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ABSTRACT The gene regulatory network (GRN) of biological cells governs a number of key functionalities that enable them
to adapt and survive through different environmental conditions. Close observation of the GRN shows that the structure and
operational principles resemble an artificial neural network (ANN), which can pave the way for the development of wet-neuro-
morphic computing systems. Genes are integrated into gene-perceptrons with transcription factors (TFs) as input, where the
TF concentration relative to half-maximal RNA concentration and gene product copy number influences transcription and
translation via weighted multiplication before undergoing a nonlinear activation function. This process yields protein concen-
tration as the output, effectively turning the entire GRN into a gene regulatory neural network (GRNN). In this paper, we estab-
lish nonlinear classifiers for molecular machine learning using the inherent sigmoidal nonlinear behavior of gene expression.
The eigenvalue-based stability analysis, tailored to system parameters, confirms maximum-stable concentration levels, mini-
mizing concentration fluctuations and computational errors. Given the significance of the stabilization phase in GRNN
computing and the dynamic nature of the GRN, alongside potential changes in system parameters, we utilize the Lyapunov
stability theorem for temporal stability analysis. Based on this GRN-to-GRNN mapping and stability analysis, three classifiers
are developed utilizing two generic multilayer sub-GRNNs and a sub-GRNN extracted from the Escherichia coli GRN. Our find-
ings also reveal the adaptability of different sub-GRNNs to suit different application requirements.

WHY IT MATTERS In recent years the significance of artificial intelligence has been steadily rising, driven by the
development of numerous algorithms that are applicable across various domains. As we envision a future of “Al
everywhere,” we are faced with the prospects of applying Al into media that is beyond silicon technology, such as wet
biological environments. In this study our objective is to propose a paradigm of biological Al that is built from the gene
regulatory process. Realizing a vision of wet-neuromorphic computing systems can result in novel theranostic
applications for disease detection and treatment as well as new bio-hybrid computing systems that integrate biological
cells with silicon technology.

INTRODUCTION a working capacity close to the brain. Based on the
system applications, Al can be categorized into soft-
ware or hardware based. Software-based Al includes
various forms of algorithms that depend on their
structure as well as training process (e.g., convolu-
tional neural networks (3), recurrent neural networks
(4), where a novel application is large language models
such as generative pre-trained transformer (5).
Neuromorphic computing is a hardware-based Al
platform that architecturally consists of neurons and
synapses constructed from memristor devices that

In recent years, the field of artificial intelligence (Al)
has developed rapidly resulting in sophisticated
learning algorithms that have benefited a plethora of
applications (e.g.,, manufacturing, economics, com-
puter vision, robotics, etc.) (1,2). Inspired by the func-
tions of neurons, the ultimate vision of Al is to
create human-like intelligence that one day will have

Submitted December 22, 2023, and accepted for publication May 31,

2024. communicate based on encoded neural spikes (6).
*Correspondence: aratwatte2@huskers.unl.edu Presently, th_e vasfc maJO”‘ty of Al maCh”!eS are con-
Editor: Yoav Shechtman. structed using instruction-encoded circuits and

https://doi.org/10.1016/j.bpr.2024.100158
© 2024 The Author(s).

This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

' Biophysical Reports 4, 100158, September 11, 2024 1


mailto:aratwatte2@huskers.unl.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpr.2024.100158&domain=pdf
https://doi.org/10.1016/j.bpr.2024.100158
http://creativecommons.org/licenses/by-nc-nd/4.0/

silicon-based semiconductors and nanotechnology
(7—9). While this enables more efficient computer sys-
tems that have capabilities of learning and computing,
it also results in significant challenges such as deploy-
ments in mediums that support silicon technologies
(e.g., biological mediums), as well as utilizing large
amounts of energy (10). Building upon prior research
in neuromorphic hardware, our focus extends to
explore the wet-neuromorphic computing properties
using the nonlinear dynamics of gene expression
and the molecular communication processes
observed within bacterial cells.

Current research has aimed to address these chal-
lenges and one direction taken is through biological
Al, where computing is performed through living bio-
logical cells (11,12). A recent example is the DishBrain,
where the system is composed of living neurons that
can be trained to play the game of “Pong” on a com-
puter (13). In other works, artificial neural networks
(ANNs) have been programmed into bacterial cells
(14,15). Similarly, molecular circuits programmed to
behave like ANN have also been proposed, and one
example is the biomolecular neural network (16). The
underlying basis for all these approaches is the
communication of molecules (17,18) that operate as
part of the chemical reactions to enable computing
operations.

From the perspective of gene regulatory networks
(GRN), there has been a connection between its struc-
ture and the operation of an ANN. In our recent work
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(19), we developed a model that transforms the
gene-gene interaction within the GRN using weights,
forming a gene regulatory neural network (GRNN)
while also exploring the impact of structural changes
on the computing capacity. Fig. 1 illustrates the map-
ping from ANN to GRNN. In a conventional ANN, a
perceptron takes multiple inputs (x; and x,) and com-
putes their weighted summation (> ) that goes
through an activation function (z(x)) (20). In the
context of the GRNN, the weights are embodied by
transcription factor (TF) concentration, which corre-
sponds to the half-maximal RNA concentration (Ka),
and gene product copy number (Cy). These factors
individually contribute to the RNA and protein concen-
trations, reflecting a linear combination in the logarith-
mic domain, which is equivalent to the multiplication
of weighted inputs (21). Input genes (gx, and gx,)
possess TFs that bind to the promoter region of
gene-perceptron g, ;, which subsequently transcribes
RNA (R;) at a rate of k; and degrades at a rate of d;.
The subsequent step involves translation into protein
at arate of k; and degradation at a rate of d, through a
nonlinear activation function, resulting in the output
of maximum-stable protein concentration [P]" at
equilibrium.

In this study, we mathematically model chemical re-
actions of the transcription and translation process of
a gene-perceptron, which we term as the dual-layered
transcription-translation reaction model (from here on
we simply term this as dual-layered chemical reaction

FIGURE 1
components of ANN to GRNN. In this depic-
tion, w; and w;(Ka,Cy) represent the weights
of a perceptron in ANN and GRNN, respec-
tively, while activation function z(x) is equiva-
lent to a combination of the transcription

: Illustration of mapping between

@ I dli process of RNA concentration [R]; as well as
913 ' translation of maximum-stable protein con-

. centration [P];. The chemical reactions are

. governed by the transcriptions rate kj, transla-

tion rate k,, degradation rate of RNA d;, and

degradation rate of protein d.




model). The dual-layered chemical reaction model can
be integrated with a trans-omic data model (transcrip-
tome and proteome) and the cellular GRN in order for
us to identify active genes for the specific environ-
ments, which will be the basis for us to create
the GRNN.

We investigate the behavior of fully connected sub-
GRNNs derived from a larger GRN, aiming to show-
case how genes function as perceptrons which we
term as gene-perceptron, ensuring reliable computing
in a stable state. Additionally, we use extracted sub-
GRNNs to explore different nonlinear classifiers that
can be applicable to diverse applications. This investi-
gation primarily focuses on the gene expression-level
stability of the translation and transcription process
to ensure reliable computing operation. Once the
gene-perceptron reaches stability, its output can be
represented by the maximum-stable protein concen-
tration ([P]"). The stability of the gene-perceptron is
characterized as the point where RNA and protein con-
centrations peak and stabilize over time in a sigmoidal
manner. The eigenvalue-based method and Lyapunov
stability theorem are established tools in systems
biology (22) and for assessing overall system energy
(23). However, we choose to utilize the Lyapunov sta-
bility for the size of the network given that previous
studies have used it for small NNs (24), and we see
this appropriate for our sub-GRNN analysis. The eigen-
value-based stability analysis verifies the existence of
upper bounds of transcription and translation guaran-
teeing minimal concentration fluctuations that can
reduce potential computing errors. Given the dynamic
nature of the GRN and the variability of temporal sys-
tem parameters, the eigenvalue-based method lacks
critical information on the time interval during which
the gene-perceptron gradually gets close to equilib-
rium (25-27), which is crucial for GRNN computing.
Therefore, we opt to utilize the Lyapunov stability the-
orem, specifically Lyapunov's second method for sta-
bility, in our analysis (28).

