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This work presents a new framework for a competitive
evolutionary game between monoclonal antibodies and
signalling pathways in oesophageal cancer. The framework
is based on a novel dynamical model that takes into
account the dynamic progression of signalling pathways,
resistance mechanisms and monoclonal antibody therapies.
This game involves a scenario in which signalling pathways
and monoclonal antibodies are the players competing against
each other, where monoclonal antibodies use Brentuximab
and Pembrolizumab dosages as strategies to counter
the evolutionary resistance strategy implemented by the
signalling pathways. Their interactions are described by the
dynamical model, which serves as the game’s playground. The
analysis and computation of two game-theoretic strategies,
Stackelberg and Nash equilibria, are conducted within this
framework to ascertain the most favourable outcome for
the patient. By comparing Stackelberg equilibria with Nash
equilibria, numerical experiments show that the Stackelberg
equilibria are superior for treating signalling pathways and
are critical for the success of monoclonal antibodies in
improving oesophageal cancer patient outcomes.

1. Introduction

Oesophageal cancer (OC) ranks as the sixth most prevalent cause
of cancer-related mortality on a global scale [1]. The signal-
ling pathways within OC, encompassing monovalent ligands
like epidermal growth factor (EGF) receptor and the complex
receptor formed by the combination of the epidermal growth
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factor receptor (EGFR) and EGF, are of utmost importance in regulating cellular viability, proliferation n

and differentiation [2]. Genetic mutations frequently cause dysregulation of cancer cell signalling
pathways, which in turn causes cancer cells to become resistant to treatment [3]. Several potential
points of inhibition can be found along the signalling pathways, they have the potential to specifically
target receptors located on the cellular membrane [4]. Monoclonal antibodies (mAbs), also known as
immunotherapy, are the most effective inhibitors for OC signalling pathways in preventing resistance
development. Monoclonal antibodies demonstrate a remarkable level of specificity, meaning that
each antibody binds exclusively to a single target [5]. Pembrolizumab is a monoclonal antibody that
specifically targets the checkpoint protein PD-1 on the surface of T cells, a type of immune cell.
The mechanism of action involves the inhibition of the interaction between the checkpoint protein
PD-L1, located on the surface of tumour cells, and its associated signalling pathways. This mechanism
enables T to attack and eliminate cancerous cells [6]. Moreover, Pembrolizumab also has the bonus
of stimulating immune checkpoints, which play a crucial role in modulating the immune response.
Until they are required, T cells are normally “off’, or inactive, owing to immune checkpoints. As a
result, the T cells are suppressed in their attempts to harm the healthy tissues. The goal of developing
and using mAbs has been to increase the efficiency of therapeutic agent delivery to tumour sites.
Brentuximab is a monoclonal antibody that has been linked to chemotherapy agents. It works by
blocking signalling pathways and transporting a chemotherapeutic agent, preventing cancer cells from
spreading and multiplying [7]. Understanding the Darwinian mechanisms that drive the evolutionary
dynamics of signalling pathways is proving to be a promising avenue for developing new approaches
to treating this disease [8-12]. Using evolutionary game theory (EGT) to model the evolution of
treatment resistance in signalling pathways is crucial for reaching this objective.

The study of biological interactions between players is a fruitful application of the theoretical
framework of EGT [13]. In an evolutionary game, each participant represents a distinct species or
population. EGT examines the dynamics between species that use varying tactics and/or characteris-
tics. These organisms do not need to act rationally, by contrast to classical game theory, because
their strategies are inherited rather than deliberately selected. These strategies possess the potential
to enhance an organism’s fitness, which is a measure of its ability to survive and proliferate. Con-
sequently, individuals employing these strategies are more inclined to eventually attain population
dominance [14]. In an evolutionary game, a player’s success or failure depends on how well they
can strategically respond to their opponent’s actions. Differential games are problems within the field
of EGT that focus on modelling and studying conflicts that arise in a dynamic framework [15]. The
process of organismal evolution over time can be more accurately described by dynamical models,
which are typically modelled using a system of differential equations.

Various deterministic models have been employed to simulate the dynamics of signalling pathways
in diverse cancer types. The mathematical model proposed by Itano et al. [16] uses ordinary differential
equations (ODEs) to investigate the dimerization mechanism underlying the development of Gefitinib
resistance in lung cancer. Bianconi ef al. [17] employ an ODE-based model to examine the correlation
between the expressions of EGFR and IGF1R proteins in non-small-cell lung cancer. Cross-talk between
the oestrogen receptor and the EGFR is described using a mathematical model introduced in [18]. A
computational model presented in [19] simulates biochemical and metabolic interactions observed in
melanoma cancer between the PI3K/AKT and MAPK pathways. In [20], the authors investigate how
AKT pathways contribute to therapy resistance in receptor tyrosine kinase (RTK) signalling in colon
cancer. In a very recent work [21], the authors propose an optimal control framework to determine the
best treatment strategies for controlling aberrant RTK signalling pathways in EC patients. However, all
the aforementioned models do not adequately describe the evolutionary dynamics of treatment-resist-
ant signalling pathways in OC.

Some recent clinical trials have shown that treatment protocols based on evolutionary principles
lead to better clinical outcomes. In [22,23], it has been shown that bipolar androgen therapy anticipates
the development of resistance to androgen deprivation therapy (ADT) in advanced prostate cancer.
By strategically administering androgen, it aims to restore sensitivity to ADT. In another clinical trial,
it was demonstrated that even though small-cell lung cancers might develop resistance to immunother-
apy, at the same time, they exhibit increased response to cytotoxicity [24]. These clinical trials demon-
strate the feasibility of an evolutionary game-theoretic framework in improving clinical outcomes of
cancer patients.

