

¹ **Allee effects introduced by density dependent phenology**

² **Timothy J. Pervenecki · Sharon Bewick · Garrett**

³ **Otto · William F. Fagan · Bingtuan Li**

⁴

⁵ **Funding:** Timothy J Pervenecki was partially supported by the National Science Foundation under
⁶ Grant DMS-1225693; Sharon Bewick was partially supported by the National Science Foundation under
⁷ Grant DMS-1225917; Garrett Otto did not receive funding to assist in the preparation of this manuscript;
⁸ William F. Fagan was partially supported by the National Science Foundation under Grants DMS-
⁹ 1225917 and NNA-2127271; Bingtuan Li was partially supported by the National Science Foundation
¹⁰ under Grants DMS-1225693, DMS-1515875, and DMS-1951482.

¹¹

¹² **Declarations of interest:** none

Timothy J. Pervenecki

Department of Mathematics and Computer Science, University of Wisconsin-Superior, Superior, WI 54880

Sharon Bewick

Department of Biological Sciences, Clemson University, Clemson, SC 29631

Garrett Otto

Department of Mathematics, SUNY Cortland, Cortland, NY 13045

William F. Fagan

Department of Biology, University of Maryland, College Park, MD 20742

Bingtuan Li (corresponding author)

bing.li@louisville.edu

Department of Mathematics, University of Louisville, Louisville, KY 40059

13

14 Allee effects introduced by density dependent phenology

15

16 **Abstract** We consider a hybrid model of an annual species with the timing of a stage transition gov-
17 erned by density dependent phenology. We show that the model can produce a strong Allee effect as
18 well as overcompensation. The density dependent probability distribution that describes how population
19 emergence is spread over time plays an important role in determining population dynamics. Our exten-
20 sive numerical simulations with a density dependent gamma distribution indicate very rich population
21 dynamics, from stable/unstable equilibria, limit cycles, to chaos.

22 **Keywords** Phenology · Allee Effect · Overcompensation

23 1 Introduction

24 Phenology, or seasonal biological timing, is an issue of widespread interest in ecology. Biologists
25 studying phenology seek to understand how temporal variation in a particular transient process (e.g., a
26 pulse of births, or a transition between life stages), matters to the dynamics of the larger system (Miller-
27 Rushing et al. 2010; Lynch et al. 2014; Bewick et al. 2016; Encinas-Viso et al. 2012; Chmura et al. 2019).
28 In ecological systems, changes in phenology can involve changes in the start time of a process within
29 a season and/or changes in the temporal distribution (i.e., the synchrony) of that process (CaraDonna
30 et al. 2014; Calabrese and Fagan 2004; Chmura et al. 2019).

31 As but one example, phenology plays a particularly important role in the dynamics of invasive plants
32 and animals, which is an area of huge interest in applied ecology (Keller and Shea 2021). For instance,
33 in-depth investigations have explored the linkage between phenological asynchrony and invasion success
34 for a variety of forest species (e.g., Logan and Powell 2001; Ward and Masters 2007; Robinet et al. 2008).
35 For example, in the case of the invasion of non-native gypsy moth (*Lymantria dispar*), asynchrony among
36 breeding adults arises from a variety of biological mechanisms, such as variation in development rates
37 among juvenile insects (Robinet et al. 2007, 2008; Gascoigne et al. 2009). This reproductive asynchrony
38 creates opportunities for some females to go mateless, and this reduced level of reproduction slows the rate
39 of spatial spread of the population (Johnson et al. 2006; Tobin et al. 2007). In some cases, such variation
40 in developmental rates may be genetically driven (Gray 2004). Alternatively, phenological variation may
41 arise through small-scale differences in environmental conditions (e.g., temperature, elevation, or other

42 microclimatic features; Walter et al. 2015), which cause individuals to develop at different rates, even
43 over distances linked by dispersal.

44 In the past, it has been convenient to model phenology using time-dependent functions (i.e., creating
45 non-autonomous equations) because this created a tight conceptual linkage to the kinds of empirical
46 data that motivated the research (Calabrese et al. 2008; Fagan et al. 2010). For example, ecologists rou-
47 tinely record the onset and duration of particular life stages (e.g., adult butterflies and flowering plants),
48 and such data lend themselves to being summarized as a function of time (e.g., as a beta or gamma
49 distribution). However, phenology may be a more complicated process than that suggested by a simple
50 time-dependent function. Indeed, a variety of studies, particularly in flowering plants, suggest a role for
51 density to shape phenology within a population (Thomas and Bazzaz 1993; Donohue et al. 2000; Weinig
52 et al. 2006; Vermeulen 2015). Both advances and delays in phenological distributions relative to seasonal
53 benchmarks may be driven by density. For example, for several plants such as *Phaseolus Vulgaris L.*
54 (Abubaker 2008) and the cleistogamous (closed, usually self-pollinating) flowers of *Impatiens capensis*
55 (Schmitt et al. 1987), low densities can delay flowering seasonally whereas high densities can advance
56 flowering. In (Schmitt et al. 1987) they hypothesize that this could be due to a stress related threshold
57 needed to trigger flowering. Plant density has an opposite effect on the chasmogamous (open, usually
58 cross-pollinating) flowers of *Impatiens capensis* (Schmitt et al. 1987), with higher densities causing later
59 flowering. Because population density can affect phenology, in this paper we switch from modeling phe-
60 nology as a purely time-dependent process to modeling phenology as both time- and density-dependent.
61 This switch to a model in which phenology depends on density is advantageous because it allows us to
62 explore the mechanistic foundation of phenology-induced Allee effects in more detail. Previous work (e.g.,
63 Calabrese et al. 2008; Rhainds and Fagan 2010; Lynch et al. 2014) all discussed phenology-dependent
64 Allee effects as the indirect consequence of male and female reproductive activity being misaligned in
65 time. Here, we forego a two-sex modeling approach in favor of one that in which the effect of density is
66 directly modeled.

67 A *demographic Allee effect* is a positive relationship between the overall individual fitness (often
68 quantified by the per capita population growth rate) and population size or density (Courchamp et al.
69 2008). A demographic Allee effect can be subdivided into two categories, a strong Allee effect and a
70 weak Allee effect, with the difference being that in the case of a strong Allee effect there exists a density
71 threshold that must be overcome for the population to persist.

72 Several well known mechanisms for the Allee effect exist, including mate limitation (e.g., Berec et al.
73 2007; Davis et al. 2004), cooperative defense (e.g., Courchamp et al. 2008; Mooring et al. 2004; Clutton-
74 Brock et al. 1999), cooperative feeding (e.g., Berec et al. 2007), and environmental conditioning (e.g.,

75 Rinella et al. 2012; Kramer et al. 2009). Here, we explore a different, arguably new, mechanism for
76 generating the Allee effect: density dependent phenology. Several biological scenarios would fit within
77 this framework. For example, crowding experienced by adults could induce different levels of so-called
78 ‘maternal effects’ (Roach and Wulff 1987) in their offspring (e.g., higher density adults may have offspring
79 that grow more slowly because crowded adults have fewer resources to allocate to each of their offspring).
80 One of the most widely known mathematical treatments of maternal effects are those of Turchin (1990),
81 in which maternal crowding introduces a form of lagged density dependence in population timeseries
82 of forest insects. If maternal effects influence offspring growth rates rather than simply mortality rates,
83 it creates a potential linkage between growing conditions in one generation and phenology in the next
84 generation as has been shown for winter moths *Operophtera brumata* (Van Asch et al. 2010). Such effects
85 are similar to so-called scramble competition in population ecology (Nicholson 1954) except that the
86 focus is not on survivorship as the metric of success but rather development rate. Understanding of
87 maternal effects is also well developed in some plant species (Galloway 2002; Donohue 2009; Galloway
88 and Burgess 2009) wherein the growing conditions of adult plants carry over to affect several measures
89 of performance in the next generation, including the phenology of seed germination.

90 2 The Model

91 We study a hybrid dynamical model (Eskola and Geritz 2007; Eskola and Parvinen 2010; Mailleret
92 and Lemesle 2009; Lewis and Li 2012; Otto et al. 2018) that models the population dynamics of an annual
93 species. As outlined above, relevant species include both annual plants and insects, but we will relate the
94 model to an annual plant system and use relevant biological language. We use an ordinary differential
95 equation to consider within-season phenology as a continuous process and couple that with a difference
96 equation that governs the transition between years. In keeping with our framework of density-mediated
97 maternal effects, we focus on the process of seed production, examining how maternal density shapes
98 the phenology of that process. We do not explicitly model change in size of seeds, only their population
99 density.

