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Allee effects introduced by density dependent phenology

Abstract We consider a hybrid model of an annual species with the timing of a stage transition gov-
erned by density dependent phenology. We show that the model can produce a strong Allee effect as
well as overcompensation. The density dependent probability distribution that describes how population
emergence is spread over time plays an important role in determining population dynamics. Our exten-
sive numerical simulations with a density dependent gamma distribution indicate very rich population

dynamics, from stable/unstable equilibria, limit cycles, to chaos.

Keywords Phenology - Allee Effect - Overcompensation

1 Introduction

Phenology, or seasonal biological timing, is an issue of widespread interest in ecology. Biologists
studying phenology seek to understand how temporal variation in a particular transient process (e.g., a
pulse of births, or a transition between life stages), matters to the dynamics of the larger system (Miller-
Rushing et al. 2010; Lynch et al. 2014; Bewick et al. 2016; Encinas-Viso et al. 2012; Chmura et al. 2019).
In ecological systems, changes in phenology can involve changes in the start time of a process within
a season and/or changes in the temporal distribution (i.e., the synchrony) of that process (CaraDonna

et al. 2014; Calabrese and Fagan 2004; Chmura et al. 2019).

As but one example, phenology plays a particularly important role in the dynamics of invasive plants
and animals, which is an area of huge interest in applied ecology (Keller and Shea 2021). For instance,
in-depth investigations have explored the linkage between phenological asynchrony and invasion success
for a variety of forest species (e.g., Logan and Powell 2001; Ward and Masters 2007; Robinet et al. 2008).
For example, in the case of the invasion of non-native gypsy moth ( Lymantria dispar), asynchrony among
breeding adults arises from a variety of biological mechanisms, such as variation in development rates
among juvenile insects (Robinet et al. 2007, 2008; Gascoigne et al. 2009). This reproductive asynchrony
creates opportunities for some females to go mateless, and this reduced level of reproduction slows the rate
of spatial spread of the population (Johnson et al. 2006; Tobin et al. 2007). In some cases, such variation
in developmental rates may be genetically driven (Gray 2004). Alternatively, phenological variation may

arise through small-scale differences in environmental conditions (e.g., temperature, elevation, or other
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Allee effects introduced by density dependent phenology 3

microclimatic features; Walter et al. 2015), which cause individuals to develop at different rates, even
over distances linked by dispersal.

In the past, it has been convenient to model phenology using time-dependent functions (i.e., creating
non-autonomous equations) because this created a tight conceptual linkage to the kinds of empirical
data that motivated the research (Calabrese et al. 2008; Fagan et al. 2010). For example, ecologists rou-
tinely record the onset and duration of particular life stages (e.g., adult butterflies and flowering plants),
and such data lend themselves to being summarized as a function of time (e.g., as a beta or gamma
distribution). However, phenology may be a more complicated process than that suggested by a simple
time-dependent function. Indeed, a variety of studies, particularly in flowering plants, suggest a role for
density to shape phenology within a population (Thomas and Bazzaz 1993; Donohue et al. 2000; Weinig
et al. 2006; Vermeulen 2015). Both advances and delays in phenological distributions relative to seasonal
benchmarks may be driven by density. For example, for several plants such as Phaseolus Vulgaris L.
(Abubaker 2008) and the cleistogamous (closed, usually self-pollinating) flowers of Impatiens capensis
(Schmitt et al. 1987), low densities can delay flowering seasonally whereas high densities can advance
flowering. In (Schmitt et al. 1987) they hypothesize that this could be due to a stress related threshold
needed to trigger flowering. Plant density has an opposite effect on the chasmogamous (open, usually
cross-pollinating) flowers of Impatiens capensis (Schmitt et al. 1987), with higher densities causing later
flowering. Because population density can affect phenology, in this paper we switch from modeling phe-
nology as a purely time-dependent process to modeling phenology as both time- and density-dependent.
This switch to a model in which phenology depends on density is advantageous because it allows us to
explore the mechanistic foundation of phenology-induced Allee effects in more detail. Previous work (e.g.,
Calabrese et al. 2008; Rhainds and Fagan 2010; Lynch et al. 2014) all discussed phenology-dependent
Allee effects as the indirect consequence of male and female reproductive activity being misaligned in
time. Here, we forego a two-sex modeling approach in favor of one that in which the effect of density is
directly modeled.

A demographic Allee effect is a positive relationship between the overall individual fitness (often
quantified by the per capita population growth rate) and population size or density (Courchamp et al.
2008). A demographic Allee effect can be subdivided into two categories, a strong Allee effect and a
weak Allee effect, with the difference being that in the case of a strong Allee effect there exists a density
threshold that must be overcome for the population to persist.