Once we prove the stability of the gene-perceptron,
as an application we focus on a nonlinear classifier
relying on the maximum-stable protein concentration
for different concentrations of TFs that act as inputs.
We concentrate on nonlinear classification by utilizing
the inherent shifted sigmoidal behavior (19,21) as an
activation function, observed in the relationship be-
tween the input and output gene concentrations.
This behavior, reminiscent of the Hill function and
influenced by the nonnegative nature of expression
values, prompts our investigation into the potential
of nonlinear classification using GRNNs. Additionally,
certain real-world problems exceed the limitations
of linear methods confined to 2D decision planes. To
evaluate the model's performance, we analyze two

generic multilayer sub-GRNNs and an Escherichia coli
sub-GRNN. By manipulating parameters within the
Hill function, such as TF concentration corresponding
to half-maximal RNA concentration and Hill coeffi-
cient, we showcase the potential to shift the classifi-
cation area. Previous research indicates that
adjusting these parameters can effectively alter the
nonlinearity of the sigmoid activation function
(21,29,30), providing a valuable tool for engineering
the GRN through synthetic biology approaches and
employing various sub-GRNNs for diverse nonlinear
classifiers tailored to specific application needs.

The contributions of this study can be outlined as
follows.

e Developing GRNNs inspired from ANN structures using
dual-layer chemical reaction models. Using the dual-
layered chemical reaction model, we show that
gene transcription and RNA translation processes
exhibit sigmoidal-like molecular concentration dy-
namics at their stable points. This behavior is gov-
erned by the weights, which is a function of gene
product copy number and TF concentration corre-
sponding to the half-maximal RNA concentration.

e Stability analysis of GRNN. We developed a full math-
ematical model derived from the chemical reactions
and apply Lyapunov's stability theorem (28) for the
gene-perceptron to determine temporal stability
that will facilitate reliable GRNN computing.

e GRNN application for nonlinear classifiers. Using the
mapping of GRN-to-GRNN and the stability analysis,
we are able to determine the decision boundaries of
the derived sub-GRNNs to classify data within re-
gions of protein concentration output. By varying
parameters of the chemical reactions, we demon-
strate how the classification area can be shifted,
which can serve as a tool for engineering the GRN
and using different sub-GRNNs for several nonlinear
classifiers based on the application’s requirements.

System modeling

This section describes the mathematical models for
the gene transcription and translation within gene-per-
ceptrons, employing a dual-layered chemical reaction
model (Fig. 2) that breaks down the steps of the trans-
lation and transcription process. The production of
RNAs depends on RNA polymerase, TFs, and ¢ factors
that binds to the promoter (Prom) (31), as well as the
dissociation constant (ks). Once the TF binds to the
promoters Prom, the transcription begins at the rate
of kq. This is followed by the RNA degradation at the
rate of d; based on their half-life value (32) and RNA
binding proteins (33), as well as the degradosome
components that includes RNase E, RNA helicase,
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FIGURE 2

Illustration of dual-layered transcription-translation chemical reaction model of the gene-perceptron. Each component corre-

sponds to the synthesis and degradation of RNA and protein for the jt gene-perceptron in the it" layer (g;;) of the GRNN. Here, RnpB, SsrA,
and SsrS are examples for noncoding RNA (ncRNA). Examples of energy-dependent proteases include Lon, HfIB, ClpXP, and HsIUV. Active
TF, RNAP, PNPase, RNase E, and tRNA correspond to active TFs, RNA polymerase, polyribonucleotide phosphorylase, ribonuclease E, and

transfer RNA, respectively.

and PNPase (34). Following the transcription of the
RNAs is the translation into protein, which occurs at
the rate of k, facilitated by ribosome and transfer
RNA (tRNA) (35). Once the RNA is translated, the pro-
tein molecules start to degrade gradually at the rate of
d,. Significant factors that affect the degradation of
protein are noncoding RNA, as well as energy-depen-
dent and energy-independent proteases. Overall, to
maintain the concentration stability in the cell, RNA
and protein production are balanced by the degrada-
tion process.

By taking the dual-layered chemical reactions model
into account, we model the concentration changes at
the transcriptome and proteome using mathematical
models. These models enable us to assess the con-
centration stability of the gene-perceptron through
the eigenvalue method and determine the stabilization
time using the Lyapunov stability theorem. After deter-
mining if a particular gene-perceptron expression is
stable, we determine the stability of the entire sub-
GRNN. Then, based on the application study, the
classification ranges for each gene-perceptron in a
sub-GRNN is determined at the equilibrium maxi-
mum-stable protein concentration state. Based on
the sigmoidal input-output behavior and adjustable
threshold, we deduce that gene-perceptrons in the
GRNN consist of conventional NN properties. For the
overview of the algorithm mentioned above, please
refer to Fig. 3.

Modeling transcription of a gene

In this section, we discuss transcription and the corre-
sponding RNA concentration model. During the tran-
scription process, the RNA polymerase and TFs bind
to the promoter region and then the ¢ factor attaches
to the promoter region and unwinds the DNA (36). This
is followed by ¢ factor release from the polymerase, al-
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lowing for the elongation of the RNA chain. Based on
(37), the concentration change over time t of RNA for a
particular gene-perceptron i can be expressed as fol-
lows (chemical species are represented using upper-
case letters [e.g., X], and their corresponding
concentration is enclosed within brackets [e.g., [X]])
d[R] [TF]"

i = Ky Cyt— — dy [A]

dr 1, N’K,g’_ i — (Equation 1)

i

The gene-perceptron is activated by the TF, where
[R);» kv., [TF), dy,, n, Cy,, and K, are the RNA concentra-
tion, transcription rate, concentration of TFs, degrada-
tion rate of RNA, Hill coefficient, gene product copy
number, and TF concentration when the production
of RNA is at the half-maximal point for gene-percep-
tron i/, respectively. The gene product copy number de-
notes the average count of protein molecules
generated by an mRNA throughout its lifespan (22).

Given the initial RNA concentration transcribed by a
gene-perceptron is [R];(0) (i.e., [R];(t = 0) = [R];(0)),
the solution of Eq. 1 is derived as follows

ke [ ITF ot
Al =4, ([TF]”+K£I_> (1-e)

+ [R];(0)e” .

(Equation 2)

gi,j /> Dual-layered chemical reaction model —> Differential Equations
I

v
Eigenvalue based Stability Analysis — Lyapunov Temporal Stability Analysis

I 2

‘/ Classification areas ‘ [ Stabilization time ]
FIGURE 3 Flow chart for the calculation of classification areas as
well as stability based on the dual-layered transcription-translation
chemical reaction model of each gene-perceptron.