Motivated by the aforementioned evolutionary frameworks in other cancers and the fact that one of
the primary reasons for failure of clinical trials in OC is attributed to drug resistance by cancer [25],
our work focuses on an evolutionary game-theoretic framework modelling interactions of treatments
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and resistance in OC to improve clinical outcomes. In this context, the interaction between mAbs
and signalling pathways in the context of treating OC can be analogized to a differential game [26].
The signalling pathways exhibit evolutionary modifications and exhibit adaptive responses to the
treatment administered by mAbs, using various mechanisms to evade the intended therapeutic effects
of the medication. The game’s design confers a notable advantage upon the monoclonal antibodies.
The signalling pathways exhibit a limited capacity to anticipate or adapt to therapeutic interventions
that have not yet been administered. However, mAbs exhibit their capacity to predict the subsequent
advancement of the signalling pathways. As a result, the game demonstrates a notable imbalance
in power [27]. Therefore, mAbs initiate the first action by delivering treatment, while the signalling
pathways subsequently respond by developing resistance to it. In other words, the signalling path-
ways’ ability to implement adaptive strategies is inactive until the administration of a particular
treatment. Within this particular context, mAbs can be regarded as assuming a leadership role, while
the signalling pathways can be seen as taking on a follower position. Therefore, the treatment of the
signalling pathways can be classified as a Stackelberg game.

Nevertheless, the existing treatment protocols for signalling pathways, such as the continuous
administration of the maximum tolerated dose (MTD), fail to effectively exploit the advantage or
disparity in the game [11]. In the context of signalling pathways therapies, repeated utilization of
a consistent approach significantly increases the probability of the signalling pathways developing
resistance towards the treatment. In this scenario, mAbs cannot see the signalling pathways move
because the game is played simultaneously by all players. As a result, mAbs hands over the reins of
leadership to the signalling pathways when they show signs of making progress. In the given context,
the concept of Nash equilibrium or Nash solution emerges, wherein both the mAbs and signalling
pathways cannot independently alter their strategies in a manner that would result in a favourable
outcome for either party [15]. Currently, there is no established and all-encompassing framework for an
evolutionary differential game in the context of signalling pathways in OC. The goal of this research is
to examine a class of game-theoretic formulations that can be used to determine the optimal course of
treatment for a patient with OC.

This paper is organized as follows: §2 introduces an ODE model that aims to provide a compre-
hensive understanding of the evolutionary process of signalling pathway resistance. In §3, we show
the theoretical formulation of an evolutionary differential game, which includes the analysis of both
Stackelberg and Nash equilibria. Section 4 is devoted to the analysis of the existence of Nash and
Stackelberg equilibria. The numerical schemes that are proposed to resolve Nash and Stackelberg
equilibria are shown in §5. In §6, numerical simulations are presented to support our analytical results.
Finally, in §7, conclusions are presented.

2. An ordinary differential equation model for signalling pathways in
oesophageal cancer

The presented model elucidates the mechanisms by which immunotherapies modulate signalling
pathways. It explains how T cells can be directed and effectively administer chemotherapy to destroy
signalling pathways through mAbs strategies. The model also predicts an expansion of the signalling
pathways owing to their evolutionary resistance towards immunotherapies. Our model is constructed
based on the law of mass action, with additional insights from Reed et al. [28]. We first define

— L(f)—the density of EGF ligand (no./volume)

- 6(?)—the density of EGF:EGFR complex (no./volume)

TA"(tA)—the concentration of T cells per litre of blood (cells 1)
M(t)—the concentration of chemotherapy per litre of blood (mg 1)
— () —the dosage of Brentuximab per litre of blood (mg 1)

—u p(tA)—the dosage of Pembrolizumab per litre of blood (mg 1)

ii(t)—the evolutionary resistance strategy of the signalling pathways (no./volume).

The governing equations of a mathematical model are given as follows:

i 1 ooy ssaniotusiioooeior [



d—L—yL+%alocLC+aZC lll\ LAtpfA, E(O AO

dt
dC

A 1A A AN 1A A A A {4\b A A A
b1( ——C)L —bz(H()+C)C+§b3(H0—C)—b4A n C, C(O)=C0

k+bu,

[
~>

AN AN AAAN A A
~dy(L +CO)T +doti,T, T(0)=To

=
>

a
=>

AN AA A A
— =~ d3M+ d4ub, M(O) . Mo,
‘ 1)

[oW

where Hj and R are the initial conditions for the epidermal growth factor receptor HER2 and EGFR,
respectively [29], and o = Ry — %Ho. The following are descriptions of the terms used in (2.1):

7L —the exponential EGF ligand growth,

%aﬁLA C —the rate of change of L is made up of a gain rate proportional to L C,
@,C—the rate of change of L is made up of a gain rate proportional to C,

—a3au pf T —Pembrolizumab stimulates ﬁ\“ cells, causing the death of EGF ligand L,
by(@- %é)lj — the gain rate proportional to RL makes up the rate of change of C,
—%l; »(Ho + C)C — the rate of change of C is made up of a loss rate proportional to H C,

- %53(1-70— C)—the gain rate proportional to EGF : EGFR : HER2 complex makes up the rate of
change of C,

- —b4]€+ . C—Brentuximab transports chemotherapy, preventing complex C formation in the
presence of evolutionary resistance,

-d 1(£ + 6‘)7/"\—death of cells owing to the signalling pathways interactions,

doil pTA"—the amount of Pembrolizumab injection needed for activating T cells,

ANIAN
—d3M —the excretion and elimination of chemotherapy toxicity,

34ﬁb—the amount of Brentuximab injected.
The other parameters are described as follows:

— 7 —the growth rate of monovalent ligands (EGF) (day™),
@, —the gain rate proportional to LC (cell),

a,— the gain rate proportional to C complex (cell),

@s- the rate of L death caused by T cells (I® cells” mg™?),
by—the gain rate proportional to RL (cell),
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b,—the loss rate proportional to HC (cell),

— bs—the gain rate proportional to EGF : EGFR : HER2 complex (cell),

b4—the rate of C death caused by specific drug (1 mg™),

k —the rate of the natural resistance that may be present before drug exposure,

b —the rate of the benefit the cell gains by reducing sensitivity to the drug,
— @—the rate of circulating T cells (cell),

dy—the rate of T cells death owing to signalling pathways (cell* day™),
d,— the rate of the amount of Pembrolizumab injected (mg 1),
d3—the rate of chemotherapy drug decay (day™),

d 4— the rate of the amount of Brentuximab injected (mg17).
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It is essential to use the following non-dimensionalized variables to non-dimensionalize the above n

ODE system to improve the numerical algorithms’ stability,

AN AN AN N
L=qL,C=qC,T=qT,M=qM (2.2)
AN A A N
L =qst, Uy = qeUp Uc = q7lUc, Up = qgUp
and the corresponding parameters are
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In this context, the scaling weights q, i=1,...,8 serve the purpose of non-dimensionalizing the
parameters and model variables, as well as ensuring that they possess comparable ranges. The system
has been transformed into a non-dimensionalized form, which is expressed as

‘(11—]; =yL+ %alocLC +ayC — asau,LT, L(0) = Lo
dC _ple-Lo) -1 1 OV p -
W = b](a ZC)L 2b2(H0 + C)C + 2b3(H0 C) b4k 7 bucc, C(O) Co
dT _ _
E == dl(L + C)T+ dzupT, T(O) =Ty
dM _ _
W = —dz;M + d4ub, M(O) M,. (24)
Letx=(L,C, T,M )T and u = (up, Uy, uc)T. Then, the ODE system in (2.4) can be expressed as
x = f(x,u),
x(0) = xp. (25)

In §3, we use this model to create two evolutionary differential games involving mAbs and signalling
pathways.

