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Abstract: Flux Balance Analysis (FBA) is a constraint-based method that is commonly used to guide 

metabolites through restricting pathways that often involve conditions such as anaplerotic cycles like 

Calvin, reversible or irreversible reactions, and nodes where metabolic pathways branch. The method 

can identify the best conditions for one course but fails when dealing with the pathways of multiple 

metabolites of interest. Recent studies on metabolism consider it more natural to optimize several 

metabolites simultaneously rather than just one; moreover, they point out the use of metaheuristics 

as an attractive alternative that extends FBA to tackle multiple objectives. However, the literature 

also warns that the use of such techniques must not be wild. Instead, it must be subject to careful 

fine-tuning and selection processes to achieve the desired results. This work analyses the impact 

on the quality of the pathways built using the NSGAII and MOEA/D algorithms and several novel 

optimization models; it conducts a study on two case studies, the pigment biosynthesis and the 

node in glutamate metabolism of the microalgae Chlorella vulgaris, under three culture conditions 

(autotrophic, heterotrophic, and mixotrophic) while optimizing for three metabolic intermediaries as 

independent objective functions simultaneously. The results show varying performances between 

NSGAII and MOEA/D, demonstrating that the selection of an optimization model can greatly affect 

predicted phenotypes. 
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1. Introduction 

Microalgae are photosynthetic cellular microorganisms that have been known since 
the beginning of time. They can be grown either in wastewater or in clean or salty waters; 

some strains, such as Dunaliella salina, can be grown in salty waters, and other strains, such 

as Chlorella vulgaris, are grown in fresh water and can survive high growing temperatures. 

Microalgae need a carbon source to carry out photosynthesis and produce their biomass. 
Carbon can be obtained as CO2 from polluting sources, and they transform it into oxygen, 
circularly helping to reduce global warming [1]. 

Microalgae are large producers of biomass; inside there are metabolites such as lipids 
that in the future can be used as biofuels, amino acids and pigments that are currently 
used in the pharmaceutical and cosmetic industries, and proteins that are used as food 
supplements [2,3]. In addition, microalgae present biotechnological applications as biore- 
mediation sources of water quality and have been used as alternatives for the removal of 

heavy metals due to some strains, such as Chlorella vulgaris and Scenedesmus obliquos, being 

able to absorb heavy metals such as Cadmium (Cd) and Lead (Pb) [4,5]. 
All the characteristics above make the study of the metabolism of microalgae attractive 

for metabolic engineering. This discipline focuses on the study of the topography of the 
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network, the regulation of a metabolic pathway, the identification of bottlenecks, the deter- 

mination of metabolic fluxes, and the elimination of side reactions by gene deletion [6]. 

In particular, various metabolic engineering techniques have been used to analyze 

pathways and optimize fluxes to manipulate metabolism and modify the fluxes towards 

a desired product and thus be able to add  commercial  value.  However,  metabolic 

fluxes cannot be measured in vivo; for this reason, modeling approaches are required 

to measure or predict them [7]. Among them are single-objective constraint-based 

approaches, such as FBA (Flux Balance Analysis), exact mathematical multi-objective, 

and heuristic-based approaches. 

FBA is one of the most used techniques for studying cellular metabolism is the single- 

objective FBA approach based on constraints. This approach is widely used in the analysis 

of the fluxes of metabolic networks since it can be used even if kinetic data are not available, 

but it requires information on the stoichiometric data of the reactions present in the network, 

growth requirements, and parameter-specific measurement methods of the biological 

system, in particular the reconstruction of the metabolic network for the genome scale [8] 

that include all known reactions that are present in the studied organisms and the genes 

that encode each enzyme [9]. 

Cellular metabolism in metabolic modeling is described as the set of chemical reactions 
present in an organism. This is mathematically represented by a stoichiometric matrix,  

S, of size (m n), where n are the reactions and m are the metabolites involved in each 

reaction, assigning a negative coefficient if it represents a reactant and a positive coefficient 
if it is a product, and a coefficient of zero means that the metabolite is not present in the 
reaction; each reaction will have a lower bound and an upper bound limiting the space of 
solutions or the maximum and minimum value of the allowed flux. The FBA seeks the 
linear optimization of an objective function; this function represents the linear combination 
of the fluxes that generally represents biomass production [10]. 

FBA    max F(v) = vbiomass 
Subject to 

S · v = 0 

LBj ≤ vj ≤ UBj, ∀j ∈ {1, . . . , n} 

(1) 

Equation (1) defines the associated FBA linear optimization problem [11], where v is 

the flux vector across the reactions. The stoichiometric matrix Sm×n represents the metabolic 

network, where there exists a metabolite per row and a reaction per column. The value 
of the cell Sij is the stoichiometric coefficient of the metabolite i involved in reaction j [9], 

and LBj and UBj are the lower and upper bounds for the fluxes allowed in the metabolic 

system. The steady-state assumption is established by Sv = 0 [12]. 

Its versatility has meant that FBA has been widely used in different organisms, in- 
cluding microalgae, bacteria, consortia of microorganisms, etc. An example of this is the 

prediction of cell growth of the cyanobacteria Synechocystis in [13]; it has also been used in 

the degradation of glucose by anaerobic digestion to predict the distribution of metabolites 
and reveal the transformation of carbon in order to evaluate the conversion of ethanol,  
propionic acid, and butyric acid into acetic acid [14]. FBA has served as a study in medicine, 
where flux activities were calculated to study differences in metabolic pathways, comparing 
breast cancer subtypes [15]. 

The FBA methodology has been used to evaluate metabolic fluxes in different strains 
of microalgae using three heterotrophic and mixotrophic autotrophic growth conditions. 

The first microalgae to use FBA was the microalgae Chlamydomonas reinhardtii [16], with 

which the first metabolic map was obtained. Later, the microalga Chlorella vulgaris was 

utilized for the study of lipid production [17]; both had biomass production as their sole 
objective function. 

Although this approach has been widely used, the distribution of metabolites through 

the pathways is conditioned by the metabolites present in the objective function equa- 

tion and in the experimental parameters; blocking some metabolic pathways results in 
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a distribution of fluxes with zero values. Moreover, FBA has been widely used in the search 

for maximizing the production of compounds of interest, but cellular metabolism in its nat- 

ural state does not guide metabolic pathways toward the production of a particular metabo- 

lite. In the search for a better understanding of microalgae metabolism, new optimization 

techniques have emerged, such as metaheuristics for multi-objective optimization [18]. 

These techniques seek a more uniform distribution and are closer to the reality of what 

happens at the metabolic level by simultaneously optimizing various functions with con- 

flicting objectives. 

Multi-objective optimization is generally based on the search for solutions to different 

conflicting objectives that must be optimized simultaneously. Multi-objective optimization 

is of great importance and has been carried out at a technological and scientific level. 

Some examples in the chemical industry have been reported in optimizing operating unit 

processes, biorefinery, reaction engineering, prevention and control, etc. [19]. It has also 

been utilized in the biology and medicine sector [20], and in metabolic engineering [18]. 

Multi-objective optimization contrasts with open-access Cobrapy FBA, which only 

maximizes or minimizes one objective function and where only one solution is obtained. 

In multi-objective optimization, a set of solutions is obtained. The solutions obtained are 

called non-dominated because no other solution in the search space is better than the others 

when all objectives are considered simultaneously. This set of solutions is known as Pareto 

optimal solutions [21]. 

