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Categorizing individual cells into one of many known cell-type cate-
gories, also known as cell-type annotation, is a critical step in the analy-
sis of single-cell genomics data. The current process of annotation is time
intensive and subjective, which has led to different studies describing cell
types with labels of varying degrees of resolution. While supervised learn-
ing approaches have provided automated solutions to annotation, there re-
mains a significant challenge in fitting a unified model for multiple datasets
with inconsistent labels. In this article we propose a new multinomial lo-
gistic regression estimator which can be used to model cell-type probabil-
ities by integrating multiple datasets with labels of varying resolution. To
compute our estimator, we solve a nonconvex optimization problem using
a blockwise proximal gradient descent algorithm. We show through simu-
lation studies that our approach estimates cell-type probabilities more accu-
rately than competitors in a wide variety of scenarios. We apply our method
to 10 single-cell RNA-seq datasets and demonstrate its utility in predicting
fine resolution cell-type labels on unlabeled data as well as refining cell-
type labels on data with existing coarse resolution annotations. Finally, we
demonstrate that our method can lead to novel scientific insights in the con-
text of a differential expression analysis comparing peripheral blood gene
expression before and after treatment with interferon-β. An R package im-
plementing the method is available in the Supplementary Material and at
https://github.com/keshav-motwani/IBMR, and the collection of datasets we
analyze is available at https://github.com/keshav-motwani/AnnotatedPBMC.

1. Introduction.

1.1. Overview. One of the first and most important tasks in the analysis of single-cell
data is cell-type annotation, where individual cells are categorized into one of many cell-type
categories having well-characterized biological functions. Most studies perform annotation
by first clustering cells based on their gene expression, then manually labeling clusters based
on their upregulated marker genes (Schaum et al. (2018)). This is often time intensive and
arguably subjective, as the set of cell-type categories is inconsistent across studies: they vary
based on scientific interests of the investigators, aims of the study, and availability of external
data. Consequently, a large number of automated methods have been developed to standard-
ize the cell-type annotation process; for example, see Table 1 of Pasquini et al. (2021) and
references therein.

The majority of the existing approaches for automated cell-type annotation fit a classifica-
tion model using a single training dataset (e.g., a dataset collected and annotated by a single
investigator/lab) with normalized gene expression as predictors. Cell types in a new (unan-
notated) dataset are then predicted according to the fitted model. In Abdelaal et al. (2019),
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FIG. 1. An illustrative example of label structure across datasets. (a-c) The tree depicts the true hierarchical
structure of cell-type categories, with cells in Datasets 1–3 annotated at different resolution labels. Grey nodes
indicate the labels used for each dataset. Finest resolution categories are defined by the labels at the terminal
nodes of the tree.

more than 20 such methods were benchmarked and shown to perform well in a variety of set-
tings. However, these methods tended to perform poorly in terms of prediction across datasets
(varying by batch, lab, or protocols) and in datasets with high resolution cell-type labels (i.e.,
a large number of cell-type categories). Furthermore, a crucial choice for these methods is
which dataset to use to train the model. Datasets can differ in numerous ways, but most rele-
vant to the task we consider, they can have substantially different cell-type labels and differ in
the amount of detail provided by each label (Ma, Su and Wu (2021)). However, existing auto-
mated annotation approaches are limited to using a single training dataset or multiple datasets
with consistent cell-type labels. In this article, we propose a novel approach for automated
annotation that overcomes these limitations.

We provide an illustrative example in Figure 1. In this hypothetical situation, one has
access to three datasets—Datasets 1, 2, and 3—each of which has been expertly annotated
manually. In Dataset 1, cells are labeled as either CD4+ or CD8+ T cells. If one trained a
model using only Dataset 1, the only possible predicted labels for a new dataset would be
CD4+ or CD8+. In Dataset 2, the cells are labeled one of naive CD4+, effector memory
CD4+, central memory CD4+, or CD8+, so if one instead trained the model using Dataset
2, it would be possible to annotate the CD4+ cells at a finer resolution when compared to
Dataset 1. Dataset 3 has finer resolution labels for CD8+ T cells than Dataset 2, but does
not distinguish between the two finest CD4+ memory cell types like Dataset 2. In general,
using a single dataset to train an annotation model would limit the resolution at which future
annotations can be made.

Existing annotation methods require consistent labels across datasets. Thus, if one wanted
to use all of the available data to build an annotation model, fine resolution labels in Dataset 2
and Dataset 3 would have to be coarsened to the level of CD4+ or CD8+. Clearly, this results
in a significant loss of information and would allow only coarse annotations on new datasets.
Alternatively, to fit a model that can predict at the finest resolution across all datasets using
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existing methods, one could subset only the cells which are labeled at the finest resolution.
For example, this would require discarding all cells from Dataset 1, all CD8+ cells from
Dataset 2, and all memory CD4+ and naive CD4+ cells from Dataset 3. This approach would
be less efficient than one that could use all available data and will generalize poorly since
technical differences across datasets (i.e., batch effects) may be confounded with some cell
types. In summary, despite the existence of hundreds of publicly available datasets with ex-
pertly annotated cell types, existing methods are limited in their ability to integrate multiple
datasets due to varying label resolution.

Ideally, we would like to use all the data from all three datasets to train an annotation model
without any loss of information. To do so, our proposed approach takes advantage of “binned”
label structures. In our example, cells with the label CD4+ in Dataset 1 must be one of naive
CD4+, effector memory CD4+, or central memory CD4+. The specific label, however, is
unknown without additional analysis or refined manual annotation. In this article, we propose
a new classification method which will allow investigators to: (i) use all available datasets
jointly to train a unified classification model without loss of information and (ii) make cell-
type predictions/annotations at the finest resolution labels allowed by the union of all datasets’
labels. For example, given the datasets depicted in Figure 1, our method would fit a model
using data from all cells in all three datasets and would provide predicted probabilities of a
cell belonging to the categories naive CD4+, effector memory CD4+, central memory CD4+,
naive CD8+, effector memory CD8+, or central memory CD8+ (i.e., the labels at the terminal
nodes of the tree). Our method does not require that labels are tree-structured: we require only
that labels are amenable to “binning,” which we describe in Section 2.1 and graphically depict
in Supplementary Figure 1 (Motwani, Bacher and Molstad (2023)).

Our motivation for this work was to provide a new and generalizable model for high-
resolution cell-type annotations for peripheral blood mononuclear cell (PBMC) samples by
combining publicly available datasets. We collected and processed a total of 10 datasets se-
quenced using 10x Genomics technology, each with raw gene expression counts and manu-
ally curated cell-type annotations available for each cell. We chose to work with PBMC data
due to the complexity and hierarchy of immune cell types, as well as the common applica-
tion of single-cell sequencing of PBMCs in clinical studies (Stephenson et al. (2021), Su et al.
(2020), Wilk et al. (2020)). Each of the 10 datasets has a distinct label resolution, and although
labels do not follow a tree-structure across datasets, they are amenable to binning. The num-
ber of distinct labels in each dataset, as well as references for the dataset, are shown in Table 1.
The specific labels for each dataset are listed in Supplementary Table 1. In Supplementary
Figure 2, we display the relationships between labels represented in each of these datasets
as graphical representations of “binning functions,” which are described in Section 2.1. The
data we use are available at https://github.com/keshav-motwani/AnnotatedPBMC/.

As mentioned, cell-type annotation is an essential step for nearly all single-cell RNA-seq
data analyses. The ability to analytically differentiate cells by type is the primary reason
one would perform a costly single-cell sequencing experiment over traditional bulk RNA-
sequencing. Single-cell RNA-seq, combined with accurate post hoc cell-type annotation, en-
ables investigators to unbiasedly profile gene expression of heterogeneous cells from tissue
samples and avoids agitating cells to obtain flow-sorted purified populations. Specifically,
investigators are often interested in comparing the expression of a particular gene between
treatment groups (known as a differential expression analysis) within cells of a particular
type. To demonstrate the usefulness of our method, we perform a differential expression anal-
ysis involving peripheral blood samples from subjects with lupus, before and after in vitro
treatment with interferon-β (Crowell et al. (2020, Kang et al. (2018)). The original cell-type
labels from Kang et al. (2018), who collected the data, do not distinguish between different
types of CD4+ T cells. Thus, in Section 6.3 we apply our method to obtain higher resolution

https://github.com/keshav-motwani/AnnotatedPBMC/
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TABLE 1
Dataset name, number of labels, and references for each of the peripheral blood single-cell genomics datasets

analyzed in Section 6

Dataset # of labels Reference(s)

hao_2020 28 Hao et al. (2020)
tsang_2021 18 Liu et al. (2021)
haniffa_2021 16 Stephenson et al. (2021)
su_2020 13 Su et al. (2020), Shasha et al. (2021)
10x_pbmc_5k_v3 12 10x Genomics (2019), Shasha et al. (2021)
blish_2020 12 Wilk et al. (2020)
kotliarov_2020 9 Kotliarov et al. (2020)
10x_pbmc_10k 9 10x Genomics (2018), Shasha et al. (2021)
10x_sorted 8 Zheng et al. (2017)
ding_2019 8 Ding et al. (2019)

cell-type labels and perform differential expression on finer cell types, such as CD4+ effector
memory T cells. We discover a more refined set of differentially expressed genes than was
possible with the existing coarse cell-type labels.