3. An evolutionary differential game

A differential game is said to be complete in the context of EGT if all players are fully aware of one
another’s strategy spaces and cost functionals [30]. In this framework, we consider a situation in which
the two players, each driven by their self-interest, have no desire to work together. We build a complete
evolutionary differential game in which the mAbs and the signalling pathways are the game’s players,
denoted by A and S, respectively. In (3.1), QO; and (), represent the spaces of admissible strategies for A,
while Q5 represents the space of admissible strategies for S.

Q; ={u, € L*([0, Ty], R):0 < u,(t) < Dy, Vt € [0, Ty]}
Qs ={up € L¥([0, Tf], R):0 < wy(t) < Dy, Vi € [0, Ty]}
Q3 ={u. € L*(|0, Ty, R):0 < u(t) < D3, V € [0, Ty]}. G.1)

(
(

We observe that Q;,0); and Q3 are closed and convex. In (3.1), D; and D, represent the MTDs
of Pembrolizumab and Brentuximab, respectively, which can be administered to achieve optimal
outcomes in eradicating the signalling pathways. If the MTDs for a given patient are exceeded,
there is a risk to the patient’s health [31]. When cancer cells can divide and pass on their genetic
mutations, a strong selective pressure is generated, pushing the cells to become resistant to treatment.
The development of resistance would be stymied if this factor were not present [32]. Consequently, we
set the upper limit of evolutionary resistance to be D;. The model presented in (2.5) is a playground
setting in which A and S employ their strategies (3.1) to surpass one another. The period of the game’s
development is represented by the interval [0, T/].
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The primary objective of mAbs is the eradication of cancerous cells. To achieve this, they employ [ 6 |

strategies that effectively limit the number of potential signalling pathways. Furthermore, it effectively
mitigates the adverse consequences induced by T cells. Therefore, A endeavours to minimize its own
objective functional, namely
s s
a{)%xrgizn Jalx, u): = A ((r ~)[G-(L+C)-1(Z - w)* - rupT)dt + -/(; (/,Lulz, + nuf,)dt. (3.2)

Five terms are stated in (3.2). In the first and second terms, maximum tumour burden G is shown to
be correlated with signalling pathways abundance, and maximum chemotherapy dose Z is shown to
be correlated with Brentuximab, where 7 is the chemotherapy toxicity rate. The third term represents
how Pembrolizumab regulates T cells, where r represents the Pembrolizumab’s toxicity. Regularization
priors for Brentuximab and Pembrolizumab costs are given by the fourth and fifth terms in Jg,
with g, 20 denoting the corresponding regularization weight. If the disease exhibits stabilization
or reduction in size without complete eradication, the administration of treatment will persist as long
as it remains well-tolerated and the dissemination of signalling pathways is effectively contained. In
the event of cancer progression, the administration of treatment will be discontinued. Therefore, it can
be inferred that G, L or C possess greater values compared with Z, u, u, or T, where t>1, and r is a
positive parameter. Hence, J, is bounded below by 0. If such an outcome fails to materialize, the game
will reach its conclusion.

In relation to the primary objective of S in this game, it is to evade death by developing resistance to
the treatment being used. So S aims to minimize his own objective functional, namely

yL+C+

Ty
Up 2
b b, dt + v/(; u;dt. (3.3)

Tr
arg min Jg(x, u): = /
Q3 0
There are four different possible terms in (3.3). The first three terms, which together determine how
to fit a solution of Jg and incorporate the strategies into the evolutionary process, present the fitness
of signalling pathways [33]. The fourth term in Js is the regularization term that represents the cost
of the signalling pathways resistance, and v > 0 is the associated regularization weight. Note that Js is
bounded below by 0.

Given the aforementioned preparation, a non-cooperative infinite evolutionary differential game
involving mAbs and the signalling pathways can be formulated within the framework of the calculus
of variations [15] as follows:

arg min J,(x, u)
Q1 xQp

arg min Jg(x, u)
Q3

s.t. x= f(x,u),x(0) = xo. (34)

Solving (3.2) will result in the most effective responses of A to counter emerging resistance from S.
Moreover, solving of (3.3) would result in the optimal responses of S in relation to the administered
treatments. We consider the following best-response maps (see figure 1).

Raue) = {(up, up): (up, up) = arg min JA}
Q1 xQp

Ris(up up) = {ucz U, = arg min ]S} .
Q3

(3.5)

Accurately assessing the players” knowledge levels at any given moment is imperative for a compre-
hensive understanding of the game. The availability of information significantly impacts a player’s
decision-making process. Hence, the results of the game may exhibit significant variability contingent
upon how the treatment is administered. In the following subsections, we will analyse the potential
outcomes of the game (AS).

3.1. Stackelberg equilibrium

In the game (AS), the administration of therapy by mAbs serves as the initial action. Subsequently,
the signalling pathways respond by generating countermeasures through the process of evolving their
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[ Objective functional for A
| [ Objective functional for S
e The goal of A
® The goal of S
=== The best response for A
=== The best response for S
*  Stackelberg equilibrium
Nash equilibrium

Evolutionary resistance

Brentuximab dos
Pembrolizumab dosage rentuximab dosage

Figure 1. A visual representation interprets potential outcomes arising from the interplay of signall properties of the cost funcing
pathways and mAbs.

resistance. Although resistance-related molecular machinery may have been present before treatment
commenced, it is possible that it did not undergo selective pressure in the form of a resistance
mechanism until treatment was initiated [34]. Consequently, the therapy of signalling pathways can
be conceptualized as a strategic interaction between a leader and a follower. The investigation of
leader—follower dynamics was first conducted by von Stackelberg [13], revealing notable benefits
for the leader. The mAbs’ initial intervention as a leader, leveraging their ability to anticipate the
subsequent responses of the signalling pathways, offers a pivotal chance to attain more advantageous
outcomes through the strategic guidance and limitation of resistance mechanisms employed by these
signalling pathways. A Stackelberg equilibrium (SE) necessitates that player A strategically determines
its optimal outcome by considering the best-response curve of player S (see figure 1).

