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Allee effects introduced by density dependent phenology14

15

Abstract We consider a hybrid model of an annual species with the timing of a stage transition gov-16

erned by density dependent phenology. We show that the model can produce a strong Allee effect as17

well as overcompensation. The density dependent probability distribution that describes how population18

emergence is spread over time plays an important role in determining population dynamics. Our exten-19

sive numerical simulations with a density dependent gamma distribution indicate very rich population20

dynamics, from stable/unstable equilibria, limit cycles, to chaos.21

Keywords Phenology · Allee Effect · Overcompensation22

1 Introduction23

Phenology, or seasonal biological timing, is an issue of widespread interest in ecology. Biologists24

studying phenology seek to understand how temporal variation in a particular transient process (e.g., a25

pulse of births, or a transition between life stages), matters to the dynamics of the larger system (Miller-26

Rushing et al. 2010; Lynch et al. 2014; Bewick et al. 2016; Encinas-Viso et al. 2012; Chmura et al. 2019).27

In ecological systems, changes in phenology can involve changes in the start time of a process within28

a season and/or changes in the temporal distribution (i.e., the synchrony) of that process (CaraDonna29

et al. 2014; Calabrese and Fagan 2004; Chmura et al. 2019).30

As but one example, phenology plays a particularly important role in the dynamics of invasive plants31

and animals, which is an area of huge interest in applied ecology (Keller and Shea 2021). For instance,32

in-depth investigations have explored the linkage between phenological asynchrony and invasion success33

for a variety of forest species (e.g., Logan and Powell 2001; Ward and Masters 2007; Robinet et al. 2008).34

For example, in the case of the invasion of non-native gypsy moth (Lymantria dispar), asynchrony among35

breeding adults arises from a variety of biological mechanisms, such as variation in development rates36

among juvenile insects (Robinet et al. 2007, 2008; Gascoigne et al. 2009). This reproductive asynchrony37

creates opportunities for some females to go mateless, and this reduced level of reproduction slows the rate38

of spatial spread of the population (Johnson et al. 2006; Tobin et al. 2007). In some cases, such variation39

in developmental rates may be genetically driven (Gray 2004). Alternatively, phenological variation may40

arise through small-scale differences in environmental conditions (e.g., temperature, elevation, or other41
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microclimatic features; Walter et al. 2015), which cause individuals to develop at different rates, even42

over distances linked by dispersal.43

In the past, it has been convenient to model phenology using time-dependent functions (i.e., creating44

non-autonomous equations) because this created a tight conceptual linkage to the kinds of empirical45

data that motivated the research (Calabrese et al. 2008; Fagan et al. 2010). For example, ecologists rou-46

tinely record the onset and duration of particular life stages (e.g., adult butterflies and flowering plants),47

and such data lend themselves to being summarized as a function of time (e.g., as a beta or gamma48

distribution). However, phenology may be a more complicated process than that suggested by a simple49

time-dependent function. Indeed, a variety of studies, particularly in flowering plants, suggest a role for50

density to shape phenology within a population (Thomas and Bazzaz 1993; Donohue et al. 2000; Weinig51

et al. 2006; Vermeulen 2015). Both advances and delays in phenological distributions relative to seasonal52

benchmarks may be driven by density. For example, for several plants such as Phaseolus Vulgaris L.53

(Abubaker 2008) and the cleistogamous (closed, usually self-pollinating) flowers of Impatiens capensis54

(Schmitt et al. 1987), low densities can delay flowering seasonally whereas high densities can advance55

flowering. In (Schmitt et al. 1987) they hypothesize that this could be due to a stress related threshold56

needed to trigger flowering. Plant density has an opposite effect on the chasmogamous (open, usually57

cross-pollinating) flowers of Impatiens capensis (Schmitt et al. 1987), with higher densities causing later58

flowering. Because population density can affect phenology, in this paper we switch from modeling phe-59

nology as a purely time-dependent process to modeling phenology as both time- and density-dependent.60

This switch to a model in which phenology depends on density is advantageous because it allows us to61

explore the mechanistic foundation of phenology-induced Allee effects in more detail. Previous work (e.g.,62

Calabrese et al. 2008; Rhainds and Fagan 2010; Lynch et al. 2014) all discussed phenology-dependent63

Allee effects as the indirect consequence of male and female reproductive activity being misaligned in64

time. Here, we forego a two-sex modeling approach in favor of one that in which the effect of density is65

directly modeled.66

A demographic Allee effect is a positive relationship between the overall individual fitness (often67

quantified by the per capita population growth rate) and population size or density (Courchamp et al.68

2008). A demographic Allee effect can be subdivided into two categories, a strong Allee effect and a69

weak Allee effect, with the difference being that in the case of a strong Allee effect there exists a density70

threshold that must be overcome for the population to persist.71

Several well known mechanisms for the Allee effect exist, including mate limitation (e.g., Berec et al.72

2007; Davis et al. 2004), cooperative defense (e.g., Courchamp et al. 2008; Mooring et al. 2004; Clutton-73

Brock et al. 1999), cooperative feeding (e.g., Berec et al. 2007), and environmental conditioning (e.g.,74
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Rinella et al. 2012; Kramer et al. 2009). Here, we explore a different, arguably new, mechanism for75

generating the Allee effect: density dependent phenology. Several biological scenarios would fit within76

this framework. For example, crowding experienced by adults could induce different levels of so-called77

‘maternal effects’ (Roach and Wulff 1987) in their offspring (e.g., higher density adults may have offspring78

that grow more slowly because crowded adults have fewer resources to allocate to each of their offspring).79