In contrast, in the event that the gene-perceptron is
repressed by the TF, the RNA concentration changes
over time t (37) is represented as follows,

d[R]; Ka

L= k,Cy———7 — di|R
dt 1; NIK£i+[TF]n ]1[ ]

. (Equation 3)

Equations 1 and 3 are expressed as a mass balance
differential equation with the difference between the
RNA synthesis, which is modeled using the Hill func-
tion integrated with the degradation process of the
RNA (22,38-40). The Hill coefficient n represents the
number of TF molecules that bind simultaneously to
the promoter Prom with K, dissociation constant
when the gene-perceptron is transcribing RNA (37)

and is represented as Prom+n TFgProm,,,TF. The
Hill coefficient is critical for the sigmoidal input-output
characteristics of the gene-perceptron, as depicted in
Fig. 4. According to the plot, we can see that, when
we increase the Hill coefficient, the sigmoidicity in-
crease for the maximum-stable protein concentration
([P]") over the input-gene concentration ([TF]). Thus,
when a gene-perceptron possesses a higher Hill coef-
ficient, it exhibits more sigmoidal-like behavior. For our
analytical model we consider n = 1.

Modeling translation of a RNA

In this section, we describe RNA-to-protein translation
and associated models. Initially, the ribosome and
tRNAs form a complex that draws the amino acids in
the polypeptide chain to attach to the first codon posi-
tion of the RNA (41). This is followed by the tRNAs
adding amino acids one by one to form a polypeptide
chain while moving along the RNA (42). Once the stop
codon is detected, the polypeptide chain is released,
dissociating the ribosome complex from the RNA
and forming the protein (43). This process can be sum-
marized through the protein concentration change
over time (37), and is modeled as follows for a partic-
ular gene-perceptron i:

diPj; = ky,[R]; — dy,[P];,

g (Equation 4)

Pl 5L

[TF]

FIGURE 4 Sigmoidicity fluctuations for different Hill coefficients.

where [P];, ky, and d,, are the protein concentration,
translation rate, and degradation rate of protein for
gene-perceptron i. Moreover, [R]; is the concentration
of RNA from Eq. 1, and the TF activates the gene-per-
ceptron i/ based on Eq. 3 if the TF represses the gene-
perceptron. Similar to Egs. 1 and 3, Eq. 4 is modeled
based on mass-balance differential equation taking
the difference between the RNA produced at the tran-
scriptome level, which is translated into protein at the
rate of k,, and the amount of protein that is degraded
at the rate of dy, due to the factors presented in Fig. 2.
Provided that the initial protein concentration trans-
lated by a RNA for gene-perceptron i is [P];(0) (i.e.,
[P];(t = 0) = [P];(0)), the solution of Eq. 4 is given by

[P] _ k]kaiCNi [TF]n 1_ _ e7d1'.t
N T A

e*d]].t - )
+[R]I(O)k2, (m> +e dzit[P]i(O) —_e d;t
- e—dzitm
i(dz' - d'l,-) d],

i

(Equation 5)

METHODS

This section introduces the mathematical models for the stability
analysis and RNA/protein concentration changes over time, and
subsequently demonstrates how to apply these mathematical
models in the GRNNs.

Gene expression stability analysis

In this section, we discuss the approach toward analyzing the
expression-level stability of the gene-perceptron. Our view of the sta-
bility of the gene-perceptron is when the RNA transcription as well
as the protein translation concentrations reach maximum over
time and remain stable at that level exhibiting a sigmoidal behavior.
To confirm the existence of transcription and translation upper
bounds, we use eigenvalue-based stability analysis. This, in turn, en-
sures a stable classification region of the GRNN due to a protein
concentration with minimum fluctuations that can result in mini-
mized computing errors. Moreover, considering the dynamic charac-
teristics of the GRN and its parameters, we explore the time
necessary for GRNN stability utilizing the Lyapunov function, which
is a crucial aspect of analyzing the reliability duration of the GRNN
computing.

Stability of gene-perceptron based on eigenvalues

The algorithm for analyzing the stability of gene-perceptrons
through the eigenvalue method is outlined in Algorithm 1 in the ap-
pendix, which initiates with the input of RNA and protein concentra-
tion changes f([R];, [Pli), g([R]i,[P]i) as expressed in Egs. 1 and 4,
alongside protein degradation rate d,,, RNA degradation rate d;,

Biophysical Reports 4, 100158, September 11, 2024 5



and translation rate ko, for the /" gene-perceptron. Although this
study has only considered the case of gene transcription in Eq. 1,
our approach is also applicable for the repression process defined
in Eq. 3. Since we are analyzing the stability of the gene-perceptron
at the equilibrium point, we can represent the maximum-stable RNA
[R]; and protein [P]; concentration as follows:

. kqi.Cn. [TF]" )
R = ——— Equation 6
[ ]I d'li [TF]n+K£I i ( q )

. ki, ko, Cy, [TF)" .
[Pl; = dd, \[TF + K (Equation 7)

The maximum-stable RNA and protein concentrations are deter-
mined for different TF concentrations.

To determine the eigenvalues of Eqs. 1 and 4 at the equilibrium
points of Egs. 6 and 7, we use the Jacobian matrix given in Eq. 24
(please see Algorithm 1 in the appendix). Hence, the eigenvalues
are iy = —dj, and A, = — dy,. Stability is confirmed when both ei-
genvalues are negative (dy,,d,, >0), indicating that deviations from
equilibrium will diminish over time, leading the system back to its
stable state. Conversely, if any eigenvalue is nonnegative, the
gene-perceptron is deemed unstable, signifying that deviations
from equilibrium may escalate, impeding the system'’s return to its
initial state. Thus, the stability of the gene-perceptron hinges on sys-
tem parameters, specifically the RNA and protein degradation rates
(dh, and d,,) within the GRN.

Stability of a gene-perceptron using the Lyapunov function

The Lyapunov function algorithm for temporal stability analysis is
detailed in Algorithm 2 in the appendix. Initially, we define the Lyapu-
nov function (V([R];, [P];)) as given by Eq. 25, which satisfies the
necessary conditions: V([R];, [P];) = 0 when [R]; = [R]; and [P]; =
[P);, where [R]; and [P]; are RNA and protein concentration at the
equilibrium. In addition, V([R];, [P];) >0 due to the quadratic nature
of all terms. Finally, we consider the first derivative of Eq. 25 (%)
as given by Egs. 26 and 27, as the last condition to be satisfied
for the stability of the gene-perceptron. We use Eq. 27 to determine
the time during which the gene-perceptron gets closer to equilib-
rium, where we set this threshold as V4. In all our simulations,
this threshold marks the time point t = T when |%/| is significantly
minimized, beyond which ‘{,—‘t/ continues to converge toward zero
with minimal change. The gene-perceptron moves closer to the equi-
librium rapidly when ¢¢< V¢4 and at a slower pace when &> 7%
Weillustrate the temporal fluctuation of Eq. 27 in all simulations, as
shown in Fig. 5, providing insights into the dynamic stability behavior
of the gene-perceptron and delineating the time frame during which
the gene-perceptron gets closer to the equilibrium. The gene-percep-

tron accelerates toward equilibrium within the time window t <5,
demonstrated by the negative amplitude of ‘th‘t/' and subsequently
slows this tendency after t =5 while continuing to progress gradually
toward equilibrium. The orange dashed line in the figure marks the
time step (t =18), where ‘Z,—‘,’ = Vy, indicating that the gene-percep-
tron gets closer to equilibrium within the temporal window (t < 18).

GRNN analysis

While the previous section presents the stability analysis of each in-
dividual gene-perceptron, they need to be integrated into a sub-
GRNN to perform the classification operation. In this study, our
emphasis is on developing a mathematical framework to elucidate
the weights representing gene-gene influence within the GRNN
and focus on the classification application. This required us to
search for a sub-GRNN that has structural and operational parallels
shared with an ANN for classification, where we focused on multi-
layer and randomly structured sub-GRNNs that form the basis for
larger sub-GRNN architectures.

