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Abstract

A posteriori error estimates are established for a two-step dual finite element method
for singularly perturbed reaction—diffusion problems. The method can be considered
as a modified least-squares finite element method. The least-squares functional is the
basis for our residual-type a posteriori error estimators, which are shown to be reliable
and efficient with respect to the error in an energy-type norm. Moreover, guaranteed
upper bounds for the errors in the computed primary and dual variables are derived,;
these bounds are then used to drive an adaptive algorithm for our finite element method,
yielding any desired accuracy. Our theory does not require the meshes generated to
be shape-regular. Numerical experiments show the effectiveness of our a posteriori
estimators.
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1 Introduction

Consider the singularly perturbed reaction—diffusion problem
2 1 :
—¢ Au—i—zu:fm.Q, u=0 onas2, (1.1)

where 0 < ¢ < 1, b € Loo(£2) satisfies 0 < bpin < b < bpax < 00, and 2 C R”
for n = 2, 3 is a bounded polygonal domain or a smooth domain, with boundary 952.
Here &, byin and by, are constants that are independent of x € §2. Furthermore, the
ratio bmax /bmin is independent of ¢; for simplicity we assume that by /bmin = O(1).
Typical solutions of (1.1) exhibit boundary and/or interior layers and other forms of
local behavior.

See [20] and its references for an overview of numerical methods for singularly
perturbed problems. It is clearly desirable to have adaptive procedures to compute
approximate solutions of such problems.

Much work has gone into the development of reliable and efficient a posteriori
error estimators for finite element methods (FEMs) used to solve singularly perturbed
problems. For energy-type norms, Verfiirth [24] was the first to derive reliable and
efficient a posteriori error estimators, using bubble functions. Ainsworth and Babuska
[1] presented error estimators based on equilibrated residuals, under the assumption
that a local boundary value problem is solved exactly over each element, which limits
the practical application of the method. This work was extended by Ainsworth and
Vejchodsky [2, 3] to fully computable, reliable upper bounds that do not require exact
solution of a local problem. Smears and Vohralik [22] use a H (div) conforming flux
reconstruction to derive a posteriori error estimators that do not require any local sub-
mesh yet produce reliable and efficient equilibrated flux estimators for arbitrary-order
approximations; this work is based on an idea of Cheddadi et al. [6]. For maximum
norm error estimates, Demlow and Kopteva [10, 15] obtained a posteriori error estima-
tors using bounds for the Green’s function of (1.1) on shape-regular locally uniform
meshes, but in [16] are extended to piecewise linear FEMs on anisotropic meshes. See
also [9, 17, 24, 26] and their references.

All these papers deal with conforming FEMs; for nonconforming FEMs see [26]
and the literature review in its Introduction.

The estimators in the papers above are based on Galerkin FEMs. In contrast, the
estimators that we shall present here are based on a dual FEM for singularly perturbed
reaction—diffusion problems that was analysed recently in [5]. As shown in [5], the
solution of this dual FEM does not display significant numerical oscillations, unlike
the standard Galerkin methods. The method computes an approximation of the dual
variable 0 := —Vu, then the primary variable u is recovered in an efficient manner. The
algebraic system associated with the dual variable is symmetric and positive definite,
and there are well-developed solvers for such systems. This dual FEM is a competitive
alternative to standard and mixed Galerkin FEMs for problems such as (1.1), but it
should be mentioned that the dual FEM has a larger number of degrees of freedom
than the standard Galerkin method.
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Our goal in the present paper is to develop reliable and efficient residual-type a
posteriori error estimators for the dual FEM applied to (1.1) on geometrically confor-
mal meshes [14, Section 1.3.3] (for such meshes, roughly speaking, hanging nodes are
forbidden but the mesh is not required to be shape-regular, i.e., it can be anisotropic).
The dual FEM can be regarded as a modified least-squares method, and a notable
advantage of least-squares methods is that the least-squares functional can be used as
a built-in residual-type a posteriori error estimator. We shall exploit this property.

Standard notation for Sobolev spaces will be used, e.g., H(div) = {1t € L‘Zl(.Q) :
V-1 € Ly(82)}.Fori > 0,let || - ||; denote the Wé(.@) norm. Thus, || - ||o denotes the
L>(£2) norm.