One of the most widely known mathematical treatments of maternal effects are those of Turchin (1990),80

in which maternal crowding introduces a form of lagged density dependence in population timeseries81

of forest insects. If maternal effects influence offspring growth rates rather than simply mortality rates,82

it creates a potential linkage between growing conditions in one generation and phenology in the next83

generation as has been shown for winter moths Operophtera brumata (Van Asch et al. 2010). Such effects84

are similar to so-called scramble competition in population ecology (Nicholson 1954) except that the85

focus is not on survivorship as the metric of success but rather development rate. Understanding of86

maternal effects is also well developed in some plant species (Galloway 2002; Donohue 2009; Galloway87

and Burgess 2009) wherein the growing conditions of adult plants carry over to affect several measures88

of performance in the next generation, including the phenology of seed germination.89

2 The Model90

We study a hybrid dynamical model (Eskola and Geritz 2007; Eskola and Parvinen 2010; Mailleret91

and Lemesle 2009; Lewis and Li 2012; Otto et al. 2018) that models the population dynamics of an annual92

species. As outlined above, relevant species include both annual plants and insects, but we will relate the93

model to an annual plant system and use relevant biological language. We use an ordinary differential94

equation to consider within-season phenology as a continuous process and couple that with a difference95

equation that governs the transition between years. In keeping with our framework of density-mediated96

maternal effects, we focus on the process of seed production, examining how maternal density shapes97

the phenology of that process. We do not explicitly model change in size of seeds, only their population98

density.99

We assume that seed production takes place for 0 < t ≤ 1 each year. In year n, An denotes the100

density of reproductive adult plants at time t = 0, and J(An, t) denotes the seed population density in101

the reproduction season 0 < t ≤ 1. We assume that each adult produces an average of α seeds. We use102

g(An, t) to represent the density-dependent probability density function, where the fraction of the adult103

population which produce their seeds at time t is given by g(An, t). The density of seeds at t = 0 is 0 and104

we assume the adults experience a death rate of µ for 0 < t ≤ 1. The rate of seed production at time t105
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in the nth season is thus given by αe−µtAng(An, t). This can be explained by noting that without adult106

plant death, αAng(An, t) would be the number of seeds produced at time t, however by time t only e−µt
107

of the adults that would produce seeds at time t are still viable. Natural death for seeds is linear with the108

coefficient ν and additional seeds mortality mediated through seed crowding (Janzen 1970; Connell 1971)109

which is quadratic with the coefficient β according to the law of mass action (see, e.g., Thieme 2003).110

At the end of the reproductive season (t = 1), all the adults die, and the population of the following111

season is recruited from the seeds that survive the winter. We use γ to denote the product of the winter112

survival rate of the seeds, the conversion rate of the juveniles from the seeds, and the survival rate of the113

juveniles plants converting to the adults. Adults and seeds from the previous season are assumed to not114

carry over to the next season. The population dynamics are governed by115

Jt = αAne
−µtg(An, t)− νJ − βJ2,

J(An, 0) = 0,

An+1 = γJ(An, 1).

(1)

The probability distribution g reflects intra-year seasonal variation in phenology; that is, the function116

captures when reproduction (or more generally, a demographic process) starts and how asynchronous life117

stages are within a reproduction season. The phenology function g depends on the adult population in118

the previous year. This is consistent with the idea that density-dependent phenology can arise through119

maternal effects, as was discussed in the Introduction. Specifically, we envision scenarios in which the120

local crowding conditions experienced by adult plants influence their growth rate and thus the time in121

the season at which they produce mature seeds. In general g(A, t) is defined for 0 ≤ t < ∞. If the upper122

bound of the support of g(A, t) is bigger than 1, some organisms cannot reproduce. This leads to the123

case where changes in phenology due to climate change lead to a localized species becoming invasive or124

an invading species becoming extinct.125

Our goal is to show that model (1) can produce a strong Allee effect as well as overcompensation.126

Analytical results regarding the presence of an Allee effect are given in the next section. In Section 3, nu-127

merical simulations are provided to demonstrate the existence of Allee effect and overcompensation with128

a density dependent gamma distribution. Section 4 includes some concluding remarks and discussions.129

3 Analytical results130

In this section we present analytical results regarding the existence of an Allee effect in model (1). We131

begin with the following hypothesis.132
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Hypothesis 1 For A ≥ 0 and 0 ≤ t ≤ 1, g(A, t) is nonnegative and bounded,
∫∞
0

g(A, t)dt = 1, and133

g(A, t) has continuous partial derivatives with respect to A and t up through order 2.134

This hypothesis indicates that g(A, t) is a smooth density dependent probability distribution of time.135

Under Hypothesis 1, model (1) is well-posed. The right-hand side of the differential equation in (1)

is locally Lipschitzian in J as −νJ − βJ2 is continuously differentiable in J . Theorem 3.1 - Theorem 3.3

and Exercise 3.4 in Chapter 1 of Hale (1980) show that the initial value problem

Jt = αe−µtg(A, t)A− νJ − βJ2, J(A, 0) = 0,

has a unique solution J(A, t), with the property that ∂2

∂A2 J(A, t) is continuous for 0 ≤ t ≤ 1 and A ≥ 0.

Let

f(A) = γJ(A, 1).

Clearly f(0) = 0.136

We summarize these results in the following proposition.137

PROPOSITION 1 Assume that Hypothesis 1 holds. Then An+1 = f(An) in (1) where f ′′(A) is contin-138

uous for A ≥ 0 and f(0) = 0.139

In general the differential equation in (1) cannot be analytically solved, and consequently the function

f cannot be explicitly given. We are, however, able to use the connection between f and g(A, t) to establish

explicit conditions for the presence of an Allee effect and to determine when the Allee effect is strong.