1.2. Existing approaches. The issue of varying labels across datasets has been recog-
nized in the recent single-cell literature. For example, Lähnemann et al. (2020) identified
varying levels of resolution as a major theme across eleven “grand challenges” in single-cell
data science. A few approaches have been developed to address this problem. Specifically,
Shasha et al. (2021) manually reannotated publicly available datasets which collected both
single-cell gene expression and protein expression, and fit a cell-type classification model
across all datasets using reannotated labels with extreme gradient boosting. To reannotate
the data, they employed methods from the field of flow cytometry to “gate” cells based on
protein expression where they manually clustered groups of cells using a series of bivari-
ate protein expression plots. This reannotation process, however, is very time-intensive and
requires concurrent protein expression measurements in cells. Even with this detailed ap-
proach, differences in protein measurements across datasets limited their ability to achieve
consistently fine annotations across all datasets. Similarly, Conde et al. (2021) employed a
two-step reannotation process. First, with expert input they attempted to reconcile and rename
labels across datasets to achieve a consistent set of labels. Second, they fit a ridge-penalized
multinomial logistic regression model on datasets for which they successfully renamed labels
and used this model to predict the labels for the remaining unresolved datasets. Cells were
clustered in each remaining dataset based on gene expression, and each cluster was labeled
on a majority vote of the predictions for cells in that cluster. The predicted cluster labels were
then treated as true labels for these datasets, and the model was refit using all of the datasets.
This approach motivates a two-step approximation to our method, which we call relabel
(see Section 5.2) and compare to throughout this paper.

2. Model. Suppose we observe K ≥ 1 datasets with single-cell gene expression profiles
and cell types manually annotated. Let Ck denote the set of labels used in the kth dataset
for k ∈ [K] := {1, . . . ,K}, and let C denote the finest resolution label set. Let Y(k)i and
Ỹ(k)i be the random variables corresponding to the annotated cell type and true (according
to the finest resolution label set) cell type of the ith cell in the kth dataset for k ∈ [K],
i ∈ [nk] := {1, . . . , nk} with supports Ck and C, respectively. For the remainder, let |A| de-
note the cardinality of a set A. Let X(k) = (x(k)1, . . . ,x(k)nk )

# ∈ Rnk×p be the observed gene
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expression matrix and (y(k)1, . . . , y(k)nk )
# ∈ Ck × · · · × Ck be a vector of cell-type annota-

tions for the kth dataset, where y(k)i is the observed realization of the random variable Y(k)i .
Similarly, let X̃(k) = (x̃(k)1, . . . , x̃(k)nk )

# ∈ Rnk×p for k ∈ [K] be the unobservable gene ex-
pression matrix which is free of batch effects. Our goal is to estimate fine resolution cell-type
probabilities Pr(Ỹ = l|x) for any finest resolution label l ∈ C and gene expression x ∈ Rp .

2.1. Binned categorical responses. As described earlier, each dataset may have a dis-
tinct label resolution. For example, we may have two datasets with observed cell-type la-
bels C1 = {A,B1,B2,B3} for the first dataset, and C2 = {A1,A2,B} for the second. Let
C = {A1,A2,B1,B2,B3} be the fine resolution label set. In the first dataset, cells of type
A1 or A2 are labeled A; in the second dataset, cells of type B1,B2, or B3 are labeled B . We
refer to the labels A and B as “coarse labels” since groups of cells with these labels could
be labeled with finer, more detailed labels. We refer to each of {A1,A2,B1,B2,B3} as “fine
labels” since they cannot be divided into more detailed categories. We refer to an observation
with a coarse label as a binned observation. For example, in the first dataset, cells of type A1
or A2 are binned into cell-type category A. We will now formalize these ideas and definitions.

Define the user-specified binning function fk : C → Ck , which maps a fine resolution cate-
gory to its corresponding label in the kth dataset. For example, f1(A1) = A in the previous ex-
ample. This function bins fine categories together into possibly coarser resolution categories,
which are used in annotating the data. Given fk for each k ∈ [K], define the “unbinning”
function gk as gk(j) = {l ∈ C : fk(l) = j} for j ∈ Ck . This provides the set of fine categories
to which a cell labeled at a coarse resolution may belong. For fine categories that are truly not
represented in a given dataset, fk can map from these categories to another label (e.g., named
“unobserved”). While C and the binning functions fk are user-specified, they must satisfy
the condition that, for all l ∈ C, there must exist k ∈ [K] and j ∈ Ck such that gk(j) = {l}
with

∑nk
i=1 1(y(k)i = j) ≥ 1. In other words, each of the finest resolution categories must be

observed at least once in at least one of the K training datasets.
Using this notation, we can now formally define j ∈ Ck to be a “coarse label” if |gk(j)| >

1 (i.e., the category can be divided into finer resolution categories), and a “fine label” if
|gk(j)| = 1 (i.e., the category cannot be further divided). We also now define the relationship
between Y(k)i and Ỹ(k)i through the following equivalence of events:

{Y(k)i = j} =
⋃

l∈gk(j)

{Ỹ(k)i = l}, k ∈ [K], j ∈ Ck.

As a consequence, we have

Pr(Y(k)i = j | x(k)i) =
∑

l∈gk(j)

Pr(Ỹ(k)i = l | x(k)i), k ∈ [K], j ∈ Ck,(1)

since the events {Ỹ(k)i = l} and {Ỹ(k)i = l′} with l, l′ ∈ gk(j) and l '= l′ are mutually exclusive,
as a cell can only be of one cell type.

2.2. Binned multinomial regression model. As mentioned, we are interested in modeling
cell-type probabilities as a function of gene expression. For now, we consider a model using
unobserved gene expression x̃(k)i , which is free of batch effects, and will later extend this
to the observed gene expression. Without loss of generality, we encode the sets of labels
numerically so that C = {1, . . . , |C|} and Ck = {1, . . . , |Ck|} for k ∈ [K]. We assume that each
Ỹ(k)i follows a categorical distribution (i.e., multinomial based on a single trial)

Ỹ(k)i ∼ Categorical
{
π∗

1 (x̃(k)i), . . . ,π
∗
|C|(x̃(k)i)

}
, k ∈ [K].
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In addition, we assume that the probability functions π∗
l adhere to the standard multinomial

logistic link so that

π∗
l (x̃(k)i) =

exp(α∗
l + x̃#

(k)iβ
∗
l )

∑
v∈C exp(α∗

v + x̃#
(k)iβ

∗
v)

, l ∈ C, k ∈ [K],

where α∗ = (α∗
1, . . . ,α

∗
|C|)

# ∈ R|C| is an unknown vector of intercepts and β∗ = (β∗
1, . . . ,

β∗
|C|) ∈ Rp×|C| is an unknown matrix of regression coefficients. Applying exactly the logic

from (1), it follows that

Pr(Y(k)i = j | x̃(k)i) =
∑

l∈gk(j)

π∗
l (x̃(k)i) =

∑
l∈gk(j) exp(α∗

l + x̃#
(k)iβ

∗
l )

∑
v∈C exp(α∗

v + x̃#
(k)iβ

∗
v)

, k ∈ [K], j ∈ Ck.

Thus, our focus is the development of a method for estimating α∗ and β∗. However, we
first extend the model to account for potential batch effects in the observed gene expres-
sion.

2.3. Adjustment for batch effects. The gene expression x(k)i can be assumed to be
“noisy” in the sense that they may be measured with batch effects specific to each of the
K datasets. For example, it may be reasonable to assume that x(k)i = x̃(k)i + u(k)i where
x̃(k)i is the the unobservable gene expression and u(k)i is a batch effect. This assumption
of additive batch effects is consistent with the literature on data integration for normal-
ized gene expression in single-cell data, which provide methods for estimating the u(k)i

(Haghverdi et al. (2018), Hao et al. (2020)). However, estimating the per-gene batch effect
is not necessary for classification: we need only estimate a linear combination of this batch
effect.

