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ABSTRACT The gene regulatory network (GRN) of biological cells governs a number of key functionalities that enable them
to adapt and survive through different environmental conditions. Close observation of the GRN shows that the structure and
operational principles resemble an artificial neural network (ANN), which can pave the way for the development of wet-neuro-
morphic computing systems. Genes are integrated into gene-perceptrons with transcription factors (TFs) as input, where the
TF concentration relative to half-maximal RNA concentration and gene product copy number influences transcription and
translation via weighted multiplication before undergoing a nonlinear activation function. This process yields protein concen-
tration as the output, effectively turning the entire GRN into a gene regulatory neural network (GRNN). In this paper, we estab-
lish nonlinear classifiers for molecular machine learning using the inherent sigmoidal nonlinear behavior of gene expression.
The eigenvalue-based stability analysis, tailored to system parameters, confirms maximum-stable concentration levels, mini-
mizing concentration fluctuations and computational errors. Given the significance of the stabilization phase in GRNN
computing and the dynamic nature of the GRN, alongside potential changes in system parameters, we utilize the Lyapunov
stability theorem for temporal stability analysis. Based on this GRN-to-GRNN mapping and stability analysis, three classifiers
are developed utilizing two generic multilayer sub-GRNNs and a sub-GRNN extracted from the Escherichia coli GRN. Our find-
ings also reveal the adaptability of different sub-GRNNs to suit different application requirements.
WHY IT MATTERS In recent years the significance of artificial intelligence has been steadily rising, driven by the
development of numerous algorithms that are applicable across various domains. As we envision a future of “AI
everywhere,” we are faced with the prospects of applying AI into media that is beyond silicon technology, such as wet
biological environments. In this study our objective is to propose a paradigm of biological AI that is built from the gene
regulatory process. Realizing a vision of wet-neuromorphic computing systems can result in novel theranostic
applications for disease detection and treatment as well as new bio-hybrid computing systems that integrate biological
cells with silicon technology.
INTRODUCTION

In recent years, the field of artificial intelligence (AI)
has developed rapidly resulting in sophisticated
learning algorithms that have benefited a plethora of
applications (e.g., manufacturing, economics, com-
puter vision, robotics, etc.) (1,2). Inspired by the func-
tions of neurons, the ultimate vision of AI is to
create human-like intelligence that one day will have
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a working capacity close to the brain. Based on the
system applications, AI can be categorized into soft-
ware or hardware based. Software-based AI includes
various forms of algorithms that depend on their
structure as well as training process (e.g., convolu-
tional neural networks (3), recurrent neural networks
(4), where a novel application is large languagemodels
such as generative pre-trained transformer (5).

Neuromorphic computing is a hardware-based AI
platform that architecturally consists of neurons and
synapses constructed from memristor devices that
communicate based on encoded neural spikes (6).
Presently, the vast majority of AI machines are con-
structed using instruction-encoded circuits and
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silicon-based semiconductors and nanotechnology
(7–9). While this enables more efficient computer sys-
tems that have capabilities of learning and computing,
it also results in significant challenges such as deploy-
ments in mediums that support silicon technologies
(e.g., biological mediums), as well as utilizing large
amounts of energy (10). Building upon prior research
in neuromorphic hardware, our focus extends to
explore the wet-neuromorphic computing properties
using the nonlinear dynamics of gene expression
and the molecular communication processes
observed within bacterial cells.

Current research has aimed to address these chal-
lenges and one direction taken is through biological
AI, where computing is performed through living bio-
logical cells (11,12). A recent example is the DishBrain,
where the system is composed of living neurons that
can be trained to play the game of “Pong” on a com-
puter (13). In other works, artificial neural networks
(ANNs) have been programmed into bacterial cells
(14,15). Similarly, molecular circuits programmed to
behave like ANN have also been proposed, and one
example is the biomolecular neural network (16). The
underlying basis for all these approaches is the
communication of molecules (17,18) that operate as
part of the chemical reactions to enable computing
operations.

From the perspective of gene regulatory networks
(GRN), there has been a connection between its struc-
ture and the operation of an ANN. In our recent work
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(19), we developed a model that transforms the
gene-gene interaction within the GRN using weights,
forming a gene regulatory neural network (GRNN)
while also exploring the impact of structural changes
on the computing capacity. Fig. 1 illustrates the map-
ping from ANN to GRNN. In a conventional ANN, a
perceptron takes multiple inputs (x1 and x2) and com-
putes their weighted summation ðPÞ that goes
through an activation function ðzðxÞÞ (20). In the
context of the GRNN, the weights are embodied by
transcription factor (TF) concentration, which corre-
sponds to the half-maximal RNA concentration ðKAÞ,
and gene product copy number ðCNÞ. These factors
individually contribute to the RNA and protein concen-
trations, reflecting a linear combination in the logarith-
mic domain, which is equivalent to the multiplication
of weighted inputs (21). Input genes (gX1 and gX2 )
possess TFs that bind to the promoter region of
gene-perceptron g1;i , which subsequently transcribes
RNA ðRiÞ at a rate of k1 and degrades at a rate of d1.
The subsequent step involves translation into protein
at a rate of k2 and degradation at a rate of d2 through a
nonlinear activation function, resulting in the output
of maximum-stable protein concentration ½P�� at
equilibrium.

In this study, we mathematically model chemical re-
actions of the transcription and translation process of
a gene-perceptron, which we term as the dual-layered
transcription-translation reaction model (from here on
we simply term this as dual-layered chemical reaction
FIGURE 1 Illustration of mapping between
components of ANN to GRNN. In this depic-
tion, wi and wiðKA;CNÞ represent the weights
of a perceptron in ANN and GRNN, respec-
tively, while activation function zðxÞ is equiva-
lent to a combination of the transcription
process of RNA concentration ½R�i as well as
translation of maximum-stable protein con-
centration ½P��i . The chemical reactions are
governed by the transcriptions rate k1, transla-
tion rate k2, degradation rate of RNA d1, and
degradation rate of protein d2.



model). The dual-layered chemical reaction model can
be integrated with a trans-omic data model (transcrip-
tome and proteome) and the cellular GRN in order for
us to identify active genes for the specific environ-
ments, which will be the basis for us to create
the GRNN.

We investigate the behavior of fully connected sub-
GRNNs derived from a larger GRN, aiming to show-
case how genes function as perceptrons which we
term as gene-perceptron, ensuring reliable computing
in a stable state. Additionally, we use extracted sub-
GRNNs to explore different nonlinear classifiers that
can be applicable to diverse applications. This investi-
gation primarily focuses on the gene expression-level
stability of the translation and transcription process
to ensure reliable computing operation. Once the
gene-perceptron reaches stability, its output can be
represented by the maximum-stable protein concen-
tration ð½P��Þ. The stability of the gene-perceptron is
characterized as the point where RNA and protein con-
centrations peak and stabilize over time in a sigmoidal
manner. The eigenvalue-based method and Lyapunov
stability theorem are established tools in systems
biology (22) and for assessing overall system energy
(23). However, we choose to utilize the Lyapunov sta-
bility for the size of the network given that previous
studies have used it for small NNs (24), and we see
this appropriate for our sub-GRNN analysis. The eigen-
value-based stability analysis verifies the existence of
upper bounds of transcription and translation guaran-
teeing minimal concentration fluctuations that can
reduce potential computing errors. Given the dynamic
nature of the GRN and the variability of temporal sys-
tem parameters, the eigenvalue-based method lacks
critical information on the time interval during which
the gene-perceptron gradually gets close to equilib-
rium (25–27), which is crucial for GRNN computing.
Therefore, we opt to utilize the Lyapunov stability the-
orem, specifically Lyapunov's second method for sta-
bility, in our analysis (28).

