters to reduce code clones as recommended by Allamanis (2019).

The second dataset is called funcom-java-long which was created
by Bansal et al. (2023b) and consists of the top 10% longest methods from fun-
com-java in terms of number of tokens and implement fixes recommended
by Shi et al. (2022). We focus on these longer functions due to an observation
by Haque et al. (2021) that many Java methods in the funcom-java dataset
are short getters/setters. This observation was corroborated by Bansal et al.
(2023b). The found that longer methods are more challenging while shorter
methods are easy to summarize using even the most basic code summarization
models. This dataset consists of roughly 190k java methods.

@ Springer

62 Page 14 of 32 Automated Software Engineering (2024) 31:62

Finally, we create a new dataset we call funcom-python that we extracted
from a data dump of 40k Python projects downloaded from Github. We use
the same cleaning and splitting procedures as LeClair and McMillan (2019)
and Bansal et al. (2021). We also favor Python functions that are top 10% long-
est methods as recommended by Haque et al. (2021) and Bansal et al. (2023b).
The final dataset consists of 270k python functions and the corresponding AST
sequence, AST graphs, file context, and header summaries.

5.4 Baseline models

We compare our model to the following baselines. We reimplemented all base-
lines in our own framework to control experimental variables such as software ver-
sion. We chose these baselines as they are representative of different families of
approaches (see Sect. 3) which have different advantages and disadvantages.

transformer-alt This is a baseline of our own design using the same architecture
of our proposed model in Sect. 4. The only difference is that we substitute the file
context input with the subroutine code itself (repeated n times so model size is iden-
tical). More formally, prior to Eq. (2), we set X’ = [X®,,,]. The reason for this base-
line is that our model is larger than the normal transformer, so it is possible that
improvements come from scale and not file context.

ast-attendgru An approach by LeClair et al. (2019) that mainly benefits from a
flat representation of the code’s Abstract Syntax Tree (AST) generated by the Struc-
ture-Based-Traversal (SBT) method. The model architecture consists of two GRU-
based encoders, one for the source code tokens and the other for the AST.

ast-attendgru-fc The original approach by Haque et al. (2020) that this paper
extends. The model architecture consists of three GRU based encoders—two for the
source code tokens and AST tokens respectively, and a third to encode the file con-
text using a number of GRUs consistent with the number of methods from the file
being represented as context.

codegnngru A graph neural network-based approach by LeClair et al. (2020).
This model architecture consists of two encoders, a GRU to encode the flat sequence
of the AST graph, and GNN-GRU hybrid encoder to encode a graphical representa-
tion of the AST using the edges between AST tokens and source code.

transformer An approach by Ahmad et al. (2020). Essentially this approach uses
a vanilla Transformer encoder—decoder design. The model architecture consists of a
single encoder that uses a positional encoding and two attention heads.

setransformer A recent approach by Li et al. (2022) that uses a Transformer-CNN
hybrid model to learn representation of the AST. The model architecture consists of
two Transformer-based encoders, one for the source code and the other for the AST.
Each of these encoders also consists of a CNN layer for feature reduction to reduce
computational load.

@ Springer

Automated Software Engineering (2024) 31:62 Page150f32 62

5.5 Alternate approaches

We also test two alternate approaches for encoding file context as stand-ins for trans-
formers and large language models with a giant context window. We combine the
source code of the target subroutine and file context into one input. We use these two
baselines exclusively to answer RQ3:

transformer-comb This is a Transformer-based encoder—decoder baseline, where
we combine the source code and the file context into a single input. The model
architecture is similar to transformer, scaled up for a much longer input, such
that the file context is concatenated to the source code after tokenization.

llama-lora A recent approach by Hu et al. (2021) that proposes a framework for
fine-tuning LLaMA, an instructional Transformer-Based Large Language Model
(LLM) by Touvron et al. (2023). This is a decoder-only instructional and conver-
sational LLM that accepts a single prompt and predicts the most likely words to
complete the prompt. We fine tune the 7 billion parameter LLaMA model for one
epoch. We create a fine-tuning prompt following the typical strategy by Hu et al.
(2021):

Instruction: the text “describe the following function”
Input: < source code for the target method>

FC: < source code of the functions in the file context>
Output: < the reference summary sequence>

N

Note, the purpose of these approaches is to compare our model against an off-the-
shelf approach by Hu et al. (2021) which consists of taking a large model and feed-
ing it all the data in a single input. The 11ama-1ora model is considerably larger
than any of our other baselines. Therefore, we only run this baseline over the smaller
datasets, namely funcom-java-long and funcom-python. Each of these
datasets took roughly 110 h of training and inference. Estimated duration for train-
ing and inference over funcom-java would be 980 h (~ 6 weeks).

5.6 Metrics

We use three metrics to compare predicted summaries to their reference in the
datasets:

METEOR is a well-known metric that calculates the harmonic mean of unigram
precision and recall, introduced by Banerjee and Lavie (2005). We use this metric
because Roy et al. (2021) conducted a study with human experts and found that it
better correlates to human judgement compared to BLEU.

USE is an encoder-based semantic similarity metric proposed by Haque et al.
(2022). They conducted a human study and found encoder-based metrics have a rel-
atively high correlation with the judgement of human experts compared to BLEU.

@ Springer

62 Page 16 of 32 Automated Software Engineering (2024) 31:62

BLEU is an n-gram based popular metric used to evaluate code summarization by
almost all related work over the last decade. We report BLEU to be consistent with
related work, though with the caveat that METEOR and USE are now preferred.

5.7 Hardware and software

The hardware we used for training and inference for our approach and baselines:
AMD 5900x CPU, 2xTITAN RTX with 24GB VRAM each, and 128GB system
memory.