Between the methods that have been used for multi-objective optimization of mi- 

croorganisms are evolutionary algorithms such as NSGAII [18], MOMO, based on the 

Bio-objective model, and exact mathematical methods that spend a lot of computational 

resources [22]. 

Metaheuristic algorithms originate from the natural evolution of biological groups; 

they are part of artificial intelligence and are born from natural computing and heuristic 

methods (partial search algorithms). Compared to mathematical methods that gener- 

ate a large computational expense, these methods provide sufficiently good solutions to 

an optimization algorithm with an acceptable computational time and space [23]. 

Multi-Objective Evolutionary Algorithms (MOEAs) are widely recognized in the 

scientific community as an approach to solving multi-objective optimization problems. 

In particular, the NSGAII (multi-objective EA based on non-dominated classification) 

proposed by [24] has been quite effective when handling two or three objectives [25,26]. 

The MOEA/D evolutionary algorithm based on decomposition is tested because it has the 

characteristic that it works correctly when there are more than three objective functions. 

Previously, metaheuristic methods had been used to study the metabolism in [18]. The NS- 

GAII algorithm was developed to optimize three objective functions, proteins, carbohydrates, 

and CO2, in a metabolic network of the microalga Chlamydomonas reinhardtii using the NSGAII 

algorithm, a coding scheme based on flux balance analysis (FBA). However, the algorithmic 

solution might be different for every optimization problem, a difference that can increase 
depending on how well the involved mathematical model explains the phenomena studied. 
Metabolic networks might not be exempt from such issues, and these works analyze distinct 

algorithms (NSGAII and MOEA/D) and distinct optimization models for metabolic net- 
works (four multiobjective optimization approaches) from the perspective of the quality of 

solutions that might be achieved by them, and the convenience of the information provided. 
The study is carried out on two case studies that involve intricate conditions involving 
cycles, bifurcations, and reversible and irreversible reactions. The main contributions of 

this work include the development of three new multi-objective optimization models for 
metabolic networks, one new algorithmic solution based on decomposition, and an analysis 

that guides the proper identification of metaheuristics and models to solve the optimization 
process behind metabolisms. 

The remainder of the document is structured as follows. Section 2 describes the 

metaheuristics used for the purpose of analysis in this research; particularly, it presents the 

overall definition and constituents. Section 3 details the novel optimization models for the 
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metabolic networks proposed in this work. Section 4 discusses the original features included 

in the design of the NSGAII and MOEA/D used to solve the proposed optimization 

models. Sections 5 and 6 describes the design of the experiments conducted to test the 

proposed optimization models and their metaheuristic solutions; it contains the definitions 

of the cases of studies along with the experiments and the results, concluding with a brief 

discussion of the observed data. 

2. Materials and Methods 

This work considers NSGAII and MOEA/D algorithms as the considered metaheuris- 

tics to tackle the optimization problem in metabolic networks. The general notion of the 

design of such algorithms is provided in the remainder of this section. 

2.1. NSGAII Algorithm 

NSGAII is a Multi-Objective Evolutionary Algorithm (MOEA) that utilizes non- 
dominated sorting and crowding distance to exert selective pressure toward the Pareto 

front [24]. The metaheuristic evolves an initial population of P0 parents using common 

computable genetic operators such as mutation, crossover, and tournament selection that 

create a new offspring, Qt, on each generation. To maintain elitism, the current population, 

Pt, is combined with the offspring Qt, and a new population Pt+1 is chosen based on 

non-domination ranks and crowding distance to diversify and to break ties when necessary. 
The three main components of NSGAII are its fast non-dominated sorting approach, 

the fast, crowded distance estimation procedure, and the simple crowded comparison 

operator. The general method derived from NSGAII can be depicted as follows: 

1. Initialization of population Po of size N using a uniform distribution. 

2. Create an offspring population Qt using binary tournament selection based on 

crowding-comparison operator, cross-over, and mutation performed on the parent 

population (Pt), where subscript “t” denotes the number of generations. The offspring 

population and its parent population are combined to produce the entire population 

Rt, Rt = Pt + Qt. The population Rt will be of size 2N. 

3. Perform a fast nondominated sorting approach on the entire population Rt to identify 

different fronts of objective functions. F = f ast     nondominated      sort(Rt), where 

F = (F0, F1, F2, . . .) will have in F0 the non-dominated set of solutions of Rt that best 
approximates the Pareto frontier. 

4. Construct a new parent population (Pt+1) of size N from the obtained fronts (Fi). This 

population of size N is now used for selection, cross-over, and mutation to create 

a new population (Qt+i) of size N. 

5. The process must be repeated until the maximum number of iterations is reached. 

2.2. MOEA/D 

MOEA/D is a strategy based on decomposing the MOP multiobjective optimization 

problem (as defined in [27]) into a certain number of scalar optimization subproblems that 

are optimized simultaneously. Each subproblem is optimized using information that comes 

exclusively from its neighboring subproblems, achieving less computational complexity in 

each generation. There are several approaches to transforming a multi-objective problem 

into a scalar number of optimization problems. One of the most popular approaches is the 

MOEA/D proposed by [28], where the scalar optimization problems can be formulated 

as follows: 

gte (y | wi, z) = max{wi | fk(x) − zk |} 

Subject to: x ∈ Ω 

 

, (2) 

where w = (w1, w2, . . . , wN) is a vector of weights and wi ≥ 0 for all i = 1, . . . , k, and the set 

z = {z1, z2, . . . , zk} is the reference point, where zi = max{ fi(x) | × ∈ ω} for i = 1, . . . , m. 
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For each Pareto optimal point x∗, there exists a vector of weights w, where x∗ is the optimal 

solution of 2. 

MOEA/D performs for a certain number of generations, and during each generation 

it also exerts selective pressure toward the Pareto front using genetic operators such as 

mutation and crossover. The key element in this strategy is that offspring replace parents 

based on the scalar function and their closeness at each iteration until a final front is 

delivered by the algorithm. 

3. Proposed Approaches 

This work proposes three novel optimization models for metabolic networks that 
extend FBA to a multi-objective optimization problem. The models, called MOFBA2, 
MOFBA3,  and MOFBA4,  represent improvements over the MOFBA1  proposed in [18] 
and depicted in Equation (3).  MOFBA1  simultaneously optimizes a set of bioproducts 

vb1, . . . vbm instead of just one, keeps within bounds the reaction fluxes, and satisfies the 

steady state condition, i.e., they ensure that Sv = 0 (where the S is the stoichiometric matrix 

and v is the fluxes vector). 

MOFBA    max F(v) = {vb1 , . . . , vbm } 
Subject to 

S · v = 0 

LBj ≤ vj ≤ UBj, ∀j ∈ {1, . . . , n} 

(3) 

MOFBA1 is the optimization problem resulting from directly implementing the prob- 
lem defined in Equation (3). It considers as many objective functions as sets of metabolites 
of interest. Likewise, it considers as many decision variables as reaction fluxes are needed 
to define the metabolic system. Note that, for an optimization approach, the search space 
depends on the decision variables, and based on this definition there is one for each possible 

flux, i.e., a metaheuristic must search proper flux values within the provided bounds of n 

distinct decision variables. 
The conditions described in the previous paragraph characterize a common pitfall 

in designing solution strategies for optimization problems. The difficulty appears be- 

cause metaheuristics might require larger running times to locate feasible solutions when 

the number of decision variables is large. This work considers this situation and pro- 

poses three new optimization models for metabolic networks that reduce the search space 

(i.e., the number of decision variables that a metaheuristic uses in the search). These models 

are integrated into an appropriate experimental design to demonstrate that, for quality 

purposes, it matters whose model one chooses to solve certain problems. 