More precisely, (x*, up, uj, uﬁ) € (H 1(0, Tf))4 x ()1 x () x Rg is a SE of the game (AS) if the following

conditions hold:

0w = Ro(up, uj)

(i) For any (uy, up) € O x Q) and every best-response u, € Ry,
Ta(x*, wh, up, uf) < Ta(x, wp, up, ) - (3.6)

3.2. Nash equilibrium

If the monoclonal antibodies cannot take advantage of the asymmetry in the game (AS) by taking the
initiative, mAbs will lose the ability to do both predictive and directive work. As a result, the mAbs
employ a consistent approach by repetitively administering drugs at maximum doses, even though
the signalling pathways continually develop effective adaptive reactions [26]. Moreover, by adopting
a treatment approach that is solely based on modifying the treatment following the progression of the
signalling pathways, mAbs effectively surrender control to these pathways, consequently heightening
the probability of treatment ineffectiveness. The signalling pathways and mAbs employ strategies that
demonstrate progression along their respective best-response curves as they engage in an iterative
process of moves and countermoves. The given situation results in the formation of a Nash equilibrium
(NE), which is identified by the point where the two curves intersect (see figure 1). Neither the
signalling pathways nor the mAbs can make strategic changes that would benefit them individually in
the context of NE.
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From a mathematical perspective, (J\'c, Uy, Up, L_tc) (S (H 1 (0, Tf))4 x ()1 x (O x Q3 is a NE of the game (3.4) n

if the following conditions hold:

(%, i, 1y, 1) = arg minJ,(x, up, up, i)
Q1 xQp

= arg min Jg(x, U, Up, U.),
ng S( pr Yb. c) (37)

where (11, 1) = R 4(.); and 1, = R(i1,, tlp). Let © = QO x Q, x Q3, and define the controls-to-state map

A:Q = (H'(0, 7)) u - x, (3.8)

and consider the following reduced functionals:

Al (up, 1), 1y, up, u) (39)

N A
T a(up, tp, u): = J
A A
= ]C(A(up/ Up, uc)/ up/ Uy, uc) .

JS(up/ Uy, uc):

Then, (i, up, i) is a NE for the game (AS) if the following holds:

7 Aty iy, 1) < 7 Aty up, 1), (Up, up) € QO x
AN AN
T (1, iy, Ue) < J s(ip, Up, Ue), U € Qs. (3.10)

When it comes to achieving NE, the treatment of single pathways presents a significant challenge
for mAbs. However, success can be achieved through the use of the right strategy. Using the game’s
inherent asymmetry, mAbs could improve patient outcomes and reduce side effects without resorting
to unsafely high doses of Pembrolizumab or Brentuximab.

4. Theory of the evolutionary differential game

We provide a theoretical analysis of the NE and SE for the differential game (AS). In [35-38], there
are analogous findings for other NE and SE differential games and optimal control problems. First, we
prove that the ODE system (2.5) has positive solutions.

Lemma 4.1. The solution x of (2.5) is non-negative if the initial condition Xo is non-negative for all
t € [0, Ty].

Proof. We can write (2.5) as follows:

dx

T R(x, u) - M(x, u)x, 4.1)
where
yL + %alocLC +a,C azou,T
1., ,1 Tba(Ho+ ) + byt :
R(x, u) = bl(a - EC)L +5b3(Ho= C)| M(x, u)x = |2 k+bu (L ¢ T M].
w+ dzupT d](L + C)

dyuy ds

If x,u >0, we obtain R, M >0, componentwise. By multiplying both sides of (4.1) by the integrating

factor vector I = exp / M(x, u) dt), we obtain that

I% + exp(/M(x, u) dt)M(x, u)x = IR(x, u).

This gives us

I
AIX) _ 1R(x, u) > 0. 4.2)
dt

Since, xo 2 0, we have Ix, > 0. Thus, (4.2) gives us that Ix(t) >0 for all ¢ € [0, Ty]. Since, I >0, we have

that x(t) 2 0 for all ¢t € [0, T¢]. |
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We next show some stability estimates for the solution of (2.5).
Lemma 4.2. A solution x of ( 2.5) satisfies the following stability estimate:

Ty Ty 1
f ;W exp / -y EalocW ds| dt+ Ly|,
0 0

[exp (dlet) - 1],

Ty
L(t) < exp( / y+ %alocW dt)
0

ct)sw,

T([) <Toexp (dlet) +

2]
d,D,
M(t) < dyDot + My, (43)

Ty
where W = Cyexp ( f biaL(s) + b3H ds) .
0

Proof. From (2.5), we note the following:

(let/ yL+ l(11OCLC +a,C,
((li—c < bijaL + bsHy,
% <w+ dzupT <w+d,DiT,
(fi_]\l'l <dyu, <dgDs.
A simple application of Gronwall’s inequality gives the desired result. [ |

Lemma 4.2 gives us that a solution x of (2.5) is bounded. We now state and prove the existence and
uniqueness of solutions of (2.5).

Theorem 4.1. Given u € Q, there exists a unique solution x of (2.5) in (Hl(O, Tf))4.
Proof. Since u € Q, u is bounded. From lemma 4.2, we have that x is bounded. Let

Fx) = (f1(x), f2(x), f3(x), f4(x))", then we also compute the following gradients:

V. fi(x) = (y + —alocC azaupT, 1 saal + ap, — azaupl, 0),

2
1,1
V. fox) = (bl(oc ~ 2BiL = 2boHo = bsC = 23~ by L0, 0)
Vif3(x) = (-diT, —diT, — dy(L + C) + du,, 0),
V.fa(x)=(0,0,0, —ds).