Multilayer sub-GRNN

This sub-GRNN, which is illustrated in Fig. 6, consists of three hid-
den-layer gene-perceptrons (g11,912,913) and one output-layer
gene-perceptron (g21) (gi; represents the j" gene-perceptron in
the it layer in the sub-GRNN). The concentrations that are output
from layer 1 to layer 2 are [TF]; ;, [TF], ,,and [TF], 5, and [P] is the
output from gene-perceptron g,;. The two input genes (gx, and
gx,) are TFs with corresponding concentrations, [TF], and [TF],,,
respectively. The RNA concentration changes over time t for the hid-
den-layer gene-perceptrons, based on Eq. 1, can be expressed as,

d[Rl, [TF,, [TFI,,
gy — NN n n
dt Kgl_ +[TF]X1 K,g”_ 4—[TF]X2

- d.li[R}

i

(Equation 8)

for the activators, i = g1, g12. Since gene-perceptron g; 3 has a
repression from gene-perceptron gy,, the changes in the RNA pro-
duction based on Eq. 3, is given by

d[R]g1_3 . k [TF]Q1 KA91.3

1 CN !
dt e s \Kp +[TFIy Kay,, + [TFI;,
- d1913 [R]

g3’
(Equation 9)

The RNA concentration changes of the output gene-perceptron
g2.1, which consists of TFs from gene-perceptrons g; 1, g12, and
g13 with the output protein concentration that contribute as TF

FIGURE 5 Temporal stability of a gene-
perceptron based on the derivative of the Lya-
punov function with respect to time. A
. threshold Vy, is defined where %] is signifi-
cantly minimized, as indicated by the yellow
horizontal line (% = V,h). The orange vertical
dashed line signifies the corresponding time
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point t when % reaches Vy,. Beyond the time
point, 4 continues to converge toward zero
with minimal change.
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FIGURE 6 Multilayer sub-GRNN with two input-layer nodes, three
hidden-layer gene-perceptrons (g11, 912, 613), and one output-layer
gene-perceptron (g,1); and their corresponding output concentra-
tions are transcription factors [TF], ;,[TF]; ,,[TF]; 3, and protein con-
centration [P], respectively. There are two input genes (gx,, Jx,)
considered as two TFs with concentration of [TF], and [TF],,, respec-
tively. Inthis context, g;; represents the /" gene-perceptron in i" layer
in the sub-GRNN. Input-gene activators and input-gene repressors
are denoted by (+) and (—) edges, respectively. The weights (w)
of this sub-GRNN is a function of the TF concentration corresponding
to the half-maximal RNA concentration (Ky,) and gene product copy
number (Cy,) for gene-perceptron i represented as w(Kj,,Cy;).

concentration ((TFl;; = [Plg,,, [TFli, = [Plg,,, and [TF];53 =
[P],, ,) to accumulate to invoke the expression is given by,
d[R]gZ'I _ k'| CN [TF]q’]
n
dt 921 “Nags KA’QN + [TF]H
AL, AL
R]gm '

n n - d1 [
Kggu + [TF}LZ Kggm + [TF]LS !

(Equation 10)

Each of the gene-perceptrons also undergoes a translation pro-
cess. Therefore, the protein concentration change for each gene-per-
ceptron can be modeled using Eq. 4 fori = g11,912,913 and g21.
The maximum-stable protein concentration can be derived by
setting Eqgs. 8, 9, and 10 to zero to find [R];, which is then plugged
into Eq. 4 and set to zero fori = g11,01 2,913, and g2, respectively.

- . kkoCy [ ITFI;
F=0n0e=Pli =gy (KZ,HTF];

[TF3,
“\Kkz 7 )

k1 91.3 k291 3 CN91 3

iz
d1 93 d291 3

(Equation 11)

[TFT5,
K, .+ [TF);

X

(Equation 12)

[P]* _ k192A1 k292,1 CN92_1 [TF”] _
o d]92.1 d292.1 K£g2_1 + [TF]H
[TF132 [TFlis
Ki, +[TFI. ) \Ki,  +[TFIT

(Equation 13)

Equations 11, 12, and 13, which are the stable concentration quan-
tity of proteins produced, are used to compute the classification
areas for each gene-perceptron based on the value of concentration,
which is further elaborated in the results as we present a case study.
Subsequently, we apply the approach from the methods to show the
stability of the gene-perceptron in this sub-GRNN. The overall stabil-
ity of the GRNN based on the derived Lyapunov function of Eq. 27
(please see the appendix), which can be further expressed for / num-
ber of TFs connected to a gene-perceptron (i), is represented as
follows

G [TF7" kG el ()

dv !
w1l

P, (ITFPKG ) (@, — )
x (3 - (%) — 2d;,03 - ™)
+d7dy, - e(ZdZi‘)) + (dhk%i - e(21)
Ty - ) — — (dh k2 - el %)
+dy k2 - e(f(d1,»+d2,)))

9

(Equation 14)

where [TF]; and Ky are concentration of j TF and corresponding
half-maximal RNA concentration for gene-perceptron j, respectively.

Random structured sub-GRNN

As described earlier, the relationship of gene-perceptrons within a
GRN that have common TFs may have intermediate gene-percep-
trons within the path of connections. We analyze how this impacts
on the overall stability of the sub-GRNN, where the network for this
case is presented in Fig. 7. In this form of networks, it is necessary to
consider the RNA concentration change from the intermediate gene-
perceptron (g,.1) and its impact on the output-layer gene-perceptron
(g93.1). The expressions for each gene-perceptron, and their relative
TFs from their immediate predecessor, are represented as follows:

d[R]gm _ C [TFH,] _ d [R]
dt Tgp1 Ngy Kzgm —}—[TF]’;‘] To21 921’
(Equation 15)
[ ]93,1 = k CN [TF]g,l . [TF]I;,Z
dt s\ Ky +[TF, | \Ka, +ITFIL,
[TF]7 5

— | —d,_ [R],. .
K? 1 + [TFHAa 1931[ }93.1
(Equation 16)
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Random Structured GRNN

/,1glvl\w [TF]Z,l
[TF] Agll’ON )“g
Input-genes -~ 11 ’ 91,1 2,1\w(]( FIGURE 7 Random structured sub-GRNN
TF) 5 T+ Ag2,l ’ C]vgz ) with three input-layer gene-perceptrons (g1,
o - CNgLZ/ ! \’g3,1—» 012, g13), one intermediate gene-perceptron

[TFs, ':Ij‘ - + l [TF1,

:91 3 /W(KAm,s ’
[TF)13

CnNy,4

Here, the protein concentration from Eq. 5 can be derived from Eq.
15 (i.e., [TF];; = [P];,), since gene-perceptron g, is activated by
gene-perceptron g7 1. The RNA concentration models behave simi-
larly to the case without the intermediate gene-perceptron for
gene-perceptrons gi1,g12,and g13 and can be derived directly
from Eqgs. 8 and 9. Using Eq. 4 we can determine the protein concen-
tration change for each gene-perceptron Fig. 7.

Using the maximum-stable protein concentration derived from
Egs. 15 and 16, we can determine [R];, which is then applied to Eq.
4 and used to determine the maximum-stable value for i = g,
and g3 ;. This will result in the following maximum-stable protein
production that is represented as follows

[P]* _ k192.1 k292.1 CN92.1 [TFHJ
921 d1g2j dzgz1 K'ggzj + [TF}?] )
(Equation 17)
[P]* _ k1 931 k293.1 CN93.1 [TF];J
931 d1g3,1 d2g3_1 K£g3_1 + [TF]ZJ

TFL,
ki + [T,

[TF]i
ki + [TFIT

(Equation 18)

We use Eq. 11 to determine [P]; fori = gy and gy 2, while fori =
913 we use Eq. 12. For the stability analysis, Eq. 14 is used with | =
2forgi1,q12.and g3,/ = 1 forg,q,and | = 3 for g3, correspond-
ing to the number of TFs for each gene-perceptron.