Once we prove the stability of the gene-perceptron,
as an application we focus on a nonlinear classifier
relying on the maximum-stable protein concentration
for different concentrations of TFs that act as inputs.
We concentrate on nonlinear classification by utilizing
the inherent shifted sigmoidal behavior (19,21) as an
activation function, observed in the relationship be-
tween the input and output gene concentrations.
This behavior, reminiscent of the Hill function and
influenced by the nonnegative nature of expression
values, prompts our investigation into the potential
of nonlinear classification using GRNNs. Additionally,
certain real-world problems exceed the limitations
of linear methods confined to 2D decision planes. To
evaluate the model's performance, we analyze two
generic multilayer sub-GRNNs and an Escherichia coli
sub-GRNN. By manipulating parameters within the
Hill function, such as TF concentration corresponding
to half-maximal RNA concentration and Hill coeffi-
cient, we showcase the potential to shift the classifi-
cation area. Previous research indicates that
adjusting these parameters can effectively alter the
nonlinearity of the sigmoid activation function
(21,29,30), providing a valuable tool for engineering
the GRN through synthetic biology approaches and
employing various sub-GRNNs for diverse nonlinear
classifiers tailored to specific application needs.

The contributions of this study can be outlined as
follows.

� Developing GRNNs inspired from ANN structures using
dual-layer chemical reaction models. Using the dual-
layered chemical reaction model, we show that
gene transcription and RNA translation processes
exhibit sigmoidal-like molecular concentration dy-
namics at their stable points. This behavior is gov-
erned by the weights, which is a function of gene
product copy number and TF concentration corre-
sponding to the half-maximal RNA concentration.

� Stability analysis of GRNN.We developed a full math-
ematical model derived from the chemical reactions
and apply Lyapunov's stability theorem (28) for the
gene-perceptron to determine temporal stability
that will facilitate reliable GRNN computing.

� GRNN application for nonlinear classifiers. Using the
mapping of GRN-to-GRNN and the stability analysis,
we are able to determine the decision boundaries of
the derived sub-GRNNs to classify data within re-
gions of protein concentration output. By varying
parameters of the chemical reactions, we demon-
strate how the classification area can be shifted,
which can serve as a tool for engineering the GRN
and using different sub-GRNNs for several nonlinear
classifiers based on the application's requirements.
System modeling

This section describes the mathematical models for
the gene transcription and translation within gene-per-
ceptrons, employing a dual-layered chemical reaction
model (Fig. 2) that breaks down the steps of the trans-
lation and transcription process. The production of
RNAs depends on RNA polymerase, TFs, and s factors
that binds to the promoter ðPromÞ (31), as well as the
dissociation constant ðkAÞ. Once the TF binds to the
promoters Prom, the transcription begins at the rate
of k1. This is followed by the RNA degradation at the
rate of d1 based on their half-life value (32) and RNA
binding proteins (33), as well as the degradosome
components that includes RNase E, RNA helicase,
Biophysical Reports 4, 100158, September 11, 2024 3
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FIGURE 2 Illustration of dual-layered transcription-translation chemical reaction model of the gene-perceptron. Each component corre-
sponds to the synthesis and degradation of RNA and protein for the jth gene-perceptron in the ith layer ðgi;jÞ of the GRNN. Here, RnpB, SsrA,
and SsrS are examples for noncoding RNA (ncRNA). Examples of energy-dependent proteases include Lon, HflB, ClpXP, and HslUV. Active
TF, RNAP, PNPase, RNase E, and tRNA correspond to active TFs, RNA polymerase, polyribonucleotide phosphorylase, ribonuclease E, and
transfer RNA, respectively.
and PNPase (34). Following the transcription of the
RNAs is the translation into protein, which occurs at
the rate of k2 facilitated by ribosome and transfer
RNA (tRNA) (35). Once the RNA is translated, the pro-
tein molecules start to degrade gradually at the rate of
d2. Significant factors that affect the degradation of
protein are noncoding RNA, as well as energy-depen-
dent and energy-independent proteases. Overall, to
maintain the concentration stability in the cell, RNA
and protein production are balanced by the degrada-
tion process.

By taking the dual-layered chemical reactions model
into account, we model the concentration changes at
the transcriptome and proteome using mathematical
models. These models enable us to assess the con-
centration stability of the gene-perceptron through
the eigenvalue method and determine the stabilization
time using the Lyapunov stability theorem. After deter-
mining if a particular gene-perceptron expression is
stable, we determine the stability of the entire sub-
GRNN. Then, based on the application study, the
classification ranges for each gene-perceptron in a
sub-GRNN is determined at the equilibrium maxi-
mum-stable protein concentration state. Based on
the sigmoidal input-output behavior and adjustable
threshold, we deduce that gene-perceptrons in the
GRNN consist of conventional NN properties. For the
overview of the algorithm mentioned above, please
refer to Fig. 3.
Eigenvalue based Stability Analysis

Classification areas

Differential Equations

Lyapunov Temporal Stability Analysis

Stabilization time

Dual-layered chemical reaction model

FIGURE 3 Flow chart for the calculation of classification areas as
well as stability based on the dual-layered transcription-translation
chemical reaction model of each gene-perceptron.
Modeling transcription of a gene

In this section, we discuss transcription and the corre-
sponding RNA concentration model. During the tran-
scription process, the RNA polymerase and TFs bind
to the promoter region and then the s factor attaches
to the promoter region and unwinds the DNA (36). This
is followed by s factor release from the polymerase, al-
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lowing for the elongation of the RNA chain. Based on
(37), the concentration change over time t of RNA for a
particular gene-perceptron i can be expressed as fol-
lows (chemical species are represented using upper-
case letters [e.g., X], and their corresponding
concentration is enclosed within brackets [e.g., ½X�])

d½R�i
dt

¼ k1i CNi

½TF �n
Kn
Ai
þ ½TF �n � d1i ½R�i: (Equation 1)

The gene-perceptron is activated by the TF, where
½R�i , k1i , ½TF �, d1i , n, CNi , and KAi are the RNA concentra-
tion, transcription rate, concentration of TFs, degrada-
tion rate of RNA, Hill coefficient, gene product copy
number, and TF concentration when the production
of RNA is at the half-maximal point for gene-percep-
tron i, respectively. The gene product copy number de-
notes the average count of protein molecules
generated by an mRNA throughout its lifespan (22).

Given the initial RNA concentration transcribed by a
gene-perceptron is ½R�ið0Þ (i.e., ½R�iðt ¼ 0Þ ¼ ½R�ið0Þ),
the solution of Eq. 1 is derived as follows

½R�i ¼ k1i CNi

d1i

 
½TF �n

½TF �n þ Kn
Ai

!�
1 � e� d1i t

�
þ ½R�ið0Þe� d1i t:

(Equation 2)



In contrast, in the event that the gene-perceptron is
repressed by the TF, the RNA concentration changes
over time t (37) is represented as follows,

d½R�i
dt

¼ k1i CNi

Kn
Ai

Kn
Ai
þ ½TF �n � d1i ½R�i: (Equation 3)

Equations 1 and 3 are expressed as a mass balance
differential equation with the difference between the
RNA synthesis, which is modeled using the Hill func-
tion integrated with the degradation process of the
RNA (22,38–40). The Hill coefficient n represents the
number of TF molecules that bind simultaneously to
the promoter Prom with KA dissociation constant
when the gene-perceptron is transcribing RNA (37)

and is represented as Promþ n TF#
KA
Promn:TF . The

Hill coefficient is critical for the sigmoidal input-output
characteristics of the gene-perceptron, as depicted in
Fig. 4. According to the plot, we can see that, when
we increase the Hill coefficient, the sigmoidicity in-
crease for the maximum-stable protein concentration
ð½P��Þ over the input-gene concentration ð½TF �Þ. Thus,
when a gene-perceptron possesses a higher Hill coef-
ficient, it exhibits more sigmoidal-like behavior. For our
analytical model we consider n ¼ 1.
Modeling translation of a RNA

In this section, we describe RNA-to-protein translation
and associated models. Initially, the ribosome and
tRNAs form a complex that draws the amino acids in
the polypeptide chain to attach to the first codon posi-
tion of the RNA (41). This is followed by the tRNAs
adding amino acids one by one to form a polypeptide
chain while moving along the RNA (42). Once the stop
codon is detected, the polypeptide chain is released,
dissociating the ribosome complex from the RNA
and forming the protein (43). This process can be sum-
marized through the protein concentration change
over time (37), and is modeled as follows for a partic-
ular gene-perceptron i:

d½P�i
dt

¼ k2i ½R�i � d2i ½P�i; (Equation 4)
FIGURE 4 Sigmoidicity fluctuations for different Hill coefficients.
where ½P�i; k2i , and d2i are the protein concentration,
translation rate, and degradation rate of protein for
gene-perceptron i. Moreover, ½R�i is the concentration
of RNA from Eq. 1, and the TF activates the gene-per-
ceptron i based on Eq. 3 if the TF represses the gene-
perceptron. Similar to Eqs. 1 and 3, Eq. 4 is modeled
based on mass-balance differential equation taking
the difference between the RNA produced at the tran-
scriptome level, which is translated into protein at the
rate of k2i and the amount of protein that is degraded
at the rate of d2i due to the factors presented in Fig. 2.
Provided that the initial protein concentration trans-
lated by a RNA for gene-perceptron i is ½P�ið0Þ (i.e.,
½P�iðt ¼ 0Þ ¼ ½P�ið0Þ), the solution of Eq. 4 is given by

½P�i ¼ k1i k2i CNi

d1i

 
½TF �n

½TF �n þ Kn
Ai

! 
1
d2i

� e� d1i t

d2i � d1i

!