We have IV, fi(x)ll., i=1,2,3 is bounded. Thus f is Lipschitz. Therefore the following conditions are
satisfied by f:

(i) f is continuous with respect to x.
(ii) f is measurable with respect to .
(iii) f is bounded.
(iv) The derivative of f with respect to x is also bounded.

Thus, f satisfies the Caratheodory’s conditions, and so there is a unique solution x € (Hl(O, Tf))4 of
(2.5). ]

We now have some properties of the cost functionals Jy4, Js given in (3.2) and (3.3). Similar argu-
ments can be found in [39,40].

Proposition 1. The objective functionals J4, Js, given in (3.2) and (3.3), are sequentially weakly lower
semi-continuous (w.l.s.c.), bounded from below, coercive on (1, (y, 3, and Fréchet differentiable.

Proof. We will address the properties of Jg and similar arguments will also hold for J 4. The following
are the steps to proving the properties of Jg:

1. Js is bounded below by 0 and is coercive since limy,|| - »Js(U) = «. Also, (3 is weakly sequen-

tially compact in L% To see this, let {u} € Q3 such that ||u?| |,2 < Ds for all n, so it is bounded. Thus,
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there is a subsequence {ugk} such that u,* — u, € Q3. Also, we have that ||u,| ;2 < liminf]| |4?]];2 < Ds. m

Thus, u. € Q3. Next we consider the sets
Uy ={u. € Qs3:J(u;) < a}.

Since Jg is continuous, the sets U, are closed for all @« € R. Thus, U, is a closed subset of a weakly

sequentially compact space Q3 and is weakly sequentially closed for all « € R. This implies that Jg is
weakly sequentially lower semi-continuous.

2. Let u} ,and u be functions in Q3 and ¢ € [0, Ty]. By Minkowski inequality, we have
loue + 0 -opi] < oluc] +(1 - o)l < oDs +(1-)Ds = D5.
Hence, ()3 is convex.

3. Let {u} € Qs such that u!— u. € L*([0, T],R). Let €>0, then, by the reverse Minkowski

inequality, |[lu¢]| ~ ]| < [uf ~u|l <e. Thus, |u| — |u], and since {uc} € Qs, [uf|l <Ds, and so,
|u.| < Ds. Hence, Q3 is closed.
4. The Frechet differential of the operator Js at u, is the bounded linear operator

Ay = [ — B oyn- Y g
o bu.+ (k+bh) " bu.tk

To show that A is the Frechet differential of Jg at u,, we have the following:

lim  slet B) = Js(ue) — Ah)|
I[hl] -0 [1h]]2
Up

T
_A k+b(u. + h)
T
/thdt
0
< lim ;fTv|h2|dt
" nl=o HHAL2 ),

2
hll|72 (T

< lim I ||Lfvdt
Nl —o |1R12 Jo

=0.

u
v uZ b

lim " bu.+ (k + bh)

+v(u, + h)* -
k] —o |1R]]2 (et )

- W
2vuh + Du+ k] dt

b -
k + bu,

Iim ———
Hhl—o [17]]2

Also, A(h) is a linear operator by the linearity of the integral. To see that A(h) is bounded, we use
Holder inequality,

2

1409152 = | [ g + 2= e
2
- ﬁ T bu+ k)[_blizbib(k TRy T 2vueh dt
2
- fh bu+ k)[isf . T e
< J e ey 2
= M2 s k)[;f: R ;
Thus,
TAR)I2 < Ihlg2l T k)[;sj‘i R 2
< IIhIILZ[II bzi“f 2+ 2o L2]

< hIILZ[%Dz + ZvD3] .
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Therefore, A is the Frechet differential of the operator Jg at u.. In a similar way, one can show that J, m

satisfies the properties in proposition 1. n

Owing to the objective functionals in (3.2) and (3.3) being non-convex, Nash’s theorem cannot be
used to prove the existence of a NE. The following theorem establishes that a NE of our game (AS) is
a solution to a specified control problem. We then demonstrate that an optimal solution exists for this
control problem.

The composite cost functional is defined as follows:

N N A
T (tp, up, ue) = J a(up, up, ue) + J 5(up, tp, ), (4.4)

and we consider the optimal control problem

A
arg min J (up, up, ue), (up Up, ;) € Q. (4.5)

Theorem 4.2. If there is a minimizer (Wp, Uy, Uc) of (4.5), then (u,, up, u.) is a NE of the game (AS).

Proof. We have that 7 (Up, Up, Ue) < 7 (up, Up, ue) for all (up, up, uc) € Q. Thus,

-;\A(L_l'p/ ﬁb/ ac) + -;\S(ap/ ab/ l’_lc) < \;\A(up/ Up, uc) + ?S(up/ Up, uc) .

Let (up, up, uc) = (Up, Uy, U) in Jg and u, = u, in J4. Then, we obtain

T aGip, iy, i) < T 4ty i), (1t up) € 1.

Likewise, we can get

N AN
JS(up/ Up, uc) < JS(upr Up, uc)/ u: € QZ .

Thus, the requirements of definition (3.10) have been satisfied.

With this preparation, we are now ready to state and prove the main results of the existence of Nash
and Stackelberg equilibria. The proofs use similar arguments given in [35-38]. |

Theorem 4.3. Let J be given as in (4.4). Then, there exists a pair (X, i) € (Hl(O, Tf))4 x Q such that X is a
solution of (2.5), and @ minimize JinQ.

Proof. We define a map A:Q — (Hl(O, Tf))4 by A(u) = x. By theorem 4.1 and lemma 4.2, we have that
A is weakly sequential continuous. Since J is bounded from below, there exist minimizing sequences
(xk, uk) € (H 1 (O, Tf))4 x Q such that A(uk) = x* where x* is the corresponding sequence of states. Since

T is coercive, and A is bounded, we have that (xk, uk) is bounded. By using Eberlein-Smulian theorem,

there are weakly convergent subsequences (uk’) and (xk’) such that
() ~ (@) € @and, (&) ~ £ € (1'(0,Ty))"
Since the compact embedding H Yo, T 1) C C C(0, Ty), the Rellich-Kondrachov theorem implies that
(x") - = e L0, 4]).

Now, we need to verify that @, and x satisfy A(i) =x. Let ¢ € H 1(O, Ty) be a test function that is

compactly supported. Then, since A is bounded and the variable state x is bounded by lemma 4.2, we
can apply the dominated convergence theorem.