We can write the linear predictor for the ith cell of the kth dataset as α∗ + x̃#
(k)iβ

∗ =
α∗ + x#

(k)iβ
∗ − u#

(k)iβ
∗. Because the u(k)i are not observable, we assume that there are some

common sources of batch variation, which are related to cell-specific covariates z(k)i ∈ Rr ,
and that u(k)i is some linear combination of these cell specific covariates u#

(k)i = z#
(k)iφ

∗
(k)

for k ∈ [K], i ∈ [nk], and coefficients φ∗
(k) ∈ Rr×p . It follows that the linear predictor for the

ith cell in the kth dataset is α∗ + x̃#
(k)iβ

∗ = α∗ + x#
(k)iβ

∗ − z#
(k)iφ

∗
(k)β

∗ where α∗, β∗, and
the φ∗

(k) are unknown. Letting γ ∗
(k) = −φ∗

(k)β
∗ (since both are unknown), we can see that

α∗ + x̃#
(k)iβ

∗ = α∗ + x#
(k)iβ

∗ + z#
(k)iγ

∗
(k). Thus, we can write

Pr(Y(k)i = j | x(k)i,z(k)i) =
∑

l∈gk(j) exp(α∗
l + x#

(k)iβ
∗
l + z#

(k)iγ
∗
(k)l)∑

v∈C exp(α∗
v + x#

(k)iβ
∗
v + z#

(k)iγ
∗
(k)v)

,

k ∈ [K], j ∈ Ck.

(2)

In the simplest case, z(k)i = 1, which implies a batch-specific shift in expression that is
constant for all cells in the batch (i.e., provides an intercept adjustment). Alternatively,
z(k)i can also contain the principal components of (X#

(1), . . . ,X
#
(K))

# to capture interac-
tions of batch with other directions of variation in the data. It is worth emphasizing that
here, we have both batch specific coefficients to estimate, γ ∗

(k) for k ∈ [K], and coefficients
shared across batches, (α∗,β∗). With this our goal will be to estimate α∗, β∗, and γ ∗

(k)

via penalized maximum likelihood based on the observed predictors x(k)i for k ∈ [K] and
i ∈ [nk].
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3. Methodology.

3.1. Penalized maximum likelihood estimator. From the probability functions described
in Section 2.3, we see that the log-likelihood contribution for the ith cell in the kth dataset
can be expressed

L(k)i(α,β,γ (k)) =
∑

j∈Ck

1(y(k)i = j) log
{∑

l∈gk(j) exp(αl + x#
(k)iβ l + z#

(k)iγ (k)l)
∑

v∈C exp(αv + x#
(k)iβv + z#

(k)iγ (k)v)

}

for k ∈ [K] and i ∈ [nk], where 1 denotes the indicator function. We can thus define the
(scaled by 1/N ) negative log-likelihood as

L(α,β,γ ) = − 1
N

K∑

k=1

nk∑

i=1

L(k)i(α,β,γ (k)),

where N = ∑K
k=1 nk is the total sample size and γ = (γ (1), . . . ,γ (K)) ∈ Rr×|C|× · · ·×Rr×|C|.

We thus estimate α∗ and β∗, which are the shared across datasets, and the γ ∗
(k) jointly using

penalized maximum likelihood. Let T = R|C| × Rp×|C| × Rr×|C| × · · · × Rr×|C| be the space
of the unknown parameters (α∗,β∗,γ ∗). Formally, the estimator of (α∗,β∗,γ ∗) we propose
is

arg min
(α,β,γ )∈T

{

L(α,β,γ ) + λ

p∑

j=1

‖βj,:‖2 + ρ

2

K∑

k=1

‖γ (k)‖2
F

}

,(3)

where βj,: ∈ R|C| denotes the j th row of β for j ∈ [p] := {1, . . . , p}, ‖ · ‖2 denotes the
Euclidean norm of a vector, ‖ · ‖F denotes the Frobenius norm of a matrix, and (λ,ρ) ∈
(0,∞) × (0,∞) are user-specified tuning parameters. We now motivate the choice of penal-
ties based on our application.

Manual single-cell annotation is often performed through the identification of upregulated
genes within clusters of cells (Amezquita et al. (2020)). For example, to assign a label to a
cluster, an annotator first identifies a number of genes that are overexpressed in that cluster
relative to the rest of the cells. Then this gene set is compared to sets of genes known to be
overexpressed in only one particular cell type, known as “marker genes,” in order to assign a
label (Hao et al. (2020), Wolf, Angerer and Theis (2018)). This implies that a relatively small
number of genes are necessary to characterize the relationship between cell-type probabilities
and gene expression. For this reason we use the group lasso-type penalty on the rows of the
optimization variable β (Obozinski, Wainwright and Jordan (2011), Simon et al. (2013), Yuan
and Lin (2006)). For large values of λ, this penalty will encourage estimates of β∗, which will
have rows either entirely equal to zero or entirely nonzero. If the j th row of β∗ is zero, the
j th gene is irrelevant for discriminating between cell types. The L1(vector)-norm penalty
(i.e., the lasso penalty), in contrast, would not lead to easily interpreted variable selection
since a zero in a particular entry of β∗ does not alone imply anything about whether the
corresponding predictor affects the probabilities.

Regarding the ridge penalty on the γ (k), because the γ (k) are specific to each of the train-
ing sets, we do not have corresponding coefficients for a test data point from a new (i.e.,
unobserved for training) dataset. Additionally, we expect that the batch effect does not con-
tain information relevant to cell-type classification. Therefore, we intuitively want γ (k) to be
close to the origin so that, on a test data point, we can simply use our estimates α̂ and β̂ from
(3) to estimate probabilities with

P̂r(Ỹ = l | x) = exp(α̂l + x#β̂ l)∑
v∈C exp(α̂v + x#β̂v)

, l ∈ C,
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as if x̃ = x. To encourage estimates of the γ ∗
(k) to be small, we penalize the squared Frobenius

norm of each γ (k).
Importantly, the coefficients we intend to estimate are not, in general, identifiable. This is

because with 1|C| = (1, . . . ,1)# ∈ R|C|, for any (α,β,γ ), L(α,β,γ (1), . . . ,γ (K)) = L(α −
a · 1#

|C|,β − b1#
|C|,γ (1) − d11#

|C|, . . . ,γ (K) − dK1#
|C|) for any a ∈ R, b ∈ Rp , and dk ∈ Rr

for k ∈ [K]. However, if we impose the “sum-to-zero” condition that α#1|C| = β#
1,:1|C| =

· · · = β#
p,:1|C| = 0 and similarly for the rows of the γ (k), then this issue may be resolved. It is

perhaps surprising that the γ (k) ∈ Rr×|C| could be identifiable since Ck may be distinct from
C, but one can see that replacing γ (k) with γ ′

(k) will, in general, lead to distinct probabilities
(2), unless γ ′

(k) = γ (k) − dk1#
|C|. In Section 1 of the Supplementary Material, we discuss the

(exceptionally rare) situations where this is not true. Fortunately, both our penalties naturally
enforce the sum-to-zero constraints on β and the γ (k). For example, see the Supplementary
Material of Molstad and Rothman (2023) for a proof of this fact.

3.2. Related methods. The approach proposed here is closely related to a growing liter-
ature on methods for integrative analyses. We discuss this literature from two perspectives:
that of statistical methodology and that of the analysis of multiple single-cell datasets jointly.

From a methodological perspective, there is a growing interest in developing methods for
jointly analyzing datasets from heterogeneous sources. Most often, these methods assume
distinct data generating models for each source and aim to improve efficiency by exploiting
similarities across sources (Huang et al. (2017), Molstad and Patra (2022), Ventz, Mazumder
and Trippa (2022), Zhao et al. (2015)). For example, Huang et al. (2017) assumed a similar
sparsity pattern for regression coefficients corresponding to separate populations. Similarly,
Molstad and Patra (2022) assumed a shared low-dimensional linear combination of predic-
tors explained the outcome in all sources. The focus of our work is different: the sources
from which the data were collected are assumed to differ only in their label resolution (and,
to a lesser degree, may measure predictors with batch effects). Thus, these approaches are,
generally speaking, not directly applicable to our setting.