100 We assume that seed production takes place for $0 < t \leq 1$ each year. In year n , A_n denotes the
101 density of reproductive adult plants at time $t = 0$, and $J(A_n, t)$ denotes the seed population density in
102 the reproduction season $0 < t \leq 1$. We assume that each adult produces an average of α seeds. We use
103 $g(A_n, t)$ to represent the density-dependent probability density function, where the fraction of the adult
104 population which produce their seeds at time t is given by $g(A_n, t)$. The density of seeds at $t = 0$ is 0 and
105 we assume the adults experience a death rate of μ for $0 < t \leq 1$. The rate of seed production at time t

in the n th season is thus given by $\alpha e^{-\mu t} A_n g(A_n, t)$. This can be explained by noting that without adult plant death, $\alpha A_n g(A_n, t)$ would be the number of seeds produced at time t , however by time t only $e^{-\mu t}$ of the adults that would produce seeds at time t are still viable. Natural death for seeds is linear with the coefficient ν and additional seeds mortality mediated through seed crowding (Janzen 1970; Connell 1971) which is quadratic with the coefficient β according to the law of mass action (see, e.g., Thieme 2003). At the end of the reproductive season ($t = 1$), all the adults die, and the population of the following season is recruited from the seeds that survive the winter. We use γ to denote the product of the winter survival rate of the seeds, the conversion rate of the juveniles from the seeds, and the survival rate of the juveniles plants converting to the adults. Adults and seeds from the previous season are assumed to not carry over to the next season. The population dynamics are governed by

$$\begin{aligned} J_t &= \alpha A_n e^{-\mu t} g(A_n, t) - \nu J - \beta J^2, \\ J(A_n, 0) &= 0, \\ A_{n+1} &= \gamma J(A_n, 1). \end{aligned} \tag{1}$$

The probability distribution g reflects intra-year seasonal variation in phenology; that is, the function captures when reproduction (or more generally, a demographic process) starts and how asynchronous life stages are within a reproduction season. The phenology function g depends on the adult population in the previous year. This is consistent with the idea that density-dependent phenology can arise through maternal effects, as was discussed in the Introduction. Specifically, we envision scenarios in which the local crowding conditions experienced by adult plants influence their growth rate and thus the time in the season at which they produce mature seeds. In general $g(A, t)$ is defined for $0 \leq t < \infty$. If the upper bound of the support of $g(A, t)$ is bigger than 1, some organisms cannot reproduce. This leads to the case where changes in phenology due to climate change lead to a localized species becoming invasive or an invading species becoming extinct.

Our goal is to show that model (1) can produce a strong Allee effect as well as overcompensation. Analytical results regarding the presence of an Allee effect are given in the next section. In Section 3, numerical simulations are provided to demonstrate the existence of Allee effect and overcompensation with a density dependent gamma distribution. Section 4 includes some concluding remarks and discussions.

3 Analytical results

In this section we present analytical results regarding the existence of an Allee effect in model (1). We begin with the following hypothesis.

¹³³ **Hypothesis 1** For $A \geq 0$ and $0 \leq t \leq 1$, $g(A, t)$ is nonnegative and bounded, $\int_0^\infty g(A, t)dt = 1$, and
¹³⁴ $g(A, t)$ has continuous partial derivatives with respect to A and t up through order 2.

¹³⁵ This hypothesis indicates that $g(A, t)$ is a smooth density dependent probability distribution of time.

Under Hypothesis 1, model (1) is well-posed. The right-hand side of the differential equation in (1) is locally Lipschitzian in J as $-\nu J - \beta J^2$ is continuously differentiable in J . Theorem 3.1 - Theorem 3.3 and Exercise 3.4 in Chapter 1 of Hale (1980) show that the initial value problem

$$J_t = \alpha e^{-\mu t} g(A, t)A - \nu J - \beta J^2, \quad J(A, 0) = 0,$$

has a unique solution $J(A, t)$, with the property that $\frac{\partial^2}{\partial A^2} J(A, t)$ is continuous for $0 \leq t \leq 1$ and $A \geq 0$.

Let

$$f(A) = \gamma J(A, 1).$$

¹³⁶ Clearly $f(0) = 0$.

¹³⁷ We summarize these results in the following proposition.

¹³⁸ **PROPOSITION 1** Assume that Hypothesis 1 holds. Then $A_{n+1} = f(A_n)$ in (1) where $f''(A)$ is continuous for $A \geq 0$ and $f(0) = 0$.

In general the differential equation in (1) cannot be analytically solved, and consequently the function f cannot be explicitly given. We are, however, able to use the connection between f and $g(A, t)$ to establish explicit conditions for the presence of an Allee effect and to determine when the Allee effect is strong. An Allee effect arises when the per-capita offspring number increases with population density over some range for small populations, i.e., $\frac{f(A)}{A}$ increases for small positive A . Note

$$\left(\frac{f(A)}{A}\right)' = \frac{f'(A)A - f(A)}{A^2}, \quad (f'(A)A - f(A))' = f''(A)A, \quad (f'(A)A - f(A))|_{A=0} = 0.$$

¹⁴⁰ This and continuity of $f''(A)$ show that for small positive A , the sign of $(\frac{f(A)}{A})'$ is same as that of $f''(0)$,
¹⁴¹ if $f''(0) \neq 0$. Therefore for small positive A , $\frac{f(A)}{A}$ increases if $f''(0) > 0$ and $\frac{f(A)}{A}$ decreases if $f''(0) < 0$.

¹⁴² On the other hand, 0 is asymptotically stable for f if $|f'(0)| < 1$.

¹⁴³ The following lemma provides explicit formulas for both $f'(0)$ and $f''(0)$.

¹⁴⁴ **Lemma 1** Assume that Hypothesis 1 holds. Then

$$f'(0) = \alpha \gamma \int_0^1 g(0, t) e^{-\mu t - (1-t)\nu} dt, \quad \text{and}$$

$$\begin{aligned} f''(0) &= 2\alpha \gamma \int_0^1 \left(\left[\frac{\partial}{\partial A} g(A, t) \right] \Big|_{A=0} \right) e^{-\mu t - (1-t)\nu} dt \\ &\quad - 2\alpha^2 \beta \gamma \int_0^1 g(0, t) e^{-\mu t - (1-t)\nu} \int_t^1 e^{-\nu s} \int_0^s g(0, r) e^{-\mu r} e^{\nu r} dr ds dt. \end{aligned}$$

¹⁴⁶ The proof for this lemma is provided in the Appendix.

¹⁴⁷ This lemma shows $f'(0) \geq 0$. We therefore have that 0 is asymptotically stable if $f'(0) < 1$. Recall
¹⁴⁸ $f''(0) > 0$ indicates the presence of an Allee effect. These and Lemma 1 lead to the following theorem.

¹⁴⁹ **Theorem 1** *Assume that Hypothesis 1 is satisfied. The following statements hold for model (1):*

¹⁵⁰ (i) *The equilibrium 0 is asymptotically stable if*

¹⁵¹

¹⁵²

$$\alpha\gamma \int_0^1 g(0, t)e^{-\mu t-(1-t)\nu} dt < 1. \quad (2)$$

¹⁵³ (ii) *There exists an Allee effect if*

¹⁵⁴

¹⁵⁵

$$\begin{aligned} & \int_0^1 \left(\left[\frac{\partial}{\partial A} (e^{-\mu t} g(A, t)) \right] \Big|_{A=0} \right) e^{-\mu t-(1-t)\nu} dt \\ & > \alpha\beta \int_0^1 e^{-\mu t} g(0, t) e^{-(1-t)\nu} \int_t^1 e^{-\nu s} \int_0^s e^{-\mu r} g(0, r) e^{\nu r} dr ds dt. \end{aligned} \quad (3)$$

¹⁵⁶

¹⁵⁷

¹⁵⁸ The condition in (i) indicates that the equilibrium 0 is asymptotically stable if for a given $g(A, t)$ one
¹⁵⁹ of α, γ is small or one of μ and ν is large, or if for relatively large α and γ relatively small μ and ν , the
¹⁶⁰ distribution of $g(A, t)$ at $A = 0$ is relatively low on $[0, 1]$ in the sense of (2).

¹⁶¹ The condition in (ii) shows there exists an Allee effect if for appropriate parameter values the distri-
¹⁶² bution of $\frac{\partial}{\partial A} (e^{-\mu t} g(A, t))$ at $A = 0$ is relatively high and the distribution of $g(A, t)$ at $A = 0$ is relatively
¹⁶³ low on $[0, 1]$.

¹⁶⁴ The inequality in (ii) is a sharp condition for the existence of Allee effect. It is equivalent to $f''(0) > 0$.
¹⁶⁵ If it is reversed, there is no Allee effect. In the case of that $g(A, t)$ is density-independent, i.e., $g(A, t) =$
¹⁶⁶ $g(t)$, the left hand side of the inequality is zero and hence this inequality is reversed, so that there is no
¹⁶⁷ Allee effect in (1).