An Allee effect arises when the per-capita offspring number increases with population density over some

range for small populations, i.e., f(A)
A increases for small positive A. Note

(
f(A)

A

)′

=
f ′(A)A− f(A)

A2
, (f ′(A)A− f(A))′ = f ′′(A)A, (f ′(A)A− f(A))|A=0 = 0.

This and continuity of f ′′(A) show that for small positive A, the sign of ( f(A)
A )′ is same as that of f ′′(0),140

if f ′′(0) ̸= 0. Therefore for small positive A, f(A)
A increases if f ′′(0) > 0 and f(A)

A decreases if f ′′(0) < 0.141

On the other hand, 0 is asymptotically stable for f if |f ′(0)| < 1.142

The following lemma provides explicit formulas for both f ′(0) and f ′′(0).143

Lemma 1 Assume that Hypothesis 1 holds. Then144

f ′(0) = αγ

∫ 1

0

g(0, t)e−µt−(1−t)νdt, and

f ′′(0) = 2αγ

∫ 1

0

([
∂

∂A
g(A, t)

] ∣∣∣
A=0

)
e−µt−(1−t)νdt

− 2α2βγ

∫ 1

0

g(0, t)e−µt−(1−t)ν

∫ 1

t

e−νs

∫ s

0

g(0, r)e−µreνrdrdsdt.

145



Allee effects introduced by density dependent phenology 7

The proof for this lemma is provided in the Appendix.146

This lemma shows f ′(0) ≥ 0. We therefore have that 0 is asymptotically stable if f ′(0) < 1. Recall147

f ′′(0) > 0 indicates the presence of an Allee effect. These and Lemma 1 lead to the following theorem.148

Theorem 1 Assume that Hypothesis 1 is satisfied. The following statements hold for model (1):149

(i) The equilibrium 0 is asymptotically stable if150

151

152

αγ

∫ 1

0

g(0, t)e−µt−(1−t)νdt < 1. (2)

(ii) There exists an Allee effect if153

154

155 ∫ 1

0

([
∂

∂A
(e−µtg(A, t))

] ∣∣∣
A=0

)
e−µt−(1−t)νdt

> αβ

∫ 1

0

e−µtg(0, t)e−(1−t)ν

∫ 1

t

e−νs

∫ s

0

e−µrg(0, r)eνrdrdsdt.

(3)

156

157

The condition in (i) indicates that the equilibrium 0 is asymptotically stable if for a given g(A, t) one158

of α, γ is small or one of µ and ν is large, or if for relatively large α and γ relatively small µ and ν, the159

distribution of g(A, t) at A = 0 is relatively low on [0, 1] in the sense of (2).160

The condition in (ii) shows there exists an Allee effect if for appropriate parameter values the distri-161

bution of ∂
∂A (e−µtg(A, t)) at A = 0 is relatively high and the distribution of g(A, t) at A = 0 is relatively162

low on [0, 1].163

The inequality in (ii) is a sharp condition for the existence of Allee effect. It is equivalent to f ′′(0) > 0.164

If it is reversed, there is no Allee effect. In the case of that g(A, t) is density-independent, i.e., g(A, t) =165

g(t), the left hand side of the inequality is zero and hence this inequality is reversed, so that there is no166

Allee effect in (1).167

Under conditions (2) and (3), in order for (1) to have a strong Allee effect, there must exist an Allee

threshold, which is determined by the presence of a positive equilibrium. We develop necessary and

sufficient conditions for the existence of a positive equilibrium. Let

B(A, t) = γJ(A, t)/A,
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with A > 0. Under condition (2) (which implies f(A) < A for small positive A), a sufficient and necessary168

condition for f(A) to have a positive equilibrium is that there exists A > 0 such that γJ(A, 1) = f(A) >169

A, or equivalently B(A, 1) > 1. The initial value problem (1) with An replaced by A shows170

Bt = αγe−µtg(A, t)− νB − β

γ
AB2, B(A, 0) = 0, (4)

or equivalently

(B(A, t)e
∫ t
0
(ν+ β

γ AB(A,s))ds)′ = αγg(A, t)e−µte
∫ t
0
(ν+ β

γ AB(A,s))ds, B(A, 0) = 0.

Integration shows that B(A, t) satisfies the integral equation171

B(A, t) = T [B](A, t) := αγ

∫ t

0

g(A, τ)e−µτ−(t−τ)ν− β
γ A

∫ t
τ
B(A,s)dsdτ. (5)

This indicates that the solution B(A, t) of (4) is a fixed point of the integral operator T . T [B] is well172

defined for any nonnegative continuous function B(A, t) for t ∈ [0, 1]. An important property of T is173

T [B](A, t) ≤ T [B̃](A, t), if B(A, t) ≥ B̃(A, t); T [B](A, t) ≥ T [B̃](A, t), if B(A, t) ≤ B̃(A, t). (6)

This is due to the fact that the integrand in (5) decreases in B.174

We construct a sequence of functions using T to approximate B(A, t). Consider Bn(A, t) given by175

Bn+1(A, t) = T [Bn](A, t), B0(A, t) ≡ 0. (7)