In the context of single-cell data analysis, integrative analyses often focus on the “align-
ment” of expression datasets in an attempt to remove batch effects for the purposes of clus-
tering and visualization (Haghverdi et al. (2018), Hao et al. (2020), Hie, Bryson and Berger
(2019), Korsunsky et al. (2019), Luecken et al. (2022)). As mentioned in the previous section,
explicit estimation and removal of batch effects is often not necessary for the goal of cell-
type prediction. In fact, Ma, Su and Wu (2021) and Huang et al. (2021) found that removing
batch effects through these alignment-based methods actually decreased downstream cell-
type prediction accuracy. Our inclusion of batch-specific effects in (2) can, loosely speaking,
be thought of as performing alignment specifically tailored to prediction (assuming the z(k)i

are chosen appropriately).

4. Computation. In order to compute our proposed estimator, we must address that
the group lasso penalty is nondifferentiable at the origin and that the overall negative log-
likelihood L is nonconvex, in general. In brief, we employ a blockwise proximal gradient
descent scheme (Xu and Yin (2017)) to overcome these challenges. Specifically, we obtain
a new iterate by minimizing a penalized quadratic approximation to L at the current iterate,
which will ensure—by the majorize-minimize principle (Lange (2016))—a monotonically
decreasing objective function value. Our approximations are chosen so as to admit simple,
closed form updates for each block. In the remainder of this section, we motivate and derive
each block update and summarize our algorithm. Code implementing the algorithm described
here is available for download at https://github.com/keshav-motwani/IBMR/.

https://github.com/keshav-motwani/IBMR/
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Let Fλ,ρ denote the objective function from (3). By construction, F0,0 denotes the negative
log-likelihood L. To describe our iterative procedure, we focus on the update for β , but as
we will show, this approach also applies to α and the γ (k) with minor modification. First,
notice that, given t th iterates of α,β and γ , (αt ,β t ,γ t ), by the Lipschitz continuity of the
gradient of L, when treated as a function of β alone, we know that for any step size sβ such
that 0 < sβ < N/{√|C|∑K

k=1 ‖X(k)‖2
F },

F0,0
(
αt ,β,γ t ) ≤ F0,0

(
αt ,β t ,γ t ) + tr

{∇βF0,0
(
αt ,β t ,γ t )#(

β − β t )}

+ 1
2sβ

∥∥β − β t
∥∥2
F

(4)

for all β ∈ Rp×|C|, where ∇βF0,0(α
t , ·,γ t ) denotes the gradient of β 0→ F0,0(α

t ,β,γ t ).
Letting M(β | β t ) denote the right-hand side of the above inequality, we can see that

Fλ,ρ
(
αt ,β,γ t ) ≤ M

(
β | β t ) + λ

p∑

j=1

‖βj,:‖2 + ρ

2

K∑

k=1

∥∥γ t
(k)

∥∥2
F

for all β ∈ Rp×|C| with equality when β = β t . If we thus define β t+1 as the argu-
ment minimizing M(β | β t ) + λ

∑p
j=1 ‖βj,:‖2, we are ensured that Fλ,ρ(αt ,β t+1,γ t ) ≤

Fλ,ρ(αt ,β t ,γ t ). Hence, defining β t+1 in this way, we have

β t+1 = arg min
β∈Rp×|C|

{
M

(
β | β t ) + λ‖β‖1,2

} = arg min
β∈Rp×|C|

{1
2

∥∥β − νt (sβ)
∥∥2
F + sβλ‖β‖1,2

}
,

where νt (sβ) = β t − sβ∇βF0,0(α
t ,β t ,γ t ) and ‖β‖1,2 = ∑p

j=1 ‖βj,:‖2. The second equality

above implies that β t+1 is simply the proximal operator (Parikh and Boyd (2014), Polson,
Scott and Willard (2015)) of the scaled ‖ · ‖1,2-norm at νt (sβ). Some straightforward calcu-
lations (e.g., see Simon et al. (2013)) reveal that the j th row of β t+1, β t+1

j,: , can be obtained
in closed form

β t+1
j,: = max

(
1 − sβλ

‖νt (sβ)j,:‖2
,0

)
νt (sβ)j,:, j ∈ [p].

We apply analogous arguments to update both γ with (αt ,β t+1) fixed and α with
(β t+1,γ t+1) fixed. For the γ (k), each can be updated in parallel. Specifically, by the same
motivation as in the update for β , we define

γ t+1
(k) = arg min

γ (k)∈Rr×|C|

{1
2

∥∥γ (k) − γ t
(k) + sγ (k)

∇γ (k)
F0,0

(
αt ,β t+1,γ t )∥∥2

F +
sγ (k)

ρ

2
‖γ (k)‖2

F

}

= (1 + sγ (k)
ρ)−1{

γ t+1
(k) − sγ (k)

∇γ (k)
F0,0

(
αt ,β t+1,γ t )}.

Finally, for α the analogous argument yields a standard gradient descent update. With these
updating expressions for β,γ , and α in hand, we formally state our iterative procedure for
minimizing Fλ,ρ in Algorithm 1. Applying an identical series of arguments as those to prove
that β t+1 yields a decrement of the objective function, we have the following lemma regard-
ing the sequence of iterates {(β t ,αt ,γ t )}∞t=0.

LEMMA 1 (Descent property). As long as each step size sβ > 0, sα > 0, sγ (k)
> 0 is

sufficiently small and fixed (see Supplementary Material Section 2.2), the sequence of iterates
{(β t ,αt ,γ t )}∞t=0 is guaranteed to satisfy Fλ,ρ(αt+1,β t+1,γ t+1) ≤ Fλ,ρ(αt ,β t ,γ t ), for t =
1,2,3, . . . . That is, Algorithm 1 has the descent property.
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Algorithm 1 Blockwise proximal gradient descent algorithm for minimizing Fλ,ρ

Initialize β0 ∈ Rp×|C|, α0 ∈ R|C|, and γ 0
(k) ∈ Rr×|C| for k ∈ [K]. Set t = 0.

1. Compute νt (sβ) = β t − sβ∇βF0,0(α
t ,β t ,γ t ).

2. For j ∈ [p] in parallel, compute

β t+1
j,: = max

(
1 − sβλ

‖νt (sβ)j,:‖2
,0

)
νt (sβ)j,:

with sβ chosen by backtracking line search.
3. For k ∈ [K] in parallel, compute

γ t+1
(k) = (1 + sγ (k)

ρ)−1{
γ t

(k) − sγ (k)
∇γ (k)

F0,0
(
αt ,β t+1,γ t )}

with the sγ (k)
chosen by backtracking line search.

4. Compute αt+1 = αt − sα∇αF0,0(α
t ,β t+1,γ t+1) with sα chosen by backtracking line

search.
5. If objective function value has not converged, set t = t + 1, and return to 1.

In practice, it is not necessary to use a fixed step size. In our implementation we choose
the step size using backtracking line search (Xu and Yin (2017)), which we found to be much
more efficient.

In Section 2.1 of the Supplementary Material, we derive explicit forms of the partial deriva-
tives needed in Algorithm 1. Because they provide some insight, we discuss them here. For
each k ∈ [K], let P̃ (k) : R|C| × Rp×|C| × Rr×|C| × · · ·Rr×|C| → Rn×|C| be a matrix-valued
function which maps input parameters (α,β,γ ) to a matrix of (unconditional) probabilities.
Specifically, P̃ (k)(α,β,γ (k)) has (i, l)th entry

[
P̃ (k)(α,β,γ (k))

]
i,l =

exp(αl + x#
(k)iβ l + z#

(k)iγ (k)l)
∑

v∈C exp(αv + x#
(k)iβv + z#

(k)iγ (k)v)
,

l ∈ C, k ∈ [K], i ∈ [nk].
(5)

Similarly, let C̃(k) : R|C| ×Rp×|C| ×Rr×|C| × · · ·Rr×|C| → Rn×|C| be a matrix-valued function
of conditional probabilities, where

[
C̃(k)(α,β,γ (k))

]
i,l =

1{l ∈ gk(y(k)i)}exp(αl + x#
(k)iβ l + z#

(k)iγ (k)l)
∑

v∈gk(y(k)i )
exp(αv + x#

(k)iβv + z#
(k)iγ (k)v)

,

l ∈ C, k ∈ [K], i ∈ [nk].
(6)

Intuitively, [P̃ (k)(α,β,γ (k))]i,l is the estimated probability that cell i from dataset k is of
type l. The conditional probability [C̃(k)(α,β,γ (k))]i,l is the estimated probability that cell i

from dataset k is of type l ∈ C, given y(k)i is the observed (possibly coarse) label. Of course,
if gk(y(k)i) is a singleton, then [C̃(k)(α,β,γ (k))]i,l = 1{l ∈ gk(y(k)i)}.