While details on the experiments are provided in further sections, the remainder of 

this section contains an in-depth description of the three novel MOFBAs proposed in this 

work, with a summary of their relevance and impact at the end. 

3.1. MOFBA2 

In MOFBA2, as in MOFBA1, the objective functions to be optimized are the sets of 
metabolites of interest; hence, the number of objectives, m, is the same. On the other 
hand, MOFBA2 considers a reduced set of decision variables consisting of only the reaction 
fluxes vb1, . . . vbm associated with the same metabolites of interest present in the objective 

function, and an additional one, v, that indicates which of the metabolites of interest leads 

the search. In other words, MOFBA2 has m + 1 decision variables instead of n. Equation (4) 
formally defines MOFBA2. 

MOFBA    max F(v) =  vb1 , . . . , vbm 

Subject to 
FBA(vbk, v)is feasible 

LBj ≤ vbi ≤ UBj, ∀i ∈ {1, . . . , m} 

1 ≤ k ≤ m 

(4) 
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MOFBA2 describes a bilevel optimization model where the inner model optimizes the 

leading metabolite of interest, v, using FBA and delimits the bounds of the metabolites of 

interest to the ones defined in the outer model. The bounds of the remaining reactions are 
assumed to be known and fixed according to the analyzed metabolic network. 

3.2. MOFBA3 

MOFBA3 proposes a surrogate model to optimize metabolites of interest. The surrogate 

model searches for improving two well-known indicators: the Hypervolume (HV) and the 

Generational Distance (GD). These indicators reflect how well a solution converges to the 

Pareto front. While the HV must be maximized, the GD must be minimized. 

MOFBA3 has m + 1 decision variables, the same ones of MOFBA2, i.e., the reaction 

fluxes vb1, . . . vbm associated with the same metabolites of interest present in the objective 

function, and leading metabolite flux v. On the other hand, the number of objectives 
is always 2, no matter how many metabolites of interest are considered. The distinctive 
characteristic of this model is its surrogation; instead of directly searching for the proper flux 

values on the metabolites of interest, it uses indicators of performance in the multi-objective 

context (i.e., the HV and GD indicators). Equation (5) formally defines MOFBA3. 

MOFBA    min F(v) = 1HV( vb1 , . . . , vbm   , R),DG( vb1 , . . . , vbm    , Zr) 
Subject to 

FBA(vbk, v)is feasible 

LBj ≤ vbi ≤ UBj, ∀i ∈ {1, . . . , m} 

1 ≤ k ≤ m 

(5) 

This optimization  problem  assumes  that  there  exists  a  reference  point,  R,  and 

a reference set, Zr. Given that the management of FBA was under  the  COBRApy 
package, considering the limits on it, the reference point considered for this work is 

R =   1000, 1000, . . . , 1000 . Also, given the availability of an FBA implementation due to 

the same package, the reference set Zr is formed by the set of optimal solutions formed 
by those obtained when solving FBA to optimality, having each metabolite of interest as 
optimized biomass. 

3.3. MOFBA4 

MOFBA4 is the last proposed optimization problem combining the ideas of MOFBA2 
and MOFBA3.  That is, it proposes to optimize not only the metabolites of interest but 
also the indicators HV and GD. The number of decision variables for this model re- 

mains as m + 1, and the number of objectives is m + 3. Equation (6) formally defines 

this optimization problem. 

MOFBA    min F(v) = 1HV( vb1 , . . . , vbm    , R),DG( vb1 , . . . , vbm    , Zr )(vb1, . . . , vbm ) 
Subject to 

 
 

 
3.4. Analysis 

FBA(vbk , v)is feasible 

LBj ≤ vbi ≤ UBj, ∀i ∈ {1, . . . , m} 

1 ≤ k ≤ m 

(6) 

Table 1 summarizes the most notable features of the optimization models proposed in 

this work, and compares them against the MOFBA1 proposed in [18]. The search space is 

greatly reduced in the novel models, and some of them use convergence information in 

their definition. The unique characteristics demonstrate the richness of the models that can 

be designed to solve a specific optimization problem. 
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Table 1. Relevant features of MOFBA models for metabolic networks. 
 

Model No. Decision Variables No. Objectives Surrogate 

MOFBA1 n m No 

MOFBA2 m + 1 m No 

MOFBA3 m + 1 2 Yes 

MOFBA4 m + 1 m + 2 Yes 

 
The proposed MOFBAs cannot be solved with traditional linear solvers such as FBA. 

The alternatives are to use enumerative schemes or approximate approaches that allow 

one to obtain solutions belonging to the Pareto optimal frontier. In this sense, this research 

analyzed the use of metaheuristics that integrate FBA in their search process as an appro- 

priate solution approach since they improve their approximation to the Pareto front in 

each iteration. 

4. Metaheuristic Designs 

This section presents the particular details required in this research for the imple- 

mentation of the NSGAII and MOEA/D metaheuristics to solve the four optimization 

problems MOFBA1, MOFBA2, MOFBA3, and MOFBA4. These metaheuristics are based on 

the NSGAII and MOEA/D frameworks. 

The metaheuristics considered require the definition of the following characteristics: 

(1) coding schemes; (2) fitness evaluation function; (3) genetic operators; and (4) constraint 

management strategy. The population initialization method for both strategies (NSGAII 

and MOEA/D) is random. The proposed design for the rest of these components to handle 

the novel MOFBAs is detailed in the remainder of this section. The novel adaptations for 

the NSGAII and MOEA/D frameworks include the clever computable representation of 

solutions associated with the coding schemes. 

4.1. Coding Schemes 

This work proposes the use of distinctive solution coding sets for each MOFBA (as 

defined in Equations (3)–(6). The coding schemes involve the definition of a data structure 

that represents a solution of the metabolic network. The script developed for experimenta- 

tion is found in this Github repository (https://github.com/multiobjectiveoptimization2 
/MOFBAs, accessed on 24 June 2024). 

For MOFBA1 the data structure is a real-valued vector, V. The coding scheme con- 

sidered a metabolic network,  MN,  constituted by a set of reactions,  V, and two subsets 

V M, V b ⊆ V, where V M ∩ V b = ∅, which represent the reactions of the metabolites of 
interest to a decision maker. Furthermore, let v = (v1, . . . , vn) be the flux vector for V 

and assume that there are initial lower and upper bounds, LBi, UBi, for each vi, 1 ≤ i ≤ n. 
Then, the W encoding scheme proposes redefining the boundaries of each vi associated 

with a reaction in V M ∪ V b using two values (Ii, ∆i).   The new limits are calculated as 

LBnew = Ii and UBnew = (UBi − Ii)∆i + Ii. All remaining fluxes will keep their limits 
unchanged. In other words, the solution encodes boundary changes for FBA to solve    N 

using a prespecified bioproduct, which in this work is assumed to be vb . The resulting 

encoding vector W is of size O(n), asymptotical in the number of reactions. 