Several well known mechanisms for the Allee effect exist, including mate limitation (e.g., Berec et al.
2007; Davis et al. 2004), cooperative defense (e.g., Courchamp et al. 2008; Mooring et al. 2004; Clutton-

Brock et al. 1999), cooperative feeding (e.g., Berec et al. 2007), and environmental conditioning (e.g.,
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Rinella et al. 2012; Kramer et al. 2009). Here, we explore a different, arguably new, mechanism for
generating the Allee effect: density dependent phenology. Several biological scenarios would fit within
this framework. For example, crowding experienced by adults could induce different levels of so-called
‘maternal effects’ (Roach and Wulff 1987) in their offspring (e.g., higher density adults may have offspring
that grow more slowly because crowded adults have fewer resources to allocate to each of their offspring).
One of the most widely known mathematical treatments of maternal effects are those of Turchin (1990),
in which maternal crowding introduces a form of lagged density dependence in population timeseries
of forest insects. If maternal effects influence offspring growth rates rather than simply mortality rates,
it creates a potential linkage between growing conditions in one generation and phenology in the next
generation as has been shown for winter moths Operophtera brumata (Van Asch et al. 2010). Such effects
are similar to so-called scramble competition in population ecology (Nicholson 1954) except that the
focus is not on survivorship as the metric of success but rather development rate. Understanding of
maternal effects is also well developed in some plant species (Galloway 2002; Donohue 2009; Galloway
and Burgess 2009) wherein the growing conditions of adult plants carry over to affect several measures

of performance in the next generation, including the phenology of seed germination.

2 The Model

We study a hybrid dynamical model (Eskola and Geritz 2007; Eskola and Parvinen 2010; Mailleret
and Lemesle 2009; Lewis and Li 2012; Otto et al. 2018) that models the population dynamics of an annual
species. As outlined above, relevant species include both annual plants and insects, but we will relate the
model to an annual plant system and use relevant biological language. We use an ordinary differential
equation to consider within-season phenology as a continuous process and couple that with a difference
equation that governs the transition between years. In keeping with our framework of density-mediated
maternal effects, we focus on the process of seed production, examining how maternal density shapes
the phenology of that process. We do not explicitly model change in size of seeds, only their population
density.

We assume that seed production takes place for 0 < ¢ < 1 each year. In year n, A,, denotes the
density of reproductive adult plants at time ¢ = 0, and J(A,,t) denotes the seed population density in
the reproduction season 0 < t < 1. We assume that each adult produces an average of a seeds. We use
g(Ap,,t) to represent the density-dependent probability density function, where the fraction of the adult
population which produce their seeds at time ¢ is given by g(A,,t). The density of seeds at t = 0 is 0 and

we assume the adults experience a death rate of p for 0 < ¢ < 1. The rate of seed production at time ¢
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Allee effects introduced by density dependent phenology 5

in the nth season is thus given by ae "t A, g(A,,t). This can be explained by noting that without adult
plant death, a4, g(A,,t) would be the number of seeds produced at time ¢, however by time ¢ only e~ #*
of the adults that would produce seeds at time t are still viable. Natural death for seeds is linear with the
coefficient v and additional seeds mortality mediated through seed crowding (Janzen 1970; Connell 1971)
which is quadratic with the coefficient 5 according to the law of mass action (see, e.g., Thieme 2003).
At the end of the reproductive season (¢t = 1), all the adults die, and the population of the following
season is recruited from the seeds that survive the winter. We use « to denote the product of the winter
survival rate of the seeds, the conversion rate of the juveniles from the seeds, and the survival rate of the
juveniles plants converting to the adults. Adults and seeds from the previous season are assumed to not

carry over to the next season. The population dynamics are governed by

Jy = aAne Mg(Ap,t) — v — BJ?,
J(A,,0) =0, (1)

An-l—l = ’)/J(An, 1)

The probability distribution g reflects intra-year seasonal variation in phenology; that is, the function
captures when reproduction (or more generally, a demographic process) starts and how asynchronous life
stages are within a reproduction season. The phenology function g depends on the adult population in
the previous year. This is consistent with the idea that density-dependent phenology can arise through
maternal effects, as was discussed in the Introduction. Specifically, we envision scenarios in which the
local crowding conditions experienced by adult plants influence their growth rate and thus the time in
the season at which they produce mature seeds. In general g(A,t) is defined for 0 < ¢ < co. If the upper
bound of the support of g(A,t) is bigger than 1, some organisms cannot reproduce. This leads to the
case where changes in phenology due to climate change lead to a localized species becoming invasive or
an invading species becoming extinct.

Our goal is to show that model (1) can produce a strong Allee effect as well as overcompensation.
Analytical results regarding the presence of an Allee effect are given in the next section. In Section 3, nu-
merical simulations are provided to demonstrate the existence of Allee effect and overcompensation with

a density dependent gamma distribution. Section 4 includes some concluding remarks and discussions.

3 Analytical results

In this section we present analytical results regarding the existence of an Allee effect in model (1). We

begin with the following hypothesis.
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Hypothesis 1 For A > 0 and 0 < t < 1, g(A,t) is nonnegative and bounded, fooo g(A,t)dt = 1, and

g(A,t) has continuous partial derivatives with respect to A and t up through order 2.

This hypothesis indicates that g(A,t) is a smooth density dependent probability distribution of time.
Under Hypothesis 1, model (1) is well-posed. The right-hand side of the differential equation in (1)
is locally Lipschitzian in J as —vJ — 8J2 is continuously differentiable in J. Theorem 3.1 - Theorem 3.3

and Exercise 3.4 in Chapter 1 of Hale (1980) show that the initial value problem
Jp = ae "g(A)A —vJ — BJ?, J(A,0) =0,

has a unique solution J(A,t), with the property that (f—:zJ(A, t) is continuous for 0 <t <1 and A > 0.