The gradients needed in Algorithm 1 can be expressed in terms of P̃ and C̃. In particular,

∇βF0,0
(
αt ,β,γ t ) = 1

N

K∑

k=1

X#
(k)

{
P̃ (k)

(
αt ,β,γ t

(k)

) − C̃(k)
(
αt ,β,γ t

(k)

)}
,

∇γ (k)
F0,0

(
αt ,β t+1,γ

) = 1
N

Z#
(k)

{
P̃ (k)

(
αt ,β t+1,γ (k)

) − C̃(k)
(
αt ,β t+1,γ (k)

)}
, k ∈ [K],
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∇αF0,0
(
α,β t+1,γ t+1) = 1

N

K∑

k=1

{
P̃ (k)

(
α,β t+1,γ t+1

(k)

) − C̃(k)
(
α,β t+1,γ t+1

(k)

)}#1nk .

Examining the form of these gradients, loosely speaking, we see our algorithm descends in
the direction determined by the correlation between the predictors and the difference between
the unconditional and conditional estimated probabilities. The functions P̃ and C̃ are also
used later when we apply our method to the motivating data analysis.

In Section 3 of the Supplementary Material, we detail how we construct a set of candidate
tuning parameters (λ,ρ) yielding sparse fitted models. In brief, we use the KKT condition
for (3) to find a λ yielding β̂ = 0 and borrow an approach from glmnet for determining a
reasonable set of values for ρ.

5. Simulation studies. We performed extensive numerical experiments to study how
the sample size, number of predictors, similarity of categories, and the magnitude of batch
effects affect the performance of various methods for estimating finest resolution cell-type
probabilities.

5.1. Data-generating models. For each replication we generated a total of 13 datasets:
six datasets with sample size N/6 for fitting the model, six datasets with sample size
N/6 for validation, and one dataset with sample size 104 for evaluating performance.
We considered N ∈ {2400,4800,9600,19200} to reflect the large number of cells avail-
able in real datasets. We set the number of finest resolution categories to be fixed at 12
(C = {A1,A2,B1,B2,C1,C2,D1,D2,E1,E2,F1,F2}) and the binning functions fixed to
have a structure inspired by the real data (see Supplementary Figure 2). Specifically, in our
motivating application, most cell types are observed at a coarse resolution in the vast majority
of datasets, and at a fine resolution in the few others. Therefore, we chose to bin categories
A1,A2,B1,B2,C1,C2,D1,D2,E1, and E2 into groups of two for Datasets 1–4. Categories
A1 and A2 are binned together, B1 and B2 are binned together, and so on. However, we de-
signed it so that these categories would be observed at the finest resolution in Datasets 5 and
6. Also, in the real data some cell types are labeled at the finest resolution in all datasets
(e.g., CD14+ Monocytes and CD16+ Monocytes in Supplementary Figure 2). Hence, we
chose categories F1 and F2 to be observed at the finest resolution in all datasets. A graphical
representation of these binning functions is shown in Supplementary Figure 3. The valida-
tion datasets, Datasets 7–12, are generated in the same manner as Datasets 1–6. For the test
dataset, all observations are observed at the finest resolution in order to fully evaluate param-
eter estimation.

In manual single-cell annotation, cell types are binned together due to their similar gene
expression. We reflected this to varying extents in the structure of β∗ ∈ Rp×12, where we con-
sider p ∈ {250,500,1000,2000}. We first randomly select 100 of the p rows to be nonzero in
β∗. Of these 100 rows, we select s many rows for which their coefficients are identical within
the coarse groups described above. For these s rows, the coefficients for category A1 and A2
are identical, coefficients for category B1 and B2 are identical, and so on. For the remaining
100− s nonzero rows of β∗, the coefficients for all categories are distinct. We sample each of
the unique nonzero elements from a Normal(0,2) distribution. This structure for β∗ controls
the similarity of fine cell types within a coarse label. With s = 0, even though two categories
may be binned together, their coefficients are unrelated. With larger s, fine categories within a
coarse label have increasingly similar coefficient vectors. We consider s ∈ {0,20,40,60,80}.

Finally, to simulate the effect of batch effects in the predictors, we generated X(k) =
X̃(k) + U (k), where U (k) = (u(k)1, . . . ,u(k)nk )

# ∈ Rnk×p . Each row of X̃(k) is independently
simulated from a p-dimensional multivariate normal distribution with mean zero and covari-
ance matrix having (j, k)th entry 0.5|j−k|. We consider a simple model for the batch effect
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itself, in which the batch effect is identical for every observation within a batch. This may also
be reasonable as the presence of background contamination, also known as ambient RNA, is
a common source of batch effects and may affect all cells within the experiment similarly
(after normalization) (Young and Behjati (2020)). Therefore, we generate u(k) ∈ Rp as a re-
alization from a p-dimensional mean zero multivariate normal distribution with covariance
Ip and set U (k)i,: = au(k), where a is a scalar chosen to control b = ‖U (k)‖F /‖X̃(k)‖F . We
consider b ∈ {0,0.025,0.05,0.1,0.2,0.4}. The test dataset is observed with no batch effect,
again in order to best evaluate parameter estimation.

5.2. Competing methods. We first consider two variants of our method, IBMR-int and
IBMR-NG. For IBMR-int we set z(k)i = 1 for all k ∈ [K], i ∈ [nk] and fit the proposed
model using (3). For IBMR-NG we set γ (k) = 0 for all k ∈ [K], where “NG” stands for “no
Gamma,” and estimate only α∗ and β∗ using (3). This is a version of our method which
ignores possible batch effects but still addresses varying resolution labels across datasets.

We also consider two alternative methods,subset and relabel. For subsetwe “mix-
and-match” data from different datasets by subsetting each dataset to only the data that is
annotated at the finest resolution and fit a model based on the stacked data, as mentioned
in the Introduction. Specifically, define for k ∈ [K], the set of indices in the kth dataset for
which the outcome was observed at the finest resolution: Ik = {i : |gk(y(k)i)| = 1}. Then
we fit a group lasso-penalized multinomial logistic regression model using (3) but with y(k)i

replaced with gk(y(k)i) for k ∈ [K] and i ∈ Ik , Ck replaced with C for k ∈ [K], and L replaced
with −(

∑K
k=1 |Ik|)−1 ∑k

k=1
∑

i∈Ik
L(k)i . However, because of potential confounding, we do

not consider a batch effect (i.e., require γ (k) = 0). The model can thus be fit using existing
software (e.g., glmnet), but since the objective function is identical to our method when
using only subsetted data, we use our implementation for consistency in the algorithm and
convergence criterion.

For the other method, relabel, we first obtain estimates of (α∗,β∗) using subset,
denoted (ᾱS, β̄

S
). Using these estimates, we can “relabel” our training data to have outcomes

at the finest resolution by choosing the category with the highest conditional probability (as
defined in (6)) ỹS

(k)i = arg maxl∈C[C̃(k)(ᾱ
S, β̄

S
,0)]i,l . We then fit the multinomial logistic

regression model to ỹS, treating these as the true labels. To be clear, the training responses
ỹS are (synthetically) at the finest resolution, so one fits (3), but each Ck is replaced with C.

Finally, we also consider oracle (ORC) versions of these methods. By oracle we mean
versions of each method which have access to the finest resolution labels for all datasets—
information not available in practice. We compare to oracle versions as it allows for quan-
tifying the degree of prediction accuracy lost due to coarsened cell-type labels. Specifically,
IBMR-int-ORC is the same as IBMR-int, with coarse resolution data replaced by the
(otherwise unobserved) fine resolution data. By definition of IBMR-NG, subset, and re-
label, when all the data is at the finest resolution, the estimators are equivalent to the
standard group lasso penalized multinomial logistic regression model. Therefore, we name
the oracle version of these estimators GL-ORC, where “GL” stands for “group lasso.”