þ½R�ið0Þk2i
 

e� d1i t

d2i � d1i

!
þ e� d2i t½P�ið0Þ � e� d2i t

� ½R�ið0Þk2i
1�

d2i � d1i

� � e� d2i t
k1i k2i CNi

d1i 
½TF �n

½TF �n þ Kn
Ai

!
�
 

1
d2i

� 1�
d2i � d1i

�
!
:

(Equation 5)

METHODS

This section introduces the mathematical models for the stability
analysis and RNA/protein concentration changes over time, and
subsequently demonstrates how to apply these mathematical
models in the GRNNs.
Gene expression stability analysis

In this section, we discuss the approach toward analyzing the
expression-level stability of the gene-perceptron. Our view of the sta-
bility of the gene-perceptron is when the RNA transcription as well
as the protein translation concentrations reach maximum over
time and remain stable at that level exhibiting a sigmoidal behavior.
To confirm the existence of transcription and translation upper
bounds, we use eigenvalue-based stability analysis. This, in turn, en-
sures a stable classification region of the GRNN due to a protein
concentration with minimum fluctuations that can result in mini-
mized computing errors. Moreover, considering the dynamic charac-
teristics of the GRN and its parameters, we explore the time
necessary for GRNN stability utilizing the Lyapunov function, which
is a crucial aspect of analyzing the reliability duration of the GRNN
computing.

Stability of gene-perceptron based on eigenvalues

The algorithm for analyzing the stability of gene-perceptrons
through the eigenvalue method is outlined in Algorithm 1 in the ap-
pendix, which initiates with the input of RNA and protein concentra-
tion changes f ð½R�i ; ½P�iÞ, gð½R�i; ½P�iÞ as expressed in Eqs. 1 and 4,
alongside protein degradation rate d2i , RNA degradation rate d1i ,
Biophysical Reports 4, 100158, September 11, 2024 5



and translation rate k2i for the ith gene-perceptron. Although this
study has only considered the case of gene transcription in Eq. 1,
our approach is also applicable for the repression process defined
in Eq. 3. Since we are analyzing the stability of the gene-perceptron
at the equilibrium point, we can represent the maximum-stable RNA
½R��i and protein ½P��i concentration as follows:

½R��i ¼ k1i CNi

d1i

 
½TF �n

½TF �n þ Kn
Ai

!
; (Equation 6)

 
n

!

½P��i ¼ k1i k2i CNi

d1i d2i

½TF �
½TF �n þ Kn

Ai

: (Equation 7)

The maximum-stable RNA and protein concentrations are deter-
mined for different TF concentrations.

To determine the eigenvalues of Eqs. 1 and 4 at the equilibrium
points of Eqs. 6 and 7, we use the Jacobian matrix given in Eq. 24
(please see Algorithm 1 in the appendix). Hence, the eigenvalues
are l1 ¼ � d1i and l2 ¼ � d2i . Stability is confirmed when both ei-
genvalues are negative ðd1i ;d2i >0Þ, indicating that deviations from
equilibrium will diminish over time, leading the system back to its
stable state. Conversely, if any eigenvalue is nonnegative, the
gene-perceptron is deemed unstable, signifying that deviations
from equilibrium may escalate, impeding the system's return to its
initial state. Thus, the stability of the gene-perceptron hinges on sys-
tem parameters, specifically the RNA and protein degradation rates
(d1i and d2i ) within the GRN.

Stability of a gene-perceptron using the Lyapunov function

The Lyapunov function algorithm for temporal stability analysis is
detailed in Algorithm 2 in the appendix. Initially, we define the Lyapu-
nov function ðVð½R�i ; ½P�iÞÞ as given by Eq. 25, which satisfies the
necessary conditions: Vð½R�i ; ½P�iÞ ¼ 0 when ½R�i ¼ ½R��i and ½P�i ¼
½P��i , where ½R��i and ½P��i are RNA and protein concentration at the
equilibrium. In addition, Vð½R�i ; ½P�iÞ >0 due to the quadratic nature
of all terms. Finally, we consider the first derivative of Eq. 25

�
dV
dt

�
as given by Eqs. 26 and 27, as the last condition to be satisfied
for the stability of the gene-perceptron. We use Eq. 27 to determine
the time during which the gene-perceptron gets closer to equilib-
rium, where we set this threshold as _Vth. In all our simulations,
this threshold marks the time point t ¼ t when

��dV
dt

�� is significantly

minimized, beyond which dV
dt continues to converge toward zero

with minimal change. The gene-perceptron moves closer to the equi-
librium rapidly when dV

dt <
_Vth and at a slower pace when dV

dt R
_Vth.

We illustrate the temporalfluctuationof Eq. 27 in all simulations, as
shown in Fig. 5, providing insights into the dynamic stability behavior
of the gene-perceptron and delineating the time frame during which
the gene-perceptron gets closer to the equilibrium. The gene-percep-
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tron accelerates toward equilibrium within the time window t%5,
demonstrated by the negative amplitude of dV

dt , and subsequently
slows this tendency after tz5while continuing to progress gradually
toward equilibrium. The orange dashed line in the figure marks the
time step ðtz18Þ, where dV

dt ¼ _Vth , indicating that the gene-percep-
tron gets closer to equilibrium within the temporal window ðt %18Þ.
GRNN analysis

While the previous section presents the stability analysis of each in-
dividual gene-perceptron, they need to be integrated into a sub-
GRNN to perform the classification operation. In this study, our
emphasis is on developing a mathematical framework to elucidate
the weights representing gene-gene influence within the GRNN
and focus on the classification application. This required us to
search for a sub-GRNN that has structural and operational parallels
shared with an ANN for classification, where we focused on multi-
layer and randomly structured sub-GRNNs that form the basis for
larger sub-GRNN architectures.

Multilayer sub-GRNN

This sub-GRNN, which is illustrated in Fig. 6, consists of three hid-
den-layer gene-perceptrons ðg1;1; g1;2; g1;3Þ and one output-layer
gene-perceptron ðg2;1Þ (gi;j represents the jth gene-perceptron in
the ith layer in the sub-GRNN). The concentrations that are output
from layer 1 to layer 2 are ½TF �1;1; ½TF �1;2; and ½TF �1;3, and ½P� is the
output from gene-perceptron g2;1. The two input genes (gX1 and
gX2 ) are TFs with corresponding concentrations, ½TF�x1 and ½TF �x2 ,
respectively. The RNA concentration changes over time t for the hid-
den-layer gene-perceptrons, based on Eq. 1, can be expressed as,

d½R�i
dt

¼ k1i CNi

 
½TF �nx1

Kn
Ai
þ½TF �nx1

!
$

 
½TF �nx2

Kn
Ai
þ½TF �nx2

!
� d1i ½R�i;

(Equation 8)
for the activators, i ¼ g1;1; g1;2. Since gene-perceptron g1;3 has a
repression from gene-perceptron gx2 , the changes in the RNA pro-

duction based on Eq. 3, is given by

d½R�g1;3
dt

¼ k1g1;3CNg1;3

0
@ ½TF �nx1
Kn
Ag1;3

þ ½TF �nx1
$

KAg1;3

KAg1;3
þ ½TF �nx2

1
A

� d1g1;3
½R�g1;3 :