T¢ T¢ p Tt f Tt
/ A@@) ¢ dt=lim [ A(u") ¢ dt=lim x1q>=f % ddt,
0 0 0

k — J0 k — oo

thus

fo(A(a) -%) ¢pdt=0VY € H(0,Ty)
0

yields A(u) = x almost everywhere. We have that T is sequentially weakly lower semi-continuous,
hence
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Ay AT I\ A
J(u,x) < hmmf](u X )=mf](u,x),
ko o Q

which yields the desired result. n

Theorem 4.4. Let J,, Jg be given as in (3.2) and (3.3). Then game (AS) has a SE (x*, up, uj, ué‘) on
(Hl(O, Tf))4 x O x O x R such that x* is a solution of (2.5), and (uy, uf, uF) minimize J 5 in Q1 x Q x Ry

Proof. For proving existence of a minimizer of Jg, given in (3.3), we can follow the same arguments
in theorem 4.3, owing to the fact that ()3 is a closed subspace of a Hilbert space and Js is coercive in
Q;, which yields a convergent subsequence (u ') of a minimizing sequence (u) for Jg. The compactness
result yields strong convergence of a subsequence (xml) in (H'(0, Tf)) such that x™ = A(uc ) Then, we
obtain the best-response R¢ curve of the signalling pathways. Once R is obtained, we can prove the
existence of SE by using the same arguments again. i

The Frechét differentiability of J,, Js gives rise to the first order necessary optimality conditions as
follows: for the minimization problem (3.2), the optimality system is given as

dL 1

Qi yL+ 2a1aLC +@C - azau,LT, L(0) = Lo

dc b]( —1C)L b2(1H0+;C)C+b3(1

1
: Ho- 5 ) b4k+b C, C(0)=Co

‘g - dy(L + C)T + dyu,T, T(0) = Ty
dM
W = - d3M + d4ub, M(O) = M, (46)
dA 1 1
a5 2c-DG-(L+C)] -y + EalaC - azau,T) - Ap[bi(a - EC)] + A3dq T,
di 1 1 1 1 byu,
d_l’2 = - 2(1’ - 1)[G - (L + C)] - /‘[1(5(110{14 + az) - /‘12( - EblL - §b2H0 - sz - Ebg, s 4 b ) + A3d1T
di;
d—f = = ru, + Lasau,L — X[ — di(L + C) + douy],
X s
Al(Tf) = O/ AZ(Tf) = 0/ 13(Tf) = 0/ /14(Tf) = O/ (47)
byC )
2T(Z — up) + 2uup + /lzk+—buc = Aydy, u—up)20,1) 20
< -rT+ Znup + lazalLT — A3do T, u — uP)L2(0, T) >0, (48)

for all (up, up) € Q1 x Q. For the minimization problem (3.3), the optimality system is given as

1
‘C% =yL+ 2a1ocLC +@C - azau, LT, L(0) = Lo
IR T DR R S | 1
s bl(oc : )L b2(2H0+ 2C)C+b3(2H0 ) b4k+bu c, C(0)=Co
dar
dt =W - d1(L + C)T + dzupT T(O) Ty
dM
W = - d3M + d4ub, M(O) = M(), (49)
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d
% =y- §1(y+ %alaC - agocupT) - §'2[b1(a - %C)] +&di T

d 1 1 1 1 bsu
% =1- §1(§alocL + a2) - 52(—5171[1 - Esz() -b,C - Ebg, - k-f—bbuc + §3d1T
d—é’—‘g’a - &[-di(L+C) + dauy)
dt = §1azauy, 3 1 2Up
% = §4d3/
&1(Tr) =0, §(Tr) =0, §(Te) =0, &4(Tr) =0, (4.10)
<2‘I/uC + bubgzlu—c_12> >0, (4.11)
(k+buo)” [ %0, 1)

for all u, € Qs. Here, ( -, - )120, 1 is the standard LZ(O, T) inner product, which is defined as follows:

T
(f, 81201 = ﬁ f(Hg(t)de.

5. Numerical schemes for solving Nash and Stackelberg equilibria

In this section, we will present the numerical schemes used to determine the NE and SE of the
game (AS). In order to address the nonlinear coupling among the strategies adopted by the players,
a relaxation scheme (e.g. [41]) is employed for the NE. The relaxation scheme is implemented in
algorithm (5.1).

Algorithm 5.1 (Nash equilibria).

1. Input: initial guess (ug, ug, ug), setoe€ (0,1),€>0,8,5,5=0
2. While (s < S5, and H(u;,”, uffl, ui”’l) = (up, uj, u3)|| > €) do

3. Compute ii, = arg minupeg1 Ja(uy, 3, uf).

4. Compute i, = arg min,, c o, | A(1p, 0}, 1)

5. Compute i, = arg miny, cq, Js(utp, uf, 1)

6. (M;Sf'l, ugtl, ustl) .= o (up, uy, ug) + (1 = 0) (i, iy, ;).
7.Setk=k+1.
8. End while.

To compute the SE, the following algorithm uses a sequential implementation of the relaxation
method. To achieve efficacy, mAbs must possess the ability to anticipate and predict the optimal
response of signalling pathways to their initial therapeutic intervention. The resolution of the
optimization problem linked to the signalling pathways engenders anticipation. By solving the
optimization problem of the mAbs using the optimal responses of signalling pathways as substitutes,
the mAbs can determine the most effective strategies to employ. Using optimal doses of Pembrolizu-
mab as strategies for mAbs will stimulate T cells to attack the signalling pathways. The mAbs will
have alternative optimal strategies, using optimal Brentuximab doses to deliver chemotherapy in case
the optimal Pembrolizumab doses are not effective enough to destroy the signalling pathways entirely
[42].
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Algorithm 5.2 (Stackelberg equilibria).
1. Input: initial guess (ug, ug, u9),set 6 € (0,1),€ >0,5,,5=0

2. While (s < Syqy and ||(ugt?, us™, usth) — (us5, uj, ug)|| > €) do

3. Compute u’fﬁl =arg minupeg1 Ja(uy, uf, uf).

4. Compute u*! = arg min, o, Js(us*, uj, uc).

5. Compute ui” = arg min,, <, ]A(uf,”, uy, usthy,

6. (ug*?, uit2, us*?) = o (ust, uit, ufth) + (1 - o) (up, uj, uf).
7.Setk=k+1.