5.3. Results. We present the complete simulation study results in Figure 2. To assess
performance, we used Kullback–Leibler divergence, Hellinger distance, and the classifica-
tion error rate. These quantities are all defined and discussed in Section 5 of the Supplemen-
tary Material. In the first column of Figure 2, we present results with the total sample size
N ∈ {2400,4800,9600,19200} varying, and p = 500, s = 40, b = 0.1 fixed. With increasing
sample size, the KL divergence, Hellinger distance, and error rates decrease for all meth-
ods, as expected. Of the nonoracle methods, for all sample sizes considered IBMR-int and
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FIG. 2. (top) Kullback–Leibler divergence, (middle) Hellinger distance, and (bottom) error rate for six com-
peting methods with varying (left) N , the total sample size; (middle left) p, the total number of features; (middle
right) s, the number of nonzero features which have shared coefficients for fine categories within a coarse label;
and (right) b, the ratio of the norm of the batch effect and norm of the true predictors. Points denote the average
for each method across 50 replicates. Standard error bars are too narrow to be visible in all plots. Throughout,
the defaults are N = 4800, p = 500, s = 40, b = 0.1.

IBMR-NG perform best, and are closer to the oracle methods in which all data is observed at
the finest resolution.

In the second column of Figure 2, we vary the total number of genes p ∈ {250,500,1000,
2000} (all with 100 nonzero rows of β∗), with N = 4800, s = 40, and b = 0.1 fixed. With
an increasing number of genes, all metrics increase for all methods, as expected. Again, the
IBMR-based methods are much closer to the oracle methods than relabel and subset.

In the third column of Figure 2, we vary the similarity of cell-type categories within coarser
groups by considering s ∈ {0,20,40,60,80}, the number of nonzero rows of β∗ for which
fine categories within a coarse label share coefficients. We fix N = 4800, p = 500, and b =
0.1. With s increasing, fine categories within a coarse group become more similar; thus, the
Hellinger distance and error rates increase for all methods. This is because larger s makes
it more difficult to distinguish between the fine categories within a coarse group. Similarly,
KL divergence is relatively constant but slightly increases for IBMR-based methods as s

increases. For all values of s, IBMR-based methods again perform more similar to the oracle
methods than relabel and subset.

For simulation results displayed in the last (rightmost) column of Figure 2, we fixed
N = 4800, p = 500, and s = 40 and varied the batch effect size by considering b ∈
{0,0.025,0.05,0.1,0.2,0.4}. With increasing batch effects, IBMR-int outperforms IBMR-
NG with the error rate of IBMR-int staying relatively constant until b = 0.2. Of course,
b = 0.2 represents a quite large batch effect: in this situation the norm of the batch effect is,
loosely speaking, 20 percent of the norm of the true gene expression. Again, IBMR-based
methods are closest to oracle methods.

Timing results for each of the methods in the simulation settings described above are pro-
vided in Supplementary Figure 4. In these simulations, IBMR-NG is approximately 10 times



BINNED MULTINOMIAL LOGISTIC REGRESSION 3439

faster than IBMR-int, while performing similarly. Additionally, IBMR-NG is slightly faster
than relabel, and outperforms relabel (on average) under all simulation settings. The
method subset is consistently the fastest, but performs worst.

In the Supplementary Figure 5, we display results for a simulation study wherein we in-
tentionally mislabel some fraction of cells in the training datasets. In brief, all methods are
negatively affected by mislabeling, though our method still outperforms the competitors; see
Section 6 of the Supplementary Material for details.

6. Application to integrative cell-type annotation and differential expression anal-
ysis. In Sections 6.1 and 6.2, we apply our method to single-cell gene expression data
from 10 publicly available peripheral blood mononuclear cells (PBMC) datasets with annota-
tions at various resolutions across datasets. These data can be downloaded in a standardized
format as Bioconductor SingleCellExperiment objects from https://github.com/
keshav-motwani/AnnotatedPBMC. Table 1 lists the datasets used and the number of cell-type
labels per dataset. Supplementary Table 1 gives the specific labels used in each dataset. Pre-
processing details of the datasets are described in Section 4 of the Supplementary Material.
In Section 6.3 we use an IBMR-int model fit on these publicly available datasets to refine
annotations from a dataset published in Kang et al. (2018) and perform differential expres-
sion testing to understand the effect of interferon-β treatment on subcategories of CD4+ T
cells.

6.1. Comparison to subset, relabel, Seurat, and SingleR. In addition to
the methods from the simulation study, subset and relabel, we also consider two of the
most commonly used and best performing methods (Huang et al. (2021)) designed for auto-
mated cell-type annotation, Seurat (Hao et al. (2020)) and SingleR (Aran et al. (2019)).
Since these two methods cannot accomodate the varying resolution labels across training
datasets (thus motivating our method), for these methods we subset the training data to only
the cells which are annotated at the finest resolution, as similarly described for the subset
method in Section 5.2.

In order to assess the performance of our method relative to competitors, we fit each
method on eight datasets at a time, leaving out one validation dataset and one test dataset.
In order to keep the binning functions the same across all train/validation/test splits, we
always kept the hao_2020 dataset in the training set because it had the finest resolution
labels. We, therefore, defined the finest resolution categories across all datasets (C) to be
those used in the hao_2020 dataset and defined the binning functions (fk) as graphically
depicted in Supplementary Figure 2. We evaluate performance over all 72 combinations of
training/validation/test splits of eight training datasets (necessarily containing hao_2020),
one validation dataset, and one test dataset. We choose tuning parameters based on validation
set negative log-likelihood, and measure performance using test set negative log-likelihood
and error rate.

To reduce computational complexity, we perform predictor screening by ranking genes as
described in Section 4.3 of the Supplementary Material, and select the top p genes for each
dataset. Also, for each training dataset, we sample nk cells, taking the entire dataset if nk is
larger than the number of cells in the dataset.

We first assessed the test-set negative log-likelihood of each of the model-based methods
when varying the sample size per dataset nk ∈ {5000,10000,15000,20000} with the number
of genes p = 1000 fixed. We repeat this five times, as the sampling of cells from each dataset
is random. We then compute the negative log-likelihood for nine test datasets, each using
one of the remaining eight datasets as a validation set, and the rest of the datasets as training
datasets, across five replicates. We compute the average and standard error of the negative

https://github.com/keshav-motwani/AnnotatedPBMC
https://github.com/keshav-motwani/AnnotatedPBMC
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FIG. 3. Average test set negative log-likelihood (and standard errors) for each method with the numbers of cells
per dataset varying and the number of genes fixed at p = 1000. Each panel displays a averages for distinct testing
dataset. Averages were taken over all training/validation dataset combinations with each combination consisting
of five replicates.

log-likelihood across the five replicates for each train/validation/test dataset combination and
summarize the results for each test dataset by taking the average and standard error of these
averages across all of the train/validation dataset combinations considered. These summa-
rized results per test dataset are shown in Figures 3 with the complete results for each vali-
dation and test dataset combination in Supplementary Figure 6. Note that because Seurat
and SingleR are not model-based and do not estimate cell-type probabilities, we cannot
evaluate the test dataset likelihood. In general, the negative log-likelihood decreases or stays
relatively constant with increasing sample size for all methods. IBMR-int tends to perform
slightly better than IBMR-NG on some datasets, that is, fitting a batch-specific intercept term
helps in these cases. IBMR-int and IBMR-NG outperform relabel on seven out of the
nine test datasets considered and perform very similarly to relabel on the remaining two
datasets. subset consistently performs the poorest by a substantial margin.

While the negative log-likelihood illustrates prediction performance in terms of estimated
probabilities, it is more difficult to interpret than classification error rate. Additionally, since
Seurat and SingleR do not estimate probabilities and only provide “fine predictions,”
we needed a measure of prediction performance for all methods. For this reason, we also
considered error rate, which is slightly more complicated to define in this setting. Specifi-
cally, in order to define an “error,” we must make predictions from the same set of labels
used in the test dataset. We refer to these as “coarse predictions” and define them as fol-
lows. Let ftest : C → Ctest be the binning function for the test dataset labels and gtest = f −1

test
be the unbinning function, as defined before. Because there may be labels in Ctest which are
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FIG. 4. Average error rate (and standard errors) for each method with the numbers of cells per dataset varying
and the number of genes fixed at p = 1000. Each panel displays a averages for distinct testing dataset. Averages
were taken over all training/validation dataset combinations with each combination consisting of five replicates.

bins of categories in C not observed in the test dataset in order to properly define the bin-
ning functions (named “unobserved,” e.g., as described earlier), we define C̈test as follows:
C̈test = {j ∈ Ctest : ∑ntest

i=1 1(y(test)i = j) > 0}. That is, C̈test is a subset of Ctest for which we
actually observe cells annotated with that label. We can then predict only within these labels
to be consistent with the observed labels, which we call “coarse predictions.” The predicted
probabilities for the ith cell at the coarse level are defined as

[P̂ (test)]i,j =
∑

l∈gtest(j) exp(α̂l + x#
(test)i β̂ l)

∑
u∈C̈test

∑
v∈gtest(j) exp(α̂v + x#

(test)i β̂v)
, j ∈ C̈test,

and we define the “coarse prediction” for the ith cell as arg maxj∈C̈(test)
{[P̂ (test)]i,j }.