Let
f(A) =~J(4,1).

Clearly f(0) = 0.

We summarize these results in the following proposition.

PROPOSITION 1 Assume that Hypothesis 1 holds. Then A,1 = f(A,) in (1) where f”(A) is contin-
uous for A >0 and f(0) =0.

In general the differential equation in (1) cannot be analytically solved, and consequently the function
f cannot be explicitly given. We are, however, able to use the connection between f and g(A, ¢) to establish
explicit conditions for the presence of an Allee effect and to determine when the Allee effect is strong.
An Allee effect arises when the per-capita offspring number increases with population density over some

range for small populations, i.e., % increases for small positive A. Note

, (F(AA-fA) = f"(AA, (f(AA - f(A))]a=o =0.

(fiz;l))’ SPUCILES (&)

This and continuity of f”/(A) show that for small positive A, the sign of (@)’ is same as that of f(0),
if f”(0) # 0. Therefore for small positive A, % increases if f”(0) > 0 and % decreases if f”(0) < 0.
On the other hand, 0 is asymptotically stable for f if |f'(0)] < 1.

The following lemma provides explicit formulas for both f/(0) and f”(0).

Lemma 1 Assume that Hypothesis 1 holds. Then
1

1 (0) :a’y/ g(0,t)e ==t and
0

1
f//(o) = 2a’y/0 ([a({lg(A’t)} ‘A_()) e—tt—(1=t)v 1

1 1 s
—2a2ﬁ"// g(O,t)e_”t_(l_t)”/ e_”s/ g(0,7)e" " e’ drdsdt.
0 t 0
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Allee effects introduced by density dependent phenology 7

The proof for this lemma is provided in the Appendix.

This lemma shows f/(0) > 0. We therefore have that 0 is asymptotically stable if f'(0) < 1. Recall

£”(0) > 0 indicates the presence of an Allee effect. These and Lemma 1 lead to the following theorem.

Theorem 1 Assume that Hypothesis 1 is satisfied. The following statements hold for model (1):

(i) The equilibrium 0 is asymptotically stable if

1
a’y/ g(0,t)e =0 g < 1, (2)
0

(i) There exists an Allee effect if

/01 ([54(6—”9(14,1?))] ‘A_o) o nt— (-t gy

1 1 s
> aﬁ/ e_”tg(O,t)e_(l_t)”/ e_”s/ e H"g(0,r)e"" drdsdt.
0 ¢ 0

The condition in (i) indicates that the equilibrium 0 is asymptotically stable if for a given g(A,t) one
of a, v is small or one of p and v is large, or if for relatively large o and « relatively small p and v, the

distribution of g(A,t) at A = 0 is relatively low on [0, 1] in the sense of (2).

The condition in (ii) shows there exists an Allee effect if for appropriate parameter values the distri-
bution of ;2 (e #g(A,t)) at A = 0 is relatively high and the distribution of g(4,t) at A = 0 is relatively
low on [0,1].

The inequality in (ii) is a sharp condition for the existence of Allee effect. It is equivalent to f”/(0) > 0.
If it is reversed, there is no Allee effect. In the case of that g(A,t) is density-independent, i.e., g(4,t) =
g(t), the left hand side of the inequality is zero and hence this inequality is reversed, so that there is no

Allee effect in (1).

Under conditions (2) and (3), in order for (1) to have a strong Allee effect, there must exist an Allee
threshold, which is determined by the presence of a positive equilibrium. We develop necessary and

sufficient conditions for the existence of a positive equilibrium. Let

B(A,t) =~J (A 1)/A,
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with A > 0. Under condition (2) (which implies f(A) < A for small positive A), a sufficient and necessary
condition for f(A) to have a positive equilibrium is that there exists A > 0 such that vJ(4,1) = f(4) >

A, or equivalently B(A,1) > 1. The initial value problem (1) with A,, replaced by A shows

By = aye Mg(At) —vB — éABQ, B(A,0) =0, (4)

v

or equivalently
(B(At)efg(u+§AB(A,s))dS)/ _ a,yg(A’t)e—utefot(u+%AB(A,s))ds’ B(A,0) = 0.
Integration shows that B(A,t) satisfies the integral equation
B(A,t) = T[B](A,t) := ay /O t g(A, T)erT =T DA [T B(As)ds g (5)

This indicates that the solution B(A,t) of (4) is a fixed point of the integral operator T'. T[B] is well

defined for any nonnegative continuous function B(A,t) for ¢ € [0, 1]. An important property of T is
T[B](A,t) < T[B](A,t), if B(A,t)> B(A,t); T[B](At) > T[B](A,1), if B(At)<B(At). (6)

This is due to the fact that the integrand in (5) decreases in B.