For MOFBA2, MOFBA3, and MOFBA4, a vector of size m + 1 is considered as the 

encoding scheme,  where m is the number of objective functions.  The first m elements 
of the vector are real variables whose value represents the upper limit of flux for each 
metabolite of interest in the associated reactions. The additional element is a single-objective 

optimization selector that takes values between 1 and m, indicating which metabolite is 

going to be optimized in turn. When it is a reversible reaction, the value in the indicated 
variable will be the same for the lower bound (but negative). 

https://github.com/multiobjectiveoptimization2/MOFBAs
https://github.com/multiobjectiveoptimization2/MOFBAs
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4.2. Fitness Evaluation Function 

Between all MOFBA optimization problems, the fitness evaluation (or FEA) func- 

tions are considered a derived subset of the set composed of the values of the metabolite 

fluxes of interest, such as the Hypervolume and Generational Distance metrics. Since the 

required information on bioproducts is associated with specific reactions, the suitability 

of a solution obtained by metaheuristics on MOFBAs is evaluated considering their flux 

values. In MOFBA1 and MOFBA2, the criteria or objective functions to be optimized will 

be the reaction fluxes corresponding to the bioproducts of interest chosen in b and de- 

noted as (vb , . . . , vb ). In MOFBA3, the Hypervolume and Generation Distance obtained 
1 m 

from a solution, the reference point R, and the reference set Zr, defined as follows, are 

optimized. The R point is the worst possible extreme value of fluxes, which is 1000 for any 

metabolite of interest, considering its definition for FBA, in widely used platforms, such as 

CobraPy. The set Zr is made up of three points, which include the optimal fluxes obtained 

by solving the case in question using the FBA method by individually optimizing each 

metabolite of interest; therefore, if there are n objective functions, Zr will have a cardinality 

of n. It is worth mentioning that when a leading bioproduct is required in MOFBA2 to 
MOFBA4, this is chosen derived from the value of one of the decision variables considered, 
as previously described. 

4.3. Genetic Operators 

These operators create new solutions by dynamically and randomly varying the values 

of the decision variables in the existing solutions. This selection was due to its success 

in solving problems involving decision variables with real values [29]. The operators 

chosen for NSGAII are mutation, crossover, and a simple but reliable random selection, 

respectively. The specific values of these parameters were taken from the literature and are 

shown in Table 2. 

Table 2. NSGAII implementation-specific parameters. 
 

Parameter Value 
 

Probability = 1.0/d, where d is the number of decision variables. 
Distribution Index = 20 

Probability = 100% 
Distribution Index = 20 

Stoppage Criterion until reaching 100,000 evaluations 

Population Size 100 

 
The operators chosen for MOEA/D for mutation and crossover were Polynomial 

mutation [30], with crossover by differential evolution. The selection strategy is simple 

but reliable, and the aggregation function used was the Tshebycheff distance. For a more 

extensive reference of operators, see [28]. The specific values of these parameters were 

taken from the literature and are shown in Table 3. 

Table 3. MOEA/D implementation-specific parameters. 
 

Parameter Values 
 

Probability = 1.0/d, where d is the number of decision variables. 
Distribution Index = 20 

CR = 1 
Differential Evolution F = 0.5 

K = 0.5 

Stoppage Criterion Upon completion of 100,000 evaluations 

Population Size 100 

SBXCrossover 

Polynomial Mutation 

Polynomial Mutation 



Algorithms 2024, 17, 336 9 of 22 
 

− 

 

4.4. Constraint Management Strategy 

This work uses the constraint management method proposed in [31] to generate 

selective pressure towards feasible solutions. As generations evolve in both metaheuristics, 

the competition between solutions will always prefer the feasible solution despite the non- 

domination state. In the long run, such a strategy tends to eradicate infeasible solutions 

in the final algorithm report. Multi-objective optimization is used when there are several 

objectives to optimize simultaneously. Several multi-objective evolutionary algorithms 

(MOEAs) exist, such as NSGAII and MOEA/D. Although they are used for optimizing 

multi-objective problems, they are significantly different. NSGAII is a non-dominated 

classification algorithm, while the MOEA/D algorithm is based on decomposition. 

5. Design of Experiments 

This subsection presents the set of experiments performed in order to validate the 
application of the proposed optimization models as tools to improve the understanding of 
microalgal metabolisms. In the field of research on effective solutions to multi-objective 

problems, experiments were conducted on two networks of the microalgae Chlorella vulgaris 

to evaluate the performance of different algorithms and the respective MOFBAs. The sub- 
sections present the case of studies, the experimental design, and the software details used 
in implementation, with the purpose of verifying the following hypotheses. 

 

Hypotheses 0 (H0). It is not relevant to the selection of model and/or solution algorithm to optimize 
fluxes in a metabolic network. 

5.1. Cases of Study 

Compared to a previous investigation [18], two networks, glutamate metabolism and 

pigment flux distribution of the microalgae Chlorella vulgaris, were included in the two case 

studies; reversible and irreversible reactions were added, the representation of a reversible 
reaction using the intervals of lower bound fluxes of 1000 and upper bound 1000, and the 
irreversible ones with intervals of lower bound 0 to upper bound 1000. In addition, nodes 
were included where the metabolites bifurcate towards different routes, and cycles that are 
frequently presented in the metabolism of the cells. 

5.1.1. Case of Study 1: Metabolic Network Chlorella vulgaris 

The metabolic network of the microalga Chlorella vulgaris [17] was studied using NS- 

GAII and MOEA/D algorithms for three different culture conditions: photoautotrophy 
(light + components), heterotrophy (component), and mixotrophy (CO2 + light + compo- 
nent). Among the compounds that were used as nutrients for cultivation were the addition 
of nitrogen sources, such as NO3 and NH4, as well as sulfates, such as SO4, Fe2, and Mag- 
nesium. The different crop sources affect the production of metabolites. The following 

figure shows the distribution of pigments in the microalga C. vulgaris. 
In this case, a part of the pigment distribution network will be studied since the 

distribution in microalgae such as C. vulgaris is of great importance in the study of pigment 

synthesis. The reactions involved in the metabolism are presented in Appendix A.1, Table 
A1. This network includes the complexity of reversible and irreversible (FRDPth, GRDPth) 
reactions, nodes, and cycles, and are showed in the Figure 1. 
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Figure 1. Flux distribution of pigment byosinthesis pathways [17]. 

5.1.2. Case of Study 2: Optimization Multiobjective of the Metabolic Network of 
Metabolism Glutamate of Microalgae Chlorella vulgaris 

Metabolism consists of different metabolic pathways that are intertwined to form 

a more complex one. One such pathway is the distribution of fluxes of glutamate metabolism, 

which serves different functions, including amino acid synthesis. 

This metabolic network represents great complexity due to the number of metabolites 

that branch at the central node and the presence of reversible reactions such as ASPATh and 

ASPNA1Th. This network was evaluated in three different growth conditions, autotrophy, 

heterotrophy, and mixotrophy, using the NSGAII and MOEA/D algorithms with their four 

MOFBAs. This metabolism is of great importance because the pathways for producing 

different products of interest, amino acids such as tyrosine, valine, leucine, etc., are involved, 

which can later be used to produce proteins. The reactions involved in the metabolism 

are presented in Appendix A.1, Table A2. Figure 2 represents the distribution of fluxes 

associated with glutamate metabolism in the chloroplast and cytoplasm. 
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random. 

 
 

 

Figure 2. Flux distribution associated with glutamate metabolism in the chloroplast and cytoplasm [17]. 

5.2. Experiments Definition 

Defining a methodology based on metaheuristics that improve the metabolic network 

flux information provided by the FBA method by redefining Flux Balance Analysis as 

a Multi-objective Optimization Problem is possible; four experiments were proposed, 

summarized in the following Table 4. 

 
Table 4. Design of experiments to demonstrate metaheuristic support for understanding metabolism 

in microalgae. 