Software that we used includes CUDA 11.2, Tensorflow 2.9.2, Python 3.10, Pan-
das 1.4, NLTK 3.6, Ubuntu LTS 22.04.

5.8 Threats to validity

Like all experiments, this paper carries threats to validity that could change our con-
clusions under different experimental conditions. There are three main threats we try
to mitigate in the design of our experiment:

The first threat lies in the datasets. We attempt to mitigate this risk by using large
datasets in two different programming languages extracted from a diverse set of
repositories. We also clean and process the dataset using techniques recommended
in related work (LeClair and McMillan 2019; Bansal et al. 2021), in an attempt to
mitigate the risk of data leaks and skewed results.

The second threat lies in the automated metrics we use to evaluate the perfor-
mance of our approach against the baselines. We attempted to mitigate this risk by
reporting three metrics, following recommendations by latest related work.

The third threat lies in the hyperparameters of our model. We chose these hyper-
parameters based on limited pilot studies and related work, as we do not have
resources for a large grid search. In theory, different hyperparameters could alter our

Table 3 Metric scores for the three datasets. Our model is transformer-fc, while transformer-
alt is our model without file context input

Model funcom-java funcom-java-long funcom-python

M U B M U B M 18] B
ast-attendgru 35.30 52.89 18.33 33.21 50.12 18.94 26.80 43.75 16.92
ast-attendgru-fc 35.71 52.94 18.94 33.52 50.48 18.91 27.72 44.93 16.82
codegnngru 35.82 53.26 18.77 32.98 49.85 18.75 26.11 42.36 17.33
transformer 35.68 54.03 18.29 33.18 51.27 18.52 26.74 43.86 15.68

setransformer 36.01 5343 18.71 3247 49.60 18.51 2735 43.70 17.60
transformer-alt 35.84 53.98 18.54 33.98 52.62 19.67 28.47 45.64 17.58
transformer-fc 3712 5461 2018 3467 5277 1990 2858 4545 18.21

The best results across all models are given in bold

@ Springer

Automated Software Engineering (2024) 31:62 Page170f32 62

results and conclusions. To promote transparency and reproducibility, we report and
discuss these hyperparameters in Sect. 4.4.

In additional to these threats, minor variations in performance can be seen due
to different hardware and software versions. Therefore, we report the hardware and
software versions used for this paper in Sect. 5.7.

6 Experiment results

In this section we discuss our experimental results for the four research questions.

6.1 RQ1: overall performance

Table 3 shows the overall performance for each model and each dataset. We found
that performance for transformer-fc was around 3%, 1%, and 6.5% higher than
the nearest baseline for METEOR, USE, and BLEU, respectively, over the fun-
com-java dataset. The differences were narrower for the funcom-java-long
dataset: 2%, 0.3%, 1%. Results are mixed in Python, as transformer-fc had the
highest scores for METEOR and BLEU, but not USE.

We make a few observations in these results. First, BLEU scores for our approach
tend to show more improvement than other scores. One possible explanation for this
difference is BLEU’s dependence on exact word matches, while METEOR and USE
have mechanisms for reducing this dependence. It is likely that our model is able to
find more exact matches due to the additional information in the file context. Sec-
ond, the difference between our model and baselines is greatest in funcom-java.
There are two likely explanations: (1) funcom-java has around ten times more
examples and therefore may be providing more opportunity for transformer-fc
to learn from a more diverse dataset, and (2) that dataset has more short samples,
which have less internal context and therefore may benefit more from file context.

Finally, we observe that the overall scores are not as high as other papers
report (Li et al. 2022; Wei et al. 2019). We attribute this observation to our use of
the split-by-project dataset design and duplicate removal techniques, which are rec-
ommended procedures from related work (Allamanis 2019; LeClair and McMillan
2019), that are unfortunately not used in many papers. The results we report are
internally comparable but not comparable against those in other papers.

6.2 RQ2: effects of file context

We report metric scores at different levels of wo in Tables 4 and 5. We make a few
key observations. First, for the Java datasets, we observe a decline in performance
as wo increases across all baselines and all metrics. We attribute this decline to the
difficulty of generating summaries which include ever more information from out-
side the method being described (see Sect. 2). This decline is prominent in fun-
com-java-long, where METEOR scores when wo >= 4 tend to be around half

@ Springer

62 Page 18 of 32 Automated Software Engineering (2024) 31:62

—eo— transformer-fc vs. transformer

0, g
10% —=— transformer-fc vs. transformer-alt
—— transformer-alt vs. transformer

o]
xX

[er)
X

A
X

N
X

percent difference

Q
X

T T T 1

wo>=1 wo>=2 wo>=3 wo>=4

3
q
o

Fig.3 Visual depiction of data for METEOR from Table 4(a). The file context model performance delta
increases above 5% as wo increases, but the delta of the non-file context model does not

10% —e— transformer-fc vs. transformer
° —=— transformer-fc vs. transformer-alt

—— transformer-alt vs. transformer
Y 8%
c
g
o 6%
E 0
©
v 4%
I}
o /_/
g 2% /./

wo=0 wo>=1 wo>=2 wo>=3 wo>=4

Fig.4 Visual depiction of data for USE from Table 4(a). The file context model performance delta
decreases when wo=0, but increases when wo > 1. File context is a key factor in overall model improve-
ment

compared to wo = 0. However, the decline is not consistent in the Python dataset.
METEOR and USE scores decline for ast-attendgru, codegnngru, and
transformer-alt, but increase for ast-attendgru-fc and trans-
former-fc. These results may be expected because the two file context models
may improve using file context.