Under conditions (2) and (3), in order for (1) to have a strong Allee effect, there must exist an Allee threshold, which is determined by the presence of a positive equilibrium. We develop necessary and sufficient conditions for the existence of a positive equilibrium. Let

$$B(A, t) = \gamma J(A, t)/A,$$

168 with $A > 0$. Under condition (2) (which implies $f(A) < A$ for small positive A), a sufficient and necessary
 169 condition for $f(A)$ to have a positive equilibrium is that there exists $A > 0$ such that $\gamma J(A, 1) = f(A) >$
 170 A , or equivalently $B(A, 1) > 1$. The initial value problem (1) with A_n replaced by A shows

$$B_t = \alpha\gamma e^{-\mu t}g(A, t) - \nu B - \frac{\beta}{\gamma}AB^2, \quad B(A, 0) = 0, \quad (4)$$

or equivalently

$$(B(A, t)e^{\int_0^t(\nu + \frac{\beta}{\gamma}AB(A, s))ds})' = \alpha\gamma g(A, t)e^{-\mu t}e^{\int_0^t(\nu + \frac{\beta}{\gamma}AB(A, s))ds}, \quad B(A, 0) = 0.$$

171 Integration shows that $B(A, t)$ satisfies the integral equation

$$B(A, t) = T[B](A, t) := \alpha\gamma \int_0^t g(A, \tau)e^{-\mu\tau - (t-\tau)\nu - \frac{\beta}{\gamma}A \int_\tau^t B(A, s)ds} d\tau. \quad (5)$$

172 This indicates that the solution $B(A, t)$ of (4) is a fixed point of the integral operator T . $T[B]$ is well
 173 defined for any nonnegative continuous function $B(A, t)$ for $t \in [0, 1]$. An important property of T is

$$T[B](A, t) \leq T[\tilde{B}](A, t), \quad \text{if } B(A, t) \geq \tilde{B}(A, t); \quad T[B](A, t) \geq T[\tilde{B}](A, t), \quad \text{if } B(A, t) \leq \tilde{B}(A, t). \quad (6)$$

174 This is due to the fact that the integrand in (5) decreases in B .

175 We construct a sequence of functions using T to approximate $B(A, t)$. Consider $B_n(A, t)$ given by

$$B_{n+1}(A, t) = T[B_n](A, t), \quad B_0(A, t) \equiv 0. \quad (7)$$

176 Here each $B_n(A, t)$ can be computed explicitly for a given n .

177 The following proposition shows that the sub-sequence $B_{2n}(A, t)$ increases to $B(A, t)$ and the sub-
 178 sequence $B_{2n+1}(A, t)$ decreases to $B(A, t)$.

179 **PROPOSITION 2** For $n = 0, 1, 2, \dots$, $B_{2(n+1)}(A, t) \geq B_{2n}(A, t)$ and $B_{2(n+1)+1}(A, t) \leq B_{2n+1}(A, t)$, and
 180 furthermore $\lim_{n \rightarrow \infty} B_{2n}(A, t) = \lim_{k \rightarrow \infty} B_{2n+1}(t) = B(A, t)$.

181 The proof for Proposition 2 is provided in the Appendix.

182 We have the following theorem regarding the existence of a positive equilibrium and a strong Allee
 183 effect.

184 **Theorem 2** Assume that Hypothesis 1 holds. The following statements hold:

185 i. There exists a positive equilibrium if there is $A > 0$ and $n_0 \geq 1$ such that $B_{2n_0}(A, 1) > 1$.
 186 ii. There exists no positive equilibrium if there is $n_0 \geq 0$ such that for all $A > 0$, $B_{2n_0+1}(A, 1) < 1$.

187 *iii. Assume in addition the conditions (2)-(3) hold. If there exists a positive equilibrium, then the smallest*
 188 *positive equilibrium represents the Allee threshold.*

189 The proof for Theorem 2 is provided in the Appendix.

In general, it is difficult to find $B_n(A, t)$ when n is large. However it is easy to find $B_n(A, t)$ when n is small. Specifically using (7) we have

$$B_1(A, t) = \alpha\gamma \int_0^t g(A, \tau) e^{-\mu\tau - (t-\tau)\nu} d\tau, \quad B_2(A, t) = \alpha\gamma \int_0^t g(A, \tau) e^{-\mu\tau - (t-\tau)\nu - \frac{\beta}{\gamma} A \int_\tau^t B_1(A, s) ds} d\tau.$$

190 We have the following corollary of Theorem 2, which provides relatively simple sufficient conditions for
 191 the existence and nonexistence of a positive equilibrium.

192 **Corollary 1** *Assume that Hypotheses 1 holds. The following statements hold:*

i. There exists a positive equilibrium if there is $A > 0$ such that

$$\alpha\gamma \int_0^1 g(A, \tau) e^{-\mu\tau - (1-\tau)\nu - \frac{\beta}{\gamma} A \int_\tau^1 B_1(A, s) ds} d\tau > 1.$$

ii. There exists no positive equilibrium if

$$\alpha\gamma \int_0^1 g(A, \tau) e^{-\mu\tau - (1-\tau)\nu} d\tau < 1$$

193 *for all $A > 0$.*

194 From this Corollary and Theorem 2 (iii), model (1) has a strong Allee effect if (2)-(3) and the condition
 195 in Corollary 1 (i) are satisfied.

196 The condition in (i) indicates that there exists a positive equilibrium if for relatively large α
 197 and γ and relatively small μ , ν and β , the distribution of $g(A, t)$ for some $A > 0$ is large on $[0, 1]$ in a
 198 certain sense.

199 The condition in (ii) shows that there is no positive equilibrium if for a given $g(A, t)$ one of α , γ is
 200 small or one of μ and ν is large, or if for relatively large α and γ relatively small μ and ν , the distribution
 201 of $g(A, t)$ for all A is relatively low on $[0, 1]$ in a certain sense.

202 4 Numerical simulations

203 The MatLab code used in the simulations can be viewed at

204 <https://github.com/glotto01/density-dependant-phenology>.

205 We use the gamma distribution to describe the density dependant phenology. Among the ad-
 206 vantages of the gamma distribution are that it is continuous, has non-negative support, and the mean
 207 and variance can be independently controlled. Other advantages of gamma distributions without density
 208 dependence in the context of phenologically explicit models are discussed at length elsewhere (Calabrese
 209 et al. (2008)), and more applications of gamma distributions for phenology can be found in Bewick et al.
 210 (2016), Fagan et al. (2010), and Fagan et al. (2014). A density dependent gamma distribution takes the
 211 form of

$$g(A, t) = \frac{t^{k-1} e^{-\frac{t}{\theta}}}{\Gamma(k) \theta^k},$$

212 where the shape parameter k and scale parameter θ depend on A . The mean of the distribution is given
 213 by $\tau = k\theta$ and the variance is given by $\sigma^2 = k\theta^2$. It follows that $k = \frac{\tau^2}{\sigma^2}$ and $\theta = \frac{\sigma^2}{\tau}$. We will assume
 214 that the variance, σ^2 remains fixed regardless of the density, and that the mean time of production for
 215 seeds, τ , is given by a piecewise linear function, $\tau = \max(\sigma, aA + b)$. This linearity is motivated by Cao
 216 et al. (2016), where the mean day of flowering vs density is found to be roughly linear in the study of
 217 flowering phenology and sexual reproduction in the ephemeral herb *Cardamine hirsuta*. To insure our
 218 assumptions that $g(A, t)$ is continuous and bounded hold, it's necessary for $k \geq 1$, which in turn requires
 219 $\tau \geq \sigma$. It is also biologically reasonable to assume there is a lower limit on the mean production time of
 220 seeds.

Including this assumption we obtain

$$g(A, t) = \frac{t^{\left(\frac{\max(\sigma, aA+b)^2 - \sigma^2}{\sigma^2}\right)} e^{-t\left(\frac{\sigma^2}{\max(\sigma, aA+b)}\right)}}{\Gamma\left(\frac{\max(\sigma, aA+b)^2}{\sigma^2}\right) \left(\frac{\sigma^2}{\max(\sigma, aA+b)}\right)^{\left(\frac{\max(\sigma, aA+b)^2}{\sigma^2}\right)}}.$$

221 We see that although the mean seed production time is linear in A , the phenology function g and model
 222 (1) are highly non-linear in A .

With these definitions of g , Theorem 1-(i) states that if

$$\alpha\gamma e^{-\nu} \left(1 + \frac{\sigma^2(\mu - \nu)}{\max(\sigma, b)}\right)^{-\frac{\max(\sigma, b)^2}{\sigma^2}} \left(1 - \frac{\Gamma\left(\frac{\max(\sigma, b)^2}{\sigma^2}, \frac{\sigma^2}{\max(\sigma, b)} + \mu - \nu\right)}{\Gamma\left(\frac{\max(\sigma, b)^2}{\sigma^2}\right)}\right) < 1$$

then the equilibrium 0 is asymptotically stable. Here $\Gamma(\cdot, \cdot)$ refers to the upper incomplete gamma function. The triple integral of part-(ii) of Theorem 1 does not admit a closed form solution for this definition of g . The integral in Corollary 1-(i) does not admit a closed form for this definition of g .

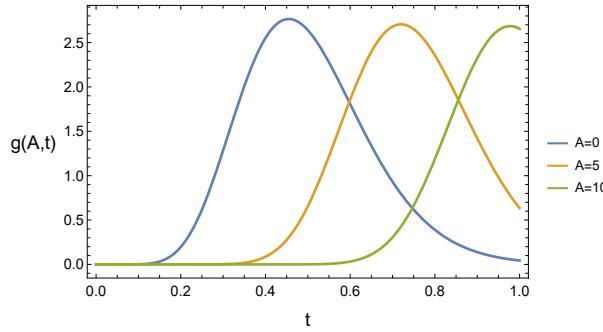


Fig. 1: The phenology distributions $g(A, t)$ for several population levels with $\sigma = 0.15$, $a = 0.05$ $b = 0.5$.

Corollary 1-(ii) states that no positive equilibrium exists if

$$\alpha\gamma e^{-\nu} \left(1 + \frac{\sigma^2(\mu - \nu)}{\max(\sigma, aA + b)}\right)^{-\frac{\max(\sigma, aA + b)^2}{\sigma^2}} \left(1 - \frac{\Gamma\left(\frac{\max(\sigma, aA + b)^2}{\sigma^2}, \frac{\sigma^2}{\max(\sigma, aA + b)} + \mu - \nu\right)}{\Gamma\left(\frac{\max(aA + \sigma, b)^2}{\sigma^2}\right)}\right) < 1$$

223 for all $A > 0$. A closed form for the maximum value of the expression on the left hand side of the
 224 inequality does not appear to exist.