(Equation 9)

The RNA concentration changes of the output gene-perceptron
g2;1, which consists of TFs from gene-perceptrons g1;1; g1;2, and
g1;3 with the output protein concentration that contribute as TF
FIGURE 5 Temporal stability of a gene-
perceptron based on the derivative of the Lya-
punov function with respect to time. A
threshold _Vth is defined where

��dV
dt

�� is signifi-
cantly minimized, as indicated by the yellow
horizontal line

�
dV
dt ¼ _Vth

�
. The orange vertical

dashed line signifies the corresponding time
point t when dV

dt reaches
_Vth. Beyond the time

point, dV
dt continues to converge toward zero

with minimal change.
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FIGURE 6 Multilayer sub-GRNN with two input-layer nodes, three
hidden-layer gene-perceptrons ðg1;1; g1;2; g1;3Þ, and one output-layer
gene-perceptron ðg2;1Þ; and their corresponding output concentra-
tions are transcription factors ½TF�1;1;½TF �1;2;½TF �1;3, and protein con-
centration ½P�, respectively. There are two input genes (gx1 , gx2 )
considered as twoTFswith concentration of ½TF�x1 and ½TF�x2 , respec-
tively. In this context, gi;j represents the jth gene-perceptron in ith layer
in the sub-GRNN. Input-gene activators and input-gene repressors
are denoted by ðþÞ and ð� Þ edges, respectively. The weights ðwÞ
of this sub-GRNN is a function of the TF concentration corresponding
to the half-maximal RNA concentration ðKAi Þ and gene product copy
number ðCNi Þ for gene-perceptron i represented as wðKAi ;CNi Þ.
concentration (½TF�1;1 ¼ ½P�g1;1 ; ½TF�1;2 ¼ ½P�g1;2 , and ½TF �1;3 ¼
½P�g1;3 ) to accumulate to invoke the expression is given by,

d½R�g2;1
dt

¼ k1g2;1CNg2;1

0
@ ½TF �n1;1
Kn
Ag2;1

þ ½TF �n1;1

1
A

$

0
@ ½TF �n1;2
Kn
Ag2;1

þ ½TF �n1;2

1
A $

0
@ ½TF �n1;3
Kn
Ag2;1

þ ½TF �n1;3

1
A � d1g2;1

½R�g2;1 :

(Equation 10)

Each of the gene-perceptrons also undergoes a translation pro-
cess. Therefore, the protein concentration change for each gene-per-
ceptron can be modeled using Eq. 4 for i ¼ g1;1;g1;2;g1;3, and g2;1.
The maximum-stable protein concentration can be derived by
setting Eqs. 8, 9, and 10 to zero to find ½R��i , which is then plugged
into Eq. 4 and set to zero for i ¼ g1;1;g1;2;g1;3, and g2;1, respectively.

i ¼ g1;1; g1;20½P��i ¼ k1i k2i CNi

d1i d2i

 
½TF �nx1

Kn
Ai
þ ½TF �nx1

!

�
 

½TF �nx2
Kn
Ai
þ ½TF �nx2

!
;

(Equation 11)

0
n

1

½P��g1;3 ¼

k1g1;3 k2g1;3CNg1;3

d1g1;3
d2g1;3

@ ½TF �x1
Kn
Ag1;3

þ ½TF �nx1
A

�
 

KAg1;3

KAg1;3
þ ½TF �nx2

!
;

(Equation 12)
0
n

1

½P��g2;1 ¼

k1g2;1 k2g2;1CNg2;1

d1g2;1
d2g2;1

@ ½TF �1;1
Kn
Ag2;1

þ ½TF �n1;1
A

�
0
@ ½TF �n1;2
Kn
Ag2;1

þ ½TF �n1;2

1
A
0
@ ½TF �n1;3
Kn
Ag2;1

þ ½TF �n1;3

1
A:

(Equation 13)

Equations 11, 12, and 13, which are the stable concentration quan-
tity of proteins produced, are used to compute the classification
areas for each gene-perceptron based on the value of concentration,
which is further elaborated in the results as we present a case study.
Subsequently, we apply the approach from the methods to show the
stability of the gene-perceptron in this sub-GRNN. The overall stabil-
ity of the GRNN based on the derived Lyapunov function of Eq. 27
(please see the appendix), which can be further expressed for l num-
ber of TFs connected to a gene-perceptron ðiÞ, is represented as
follows

dV
dt

¼ �
Yl
j ¼ 1

C2
Ni
$½TF �2nj $k21i$e

ð�2tðd1iþd2i ÞÞ

d1i d2i
�
½TF �nj þKn

Aj

�2�
d1i � d2i

�2
�
�
d3
2i
$ eð2d2i tÞ � 2d1i d

2
2i
$ eð2d2i tÞ

þ d2
1i
d2i $ e

ð2d2i tÞ
�
þ
�
d1i k

2
2i
$ eð2d1i tÞ

þ d2i k
2
2i
$ eð2d2i tÞ

�
��

�
d1i k

2
2i
$ eðtðd1iþd2i ÞÞ

þ d2i k
2
2i
$ eðtðd1iþd2i ÞÞ

�
;

(Equation 14)

where ½TF�j and KAj are concentration of jth TF and corresponding
half-maximal RNA concentration for gene-perceptron i, respectively.
Random structured sub-GRNN

As described earlier, the relationship of gene-perceptrons within a
GRN that have common TFs may have intermediate gene-percep-
trons within the path of connections. We analyze how this impacts
on the overall stability of the sub-GRNN, where the network for this
case is presented in Fig. 7. In this form of networks, it is necessary to
consider the RNA concentration change from the intermediate gene-
perceptron ðg2;1Þ and its impact on the output-layer gene-perceptron
ðg3;1Þ. The expressions for each gene-perceptron, and their relative
TFs from their immediate predecessor, are represented as follows:

d½R�g2;1
dt

¼ k1g2;1CNg2;1

0
@ ½TF �n1;1
Kn
Ag2;1

þ ½TF �n1;1

1
A � d1g2;1 ½R�g2;1 ;

(Equation 15)

0
n

1 0
n

1

d½R�g3;1

dt
¼ k1g3;1CNg3;1

@ ½TF �2;1
Kn
Ag3;1

þ½TF �n2;1
A$@ ½TF �1;2

Kn
Ag3;1

þ½TF �n1;2
A

�
0
@ ½TF �n1;3
Kn
Ag3;1

þ ½TF �n1;3

1
A � d1g3;1 ½R�g3;1 :

(Equation 16)
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FIGURE 7 Random structured sub-GRNN
with three input-layer gene-perceptrons ðg1;1;
g1;2; g1;3Þ, one intermediate gene-perceptron
ðg2;1Þ, and one output-layer gene-perceptron
ðg3;1Þ. This structure is an extension from the
sub-GRNN in Fig. 6.
Here, the protein concentration from Eq. 5 can be derived from Eq.
15 (i.e., ½TF�1;1 ¼ ½P�1;1), since gene-perceptron g2;1 is activated by
gene-perceptron g1;1. The RNA concentration models behave simi-
larly to the case without the intermediate gene-perceptron for
gene-perceptrons g1;1; g1;2; and g1;3 and can be derived directly
from Eqs. 8 and 9. Using Eq. 4 we can determine the protein concen-
tration change for each gene-perceptron Fig. 7.