Define the norm ||| (-, -)||| by

iz, wII* = lleb V- zl§ + I7l§ + leVollg
+lvl3 Y(z,v) € H(div) x H} (£2). (1.2)
This norm is an extension of the standard energy-type norm v +— (||5Vv||% + ||v||%)1/ 2.
Define a functional n > 0 on H (div) x HO1 (£2) by

n(t,v) = lebV -t + v+ [t +eVul§ Y(zr,v) € H(div) x Hj(£2). (1.3)

We shall say that a quantity is guaranteed if it can be evaluated using the computed
numerical solution and does not contain any unknown constants.

The dual FEM computes a solution (o, uj,) € H(div) x L, (£2) that approximates
(0, u). One cannot apply the least-squares functional (1.3) and the norm |||(-, -)||| to
this computed solution because in general uy lies only in L, (2), not in H(} (£2). A
workaround is to instead use .#“Lu;, € HO1 (£2), where #€L denotes the Clément
interpolation operator (see [14, Section 1.6.1] for its definition and properties). Thus
(1.3) is used to define the following guaranteed residual-type error estimator:

2
n2 (8(0 —op), U — JCLuh) = Hbf —&2bV oy — Iy, Ho + &2 oy

2
+v.sCly, ‘0, (14)

where 0 = —Vu and (1.1) were used to simplify the right-hand side. This fully-
computable estimator is reliable and efficient, because Theorem 3.1 shows that

l712 <s(a —op),u— ,ﬂCLuh) < H‘(e(a —op),u— ,ﬂCLuh)m2

2
< <3 max{1l, bmax}

2) n? - — 7Ly,
ey )n (ec —on).u )

Remark 1.1 In (1.4) note that the flux approximation error & — o, is scaled by ¢. In
Sect.3, we will establish that for all (z, v) the functional n%(z, v) [defined in (1.3)]
is equivalent to the energy-type norm |||(z, v)|||2 that was defined in (1.2). Hence
)72(8((7 —op),u—I%Lu,)is equivalent to ||52bV - (o0 — ah)||(2) + 82||0’ — ahII% +
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eIV — I Lup) |3+ llu — FCLuy 3. As o = —Vu, we expect that &2[|o — 0|3
and &2||V(u — .7 Luy) ||% are of the same order of magnitude, i.e., these terms in our
estimators are balanced.

We also derive the following guaranteed upper bounds for the quantities of interest
that can be used as a stopping criterion to yield any desired accuracy in an adaptive
algorithm. For the flux variable, in Theorem 4.1 we obtain

2
le@ —anlF+ [ VBV - @ —an]

. 1
< min
veH] (2) Dmin

2 o2 2 2
bf—ebV-ay v||0+8||oh+VvO,

while for the primary approximation, in Theorem 4.2 we show that

le —upllo < I16f = PaBf)llg + €2 1BV -0, — Po(6Y - o)l

b
+ min ( max
veH! (2) \ bmin

2 2 5 bmax 2\'2
bf—st-ah—vHO+8 " Ny + Vol )

Taking v = . CLy, ; in these two estimates, our numerical examples show that both
estimates provide upper bounds that are close to the actual errors. Note that they do
not contain any unknown constants, so for any particular choice of v € H(} (£2) they
can in principle be evaluated very accurately.

Remark 1.2 Parts of our analysis bear a superficial resemblance to the well-known
Prager-Synge identity [18], which has been used (see, e.g., [8, 19, 25] and their ref-
erences) to develop a posteriori error estimates for elliptic problems. This approach
requires the underlying numerical method to be locally conservative, which is true for
example of mixed finite element methods; it then delivers a posteriori error estimates
in which ||o';, + V|| plays a crucial role. This term appears frequently in the analysis
of methods that are related to a least-squares approach. It plays a major role in our
analysis (as we saw above), but our numerical method is not locally conservative, and
to derive our results via the Prager-Synge identity takes more effort than the relatively
simple and straightforward structure of much of our analysis.

The paper is organised as follows. Section?2 describes the setting and formulation
of the dual FEM from [5], together with some basic error estimates. In Sect.3, a
posteriori error estimates are derived. Then sharp upper bounds for the primary and
flux approximation errors are proved in Sect. 4. Numerical examples that illustrate the
sharpness and effectiveness of our results are provided in Sect. 5.

2 The dual FEM and a priori error bounds

In this section we describe the dual FEM of [5] and state the main error bounds derived
in [5].
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2.1 Dual formulation of (1.1)

The dual formulation of (1.1) is standard and can be found for example in [13]. We
now outline this theory.