Here each Bn(A, t) can be computed explicitly for a given n.176

The following proposition shows that the sub-sequence B2n(A, t) increases to B(A, t) and the sub-177

sequence B2n+1(A, t) decreases to B(A, t).178

PROPOSITION 2 For n = 0, 1, 2, ..., B2(n+1)(A, t) ≥ B2n(A, t) and B2(n+1)+1(A, t) ≤ B2n+1(A, t), and179

furthermore lim
n→∞

B2n(A, t) = lim
k→∞

B2n+1(t) = B(A, t).180

The proof for Proposition 2 is provided in the Appendix.181

We have the following theorem regarding the existence of a positive equilibrium and a strong Allee182

effect.183

Theorem 2 Assume that Hypothesis 1 holds. The following statements hold:184

i. There exists a positive equilibrium if there is A > 0 and n0 ≥ 1 such that B2n0(A, 1) > 1.185

ii. There exists no positive equilibrium if there is n0 ≥ 0 such that for all A > 0, B2n0+1(A, 1) < 1.186
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iii. Assume in addition the conditions (2)-(3) hold. If there exists a positive equilibrium, then the smallest187

positive equilibrium represents the Allee threshold.188

The proof for Theorem 2 is provided in the Appendix.189

In general, it is difficult to find Bn(A, t) when n is large. However it is easy to find Bn(A, t) when n

is small. Specifically using (7) we have

B1(A, t) = αγ

∫ t

0

g(A, τ)e−µτ−(t−τ)νdτ, B2(A, t) = αγ

∫ t

0

g(A, τ)e−µτ−(t−τ)ν− β
γ A

∫ t
τ
B1(A,s)dsdτ.

We have the following corollary of Theorem 2, which provides relatively simple sufficient conditions for190

the existence and nonexistence of a positive equilibrium.191

Corollary 1 Assume that Hypotheses 1 holds. The following statements hold:192

i. There exists a positive equilibrium if there is A > 0 such that

αγ

∫ 1

0

g(A, τ)e−µτ−(1−τ)ν− β
γ A

∫ 1
τ
B1(A,s)dsdτ > 1.

ii. There exists no positive equilibrium if

αγ

∫ 1

0

g(A, τ)e−µτ−(1−τ)νdτ < 1

for all A > 0.193

From this Corollary and Theorem 2 (iii), model (1) has a strong Allee effect if (2)-(3) and the condition194

in Corollary 1 (i) are satisfied.195

The condition in (i) indicates that there there exists a positive equilibrium if for relatively large α196

and γ and relatively small µ, ν and β, the distribution of g(A, t) for some A > 0 is large on [0, 1] in a197

certain sense.198

The condition in (ii) shows that there is no positive equilibrium if for a given g(A, t) one of α, γ is199

small or one of µ and ν is large, or if for relatively large α and γ relatively small µ and ν, the distribution200

of g(A, t) for all A is relatively low on [0, 1] in a certain sense.201

4 Numerical simulations202

The MatLab code used in the simulations can be viewed at203

https://github.com/glotto01/density-dependant-phenology.204

 https://github.com/glotto01/density-dependant-phenology
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We use the gamma distribution to describe the density dependant phenology. Among the ad-205

vantages of the gamma distribution are that it is continuous, has non-negative support, and the mean206

and variance can be independently controlled. Other advantages of gamma distributions without density207

dependence in the context of phenologically explicit models are discussed at length elsewhere (Calabrese208

et al. (2008)), and more applications of gamma distributions for phenology can be found in Bewick et al.209

(2016), Fagan et al. (2010), and Fagan et al. (2014). A density dependent gamma distribution takes the210

form of211

g(A, t) =
tk−1 e−

t
θ

Γ (k) θk
,

where the shape parameter k and scale parameter θ depend on A. The mean of the distribution is given212

by τ = k θ and the variance is given by σ2 = k θ2. It follows that k = τ2

σ2 and θ = σ2

τ . We will assume213

that the variance, σ2 remains fixed regardless of the density, and that the mean time of production for214

seeds, τ , is given by a piecewise linear function, τ = max(σ, aA+ b). This linearity is motivated by Cao215

et al. (2016), where the mean day of flowering vs density is found to be roughly linear in the study of216

flowering phenology and sexual reproduction in the ephemeral herb Cardamine hirsuta. To insure our217

assumptions that g(A, t) is continuous and bounded hold, it’s necessary for k ≥ 1, which in turn requires218

τ ≥ σ. It is also biologically reasonable to assume there is a lower limit on the mean production time of219

seeds.220

Including this assumption we obtain

g(A, t) =
t

(
max(σ,aA+b)2−σ2

σ2

)
e
−t

(
σ2

max(σ,aA+b)

)

Γ
(

max(σ,aA+b)2

σ2

)(
σ2

max(σ,aA+b)

)(
max(σ,aA+b)2

σ2

) .

We see that although the mean seed production time is linear in A, the phenology function g and model221

(1) are highly non-linear in A.222

With these definitions of g, Theorem 1-(i) states that if

αγ e−ν

(
1 +

σ2(µ− ν)

max(σ, b)

)−max(σ,b)2

σ2

1−
Γ
(

max(σ,b)2

σ2 , σ2

max(σ,b) + µ− ν
)

Γ
(

max(σ,b)2

σ2

)
 < 1

then the equilibrium 0 is asymptotically stable. Here Γ (·, ·) refers to the upper incomplete gamma

function. The triple integral of part-(ii) of Theorem 1 does not admit a closed form solution for this

definition of g. The integral in Corollary 1-(i) does not admit a closed form for this definition of g.
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Fig. 1: The phenology distributions g(A, t) for several population levels with σ = 0.15, a = 0.05 b = 0.5.