For the methods which do not estimate probabilities for each of the finest resolution cate-
gories and only provide a “fine prediction” (Seurat and SingleR), we define the coarse
prediction as the binned version of the fine prediction; that is, if l̂ ∈ C is the fine prediction,
the coarse prediction is ftest(̂l).

The summarized error rates per test dataset are shown in Figure 4, and complete results
in Supplementary Figure 7. In general, when comparing IBMR-int, IBMR-NG, subset,
and relabel, error rate performances agree with the negative log-likelihood performances.
Both IBMR-int and IBMR-NG outperform Seurat and SingleR on seven out of nine
test datasets, with error rates nearly half those of Seurat or SingleR in some cases, and
perform very similarly on the other datasets. Seurat and SingleR have inconsistent per-
formance, with Seurat performing the worst on three out of nine test datasets but perform-
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ing very similarly to IBMR-int at larger sample sizes on 10x_sorted, and SingleR
performing the worst on three out of nine datasets but performing the best on blish_2020.

The time required for fitting the model, selecting tuning parameter(s), and predicting on
the test dataset for each method is shown in Supplementary Figures 8 and 9. The method
subset is the fastest, followed by IBMR-NG, relabel, and SingleR, which take a
similar amount of time, followed by IBMR-int, with Seurat the slowest. It is also worth
noting that Seurat required up to 128 GB RAM to run some replicates, while all other
methods only needed up to 16 GB. Combining these timing results with the error rates shown
in Figure 4, it would seem that IBMR-NG offers the best tradeoff between speed and accuracy.

We next performed a similar experiment: with the sample size per dataset nk = 10,000
fixed, we varied the number of predictors p ∈ {250,500,1000,2000}. We adopted the same
setup for training/validation/test splits and considered five replicates per split to account for
subsampling variability. The summarized results per test dataset are shown in Supplementary
Figures 10 (negative log-likelihood) and 11 (error rate), with the complete results for each val-
idation and test dataset combination in Supplementary Figures 12 (negative log-likelihood)
and 13 (error rate). Overall, we observe that accounting for the batch effect with IBMR-int
usually improves upon or does as well as IBMR-NG, with relabel generally falling behind
IBMR-based methods. The method subset consistently performs poorly compared to the
other methods for all datasets. The performance of Seurat and SingleR varies greatly
from test-set to test-set, but in general, neither tends to perform nearly as well as IBMR or
relabel. We believe this is due to the necessary discarding of coarsely annotated cells, as
described in the Introduction.

6.2. Annotating or refining cell-type labels on new datasets. In this section we use our
fitted model to annotate and refine cell-type labels on a new dataset. For this we turn our
attention to the IBMR-int model fit in the last section with tsang_2021 as the validation
set and ding_2019 as the test dataset for the first replicate of the experiment with nk =
10,000 and p = 1000. We choose tsang_2021 to be the validation set because it has the
finest annotations over all validation sets considered, and we chose to predict on ding_2019
because it has the most coarse annotations.

There are three types of predictions we may consider: (i) predictions of the finest resolution
categories based on our model; (ii) if we already have observed coarse labels for a dataset,
predictions of the finest resolution categories conditional on the coarse labels, or (iii) coarse
predictions, as described in the previous section for performance evaluation. Note that (ii) is
especially useful when only coarse labels are used in annotating a dataset initially, but more
refined annotations are desired for downstream analyses.

In the case where we are simply interested in predicting fine resolution categories on a
dataset with only gene expression observed, (i), we define the “fine prediction” for the ith
cell as arg maxl∈C{[P̃ (test)(α̂, β̂,0)]i,l} where P̃ (test) is defined as in (5). Alternatively, if we
want to predict fine resolution categories but have observed both gene expression and coarse
resolution annotations, we can condition on the coarse label and obtain conditional predic-
tions, that is, prediction of type (ii). In effect, this refines the existing annotations based on the
fitted model and provides more detailed annotations. In this case we define the “conditional
prediction” for the ith cell as arg maxl∈C{[C̃(test)(α̂, β̂,0)]i,l} where C̃(test) is defined as in
(6). Note that if an observation already has a fine label, then the label will not change by the
definition of the conditional probabilities, ensuring no contradictory results.

In Figure 5 we show the coarse predictions and fine predictions in the ding_2019
dataset. The model does very well at predicting at the coarse level with few predictions in the
off-diagonal elements of the heatmap. The fine predictions generally agree with the coarse
observed annotations, while giving additional information. In Figure 6 we once again show
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FIG. 5. Heatmap showing the percentage of cells in (left) coarse and (right) fine predicted categories for each
observed label in the ding_2019 dataset. Dots indicate that exactly zero cells are in that combination of ob-
served label and prediction.

the same coarse predictions as a reference and also take advantage of the already coarsely
labeled data to provide predictions conditional on the observed coarse annotations. These
conditional predictions only split up an observed label into finer categories by definition, so
they provide additional detail and will not ever contradict the initial coarse annotations.

In order to showcase interpretability of the model coefficients for this same fitted model
considered above, we display the genes corresponding to the top 10 standardized coefficients
per finest resolution category in Table 2. Many of these genes overlap with commonly used
marker genes for these cell types, as shown in bold in Table 2, based on marker genes by Hao
et al. (2020) for these categories. Note that these marker genes were defined by Hao et al.
(2020) only on the hao_2020 dataset by performing hypothesis testing on gene expression
within cells of a category, compared to all other cells, so these same genes may not be optimal
for general classification purposes.

6.3. Differential expression analysis. One of the uses of RNA-seq data is to identify dif-
ferences in gene expression between treatment conditions (Oshlack, Robinson and Young
(2010)). However, for samples with heterogeneous cell types, these differences in expression
represent the averages over thousands of cells across numerous different cell types when us-
ing traditional bulk RNA-seq experiments. In contrast, single-cell RNA-seq enables a deeper
biological understanding of which cell types differ and in what direction between groups or
by a treatment (Crowell et al. (2020)). Though to do so, an important first step is labeling

FIG. 6. Heatmap showing the percentage of cells in conditional predicted categories for each observed label in
the ding_2019 dataset. Dots indicate that zero cells are in that combination of observed label and prediction.
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TABLE 2
Top 10 genes with largest standardized coefficients for each of the finest resolution categories (rows). These genes align with commonly used marker genes (bolded) for manually

annotating cell types based on Hao et al. (2020)