RESULTS

In this section, we perform temporal stability analysis
and obtain the classification areas for the two multi-
layer sub-GRNN network topologies (Figs. 6 and 7)
as well as the sub-GRNN derived from E. coli GRN.

Multilayer sub-GRNN

The temporal stability for each gene-perceptron within
the generic multilayer sub-GRNN is illustrated in Fig. 8.
This simulation employed the model from Eq. 14 with
parameter set 1 (Table 1). Gene-perceptrons g;; and
012 accelerate toward equilibrium within the time win-
dow t < 5, as demonstrated by the negative amplitude

8 Biophysical Reports 4, 100158, September 11, 2024

P
N [P]

(921), and one output-layer gene-perceptron
(g3.1)- This structure is an extension from the
sub-GRNN in Fig. 6.

of the derivative of the Lyapunov function. Here, V4, is
setto —1 x 10~ " for gene-perceptrons g; 1 and g 5.
While these two gene-perceptrons show a positive
trend after t=5, at t=30 and t=35 the derivative of
their Lyapunov function, %, approaches Vy, = — 1 x
10~ ', indicating a slower pace toward equilibrium.
Furthermore, Vy, for gene-perceptron g; 3 is set to —
1x 1078 In contrast to g71 and g1, g3 exhibits a
positive trend from the beginning and C(’,—‘{ approaches

Vi, at t=15 due to its distinct repression from the
input gene gx,, signifying a gradual approach toward
equilibrium. The output-layer gene-perceptron (g,1)
displays a similar pattern to gene-perceptrons g ;
and g , owing to its direct predecessors being activa-
tors. At t=35, ‘Zj—‘t’ of g, approaches Vth = — 1x
108, indicating a slower approach toward equilib-
rium. Thus, within the time window (t < 35), the multi-
layer sub-GRNN is considered computationally
accurate, as all gene-perceptrons within the sub-
GRNN have approximately reached equilibrium.

Given the gene-perceptron's stability at equilibrium
(Fig. 8), we can use Eqgs. 11, 12, and 13, to calculate
output protein [P]; for different input concetrations
([TF],, and [TF], ). In our simulations, we set the clas-
sifier threshold to 0.5, a commonly used default
threshold in classification tasks in previous works

-6
—_—0"C
] A
i
! -2
:
:
' -3
|
I
35 40
-13
—_—pY
i
|
i -2
!
:
i -4
i
'
' 6
)
' -8
35 40

FIGURE 8 Temporal stability analysis of gene-perceptrons within
the multilayer sub-GRNN, where vertical dashed lines indicate the
time points when & = Vy, (here Vi = —1x10°"" for g;7 and

gr2.and Vi, = —1 x 1078 for gy 3 and ga1).



TABLE 1

Parameter configuration for the generic multilayer sub-GRNN

—_—r 12 3 21 1 _J2 3 __221

d2g2-| KAg1-|(>< 10_7) KAg”(X 10_7) KA91.3(>< 10_7) KAOZW(X 10_7)

Parameter d] 0, d1 00 d] 0 d1921 dgg1 , dgg] , d2g1 5

k291 1 k291 2 k291 3 k2921

Parameter set 1 10 70 100 90 0.1 02 04
0.3 0.2 0.5 06 03 02 05
10 15 25 45 0.1 02 04
0.3 0.2 0.5 06 03 02 05

Parameter set 2

0.1 0.2 0.4 0.5
500 100 1000 50
0.1 0.2 0.4 0.5
100~ 20¢ 10* 50*

The values marked with an asterisk (*) are the parameters that are modified. Units of Cy.,k1,,k,,dh,,do,, and Ka, are molecules,s=',s~',min™ ',

h™", and molecules, respectively).

(44,45), chosen also for clarity in our simulation fig-
ures illustrating classification areas. The calculated
output protein [P]; is illustrated over varying input con-
centrations, highlighting the values above and below
the threshold ([P]* = 0.5). Decision boundaries reflect
how the classification areas change based on the
edge (activation or repression) connected to the target
gene-perceptron and corresponding parameters in
Egs. 11, 12, and 13. The inputs ([TF], and [TF], )
vary, while parameters such as gene product copy
number (Cy,), transcription rate (k;,), translation rate
(k2,), RNA degradation rate (d,,), protein degradation
rate (dy,), and TF concentration, corresponding to the
half-maximal RNA concentration (Kj,), are kept con-
stant. We consider two parameters sets to determine

[TF]XI

[TF];I.Z 09

[TFl

7

the different classification regions, which are pre-
sented in Table 1.

For parameter set 1, we obtain the classification
areas shown in Fig. 9 a. The decision boundary and
their top view for each gene-perceptron are shown in
the first and second rows, respectively. The gene-per-
ceptron g; » has the largest classification area above
the threshold due to its lower TF concentration corre-
sponding to half-maximal RNA concentration Ky,
compared with gene-perceptrons g;; and g; 3. More-
over, the decision boundaries for gene-perceptrons
91,1 and g; » exhibit a similar shape, classifying the ma-
jority of the values above the threshold. In contrast,
gene-perceptron g;3 covers a larger area for the
values below the threshold since it is repressed by

[TF]x2
5

3

2
2 3 4 5 2

FIGURE 9 Parameter configurations for the multilayer sub-GRNN depicted in Fig. 6. Each graph depicts the classification area of each gene-
perceptron and for (a) parameter set 1, as well as (b) parameter set 2 (g2 is the output gene-perceptron that combines all classification areas

of gene-perceptrons from the previous layer).
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the input gene gy,. The intersection of classification
areas corresponding to hidden-layer gene-perceptrons
is represented by the output-layer gene-perceptron
g2.1, where the classification area above the threshold
is approximately bounded by input concentrations,
2.5 < [TF],, < 3.5 and 3.4 < [TF],,. Due to the signifi-
cant contribution from gene-perceptrons g; ; and g; »
beyond the threshold, the output-layer gene-percep-
tron go1 exhibits a rightward shift.

For parameter set 2 (Table 1), the lower Kj, values
have shifted the classification area above the
threshold compared with parameter set 1. This shift
is evident in Fig. 9 b, particularly for gene-perceptron
012, which results in classifying the majority of the
values above the threshold. Conversely, for gene-per-
ceptron g 3, the classification area shifts below the
threshold due to the repression from the input when
reducing the half-maximal RNA concentration Kj,.
The classification range for gene-perceptron g;; ex-
pands compared with parameter set 1, approximately
bounded by 2.3 < [TF],; and 2.1 < [TF],,. Consid-
ering all gene-perceptrons, the output-layer gene-per-
ceptron g,; shows a leftward shift in the decision
boundary, becoming slightly more linear. Overall,
modifying the half-maximal RNA concentration Kj,
can significantly expand the classification area.