Corollary 1-(ii) states that no positive equilibrium exists if

αγ e−ν

(
1 +

σ2(µ− ν)

max(σ, aA+ b)

)−max(σ,aA+b)2

σ2

1−
Γ
(

max(σ,aA+b)2

σ2 , σ2

max(σ,aA+b) + µ− ν
)

Γ
(

max(aA+σ,b)2

σ2

)
 < 1

for all A > 0. A closed form for the maximum value of the expression on the left hand side of the223

inequality does not appear to exist.224

In Figure 1 we show how the phenology distribution varies with population when mean seeding225

time increases with density. In this figure the standard deviation is σ = 0.15 and the mean seeding226

time is τ = max(0.15, 0.05A+0.5) = 0.05A+0.5. We see that as the population increases the phenology227

distribution gets translated to the right, and for larger populations a significant portion fails to reproduce228

in the season.229

In Figure 2 we show how the phenology distribution varies with population when mean seeding230

time decreases with density. In this figure the standard deviation is σ = 0.15 and the mean seeding231

time is τ = max(0.15,−0.3A + 0.5). Note that τ will become fixed at 0.15 for A > 5
3 . We see that as232

the population increases the phenology distribution shifts to the left. Unlike Figure 1, we see that the233

skewness increases as the distribution shifts to the left due to the support being non-negative. We also234

note that for A > 5
3 , the distribution becomes an exponential distribution.235
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Fig. 2: The phenology distributions g(A, t) for several population levels with σ = 0.15, a = −0.3, b = 0.5.

For results related to other distributions such as the uniform and generalized beta we refer the reader236

to the PhD thesis of Timothy Pervenecki (Pervenecki 2019).237

It should be noted that by substituting J̃(A, t) = γJ(A, t) into Model 1 we obtain238

J̃t = γαAne
−µtg(An, t)− νJ̃ − β

γ
J̃2,

J̃(An, 0) = 0,

An+1 = J̃(An, 1).

Hence, without loss of generality, we may consider Model 1 with γ = 1.239

4.1 Case 1: high seed mortality240

In this simulation we assume the seed mortality rate is higher than that of the adults. The parameters241

used here are α = 10, µ = 1, ν = 5, β = 0.1, σ = 0.15, b = 0.5, γ = 1. We use the parameter a as242

a bifurcation parameter to investigate how the density dependence of the mean seed production time243

effects the population dynamics. A positive a represents seed production being delayed with increased244

population density, whereas negative a represents seed production being advanced with increased density.245

In Figure 3 we plot the growth function for several values of a. We see that a strong Allee effect and246

overcompensation occurs. The Allee effect can be understood in terms of higher populations delaying seed247

production, and thus exposing the seeds to less time at the higher mortality rate. The overcompensation248

can be understood by noting that large populations delay seed production to the point that much of the249

distribution falls outside of the season. This can be seen with g(10, t) in Figure 1. It is worth noting the250

condition for the existence of a positive equilibrium given by the inequality in Corollary 1 is met for all251
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4 panels on Figure 3. For example, when a = 0.05 the integral on the lefthand side is greater than 1 for252

3.02 < A < 11.01 achieving a maximum of 1.57 at A = 7.52.253

In Figure 4 we plot the equilibrium values of A. The blue curve is the stable extinction equilibrium,254

the red curve is the unstable Allee equilibrium. The black curve is the upper equilibrium which is stable255

where solid and unstable where dashed. Since the seeds face a rate of mortality five times higher than256

the adults, we would expect that delayed seed production would be favorable for the population so long257

as a significant fraction of the distribution falls within the 0 ≤ t ≤ 1 season. In Figure 4 we see that258

there is no positive equilibrium until a is larger than roughly 0.01. At this point very large populations259

are able to delay seed production extensively enough that survival is possible. As a becomes larger,260

smaller populations are adequate to cause enough delay to stabilize the population. The Allee effect can261

be understood to take place due to higher densities being required to sufficiently delay seed production262

so that the high losses do not cause extinction.263

In Figure 5, we see that the population dynamics undergo a period-doubling bifurcation to chaos as264

a increases. In Figure 6 we show a population time series for the growth functions in Figure 3- (b-d).265

The series are initiated with a population just slightly larger than the corresponding Allee threshold.266

Populations initiated below the Allee threshold will go extinct. The time series for Figure 3-(a) is not267

shown as it trivially leads to extinction. We see that for relatively small values of a we obtain a stable268

equilibrium, for intermediate values of a a period-4 solution emerges, and finally we see chaotic dynamics269

for large a.270

It should be noted that as the seed mortality rate, ν, decreases from 5 while the other parameters271

are held fixed, the Allee effect disappears while a positive equilibrium remains. Theorem 1 (ii) allows272

us to determine the existence/non-existence of an Allee effect by examining the value of the integrals273

representing f ′(0) and f ′′(0). For example with α = 10, µ = 1, β = 0.1, σ = 0.15, b = 0.5, γ = 1, a =274

0.5, if we compute f ′(0) and f ′′(0) using the formula in Lemma 1 with ν = 5 we see that f ′(0) = 0.59275

and f ′′(0) = 0.15. f ′(0) < 1 and f ′′(0) > 0 is indicative of a strong Allee effect. As ν decreases, f ′(0)276

increases and f ′′(0) decreases. At ν = 3.76, f ′(0) = 1 and f ′′(0) = 0.09 indicating a transition to a weak277

Allee effect. As ν decreases to ν = 3.14, f ′(0) = 1.32 and f ′′(0) = 0 indicating the loss of the Allee effect.278

For ν < 3.14, f ′(0) > 1 and f ′′(0) < 0 indicating monotone dynamics.279
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Fig. 3: The growth function for various values of a. We see as a increases the Allee threshold decreases,
growth becomes stronger, and overcompensation also increases. Other parameters used are α = 10, µ =
1, ν = 5, β = 0.1, σ = 0.15, b = 0.5, γ = 1.
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Fig. 4: The existence and stability of The equilibrium of Model 1 as a function of a. The other parameters
used are α = 10, µ = 1, ν = 5, β = 0.1, σ = 0.15, b = 0.5, γ = 1. The black curve is the carrying
capacity, red is the Allee threshold, and blue is the extinction equilibrium. A solid curve indicates a
stable equilibrium whereas dashed indicates unstable.
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Fig. 5: A bifurcation diagram of the solutions as a function of a. We see period doubling cascade leading
to chaos occurs as a increases. Other parameters used are α = 10, µ = 1, ν = 5, β = 0.1, σ = 0.15, b =
0.5, γ = 1.
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Fig. 6: A population time series corresponding to the growth functions in Figure 3-(b-d). The series
are initiated with a population just slightly larger than the corresponding Allee threshold. We see an
asymptotically stable equilibrium in (a), a period-4 solution in (b) , and chaotic dynamics in (c).