The minimisation problem corresponding to (1.1) is: find u € HOl (£2) such that
J(u) = infveH(} @) J (v), where J (v) is the energy functional defined by

) =3 <82||Vv||% + Hb—‘/%Hz) ~ (f.0).

where (-, -) denotes the L,(£2) inner product. The dual problem of this minimisation
problem is: find o € H (div) such that J*(0) = supg ¢ g div) J/ *(7), where

F@ =3 <e2||r||% by - f)ﬂz) .

Then J(u) = J*(o) and 0 = —Vu.
The variational problem of the dual problem is: find ¢ € H (div) such that

B(o,t) = f(r) VYVt € H(div), 2.1
where B(o, 7) := sz(bV -o0,V-1)+ (0, t)and f(t) ;= (bf,V-1).

2.2 Finite element spaces

To approximate the solution of (2.1), let .7, be a partition of 2 into triangles or
simplices using a geometrically conformal mesh [14, Section 1.3.3]. Let hx be the
diameter of element K € .7, and let & = maxgcg, hg. For each element K, let
P;(K) be the space of polynomials of degree at most j defined on K.

To solve (2.1) numerically, we use a mixed finite element method. To approximate
the flux o, choose a finite element space V;, C H (div); for some integer k > 0, one
could use the Raviart-Thomas (RT) element of order k or the Brezzi-Douglas-Marini
(BDM) element of order k + 1 (see [4] for details). Then to approximate u, choose
a standard FEM space Qj, C L»($2) with Q|x 2 Pj(K) for each K € .7, where
Jj = k for the RT elements and j = k + 1 for the BDM elements.

Let P : L2(£2) — Qp be the local L; projection defined by

(v —Pnrv,qn) =0 Vgu € Q. (2.2)

From [4, Section II1.3.4] there exists an interpolant I7T;, : H(div) — V), satisfying

the commuting diagram property V- I1,T = P,V -t forall T € H(div). This property
and (2.2) yield

V-(r—Ipt), vp)=(V-T—P,V-1,05) =0 Vo € Oy 2.3)
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Remark 2.1 Our analysis in this paper can be extended to all mixed-type finite element
spaces that possess the above properties. In fact, the development of our a posteriori
error estimators does not require the commuting diagram property. However, it is
required for a priori error estimates for the dual finite element methods.

We shall also use the standard finite element space of globally-continuous piecewise
polynomial of degreer,i.e., S, = {v € HO1 (2) : v e P.(T)VT € ;,}, whichenjoys
the approximation property ||u — uyll; < Ch" 1= |lu|ly41 for i = 0, 1, where u; is
the Scott-Zhang interpolant [21] of u and C is some fixed constant. Here one takes
r = k + 1 for the RT elements and » = k + 2 for the BDM elements.

2.3 The dual FEM: a two-step method

Here we present the numerical method of [5] for approximating the true solution
(0,u) € H(div) x Hj () of (2.1).

Step 1: Compute the dual variable Define an approximate solution o, € Vj for
o = —Vuin (2.1) by

Bop,tpn) =B f,V-1)) YT € V) 2.4)

Step 2: Recover the primary variable The primary approximation is then recovered
by a simple local L, projection:

w, = Py (b (f _ 2. ah)) € 0n 2.5)

2.4 A priori error estimates

We now state a priori error estimates for the numerical method defined in (2.4) and
(2.5). Note that they do not contain any unknown constants.

Theorem 2.1 [5, Theorem 4.1] Let o and o j, be the solutions of (2.1) and (2.4) respec-
tively. Then

12
(I = ol + 21612V - @ — o))

. 1/2
= min (lo =4l + 2162V - @ = T IF)

ThreVy

Theorem 2.2 [5, Theorem 4.4] Let u and uy, be the solutions of (1.1) and (2.5) respec-
tively. Then

] 12
lu —upllo < llu — Prullo + &v/bmax _min (||a —tul3 + 2612V - (o - mug) )
h h

Remark 2.2 The quantity bpn,x will appear several times in our analysis. This is
natural—one cannot allow b to be unbounded. If one takes the formal limit b — o0
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in (1.1), this produces the problem —s>Au = f with u = 0 on 952 which has
extremely poor stability properties; for instance in 1D with £2 = (0, 1) and f = 1,
the solution is u(x) = x(1 — x)/(282) which is unbounded as ¢ — 0.