Using the maximum-stable protein concentration derived from
Eqs. 15 and 16, we can determine ½R��i , which is then applied to Eq.
4 and used to determine the maximum-stable value for i ¼ g2;1
and g3;1. This will result in the following maximum-stable protein
production that is represented as follows

½P��g2;1 ¼
k1g2;1 k2g2;1CNg2;1

d1g2;1d2g2;1

0
@ ½TF �n1;1
Kn
Ag2;1

þ ½TF �n1;1

1
A;

(Equation 17)

0
n

1

½P��g3;1 ¼

k1g3;1 k2g3;1CNg3;1

d1g3;1
d2g3;1

@ ½TF �2;1
Kn
Ag3;1

þ ½TF �n2;1
A

$

0
@ ½TF �n1;2
Kn
Ag3;1

þ ½TF �n1;2

1
A
0
@ ½TF �n1;3
Kn
Ag3;1

þ ½TF �n1;3

1
A:

(Equation 18)

We use Eq. 11 to determine ½P��i for i ¼ g1;1 and g1;2, while for i ¼
g1;3 we use Eq. 12. For the stability analysis, Eq. 14 is used with l ¼
2 for g1;1;g1;2, and g1;3, l ¼ 1 for g2;1, and l ¼ 3 for g3;1, correspond-
ing to the number of TFs for each gene-perceptron.
RESULTS

In this section, we perform temporal stability analysis
and obtain the classification areas for the two multi-
layer sub-GRNN network topologies (Figs. 6 and 7)
as well as the sub-GRNN derived from E. coli GRN.
FIGURE 8 Temporal stability analysis of gene-perceptrons within
the multilayer sub-GRNN, where vertical dashed lines indicate the
time points when dV

dt ¼ _Vth (here _Vth ¼ �1� 10�11 for g1;1 and
g1;2, and _Vth ¼ � 1� 10�8 for g1;3 and g2;1).
Multilayer sub-GRNN

The temporal stability for each gene-perceptron within
the generic multilayer sub-GRNN is illustrated in Fig. 8.
This simulation employed the model from Eq. 14 with
parameter set 1 (Table 1). Gene-perceptrons g1;1 and
g1;2 accelerate toward equilibrium within the time win-
dow t%5, as demonstrated by the negative amplitude
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of the derivative of the Lyapunov function. Here, _Vth is
set to � 1� 10�11 for gene-perceptrons g1;1 and g1;2.
While these two gene-perceptrons show a positive
trend after tz5, at tz30 and tz35 the derivative of
their Lyapunov function, dVdt , approaches

_Vth ¼ � 1�
10�11, indicating a slower pace toward equilibrium.
Furthermore, _Vth for gene-perceptron g1;3 is set to �
1� 10�8. In contrast to g1;1 and g1;2, g1;3 exhibits a
positive trend from the beginning and dV

dt approaches
_Vth at tz15 due to its distinct repression from the
input gene gX1 , signifying a gradual approach toward
equilibrium. The output-layer gene-perceptron ðg2;1Þ
displays a similar pattern to gene-perceptrons g1;1
and g1;2 owing to its direct predecessors being activa-
tors. At tz35, dV

dt of g2;1 approaches _Vth ¼ � 1�
10�8, indicating a slower approach toward equilib-
rium. Thus, within the time window ðt %35Þ, the multi-
layer sub-GRNN is considered computationally
accurate, as all gene-perceptrons within the sub-
GRNN have approximately reached equilibrium.

Given the gene-perceptron's stability at equilibrium
(Fig. 8), we can use Eqs. 11, 12, and 13, to calculate
output protein ½P��i for different input concetrations
(½TF �x1 and ½TF �x2 ). In our simulations, we set the clas-
sifier threshold to 0.5, a commonly used default
threshold in classification tasks in previous works



TABLE 1 Parameter configuration for the generic multilayer sub-GRNN

Parameter

CNg1;1
CNg1;2

CNg1;3
CNg2;1

k1g1;1 k1g1;2 k1g1;3 k1g2;1 k2g1;1 k2g1;2 k2g1;3 k2g2;1
d1g1;1 d1g1;2 d1g1;3 d1g2;1 d2g1;1 d2g1;2 d2g1;3 d2g2;1 KAg1;1

ð� 10�7Þ KAg1;2
ð� 10�7Þ KAg1;3

ð� 10�7Þ KAg2;1
ð� 10�7Þ

Parameter set 1 10 70 100 90 0.1 0.2 0.4 0.5 0.1 0.2 0.4 0.5
0.3 0.2 0.5 0.6 0.3 0.2 0.5 0.6 500 100 1000 50

Parameter set 2 10 15 25 45 0.1 0.2 0.4 0.5 0.1 0.2 0.4 0.5
0.3 0.2 0.5 0.6 0.3 0.2 0.5 0.6 100� 20� 10� 50�

The values marked with an asterisk (*) are the parameters that are modified. Units of CNi ;k1i ;k2i ;d1i ;d2i , and KAi are molecules;s�1;s�1;min�1;

h�1, and molecules, respectively).
(44,45), chosen also for clarity in our simulation fig-
ures illustrating classification areas. The calculated
output protein ½P��i is illustrated over varying input con-
centrations, highlighting the values above and below
the threshold ð½P�� ¼ 0:5Þ. Decision boundaries reflect
how the classification areas change based on the
edge (activation or repression) connected to the target
gene-perceptron and corresponding parameters in
Eqs. 11, 12, and 13. The inputs (½TF �x1 and ½TF �x2 )
vary, while parameters such as gene product copy
number ðCNi Þ, transcription rate ðk1i Þ, translation rate
ðk2i Þ, RNA degradation rate ðd1i Þ, protein degradation
rate ðd2i Þ, and TF concentration, corresponding to the
half-maximal RNA concentration ðKAi Þ, are kept con-
stant. We consider two parameters sets to determine
FIGURE 9 Parameter configurations for the multilayer sub-GRNN depic
perceptron and for (a) parameter set 1, as well as (b) parameter set 2 (g2;1
of gene-perceptrons from the previous layer).
the different classification regions, which are pre-
sented in Table 1.

For parameter set 1, we obtain the classification
areas shown in Fig. 9 a. The decision boundary and
their top view for each gene-perceptron are shown in
the first and second rows, respectively. The gene-per-
ceptron g1;2 has the largest classification area above
the threshold due to its lower TF concentration corre-
sponding to half-maximal RNA concentration KAi ,
compared with gene-perceptrons g1;1 and g1;3. More-
over, the decision boundaries for gene-perceptrons
g1;1 and g1;2 exhibit a similar shape, classifying the ma-
jority of the values above the threshold. In contrast,
gene-perceptron g1;3 covers a larger area for the
values below the threshold since it is repressed by
ted in Fig. 6. Each graph depicts the classification area of each gene-
is the output gene-perceptron that combines all classification areas

Biophysical Reports 4, 100158, September 11, 2024 9



FIGURE 10 Temporal stability analysis of gene-perceptrons within
the random structured sub-GRNN, with vertical dashed linesmarking
the time points when dV

dt ¼ _Vth , where _Vth ¼ �1� 10�11 for g1;1 and
g1;2, _Vth ¼ � 1� 10�8 for g1;3 and g2;1, and _Vth ¼ � 1� 10�5 for
g3;1.
the input gene gx2 . The intersection of classification
areas corresponding to hidden-layer gene-perceptrons
is represented by the output-layer gene-perceptron
g2;1, where the classification area above the threshold
is approximately bounded by input concentrations,
2:5% ½TF �x1 %3:5 and 3:4% ½TF �x2 . Due to the signifi-
cant contribution from gene-perceptrons g1;1 and g1;2
beyond the threshold, the output-layer gene-percep-
tron g2;1 exhibits a rightward shift.

For parameter set 2 (Table 1), the lower KAi values
have shifted the classification area above the
threshold compared with parameter set 1. This shift
is evident in Fig. 9 b, particularly for gene-perceptron
g1;2, which results in classifying the majority of the
values above the threshold. Conversely, for gene-per-
ceptron g1;3, the classification area shifts below the
threshold due to the repression from the input when
reducing the half-maximal RNA concentration KAi .
The classification range for gene-perceptron g1;1 ex-
pands compared with parameter set 1, approximately
bounded by 2:3% ½TF �x;1 and 2:1% ½TF �x;2. Consid-
ering all gene-perceptrons, the output-layer gene-per-
ceptron g2;1 shows a leftward shift in the decision
boundary, becoming slightly more linear. Overall,
modifying the half-maximal RNA concentration KAi

can significantly expand the classification area.
Random structured sub-GRNN

This sub-GRNN consists of three hidden-layer gene-
perceptrons, one intermediate gene-perceptron, and
one output-layer gene-perceptron, as illustrated in
Fig. 7. The temporal stability analysis for this sub-
GRNN is presented in Fig. 10 and utilizes Eq. 14 and
parameter set 1 from Table 2. In this simulation, we
set _Vth ¼ � 1� 10� 11 for gene-perceptrons g1;1 and
g1;2, � 1� 10�8 for gene-perceptrons g1;3 and g2;1,
and � 1� 10� 5 for gene-perceptron g3;1. Fig. 10 illus-
trates that gene perceptrons g1;1, g1;2, g3;1, and g2;1
display fluctuations in the Lyapunov function deriva-
tive dV