However, transformer and setransformer also rise from wo =0 to
wo >= 1. One likely explanation is that Python contains fewer functions with refer-
ence explanations where file context is present: while in Java, around 65% of the
methods have wo >= 1, in Python only around 20% do. The number of functions
where wo >= 2 is only 4% of the dataset, compared to around 12% in Java. The
number of functions in Python where wo >= 3 is less than 0.5% — only 53 functions
in the test set, so low that we do not report metric scores due to possible unreliabil-
ity. It is likely that factors other than file context are more important to model per-
formance in Python, perhaps causing underperformance when wo = 0. In Java, we

@ Springer

Automated Software Engineering (2024) 31:62 Page190f32 62

Table4 Raw METEOR and USE scores for different values of wo
Model METEOR USE

wo=0 wo>1 wo>2 wo>3 wo>4 wo=0 wo>1 wo>2 wo>3 wo>4

(a) funcom-java dataset
ast-attendgru 39.25 3324 30.67 30.14 25.06 5630 52.01 4927 48.69 44.34
ast-attendgru-fc 3890 34.05 31.78 3132 26.25 5574 5245 49.83 49.18 4495
codegnngru 40.18 35,55 31.02 3054 2550 56.99 5236 49.82 49.18 4497
transformer 40.15 33.35 30.67 2996 2473 5745 5322 5036 49.61 4538
setransformer 3994 3397 3142 30.77 25.83 5647 5265 50.17 4956 45.52
transformer-alt ~ 40.38 3348 3092 3040 2521 57.35 52.87 5033 49.74 4549
transformer-fc 40.37 3543 33.04 3250 27.19 57.88 5344 51.61 51.04 47.01

(b) funcom-java-long dataset
ast-attendgru 40.02 29.63 2821 2749 20.50 5542 4733 4573 4476 39.25
ast-attendgru-fc 40.33 2994 2846 28.11 2145 5579 47770 46.15 4539 39.68
codegnngru 39.85 29.38 27.88 27.14 2047 55.13 47.08 4546 44.48 38.78
transformer 39.98 29.62 2824 27770 2095 56.62 4846 46.89 4594 4048
setransformer 39.39 28.84 27.63 2690 20.18 5490 46.81 4526 44.42 39.07
transformer-alt ~ 41.02 30.29 28.96 2833 2121 57.73 4993 4828 4728 41.83
transformer-fc 41.71 3098 29.70 29.08 21.88 57.88 50.09 48.84 47.85 4238

(¢) funcom-python dataset

ast-attendgru 26.74 27.06 2533 - - 43.58 4444 4208 - -
ast-attendgru-fc ~ 27.61 28.15 2798 - - 4479 4552 4539 - -
codegnngru 26.20 25.78 2457 - - 4233 4249 4185 - -
transformer 26.61 2725 2736 - - 43.62 4482 4414 - -
setransformer 27.17 28.06 27.80 - - 4336 45.08 4401 - -
transformer-alt ~ 28.50 28.34 28.02 - - 4558 4590 45.16 - -
transformer-fc 2849 2892 28.81 - - 4522 4637 44.66 - -

We omit BLEU for brevity because it is less favored than other metrics (see Sect. 5.6). Note overall
diminished performance for higher thresholds of wo.The term wo means the number of words that are
in both the reference summary of a method and its file context, but not in the method itself (see Sect. 2)

note relatively high scores when wo = 0, likely due to many “easy” summaries such
as “records a music file” for a subroutine recordMusicFile ().

A second observation is that the models which use file context tend to outper-
form models without it, and the delta between these models tends to increase as
the threshold for wo increases. For example, we are able to replicate the result of
Haque et al. Haque et al. (2020) in showing that ast-attendgru-fc improves
over ast-attendgru. But we especially note that our model transformer-
fc improves over transformer and transformer-alt. We present the data
from Table 4 in a graphical format in Figs. 3 and 4. These show that the differences
in METEOR and USE scores between transformer-fc and transformer
rise above 5% when wo >=1in the funcom-java dataset. So even though the
overall performance improvement from our model is around 3%, we note that the

@ Springer

62 Page 20 of 32

Automated Software Engineering

(2024) 31:62

Table 5 Difference between a given model and a comparison model for each dataset

Model Comparison All (%) wo=0 (%) wo=1(%) wo>2(%) wo>3 (%) wo>4 (%)

(a) funcom-Jjava dataset

M transformer-fc transformer 4.04 0.55 6.24 7.73 8.48 9.95
transformer-fc transformer-alt 3.57 —0.02 5.82 6.86 6.91 7.85
transformer-alt transformer 0.45 0.57 0.39 0.82 1.47 1.94

U transformer-fc transformer 1.07 —0.64 0.41 248 2.88 3.59
transformer-fc transformer-alt 1.17 —0.47 1.08 2.54 2.61 3.34
transformer-alt transformer —0.09 —0.17 —0.66 —0.06 0.26 0.24

B transformer-fc transformer 10.33 2.53 15.14 16.57 16.86 27.90
transformer-fc transformer-alt 8.85 1.48 13.31 13.73 13.28 18.85
transformer-alt transformer 1.37 1.03 1.61 2.50 3.17 7.62

(b) funcom-java-1long dataset

M transformer-fc transformer 4.49 4.33 4.59 5.17 4.98 4.44
transformer-fc transformer-alt 2.03 1.68 2.28 2.56 2.65 3.16
transformer-alt transformer 241 2.60 2.26 2.55 227 1.24

U transformer-fc transformer 4.12 4.01 4.16 4.75 4.50 4.02
transformer-fc transformer-alt 0.29 0.26 0.32 1.16 1.21 1.31
transformer-alt transformer 2.21 222 2.21 2.56 2.30 1.33

B transformer-fc transformer 7.45 2.95 9.80 9.22 9.24 13.91
transformer-fc transformer-alt 1.17 —2.69 3.23 3.40 3.70 9.98
transformer-alt transformer 6.21 5.80 6.36 5.64 5.34 3.57