4.2 Case 2: high adult mortality280

In this simulation we assume the seed mortality rate is lower than that of the adults. The parameters281

used here are α = 10, µ = 5, ν = 1, β = 0.1, σ = 0.15, b = 0.5, γ = 1.282
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In Figure 7 we plot the growth function for several values of a. We note the growth function is283

monotone and has a strong Allee effect. The lack of overcompensation is due to the fact that τ has a284

lower bound of σ and thus seed production occurs within the season no matter how large the population285

is. This is in contrast to the high juvenile mortality case where with positive a, large populations push286

the seed production window outside of the season. For values of a producing a positive equilibrium (see287

Figure 8) the population dynamics will be simple, with populations initially above the Allee threshold288

converging to the stable upper positive equilibrium, and populations initially below the Allee threshold289

going extinct. This is illustrated in Figure 9, where we see the population monotonically increase from290

slightly above the Allee threshold towards the upper equilibrium. We see the growth function can have a291

discontinuity in its derivative, for example in panel (c) near A0 = 1.2. This arises from the discontinuity292

of the derivative of τ = max(σ, aA+ b) when σ = aA+ b.293

In Figure 8, the blue curve is the stable extinction equilibrium, the red curve is the unstable Allee294

equilibrium, and the black curve is the upper stable equilibrium. We see the positive equilibrium does295

not form until a is less than about -0.1, and the Allee threshold continues to decrease as a decreases. As296

the adult stage has the high mortality rate in this case, we would expect advancing the seed production297

time would improve survival. In the formula for the mean seed production time, τ = max(σ, aA+ b), we298

see if aA is sufficiently negative there is a possibility of advancing the seed production time to a threshold299

where the species can survive. This explains the emergence of an Allee effect and why the Allee threshold300

decreases as a decreases. We also see the positive equilibrium saturates at a value near 4. This can be301

explained by noting if aA+ b < σ then τ = σ and the phenology, in effect, becomes fixed for sufficiently302

negative aA.303

Similar to in Case 1, when the adult mortality rate, µ, decreases from 5 while the other parameters304

are held fixed, the Allee effect disappears while a positive equilibrium remains. For example with α =305

10, ν = 1, β = 0.1, σ = 0.15, b = 0.5, γ = 1, a = −0.3, if we compute f ′(0) and f ′′(0) using the306

formula in Lemma 1 we see that with µ = 5, f ′(0) = 0.59 and f ′′(0) = 1.37. f ′(0) < 1 and f ′′(0) > 0307

is indicative of a strong Allee effect. As µ decreases, f ′(0) increases and f ′′(0) initially increases. At308

µ = 3.78, f ′(0) = 1 and f ′′(0) = 1.54 indicating a transition to a weak Allee effect. As µ decreases309

further eventually f ′′(0) begins to decrease. At µ = 1.51, f ′(0) = 2.85 and f ′′(0) = 0 indicating the loss310

of the Allee effect. For µ < 1.51, f ′(0) > 1 and f ′′(0) < 0 indicating monotone dynamics.311
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Fig. 7: The growth function for various values of a. We see that the Allee threshold decreases and growth
becomes stronger as a becomes more negative. Other parameters used are α = 10, µ = 5, ν = 1, β =
0.1, σ = 0.15, b = 0.5, γ = 1.
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Fig. 8: The existence and stability of the equilibria of Model 1 as a function of a. The other parameters
used are α = 10, µ = 5, ν = 1, β = 0.1, σ = 0.15, b = 0.5, γ = 1. The black curve is the carrying
capacity, red is the Allee threshold, and blue is the extinction equilibrium. A solid curve indicates a
stable equilibrium whereas dashed indicates unstable. The carrying capacity saturates near A = 4 due
to aA+ b < σ, thus fixing τ to a value of σ.
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Fig. 9: A population time series corresponding to the growth functions in Figure 7-(c) with a = −0.3.
We see the population asymptotically approaches the carrying capacity. The series was initiated with
A0 = 0.8

One aspect which we did not attempt to capture in this model are the effects of the interactions312

between the timing of seed production and the time available for seed development. We may imagine313

that the length of time for seed development might affect the seed quantity and quality. Including this314

may alter some of our conclusions.315

5 Discussion316

We developed a mathematical model of an annual species in which the timing of reproduction is317

governed by density. We obtained analytical integral conditions under which there is a strong Allee effect.318

Our results provide a new mechanism for generating Allee effects. Phenological differences (asynchrony)319

between males and females have been previously shown to generate Allee effects via the mate-limitation320

route in models that are explicitly two-sex (Calabrese and Fagan 2004; Calabrese et al. 2008). The result321

here is different because density is altering the phenological distribution of the population, creating the322

positive relationship between population growth rate and density that is necessary for a demographic323

Allee effect.324

It is interesting to note that density dependent phenology can produce overcompensation as well.325