We construct a sequence of functions using T' to approximate B(A,t). Consider B, (A,t) given by
B,11(A,t) = T[Bn](A,t), Bo(A,t)=0. (7)

Here each B, (A,t) can be computed explicitly for a given n.
The following proposition shows that the sub-sequence Ba,(A,t) increases to B(A,t) and the sub-

sequence Ba,11(A,t) decreases to B(A,t).
PROPOSITION 2 Forn =0,1,2,..., Byny1)(A,t) > Bop(A,t) and Byni1)+1(A,t) < Bany1(A,t), and
furthermore lim Bs,(A,t) = lim Bs,y1(t) = B(A,t).

n—00 k— 00

The proof for Proposition 2 is provided in the Appendix.
We have the following theorem regarding the existence of a positive equilibrium and a strong Allee

effect.

Theorem 2 Assume that Hypothesis 1 holds. The following statements hold:

i. There exists a positive equilibrium if there is A > 0 and ng > 1 such that Bap,(A,1) > 1.

it. There exists no positive equilibrium if there is ng > 0 such that for all A >0, Ban,4+1(A,1) < 1.
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Allee effects introduced by density dependent phenology 9

iii. Assume in addition the conditions (2)-(3) hold. If there exists a positive equilibrium, then the smallest

positive equilibrium represents the Allee threshold.

The proof for Theorem 2 is provided in the Appendix.
In general, it is difficult to find B,,(A,¢) when n is large. However it is easy to find B,,(A4,t) when n

is small. Specifically using (7) we have
t t 0
Bi(At) = ay / g(A,m)e TV By(At) = ay / g(A, 7)e TS AL B (Ads g
0 0
We have the following corollary of Theorem 2, which provides relatively simple sufficient conditions for
the existence and nonexistence of a positive equilibrium.

Corollary 1 Assume that Hypotheses 1 holds. The following statements hold:

i. There exists a positive equilibrium if there is A > 0 such that
1 1
ary / g(A,r)e =A== SA L Bi(As)ds g s
0
1. There exists no positive equilibrium if
1
oz'y/ g(A, T)e P dr < 1
0

for all A > 0.

From this Corollary and Theorem 2 (iii), model (1) has a strong Allee effect if (2)-(3) and the condition
in Corollary 1 (i) are satisfied.

The condition in (i) indicates that there there exists a positive equilibrium if for relatively large «
and ~ and relatively small p, v and 3, the distribution of g(A,t) for some A > 0 is large on [0,1] in a
certain sense.

The condition in (ii) shows that there is no positive equilibrium if for a given g(A,t) one of «, 7 is
small or one of i and v is large, or if for relatively large o and v relatively small x4 and v, the distribution

of g(A,t) for all A is relatively low on [0, 1] in a certain sense.

4 Numerical simulations

The MatLab code used in the simulations can be viewed at

https://github.com/glotto01/density-dependant-phenology.
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We use the gamma distribution to describe the density dependant phenology. Among the ad-
vantages of the gamma distribution are that it is continuous, has non-negative support, and the mean
and variance can be independently controlled. Other advantages of gamma distributions without density
dependence in the context of phenologically explicit models are discussed at length elsewhere (Calabrese
et al. (2008)), and more applications of gamma distributions for phenology can be found in Bewick et al.
(2016), Fagan et al. (2010), and Fagan et al. (2014). A density dependent gamma distribution takes the

form of
th=1e—%

Q(Ayt) = Wa

where the shape parameter k and scale parameter § depend on A. The mean of the distribution is given

by 7 = k6 and the variance is given by 0? = k62. It follows that k = ;—z and § = ”72 We will assume

that the variance, o2

remains fixed regardless of the density, and that the mean time of production for
seeds, T, is given by a piecewise linear function, 7 = max(o, aA + b). This linearity is motivated by Cao
et al. (2016), where the mean day of flowering vs density is found to be roughly linear in the study of
flowering phenology and sexual reproduction in the ephemeral herb Cardamine hirsuta. To insure our
assumptions that g(A,t) is continuous and bounded hold, it’s necessary for k > 1, which in turn requires

7 > 0. It is also biologically reasonable to assume there is a lower limit on the mean production time of

seeds.

Including this assumption we obtain

<max(o‘,aA+b)2702> o2
¢ o2 eit(max(ﬂ,aAﬁ—b))

g(A,t) = max(a,aA+b)2) :

r (max(g,aA+b)2> ( o2 ) ( ps

o2 max(o,aA+b)

We see that although the mean seed production time is linear in A, the phenology function g and model

(1) are highly non-linear in A.

With these definitions of g, Theorem 1-(i) states that if

_ max(a,b)? max(o,b)? 2
aye™” (14—‘72(#—”)) : I—F( o ’ma’f("vb)Jr“*V)

max(c, b) r (maxg,b)z) <1

then the equilibrium 0 is asymptotically stable. Here I'(:,-) refers to the upper incomplete gamma
function. The triple integral of part-(ii) of Theorem 1 does not admit a closed form solution for this

definition of g. The integral in Corollary 1-(i) does not admit a closed form for this definition of g.
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Fig. 1: The phenology distributions g(A,t) for several population levels with ¢ = 0.15, @ = 0.05 b = 0.5.

Corollary 1-(ii) states that no positive equilibrium exists if

_ max(c,aA+b)2 max(o,aA+b)? 2
aye™ (1 + Pp—v) ) " 1 i ( o » max(oaA¥D) T H V)

<1
max(o,aA +b) r (max(af2+a-7b)2>

for all A > 0. A closed form for the maximum value of the expression on the left hand side of the

inequality does not appear to exist.