3 Reliability and efficiency of the a posteriori error estimator (1.4)

First, we prove that the least-squares functional defined in (1.3) is equivalent to the
energy-type norm defined in (1.2) — without any unknown constants appearing in the
estimates. This result will immediately imply the reliability and efficiency of our error
estimator (1.4).

Lemma 3.1 (Reliability and efficiency of n(-, -)) Let (z,v) € H(div) x HO1 (£2) be
arbitrary. Then one has

1
iz, v) < Iz, vII* <

(3 max{l, bmax}
2

2
min{1, bumin} +2) n-(T,v), 3.1

where ||(t, v)||| and n(T, v) were defined in (1.2) and (1.4) respectively.
Furthermore, in the special case b = 1 one has n2(1', v) = ||I(z, v)|||2.
Proof Using the definition of 1 and the Cauchy-Schwarz inequality, we get
n*(x,v) = bV - T+ v+ |t + V|
=(EbV-t4+v,ebV-T+v)+ (T +eVv, T+ VD)
=(EbV-1,ebV-1)+ (V,V)+ (T,7) + (¢VV, VD)
+2(ebV -1,v)+2(t,eVV) (3.2)

< leb V- Tl§+ vl + Tl + lleVollg +2lle 5V - zlollvllo + 2lizllolle Vil

<2|li(z, v)II%,

using 2cd < ¢* + d? twice; the first inequality in (3.1) is now proved.
To establish the reliability of 7, i.e., the second inequality in (3.1), note first that

1613 = g+ wllo + I = vllo)* =2 (16 + VI3 + 1V13) Yo, v € La(82).
Appealing to the definition of |||(z, v)||| and applying the above inequality, we obtain

ez, > =llebV-zIF + Izl + leVoll + vlig

<lebV-TI§+ITl}
) (||r +eVol2+ T2+ [ebV - T+ v|2 + leb V- r||5)

=3 (||st T+ ||r||3) +202(z, v)

< 3max{l, byay) (He«/EV - sz n ||r||%> 202z, v). (3.3)
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Using integration by parts, some Cauchy-Schwarz inequalities, and the inequality
cd < (62 + d2)/2, one sees that

2
Hs«/EV . THO + ||‘t||% =(@bV-1,eV- 1)+ (1,7)

=(EbV-t4+v,eV-1)+(T+eV, 1)
<llebV -z +vlplleV - Tllo+ T +eVulolitlo

lsb V-7 +vllolevd V- llo + I + & Vololizll

bmin

1 /1 1 2
=5 (5 Neb VT o+l +evold)+ 5 ([evBvee| +iei3).
2 \ bmin 2 0

Hence

1

2 1
|9z +11E < —1ebY - 7 + vl + liT +£V0I] = ———r(z. ).

in{1, bmin}

min
Substituting this inequality into (3.3) yields

max{1, bpax}
min{1, bmin}

ez, vl < (3 +2) (x. ).

This completes the proof of (3.1).
In the special case where b = 1, observe that 2(¢ bV - 7,v) + 2(7,eVv) = 0 in
(3.2), and one then obtains 172(17, v) = |lI(T, v)|||2. m]

Lemma 3.1 implies immediately the following reliability and efficiency result for
the error estimator (1.4).

Theorem 3.1 Let u be the solution of (1.1), with @ = —Vu the solution of (2.1). Let
(on, up) be the solution computed by the dual FEM of Sect.2.3. Then

1 2

7772 (8((7 —op),u— ﬂCLuh) < H‘(a(a —op),u— /CLuh)’”

2
< < max{1l, bmax}

2) 2 _ _ gCL, )
min{1 o] | )" (8(" o), u—S "”)

Furthermore, in the special case b = 1 one has
H‘(s(a —on)u— J/CLuh)m = (8(0 —op) U — J/CLuh) . (34

Proof Chose T = ¢(0 — o) and v = u — .# Luy, in Lemma 3.1. O

Remark 3.1 We use the Clément interpolant .# Ly, since it lies in HO1 (£2), it can be
computed efficiently from uy,, and it yields excellent numerical results in our numerical
experiments (see Sect. 5). But other choices are also possible, such as the Scott-Zhang
interpolant [21].
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Remark 3.2 For each T € .7, define a local analogue of (1.3):
np(t,v) = llebV T +vl§ + T+ eVl Y(r,v) € H(div) x Hy(£2),

where || - |lo,7 is the L2(7) norm. Then the corresponding local a posteriori error
estimator nr (s(o — o), u — .# “Luy,) satisfies the following local efficiency bound:

n% (8(0‘ —op),u— JCLuh)
= HebV (e(o —op) +u— 7Ly, H;T + Hs(a —op) eV — ]CL"")H;T
=2(llebV - (e —an)lF 7 +lle@ —an)IF 7

2 2
+ HSV(M N jCLuh)Ho,T + Hu B JCLuh Ho,T )

by virtue of a triangle inequality.