Our extensive numerical simulations with a density dependent gamma distribution indicate very rich326

population dynamics, from stable/unstable equilibria, limit cycles, to chaos. This richness of qualitative327

behavior is perhaps not surprising given the diverse scenarios in which overcompensation is known to328

drive complicated dynamics in population dynamics models. What is novel here is that the process that329

mediates the inter-year transitions in population density hinges on the way in which density controls the330

within-season timing of transition. Such seasonal timing is a variable of great interest in biology because it331

can be shaped by diverse factors including resource availability and climate change (e.g., Miller-Rushing332

et al. 2010; Vermeulen 2015).333
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The density dependent probability distribution g(A, t) in model (1) describes how reproduction (or334

more generally, emergence into a population stage) is spread over time. This function plays an important335

role in generating Allee effects. When g(A, t) is density independent, i.e., when g(A, t) solely depends336

on time t, there is no Allee effect. The integral conditions (2) and (3) indicate that in order for the337

model to have an Allee effect, ∂g(0,t)
∂A should be relatively large and g(0, t) should be relatively small for338

t ∈ [0, 1]. This means biologically that at low population densities, the rate of change of g(A, t) in A is339

large compared with g(A, t) in [0, 1]. According to Theorem 2 (i), there exists an Allee threshold if there340

is A > 0 such that g(A, t) is relatively large for t ∈ [0, 1].341

The framework developed in this paper can be also used to model phenology associated with mat-342

uration from seeds to reproductive adults influenced by density. Mechanistically, density may be linked343

to phenology via resource competition. For example, for some plants, density dependent phenology may344

emerge mechanistically because the degree of shading experienced by an individual may hinge on when345

in the growing season it emerges relative to other members of the population. That is, earlier plants346

emerging at low density may experience less shading than plants that emerge later in the season after347

other plants are already established (Callahan and Pigliucci 2002). Similar competitive processes may link348

density to flowering phenology as density-dependent resource acquisition during the vegetative stage may349

affect the transition from vegetative to reproductive growth, thereby determining bloom time (Schmitt350

et al. 1987; Abubaker 2008; Vermeulen 2015). Because of such links among density, access to resources,351

and relative success, phenology may be under selection in a density-dependent context (Callahan and352

Pigliucci 2002; Vincent and Brown 1984), and depending on the conditions, increased density may favor353

either early or late phenology (Vermeulen 2015).354

Looking forward, the model could be further developed into a spatial model by adding a diffusion355

term. The interaction between the timing of juvenile emergence and the time available for juveniles356

to develop into adults is also worthy of investigation. Another possible extension would be to create a357

competition model, where one or both of the species has density dependent phenology. Modeling within358

such a competition framework could be especially interesting because it would allow for investigations of359

the evolution of phenology via an adaptive dynamics framework. Such studies would provide additional360

connections with relevant biology in that maternal effects have already been considered from an adaptive361

perspective (Galloway 2005; Van Asch et al. 2010) and because intriguing complex dynamics are possible362

when topics such as phenology (Eskola 2009) and resource allocation (Akhmetzhanov et al. 2011) are363

studied in an adaptive context.364
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6 Appendix365

6.1 Proof of Lemma 1366

Proof We derive explicit formulas for f ′′(0) and f ′(0). The initial value problem of (1) is equivalent to

(J(An, t)e
∫ t
0
(ν+βJ(An,s))ds)′ = αg(An, t)e

−µte
∫ t
0
(ν+βJ(An,s))ds, J(An, 0) = 0.

Integration shows367

368

J(An, t) = αAne
−

∫ t
0
(ν+βJ(An,s))ds

∫ t

0

g(An, τ)e
−µτe

∫ τ
0
(ν+βJ(An,s))dsdτ.

This gives an implicit year-to-year mapping369

370

An+1 = f(An) := γJ(An, 1)

= αγAne
−

∫ 1
0
(ν+βJ(An,s))ds

∫ 1

0

g(An, t)e
−µte

∫ t
0
(ν+βJ(An,s))dsdt

= αγAn

∫ 1

0

g(An, t)e
−µte−

∫ 1
t
(ν+βJ(An,s))dsdt.

(8)

371

372

Taking the first derivative yields373

f ′(A) = αγ

∫ 1

0

g(A, t)e−µte−
∫ 1
t
(ν+βJ(A,s))dsdt+ αγA

∫ 1

0

[
∂

∂A
g(A, t)

]
e−µte−

∫ 1
t
(ν+βJ(A,s))dsdt

− αβγA

∫ 1

0

g(A, t)e−µte−
∫ 1
t
(ν+βJ(A,s))ds

[∫ 1

t

∂

∂A
J(A, s)ds

]
dt.

Evaluating at A = 0 we obtain374

f ′(0) = αγ

∫ 1

0

g(0, t)e−µt−(1−t)νdt.
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Taking the second derivative yields375

f ′′(A) = 2αγ

∫ 1

0

[
∂

∂A
g(A, t)

]
e−µte−

∫ 1
t
(ν+βJ(A,s))dsdt

− 2αβγ

∫ 1

0

g(A, t)e−µte−
∫ 1
t
(ν+βJ(A,s))ds

[∫ 1

t

∂

∂A
J(A, s)ds

]
dt

− 2αβγA

∫ 1

0

[
∂

∂A
g(A, t)

]
e−µte−

∫ 1
t
(ν+βJ(A,s))ds

[∫ 1

t

∂

∂A
J(A, s)ds

]
dt

+ αγA

∫ 1

0

[
∂2

∂A2
g(A, t)

]
e−µte−

∫ 1
t
(ν+βJ(A,s))dsdt

+ αβ2γA

∫ 1

0

g(A, t)e−µte−
∫ 1
t
(ν+βJ(A,s))ds

[∫ 1

t

∂

∂A
J(A, s)ds

]2
dt

− αβγA

∫ 1

0

g(A, t)e−µte−
∫ 1
t
(ν+βJ(A,s))ds

[∫ 1

t

∂2

∂A2
J(A, s)ds

]
dt.