Experiment Objective Variables Involved 

Using different optimization models produces 
different results. 

C. vulgaris, NSGAII, MOFA1, 
MOFBA2, MOFBA3, MOFBA4. 

 
Experiment2 

Demonstrate that the use of metaheuristics 
supports the understanding of 
microalgae metabolism. 

C. vulgaris, FBA, NSGAII, 
MOFBA4 

There are optimization algorithms more 
suitable for solving specific problems 

C. vulgaris, NSGAII, MOEA/D, 
MOFBA4. 

 
 

Experiment4 Validate that a random selection is not enough. 
C. vulgaris, NSGAII, FBA,

 
 

Experiment1 

Experiment3 
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Experiment 1 demonstrated that different multi-objective optimization models offer 

different results. The algorithm was set to NSGAII, the microalgae was modified to 

demonstrate the approach’s versatility, and finally, the four proposed optimization models 

were analyzed. For the cases studied, it was observed that the consistently best model was 

MOFBA4, which was used in the subsequent experiments. 

In Experiment 2, the algorithm, the microalgae, and the single-objective FBA model 

were compared against the multi-objective model defined by MOFBA4. It was observed 

that the metabolism of a microalgae can be described with different fluxes, not one, and 

these can be controlled to obtain information on different metabolites of interest. This 

confirms the ease of adaptation of the proposed methods to different types of metabolic 

networks, considering different configurations. 

Experiment 3 evaluated the performance of the NSGAII and MOEA/D algorithms on 

the same optimization problem. It was observed that, for the three objectives (i.e., three 

metabolites of interest) considered, NSGAII was the best. This result is consistent with the 

literature, given that for two or three objectives, NSGAII shows better performance than 

MOEA/D. This leaves open the question of whether MOEA/D will improve for a larger 

number of objectives, which is an open line of investigation for its application in the study 

of microalgal metabolic networks. 

Experiment 4 shows that simple random sampling is not sufficient to obtain a better 

distribution of solutions, which is possible through the use of metaheuristics. 

The metaheuristics NSGAII and MOEA/D were implemented with the aid of the 

jMetalPy framework [32]. The optimization models were developed in Python and used 

as part of the FBA implementation provided by the package COBRApy [33]. Graphics 

were recreated using the interface pyplot of matplotlib [34]. The computer used to run the 

experiments has a 64 bit 2.6 GHz processor with 32 RAM memory. 

6. Results 

This section summarizes the data obtained as a result of the implementation of 

the experiments described in Section 3.2. At the end, it provides a discussion over the 

achieved goals in the research. To visualize the results in Figures 3–6, the matplotlib library 

was imported. 

6.1. Experiment 1 

En [18] showed that NSGAII presents better quality solutions than the classic FBA 
for three objective functions. Figure 3 shows the results of the experiment where the four 
variants described above, MOFBA1, MOFBA2, MOFBA3, and MOFBA4, for the NSGAII 
algorithm are tested, with the optimization of three objective functions of the pigment 

flux distribution of the microalgae Chlorella vulgaris. It can be observed that the different 

MOFBAs offer different behaviors to each other; MOFBA1, MOFBA3, and MOFBA4 im- 
prove FBA. However, the best solution behavior was MOFBA4 in Figure 3d as it provides 
more non-dominated solutions and maintains a good population diversity for the same 
population size environment. 

Figure 3 shows the pigment flux distribution in the microalgae C. vulgaris; it can 
be seen that each variant of MOFBA offers different behaviors and all improve the FBA 

in Figure 3a–c, but the best behavior in the solutions can be observed in the variant of 

MOFBA4 in Figure 3d. 
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Figure 3. Comparison between the NSGAII algorithm and the variants (a) MOFBA1, (b) MOFBA2, 

(c) MOFBA3, and (d) MOFBA4 in the distribution of pigment fluxes. 

6.2. Experiment 2 

When comparing the performance of the NSGAII algorithm with the MOFBA4 vari- 

ant, Figure 4a and the classic single-objective optimization FBA in Figure 4b, it can be 
observed that the NSGAII-MOFBA4  algorithm presents superiority by demonstrating 
that the information provided is improved by providing more solutions and, importantly, 

a significantly improved distribution. This enhanced distribution is particularly evident 
in Figures 3d and 4a with two different metabolic networks studied, such as glutamate 

metabolism and the distribution of pigment fluxes in the microalgae C. vulgaris. 

 

Figure 4. Comparison between (a) NSGAII-MOFBA4 and (b) FBA in the distribution of fluxes 

associated with the glutamate metabolism of the microalgae Chlorella vulgaris. 

6.3. Experiment 3 

Figure 5 presents the evaluation between the NSGAII, Figure 5a,c, and MOEA/D, 

Figure 5b,d, algorithms in the distribution of fluxes associated with glutamate metabolism 
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and the distribution network and pigment fluxes with NSGAII, Figure 5c, and MOEA/D, 

Figure 5d, from the microalgae C. vulgaris with the variant of the MOFBA4 algorithm. It 

was shown that the NSGAII algorithm has more solutions and better population diversity 
compared to MOEA/D. Metaheuristics are important; in this case, NSGAII is the best, which 
is consistent with the literature [35], because this algorithm works well with 2 and 3 objectives. 

 

Figure 5. Comparison between the (a,c) NSGAII and (b,d) MOEA/D algorithms in the pigment 

distribution network and in the distribution of fluxes associated with glutamate metabolism of the 

microalgae Chlorella vulgaris. 

6.4. Experiment 4 

In addition to testing the different case studies with the FBA, NSGAII, and MOEA/D 
approaches, an experiment was carried out using a rapid random approach, which we 

call random, in the distribution of pigment flux in the microalgae C. vulgaris. Figure 6 

shows the comparison between FBA, Figure 6a, random, Figure 6c, and NSGAII, Figure 6b. 
The random method, despite being fast, could not offer better results, Figure 6b, compared 
to what is presented in Figure 6c, NSGAII. 

 

Figure 6. Comparison between the variants (a) FBA, (b) random, and (c) NSGAII in the microalgae 

C. vulgaris. 
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6.5. Statistic Analysis 

Tables 5 and 6 shows that the proposed methods obtain feasible solutions; it is shown that 

they satisfy the conditions identified in [17] and FBA, thereby demonstrating the correlation of 

the solutions in silico and its ability to emulate results in different culture conditions. In Table 6 

can be seen a comparison between the fluxes in mmol h−1 obtained with FBA and NSGAII- 

MOFBA4 and the Euclidean distance presented between them. Table 5 demonstrates that 

NSGAII presents great versatility to limit the parameters in the growing conditions through 

the lower bound and upper bound values, in addition to being able to simulate cycles and 

bifurcations between metabolic networks. Likewise, some feasible solutions corresponding to 

NSGAII with the MOFBA4 variant and solutions obtained from the classic FBA are presented. 

Table 5. Distribution of fluxes in mmol h−1 obtained by NSGA II, associated with the synthesis of 

pigments in the metabolism of the microalgae C. vulgaris. 