In Figure 1 we show how the phenology distribution varies with population when mean seeding
time increases with density. In this figure the standard deviation is ¢ = 0.15 and the mean seeding
time is 7 = max(0.15,0.054 4 0.5) = 0.054 + 0.5. We see that as the population increases the phenology
distribution gets translated to the right, and for larger populations a significant portion fails to reproduce

in the season.

In Figure 2 we show how the phenology distribution varies with population when mean seeding
time decreases with density. In this figure the standard deviation is ¢ = 0.15 and the mean seeding
time is 7 = max(0.15, —0.34 + 0.5). Note that 7 will become fixed at 0.15 for A > 2. We see that as
the population increases the phenology distribution shifts to the left. Unlike Figure 1, we see that the
skewness increases as the distribution shifts to the left due to the support being non-negative. We also

note that for A > %, the distribution becomes an exponential distribution.
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Fig. 2: The phenology distributions g(A, t) for several population levels with ¢ = 0.15, a = —0.3, b = 0.5.

For results related to other distributions such as the uniform and generalized beta we refer the reader
to the PhD thesis of Timothy Pervenecki (Pervenecki 2019).

It should be noted that by substituting J(A,t) = ~v.J(A,t) into Model 1 we obtain

Jo = e g An,t) — v — 212
Y
j(Ana O) =0,

Api1 = J(Ap,1).

Hence, without loss of generality, we may consider Model 1 with v = 1.

4.1 Case 1: high seed mortality

In this simulation we assume the seed mortality rate is higher than that of the adults. The parameters
used here are « = 10, p =1, v =5, § =0.1, 0 = 0.15, b = 0.5, v = 1. We use the parameter a as
a bifurcation parameter to investigate how the density dependence of the mean seed production time
effects the population dynamics. A positive a represents seed production being delayed with increased
population density, whereas negative a represents seed production being advanced with increased density.

In Figure 3 we plot the growth function for several values of a. We see that a strong Allee effect and
overcompensation occurs. The Allee effect can be understood in terms of higher populations delaying seed
production, and thus exposing the seeds to less time at the higher mortality rate. The overcompensation
can be understood by noting that large populations delay seed production to the point that much of the
distribution falls outside of the season. This can be seen with ¢(10,¢) in Figure 1. It is worth noting the

condition for the existence of a positive equilibrium given by the inequality in Corollary 1 is met for all
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4 panels on Figure 3. For example, when a = 0.05 the integral on the lefthand side is greater than 1 for

3.02 < A < 11.01 achieving a maximum of 1.57 at A = 7.52.

In Figure 4 we plot the equilibrium values of A. The blue curve is the stable extinction equilibrium,
the red curve is the unstable Allee equilibrium. The black curve is the upper equilibrium which is stable
where solid and unstable where dashed. Since the seeds face a rate of mortality five times higher than
the adults, we would expect that delayed seed production would be favorable for the population so long
as a significant fraction of the distribution falls within the 0 < t < 1 season. In Figure 4 we see that
there is no positive equilibrium until a is larger than roughly 0.01. At this point very large populations
are able to delay seed production extensively enough that survival is possible. As a becomes larger,
smaller populations are adequate to cause enough delay to stabilize the population. The Allee effect can
be understood to take place due to higher densities being required to sufficiently delay seed production

so that the high losses do not cause extinction.

In Figure 5, we see that the population dynamics undergo a period-doubling bifurcation to chaos as
a increases. In Figure 6 we show a population time series for the growth functions in Figure 3- (b-d).
The series are initiated with a population just slightly larger than the corresponding Allee threshold.
Populations initiated below the Allee threshold will go extinct. The time series for Figure 3-(a) is not
shown as it trivially leads to extinction. We see that for relatively small values of a we obtain a stable
equilibrium, for intermediate values of a a period-4 solution emerges, and finally we see chaotic dynamics

for large a.

It should be noted that as the seed mortality rate, v, decreases from 5 while the other parameters
are held fixed, the Allee effect disappears while a positive equilibrium remains. Theorem 1 (ii) allows
us to determine the existence/non-existence of an Allee effect by examining the value of the integrals
representing f/(0) and f/(0). For example with « =10, p =1, 8 =0.1, 0 =0.15, b=0.5, y=1, a=
0.5, if we compute f'(0) and f”(0) using the formula in Lemma 1 with v = 5 we see that f'(0) = 0.59
and f”(0) = 0.15. f'(0) < 1 and f”(0) > 0 is indicative of a strong Allee effect. As v decreases, f'(0)
increases and f”(0) decreases. At v = 3.76, f'(0) =1 and f”(0) = 0.09 indicating a transition to a weak
Allee effect. As v decreases to v = 3.14, f/(0) = 1.32 and f”(0) = 0 indicating the loss of the Allee effect.

For v < 3.14, f/(0) > 1 and f”(0) < 0 indicating monotone dynamics.