225 In Figure 1 we show how the phenology distribution varies with population when mean seeding
 226 time increases with density. In this figure the standard deviation is $\sigma = 0.15$ and the mean seeding
 227 time is $\tau = \max(0.15, 0.05A + 0.5) = 0.05A + 0.5$. We see that as the population increases the phenology
 228 distribution gets translated to the right, and for larger populations a significant portion fails to reproduce
 229 in the season.

230 In Figure 2 we show how the phenology distribution varies with population when mean seeding
 231 time decreases with density. In this figure the standard deviation is $\sigma = 0.15$ and the mean seeding
 232 time is $\tau = \max(0.15, -0.3A + 0.5)$. Note that τ will become fixed at 0.15 for $A > \frac{5}{3}$. We see that as
 233 the population increases the phenology distribution shifts to the left. Unlike Figure 1, we see that the
 234 skewness increases as the distribution shifts to the left due to the support being non-negative. We also
 235 note that for $A > \frac{5}{3}$, the distribution becomes an exponential distribution.

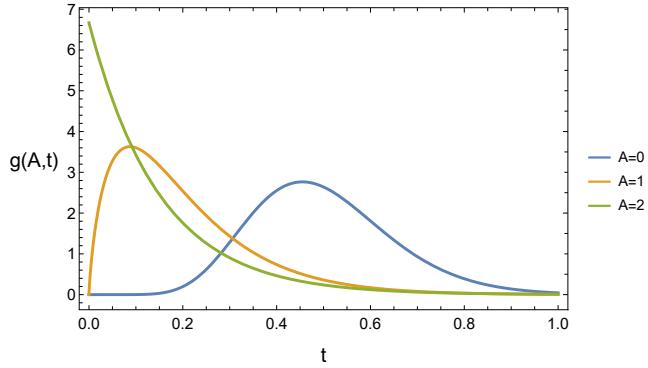


Fig. 2: The phenology distributions $g(A, t)$ for several population levels with $\sigma = 0.15$, $a = -0.3$, $b = 0.5$.

236 For results related to other distributions such as the uniform and generalized beta we refer the reader
 237 to the PhD thesis of Timothy Pervenecki (Pervenecki 2019).

238 It should be noted that by substituting $\tilde{J}(A, t) = \gamma J(A, t)$ into Model 1 we obtain

$$\tilde{J}_t = \gamma \alpha A_n e^{-\mu t} g(A_n, t) - \nu \tilde{J} - \frac{\beta}{\gamma} \tilde{J}^2,$$

$$\tilde{J}(A_n, 0) = 0,$$

$$A_{n+1} = \tilde{J}(A_n, 1).$$

239 Hence, without loss of generality, we may consider Model 1 with $\gamma = 1$.

240 4.1 Case 1: high seed mortality

241 In this simulation we assume the seed mortality rate is higher than that of the adults. The parameters
 242 used here are $\alpha = 10$, $\mu = 1$, $\nu = 5$, $\beta = 0.1$, $\sigma = 0.15$, $b = 0.5$, $\gamma = 1$. We use the parameter a as
 243 a bifurcation parameter to investigate how the density dependence of the mean seed production time
 244 effects the population dynamics. A positive a represents seed production being delayed with increased
 245 population density, whereas negative a represents seed production being advanced with increased density.

246 In Figure 3 we plot the growth function for several values of a . We see that a strong Allee effect and
 247 overcompensation occurs. The Allee effect can be understood in terms of higher populations delaying seed
 248 production, and thus exposing the seeds to less time at the higher mortality rate. The overcompensation
 249 can be understood by noting that large populations delay seed production to the point that much of the
 250 distribution falls outside of the season. This can be seen with $g(10, t)$ in Figure 1. It is worth noting the
 251 condition for the existence of a positive equilibrium given by the inequality in Corollary 1 is met for all

252 4 panels on Figure 3. For example, when $a = 0.05$ the integral on the lefthand side is greater than 1 for
 253 $3.02 < A < 11.01$ achieving a maximum of 1.57 at $A = 7.52$.

254 In Figure 4 we plot the equilibrium values of A . The blue curve is the stable extinction equilibrium,
 255 the red curve is the unstable Allee equilibrium. The black curve is the upper equilibrium which is stable
 256 where solid and unstable where dashed. Since the seeds face a rate of mortality five times higher than
 257 the adults, we would expect that delayed seed production would be favorable for the population so long
 258 as a significant fraction of the distribution falls within the $0 \leq t \leq 1$ season. In Figure 4 we see that
 259 there is no positive equilibrium until a is larger than roughly 0.01. At this point very large populations
 260 are able to delay seed production extensively enough that survival is possible. As a becomes larger,
 261 smaller populations are adequate to cause enough delay to stabilize the population. The Allee effect can
 262 be understood to take place due to higher densities being required to sufficiently delay seed production
 263 so that the high losses do not cause extinction.

264 In Figure 5, we see that the population dynamics undergo a period-doubling bifurcation to chaos as
 265 a increases. In Figure 6 we show a population time series for the growth functions in Figure 3- (b-d).
 266 The series are initiated with a population just slightly larger than the corresponding Allee threshold.
 267 Populations initiated below the Allee threshold will go extinct. The time series for Figure 3-(a) is not
 268 shown as it trivially leads to extinction. We see that for relatively small values of a we obtain a stable
 269 equilibrium, for intermediate values of a a period-4 solution emerges, and finally we see chaotic dynamics
 270 for large a .

271 It should be noted that as the seed mortality rate, ν , decreases from 5 while the other parameters
 272 are held fixed, the Allee effect disappears while a positive equilibrium remains. Theorem 1 (ii) allows
 273 us to determine the existence/non-existence of an Allee effect by examining the value of the integrals
 274 representing $f'(0)$ and $f''(0)$. For example with $\alpha = 10$, $\mu = 1$, $\beta = 0.1$, $\sigma = 0.15$, $b = 0.5$, $\gamma = 1$, $a =$
 275 0.5, if we compute $f'(0)$ and $f''(0)$ using the formula in Lemma 1 with $\nu = 5$ we see that $f'(0) = 0.59$
 276 and $f''(0) = 0.15$. $f'(0) < 1$ and $f''(0) > 0$ is indicative of a strong Allee effect. As ν decreases, $f'(0)$
 277 increases and $f''(0)$ decreases. At $\nu = 3.76$, $f'(0) = 1$ and $f''(0) = 0.09$ indicating a transition to a weak
 278 Allee effect. As ν decreases to $\nu = 3.14$, $f'(0) = 1.32$ and $f''(0) = 0$ indicating the loss of the Allee effect.
 279 For $\nu < 3.14$, $f'(0) > 1$ and $f''(0) < 0$ indicating monotone dynamics.

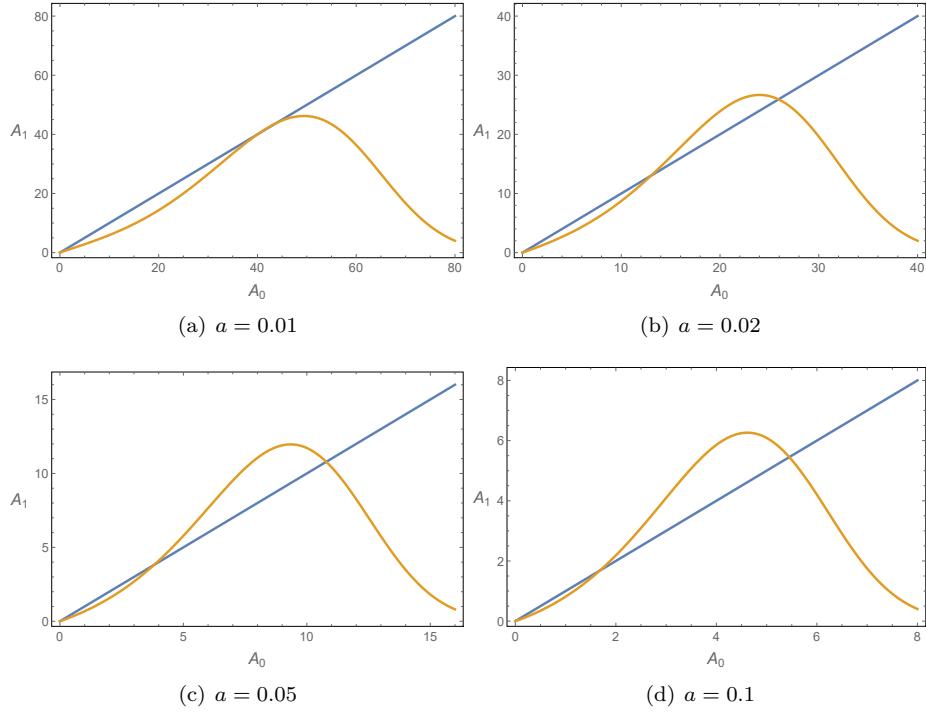


Fig. 3: The growth function for various values of a . We see as a increases the Allee threshold decreases, growth becomes stronger, and overcompensation also increases. Other parameters used are $\alpha = 10$, $\mu = 1$, $\nu = 5$, $\beta = 0.1$, $\sigma = 0.15$, $b = 0.5$, $\gamma = 1$.