Note that in this equation, all the terms except the first two have a factor A. Evaluating at A = 0 we376

obtain377

f ′′(0) = 2αγ

∫ 1

0

([
∂

∂A
g(A, t)

] ∣∣∣
A=0

)
e−µt−(1−t)νdt

− 2αβγ

∫ 1

0

g(0, t)e−µt−(1−t)ν

∫ 1

t

(
∂

∂A
J(A, s)

) ∣∣∣
A=0

dsdt

= 2αγ

∫ 1

0

([
∂

∂A
g(A, t)

] ∣∣∣
A=0

)
e−µt−(1−t)νdt

− 2α2βγ

∫ 1

0

g(0, t)e−µt−(1−t)ν

∫ 1

t

e−νs

∫ s

0

g(0, r)e−µr+νrdrdsdt.

The last line is achieved by using ∂
∂AJ(A, t)

∣∣∣
A=0

= αe−νt
∫ t

0
g(0, τ)e−µτ+ντdτ . This quantity is found378

by taking the derivative of the differential equation in model (1) with respect to A, solving for ∂
∂AJ , and379

evaluating at A = 0. The conclusion of the lemma follows immediately.380

⊓⊔

6.2 Proof of Proposition 2381

Proof The definition of T shows T [B](A, t) ≥ 0 if B(A, t) ≥ 0. Since B0(A, t) ≡ 0, Bn(A, t) ≥ 0 for all382

n. Observe that383

B3(A, t) = T [B2](A, t) ≤ T [B0](A, t) = B1(A, t),

and thus384

B4(A, t) = T [B3](A, t) ≥ T [B1](A, t) = B2(A, t).



22

Assume for some k ≥ 1, B2k+1(A, t) ≤ B2k−1(A, t) and B2(k+1)(A, t) ≥ B2k(A, t). Then B2k+3(t) =385

T [B2(k+1)](A, t) ≤ T [B2k](A, t) = B2k+1(A, t), and thus B2k+4(t) = T [B2k+3](A, t) ≥ T [B2k+1](A, t) =386

B2(k+1)(A, t). Using induction and the fact Bn(A, t) = T [Bn−1](A, t) ≤ T [B0](A, t) ≤ B1(A, t), we have387

B1(A, t) ≥ B3(A, t) ≥ · · · ≥ B2k−1(A, t) ≥ B2k+1(A, t) ≥ · · · ≥ 0,

B0(A, t) ≤ B2(A, t) ≤ · · · ≤ B2k(A, t) ≤ B2(k+1)(A, t) ≤ · · · ≤ B1(A, t).

388

Since both B2n(A, t) and B2n+1(A, t) are monotone and bounded in n, we have that lim
n→∞

B2n+1(t) =389

B̄(A, t) and lim
n→∞

B2n(A, t) = B(A, t). By taking n → ∞ inB2n+1(A, t) = T [B2n](A, t) andB2(n+1)(A, t) =390

T [B2n+1](A, t) and using the dominated convergence theorem, we have391

B̄(A, t) = T [B](A, t), B(A, t) = T [B̄](A, t). (9)

(9) and continuity of B̄(A, t) and B(A, t) show that B̄(A, t) and B(A, t) are differentiable functions. By

directly taking the derivatives on both sides of B̄(A, t) = T [B](A, t), we obtain

B̄t = αγe−µtg(A, t) + (−ν − β

γ
AB(A, t))T [B](A, t).

Using T [B](A, t) = B̄(A, t), we find392

B̄t = αγe−µtg(A, t)− νB̄ − β

γ
AB̄B. (10)

Similarly393

Bt = αγe−µtg(A, t)− νB − β

γ
AB̄B. (11)

Subtracting (11) from (10), we find394

(B̄ −B)t = −ν(B̄ −B). (12)

(5) shows B̄(A, 0) = B(A, 0) = 0. This and (12) indicate B̄(A, t) ≡ B(A, t) so that

B̄(A, t) = T [B̄](A, t).

The uniqueness of solution of (1) implies B̄(A, t) ≡ B(A, t) ≡ B(A, t). This completes the proof.395

⊓⊔
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6.3 Proof of Theorem 2396

Proof The condition (2) implies that f(A) < A for small positive A. Since f(A) is continuous, f(A) has397

a positive equilibrium if and only if there exists A > 0 such that f(A) > A. According to Proposition 2,398

as n → ∞, B2n(A, 1) increases to B(A, 1) and B2n+1(A, 1) decreases to B(A, 1). If there is A > 0 and399

n0 ≥ 1 such that B2n0
(A, 1) > 1, then B(A, 1) > 1 which means f(A) > A, so that there is a positive400

equilibrium. If there is n0 ≥ 1 such that for all A > 0, B2n0+1(A, 1) < 1, then B(A, 1) < 1 for all A > 0,401

so that there is no positive equilibrium. Therefore statements (i)-(ii) hold.402

Assume that there is a positive equilibrium. Since f(A) < A for small positive A due to (2), continuity403

of f shows that there exists a smallest positive equilibrium named A∗. Then f(A) < A for 0 < A < A∗.404

This shows that for any A0 with 0 < A0 < A∗ the sequence An generated by An+1 = f(An) has the405

property that An → 0 as n → ∞, so that A∗ is the Allee threshold.406

⊓⊔
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