dt similar to those observed in Fig. 8. This similar-
ity can be attributed to their immediate predecessors
acting as activators, leading to the derivative of the
Lyapunov function, dV

dt , converging to _Vth ¼ � 1�
10�11 at tz30 and 35 for g1;1 and g1;2, respectively,
� 1� 10� 8 at tz35 for g2;1, and � 1� 10�5 at tz 35
for g3;1. For gene-perceptron g1;3, dV

dt gradually ap-

proaches _Vth ¼ � 1� 10�8 within the time interval
t%15, exhibiting stability fluctuations akin to those
observed in the network lacking the intermediate
gene-perceptron. This similarity arises from both
gene-perceptrons being influenced by their repressive
predecessors. Consequently, within the temporal win-
dow ðt % 35Þ, the randomly structured sub-GRNN is
10 Biophysical Reports 4, 100158, September 11, 2024
considered computationally reliable, with all gene-per-
ceptrons within the sub-GRNN converging toward
equilibrium.

Following the temporal stability analysis, we apply
Eqs. 11 and 12 to determine the maximum-stable pro-
tein concentration ð½P��i Þ for gene-perceptrons g1;1;g1;2,
and g1;3. However, unlike the sub-GRNN in Fig. 6, Eq.
13 is not used to determine the classification area
for the output-layer gene-perceptron. Instead, for the
computation of ½P��i for gene-perceptrons g2;1 and
g3;1, both Eqs. 17 and 18 are employed due to the addi-
tion of the intermediate gene-perceptron compared
with the multilayer sub-GRNN in Fig. 6. The calculated
protein concentration output ½P��i values for different
input concentrations used to determine the classifica-
tion area for each gene-perceptron are presented in
Fig. 11. We also used two different sets of parameters
from Table 2 to analyze different classification areas.

Parameter set 1 results in the classification areas
shown in Fig. 11 a. As gene-perceptron g2;1 serves
as the intermediate gene-perceptron of g1;1, we
observe similar classification areas and decision
boundaries. In addition, repression from the input
gene gx1 to gene-perceptron g1;3 results in a distinctive
decision boundary, approximately within the range of
3% ½TF �x2 and 3R ½TF �x1 . Overall, gene-perceptron
g3;1 represents the intersection of the hidden-layer
gene-perceptrons, with the classification area beyond
the threshold bounded by 2:5% ½TF �x2 %3:5
and 3R ½TF �x1 .



TABLE 2 Parameter configuration for the random structured sub-GRNN

Parameter

k1g1;1 k1g1;2 k1g1;3 k1g2;1 k1g3;1 k2g1;1 k2g1;2 k2g1;3 k2g2;1 k2g3;1
d1g1;1 d1g1;2 d1g1;3 d1g2;1 d1g3;1 d2g1;1 d2g1;2 d2g1;3 d2g2;1 d2g3;1
CNg1;1

CNg1;2
CNg1;3

CNg2;1
CNg3;1

KAg1;1
ð� 10�7Þ KAg1;2

ð� 10�7Þ KAg1;3
ð� 10� 7Þ KAg2;1

ð� 10�7Þ KAg3;1
ð� 10�7Þ

Parameter set 1 0.1 0.2 0.4 0.8 0.5 0.1 0.2 0.4 0.7 0.5
0.3 0.2 0.5 0.7 0.6 0.3 0.2 0.5 0.9 0.6
10 15 25 45 6 500 100 1000 50 50

Parameter set 2 0.1 0.2 0.4 0.8 0.5 0.1 0.2 0.4 0.7 0.5
0.3 0.2 0.5 0.7 0.6 0.3 0.2 0.5 0.9 0.6
10 15 25 45 30 50� 100� 1000� 10� 50�

The values marked with an asterisk (*) are the parameters that are modified. Units of CNi ;k1i ;k2i ;d1i ;d2i , and KAi are molecules;s�1;s�1;min�1;

h�1, and molecules, respectively).
In contrast, reducing the TF concentration at the
half-maximal RNA concentration ðKAi Þ for a gene-per-
ceptron as shown in parameter set 2, alters the classi-
fication areas for both gene-perceptron g1;1 and its
immediate intermediate gene-perceptron g2;1, as illus-
trated in Fig. 11 b. The classification area significantly
expands above the threshold, while dropping below it
when lowering the TF concentration corresponding
to the half-maximal RNA concentration KAi , as it is
inversely proportional to the maximum protein con-
centration ½P��i based on Eqs. 8 and 17. Alterations
made to gene-perceptron g1;1 notably impact g2;1,
the predecessor gene-perceptron in the GRNN. Other
FIGURE 11 Parameter configurations for the random structured sub-GR
perceptron and for (a) parameter set 1 and (b) parameter set 2 (g3;1 is t
gene-perceptrons from the previous layer).
hidden-layer gene-perceptrons g1;2 and g1;3 remain
unaffected between parameter sets 1 and 2. Param-
eter set 2 results in a leftward shift in the classification
area of the output-layer gene-perceptron g3;1
compared with set 1. In summary, parameter adjust-
ments lead to shifts in the decision boundary of the
output-layer gene-perceptrons; with decreased KAi

causing a leftward shift in the the classification area.
E. coli sub-GRNN classification analysis

This section demonstrates the classification areas for
the E. coli sub-GRNN illustrated in Fig. 13 a, which is
NN in Fig. 6. Each graph depicts the classification area of each gene-
he output gene-perceptron that combines all classification areas of
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TABLE 3 Parameter values used for the E. coli sub-GRNN

Parameter

Value

Ref.b1891 b1892 b1071

k1i ðs�1Þ 0.05 0.05 0.05 Milo et al. (47)

k2i ðs�1Þ 0.05 0.05 0.05 Gong et al. (48); Zhu and Dai (49)
CNi ðmoleculesÞ 45 45 45 Milo et al. (47); Schaechter and The View From

Here Group (50), Glauner et al. (51)

d1i ðmin�1Þ 0.2 0.2 0.2 Milo et al. (47)

d2i ðh�1Þ 3:5% 3:5% 3:5% Milo et al. (47)

KAi ð� 10�7Þ 75.30 (b3025) 71.10 (b3025) 306 (b1891) GSE65244
4261.64 (b3357) 2061.56 (b3357) 377 (b1892)

KAi of the corresponding TF is given in the table.
extracted from the trans-omic data of E. coli GRN (46).
The network consists of two input genes ðb3025;
b3357Þ, two hidden-layer gene-perceptrons (b1891
and b1892), and one output-layer gene-perceptron
ðb1071Þ, with their corresponding TF concentrations
½TF �i for i ¼ b3025;b3357;b1891, and b1892, and pro-
tein concentration ½P�b1071. In this specific GRNN, all
TFs are considered activators. For the output-layer
gene-perceptron ði ¼ b1071Þ, we employ Eq. 8, Eqs.
4 and 11 with TFs x1 ¼ b1891 and x2 ¼ b1892 to
calculate RNA, protein concentration change, and
maximum protein concentration ð½P��i Þ, respectively,
using the parameter values in Table 3.

Similar to the previous sub-GRNNs, we based the
stability analysis for this sub-GRNN on (14). For the
two input-layer gene-perceptrons (i ¼ b1891 and
b1892), we consider TFs j ¼ b3025 and b3357,
while for the output-layer gene-perceptron i ¼
b1071, we evaluate stability with the TFs j ¼
b1891 and b1891. In Figs. 8 and 10, we observe that
gene-perceptrons with an immediate activator exhibit
analogous stability fluctuations as the derivative of
the Lyapunov function dV

dt approaches _Vth ¼ � 1�
10�12. This behavior agrees also with the E. coli sub-
GRNN, which is shown in Fig. 12, which shows the
temporal stability for gene-perceptrons (g1;1; g1;2, and
12 Biophysical Reports 4, 100158, September 11, 2024
g2;1), which is influenced by the immediate activator
predecessors displaying uniform stability. Here, _Vth

is set to � 1� 10� 12 for each gene-perceptron. Ac-
cording to the figure, the derivative of the Lyapunov
function, dV

dt of gene-perceptrons b1891, b1892, and

b1071 approach _Vth ¼ � 1� 10� 12 at times tz32,
30, and 35, respectively. Overall, the analysis indicates
that, within the temporal window ðt %35Þ, all gene-
perceptrons in the sub-GRNN reach equilibrium,
ensuring network-wide stability and computational
reliability.