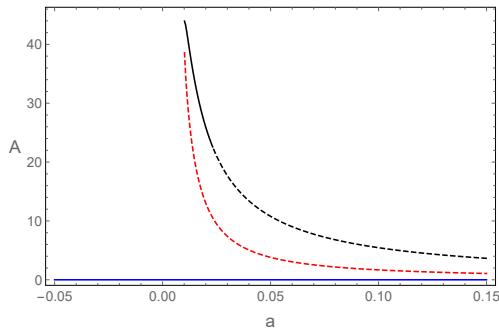


Fig. 4: The existence and stability of The equilibrium of Model 1 as a function of a . The other parameters used are $\alpha = 10$, $\mu = 1$, $\nu = 5$, $\beta = 0.1$, $\sigma = 0.15$, $b = 0.5$, $\gamma = 1$. The black curve is the carrying capacity, red is the Allee threshold, and blue is the extinction equilibrium. A solid curve indicates a stable equilibrium whereas dashed indicates unstable.

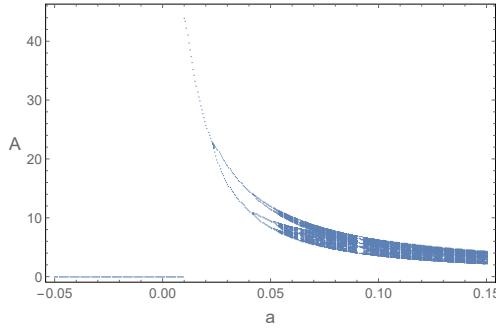


Fig. 5: A bifurcation diagram of the solutions as a function of a . We see period doubling cascade leading to chaos occurs as a increases. Other parameters used are $\alpha = 10$, $\mu = 1$, $\nu = 5$, $\beta = 0.1$, $\sigma = 0.15$, $b = 0.5$, $\gamma = 1$.

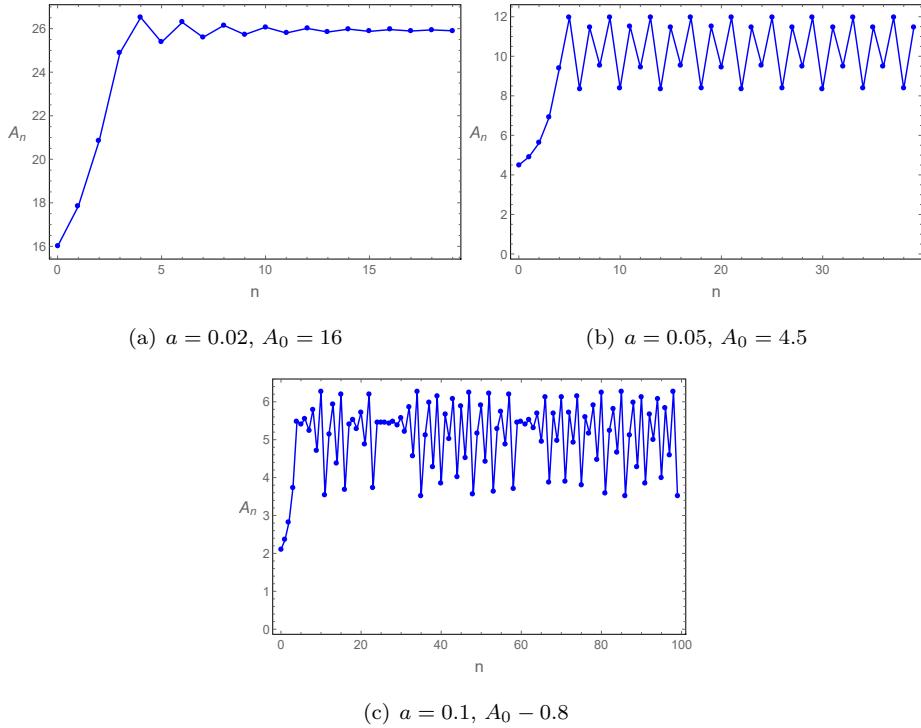


Fig. 6: A population time series corresponding to the growth functions in Figure 3-(b-d). The series are initiated with a population just slightly larger than the corresponding Allee threshold. We see an asymptotically stable equilibrium in (a), a period-4 solution in (b) , and chaotic dynamics in (c).

280 4.2 Case 2: high adult mortality

281 In this simulation we assume the seed mortality rate is lower than that of the adults. The parameters
282 used here are $\alpha = 10$, $\mu = 5$, $\nu = 1$, $\beta = 0.1$, $\sigma = 0.15$, $b = 0.5$, $\gamma = 1$.

283 In Figure 7 we plot the growth function for several values of a . We note the growth function is
284 monotone and has a strong Allee effect. The lack of overcompensation is due to the fact that τ has a
285 lower bound of σ and thus seed production occurs within the season no matter how large the population
286 is. This is in contrast to the high juvenile mortality case where with positive a , large populations push
287 the seed production window outside of the season. For values of a producing a positive equilibrium (see
288 Figure 8) the population dynamics will be simple, with populations initially above the Allee threshold
289 converging to the stable upper positive equilibrium, and populations initially below the Allee threshold
290 going extinct. This is illustrated in Figure 9, where we see the population monotonically increase from
291 slightly above the Allee threshold towards the upper equilibrium. We see the growth function can have a
292 discontinuity in its derivative, for example in panel (c) near $A_0 = 1.2$. This arises from the discontinuity
293 of the derivative of $\tau = \max(\sigma, aA + b)$ when $\sigma = aA + b$.

294 In Figure 8, the blue curve is the stable extinction equilibrium, the red curve is the unstable Allee
295 equilibrium, and the black curve is the upper stable equilibrium. We see the positive equilibrium does
296 not form until a is less than about -0.1, and the Allee threshold continues to decrease as a decreases. As
297 the adult stage has the high mortality rate in this case, we would expect advancing the seed production
298 time would improve survival. In the formula for the mean seed production time, $\tau = \max(\sigma, aA + b)$, we
299 see if aA is sufficiently negative there is a possibility of advancing the seed production time to a threshold
300 where the species can survive. This explains the emergence of an Allee effect and why the Allee threshold
301 decreases as a decreases. We also see the positive equilibrium saturates at a value near 4. This can be
302 explained by noting if $aA + b < \sigma$ then $\tau = \sigma$ and the phenology, in effect, becomes fixed for sufficiently
303 negative aA .

304 Similar to in Case 1, when the adult mortality rate, μ , decreases from 5 while the other parameters
305 are held fixed, the Allee effect disappears while a positive equilibrium remains. For example with $\alpha =$
306 10, $\nu = 1$, $\beta = 0.1$, $\sigma = 0.15$, $b = 0.5$, $\gamma = 1$, $a = -0.3$, if we compute $f'(0)$ and $f''(0)$ using the
307 formula in Lemma 1 we see that with $\mu = 5$, $f'(0) = 0.59$ and $f''(0) = 1.37$. $f'(0) < 1$ and $f''(0) > 0$
308 is indicative of a strong Allee effect. As μ decreases, $f'(0)$ increases and $f''(0)$ initially increases. At
309 $\mu = 3.78$, $f'(0) = 1$ and $f''(0) = 1.54$ indicating a transition to a weak Allee effect. As μ decreases
310 further eventually $f''(0)$ begins to decrease. At $\mu = 1.51$, $f'(0) = 2.85$ and $f''(0) = 0$ indicating the loss
311 of the Allee effect. For $\mu < 1.51$, $f'(0) > 1$ and $f''(0) < 0$ indicating monotone dynamics.

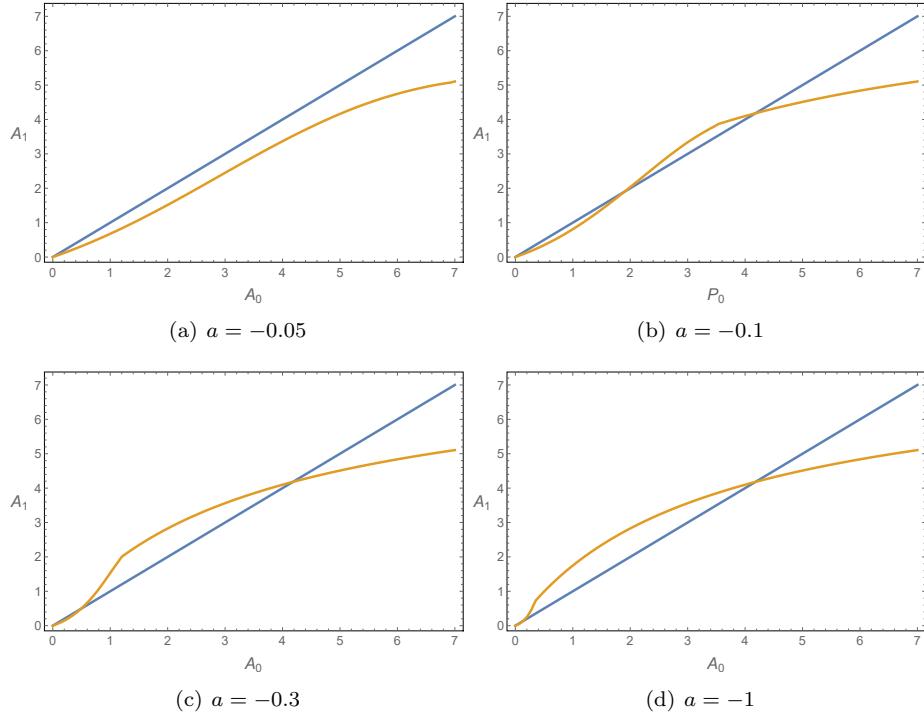


Fig. 7: The growth function for various values of a . We see that the Allee threshold decreases and growth becomes stronger as a becomes more negative. Other parameters used are $\alpha = 10$, $\mu = 5$, $\nu = 1$, $\beta = 0.1$, $\sigma = 0.15$, $b = 0.5$, $\gamma = 1$.

