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Introduction

Systems biology tools integrate experimental and computational data to study the cellular and
molecular biological interactions of organisms (1). The continuous development of sequencing
methodologies and computational tools has improved the elucidation of interactions between
different metabolic network components in complex biological systems (2-5). Constraint-based
modeling involves formulating algorithmic protocols to create and simulate genome-scale
metabolic models (M-models). M-models are comprehensive knowledge bases organized by
gene-reaction, metabolite-reaction, and gene-protein-reaction (GPR) associations (6). These
associations enable the in-silico simulation of growth phenotypes and metabolite production under
a broad variety of conditions (7,8). Therefore, metabolic modeling aims to analyze physiological
and big data (multi-omics information) to generate testable hypotheses (9). In addition, M-models
are accompanied by the tools developed for metabolic engineering, which specialize in analyzing
and modifying metabolic pathways to maximize the production of compounds of interest (10).
Nowadays, evolution can be accelerated through the development of new metabolic engineering

strategies aided by identifying metabolic targets using M-models (11).

In 2010, a 96-step detailed protocol for generating metabolic models was developed (6). It
encompassed four stages: i) draft model generation, ii) model refinement/curation, iii) model
conversion, and iv) model validation. The draft model can be generated automatically using one
or more available pipelines (8,12-18), such as CarveMe, Model SEED, and Reconstruction,
Analysis, and Visualization of Metabolic Networks Toolbox (RAVEN) (19-21). During model
refinement, draft models are manually curated by verifying the metabolic pathways for the

organism of interest (6). Manual curation allows the researcher flexibility in verifying the reactions,
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metabolites, and GPR associations. This step is critical to providing a high-quality model with

specific metabolic details.

Despite advances in the automated generation of draft metabolic reconstructions, the manual
curation of these networks remains a labor-intensive and challenging task. Hence, this paper will
provide ten quick tips to guide and optimize the manual curation procedure for genome-scale
metabolic modeling, ensuring the generation of high-quality M-models. Later, those models can
be used to predict phenotypes accurately, contextualize big data, and be templates for expression

and transcription (22,23), multi-strain, and community modeling (24,25).

Tip 1. Retrieve the genomic and proteomic

information of the target organism.

The goal of creating an M-model is to define a metabolic network that connects each gene with
its biochemical function. The process to obtain genomic and proteomic information depends on
the accessibility of the data and the category of the organism (e.g., eukaryotic, prokaryotic, virus).
If the genomic data is unavailable, it must be assembled using genome assembly tools (e.g.,
SPAdes (28), Velvet (29), Canu (30)). However, several public databases are available that store

genome sequence information for various organisms (S1 Table).

The PATRIC Database (31), now the Bacterial and Viral Bioinformatics Resource Center (BV-
BCR), has been broadly used to retrieve comprehensive genomic, proteomic, and other omics
information of a wide range of bacterial species for M-models reconstruction (16,32). Moreover,

BV-BCR (35) also integrates data, tools, and infrastructure from the Influenza Research Database
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(IRD) and Virus Pathogen Resource (ViPR) databases containing an extensive amount of

metadata of viruses.

The National Center for Biotechnology Information (NCBI) (36) is a prominent database that
possesses a vast collection of biomedical and molecular biology data on prokaryotic and
eukaryotic organisms. It hosts the Reference Sequence (RefSeq) (37) and GenBank (38)
databases. The GenBank resource is fed by the public effort of independent laboratories that
submit their novel or updated genome assemblies. RefSeq focused on curating the data in

GenBank to provide well-annotated genomic sequences.

BioCyc (39) and The Kyoto Encyclopedia of Genes and Genomes (KEGG) (40) are bioinformatic
repositories containing an extensive microbial genome collection. The data contained in BioCyc
has been extensively curated from biological literature. KEGG analyzes the interaction of genes
with their biological functions in a metabolic pathway within an organism. KEGG also provides

genomic and proteomic information on prokaryotic and eukaryotic organisms.

Finally, single protein data can be retrieved instead of complete genome sequences. UniProt (41),
BRENDA (42), and the Protein Data Bank (PDB) (43) provide information on amino acid

sequences, three-dimensional structures, function, and enzymology of proteins.

Tip 2. ldentify basic metabolic your microorganism of

interest.