Reaction LB UB S1 S2 S3 S4 

NADPH 0.000487 0.000487 0.000487 0.000487 0.000487 0.000487 

IDS2 0 0.000487 7.42 × 10³ 4.72 8 2.58 × 10−5 4.33 × 10−7
 

 

FPPSh 0 0.000487 7.42 × 10−5 4.72 × 10−5 2.58 × 10−5 4.33 × 10−7
 

 

GPPSh 0 0.000487 7.42 × 10−5 4.72 × 10−5 2.58 × 10−5 4.33 × 10−7
 

 

FRDPth 0 0 0 0 0 0 

FPPS 0 0 0 0 0 0 
 

GRDPth 0 0 0 0 0 0 

GRDPH 0 0 0 0 0 0 
 

GGPPS 0 0.000487 7.42 × 10−5 4.72 × 10−5 2.58 × 10−5 4.33 × 10−7
 

 

v1 0 0.000402078 0 0 0 0 

GGDPtu −0.0000849 0.0000849 7.42 × 10−5 4.72 × 10−5 2.58 × 10−5 4.33 × 10−7
 

 

CHLASG 0 0.0000742 7.42 × 10−5 4.72 × 10−5 2.58 × 10−5 4.33 × 10−7
 

 

GGCHLDAR 0 0.0000742 7.42 × 10−5 4.72 × 10−5 2.58 × 10−5 4.33 × 10−7 
 

CHLAU 0 0.0000742 7.42 × 10−5 4.72 × 10−5 2.58 × 10−5 4.33 × 10−7 
 

PSY 0 2.24 × 10−8 0 0 0 0 
 

PDS1 −2.24 × 10−8 2.24 × 10−8 0 0 0 0 
 

PDS2 −2.24 × 10−8 2.24 × 10−8 0 0 0 0 
 

ZDS −2.24 × 10−8 2.24 × 10−8 1.59 × 10−8 1.54 × 10−8 1.06 × 10−8 3.58 × 10−9 
 

NOR −2.24 × 10−8 2.24 × 10−8 1.59 × 10−8 1.54 × 10−8 1.06 × 10−8 3.58 × 10−9
 

 

v2 0.00 8.00 × 10−11 0 0 0 0 
 

LCYG −1.59 × 10−8 1.59 × 10−8 1.59 × 10−8 1.54 × 10−8 1.06 × 10−8 3.58 × 10−9 
 

GCAROtu −1.59 × 10−8 1.59 × 10−8 1.59 × 10−8 1.54 × 10−8 1.06 × 10−8 3.58 × 10−9 
 

LCYB −1.59 × 10−8 1.59 × 10−8 1.59 × 10−8 1.54 × 10−8 1.06 × 10−8 3.58 × 10−9 
 

v3 0.00 1.24 × 10−8 1.24 × 10−8 1.20 × 10−8 7.10 × 10−9 1.00 × 10−10 
 

BCAROH −3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 
 

BCRPTXANH −3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 
 

v4 0.00 6.16 × 10−9 6.16 × 10−9 6.16 × 10−9 6.16 × 10−9 6.16 × 10−9 
 

ANXANAS −2.68 × 10−9 2.68 × 10−9 −2.68 × 10−9 −2.68 × 10−9 −2.68 × 10−9 −2.68 × 10−9 
 

v5 0.00 3.88 × 10−9 3.88 × 10−9 3.88 × 10−9 3.88 × 10−9 3.88 × 10−9 
 

VIOXANOR −2.41 × 10−9 2.41 × 10−9 −2.41 × 10−9 −2.41 × 10−9 −2.41 × 10−9 −2.41 × 10−9 
 

v6 0.00 2.70 × 10−10 2.70 × 10−10 2.70 × 10−10 2.70 × 10−10 2.70 × 10−10 
 

NEOXANS −1.47 × 10−9 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9 
 

NEOXANU 0 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9
 

 

LCYD −6.42 × 10−9 6.42 × 10−9 0 0 0 0 
 

LCYA −6.42 × 10−9 6.42 × 10−9 0 0 0 0 
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Table 5. Cont. 
 

Reaction LB UB S1 S2 S3 S4 
 

v7 0.00 1.33 × 10−9 0 0 0 0 
 

ACAROtu −5.09 × 10−9 5.09 × 10−9 0 0 0 0 
 

CHYA1 0 0 0 0 0 0 

ZHY 0 0 0 0 0 0 
 

CHYA2 0 5.09 × 10−9 0 0 0 0 
 

CXHY 0 5.09 × 10−9 0 0 0 0 
 

v8 0 3.35 × 10−9 −1.74 × 10−9 −1.74 × 10−9 −1.74 × 10−9 −1.74 × 10−9
 

 

LUTH −1.74 × 10−9 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9
 

 

LOROXANU 0 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9
 

 

FRDPth 0 1 0 0 0 0 

 

Table 6. Distribution of fluxes in mmol h−1 obtained through FBA and the NSGAII-MOFBA4 algorithm. 
 

Euclidean Distance between FBA and NSGAII-MOFBA4 
 

Reaction. FBA MOFBA4 MOFBA4 MOFBA4 

ACAROtu’ 5.09 × 10−9 0 0 0 
 

ANXANASCOR’ −2.68 × 10−9 −2.68 × 10−9 −2.68 × 10−9 −2.68 × 10−9 
 

BCAROH’ 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 
 

BCRPTXANH’ 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 3.48 × 10−9 

CHLASG’ 0 1.36106 × 10−9 2.35109 × 10−5 0.0000742 

CHYA1’ 0 0 0 0 

CHYA2’ 5.09 × 10−9 0 0 0 

CXHY’ 5.09 × 10−9 0 0 0 

FPPS’ 0 0 0 0 

FRDPth’ 0 0 0 0 

GCAROtu’ 1.59 × 10−8 7.94367 × 10−9 1.35944 × 10−8 1.59 × 10−8 

GGCHLDAR’ 0 1.36106 × 10−9 2.35109 × 10−5 0.0000742 

GGDPtu’ 0.000148102 1.36106 × 10−9 2.35109 × 10−5 0.0000742 

GGPS’ 0.000486596 1.36106 × 10−9 2.35109 × 10−5 0.0000742 

GRDPth’ 0 0 0 0 

IDS1’ 0.001459788 1.36106 × 10−9 2.35109 × 10−5 0.0000742 

LCYA’ 6.42 × 10−9 0 0 0 

LCYB’ 1.59 × 10−8 7.94367 × 10−9 1.35944 × 10−8 1.59 × 10−8 

LCYD’ 6.42 × 10−9 0 0 0 
 

LCYG’ 1.59 × 10−8 7.94367 × 10−9 1.35944 × 10−8 1.59 × 10−8 
 

LUTH’ 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9 1.74 × 10−9 
 

NEOXANS’ 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9 1.47 × 10−9 
 

NOR’ 2.24 × 10−8 7.94367 × 10−9 1.35944 × 10−8 1.59 × 10−8 
 

PDS1’ 2.24 × 10−8 0 0 0 
 

PDS2’ 2.24 × 10−8 0 0 0 
 

PSY’ 2.24 × 10−8 0 0 0 
 

VIOXANOR’ −2.41 × 10−9 −2.41 × 10−9 −2.41 × 10−9 −2.41 × 10−9 
 

ZDS’ 2.24 × 10−8 7.94367 × 10−9 1.35944 × 10−8 1.59 × 10−8 
 

ZHY’ 0 0 0 0 

Euclidean distance 0.001545861 0.001514586 0.001451344 
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This section statistically validates that there is a difference when using different 
optimization problems or algorithms in order to show that the choice is relevant. To do 
this, it summarizes the results by comparing by Hypervolume (the proximity indicator to 
the Pareto Optimal front) to see whether or not there is a significant difference between the 

optimization models MOFBA3 and MOFBA4 and the NSGAII and MOEA/D algorithms. 
The first analysis considers the models MOFBA3 and MOFBA4, sets the solution 

algorithm to NSGAII, and evaluates all networks. For the analysis, the Hypervolume was 
obtained from each of the 30 runs of the algorithm per problem. Using the non-parametric 

Wilcoxon signed rank test, with a confidence level of 95%, the H0 was validated, which 

specifies that it is impossible to define a methodology based on metaheuristics that improves 
the information of metabolic network fluxes provided by the FBA method by redefining 
the Flux Balance Analysis as a Multi-objective Optimization Problem. Table 7 summarizes 
the results, showing the Hypervolume value on logarithmic scale per run for each network 

and the acceptance status of the H0 in the last row. It can be seen that the hypothesis is 

rejected in almost all the metabolic networks analyzed. Except for /textitChlorella, it can 
be commented that the best optimization model is MOFBA4. 