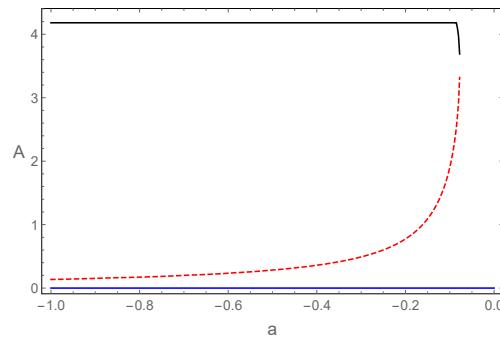


Fig. 8: The existence and stability of the equilibria of Model 1 as a function of a . The other parameters used are $\alpha = 10$, $\mu = 5$, $\nu = 1$, $\beta = 0.1$, $\sigma = 0.15$, $b = 0.5$, $\gamma = 1$. The black curve is the carrying capacity, red is the Allee threshold, and blue is the extinction equilibrium. A solid curve indicates a stable equilibrium whereas dashed indicates unstable. The carrying capacity saturates near $A = 4$ due to $aA + b < \sigma$, thus fixing τ to a value of σ .

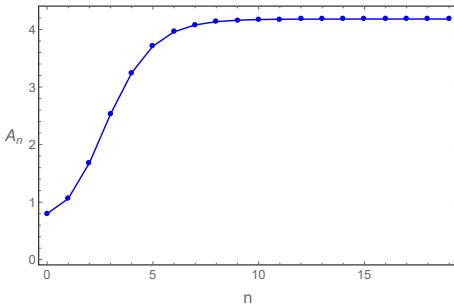


Fig. 9: A population time series corresponding to the growth functions in Figure 7-(c) with $a = -0.3$. We see the population asymptotically approaches the carrying capacity. The series was initiated with $A_0 = 0.8$

312 One aspect which we did not attempt to capture in this model are the effects of the interactions
 313 between the timing of seed production and the time available for seed development. We may imagine
 314 that the length of time for seed development might affect the seed quantity and quality. Including this
 315 may alter some of our conclusions.

316 **5 Discussion**

317 We developed a mathematical model of an annual species in which the timing of reproduction is
 318 governed by density. We obtained analytical integral conditions under which there is a strong Allee effect.
 319 Our results provide a new mechanism for generating Allee effects. Phenological differences (asynchrony)
 320 between males and females have been previously shown to generate Allee effects via the mate-limitation
 321 route in models that are explicitly two-sex (Calabrese and Fagan 2004; Calabrese et al. 2008). The result
 322 here is different because density is altering the phenological distribution of the population, creating the
 323 positive relationship between population growth rate and density that is necessary for a demographic
 324 Allee effect.

325 It is interesting to note that density dependent phenology can produce overcompensation as well.
 326 Our extensive numerical simulations with a density dependent gamma distribution indicate very rich
 327 population dynamics, from stable/unstable equilibria, limit cycles, to chaos. This richness of qualitative
 328 behavior is perhaps not surprising given the diverse scenarios in which overcompensation is known to
 329 drive complicated dynamics in population dynamics models. What is novel here is that the process that
 330 mediates the inter-year transitions in population density hinges on the way in which density controls the
 331 within-season timing of transition. Such seasonal timing is a variable of great interest in biology because it
 332 can be shaped by diverse factors including resource availability and climate change (e.g., Miller-Rushing
 333 et al. 2010; Vermeulen 2015).

334 The density dependent probability distribution $g(A, t)$ in model (1) describes how reproduction (or
335 more generally, emergence into a population stage) is spread over time. This function plays an important
336 role in generating Allee effects. When $g(A, t)$ is density independent, i.e., when $g(A, t)$ solely depends
337 on time t , there is no Allee effect. The integral conditions (2) and (3) indicate that in order for the
338 model to have an Allee effect, $\frac{\partial g(0,t)}{\partial A}$ should be relatively large and $g(0,t)$ should be relatively small for
339 $t \in [0, 1]$. This means biologically that at low population densities, the rate of change of $g(A, t)$ in A is
340 large compared with $g(A, t)$ in $[0, 1]$. According to Theorem 2 (i), there exists an Allee threshold if there
341 is $A > 0$ such that $g(A, t)$ is relatively large for $t \in [0, 1]$.

342 The framework developed in this paper can be also used to model phenology associated with mat-
343 uration from seeds to reproductive adults influenced by density. Mechanistically, density may be linked
344 to phenology via resource competition. For example, for some plants, density dependent phenology may
345 emerge mechanistically because the degree of shading experienced by an individual may hinge on when
346 in the growing season it emerges relative to other members of the population. That is, earlier plants
347 emerging at low density may experience less shading than plants that emerge later in the season after
348 other plants are already established (Callahan and Pigliucci 2002). Similar competitive processes may link
349 density to flowering phenology as density-dependent resource acquisition during the vegetative stage may
350 affect the transition from vegetative to reproductive growth, thereby determining bloom time (Schmitt
351 et al. 1987; Abubaker 2008; Vermeulen 2015). Because of such links among density, access to resources,
352 and relative success, phenology may be under selection in a density-dependent context (Callahan and
353 Pigliucci 2002; Vincent and Brown 1984), and depending on the conditions, increased density may favor
354 either early or late phenology (Vermeulen 2015).

355 Looking forward, the model could be further developed into a spatial model by adding a diffusion
356 term. The interaction between the timing of juvenile emergence and the time available for juveniles
357 to develop into adults is also worthy of investigation. Another possible extension would be to create a
358 competition model, where one or both of the species has density dependent phenology. Modeling within
359 such a competition framework could be especially interesting because it would allow for investigations of
360 the evolution of phenology via an adaptive dynamics framework. Such studies would provide additional
361 connections with relevant biology in that maternal effects have already been considered from an adaptive
362 perspective (Galloway 2005; Van Asch et al. 2010) and because intriguing complex dynamics are possible
363 when topics such as phenology (Eskola 2009) and resource allocation (Akhmetzhanov et al. 2011) are
364 studied in an adaptive context.

365 **6 Appendix**366 **6.1 Proof of Lemma 1**

Proof We derive explicit formulas for $f''(0)$ and $f'(0)$. The initial value problem of (1) is equivalent to

$$(J(A_n, t)e^{\int_0^t (\nu + \beta J(A_n, s)) ds})' = \alpha g(A_n, t)e^{-\mu t} e^{\int_0^t (\nu + \beta J(A_n, s)) ds}, \quad J(A_n, 0) = 0.$$

367 Integration shows

368

$$J(A_n, t) = \alpha A_n e^{-\int_0^t (\nu + \beta J(A_n, s)) ds} \int_0^t g(A_n, \tau) e^{-\mu \tau} e^{\int_0^\tau (\nu + \beta J(A_n, s)) ds} d\tau.$$

369 This gives an implicit year-to-year mapping

370

$$\begin{aligned} A_{n+1} &= f(A_n) := \gamma J(A_n, 1) \\ &= \alpha \gamma A_n e^{-\int_0^1 (\nu + \beta J(A_n, s)) ds} \int_0^1 g(A_n, t) e^{-\mu t} e^{\int_0^t (\nu + \beta J(A_n, s)) ds} dt \\ &= \alpha \gamma A_n \int_0^1 g(A_n, t) e^{-\mu t} e^{-\int_t^1 (\nu + \beta J(A_n, s)) ds} dt. \end{aligned} \quad (8)$$

371

372

373 Taking the first derivative yields

$$\begin{aligned} f'(A) &= \alpha \gamma \int_0^1 g(A, t) e^{-\mu t} e^{-\int_t^1 (\nu + \beta J(A, s)) ds} dt + \alpha \gamma A \int_0^1 \left[\frac{\partial}{\partial A} g(A, t) \right] e^{-\mu t} e^{-\int_t^1 (\nu + \beta J(A, s)) ds} dt \\ &\quad - \alpha \beta \gamma A \int_0^1 g(A, t) e^{-\mu t} e^{-\int_t^1 (\nu + \beta J(A, s)) ds} \left[\int_t^1 \frac{\partial}{\partial A} J(A, s) ds \right] dt. \end{aligned}$$