Once proving the stability of the sub-GRNN, we
ascertain the maximum-stable protein concentration
to obtain the classification ranges. To compute
maximum-stable protein concentration ð½P��i Þ for
gene-perceptrons i ¼ b1891 and 1892, we use Eq.
11 with the replacement of x1 and x2 by b3025
and b3357 as input genes. Furthermore, for the
computation of output concentrations ½P��i , concern-
ing gene-perceptron i ¼ b1071, Eq. 11 is used with
TFs as x1 ¼ b1891 and x2 ¼ b1892 with the assump-
tion that the Hill coefficient n is equal to 1 in all
simulations. Since KAi is the TF concentration corre-
sponding to the half-maximal RNA concentration,
there are two KAi values for each gene-perceptron
FIGURE 12 Temporal stability analysis for
each gene-perceptron within the E. coli sub-
GRNN indicated by vertical dashed lines marking
the time points when dV

dt ¼ _Vth , where
_Vth ¼ � 1� 10�12 for each gene-perceptron.



because each has two TFs, as shown in Fig. 13 a. The
time-series data of gene expression levels for E. coli
was used by first identifying the gene's half-maximal
expression level KAi and then finding the expression
level of its TF at that corresponding time point. For
the remaining parameters that were obtained from
the literature as shown in Table 3, the average value
was used.

The classification area from our analysis is shown in
Fig. 13 b. The classification area of gene-perceptron
b1892 has expanded toward the left when compared
with b1891, and this is because the expression level
of the half-maximal RNA concentration KAi of both
TFs (b3025 and b3357) corresponding to b1891
exceed the value of KAi for b1892. The classification
area above the threshold of b1892 is defined within
the limits of ½TF �b3025 R2:7 and ½TF �b3357 R2:7, in
contrast to b1891, which is approximately bounded
by ½TF �b3025 R3:5 and ½TF �b3357 R3:8. Consistent
with the decision boundary simulations performed
on the two generic multilayer sub-GRNNs (Figs. 9
and 11), the output-layer gene-perceptron ðb1071Þ of
this sub-GRNN also exhibited a intersection of classi-
fication areas driven by the input-layer gene-percep-
trons. In line with this, as gene-perceptron b1891 had
the majority of its classification area below the
threshold and gene-perceptron b1892 had the majority
above the threshold, the decision boundary of gene-
perceptron b1071 is approximately bounded by
½TF �b3025 R2:9 and ½TF �b3357 R 2:9. Overall, gene-per-
ceptrons within the sub-GRNN derived from E. coli
GRN exhibit tunable decision boundaries by selecting
subnetworks from the GRN at steady state and collec-
tively they function as multilayer sub-GRNNs show-
casing aspects of biological AI.
FIGURE 13 E. coli sub-GRNN classification analysis. (a) Fully connecte
two input genes ðb3025 and b3357Þ, two hidden-layer gene-perceptrons
(b) Classification regions of each gene perceptron within the E. coli sub-
CONCLUSION

Biological cells naturally perform a number of key
functionalities through their GRN, showcasing similar-
ities to ANN computing. Controlling chemical inputs
to the GRN and engineering of the genetic circuit
can inspire the development of wet-neuromorphic
computing systems. In this study, we considered a
sub-GRNN derived from a larger GRN, mathematically
modeling the transcription and translation process to
showcase the nonlinear sigmoidal behavior of gene
expressions resulting in the transformation of genes
into gene-perceptrons. Due to this sigmoidal behavior
of gene expressions, we established nonlinear classi-
fiers using different sub-GRNNs. To ensure reliable
computing with minimal concentration fluctuations,
stability analysis was conducted for the sub-GRNN us-
ing the eigenvalue method and Lyapunov's stability
theorem. The latter determining the time at which
the stability is achieved.

Three nonlinear classifiers were developed using
two multilayer sub-GRNNs and a sub-GRNN extracted
from the E. coli GRN. From the simulation for different
parameter settings for the two multilayer sub-GRNNs
revealed that the TF concentration at the half-maximal
gene expression level KAi , has a significant impact on
the shifting of the classification boundary. Based on
the outcomes of the stability analysis and simulations,
we can conclude that the GRN exhibits NN properties
as the gene-perceptron demonstrated sigmoidal-like
behavior for multiple inputs and tunable decision
boundaries. Further, by engineering living cells it is
possible to obtain desired nonlinear classifiers based
on our application. Our model has the potential to
transform GRNs into GRNNs when the suitable
d sub-GRNN derived from the E. coli GRN. This network consists of
(b1891 and b1892), and one output-layer gene-perceptron ðb1071Þ.
GRNN, with gene-perceptron b1071 as the output.
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ALGORITHM 1 Gene-perceptron stability analysis using

parameters are established for the dual-layered chem-
ical reaction model.
eigenvalue method

Input: RNA and protein concentration changes ., gð½R�i ; ½P�iÞ,
protein degradation rate d2i , RNA degradation rate d1i , transla-
tion rate k2i , i

th gene-perceptron.
Output: eigenvalues l1, l2 and stability condition.
1 f ; g) DefineDynamics(f ;g;d1i ;d2i ;k2i );
2 Ji) CalculateJacobian(f ;g;d1i ;d2i );
3 l1; l2) ComputeEigenvalues(Ji);
4 CheckStability(l1;l2);
5 Function DefineDynamics(d½R�idt ;

d½P�i
dt ):

6 Define concentration dynamics from Eqs. 1
and 4:

ð1Þ0d½R�i
dt

¼ f
�½R�i; ½P�i�; (Equation 22)
APPENDIX

RNA and protein concentration model

To model the RNA and protein concentration change, mass-balance
differential equations were used based on Hill function (37). Tran-
scription of a gene-perceptron begins with TF and RNA polymerase
binding to the promoter, which is modeled by

½Prom:TF � ¼ CNi

½TF �n
½TF �n þ Kn

Ai

; (Equation 19)

where ½TF �;n;KAi ; ½Prom:TF�, and CNi are concentration of TFs, Hill co-
efficient, TF concentration corresponding to half-maximal RNA con-
ð4Þ0d½P�i
dt

¼ g
�½R�i; ½P�i�: (Equation 23)

return f ;g;

7 Function CalculateJacobian(f ;g;d1i ;d2i ;k2i ):

8 Calculate Jacobian Ji :

Ji ¼

2
6664

vf
v½R�i

vf
v½P�i

vg
v½R�i

vg
v½P�i

3
7775 ¼

�� d1i 0
k2i � d2i

�
:

(Equation 24)

return Ji ;

9 Function ComputeEigenvalues(Ji):

10 Compute the eigenvalues l1; l2 of Ji using
jJi � lIj ¼ 0;
11 return l1;l2;

12 Function CheckStability(l1;l2):

13 if l1 < 0 and l2 < 0 then
14 The gene-perceptron is stable;
centration, complex produced after TFs bind to promoter and gene
product copy number, respectively. The complex, Prom:TF tran-
scribes into RNA at the rate of k1i and subsequently RNA degrades
at the rate of d1i , which can be modeled as

d½R�i
dt

¼ k1i ½Prom:TF � � d1i ½R�i: (Equation 20)

By plugging Eqs. 19 in 20 we can obtain Eq. 1. In contrast, if a
gene-perceptron is repressed by a TF, Eq. 19 can be expressed as

½Prom:TF � ¼ CNi

Kn
Ai

Kn
Ai
þ ½TF �n : (Equation 21)

Since the initial RNA concentration transcribed by a gene-percep-
tron is ½R�ið0Þ (i.e., ½R�iðt ¼ 0Þ ¼ ½R�ið0Þ), the solution of Eq. 1 as
given by Eq. 2 can be derived using the integrating factor, IF ¼
e
R

d1i dt ¼ ed1i t , where t and d1i are time and RNA degradation
rate, respectively. Transcribed RNA is then translated into protein
at the proteome level. To solve the differential equation of protein
concentration change for Eq. 4 we can follow two steps. Step 1: re-
placing RNA concentration ð½R�iÞ in Eq. 4 with the solution obtained
for the differential equation of RNA concentration change from Eq.