14

80 40

60 30 /
At 40 e Aq 20 /
20

20 40 60 80 ’ 0 10 20 30 40
Ao Ao
(a) a=0.01 (b) a =0.02
8
15
6
10
Aq Ai g
5
2
0 / 0 /
0 5 10 15 0 2 4 6 8
Ao 0
(¢) a=0.05 (d) a=0.1

Fig. 3: The growth function for various values of a. We see as a increases the Allee threshold decreases,

growth becomes stronger, and overcompensation also increases. Other parameters used are a = 10, u =
1, v=5, =01, 0=0.15 b=0.5, v=1.

40
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20

-0.05 0.00 0.05

Fig. 4: The existence and stability of The equilibrium of Model 1 as a function of a. The other parameters

used are « = 10, u =1, v =5, 8 =0.1, ¢ = 0.15, b = 0.5, v = 1. The black curve is the carrying

capacity, red is the Allee threshold, and blue is the extinction equilibrium. A solid curve indicates a
stable equilibrium whereas dashed indicates unstable.
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Fig. 5: A bifurcation diagram of the solutions as a function of a. We see period doubling cascade leading
to chaos occurs as a increases. Other parameters used are « =10, p =1, v =5, 3 =0.1, 0 =0.15, b=
0.5, vy=1.
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Fig. 6: A population time series corresponding to the growth functions in Figure 3-(b-d). The series
are initiated with a population just slightly larger than the corresponding Allee threshold. We see an
asymptotically stable equilibrium in (a), a period-4 solution in (b) , and chaotic dynamics in (c).

4.2 Case 2: high adult mortality

In this simulation we assume the seed mortality rate is lower than that of the adults. The parameters

used here are « =10, p =5, v=1, f=0.1, 0 =0.15, b=0.5, v =1.
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In Figure 7 we plot the growth function for several values of a. We note the growth function is
monotone and has a strong Allee effect. The lack of overcompensation is due to the fact that 7 has a
lower bound of ¢ and thus seed production occurs within the season no matter how large the population
is. This is in contrast to the high juvenile mortality case where with positive a, large populations push
the seed production window outside of the season. For values of a producing a positive equilibrium (see
Figure 8) the population dynamics will be simple, with populations initially above the Allee threshold
converging to the stable upper positive equilibrium, and populations initially below the Allee threshold
going extinct. This is illustrated in Figure 9, where we see the population monotonically increase from
slightly above the Allee threshold towards the upper equilibrium. We see the growth function can have a
discontinuity in its derivative, for example in panel (c) near Ay = 1.2. This arises from the discontinuity

of the derivative of 7 = max(o,aA + b) when o0 = aA + .

In Figure 8, the blue curve is the stable extinction equilibrium, the red curve is the unstable Allee
equilibrium, and the black curve is the upper stable equilibrium. We see the positive equilibrium does
not form until a is less than about -0.1, and the Allee threshold continues to decrease as a decreases. As
the adult stage has the high mortality rate in this case, we would expect advancing the seed production
time would improve survival. In the formula for the mean seed production time, 7 = max(o,aA + b), we
see if a A is sufficiently negative there is a possibility of advancing the seed production time to a threshold
where the species can survive. This explains the emergence of an Allee effect and why the Allee threshold
decreases as a decreases. We also see the positive equilibrium saturates at a value near 4. This can be
explained by noting if aA + b < ¢ then 7 = ¢ and the phenology, in effect, becomes fixed for sufficiently

negative aA.

Similar to in Case 1, when the adult mortality rate, u, decreases from 5 while the other parameters
are held fixed, the Allee effect disappears while a positive equilibrium remains. For example with o =
10, v=1, =01, 0 =015, b= 0.5, v =1, a = —0.3, if we compute f'(0) and f”(0) using the
formula in Lemma 1 we see that with p = 5, f/(0) = 0.59 and f”(0) = 1.37. f/(0) < 1 and f”(0) > 0
is indicative of a strong Allee effect. As u decreases, f'(0) increases and f”(0) initially increases. At
w =378, f/(0) =1 and f”(0) = 1.54 indicating a transition to a weak Allee effect. As u decreases
further eventually f”(0) begins to decrease. At p = 1.51, f'(0) = 2.85 and f”(0) = 0 indicating the loss

of the Allee effect. For u < 1.51, f/(0) > 1 and f”(0) < 0 indicating monotone dynamics.
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(a) a = —0.05 (b) a=-0.1

Fig. 7: The growth function for various values of a. We see that the Allee threshold decreases and growth
becomes stronger as a becomes more negative. Other parameters used are « = 10, p =5, v =1, =

0.1, ¢ =0.15, b=0.5, v = 1.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0

Fig. 8: The existence and stability of the equilibria of Model 1 as a function of a. The other parameters
used are « = 10, u =5, v=1, 8 =0.1, ¢ = 0.15, b = 0.5, v = 1. The black curve is the carrying
capacity, red is the Allee threshold, and blue is the extinction equilibrium. A solid curve indicates a
stable equilibrium whereas dashed indicates unstable. The carrying capacity saturates near A = 4 due

to aA 4+ b < o, thus fixing 7 to a value of o.
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Fig. 9: A population time series corresponding to the growth functions in Figure 7-(c¢) with a = —0.3.
We see the population asymptotically approaches the carrying capacity. The series was initiated with
Ag=0.8

One aspect which we did not attempt to capture in this model are the effects of the interactions
between the timing of seed production and the time available for seed development. We may imagine
that the length of time for seed development might affect the seed quantity and quality. Including this

may alter some of our conclusions.