4 Guaranteed upper bounds for errors in the primary and dual
variables

In this section we shall derive guaranteed upper bounds for the errors in the computed
approximations of the dual and primary variables.

Theorem 3.1 already implies crude a posteriori upper bounds for the errors in the
computed approximations of the dual and primary variables. We shall improve these
upper bounds by considering separately the dual and primary approximations.

4.1 Upper bound for the dual variable error
For the energy-type norm for the error of the dual variables, we show that the error is

bounded by a minimum taken over all v € H'(£2). First, define a norm ||-|| 4 on the
scaled dual variable error (6 — aj,) by

llee — a3 = lle@ — ol + 162 VbV - (6 — an)li3. (4.1

Theorem 4.1 Let u be the solution of (1.1), with @ = —Vu the solution of (2.1). Let
(on, up) be the solution computed by the dual FEM of Sect.2.3. Then

. 1
lle(e —op)lI3 < min ( Ib f —e*bV -ap —vl|§ +&llo) + vUn%) :
veH) (2) \ Omin

Proof Let v € HOl (£2) be arbitrary. Using integration by parts, 0 = —Vu and (1.1),
one gets

o —onld+ e VBV -© —op]
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:(a—ah,a—oh)+(82bV-(a—ah),V-(a—ah))
:(a—ah—i-V(u—u)),a—ah)+(82bv-(U—ﬂh)+u—v,V-(a—ah)>

:(—(ah+Vv),0—0/1)-%-(bf—szbv-ah—v,v-(a—oh))

<llop+ Vvlollo —opnlo+

ﬁ bffszbv-ah 7vH0H8«/;V~(afah)Ho.

Applying the inequality cd < (c? 4+ d*)/2 to each product on the right-hand side,
then multiplying both sides by 2, we obtain the desired result since v € H& (£2) is
arbitrary. O

Now choose v = .#CLy,, € Sh.r (for some r) in Theorem 4.1; this yields immedi-
ately the following guaranteed upper bound for the error in the computed flux.

Corollary 4.1 One has

lle(e —ap)lly

1 1/2
< (b b f — &bV o — I Lupll3 + &2 |lon + VJCLuhH%) )

'min

Remark 4.1 The reliability estimate of Corollary 4.1 is better than the bound of The-
orem 3.1 because it has a smaller constant factor. Consider for example b = 2; then
Corollary 4.1 gives

1 ) N 1/2
le(e —anlo < (5 |2/ =262V -0 — J%hHO +62 ou+vrCtu HO) ,

while Theorem 3.1 yields

2
’o + &2 ”ah + vy,

le(o —apllo < 2v2 <H2f — 262V . g) — 7Ly,

o\ 1/2
0) ’
4.2 Upper bound for the primary variable error

To derive an upper bound for the primary variable error ||u — uy||o, start from the
following identity:

u—up=>bf—P,bf)—e*bV-6—Pyu(bV-a}))

=bf—Pybf)—ebV (6 —op)—e bV -0 —Py(bV-a3)). (4.2)

Note that the first and third terms on the right-hand side can be evaluated exactly. For
the second term, one has the following estimate.

Lemma 4.1 Let u be the solution of (1.1), with 0 = —Vu the solution of (2.1). Let
(on, up) be the solution computed by the dual FEM of Sect.2.3. Then
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eXlb V(e —an)lo

Dimax Diax 172
< min ( Ibf —&*bV o) —v||f + &% == ||oh+Vv||0> }
veH(}(Q) bmm

Proof Clearly
bV - (6 —a)llo < (e@) ¢ H«/Zv (o — ah)HO. (4.3)

Letv € HO1 (£2) be arbitrary. Using integration by parts, ¢ = —Vu and (1.1), and
Cauchy-Schwarz inequalities, we obtain