Cell type Genes

ASDC TCF4 GPR183 CD74 ITM2C HLA-DRA SOX4 S100A4 SERPINF1 LILRA4 TYROBP
B intermediate MS4A1 CD79A BANK1 GPR183 RALGPS2 TNFRSF13B TCF4 CD74 MALAT1 HLA-DRA
B memory MS4A1 CD79A BANK1 HLA-DRA LTB RPS20 TNFRSF13B ITGB1 CD74 MALAT1
B naive CD74 CD79A MS4A1 TCL1A HLA-DRA YBX3 BANK1 FCGR3A PTPRCAP LTB
CD14 Mono S100A8 LYZ TYROBP FTL VCAN CD14 PSAP HLA-DRA AIF1 FOSB
CD16 Mono FCGR3A AIF1 LST1 IFI30 CDKN1C PSAP ARPC1B MS4A7 TYROBP NAP1L1
CD4 CTL CCL5 IL7R ITGB1 NKG7 GNLY MALAT1 IL32 S100A4 GZMH CD3G
CD4 Naive MALAT1 CCR7 NOSIP LTB NKG7 CD3E FHIT CD7 CD3D CD40LG
CD4 TCM IL7R ITGB1 LTB CD3E ANXA1 IFITM1 VIM JUN TSHZ2 IL32
CD4 TEM S100A4 RPS20 CD52 IL32 CD3D GZMK KLRB1 LTB PTPRCAP MALAT1
CD8 Naive CD8B CD8A CTSW MALAT1 S100B AIF1 HCST CD3D FCGR3A IL32
CD8 TCM CD8B CD8A IL32 CTSW CCL5 IL7R S100A4 LTB KLRB1 PASK
CD8 TEM CCL5 CD8B CD8A NKG7 PTPRCAP GZMK CD3D IL32 GZMH CENPF
cDC1 CD74 HLA-DRA HLA-DPB1 SERPINF1 S100B AIF1 HLA-DQA1 LYZ ITGB1 VIM
cDC2 CD74 FCER1A HLA-DRA VIM HLA-DPB1 SAMHD1 AHNAK HLA-DQA1 HLA-DRB1 S100A10
dnT GZMK MALAT1 GPR183 CD3D NUCB2 CD3G RPS20 IKZF2 HBB CLDND1
Eryth HBB CD8A FCGR3A GNLY CD8B HBA2 MS4A1 AHNAK IL7R CCL5
gdT CCL5 IL7R KLRD1 CD3D KLRC1 CD3G NKG7 IL32 KLRB1 RTKN2
HSPC RPS20 AIF1 SPINK2 PRSS57 CD79A LST1 TCL1A SOX4 HLA-DRA S100A4
ILC KLRB1 IL7R TNFRSF4 MALAT1 LTB IL2RA ITGB1 HBB SOX4 TNFRSF18
MAIT KLRB1 IL7R GZMK CD8A RPS20 CCL5 NKG7 CD8B LTB NCR3
NK GNLY TYROBP FCGR3A NKG7 CTSW KLRF1 IL2RB KLRB1 CD247 KLRD1
NK_CD56bright GNLY XCL1 KLRB1 GZMK CTSW TYROBP KLRC1 XCL2 IL2RB KLRD1
pDC ITM2C SERPINF1 TCF4 CD74 GPR183 TCL1A CCDC50 CLEC4C LILRA4 MZB1
Plasmablast MZB1 CD79A ITM2C TNFRSF13B ITGB1 CPNE5 AQP3 RRM2 DERL3 POU2AF1
Platelet PPBP TUBB1 SPARC CD8B CCL5 ITGB1 HBB CD8A NRGN IL7R
Treg Memory RTKN2 IL32 ITGB1 CTLA4 FOXP3 TIGIT IL2RA S100A4 IKZF2 TSHZ2
Treg Naive IL32 FTL DUSP1 CD3E LTB RTKN2 ACTB GAPDH RPSA IL2RA
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which cell type each cell belongs to, so that the downstream differential expression can be
performed and interpreted for cells of each label separately.

In this section, we perform two differential expression analyses: one using existing (coarse)
manually annotated labels, and one using fine (conditionally predicted) labels obtained from
our model described in the previous section. Specifically, we reanalyze a dataset published
by Kang et al. (2018), which contains single-cell RNA-seq data from peripheral blood sam-
ples of eight lupus patients, both before and after treatment with interferon-β . We apply the
workflow in the muscat R package (Crowell et al. (2020)) for preprocessing this dataset and
conducting a differential expression analysis. Using the coarse manual annotations provided
in the original publication, we applied our fitted PBMC model from Section 6.2 and obtained
fine conditional predictions. This partitioned the seven coarse labels into a set of 28 possible
finer cell-type subcategories; see Figure 16 of the Supplementary Material.

We focused our attention on cells labeled as CD4+ T cells in the original dataset. Cells
of this type were partitioned into finer cell types—CD4+ Naive, CD4+ TCM, CD4+ TEM,
Treg Naive, and Treg Memory—using conditional predictions. We compare the differentially
expressed genes before and after treatment with interferon-β when using all cells with the
coarse label CD4+ T cells versus genes identified as differentially expressed when indepen-
dently analyzing each of the subcategories CD4+ Naive, CD4+ TCM, CD4+ TEM, and Treg
Naive separately (though Treg Memory is excluded due to having an insufficient number of
cells). The results of the differential expression (DE) analyses are shown in Figure 7.

Not surprisingly, many DE genes overlap between those identified at the coarse-level and
fine-level analyses. The overlap directly correlates with the subcategory size, with larger
subsets (CD4+ Naive) having a larger number of shared DE genes with the coarse-level
CD4+ analysis. Additionally, 23% (75/325) of the genes identified as DE in the CD4+ coarse-
level analysis are not identified in any fine-level analyses. This is due to increased power of
detecting effects which are shared across subcategories of CD4+ T cells in a coarse-level
analysis. However, of the 281 unique genes identified as DE within any of the fine-level
analyses, 31 are not detected in the coarse-level analysis.

Genes identified as DE only in the fine-level analyses had absolute increases in fold-change
in the subcategory analysis, compared to the coarse-level DE (Supplementary Figure 17).
These genes were masked in the coarse analysis by more abundant fine cell types in which
the genes were not differentially expressed. Identifying these genes would not be possible
without access to fine-resolution cell-type labels. We performed an enrichment analysis on
all 31 genes, using the Enrichr tool (Xie et al. (2021)), and confirmed these genes are largely
related to lupus treatment signaling pathways such as JAK/STAT5 and IL2/STAT5, both of
which are stimulated by type I interferons (Horvath (2004)).

To further demonstrate the scientific insights possible with fine-resolution labeling, we
focus on a gene that had the smallest fold-change in the coarse-level analysis (logFC =
0.43) and was identified as differentially expressed in only CD4+ effector memory cells
(Supplementary Figure 17): IER2 (immediate early response 2). Immediate-early genes are
a set of genes known to respond rapidly to stimuli (Aitken et al. (2015)). IER2 specifically
has been shown to be widely involved in early responses to stimuli—displaying a cyclic
expression pattern in the initial hours of pluripotent stem cell differentiation (Barry et al.
(2019)) and was also categorized as one of the earliest dynamic response (to stimulation)
genes in B cells from lupus patients (Dozmorov et al. (2013)).

Interestingly, IER2 was also found to be upregulated in activated T cells (compared to
nonactivated T cells) in a range of human tumor types (Neeb et al. (2012)). Moreover, when
studying gene expression in CD4+ T lymphocytes among patients with lupus, Deng et al.
(2006) found IER2 to be overexpressed in activated CD4+ T cells. IER2 is also one of the
genes involved in TNF-α signaling via NF-κB enrichment; interferon-β plays a synergistic
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FIG. 7. Upset plot (generalized Venn diagram) showing the overlap between differentially expressed genes iden-
tified at the coarse resolution (CD4+ T cells) and at the finer resolution labels (CD4+ Naive, CD4+ TCM, CD4+
TEM, Treg Naive) based on conditional predictions from our fitted model.

role with the NF-κB pathway in promoting immune response, indicating a direct link between
the treatment and IER2 (Yarilina and Ivashkiv (2010)).

Our analysis of pre- and post-treatment lupus patients identifying IER2 as DE in only
CD4+ effector memory T cells—which are activated more rapidly than naive cells and re-
spond faster than central memory cells (Berard and Tough (2002))—suggests that further
research is needed on finer subcategories of peripheral blood cell populations to assess the
specific role of IER2 in the effect of interferon-β .

7. Discussion. In this article we proposed a new method for integrative multinomial
logistic regression where response labels are available at different resolutions across datasets.
We want to first emphasize the utility of this method beyond cell-type annotation in PBMCs.
Specifically, our approach is useful for many other biological systems; for example, a referee
pointed out that neuronal cell types also have a hierarchical structure amenable to binning.
More generally, our method can be applied in any setting in which outcome categories are
available at different resolutions across datasets. For example, consider two datasets, wherein
one dataset has an outcome variable labeling patients as either healthy or having a disease,
and the other dataset has an outcome variable labeling patients as either healthy or having
subtype A, B, or C of the disease. Our method could be used to fit a model integrating both
datasets in order to estimate probabilities at the disease subtype resolution.

There are multiple important directions for future research. First, we have assumed a multi-
nomial logistic regression model. Instead, it may be preferable to use a semiparametric or
nonparametric approach for modeling the probabilities (2). For example, we expect random
forests could perform well in this context. Second, our method did not exploit the similarity
of cell types within a coarse category in any way. For example, in Section 5 we generated
data such that coefficient vectors for two cell types belonging to a coarse category were more
similar compared to cell types which did not belong to a shared coarse category. Lastly, in
general, we found our method to work well as long as there are a reasonable number of each
cell type in the training data. If certain cell types are especially rare (e.g., < 20), our method
may not perform well for those cell types. In the future we hope to develop an extension of
our method which can abstain from making a prediction if we deem a particular cell’s gene
expression profile sufficiently different from those in the training data.
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