374 Evaluating at $A = 0$ we obtain

$$f'(0) = \alpha \gamma \int_0^1 g(0, t) e^{-\mu t - (1-t)\nu} dt.$$

375 Taking the second derivative yields

$$\begin{aligned}
f''(A) = & 2\alpha\gamma \int_0^1 \left[\frac{\partial}{\partial A} g(A, t) \right] e^{-\mu t} e^{-\int_t^1 (\nu + \beta J(A, s)) ds} dt \\
& - 2\alpha\beta\gamma \int_0^1 g(A, t) e^{-\mu t} e^{-\int_t^1 (\nu + \beta J(A, s)) ds} \left[\int_t^1 \frac{\partial}{\partial A} J(A, s) ds \right] dt \\
& - 2\alpha\beta\gamma A \int_0^1 \left[\frac{\partial}{\partial A} g(A, t) \right] e^{-\mu t} e^{-\int_t^1 (\nu + \beta J(A, s)) ds} \left[\int_t^1 \frac{\partial}{\partial A} J(A, s) ds \right] dt \\
& + \alpha\gamma A \int_0^1 \left[\frac{\partial^2}{\partial A^2} g(A, t) \right] e^{-\mu t} e^{-\int_t^1 (\nu + \beta J(A, s)) ds} dt \\
& + \alpha\beta^2\gamma A \int_0^1 g(A, t) e^{-\mu t} e^{-\int_t^1 (\nu + \beta J(A, s)) ds} \left[\int_t^1 \frac{\partial}{\partial A} J(A, s) ds \right]^2 dt \\
& - \alpha\beta\gamma A \int_0^1 g(A, t) e^{-\mu t} e^{-\int_t^1 (\nu + \beta J(A, s)) ds} \left[\int_t^1 \frac{\partial^2}{\partial A^2} J(A, s) ds \right] dt.
\end{aligned}$$

376 Note that in this equation, all the terms except the first two have a factor A . Evaluating at $A = 0$ we
377 obtain

$$\begin{aligned}
f''(0) = & 2\alpha\gamma \int_0^1 \left(\left[\frac{\partial}{\partial A} g(A, t) \right] \Big|_{A=0} \right) e^{-\mu t - (1-t)\nu} dt \\
& - 2\alpha\beta\gamma \int_0^1 g(0, t) e^{-\mu t - (1-t)\nu} \int_t^1 \left(\frac{\partial}{\partial A} J(A, s) \right) \Big|_{A=0} ds dt \\
= & 2\alpha\gamma \int_0^1 \left(\left[\frac{\partial}{\partial A} g(A, t) \right] \Big|_{A=0} \right) e^{-\mu t - (1-t)\nu} dt \\
& - 2\alpha^2\beta\gamma \int_0^1 g(0, t) e^{-\mu t - (1-t)\nu} \int_t^1 e^{-\nu s} \int_0^s g(0, r) e^{-\mu r + \nu r} dr ds dt.
\end{aligned}$$

378 The last line is achieved by using $\frac{\partial}{\partial A} J(A, t) \Big|_{A=0} = \alpha e^{-\nu t} \int_0^t g(0, \tau) e^{-\mu\tau + \nu\tau} d\tau$. This quantity is found
379 by taking the derivative of the differential equation in model (1) with respect to A , solving for $\frac{\partial}{\partial A} J$, and
380 evaluating at $A = 0$. The conclusion of the lemma follows immediately.

□

381 6.2 Proof of Proposition 2

382 *Proof* The definition of T shows $T[B](A, t) \geq 0$ if $B(A, t) \geq 0$. Since $B_0(A, t) \equiv 0$, $B_n(A, t) \geq 0$ for all
383 n . Observe that

$$B_3(A, t) = T[B_2](A, t) \leq T[B_0](A, t) = B_1(A, t),$$

384 and thus

$$B_4(A, t) = T[B_3](A, t) \geq T[B_1](A, t) = B_2(A, t).$$

385 Assume for some $k \geq 1$, $B_{2k+1}(A, t) \leq B_{2k-1}(A, t)$ and $B_{2(k+1)}(A, t) \geq B_{2k}(A, t)$. Then $B_{2k+3}(t) =$
 386 $T[B_{2(k+1)}](A, t) \leq T[B_{2k}](A, t) = B_{2k+1}(A, t)$, and thus $B_{2k+4}(t) = T[B_{2k+3}](A, t) \geq T[B_{2k+1}](A, t) =$
 387 $B_{2(k+1)}(A, t)$. Using induction and the fact $B_n(A, t) = T[B_{n-1}](A, t) \leq T[B_0](A, t) \leq B_1(A, t)$, we have

$$B_1(A, t) \geq B_3(A, t) \geq \cdots \geq B_{2k-1}(A, t) \geq B_{2k+1}(A, t) \geq \cdots \geq 0,$$

$$B_0(A, t) \leq B_2(A, t) \leq \cdots \leq B_{2k}(A, t) \leq B_{2(k+1)}(A, t) \leq \cdots \leq B_1(A, t).$$

389 Since both $B_{2n}(A, t)$ and $B_{2n+1}(A, t)$ are monotone and bounded in n , we have that $\lim_{n \rightarrow \infty} B_{2n+1}(t) =$
 390 $\bar{B}(A, t)$ and $\lim_{n \rightarrow \infty} B_{2n}(A, t) = \underline{B}(A, t)$. By taking $n \rightarrow \infty$ in $B_{2n+1}(A, t) = T[B_{2n}](A, t)$ and $B_{2(n+1)}(A, t) =$
 391 $T[B_{2n+1}](A, t)$ and using the dominated convergence theorem, we have

$$\bar{B}(A, t) = T[\underline{B}](A, t), \quad \underline{B}(A, t) = T[\bar{B}](A, t). \quad (9)$$

(9) and continuity of $\bar{B}(A, t)$ and $\underline{B}(A, t)$ show that $\bar{B}(A, t)$ and $\underline{B}(A, t)$ are differentiable functions. By directly taking the derivatives on both sides of $\bar{B}(A, t) = T[\underline{B}](A, t)$, we obtain

$$\bar{B}_t = \alpha\gamma e^{-\mu t} g(A, t) + \left(-\nu - \frac{\beta}{\gamma} A \underline{B}(A, t)\right) T[\underline{B}](A, t).$$

392 Using $T[\underline{B}](A, t) = \bar{B}(A, t)$, we find

$$\bar{B}_t = \alpha\gamma e^{-\mu t} g(A, t) - \nu \bar{B} - \frac{\beta}{\gamma} A \bar{B} \underline{B}. \quad (10)$$

393 Similarly

$$\underline{B}_t = \alpha\gamma e^{-\mu t} g(A, t) - \nu \underline{B} - \frac{\beta}{\gamma} A \bar{B} \underline{B}. \quad (11)$$

394 Subtracting (11) from (10), we find

$$(\bar{B} - \underline{B})_t = -\nu(\bar{B} - \underline{B}). \quad (12)$$

(5) shows $\bar{B}(A, 0) = \underline{B}(A, 0) = 0$. This and (12) indicate $\bar{B}(A, t) \equiv \underline{B}(A, t)$ so that

$$\bar{B}(A, t) = T[\bar{B}](A, t).$$

395 The uniqueness of solution of (1) implies $\bar{B}(A, t) \equiv \underline{B}(A, t) \equiv B(A, t)$. This completes the proof. \square

396 6.3 Proof of Theorem 2

397 *Proof* The condition (2) implies that $f(A) < A$ for small positive A . Since $f(A)$ is continuous, $f(A)$ has
 398 a positive equilibrium if and only if there exists $A > 0$ such that $f(A) > A$. According to Proposition 2,
 399 as $n \rightarrow \infty$, $B_{2n}(A, 1)$ increases to $B(A, 1)$ and $B_{2n+1}(A, 1)$ decreases to $B(A, 1)$. If there is $A > 0$ and
 400 $n_0 \geq 1$ such that $B_{2n_0}(A, 1) > 1$, then $B(A, 1) > 1$ which means $f(A) > A$, so that there is a positive
 401 equilibrium. If there is $n_0 \geq 1$ such that for all $A > 0$, $B_{2n_0+1}(A, 1) < 1$, then $B(A, 1) < 1$ for all $A > 0$,
 402 so that there is no positive equilibrium. Therefore statements (i)-(ii) hold.

403 Assume that there is a positive equilibrium. Since $f(A) < A$ for small positive A due to (2), continuity
 404 of f shows that there exists a smallest positive equilibrium named A^* . Then $f(A) < A$ for $0 < A < A^*$.
 405 This shows that for any A_0 with $0 < A_0 < A^*$ the sequence A_n generated by $A_{n+1} = f(A_n)$ has the
 406 property that $A_n \rightarrow 0$ as $n \rightarrow \infty$, so that A^* is the Allee threshold.