(¢) funcom-python dataset

M transformer-fc transformer 3.03 8.57 6.13 5.30 - -
transformer-fc transformer-alt 0.39 1.37 2.05 2.82 - -
transformer-alt transformer 2.63 7.10 4.00 241 - -

U transformer-fc transformer 3.63 3.67 3.46 1.18 - -
transformer-fc transformer-alt —0.42 —0.79 1.02 —1.11 - -
transformer-alt transformer 4.06 4.49 241 231 - -

B transformer-fc transformer 16.14 17.22 12.88 3.97 - -
transformer-fc transformer-alt 3.58 2.15 8.94 13.31 - -
transformer-alt transformer 12.12 14.75 3.61 —8.24 - -

Rows indicated for M=METEOR, U=USE, B=BLEU. For example, the BLEU score for trans-
former-fc is 27.90% higher than transformer when wo >= 4 for the funcom-java dataset. We
do not report wo >= 3 for Python because the number of test samples is very small at those levels (<60)

Table 6 Training time

of transformer-fc,
transformer-alt, and
transformer in different

datasets in minutes

@ Springer

model funcom-java fun- fun-
com-java- com-—
long python
transformer 90 10 15
transformer-alt 135 15 20
transformer-fc 635 60 90

Automated Software Engineering (2024) 31:62 Page210f32 62

Table 7 Memory usage

model funcom- funcom-java- fun-
of transformer-fc, java long com—
transformer—al.t, and. . python
transformer during training
in different datasets in GB transformer 3 3

transformer-alt 3 3

transformer-fc 9
Table 8 Metric scores over Model METEOR USE BLEU

the three datasets comparing
different model designs for
incorporating file context

(a) funcom-java dataset.

ast-attendgru-fc 35.71 52.94 18.94

transformer-comb 26.07 40.68 12.67
transformer-fc (ours) 37.12 54.61 20.18
(b) funcom-java-1long dataset.

ast-attendgru-fc 33.52 50.48 18.91

transformer-comb 26.24 41.18 14.09

llama-lora 20.37 38.63 6.99
transformer-fc (ours) 34.67 52.77 19.90
(¢) funcom-python dataset.

ast-attendgru-fc 27.72 44.93 16.82

transformer-comb 19.86 34.93 11.15

transformer-fc (ours) 28.58 45.45 18.21

The best results across all models in that bin are given in bold

improvement is concentrated among a small set of especially challenging summaries
that primarily benefit from file context. Although wo >= 4 only accounts for tiny
part of the dataset, this part of the dataset is particularly difficult for the problem.
The improvement over this part of the dataset futher shows the effectiveness of our
method.

An alternative interpretation is that the delta only seems larger because the base-
line scores are lower as the threshold of wo increases—a 1 METEOR point improve-
ment is 3.3% of 30 but 5% of 20. However, consider the transformer-alt
scores compared to transformer (the green lines in Figs. 3 and 4). METEOR
scores do improve between zero and two percent for METEOR, but are essentially
flat for USE. The transformer-alt model does not include file context but
does have architectural differences over transformer. The improvements from
the scale of transformer-alt are spread across all levels of wo. Therefore,
the evidence suggests that transformer-fc improves due to file context when
wo >= 1, and not due to architectural differences or mathematical illusions.

In Table 6 and 7, we reported the training time and the memory usage of
transformer, transformer-fc, and transformer-alt. Although
transformer-fc shows the file contexts help to improve the performance, the
computational time and the memory usage increase. This is because of the extra

@ Springer

62 Page 22 of 32 Automated Software Engineering (2024) 31:62

computation to process the file context data in our models. Overall, we observed that
the file contexts improve performance, but requiring more training time and compu-
tational resources.

6.3 RQ3: alternate approaches to model file context

In Table 8, we report the metric scores for transformer-comb and 1lama-
lora, compared against our approach and a previous GRU based file context base-
line ast-attendgru-fc. We observe that transformer-comb achieves
scores 23-30% lower than our approach as well as ast-attendgru-fc for all
three datasets. We posit that combining both method and file context into a single
input may not be providing the model with enough information to learn how to place
the method in the file context. Therefore, these scores suggest that our model design
is better suited for the task of using file context to improve code summarization,
when compared to a single input Transformer that is provided with the file context
simply appended to the source code.

Recall, we only test 11ama-lora on funcom-java-long and funcom-
python due to high estimated training and inference time over the larger data-
set. We observe that for funcom-java-long, 1lama-lora achieves scores
40-65% lower than our approach as well as ast-attendgru-fc. We do not
report the scores for funcom-python because the scores were less than 1 point
for each metric, which means the model is obviously not learning anything. Upon
manual inspection we found that the model was prone to predicting code from the
target function as the “response”. It appears the model learned to simply fetch code
from the function and file context to reduce training loss. We think that the poor per-
formance of 11ama-lora is because it is originally pre-trained primarily on con-
versational English data (Touvron et al. 2023). Now it is true that recent work such
as the short study by Ahmed and Devanbu (2022) shows promise using LLMs and
few-shot learning for code summarization. However, it may simply be that the data
we used to fine-tune the model is not enough for the model to re-adjust the learned
conversational word embeddings in favor of programming-language specific word
associations.

Given ever-increasing model and prompt length size, it may seem like the “obvi-
ous” solution is to simply include the entire file context with the target function.
However, we find that that solution is not effective off-the-shelf. We posit that care-
ful model design and improvements are required, when using decoder-only LL.Ms to
learn from file context for source code summarization. In our view, a likely solution
is a novel neural architecture, like transformer-fc that we propose. Addition-
ally, our model can be scaled up to an arbitrary number of layers and attention heads
by adjusting our model parameters L and /& (see Sect. 4), just like the original Trans-
former architecture.