8. End while.

Remark 5.1. The difference between the aforementioned algorithms for computing the Nash and
Stackelberg equilibria are that in the case of Nash equilibria, the three strategies (up, up, U;) are updated
simultaneously using the previous iterate values, whereas in the case of Stackelberg equilibria, u, is updated
first, followed by u. using the current value of up, followed by uy, using the current values of up, u. In

essence, one can think of the Nash algorithm as a Gauss—Jacobi iterative method while the Stackelberg
algorithm as a Gauss—Seidel iterative method.

In the algorithms mentioned above, it is necessary to select a relaxation factor, denoted as o, that
is sufficiently small to ensure convergence. The convergence of algorithm (5.1) can be proved using
analogous arguments in [41]. We provide a sketch of the proof of convergence of algorithm (5.2). For

this purpose, we define a map N:Q — (Hl(O, Tf))8 by N(u) =w. Here, w = (y1, 75,73 Va &1 &2 &5 &1)°

denotes the adjoint variables, which are the solutions to the corresponding adjoint equations (4.7)
and (4.10). By demonstrating the boundedness and Lipschitz properties of the adjoint variables using
Gronwall’s inequality, similar to lemma 4.2, we can conclude that the map A is both bounded and

Lipschitz. For the sake of clarity,
£O1 =18+ [ g9 as
<l +1 [ C i) as
< lem+ [ 149 1ds

Tt
< 1T lexp ( [ e ds)

= [4(T¢) [exp (ds(T¢ - 1)) -

The optimality systems for the minimization problems (3.2) and (3.3) are given to be
uniquely solvable, and we now consider B(u;‘,, ug, ug‘) to be the largest closed ball of Q cen-
tred at a SE (u} uf,uf) for the game (AS). We define a map A:B(u), uj, uf) —> B(uy, uj, ul)
by A(up, up, ue) = o(up, up, ue) + (1 - 0)(up, up, u), which is well defined owing to the assumption
on B(uj uf,ui). Furthermore, A is a contraction map in B(uj, uj,ui) for two reasons: (i)
B(uj, up, uf) € L*([0, Ty], R), which is a complete space, and (ii) its Lipschitz property, which is achieved
by both x and w being Lipschitz. As a result, the map A has a unique fixed point. This shows that the
algorithm (5.2) is convergent in B(u;, ug, uy ) to a SE.

Furthermore, in each iteration step of the aforementioned algorithms, the minimization problem
for each player in the game (3.4) must be solved, which involves solving the optimality systems (4.6)—
(4.8) and (4.9)—(4.11). We use the traditional forward Euler method for solving the ODE systems (4.6)
and (4.9) and their respective adjoints (4.7) and (4.10). For solving the optimality conditions (4.8) and
(4.11), we use a projected nonlinear conjugate gradient (NCG) scheme. It belongs to the category of
nonlinear optimization schemes, wherein the objective functional exhibits differentiability in relation
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to the optimization variables. The reduced functional corresponding to either of the minimization m

N
problems is denoted generically by J,, and the associated optimization variable as u. Starting with the
initial guess uy, we compute the first descent direction as

AN
do = 8ot = VuJo(uO)/
where V] o is given by (4.8) or (4.11). The search directions are then obtained recursively as
dic+1= = 8e+1+ Brd (6.1)

where g, = V}\ (uy), k=0,1, ... and the parameter §; is chosen according to the formula of Hager-Zhang
[43] given by

sosy/Jewnol/Buo BuysiqndiGaposjefos

o\T
HG 1 Iy ll2
K = Yk~ 2dy 8+ 1s (5.2)
diyx diyi

where y;, = g1~ 8 Next, a conjugate gradient descent step is used to compute the new optimization
variable iterate

U1 = Uy + 0 dy, (5.3)

where k is an index of the iteration step and oy >0 is a step length obtained using a line search

LYEOVT :LL DS uadp 20S Y

algorithm. For this line search, we use the following Armijo condition of sufficient decrease of J

N

A A
]o(uk + akdk) < ]o(uk) + 5ak<vu]o(uk)/ dk>L2/ (54)

where 0 < 6 <1/2 and the scalar product (u, v);2 represents the standard L*([0, T]) inner product for the

minimization problems (3.2) and (3.3). The gradient update step is finally combined with the following
projection step to ensure that the iterates stay in the admissible sets.

Ui+1 = PU[uk + dk], (55)
where
Py[u] = (max{0, {N, u}, ¥i=1, ..., s)

with U =0, or Q3, and N; = Z;, G; or r;, corresponding to the minimization problems in the above
algorithms,. The projected NCG scheme can be summarized in the following algorithm:
Algorithm 5.3 (Projected NCG Scheme).

1. Input: initial approx. wy. Evaluate dy = —Vufo(uo), index k =0, k = ky,y, tol.
2. While (k < kya)

3. up1 = Py [uyg + o dyl, where oy is obtained using a line-search algorithm.

4. Compute gy,1 = Vujo(”kﬂ)‘

Downloaded from https://royalsocietypublishing.org/ on 15 August 2024

5. Compute Bf'C = using (21).

6. ds1 = —8ks1 + BEC di.

7. 1f ||y — wil|L2 < tol, terminate.

8.k=k+1
9. End while

6. Numerical results

We present the numerical results of the NE and SE for the differential game
(AS). For this purpose, we choose our non-dimensionalized scaling parameters as
=102 =107, =10 qu=1, ¢s=05, gg=qs =1 and ¢, =4. With the original time interval as
[0,200] days, this transformation yields the final time T,;=100. In the following two cases, the
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Figure 2. Test case 1: plot of NE. (a): L, (b): C, (c):T, (d): M, (e):up, (): up (9): U
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Figure 3. Test case 1: plot of SE. (a): L, (0): G, (0):T, (d): M, (e):up, (A: uy (9): uc.

parameter values in the functionals J4, Jg are given as v =1.8328, Z =1.425, G =0.98039, r = 0.01. We
choose the values of the weights in the functional J4 as ¢ = 1,7 = 0.5, and the weight in the functional Jg
asv=0.5.