□

407 **References**

408 Abubaker S (2008) Effect of plant density on flowering date, yield and quality attribute of bush beans (*Phaseolus vulgaris*
 409 l.) under center pivot irrigation system. *American Journal of Agricultural and Biological Sciences* 3 (4):666–668

410 Akhmetzhanov AR, Grogan F, Mailleret L (2011) Optimal life-history strategies in seasonal consumer-resource dynamics.
 411 *Evolution* 65(11):3113–3125

412 Berec L, Angula E, Courchamp F (2007) Multiple allee effects and population management. *Trends Ecol Evol* 22:185–191

413 Bewick S, Cantrell RS, Cosner C, Fagan WF (2016) How resource phenology affects consumer population dynamics. *The*
 414 *American Naturalist* 187(2):151–166

415 Calabrese JM, Fagan WF (2004) Lost in time, lonely, and single: reproductive asynchrony and the allee effect. *American*
 416 *Naturalist* 164:25–37

417 Calabrese JM, Ries L, Matter S, Auckland J, Roland J, Debinski D, Fagan W (2008) Reproductive asynchrony in natural
 418 butterfly populations and its consequences for female matelessness. *Journal of Animal Ecology* 77:746–756

419 Callahan HS, Pigliucci M (2002) Shade-induced plasticity and its ecological significance in wild populations of *Arabidopsis*
 420 *thaliana*. *Ecology* 83:1965–1980

421 Cao Y, Xiao Y, Huang H, Xu J, Hu W, Wang N (2016) Simulated warming shifts the flowering phenology and sexual
 422 reproduction of *Cardamine hirsuta* under different planting densities. *Scientific Reports* 6:27835

423 CaraDonna PJ, Iler AM, Inouye DW (2014) Shifts in flowering phenology reshape a subalpine plant community. *Proceedings*
 424 *of the National Academy of Sciences* 111(13):4916–4921

425 Chmura HE, Kharouba HM, Ashander J, Ehlman SM, Rivest EB, Yang LH (2019) The mechanisms of phenology: the
 426 patterns and processes of phenological shifts. *Ecological Monographs* 89:e01337

427 Clutton-Brock TH, McIlrath GM, MacColl ADC, Kansky R, Chadwick P, Manser M, Skinner JD, Brotherton PNM (1999)
 428 Predation, group size and mortality in a cooperative mongoose, *Suricata suricatta*. *Journal of Animal Ecology* 68:672–
 429 683

430 Connell JH (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain
431 forest trees. *Dynamics of populations*, 298(312)

432 Courchamp F, Berec L, Gascoigne J (2008) Allee effects in ecology and conservation. Oxford University Press, New York

433 Davis HG, Taylor CM, Lambrinos JG, Strong DR (2004) Pollen limitation causes an allee effect in a wind-pollinated
434 invasive grass (*Spartina alterniflora*). *Proc Natl Acad Sci USA* 101:13804–13807

435 Donohue K (2009) Completing the cycle: maternal effects as the missing link in plant life histories. *Philosophical Transactions of the Royal Society B: Biological Sciences* 364(1520):1059–1074

436 Donohue K, Messina D, Pyle EH, Heschel MS, Schmitt J (2000) Evidence of adaptive divergence in plasticity: density-
437 and site-dependent selection on shade-avoidance responses in *impatiens capensis*. *Evolution* 54:1956–1968

438 Encinas-Viso F, Revilla TA, Etienne RS (2012) Phenology drives mutualistic network structure and diversity. *Ecology*
439 Letters 15(3):198–208

440 Eskola H, Geritz S (2007) On the mechanistic derivation of various discrete-time population models. *Bull Math Biol*
441 69:329–346

442 Eskola H, Parvinen K (2010) The allee effect in mechanistic models based on inter-individual interaction processes. *Bull*
443 *Math Biol* 72:184–207

444 Eskola HT (2009) On the evolution of the timing of reproduction. *Theoretical Population Biology* 75(2-3):98–108

445 Fagan W, Bewick S, Cantrell S, Cosner C, Varassin I, Inouye D (2014) Phenologically explicit models for studying
446 plant–pollinator interactions under climate change. *Theoretical Ecology* 7:289–297

447 Fagan WF, Cosner C, Larsen EA, Calabrese JM (2010) Reproductive asynchrony in spatial population models: how mating
448 behavior can modulate allee effects arising from isolation in both space and time. *The American Naturalist* 175(3):362–
449 373

450 Galloway LF (2002) The effect of maternal phenology on offspring characters in the herbaceous plant *campanula americana*.
451 *Journal of Ecology* pp 851–858

452 Galloway LF (2005) Maternal effects provide phenotypic adaptation to local environmental conditions. *New phytologist*
453 166(1):93–100

454 Galloway LF, Burgess KS (2009) Manipulation of flowering time: phenological integration and maternal effects. *Ecology*
455 90(8):2139–2148

456 Gascoigne J, Berec L, Gregory S, Courchamp F (2009) Dangerously few liaisons: a review of mate-finding allee effects.
457 *Population Ecology* 51:355–372

458 Gray DR (2004) The gypsy moth life stage model: landscape-wide estimates of gypsy moth establishment using a multi-
459 generational phenology model. *Ecological Modelling* 176:155–171

460 Hale JK (1980) Ordinary Differential Equations. Krieger Publishing Co.

461 Janzen DH (1970) Herbivores and the number of tree species in tropical forests. *The American Naturalist* 104(940):501–528

462 Johnson DM, Liebhold AM, Tobin PC, Bjørnstad ON (2006) Allee effects and pulsed invasion by the gypsy moth. *Nature*
463 44:361–363

464 Keller JA, Shea K (2021) Warming and shifting phenology accelerate an invasive plant life cycle. *Ecology* 102(1):e03219

465 Kramer AM, Dennis B, Liebhold AM, Drake JM (2009) The evidence for allee effects. *Population Ecology* 51:341–354

466 Lewis MA, Li B (2012) Spreading speed, traveling waves, and minimal domain size in impulsive reaction-diffusion models.
467 *Bull Math Biol* 74:2383–2402

468 Logan JA, Powell JA (2001) Ghost forests, global warming, and the mountain pine beetle (Coleoptera: Scolytidae). *American*
469 *Entomologist* 47:160

470

471 Lynch HJ, Rhainds M, Calabrese JM, Cantrell S, Cosner C, Fagan WF (2014) How climate extremes—not means—define
472 a species' geographic range boundary via a demographic tipping point. *Ecological Monographs* 84:134–149

473 Mailleret L, Lemesle V (2009) A note on semi-discrete modelling in the life sciences. *Philosophical Transactions of the*
474 *Royal Society A-mathematical and Engineering* 1908:4779–4799

475 Miller-Rushing AJ, Hoye TT, Inouye DW, Post E (2010) The effects of phenological mismatches on demography. *Philoso-*
476 *tical Transactions of the Royal Society B: Biological Sciences* 365(1555):3177–3186

477 Mooring MS, Fitzpatrick TA, Nishihira TT, Reisig DD (2004) Vigilance, predation risk, and the allee effect in desert
478 bighorn sheep. *Journal of Wildlife Management* 68:519–532

479 Nicholson AJ (1954) An outline of the dynamics of animal populations. *Australian journal of Zoology* 2(1):9–65

480 Otto G, Bewick S, Li B, Fagan WF (2018) How phenological variation affects species spreading speeds. *Bull Math Biol*
481 80:1476–1513

482 Pervenecki TJ (2019) Allee effects introduced by density dependent phenology. University of Louisville PhD Thesis

483 Rhainds M, Fagan WF (2010) Broad-scale latitudinal variation in female reproductive success contributes to the mainte-
484 nance of a geographic range boundary in bagworms (lepidoptera: Psychidae). *PLOS One* 5:e14166

485 Rinella DJ, Wipfli MS, Stricker CA, Heintz RA, Rinella MJ (2012) Pacific salmon (*oncorhynchus* spp.) runs and consumer
486 fitness: growth and energy storage in stream-dwelling salmonids increase with salmon spawner density. *Canadian*
487 *Journal of Fisheries and Aquatic Sciences* 69:73–84

488 Roach DA, Wulff RD (1987) Maternal effects in plants. *Annual review of ecology and systematics* 18(1):209–235

489 Robinet C, Liebhold A, Gray D (2007) Variation in developmental time affects mating success and allee effects. *Oikos*
490 116:1227–1237

491 Robinet C, Lance DR, Thorpe KW, Onufrieva KS, Tobin PC, Liebhold AM (2008) Dispersion in time and space affect
492 mating success and allee effects in invading gypsy moth populations. *The Journal of Animal Ecology* 77:966–973

493 Schmitt J, Eccleston J, Ehrhardt D (1987) Density-dependent flowering phenology, outcrossing, and reproduction in
494 *impatiens capensis*. *Oecologia* 72:341–347

495 Thieme HRT (2003) *Mathematics in Population Biology*. Princeton University Press, Princeton, NJ

496 Thomas SC, Bazzaz FA (1993) The genetic component in plant size hierarchies: norms of reaction to density in a polygonum
497 species. *Ecological Monographs* 63:232–249

498 Tobin PC, Whitmire SL, Johnson DM, Bjørnstad ON, Liebhold AM (2007) Invasion speed is affected by geographical
499 variation in the strength of allee effects. *Ecology Letters* 10:36–43

500 Turchin P (1990) Rarity of density dependence or population regulation with lags? *Nature* 344(6267):660–663

501 Van Asch M, Julkunen-Tiito R, Visser ME (2010) Maternal effects in an insect herbivore as a mechanism to adapt to host
502 plant phenology. *Functional Ecology* 24(5):1103–1109

503 Vermeulen PJ (2015) On selection for flowering time plasticity in response to density. *New Phytologist* 205(1):429–439

504 Vincent TL, Brown JS (1984) Stability in an evolutionary game. *Theoretical Population Biology* 26:408–427

505 Walter JA, Meixler MS, Mueller T, Fagan WF, Tobin PC, Haynes KJ (2015) How topography induces reproductive
506 asynchrony and alters gypsy moth invasion dynamics. *Journal of Animal Ecology* 84:188–198

507 Ward NL, Masters GJ (2007) Linking climate change and species invasion: an illustration using insect herbivores. *Global*
508 *Change Biology* 13:1605–1615

509 Weinig C, Johnston J, German ZM, Demink LM (2006) Local and global costs of adaptive plasticity to density in *arabidopsis*
510 *thaliana*. *American Naturalist* 167:826–836