Su—-

- (82bV @ —0p),V (o —ah)>

= (82bV-(6—ah)+u—v,V~(a—Gh))—f-(V(u—v), o —op)
= (V- @ —on+u—v.V-(@—0n)

+ (V@ —v), 0 —ap+ Vi —v) — [V —v)|}

% (bf—ezbv.ah —v) 0 H«/Zv-(a _"h)Ho

F V@ —vllo o + Vollg — [V — v) |2

2 52 2 1
bf — &2V o) — UHO +5 HJEV (o — ah)HO + 7 llow + VoIl

1
<
= 262 bin

where we also used Young’s inequality for products in the forms cd < ¢?/(2¢2) +
€2d*/2 and c¢d < ¢* + d*/4. Hence

2 1
H«/_V (a—ah)H bf—esz-ah—v”o—i-illdh—i-Vvll(Z).

& 2b min
Substituting this bound into (4.3) yields the result of the lemma. O
Itis now easy to prove the following guaranteed upper bound for the error || u—up ||o-

Theorem 4.2 Let u be the solution of (1.1), with 6 = —Vu the solution of (2.1). Let
(on, up) be the solution computed by the dual FEM of Sect.2.3. Then

Il —upllo < I16f — Pabf)llg + &2 1BV -0 — Po(®dY o)l

b
+ min ( max
veH! (2) \ bmin

2 bmax

2
bf —&2bV - a, —UHO-l—S

1/2
lon + Vvllo) .
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Proof Combine (4.2) and Lemma 4.1. O

Corollary 4.2 One has

lu —unllo < 1bf — Pobf)llg+ €216V -0 — Po(bV -an)llo

bmax 2 CL 2 2 bmax CL 2 12
+ ’bf—ebV-ah—J uh’ +&°— |op+ VI uh” .
bmin 0 2 0
Proof Choose v = .#“Ly;, in Theorem 4.2. O

4.3 A guaranteed energy-norm a posteriori bound foru — .7 Lu,

Define the energy-type norm
o\ 1/2
lolll, := <||v||(2) e ”\/ZVUHO> Yo e HL(Q). (4.4)

The recovered solution .# Ly, can of course be used as a computable approxi-
mation for the primary variable u; in fact, our numerical experiments indicate that
|||u — 7Ly, |He is smaller than |lu — uj||o when the mesh is sufficiently refined.
Thus in the current section we shall derive a guaranteed a posteriori upper bound for
llu = L.

In fact, our theory here is very general: it can be applied to solutions computed by
other FEMs as well as the solution computed by the dual FEM of Sect.2.3. We begin
with the following result.

Theorem 4.3 Let u be the solution of (1.1), with 6 = —Vu the solution of (2.1). Let
DRS Hé (82) be arbitrary. Then

min

b
2 . max
lle —vlll; <  min
TeH(div) \ Dmin

> 2 [ bmax :
bf—st-r—v”O—i—s Iz + Vol ) .

Proof Fix v € HOl (£2). Let T € H(div) be arbitrary. Using integration by parts,
Cauchy-Schwarz inequalities, 0 = —Vu and (1.1), we have

2
| — UII% + &2 H«/BV(M — v)H0
< (u—v,u— )+ bmaxe> (V(u —v), V(u — v))
=W —v,u—0) 4 bmaxe? (6 — T+ V@ —v), V(u — v))

+ bmax (szbv (0 —1), %(u - v))

1
Sbmax(82bv'(a_7)+u_v»z(u_v))
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+ bmaxe> (6 — T+ V(u — v), V(u — v))

bm: b
= b= bV 70| =)l + e T+ Volly [V V@ - )
bmin 0 min
2 b 2
<= < max ’bf—82bV'T—UH ) +82( max ||‘[+VU||O>
2 0 bmin

b
<I|u—v||o+8 vam-w”)

where the inequality cd < (c? 4+ d?)/2 was used twice in the final step. After solving

2
o the result follows since T € H (div) was arbitrary.
O

for |ju — vll(%—f-ez ‘

We can now give a guaranteed a posteriori upper bound for |H u— 9Ly, |||e

Corollary 4.3 Let (o, up) be the solution computed by the dual FEM of Sect.2.3. Let
Iy, € HO1 (82) be the recovered approximation of u. Then

2
u— 5Ly,

.
< (bma" bf—ebv. ah—fCLuhH ) 2( bmax ) +vyCLuhH )2
a bmln \/bmln .