@ Springer

Automated Software Engineering (2024) 31:62 Page230f32 62

7 Human study

In this section we describe parameters and results of our human study. This study
adds a qualitative evaluation to complement our quantitative evaluation in the last
section.

7.1 Research questions

To design our human study and evaluation, we asked two additional research
questions:

RQ4 When comparing summaries generated by transformer-fc and
transformer-alt, which ones do programmers give higher rates in
terms of accuracy, conciseness, completeness, and similarity to reference?

RQ5 When comparing summaries generated by transformer-fc and
transformer-alt, which ones do programmers prefer in terms of over-
all preference?

The rationale behind RQ4 is to compare our approach against the best perform-
ing baseline, in terms of the most important qualities of a summary from related
work Sridhara et al. (2010); Bansal et al. (2023a). These qualities are accuracy, con-
ciseness, completeness, and similarity to reference. Although automated metrics are
the standard for evaluation in related work, programmer opinion is important as an

Logout Function 8/35 FID 29859244
i 5

: 3 Comment 1
Function split
split the given line into a list of strings
private List split(String line) {

List result;

if (line == null) {
result = new ArrayList(); Comment 2

} else {

StringTokenizer tok; split a list of strings

tok = new StringTokenizer(line, ",");

result = new ArrayList (tok.countTokens());

while(tok.hasMoreTokens()) {

result.add(tok.nextToken());
}
i Overall, which summary is better in your opinion?

return result;
) I really cannot
Comment 1 Comment 2 decide.

Submit

Fig.5 A screenshot of our human study interface

@ Springer

62 Page 24 of 32 Automated Software Engineering (2024) 31:62

indicator of qualities of a summary which automated metrics may not necessarily
represent (Haque et al. 2022).

The rationale behind RQS5 is that programmers may prefer one summary over the
other for reasons not formalized by RQ4. Although the qualities we ask subjects to
rate in RQ4 are extensively used in related work, there may be other qualities that
programmers prefer in summaries.

7.2 Interface

For our human study, we designed a web interface, a screenshot of which is in
Fig. 5. The interface showed Java source code on the left and two summaries on
the top right, comment 1 on top and comment 2 under it. To prevent demand char-
acteristic bias (Dell et al. 2012), we do not reveal the source of the comments eval-
uated. Source of comments 1 and 2 were randomly selected and anonymized for
each method and participant. For example, for some methods comment 1 is from
our approach transformer-fc and comment 2 from the baseline transformer-
alt, while it is the opposite for other methods seen by the same participant. For each
method, participants were asked 5 questions on the bottom right:

Q1 Independent of other factors, which summary is more accurate?

Q2 Which summary is missing more information that is important for understand-
ing the method?

Q3 Which summary contains more unnecessary information?
Q4 Overall, which summary is better in your opinion?
Q5 Which summary is more similar to this third summary on the left?

For QS5, the participants are shown the reference summary on the bottom left
below the code. For each question the participants are presented with three choices:
(1) “comment 17, (2) “comment 2”, and (3) “I really cannot decide”.

7.3 Dataset

The dataset we use for our human study consists of summaries generated for 35 Java
methods from the test set of funcom-java. We used funcom-java as the data-
set for human study because this dataset has the largest improvement in terms of
automatic metrics. Roy et al. (2021) found that human programmers may not be able
to differentiate two summaries when the improvement is less than two points and
the results are mixed i.e. mixing the results of Java with Python. We select a small
subset for human evaluation, because while the automated metrics in Sect. 6 are
computed over large test sets, human studies are time-restrictive. Extended studies

@ Springer

Automated Software Engineering (2024) 31:62 Page250f32 62

can lead to fatigue bias, a decrease in quality, and reliability of the data (Jeong et al.
2023).

To select these summaries, we filtered the test set for methods where the pre-
dicted summaries from transformer-fc and transformer-alt differ by
at least 2 words. Then, we picked 35 random methods. We restrict the dataset to
35 methods to keep the study duration to around 1 h, to prevent fatigue bias. The
average evaluation time reported by similar studies is 1.5 min/method (Bansal et al.
2023a).

7.4 Participants

We recruited 15 Java programmers using Prolific, a web service that facilitates
screening and recruitment of research study participants from the UK and USA. We
compensated each participant at a flat rate of $20 for roughly a one hour session.

7.5 Threats to validity

Like any human study, the biggest threats to validity are from participant exhaustion
or bias and data selection. To mitigate the threat of participant exhaustion we restrict
the time of our study to around 1 h as recommended in related work (Sievertsen
et al. 2016). To mitigate the threat of participant bias, we designed our interface as
a blind test, without revealing the source of comments. We randomly generate the
order of samples shown, which is different for each of the 15 participants. We also
analyze their answers in a post-processing step to look for suspicious patterns such
as same option for successive choices or identical choices between participants. We
did not find any samples that exhibit these patterns. To mitigate the threat of data

00 B transformer-fc B transformer-alt cannot decide

300
200
a8 Il !
0

Accuracy Completeness Conciseness Similarity

o

Fig. 6 Qualitative comparison of transformer-fc and transformer-alt. The participants were
also given a third option—cannot decide

@ Springer

62 Page 26 of 32 Automated Software Engineering (2024) 31:62

30 Accuracy 30 Completeness
25 25
20 20
15 15
10 10
5 5
0 fc it cannot decide o f it cannot decide
30 Conciseness 30 Similarity
25 25
20 20
15 15
10 10
5 e 5
¢ fi it cannot decide 0 f it cannot decide

Fig. 7 This Box-plot shows distribution for accuracy, completeness, conciseness, and similarity (to refer-
ence). The whiskers indicate maximum and minimum values across all 15 participants. The red line in
each box indicates median and the black line indicates mean

selection, we select the data with the highest improvement in automatic metrics, so
the participants can see the difference as suggested by Roy et al. (2021).
8 Human study results

In this section we report and discuss the results of the two additional RQs we asked
for the human study.