For the test case 1, the patient data are generated as follows: we first simulate the following reduced
ODE system for
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Figure 4. Test case 2: plot of NE. (a): L, (b): C, (c):T, (d): M, (e):up, (A): up (9): Uc.

((ii—lt’ =yL+ %alocLC +a,C - azaLlT, L(0)= Loy
1 1 1 1 1
((11_(; = b](O{ - EC)L - bz(EHO + EC)C + b3(§H0 - EC) - byC, C(O) =Co
dT _ -
W == dl(L + C)T +d,T, T(O) =Ty
dd—Atd = - d3M+ d4, M(O) = Mo,

6.1)

with the non-dimensionalized parameters values y =0.02925, a; =0.09941, a, = 0.43985, a3 = 0.06629,
b1 =0.06591, by =0.21051, b =0.13991, by =0.17899, w = 0.06721, d; = 0.02272, d,=0.08395, d3=1,
dy=0.7970 and initial conditions C(0) = 1.7, L(0) =0.18, T(0) =5, M(0) = 0. The reduced model (6.1) is
obtained by excluding treatments u,, u,, and the evolutionary resistance u, from (2.1). We have the
term w,/(k + bu.) in (2.1), where the parameters k, b are given as k = 0.1, b =5 (see [34]). We also provide
initial conditions for the remaining variables as Hy = 0.1, Ry = 0.105, « = 0.055. The non-dimensionalized

initial guess for NE is given as (u?,, ug, u?) =(0,0,0). The assumption is motivated by the fact that all
of the players are actively engaged in the game at the same time. Conversely, within the context
of the Stackelberg scenario, player A assumes the role of the leader and initiates the first action by
administering Pembrolizumab, subsequently prompting player S to respond. If this strategy fails to
effectively manage the developing resistance u,, an alternative approach involving the administration

of Brentuximab will be implemented by A. Based on this, we choose (ug, up,ud) = (0.5,0,0) as our
non-dimensionalized first guess for SE. We first solve the game (3.4) for NE and SE using (5.1) and
(5.2), respectively. The illustrating plots of the NE and SE are shown in figures 2 and 3, respectively.

Pembrolizumab and Brentuximab are administered at the MTD, and the use of Brentuximab is
repeated many times at the same amount as shown in figure 2. We also observe that u, transports
chemotherapy at high doses and the same amount multiple times. With treatment, L and C go down,
but the players play the game simultaneously, and the mAbs cannot predict how the signalling
pathways will act, so they cannot adjust their treatment strategies appropriately. This leads to the
Nash game, in which the mAbs give up control of the game to the signalling pathways. Therefore,
L and C continue to spread again because it is a consequence of the successful adaptations that the
signalling pathways have made by evolving their resistance.

As shown in figure 3, the regulation or control of L and C is achieved through the responses of the
monoclonal antibodies to the evolutionary resistance of signalling pathways. There is an imbalance in
this game that makes it impossible for the signalling pathways to predict or adapt to treatments that
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Figure 5. Test case 2: plot of SE. (a): L, (b): C, ():T, (d): M, (e):up, (f): up (9): uc.

the mAbs have not yet given. This results in the emergence of SE, where the monoclonal antibodies
take on a leadership role. The monoclonal antibodies track the strategies of the signalling pathway by
having u;, mimic the behaviour of u, decreasing u, dosage and maintaining it at a lower level if u,
increases again. After t = 10, u, exhibited a consistent or unvarying pattern, resulting in a chronic L and
C.

In the test case 2, we simulate the ODE system with the non-dimensional-
ized parameter values y =0.000815, a; =0.11022, a, = 0.45410, a3 = 0.07240, b; =0.06599, b, = 0.17558,
b3 =0.01633, by=0.1006228, w =0.07232, d;=0.03173, d, =0.05256, d3=1, d4=1.0052, k=0.1, b=5
and initial conditions Cp =17, L(0) = 0.18, T(0) =5, M(0) = 0. The initial conditions for the remaining
variables are Hy=0.8, Ry=0.5, « =0.1. Given that y denotes the growth rate of monovalent ligands
(EGF) and w denotes the rate of circulating T cells, the value of y has decreased, whereas the value
of w has increased. The chosen parameter values indicate that the patient in the test case 2 has a
strengthened immune system compared with the patient in the test case 1. The non-dimensionalized
initial guesses for NE and SE are given as (ug, ug, u?) =(0,0,0), and (ug, ug, ug) =(3,0,0), respectively. The
illustrating plots of the NE and SE are shown in figures 4 and 5, respectively.

In figure 4, It can be seen that L has strictly decreased as a result of the reason that this test
case represents a patient with a strengthened immune system compared with the previous test case.
Because of the same reason, the chemotherapy dosage and its transporter u, are lower in this case
compared with the test case 1. However, the resurgence of C has been aided by the failure to eliminate
evolutionary resistance after t = 90 owing to the lack of utilization of asymmetry in the game.

The signalling pathways L and C have decreased owing to the monoclonal antibody’s response to
their evolutionary resistance; however, the mAbs will continue to apply the most effective treatment
strategies to eliminate any remaining resistance and stop its growth once more, as we see in figure 5. u,,
activates T cells at lower levels compared with the test case 1 because this test case represents a patient
with a strengthened immune system compared with the previous test case. We observe that u;, exhibits
a comparable pattern of low concentration based on the level of cancer resistance u, at different time
points.

The results of the two cases suggest that dynamic therapy designs that explicitly account for the
evolutionary dynamics of resistance could replace the current treatment protocols that apply the drugs
at MTD to take advantage of signalling pathway asymmetries. Our computational findings imply that
the therapy of signalling pathways is analogous to a Stackelberg game, where monoclonal antibodies
influence resistance evolution and total signalling pathway load. Therefore, compared with Nash
equilibrium, Stackelberg equilibrium yields superior outcomes.
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7. Conclusions

In this paper, we proposed a new framework in which a non-cooperative evolutionary differential
game is formulated between mAbs and signalling pathways in OC. For this purpose, we employed
a novel evolutionary mathematical model to simulate the dynamics of signalling pathways, incorporat-
ing the phenomenon of resistance evolution. We then solved a differential game to obtain the NE and
SE. The relaxation scheme and a sequential version of the relaxation scheme were used to compute NE
and SE, respectively. Based on our numerical experiments, the mAbs should prioritize SE over NE in
order to improve OC patient outcomes.
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