5 Discussion

We developed a mathematical model of an annual species in which the timing of reproduction is
governed by density. We obtained analytical integral conditions under which there is a strong Allee effect.
Our results provide a new mechanism for generating Allee effects. Phenological differences (asynchrony)
between males and females have been previously shown to generate Allee effects via the mate-limitation
route in models that are explicitly two-sex (Calabrese and Fagan 2004; Calabrese et al. 2008). The result
here is different because density is altering the phenological distribution of the population, creating the
positive relationship between population growth rate and density that is necessary for a demographic
Allee effect.

It is interesting to note that density dependent phenology can produce overcompensation as well.
Our extensive numerical simulations with a density dependent gamma distribution indicate very rich
population dynamics, from stable/unstable equilibria, limit cycles, to chaos. This richness of qualitative
behavior is perhaps not surprising given the diverse scenarios in which overcompensation is known to
drive complicated dynamics in population dynamics models. What is novel here is that the process that
mediates the inter-year transitions in population density hinges on the way in which density controls the
within-season timing of transition. Such seasonal timing is a variable of great interest in biology because it
can be shaped by diverse factors including resource availability and climate change (e.g., Miller-Rushing

et al. 2010; Vermeulen 2015).
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The density dependent probability distribution g(A,t) in model (1) describes how reproduction (or
more generally, emergence into a population stage) is spread over time. This function plays an important
role in generating Allee effects. When ¢(A,t) is density independent, i.e., when g(A,t) solely depends
on time ¢, there is no Allee effect. The integral conditions (2) and (3) indicate that in order for the
model to have an Allee effect, % should be relatively large and g(0,t) should be relatively small for
t € [0,1]. This means biologically that at low population densities, the rate of change of g(A,t) in A is
large compared with g(A,¢) in [0, 1]. According to Theorem 2 (i), there exists an Allee threshold if there

is A > 0 such that g(A4,?) is relatively large for ¢ € [0, 1].

The framework developed in this paper can be also used to model phenology associated with mat-
uration from seeds to reproductive adults influenced by density. Mechanistically, density may be linked
to phenology via resource competition. For example, for some plants, density dependent phenology may
emerge mechanistically because the degree of shading experienced by an individual may hinge on when
in the growing season it emerges relative to other members of the population. That is, earlier plants
emerging at low density may experience less shading than plants that emerge later in the season after
other plants are already established (Callahan and Pigliucci 2002). Similar competitive processes may link
density to flowering phenology as density-dependent resource acquisition during the vegetative stage may
affect the transition from vegetative to reproductive growth, thereby determining bloom time (Schmitt
et al. 1987; Abubaker 2008; Vermeulen 2015). Because of such links among density, access to resources,
and relative success, phenology may be under selection in a density-dependent context (Callahan and
Pigliucci 2002; Vincent and Brown 1984), and depending on the conditions, increased density may favor

either early or late phenology (Vermeulen 2015).

Looking forward, the model could be further developed into a spatial model by adding a diffusion
term. The interaction between the timing of juvenile emergence and the time available for juveniles
to develop into adults is also worthy of investigation. Another possible extension would be to create a
competition model, where one or both of the species has density dependent phenology. Modeling within
such a competition framework could be especially interesting because it would allow for investigations of
the evolution of phenology via an adaptive dynamics framework. Such studies would provide additional
connections with relevant biology in that maternal effects have already been considered from an adaptive
perspective (Galloway 2005; Van Asch et al. 2010) and because intriguing complex dynamics are possible
when topics such as phenology (Eskola 2009) and resource allocation (Akhmetzhanov et al. 2011) are

studied in an adaptive context.
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6 Appendix

6.1 Proof of Lemma 1

Proof We derive explicit formulas for f”/(0) and f/(0). The initial value problem of (1) is equivalent to
(J(Ap, t)elo VHBI(Anads)y — g4, #)e rtelo BT (Ans))ds 704 0) = 0.

Integration shows

t
J(An, t) =ad,e” Ji(w+BI(An,s))ds / g(An, T)ef,urefg(V+ﬂJ(A,,L,s))dsd7_'
0

This gives an implicit year-to-year mapping

Api1 = f(An) == 7J(An, 1)

1
Ay e J3 (v+BI(An,s))ds / Q(An7 t)ei‘utefo (v+BJ(An,s))ds gy (8)
0

1
:omAn/ g(An,t)e_“te_ftl(”+ﬁ‘](‘4"’s))dsdt.
0

Taking the first derivative yields
1 1

f/(A) — ary/o g(A, t)efﬂtef ftl(u+ﬁJ(A,s))d8dt + OQ/A ; [aaAg(A’ t):l e Hte— ftl(quﬁJ(A,s))dsdt

1 1
—aﬁyA/ g(A,t)ef“te*frfl(”Jrﬁ‘](‘L"S))‘iS / iJ(A, s)ds| dt.
0 . O0A

Evaluating at A = 0 we obtain

1
£(0) = ay / 9(0, £)e—1t—0=0w gy,
0
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Taking the second derivative yields