 
Table 7. Data were statistically analyzed to validate the differences between MOFBA3 and MOFBA4. 

The null hypothesis, H0, was accepted when the p-value obtained was less than 0.05. 

Glutamate Metabolism in C. vulgaris Pigment Network in C. vulgaris 

MOFBA4 MOFBA3 MOFBA4 MOFBA3 

34.539 20.723 20.65 20.647 

34.539 20.723 20.65 20.648 

34.539 20.723 20.65 20.649 

34.539 20.723 20.65 20.649 

34.539 20.723 20.65 20.651 

34.539 20.723 20.65 20.651 

34.539 20.723 20.65 20.651 

34.539 20.723 20.65 20.651 

34.539 20.723 20.65 20.652 

34.539 20.723 20.65 20.648 

34.539 20.723 20.65 20.650 

34.539 20.723 20.65 20.651 

34.539 20.723 20.65 20.648 

34.539 20.723 20.65 20.653 

34.539 20.723 20.65 20.654 

34.539 20.723 20.65 20.652 

34.539 20.723 20.65 20.651 

34.539 20.723 20.65 20.649 

34.539 20.723 20.65 20.651 

34.539 20.723 20.65 20.651 

34.539 20.723 20.65 20.650 

34.539 20.723 20.65 20.650 

34.539 20.723 20.65 20.651 

34.539 20.723 20.65 20.650 

34.539 20.723 20.65 20.650 

34.539 20.723 20.65 20.647 

34.539 20.723 20.65 20.651 

34.539 20.723 20.65 20.651 

34.539 20.723 20.65 20.652 

34.539 20.723 20.66 20.655 

H0 ACCEPTED H0 REJECTED 



Algorithms 2024, 17, 336 18 of 22 
 

 

The second analysis considers the NSGAII and MOEA/D algorithms, sets the optimiza- 
tion model to MOFBA4, and evaluates all networks. For the analysis, the Hypervolume was 
obtained from each of the 30 executions of each algorithm on the solved problem. Using 

the non-parametric Wilcoxon signed rank test, with a confidence level of 95%, the H0 was 

validated, which specifies that the difference in means between the samples is the same. 
Table 8 summarizes the results and shows each network’s Hypervolume value per run at 

the logarithmic scale and the acceptance status of H0 in the last row. It can be seen that 

the hypothesis is rejected in all the metabolic networks analyzed. These results from both 
analyses confirm what was expected, that it is relevant to consider which optimization model 
to use, and which algorithm, because their performances when obtaining sets of solutions can 
be different. 

Table 8. Data were statistically analyzed to establish differences between the use of NSGAII and 

MOEA/D. The null hypothesis, H0, was accepted when the p-value obtained was less than 0.05. 

Glutamate Metabolism in C. vulgaris Pigment Network in C. vulgaris 

NSGAII MOEA/D NSGAII MOEA/D 

20.723 20.723 20.647 20.723 

20.723 20.723 20.648 20.723 

20.723 20.723 20.649 20.723 

20.723 20.723 20.649 20.723 

20.723 20.723 20.651 20.723 

20.723 20.723 20.651 20.723 

20.723 20.723 20.651 20.723 

20.723 20.723 20.651 20.723 

20.723 20.723 20.652 20.723 

20.723 20.723 20.648 20.723 

20.723 20.723 20.650 20.723 

20.723 20.723 20.651 20.723 

20.723 20.723 20.648 20.723 

20.723 20.723 20.653 20.723 

20.723 20.723 20.654 20.723 

20.723 20.723 20.652 20.723 

20.723 20.723 20.651 20.723 

20.723 20.723 20.649 20.723 

20.723 20.723 20.651 20.723 

20.723 20.723 20.651 20.723 

20.723 20.723 20.650 20.723 

20.723 20.723 20.650 20.723 

20.723 20.723 20.651 20.723 

20.723 20.723 20.650 20.723 

20.723 20.723 20.650 20.723 

20.723 20.723 20.647 20.723 

20.723 20.723 20.651 20.723 

20.723 20.723 20.651 20.723 

20.723 20.723 20.652 20.723 

20.723 20.723 20.655 20.723 

H0 REJECTED H0 REJECTED 

 
Through the graphical results observed, mainly due to the volume and dispersion of 

the solutions obtained in all the algal metabolic networks considered, it is demonstrated 

that the proposed method based on multi-objective optimization resolved through meta- 

heuristics offers better support for the analysis. On the other hand, the statistical analysis 

presented in this section demonstrates that it is relevant to consider the optimization 

model and the algorithm since these can contribute to different types of improvements. 
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The statistical analyses presented here demonstrate that there can be a significant differ- 

ence between optimization models and between metaheuristic algorithms. 

6.6. Discussion 

Almost no experiment has been done previously with the metabolism of microalgae, 

except for [18]. Although there are exact methodologies, evolutionary approaches require 

fewer computational resources in the field of multiple objectives; for example, it gives the 

advantage of using less time and memory. Approaches such as NSGAII and MOEA/D 

allow greater power of choice in the decision-making process due to the variety and 

number of solutions and the possibility of easier recognition of the most important fluxes 

in a network and their influence and impact, instead of not having a methodology. 

Some additional insights emerge from the above results. Experiment 2 demonstrates 

the versatility of NSGAII to adapt to different circumstances and its ability to improve the 

analysis of the metabolic network given the greater number of solutions it produces for 

each of them. As demonstrated in Experiments 1 to 4, the analysis capacity of a metabolic 

network is improved by introducing the NSGAII algorithm. 

The multi-objective optimization problems present in the literature currently consider 

different solution metrics. Experiment 1 compares the use of the NSGAII algorithm with 

the four variants of optimization problems, with the MOFBA4 optimization problem being 

the most promising, by introducing different optimization strategies, such as optimizing 

not only the metabolites of interest but also Hypervolume and Generational Distance. 

Compared to MOFBA3, which minimizes Hypervolume, in MOFBA2 the decision variables 

are only the fluxes of the reactions of interest. 

Although, in the case studies, NSGAII had a better graphically observable performance 

than MOEA/D, as occurred in Experiment 3, because the case studies had three objective 

functions and, according to the literature,  NSGAII is better than MOEA/D when there 

are three functions objective, the possibility opens up of being able to use MOEA/D in 

networks where more than three objective functions need to be optimized.  It can also 

be observed, through Experiment 4, that simply using a random sample solution is not 

enough to obtain a good set of solutions like using metaheuristics. However, special 

considerations must be taken to allow respect for restrictions or information of control  

desired by an interested individual. 
The algorithms were tested on different microalgae strains, as seen in [18] with 

C. reinhardti, and in this research using C. vulgaris, in complex metabolic networks that 

contain cycles, bifurcations, and reversible reactions, it checks their viability in 
different metabolic networks, confirming that they can not only be used in a single 
microalgae. This leaves open the possibility of it being used in other types of species 
where there is a need to optimize more than one objective function. 