8.1 RQ4: qualitative comparison

In Fig. 6, we report the distribution of all human ratings. The total number of human
ratings is 525, i.e., all 35 methods rated by each of the 15 participants. Note that we
phrased completeness and conciseness questions negatively in the interface. During
post-processing, we flip those ratings (except where participants could not decide) to

@ Springer

Automated Software Engineering (2024) 31:62 Page270f32 62

obtain positive scores to compare with other qualities. Additionally we present box-
plots showing the distribution of these ratings in Fig. 7.

In terms of accuracy, we found that 62% of individual ratings picked summaries
generated by our approach transformer-fc as more accurate than the baseline
transformer-alt. In comparison, only 32% of the individual ratings picked
the baseline as more accurate. This re-affirms our hypothesis that file context helps
most for a subset of cases, while overall metric scores might be affected by some
cases where it may not improve the summary. In Fig. 7, we observe a small standard
deviation indicating general consensus between participants, with high median value
of 22 samples out of 35 for transformer-fc. Overall, we observe that trans-
former-fc generates more accurate summaries than transformer-alt for
majority of samples.

In terms of completeness, we see similar trends as accuracy, where 58% of all
ratings indicated that our approach generated more complete summaries. In Fig. 7
we observe that each participant indicated that transformer-fc generated
summaries were more complete for at least 17 of the 35 samples, with a median of
20 samples. These values are also seen to be higher than the maximum values for
transformer-alt, where each participant found summaries generated by the
baseline to be better in 14 or less samples, with a median of 11. Overall, we find that
for a majority of samples, participants favored summaries generated by our approach
with file context.

In terms of conciseness, we observe closer aggregate scores of 43% in favor of
transformer-fc, 37% in favor of transformer-alt, and 20% could not
decide. A possible reason for this is that our summaries are limited to 13 words. We
posed this question negatively in the study, asking which summary had more unnec-
essary information. Due to the short length of our summaries, it may have been
harder for participants to decide which information was unnecessary. In Fig. 7, we

W transformer-fc M transformer-alt cannot decide
30

T

10 11 12 13 14 15
Pamupant

[*]
o

1

o

Fig.8 Overall preference of each participant when presented with summaries generated by trans-
former-fc and transformer-alt. The participants were unaware of the source of the summaries.
The y-axis denotes number of samples marked each answer and x-axis denotes the participants

@ Springer

62 Page 28 of 32 Automated Software Engineering (2024) 31:62

observe a lot of overlap in the distributions. Overall, transformer-fc achieves
a higher median and mean when compared to transformer-alt, albeit with a
smaller margin than other qualities.

In terms of similarity to reference, we observed that the participants found it dif-
ficult to decide similarity to reference for 13% of all samples. One possibility is that
even though one of the generated summaries was more accurate, the reference sum-
mary may be completely different, such as generic summaries from Javadocs. In
Fig. 7 we observe that the minimum number of methods in favor of our approach is
higher than the mean and median values for the distribution of the baseline. Also,
the median value for our approach is higher than the maximum value for the base-
line. Overall, a majority of participants found transformer-fc generated sum-
maries to be more similar to reference by a considerable margin.

In short, we observe that subjects of our human study found summaries gener-
ated by transformer-fc to be more accurate, complete, and similar to refer-
ence when compared to transformer-alt. For conciseness, the results are not as clear,
which maybe attributed to the fact that we limit our summaries to a maximum of 13
words.

8.2 RQ5: overall preference

In Fig. 8 we report the distribution of overall preference for each of the 15 par-
ticipants. We observe that 13 out of 15 participants found summaries generated
by transformer-fc to be better overall for a majority of the samples (50% or
more). For participant numbers 2 and 15, our approach did not reach the majority
threshold of 18 samples, but neither did the baseline. A few outliers are expected in
human studies such as participant 2, but a vast majority of participants favored sum-
maries generated by transformer-fc when compared with summaries gener-
ated by transformer-alt.

We also performed a Mann—Whitney U test to measure the statistical signifi-
cance of this difference in our distribution of participants. We computed values of
Ul =223 and p —val = 4.6e7°. As p <<< 0.05, we reject the null hypothesis and
find that the difference is statistically significant. Overall, participants preferred
summaries generated by our approach transformer-fc, with a statistically sig-
nificant margin, when compared to summaries generated by the best performing
baseline of the same model size without file context, transformer-alt.

9 Conclusion

This paper advances the state of the art in four ways: First, we present a neural model
for source code summarization that augments a standard Transformer encoder/
decoder architecture to accept file context. We propose a novel architecture as an
alternative to the popular practice of using large context window that rely on model
size alone. We evaluate our model against several baselines over three datasets in

@ Springer

Automated Software Engineering (2024) 31:62 Page290f32 62

two programming languages. We show that our model outperforms these baselines
under our experimental conditions according to three metrics from related work.

Second, we demonstrate that file context is a key factor in source code summari-
zation and the improvements gained by our model. We report model performance at
different levels of the overlap between file context and the summaries, for words not
appearing in the code being summarized (we denote this value wo according to the
formula in Sect. 2). We find that in the Java datasets, a marked decrease in perfor-
mance occurs as thresholds of wo increases. The relationship is less clear in Python,
though we still note generally increasing improvement between our approach and
the baselines for METEOR and BLEU.