1
£ = 20 [;Agm,t)] et I 0BIA s gy

1 1
_ 204/3,7/ g(A,t)e_“te_ Ji w+BJI(A,s))ds [/ iJ(A’ S)ds] dt
0 ., 0A

1o : 'o
_ —pt ,— [ (v+BI(A,s))ds
2045714/0 [6 g(A,t)] e e [/t 94 J(A,s)ds] dt

1 2 L
" CwA/ {;1429(14, t)} e M S Al gy
0

2

1 1
+af?yA / g(A, t)erte I (BT (As))ds [ / %J(A, s)ds] dt
0 t
1 ) 1 82
— OZBVA/ g(A, t)e 1t S w+BI(A,s))ds {/ @J(A, s)ds] dt.
0 t

Note that in this equation, all the terms except the first two have a factor A. Evaluating at A = 0 we

1
f//(o) = 20[")// ([&g(A’t)} ‘A O) e_Mt—(l—t)th
0 =
1 1
—2045W/ g(o,t)e—ﬂt—“—t)"/ <£4J(A, s)> )A dsdt
0 t =

Y[ o
— —pt—(1—-t)v
2QWA <|:8A9(A’ t):| ‘A—O) € dt

1 1 s
—20425'7/ g(O,t)e_“t_(l_t)”/ e_”s/ g(0,7)e VT drdsdt.
0 t 0

obtain

The last line is achieved by using ;2% J(A, ) ‘A = qe vt fg g(0,7)e #TT7dr. This quantity is found
=0

by taking the derivative of the differential equation in model (1) with respect to A, solving for %J , and

evaluating at A = 0. The conclusion of the lemma follows immediately.

6.2 Proof of Proposition 2
Proof The definition of T shows T[B](A,t) > 0 if B(A,t) > 0. Since By(A,t) =0, B,(A,t) > 0 for all
n. Observe that

B3(A,t) = T[B2)(A,t) < T[Bo|(A,t) = B1(4,1),

and thus

Bu(A, 1) = T[Bs](A, ) > T[By](A,1) = Ba(A,1).
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385 Assume for some k > 1, Bogy1(A,t) < Bog—1(A,t) and Bygq1)(A,t) > Bap(A,t). Then Bayy3(t) =

3

®
>

T[Bg(k+1)](A, t) S T[ng](A,t) = ng+1(A,t), and thU.S ng+4(t) = T[ng+3](A,t) Z T[ng+1](A,t) =

3

®

7 Bat1)(A,t). Using induction and the fact B, (A,t) = T[B,_1](A,t) < T[Bo|(A,t) < Bi(A,t), we have

Bi(A,t) > B3(A,t) > -+ > Bop1(A,t) > Bogy1(At) > -+ >0,
388

Bo(A,t) < Ba(At) < -+ < Bog(A,t) < Bagyr) (A1) < -+ < Bi(At).

10 Since both Ba,(A4,t) and Ba,4+1(A,t) are monotone and bounded in n, we have that lim Ba,4+1(t) =
n— o0
s B(A,t)and lim Bs,(A,t) = B(A,t). By taking n — 00 in Bay41(A,t) = T[Bay](A,t) and Ba(,41)(4, 1) =
n—oo

s T[Bany1](A,t) and using the dominated convergence theorem, we have
B(A,t) =T[B](At), B(A,t)=T[B](A,1). )

(9) and continuity of B(A,t) and B(A,t) show that B(A,t) and B(A,t) are differentiable functions. By

directly taking the derivatives on both sides of B(A,t) = T[B](A, ), we obtain

ISy

By = aye M g(At) + ( AB(A,1))T[B](A,1).

v =
v

s Using T[B](A,t) = B(A,t), we find

By = aye Mg(At) —vB — gABE. (10)
33 Similarly
B, = aye "g(At) —vB — gABE. (11)
s Subtracting (11) from (10), we find
(B—B); = —v(B - B). (12)

(5) shows B(4,0) = B(A,0) = 0. This and (12) indicate B(A,t) = B(A4,t) so that

B(A,t) = T[B](A, ).

x5 The uniqueness of solution of (1) implies B(A,t) = B(A,t) = B(A,t). This completes the proof.
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6.3 Proof of Theorem 2

Proof The condition (2) implies that f(A) < A for small positive A. Since f(A) is continuous, f(A) has
a positive equilibrium if and only if there exists A > 0 such that f(A4) > A. According to Proposition 2,
as n — 00, Bay(A,1) increases to B(A,1) and Ba,11(A,1) decreases to B(A,1). If there is A > 0 and
ng > 1 such that By, (A,1) > 1, then B(A,1) > 1 which means f(A) > A, so that there is a positive
equilibrium. If there is mg > 1 such that for all A > 0, Ba,,+1(A,1) <1, then B(A,1) <1 for all A > 0,
so that there is no positive equilibrium. Therefore statements (i)-(ii) hold.

Assume that there is a positive equilibrium. Since f(A4) < A for small positive A due to (2), continuity
of f shows that there exists a smallest positive equilibrium named A*. Then f(A4) < A for 0 < A < A*.
This shows that for any Ay with 0 < Ag < A* the sequence A,, generated by A,+1 = f(A,) has the

property that A,, — 0 as n — oo, so that A* is the Allee threshold.
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