Random structured sub-GRNN

This sub-GRNN consists of three hidden-layer gene-
perceptrons, one intermediate gene-perceptron, and
one output-layer gene-perceptron, as illustrated in
Fig. 7. The temporal stability analysis for this sub-
GRNN is presented in Fig. 10 and utilizes Eq. 14 and
parameter set 1 from Table 2. In this simulation, we
set Vi, = —1x 10~ for gene-perceptrons g;; and
12, —1x 10-8 for gene-perceptrons g13 and g2,
and —1 x 10~° for gene-perceptron gs ;. Fig. 10 illus-
trates that gene perceptrons g¢11, g12, 931, and gz
display fluctuations in the Lyapunov function deriva-
tive % similar to those observed in Fig. 8. This similar-
ity can be attributed to their immediate predecessors

acting as activators, leading to the derivative of the

Lyapunov function, C(’j—‘{, converging to Vth = —1x

10~ at t=30 and 35 for g1; and g; 5, respectively,
—1x10"8att=35forgy;,and -1 x 10" %att= 35
for gs;. For gene-perceptron g3, ‘Zj—‘t’ gradually ap-
proaches Vy, = —1 x 10~8 within the time interval
t < 15, exhibiting stability fluctuations akin to those
observed in the network lacking the intermediate
gene-perceptron. This similarity arises from both
gene-perceptrons being influenced by their repressive
predecessors. Consequently, within the temporal win-
dow (t < 35), the randomly structured sub-GRNN is

10 Biophysical Reports 4, 100158, September 11, 2024
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1

FIGURE 10 Temporal stability analysis of gene-perceptrons within
the random structured sub-GRNN, with vertical dashed lines marking
the time points when% = V;,, where Vy, = —1x 10~ forgy ; and
g12, Viy = —1x 1078 for g;3 and go1, and Vi = —1 x 105 for
931.

considered computationally reliable, with all gene-per-
ceptrons within the sub-GRNN converging toward
equilibrium.

Following the temporal stability analysis, we apply
Egs. 11 and 12 to determine the maximum-stable pro-
tein concentration ([P];) for gene-perceptrons g1 1,91 2,
and g, 3. However, unlike the sub-GRNN in Fig. 6, Eq.
13 is not used to determine the classification area
for the output-layer gene-perceptron. Instead, for the
computation of [P]; for gene-perceptrons g,; and
gs1,both Egs. 17 and 18 are employed due to the addi-
tion of the intermediate gene-perceptron compared
with the multilayer sub-GRNN in Fig. 6. The calculated
protein concentration output [P]; values for different
input concentrations used to determine the classifica-
tion area for each gene-perceptron are presented in
Fig. 11. We also used two different sets of parameters
from Table 2 to analyze different classification areas.

Parameter set 1 results in the classification areas
shown in Fig. 11 a. As gene-perceptron g,1 serves
as the intermediate gene-perceptron of g;;, we
observe similar classification areas and decision
boundaries. In addition, repression from the input
gene gy, to gene-perceptron g; 3 results in a distinctive
decision boundary, approximately within the range of
3 <[TF],, and 3> [TF], . Overall, gene-perceptron
gs1 represents the intersection of the hidden-layer
gene-perceptrons, with the classification area beyond
the threshold bounded by 2.5<(TF], <35
and 3 > [TF], .



TABLE 2 Parameter configuration for the random structured sub-GRNN

k1 911 k1 912 k1 913 k1 921 k1 931 k291 1 k291 2 k291 3 k2921 k2931
d1 911 191 2 d1 913 d1 921 d1 931 d291 1 d291 2 d291 3 d2921 d2031

Parameter Cn,, Cn,, OCn,, OCn, OCn, Ka, (X 1077) Ka,, , (% 10°7) Ka,, , (< 10°7) Ka,,, (% 1077)  Ka, (x10°7)
Parameter set 1 0.1 0.2 0.4 0.8 0.5 0.1 0.2 0.4 0.7 0.5
0.3 0.2 0.5 0.7 0.6 0.3 0.2 0.5 0.9 0.6
10 15 25 45 6 500 100 1000 50 50
Parameter set 2 0.1 0.2 0.4 0.8 0.5 0.1 0.2 0.4 0.7 0.5
0.3 0.2 0.5 0.7 0.6 0.3 0.2 0.5 0.9 0.6
10 15 25 45 30 50* 100* 1000* 10* 50*

The values marked with an asterisk (*) are the parameters that are modified. Units of Cy,,ki,,ky,,dh,,d5,, and K, are molecules,s~',s™! min™ ",

h~', and molecules, respectively).

In contrast, reducing the TF concentration at the
half-maximal RNA concentration (Kj,) for a gene-per-
ceptron as shown in parameter set 2, alters the classi-
fication areas for both gene-perceptron g;; and its
immediate intermediate gene-perceptron g, ;, as illus-
trated in Fig. 11 b. The classification area significantly
expands above the threshold, while dropping below it
when lowering the TF concentration corresponding
to the half-maximal RNA concentration Ky, as it is
inversely proportional to the maximum protein con-
centration [P]; based on Egs. 8 and 17. Alterations
made to gene-perceptron g;; notably impact g1,
the predecessor gene-perceptron in the GRNN. Other

)

hidden-layer gene-perceptrons g;, and g;3 remain
unaffected between parameter sets 1 and 2. Param-
eter set 2 results in a leftward shift in the classification
area of the outputlayer gene-perceptron gs;
compared with set 1. In summary, parameter adjust-
ments lead to shifts in the decision boundary of the
output-layer gene-perceptrons; with decreased Kj,
causing a leftward shift in the the classification area.

E. coli sub-GRNN classification analysis

This section demonstrates the classification areas for
the E. coli sub-GRNN illustrated in Fig. 13 a, which is

FIGURE 11

Parameter configurations for the random structured sub-GRNN in Fig. 6. Each graph depicts the classification area of each gene-

perceptron and for (a) parameter set 1 and (b) parameter set 2 (g3 is the output gene-perceptron that combines all classification areas of

gene-perceptrons from the previous layer).
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TABLE 3 Parameter values used for the E. coli sub-GRNN

Value
Parameter b1891 b1892 b1071 Ref.
ke, (s71) 0.05 0.05 0.05 Milo et al. (47)
ko, (s 1) 0.05 0.05 0.05 Gong et al. (48); Zhu and Dai (49)
Cn,(molecules) 45 45 45 Milo et al. (47); Schaechter and The View From
Here Group (50), Glauner et al. (51)
dy (min™ 1) 0.2 0.2 0.2 Milo et al. (47)
do(h™ ) 3.5% 3.5% 3.5% Milo et al. (47)
Ka(x 1077) 75.30 (b3025) 71.10 (b3025) 306 (b1891) GSE65244

4261.64 (b3357) 2061.56 (b3357)

377 (b1892)

K, of the corresponding TF is given in the table.

extracted from the trans-omic data of E. coli GRN (46).
The network consists of two input genes (b3025,
b3357), two hidden-layer gene-perceptrons (b1891
and b1892), and one output-layer gene-perceptron
(b1071), with their corresponding TF concentrations
[TF); fori = b3025,b3357,b1891, and h1892, and pro-
tein concentration [P],,,7;. In this specific GRNN, all
TFs are considered activators. For the output-layer
gene-perceptron (i = b1071), we employ Eq. 8, Egs.
4 and 11 with TFs x; = b1891 and x, = b1892 to
calculate RNA, protein concentration change, and

maximum protein concentration ([P]7), respectively,

I
using the parameter values in Table 3.
Similar to the previous sub-GRNNs, we based the
stability analysis for this sub-GRNN on (14). For the
two input-layer gene-perceptrons (i = b1891 and
b1892), we consider TFs j = b3025 and b3357,
while for the output-layer gene-perceptron i =
b1071, we evaluate stability with the TFs j =
b1891 and b1891. In Figs. 8 and 10, we observe that
gene-perceptrons with an immediate activator exhibit
analogous stability fluctuations as the derivative of
the Lyapunov function ‘Zj—‘{ approaches Vy, = — 1x
10~ '2. This behavior agrees also with the E. coli sub-
GRNN, which is shown in Fig. 12, which shows the
temporal stability for gene-perceptrons (g; 1, g1 2. and

g2.1), which is influenced by the immediate activator
predecessors displaying uniform stability. Here, V¢,
is set to —1 x 10712 for each gene-perceptron. Ac-
cording to the figure, the derivative of the Lyapunov
function, ‘Zj—‘t’ of gene-perceptrons b1891, b1892, and

b1071 approach Vy = —1 x 1072 at times t=32,
30, and 35, respectively. Overall, the analysis indicates
that, within the temporal window (t < 35), all gene-
perceptrons in the sub-GRNN reach equilibrium,
ensuring network-wide stability and computational
reliability.