Third, we we demonstrate that our model design is well-suited to use the file con-
text. We directly compare our model design against the aforementioned large con-
text window approaches. We evaluate two such alternate approaches. One is a single
encoder and decoder Transformer-based network. The other is a decoder-only LLM
fine-tuned over one of our datasets. We find that these off-the-shelf approaches that
simply combines target source code and file context into a giant context window
perform considerably worse than our design.

Fourth, we conduct a human study to add a qualitative aspect to our evaluation.
We find that when presented by two different summaries for the same method, a
majority of participants favored summaries generated by our approach compared
to the best performing baseline. The participants found summaries generated with
file context to be more accurate, complete, similar to reference, and better overall in
their opinion. We note that we did not see clear consensus on whether our approach
generates more concise summaries than the baseline.

Reproducibility To ensure maximum reproducibility of the results, we release
all datasets in Data Availability Section. Also, we provide an online reproducibility
guide with step-by-step instructions showing how we produced the our results and
source code in Code Availability Section.

Acknowledgements This work is supported in part by the NSF CCF-2100035 and CCF-2211428. Any
opinions, findings, and conclusions expressed herein are the authors’ and do not necessarily reflect those

of the sponsors.

Author contributions C.S., A.B., and C.M. all worked on the paper together. All authors reviewed the
manuscript.

Data availability We released the datasets that we created to APCL Hugginface repository, https://huggi
ngface.co/datasets/apcl/funcom-python

Code availability We release our code for experiments in our APCL Github repository, https://github.
com/apcl-research/TransformerFC

Declarations

Competing interests The authors declare no competing interests

@ Springer

62 Page 30 of 32 Automated Software Engineering (2024) 31:62

References

Ahmad, W., Chakraborty, S., Ray, B., et al.: A transformer-based approach for source code summariza-
tion. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pp- 4998-5007 (2020)

Ahmad, W.U., Chakraborty, S., Ray, B., et al.: Unified Pre-training for Program Understanding and Gen-
eration (2021). arXiv preprint arXiv:2103.06333

Ahmed, T., Devanbu, P.: Few-shot training LLMs for project-specific code-summarization (2022). arXiv
preprint arXiv:2207.04237

Allamanis, M.: The adverse effects of code duplication in machine learning models of code. In: Proceed-
ings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, pp. 143-153 (2019)

Alon, U, Zilberstein, M., Levy, O., et al.: code2vec: learning distributed representations of code. In: Pro-
ceedings of the ACM on Programming Languages 3(POPL):1-29 (2019)

Banerjee, S., Lavie, A.: METEOR: an automatic metric for MT evaluation with improved correlation
with human judgments. In: Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation
Measures for Machine Translation and/or Summarization, pp. 65-72 (2005)

Bansal, A., Haque, S., McMillan, C.: Project-level encoding for neural source code summarization of
subroutines. In: 2021 IEEE/ACM 29th International Conference on Program Comprehension
(ICPC), pp. 253-264. IEEE (2021)

Bansal, A., Eberhart, Z., Karas, Z., et al.: Function call graph context encoding for neural source code
summarization. IEEE Trans. Softw. Eng. (2023a). https://doi.org/10.1109/TSE.2023.3279774

Bansal, A., Sharif, B., McMillan, C.: Towards modeling human attention from eye movements for neutral
source code summarization. iN: Proceedings of ACM Human—Computer Interaction, vol. 7 (2023b)

Chiang, D., Rush, A.M., Barak, B.: Named Tensor Notation (2021). arXiv preprint arXiv:2102.13196

Dell, N., Vaidyanathan, V., Medhi, I, et al.: “yours is Better!” Participant Response Bias in HCI. In: Pro-
ceedings of the Sigchi Conference on Human Factors in Computing Systems, pp. 1321-1330 (2012)

Ding, Y., Wang, Z., Ahmad, W.U., et al.: CoCoMIC: Code Completion By Jointly Modeling In-file and
Cross-file Context (2022). arXiv preprint arXiv:2212.10007

Feng, Z., Guo, D., Tang, D., et al.: CodeBERT: A Pre-trained Model for Programming and Natural Lan-
guages (2020). arXiv preprint arXiv:2002.08155

Guerrouj, L., Di Penta, M., Guéhéneuc, Y.G., et al.: An experimental investigation on the effects of con-
text on source code identifiers splitting and expansion. Empir. Softw. Eng. 19, 1706-1753 (2014)

Haldar, R., Wu, L., Xiong, J., et al.: A Multi-perspective Architecture for Semantic Code Search (2020).
arXiv preprint arXiv:2005.06980

Hagque, S., LeClair, A., Wu, L., et al.: Improved automatic summarization of subroutines via attention to
file context. In: Proceedings of the 17th International Conference on Mining Software Repositories,
pp- 300-310 (2020)

Hagque, S., Bansal, A., Wu, L., et al.: Action word prediction for neural source code summarization. In:
2021 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER),
pp. 330-341. IEEE (2021)

Haque, S., Eberhart, Z., Bansal, A., et al.: Semantic similarity metrics for evaluating source code summa-
rization. In: Proceedings of the 30th IEEE/ACM International Conference on Program Comprehen-
sion, pp. 3647 (2022)

Hill, E., Pollock, L., Vijay-Shanker, K.: Automatically capturing source code context of NL-queries for
software maintenance and reuse. In: 2009 IEEE 31st International Conference on Software Engi-
neering, pp. 232-242. IEEE (2009)

Holmes, R., Murphy, G.C.: Using structural context to recommend source code examples. In: Proceed-
ings of the 27th International Conference on Software Engineering, pp. 117-125 (2005)

Hu, E.J., Shen, Y., Wallis, P, et al.: Lora: Low-Rank Adaptation of Large Language Models (2021).
arXiv preprint arXiv:2106.09685