Proof Choose v = .#“Ly;, and T = o, in Theorem 4.3. O

Remark 4.2 Theorem 4.3 also gives a guaranteed upper bound for the error |H
where uf € HO1 (£2) is the solution computed by the standard Galerkin FEM when
solving (1.1). One simply chooses v = uf in Theorem 4.3, obtaining

2 b
< min fmax
e~ teH(div) \ bmin

e =

2 b
bf—ssz-r—u}?"()—i—sz(

bmin

5 Numerical examples

In this section, we present numerical examples confirming our theoretical results
and demonstrating the efficiency and accuracy of our a posteriori error estima-
tors/indicators for the model problem (1.1).

The approximation space Vj, for the flux variables is taken to be RTp, the lowest-
order Raviart-Thomas space, and we use piecewise constants to approximate the
primary variable. The space S;, 1 of globally continuous piecewise linears is used
for the recovery .# €Luy, of the primary variable in the error estimators and upper
bounds. Integrals are evaluated by means of the 13-point quadrature rule from [23,
p.184].
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Fig.1 Initial meshes

5.1 Examples with shape-regular meshes

We consider the problem (1.1) on 2 = (0, 1)2. The initial meshes in Sect.5.1 are
generated by the MATLAB function “initmesh.m" and displayed in Fig. I.

The a posteriori error indicator defined in (1.4) will be tested. To compute . CLup,
we use the MATLAB function “recoverPO2P1.m" from iFEM [7]. For mesh refine-
ment, Dorfler’s marking strategy [11] is used with a bulk parameter 0.7, i.e., our
algorithm selects a subset . of .7}, that satisfies (0.7)n*> < > ;. , n%, where nr
was defined in Remark 3.2, then the MATLAB function “refinemesh.m” is used to
refine the current mesh by dividing each specified triangle into four triangles of the
same shape.

Define an effectivity index by

Eoindex — (e —0pn), u— Uh)|||‘
n(e(o —op),u—up)

Let U(lle(e — on)llg). U(llu —unllo) and U(|[|u — 7L (up)]||,) denote the right-
hand sides of Corollaries 4.1, 4.2, and 4.3 respectively. These quantities will be upper
bounds for [[le(a — 0'4)ll. lu— unllo. and |[|u — 7L up)|||,, where llle(a — o) llly
and |[|u — # L (up)|||, are defined in (4.1) and (4.4).

Inthe case b = 1, U([le(a — o)lll4) is the same as U([||lu — 7L up) || ).

Example 5.1 We consider (1.1) on £2 = (0, 1)? with true solution

Tx e—X/e _ pl/e e V/E _ pl/e
nn ) = (“’S (3)- 1_——1/> (1 T 1_——1/)

for b = 1 and b(x,y) = 2 + sin(xy), and f chosen to satisfy (1.1) in each case.
This solution clearly exhibits boundary layers along the sides x = 0 and y = 0 of £2.
(For greater clarity in Fig. 2 we have chosen an example without layers along the sides
x = l and y = 1, but this does not make the problem easier to solve.) Our a posteriori
error indicator locates these layers and refines the mesh in these regions, as shown in
Fig.2.
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Fig.2 Meshes generated for
Example 5.1 with ¢ = 0.01. Top:
b =1, DoF = 70737; Bottom:
b =2 +sin(xy), DoF = 71403

Example 5.2 Consider (1.1) with domain the unit disk 2 = {(x, y) € R? : x> + y? <
1} and true solution

1 1 3
u(x, y) = tanh <— <x2 + 3?2 — —)) — tanh (—) )
£ 4 4e

This solution has an interior layer along the circle r = /x2 + y2 = 1/2. The mesh
generated using our a posteriori error indicator (1.4) locates this interior layer and
refines the mesh in its neighborhood; see Fig. 3.

In our numerical experiments the effectivity index is 1 when b = 1 (as predicted in
(3.4)) andis close to 1 for b(x, y) = 2+sin(xy). This desirable behavior demonstrates
the high quality of our error indicator. Furthermore, the bounds of Corollary 4.1 and 4.2
provide accurate upper bounds for the errors in the approximations computed for the
flux and primary variables; see Tables 1, 2, 3 and 4
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Fig.3 Meshes generated for
Example 5.2. Top ¢ = 0.01,
DoF = 84781; Bottom:

& =0.001, DoF = 105832

5.2 Example with anisotropic meshes

The shape-regular meshes of Sect.5.1 are not the best way to implement an adaptive
procedure for problems with boundary layers: long thin anisotropic mesh elements
require fewer degrees of freedom to achieve the same accuracy as shape-regular
meshes. In a future paper built around numerical experiments we will investigate
adaptive procedures that generate anisotropic meshes with mesh elements aligned to
the layers in the solution; for the moment, we present a single example to test our error
estimators on anisotropic meshes that are specified a priori.