7. Conclusions 

The present research work carried out a study of metabolic fluxes in green microalgae. 

The objective was focused on verifying the suitability of in silico methods as support 

strategies for improving the analysis of metabolism in microalgae. Through the experiments 

developed, evidence was obtained that supports the following conclusions: 

The study of metabolic fluxes in microalgae is improved through increasing the 

number of solutions that satisfy the conditions  of a microalgae so that it  can live.  This 

is observable because, unlike traditional methods such as FBA that only offer a solution,  

which is expanded in a limited way through sensitivity analysis, it is greatly favored by 

integrating it into a methodology based on metaheuristics and multi-objective optimization 

problems; it increases both the number of fluxes that satisfy the conditions sought in the 

metabolic network, also simultaneously allowing the optimization of several metabolites 

of interest. 

There is more than one alternative to analyzing a metabolic network by optimizing 

several metabolites of interest, with the FBA method as the core of the optimization process. 
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The present work proposed four optimization models demonstrating this result, each 

offering analysis angles different from those that FBA offers. 

It is possible to solve the optimization problems supporting the metabolic study by 

considering different evolutionary metaheuristics, and by obtaining significant results for 

the analysis. This is demonstrated using NSGAII and MOEA/D to solve the proposed opti- 

mization problems. In this study, NSGAII showed the best performance in general, which 

is consistent with the literature, by exclusively addressing the simultaneous optimization 

of three objectives. This shows that, for future work, the analysis of the best metaheuristic 

must be carried out before the study. 

Solution search parameters can be controlled during the analysis of a metabolic net- 

work by adjusting the reaction boundaries. This contributes to further improving the study 

of microalgae since the definition of controlled environments is possible. This is observed 

in the validation process, where the parameters to generate solutions were limited to the 

values found in the work on in vivo specimens. 

Selecting one algorithm or model to optimize a specific metabolic network can be 

troublesome and requires fine-tuning to identify the configuration that best fits the research 

interests of the metabolic engineering carried out. This is evident given the variation in the 

performance between algorithms and optimization models, or the different combinations 

tested in this research work. 

A decision maker, e.g., a researcher in metabolic engineering, improves his decision- 

making capacity by visualizing a set of metabolic fluxes that satisfy the conditions specified 

for the metabolic network they study. 
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Appendix A 

Appendix A.1 

As previously mentioned, a metabolic network is the set of reactions present in the 
microorganism. The following list of reactions represents the metabolic network for the 

synthesis of pigments in the Chlorella vulgaris microalgae. 

https://github.com/multiobjectiveoptimization2/MOFBAs
https://github.com/multiobjectiveoptimization2/MOFBAs
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Table A1. Reactions derived from the synthesis of pigments in the metabolism of the microalgae 

C. vulgaris [17]. 
 

Name Formula 
 

FRDPth frdp[h] ⇄ frdp[c] 
GRDPth grdp[h] ⇄ grdp[c] 
ACAROtu acaro[h] → acaro[u] 
GCAROtu gcaro[h] → gcaro[u] 
GGDPtu ggdp[h] → ggdp[u] 
FPPS grdp[c] + ipdp[c]→ frdp[c] + ppi[c] 
FPPSh grdp[h] + ipdp[h]→ frdp[h] + h[h] + ppi[h] 
GGPS frdp[h] + ipdp[h]→ ggdp[h] + h[h] + ppi[h] 
GPPSh dmpp[h] + ipdp[h]→ grdp[h] + h[h] + ppi[h] 
IDS2 h[h] + h2mb4p[h] + nadph[h]→ dmpp[h] + h2o[h] + nadp[h] 
ANXANASCOR anxan[u] + ascb-L[u] → dhdascb[u] + h2o[u] + zaxan[u] 
BCAROH caro[u] + h[u] + nadph[u] + o2[u] → bcrptxan[u] + h2o[u] + nadp[u] 
BCRPTXANH bcrptxan[u] + h[u] + nadph[u] + o2[u] → h2o[u] + nadp[u] + zaxan[u] 
CHYA1 acaro[u] + h[u] + nadph[u] + o2[u]→ h2o[u] + nadp[u] + zxan[u] 
CHYA2 acaro[u] + h[u] + nadph[u] + o2[u]→ crpxan[u] + h2o[u] + nadp[u] 
CXHY crpxan[u] + h[u] + nadph[u] + o2[u]→ h2o[u] + lut[u] + nadp[u] 
LCYB gcaro[u] → caro[u] 
LCYA lyc[h] → dcaro[h] 
LCYG lyc[h] → gcaro[h] 
NEOXANS vioxan[u] → neoxan[u] 
NOR norsp[h] + o2[h] + pqh2[h] → 2 h2o[h] + lyc[h] + pq[h] 
PDS1 phyto[h] + pq[h] → phytfl[h] + pqh2[h] 
PDS2 phytfl[h] + pq[h] → pqh2[h] + zcaro[h] 
PSY 2 ggdp[h]→ 2 h[h] + phyto[h] + 2 ppi[h] 
VIOXANOR ascb-L[u] + vioxan[u] → anxan[u] + dhdascb[u] + h2o[u] 
ZDS o2[h] + pqh2[h] + zcaro[h] → 2 h2o[h] + norsp[h] + pq[h] 
ZHY h[u] + nadph[u] + o2[u] + zxan[u]→ h2o[u] + lut[u] + nadp[u] 
CHLASG chlda[u] + ggdp[u]→ ggchlda[u] + h[u] + ppi[u] 
GGCHLDAR ggchlda[u] + 3 h[u] + 3 nadph[u]→ chla[u] + 3 nadp[u] 
GGDR ggdp[h] + 3 h[h] + 3 nadph[h] → 3 nadp[h] + pdp[h] 
CHLBSG chldb[u] + ggdp[u]→ ggchldb[u] + h[u] + ppi[u] 

 

 
Table A2. Reactions derived from the flux distribution associated to glutamate metabolism [17]. 

 

Name Formula 
 

GLNth gln-L[c] + h[c] ⇄ gln-L[h] + h[h] 
GALh atp[h] + glu-L[h] + nh4[h] adp[h] + gln-L[h] + h[h] + pi[h] 
GLUS glu-L[h] + h2o[h] + nad[h] akg[h] + h[h] + nadh[h] + nh4[h] 
GLUTRS atp[h] + glu-L[h] + trnaglu[h] amp[h] + glutrna[h] + h[h] + ppi[h] 
GLUS(nadph) akg[h] + gln-L[h] + h[h] + nadph[h] 2 glu-L[h] +  nadp[h] 
ASPATh akg[h] + asp-L[h] ⇄ glu-L[h] + oaa[h] 
ASPNA1th asp-L[c] + na1[c] ⇄ asp-L[h] + na1[h] 
VALth h[c] + val-L[c] ⇄ h[h] + val-L[h] 
BCTA(val)h akg[h] + val-L[h] 3mob[h] + glu-L[h] 
TYRTAh 34hpp[h] + glu-L[h] ⇄ akg[h] + tyr-L[h] 
TYRth h[c] + tyr-L[c] ⇄ h[h] + tyr-L[h] 
BCTAh 3mop[h] + glu-L[h] ⇄ akg[h] + ile-L[h] 
ILEth h[c] + ile-L[c] ⇄ h[h] + ile-L[h] 
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