Hu, X., Li, G., Xia, X, et al.: Deep code comment generation. In: Proceedings of the 26th Conference on
Program Comprehension, pp. 200-210. ACM (2018a)

Hu, X, Li, G., Xia, X., et al.: Summarizing source code with transferred API knowledge. In: Proceedings
of the 27th International Joint Conference on Artificial Intelligence, pp. 2269-2275. AAAI Press
(2018b)

@ Springer

Automated Software Engineering (2024) 31:62 Page310f32 62

Huang, Z., Liang, D., Xu, P., et al.: Improve transformer models with better relative position embed-
dings. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 3327-3335
(2020)

Jeong, D., Aggarwal, S., Robinson, J., et al.: Exhaustive or exhausting? Evidence on respondent fatigue in
long surveys. J. Dev. Econ. 161, 102992 (2023)

Kramer, D.: API documentation from source code comments: a case study of Javadoc. In: Proceedings of
the 17th Annual International Conference on Computer Documentation, pp. 147-153 (1999)

Kuang, L., Zhou, C., Yang, X.: Code comment generation based on graph neural network enhanced trans-
former model for code understanding in open-source software ecosystems. Autom. Softw. Eng.
29(2), 43 (2022)

LeClair, A., McMillan, C.: Recommendations for datasets for source code summarization. In: Proceed-
ings of NAACL-HLT, pp. 3931-3937 (2019)

LeClair, A., Jiang, S., McMillan, C.: A neural model for generating natural language summaries of pro-
gram subroutines. In: 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pp. 795-806. IEEE (2019)

LeClair, A., Haque, S., Wu, L., et al.: Improved code summarization via a graph neural network. In:
Proceedings of the 28th International Conference on Program Comprehension, pp. 184—195 (2020)

Li, Y., Wang, S., Nguyen, T.N.: A context-based automated approach for method name consistency
checking and suggestion. In: Proceedings of the 43rd International Conference on Software Engi-
neering. IEEE Press, ICSE °21, pp. 574-586 (2021). https://doi.org/10.1109/ICSE43902.2021.
00060

Li, Z., Wu, Y., Peng, B., et al.: SeTransformer: A transformer-based code semantic parser for code com-
ment generation. IEEE Trans. Reliab. 72, 258-273 (2022)

Liang, Y., Zhu, K.Q.: Automatic generation of text descriptive comments for code blocks. In: Thirty-
Second AAAI Conference on Artificial Intelligence (2018)

Liu, S., Chen, Y., Xie, X., et al.: Retrieval-augmented generation for code summarization via hybrid
GNN. In: International Conference on Learning Representations (2021). https://openreview.net/
forum?id=zv-typ1gPxA

Nie, P, Rai, R., Li, J.J., et al.: A framework for writing trigger-action todo comments in executable for-
mat. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering, pp. 385-396. ACM (2019)

Roehm, T., Tiarks, R., Koschke, R., et al.: How do professional developers comprehend software? In:
2012 34th International Conference on Software Engineering (ICSE), pp. 255-265. IEEE (2012)

Roy, D., Fakhoury, S., Arnaoudova, V.: Reassessing automatic evaluation metrics for code summarization
tasks. In: Proceedings of the 29th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, pp. 1105-1116 (2021)

Shi, L., Mu, F., Chen, X, et al.: Are we building on the rock? On the importance of data preprocessing
for code summarization. In: Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pp. 107-119 (2022)

Sievertsen, H.H., Gino, F., Piovesan, M.: Cognitive fatigue influences students’ performance on standard-
ized tests. Proc. Natl. Acad. Sci. 113(10), 2621-2624 (2016). https://doi.org/10.1073/pnas.15169
47113

Sridhara, G., Hill, E., Muppaneni, D., et al.: Towards automatically generating summary comments for
java methods. In: Proceedings of the 25th IEEE/ACM international conference on Automated soft-
ware engineering, pp. 43-52 (2010)

Sutskever, 1., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. Adv. Neural
Inf. Process. Syst. 27, 3104-3112 (2014)

Tang, Z., Shen, X., Li, C., et al.: AST-trans: Code summarization with efficient tree-structured attention.
In: Proceedings of the 44th International Conference on Software Engineering, pp. 150-162 (2022)

Touvron, H., Lavril, T., Izacard, G., et al.: LLaMA: Open and Efficient Foundation Language Models
(2023). arXiv preprint arXiv:2302.13971

Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30,
6000-6010 (2017)

Wan, Y., Zhao, Z., Yang, M., et al.: Improving automatic source code summarization via deep reinforce-
ment learning. In: Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pp. 397—-407. ACM (2018)

Wang, S., Wen, M., Lin, B., et al.: Lightweight global and local contexts guided method name recom-
mendation with prior knowledge. In: Proceedings of the 29th ACM Joint Meeting on European

@ Springer

62 Page 32 of 32 Automated Software Engineering (2024) 31:62

Software Engineering Conference and Symposium on the Foundations of Software Engineering.
Association for Computing Machinery, New York, NY, USA, ESEC/FSE 2021, pp. 741-753 (2021).
https://doi.org/10.1145/3468264.3468567

Wei, B., Li, G., Xia, X., et al.: Code generation as a dual task of code summarization. Adv. Neural Inf.
Process. Syst. 32, 6563-6573 (2019)

Wei, B, Li, Y., Li, G., et al.: Retrieve and refine: exemplar-based neural comment generation. In: Pro-
ceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering, pp.
349-360 (2020)

Ziigner, D., Kirschstein, T., Catasta, M., et al.: Language-agnostic representation learning of source
code from structure and context. In: International Conference on Learning Representations (2021).
https://openreview.net/forum?id=Xh5¢eMZVONGF

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

@ Springer