Example 5.3 Consider again Example 5.1 with ¢ = 0.0001 and b = 1.

To solve Example 5.3 numerically, we use the anisotropic meshes of Duran and
Lombardi [12]. That is, given a user-chosen parameter 2 > 0, partition the interval
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Fig.4 Anisotropic mesh with
h=1/2

[0, 1] by the mesh {xi}i"io, where

xo =0,

x; =ihe forl§i<}ll+l,
Xi+1 = Xi + hx; fOf%—i—]SiSM—Z,
xy = 1;

here M issuchthatxy; 1 < landxp;_1+hxy—1 > 1.(Ifthefinalinterval [xp;_1, xps]
is too small compared with the previous interval [xj;—2, xp7—1], then remove xp7_1.)
Define y; = x; fori =0, 1, ..., M. Then draw horizontal and vertical lines through
the mesh points {(x;, y;) : i, j =0, 1, ..., M} to partition 2 = (0, l)2 into M2 mesh
rectangles. Bisect each mesh rectangle into two triangles by connecting its lower left
and upper right corners. Figure 4 shows the mesh obtained when & = 1/2; itis clearly
highly anisotropic.

In our experiments we took & = 271,272 ... 273 The results are presented in
Table 5. The first row of the table shows the maximum mesh aspect ratio for each value
of i, to emphasise the anisotropic nature of the mesh. Unlike our examples in Sect. 5.1,
the construction of the mesh is not driven by the a posteriori error indicators, so it is
unreasonable to expect tight agreement between the actual errors and their computed
upper bounds. Nevertheless we find that our error indicators perform reasonably well.
The upper bound for ||u —uy || given by U(|lu — uy,||) in Corollary 4.2 —i.e., choosing
v = #“Luy, in Theorem 4.2 — is however less accurate than in our shape-regular
examples. By choosing instead v = u ,’f in Theorem 4.2, where u ,If € Sp,1 is defined
by

(Vuf, Vo) = (—op, Vup) You € Spi,

we obtain more accurate upper bounds. Thus, we replace .# “Lu, by u f in the numer-
ical results for this example. As our theory predicts, the E-index is 1 because b = 1.

@ Springer



BIT Numerical Mathematics (2024) 64:7

7 Page22o0f24

2

Un—n
801 L0'T 60'T orT peT W‘E
(| «,T:ES
0L20°0 18€0°0 7€50°0 $SL0 $66°0 ( ': i — i:vo
2

95200 1L£0°0 $250°0 6¥L0°0 06600 i — =':

. . . . . Pl(.0—0)sl|
81°¢ 8¢ 86°S 8¢S YO'T1 Pl (To—o)slhn
0L20°0 18£0°0 7€50°0 $SL°0 $66°0 (Pll(1o — 0)3lhn
68000 L8000 6800°0 06000 06000 Pli(to — o)3|

) . . . ) Ol Yn—n||
70t 09°¢ sse 68T 06C ©lT=nha
61€0°0 LOSO0 LTLOO €S11°0 01S1°0 O)n — nlHn
6L00°0 17100 S020°0 S0+0°0 02500 Ofltn — n||
000°T 0000°T 0000'T 0000'T 0000°T Xopur-g
4097 P+O9L'T P+G0°T €+906'6 €+906°S onex adse ey

<

(%7 = ) svee6te (¥ = y) 1008 % = 1) 09€7T (£ =y co19 (L =1y gze1 sqod

I

I

T =

1000°0 = 3 YIM | = g JOJ IOIABYQq 20Ua3I0AU0)) :¢'C ojdwexy ¢ ajqel

pringer

As



BIT Numerical Mathematics (2024) 64:7 Page230f24 7

Furthermore, b = 1 implies that

R
u—uh

U(lle(e —anlly) =U (

)

is the bound provided by Theorem 4.1 and 4.3, which as we see from Table 5 is a
fairly sharp upper bound for the errors in our approximations of the flux and primary
variables.
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