Once proving the stability of the sub-GRNN, we
ascertain the maximum-stable protein concentration
to obtain the classification ranges. To compute
maximum-stable protein concentration ([P];) for
gene-perceptrons /i = b1891 and 1892, we use Eq.
11 with the replacement of x; and x, by b3025
and b3357 as input genes. Furthermore, for the
computation of output concentrations [P];, concern-
ing gene-perceptron i = b1071, Eq. 11 is used with
TFsas x; = b1891 and x, = b1892 with the assump-
tion that the Hill coefficient n is equal to 1 in all
simulations. Since Ky, is the TF concentration corre-
sponding to the half-maximal RNA concentration,
there are two K, values for each gene-perceptron

—b1891 (t vs.
==b1892 (¢ vs.
—b1071 (¢t vs.
- -b1891 (f ~ 32
~ -b1892 (7 ~ 30
b1071 (£ ~ 35)
==V, = —1 x 10712

a

t

FIGURE 12 Temporal stability analysis for
each gene-perceptron within the E. coli sub-
GRNN indicated by vertical dashed lines marking
the time points when 4 Vi where

Vi = —1 x 1072 for each gene-perceptron.

dt

I4

6! | 1 1 L L
20 25

t
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because each has two TFs, as shown in Fig. 13 a. The
time-series data of gene expression levels for E. coli
was used by first identifying the gene's half-maximal
expression level K, and then finding the expression
level of its TF at that corresponding time point. For
the remaining parameters that were obtained from
the literature as shown in Table 3, the average value
was used.

The classification area from our analysis is shown in
Fig. 13 b. The classification area of gene-perceptron
b1892 has expanded toward the left when compared
with b1891, and this is because the expression level
of the half-maximal RNA concentration K, of both
TFs (b3025 and b3357) corresponding to b1891
exceed the value of K, for b1892. The classification
area above the threshold of h1892 is defined within
the limits of [TF] 5005 > 2.7 and [TF]ygs5; > 2.7,
contrast to b1891, which is approximately bounded
by [TFlpg005 = 3.5 and [TF]p335; > 3.8. Consistent
with the decision boundary simulations performed
on the two generic multilayer sub-GRNNs (Figs. 9
and 11), the output-layer gene-perceptron (b1071) of
this sub-GRNN also exhibited a intersection of classi-
fication areas driven by the input-layer gene-percep-
trons. In line with this, as gene-perceptron 1891 had
the majority of its classification area below the
threshold and gene-perceptron b1892 had the majority
above the threshold, the decision boundary of gene-
perceptron b1071 is approximately bounded by
[TFlp3025 = 2.9 and [TF]y335; > 2.9. Overall, gene-per-

ceptrons within the sub-GRNN derived from E. coli

GRN exhibit tunable decision boundaries by selecting
subnetworks from the GRN at steady state and collec-
tively they function as multilayer sub-GRNNs show-
casing aspects of biological Al.

b1891
Input-genes |
[TFly3025 [TF)o33s7

ta
51891 51892

[TFJb1801 / [T FJp1s92
w(K Ap1g92? CNblSQZ)

[TF]b3025

W(K 41591) Clyrgor)

V1Pl

E.Coli GRNN [TFh 3025

[TF],3357

CONCLUSION

Biological cells naturally perform a number of key
functionalities through their GRN, showcasing similar-
ities to ANN computing. Controlling chemical inputs
to the GRN and engineering of the genetic circuit
can inspire the development of wet-neuromorphic
computing systems. In this study, we considered a
sub-GRNN derived from a larger GRN, mathematically
modeling the transcription and translation process to
showcase the nonlinear sigmoidal behavior of gene
expressions resulting in the transformation of genes
into gene-perceptrons. Due to this sigmoidal behavior
of gene expressions, we established nonlinear classi-
fiers using different sub-GRNNs. To ensure reliable
computing with minimal concentration fluctuations,
stability analysis was conducted for the sub-GRNN us-
ing the eigenvalue method and Lyapunov's stability
theorem. The latter determining the time at which
the stability is achieved.

Three nonlinear classifiers were developed using
two multilayer sub-GRNNs and a sub-GRNN extracted
from the E. coli GRN. From the simulation for different
parameter settings for the two multilayer sub-GRNNs
revealed that the TF concentration at the half-maximal
gene expression level Ky, has a significant impact on
the shifting of the classification boundary. Based on
the outcomes of the stability analysis and simulations,
we can conclude that the GRN exhibits NN properties
as the gene-perceptron demonstrated sigmoidal-like
behavior for multiple inputs and tunable decision
boundaries. Further, by engineering living cells it is
possible to obtain desired nonlinear classifiers based
on our application. Our model has the potential to
transform GRNs into GRNNs when the suitable

b1892 b1071

0

[TF]p3025

[TF]b3025 [TF]psss7

5
\ [TF|bas57 [TF|b3357 [TF|bas57
(b1071)
. 4

[TF]I 3025 [TF]I 3025

FIGURE 13 E. coli sub-GRNN classification analysis. (a) Fully connected sub-GRNN derived from the E. coli GRN. This network consists of
two input genes (b3025 and h3357), two hidden-layer gene-perceptrons (b1891 and b1892), and one output-layer gene-perceptron (b1071).
(b) Classification regions of each gene perceptron within the E. coli sub-GRNN, with gene-perceptron b1071 as the output.
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parameters are established for the dual-layered chem-
ical reaction model.

APPENDIX
RNA and protein concentration model

To model the RNA and protein concentration change, mass-balance
differential equations were used based on Hill function (37). Tran-
scription of a gene-perceptron begins with TF and RNA polymerase
binding to the promoter, which is modeled by

[TF)”

Prom.TF| = Cyn—7——
Prom-TF) = Cnigrr iy

(Equation 19)

where [TF].n,Ky,,[Prom.TF], and Cy, are concentration of TFs, Hill co-
efficient, TF concentration corresponding to half-maximal RNA con-
centration, complex produced after TFs bind to promoter and gene
product copy number, respectively. The complex, Prom.TF tran-
scribes into RNA at the rate of k;, and subsequently RNA degrades
at the rate of d;;, which can be modeled as

@ = ky,[Prom.TF| — d,[R];.

By plugging Egs. 19 in 20 we can obtain Eq. 1. In contrast, if a
gene-perceptron is repressed by a TF, Eq. 19 can be expressed as

(Equation 20)

n

Ki

Prom.TF] = Cy————. Equation 21
[ ] NIK,ZI. T [TF]n ( q )
Since the initial RNA concentration transcribed by a gene-percep-
tron is [R];(0) (i.e., [R];(t = 0) = [R];(0)), the solution of Eq. 1 as
given by Eq. 2 can be derived using the integrating factor, IF =

el % @ — ot where t and d, are time and RNA degradation
rate, respectively. Transcribed RNA is then translated into protein
at the proteome level. To solve the differential equation of protein
concentration change for Eq. 4 we can follow two steps. Step 1: re-
placing RNA concentration ([R];) in Eq. 4 with the solution obtained
for the differential equation of RNA concentration change from Eq.