2. Step 2: using the integrating factor ðIF ¼ e
R

d2i dt ¼ ed2i tÞ and
initial RNA concentration ð½R�ið0ÞÞ, as well as initial protein concen-
tration ½P�ið0Þ (i.e., ½P�iðt ¼ 0Þ ¼ ½P�ið0Þ), we can obtain the equation

for the protein concentration in Eq. 5. By setting d ½R�i
dt ¼ 0, we can

obtain maximum-stable RNA concentration at the steady state
ð½R��i Þ expressed by Eq. 6. In addition, protein concentration at the
steady state ð½P��i Þ can be represented by Eq. 7, which is derived

by plugging d ½P�i
dt ¼ 0 in Eq. 4.
15 else
16 The gene-perceptron is unstable;
17 end
Determining gene-perceptron stability

In this section, we derive the stability of a gene-perceptron using ei-
genvalues (Algorithm 1) of differential equations for RNA and pro-
tein concentration change Eqs. 1 and 4 and using Lypunov's
stability theorem. The first step encompasses the DefineDynamics
function, which formalizes alterations in RNA and protein concentra-
tions over time, encapsulating the system's concentration dynam-
ical Eqs. 1 and 4. While our study primarily addresses gene
transcription as detailed in Eq. 1, the same approach is applicable
to the repression process described in Eq. 3. Subsequently, the algo-
rithm transitions to the CalculateJacobian function, where the Jaco-
bian matrix, Ji , is computed Eq. 24. Derived from partial derivatives
of the concentration dynamical equations concerning RNA and pro-
14 Biophysical Reports 4, 100158, September 11, 2024
tein concentrations Eqs. 1 and 4 , this matrix sheds light on the sys-
tem's local behavior around equilibrium points Eqs. 6 and 7.
Following this, the ComputeEigenvalues function is invoked to ascer-
tain the eigenvalues, l1 and l2, of the Jacobian matrix. Finally, the
CheckStability function evaluates the stability of the gene-perceptron
based on the calculated eigenvalues ðl1 ¼ � d1i ;l2 ¼ � d2i Þ. Sta-
bility is confirmed if both eigenvalues are negative ði:e:;d1i ;d2i >0Þ,
indicating that deviations from equilibrium will decay over time,
eventually leading the system to return to its equilibrium state.



ALGORITHM 2 Analyzing temporal stability using Lyapunov
function

Input: RNA and protein concentration changes f ð½R�i ; ½P�iÞ, gð½R�i ;
½P�iÞ, protein degradation rate d2i , RNA degradation rate d1i ,
translation rate k2i , transcription rate k1i , gene product copy
number CN , TF concentration for half-maximal RNA concentra-
tion KAi , a threshold, Vthi at which

dV
dt is minimized, Hill coefficient

n for ith gene-perceptron.
Output: Time point ðtÞ at which the derivative of the Lyapunov
function dV

dt ¼ _Vth.
1 Function DefineLyapunovFunction(½R�i ; ½P�i ; ½R��i ; ½P��i ):

2 Vð½R�i ; ½P�iÞ)ð½R�i � ½R��i Þ2 þ ð½P�i � ½P��i Þ2 as
given by Eq. 25;

3 return V ;

4 Function CalculateDotV(V, ½R�i ; ½P�i ;CNi ; k1i ;d1i ;d2i ; k2i ; ½TF �;KAi ;

n; t):

5 Calculate _Vð½R�i; ½P�iÞ as given by Eqs. 26 and
27;

6 return _V ;

7 Function FindMinT( _V , _Vth):

8 if _V% _Vth then
9 t)argmintj _V � _Vthj;
10 return t;
11 end
12 else
13 return “Lyapunov stability conditions are not

satisfied”;
14 end

15 Function Main():

16 V) DefineLyapunovFunction(½R�i , ½P�i , ½R��i ,
½P��i );

17 if V >0 and V ¼ 0 when ½R�i ¼ ½R��i and
½P�i ¼ ½P��i then

18 _V) CalculateDotV(½R�i , ½P�i , CNi , k1i , d1i , d2i , k2i ,
TF, KAi , n, t);

19 t) FindMinT( _V);
20 return t;
21 end
22 else
23 return “Lyapunov stability conditions are not

satisfied”;
24 end
Conversely, if any eigenvalue is nonnegative, the gene-perceptron is
labeled as unstable (52), suggesting that deviations from equilib-
rium may amplify, hindering the system from reverting to its original
state.

Algorithm 2 commences by defining the Lyapunov function (53)
(DefineLyapunovFunction), utilizing inputs such as RNA concentra-
tion ð½R�iÞ, protein concentration ð½P�iÞ, RNA equilibrium concentra-
tion ð½R��i Þ, and protein equilibrium concentration ð½P��i Þ, to compute
the Lyapunov function ðVð½R�i ; ½P�iÞÞ as follows:
V
�½R�i; ½P�i� ¼ �½R�i � ½R��i

�2 þ �½P�i � ½P��i
�2
:

(Equation 25)

This computed V is then processed by the CalculateDotV function,
which takes additional parameters including CNi , k1i , k2i , d1i , d2i , TF
concentration ð½TF�Þ, KAi , n, and time ðtÞ. It calculates the derivative
of V

�
dV
dt

�
as follows:

_V
�½R�i; ½P�i� ¼ dV

dt
¼ vV

v½R�i
:
d½R�i
dt

þ vV
v½P�i

:
d½P�i
dt

:

(Equation 26)

By plugging d½R�i
dt and d½P�i

dt from Eqs. 1 and 4, differentiating Eq. 25
with respect to ½R�i and ½P�i to obtain vV

v½R�i and
vV
v½P�i and finally replacing

½R��i ; ½P��i ; ½R�i and ½P�i ; with Eqs. 6, 7, 2, and 5 we get Eq. 26, which is
represented as follows:

ð26Þ0dV
dt

¼ � C2
Ni
$½TF �2n$k21i$eð

�2tðd1iþd2i ÞÞ

d1i d2i

�
½TF �n þ Kn

Ai

�2�
d1i � d2i

�2$
�
d3
2i
$ eð2d2i tÞ � 2d1i d

2
2i
$ eð2d2i tÞ

þ d2
1i
d2i $ e

ð2d2i tÞ
�
þ
�
d1i k

2
2i
$ eð2d1i tÞ

þ d2i k
2
2i
$ eð2d2i tÞ

�
�
�
d1i k

2
2i
$ eðtðd1iþd2i ÞÞ

þ d2i k
2
2i
$ eðtðd1iþd2i ÞÞ

�
;

(Equation 27)

where we assume initial RNA concentration of zero ð½R�ið0Þ ¼ 0Þ and
initial protein concentration of zero ð½P�ið0Þ ¼ 0Þ. Then, this calcu-

lated dV

dt is forwarded toFindMinT function.When dV
dt %

_Vth , theFindMinT
function calculates the time point t, where the absolute difference be-
tween _V and _Vth is minimized, denoted as t)argmintj _V � _Vthj, signi-
fying the moment at which the derivative of the Lyapunov function dV

dt

approaches _Vth. Otherwise, it indicates that the conditions of the Lya-
punov stability theorem are not satisfied. Within the main() function,
we systematically invoke the specified functions: initially, the Define-
LyapunovFunction is called to establish V , followed by a verification
of Lyapunov function criteria, specifically V >0 and V ¼ 0 under con-
ditions ½R�i ¼ ½R��i and ½P�i ¼ ½P��i . Upon satisfying these conditions,
the CalculateDotV function is utilized to determine dV

dt , which in turn in-
forms the calculation of t via FindMinT. Conversely, if the Lyapunov
functionconditionsarenotmet, it indicates that theLyapunovstability
conditions are not satisfied.
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