2. Step 2: using the integrating factor (IF = efdzfd’ = %) and
initial RNA concentration ([R];(0)), as well as initial protein concen-
tration [P];(0) (i.e., [P];(t = 0) = [P];(0)), we can obtain the equation
for the protein concentration in Eq. 5. By setting % = 0, we can
obtain maximum-stable RNA concentration at the steady state
([R];) expressed by Eq. 6. In addition, protein concentration at the
steady state ([P];) can be represented by Eq. 7, which is derived

by plugging % = 0in Eq. 4.

Determining gene-perceptron stability

In this section, we derive the stability of a gene-perceptron using ei-
genvalues (Algorithm 1) of differential equations for RNA and pro-
tein concentration change Egs. 1 and 4 and using Lypunov's
stability theorem. The first step encompasses the DefineDynamics
function, which formalizes alterations in RNA and protein concentra-
tions over time, encapsulating the system's concentration dynam-
ical Eqs. 1 and 4. While our study primarily addresses gene
transcription as detailed in Eq. 1, the same approach is applicable
to the repression process described in Eq. 3. Subsequently, the algo-
rithm transitions to the CalculateJacobian function, where the Jaco-
bian matrix, J;, is computed Eq. 24. Derived from partial derivatives
of the concentration dynamical equations concerning RNA and pro-
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ALGORITHM 1 Gene-perceptron stability analysis using
eigenvalue method

Input: RNA and protein concentration changes ..., g([R];, [P];).
protein degradation rate d,,, RNA degradation rate d;, transla-
tion rate ky,, i gene-perceptron.

Output: eigenvalues 1;, A, and stability condition.

1 f,g«< DefineDynamics(f,g,dh,,do,, ka,);

2 J; < CalculateJacobian(f, g, dy,,dy,);

3 A1, A2 — ComputeEigenvalues(J));

4 ChecksStability(11, A2);

5 Function DeﬁneDynamics(%,%):

6 Define concentration dynamics from Egs. 1
and 4:

(M=—" = f([R];, [P];), (Equation 22)

(4):7’ = g([Rl;, [P];). (Equation 23)
return f,g;

7 Function CalculateJacobian(f, g,d;,dy,, k2,):
8 Calculate Jacobian J;:

of of
P [—d1,. 0}
" lag oag | Lk —dyf
3R] o[P];

] ]

(Equation 24)

return J;;
9 Function ComputeEigenvalues(J;):

10 Compute the eigenvalues 4, A, of J; using
IJi — Al = 0;
11 return A, Ay;

12 Function CheckStability(1;, A2):

13 if A; <0 and A, <0 then

14 The gene-perceptron is stable;
15 else

16 The gene-perceptron is unstable;
17 end

tein concentrations Eqgs. 1 and 4, this matrix sheds light on the sys-
tem's local behavior around equilibrium points Eqs. 6 and 7.
Following this, the ComputeEigenvalues function is invoked to ascer-
tain the eigenvalues, 2; and A, of the Jacobian matrix. Finally, the
CheckStability function evaluates the stability of the gene-perceptron
based on the calculated eigenvalues (2 = — di;,4, = — dy,). Sta-
bility is confirmed if both eigenvalues are negative (i.e.,d;,,do, >0),
indicating that deviations from equilibrium will decay over time,
eventually leading the system to return to its equilibrium state.



ALGORITHM 2 Analyzing temporal stability using Lyapunov
function

Input: RNA and protein concentration changes f([R];,[P];), 9([R];,
[P];), protein degradation rate dy, RNA degradation rate d,,
translation rate ky,, transcription rate k;,, gene product copy
number Cy, TF concentration for half-maximal RNA concentra-
tion Ky, a threshold, Vy;, at which % is minimized, Hill coefficient
n for ith gene-perceptron.
Output: Time point (t) at which the derivative of the Lyapunov
function & = V.
1 Function DefineLyapunovFunction((R];, [P];, [R]; , [P]}):

2 V([R);. [P)) < (R); = [R)* + (IP); = [PI})" as

given by Eq. 25;
3return V;

4 Function CalculateDotV(V, [R];, [P;, Cn,. ki,, dh,, do,, ko, , [TF], Ka;,
n,t):

5 Calculate V([R];,[P];) as given by Egs. 26 and
27,
6 return V;

7 Function FindMinT(V, Vy,):
8if V < Vy, then

10 return t;

11 end

12 else

13 return “Lyapunov stability conditions are not
satisfied”;

14 end

15 Function Main():

16 V — DefineLyapunovFunction([R];, [P]
[Pl

17 if V>0 and V =
[P]; = [P]; then

18 V « CalculateDotV([R];, [P];, C,, k1, d1,, d2,, ko,
TF, Ky, 0, 0);

19 t— FindMinT(V);

20 return t;

21 end

22 else

23 return “Lyapunov stability conditions are not
satisfied”;

24 end

i Rl

0 when [R]; = [R]; and

1 1

Conversely, if any eigenvalue is nonnegative, the gene-perceptron is
labeled as unstable (52), suggesting that deviations from equilib-
rium may amplify, hindering the system from reverting to its original
state.

Algorithm 2 commences by defining the Lyapunov function (53)
(DefineLyapunovFunction), utilizing inputs such as RNA concentra-
tion ([R];), protein concentration ([P];), RNA equilibrium concentra-
tion ([R];), and protein equilibrium concentration ([P];), to compute
the Lyapunov function (V([R];,[P];)) as follows:

V(IR 1Pl) = (Rl — [R))+ (1P — [PI))™.
(Equation 25)

This computed V is then processed by the CalculateDotV function,
which takes additional parameters including Cy,, ki,, ky,, d1,, do,, TF
concentration ([TF]), K4, n, and time (t). It calculates the derivative
of V (%) as follows:

_ _dv 8V dR], aV d[P],
V(IR PY) = 57 = oR) dt ' a[P], dt
(Equation 26)

By plugging % and % from Egs. 1 and 4, differentiating Eq. 25
with respect to [R]; and [P]; to obtain % and % and finally replacing
[R];,[P]i, [R]; and [P];, with Egs. 6, 7, 2, and 5 we get Eq. 26, which is
represented as follows:

(26):% _ C,%/,.‘[TF]Z"-kf_-e(z2‘(d1f+d2,-)) |
dhdz,.([TF]”ﬁ-KRj) (ch, — dz,-)z
(d, - el — 2dh,d - el
- c80) + (6 et
+dy, k2 (Zdz,-t)) _ (dl,-kg,- et(d,+d))
(t(d1i+d2i)))

+d2k2 .

)

(Equation 27)

where we assume initial RNA concentration of zero ([R];(0) = 0) and
initial protein concentration of zero ([P];(0) = 0). Then, this calcu-
lated "Vlsforwarded to FindMinT function. When &¢ V < Vy,, the FindMinT
functlon calculates the time point t, where the absolute difference be-
tween V and Vy, is minimized, denoted as t < argmin,|V — V|, signi-
fying the moment at which the derivative of the Lyapunov function 4/

approaches V. Otherwise, it indicates that the conditions of the Lya-
punov stability theorem are not satisfied. Within the main() function,
we systematically invoke the specified functions: initially, the Define-
LyapunovFunction is called to establish V, followed by a verification
of Lyapunov function criteria, specifically V>0 and V = 0 under con-
ditions [R]; = [R]; and [P]; = [P];. Upon satisfying these conditions,
the CalculateDotV function is utilized to determine ‘{1—‘{, which in turn in-
forms the calculation of t via FindMinT. Conversely, if the Lyapunov
function conditions are not met, itindicates that the Lyapunov stability
conditions are not satisfied.
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