The genomic information of the target organism and a previously published model as a template

is needed to start the reconstruction of an M-model. This first version of the metabolic network



110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

(draft model) must simulate as many metabolic capabilities of the target organism as possible. It
is essential to select a template model that best matches the biological features of the target
organism. Key characteristics such as phylogenetic relationship, protein homology, cell wall
composition (gram-negative or gram-positive), growth mode (e.g., auto-, hetero-, mixotrophic,
aerobic, anaerobic), and prokaryotic or eukaryotic features are critical when selecting the template

organism (Fig. 1).

The growth mode of template organisms can affect the functionality of a newly reconstructed draft
model. Some important growth modes of prokaryotic and eukaryotic organisms include aerobic,
anaerobic, light-dependency, and nitrogen fixation conditions, among many others. Thus, the
model template must be selected based on protein homology and metabolic capabilities. Fig 1
highlights common growth modes of microbes and suggests template models that have been

extensively validated.

., Escherichia coli Saccharomyces Clostridium ljungdahlii oT Clostridium fjungdahlii
; (26) ~ cerevisiae ; @31) @1)
MLAS1S ) Yeasts™ Wl HNe3T [, O+ L IEELE
S m Bacillus subtilis Homo sapiens Synechococcus 3
(27) o ET- idium [j i
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8 e O o uBTes Ly Q7 W mNeTT)
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— 14) =0 - . 14)
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Fig 1. Template organisms with their model IDs used for M-models reconstruction.
Organisms are organized depending on the carbon source they consume (organic carbon, COg,
CO+H;, CO+H,+CO,, and organic carbon+CQO3), their metabolisms (A, aerobic; An, anaerobic,
NF, nitrogen-fixing; AO, ammonia-oxidizing; LU, light uptake) and their category (gram-positive

rod, gram-negative rod, mammal cell, yeast, green microalga, cyanobacterium). Organisms
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Tip 3. Semi-automatic reconstruction of a draft

model

Semi-automatic reconstruction is an automated step that generates a draft model using a
template model. Generating an initial good-quality draft model using automatic reconstruction
methods and algorithms (19,20) reduces the time required during manual curation. For the semi-
automatic reconstruction, the following inputs must be provided: i) the FASTA formatted proteome
of the target organism, ii) the proteome and metabolic network of the template model, and ii) the
minimal culture media. The algorithm performs bidirectional BLASTp to find homologous proteins
between the target and template organisms. Subsequently, the reactions associated with the
homologous proteins in the template model are added to the metabolic network generated for the
target organism. The algorithm must ensure the connectivity and functionality of the model to
perform growth rate simulations. Therefore, essential reactions are expected to be added to the
network even if no homologous proteins are found. These reactions might be associated with no
genes (orphan reactions) or genes belonging to the template organism (exogenous genes).
Reactions associated with exogenous genes and orphan reactions are addressed through manual

verification of GPR associations, as explained in Tip 4.

The algorithms that generate draft models can be designed by the researcher who aims to create
a new M-model (13,14). Examples of those algorithms are currently available in The Constraint-

Based Reconstruction and Analysis (COBRA) (33) and RAVEN (21) Toolboxes. Additionally,
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some automated reconstruction tools, such as CarveMe, PathwayTools, Agora, and ModelSEED,

are available online (19,20,34,35).

Tip 4. Manual verification of GRP associations.

As mentioned in Tip 3, a draft model may contain issues related to exogenous genes and orphan
reactions. These issues are addressed by ensuring reactions only correspond with genes from

the target organism (verification of GPR associations).

The quickest and most reliable way to verify a GPR is by searching for the assigned Enzyme
Commission (EC) number or enzyme name of the reaction in the proteome FASTA file of the
target organism. The genes found in the FASTA file are recorded to confirm that particular GPR
is present. If multiple enzymes are found to catalyze the same reaction independently, then all
gene identifiers are added to the GPR association using the operator "or" to separate entries. If
multiple subunits for a particular enzyme are identified, then all gene identifiers are connected

through the operator "and" (Fig 2).

GPRs that could not be located via EC number or enzyme name can be identified using BLASTp
(36). First, the reaction ID must be located in the database used to create the draft model. Each
database provides information about the target reaction and the protein that catalyzes it. For
example, BiGG entries show the reaction formula, models containing the reaction, and external
links to other databases with additional information (e.g., IntEnz, KEGG) (37). The goal is to
retrieve a protein amino acid sequence from phylogenetically close organisms using the different
enzyme names. TCDB (38) and ExPASYy (39) are good resources for finding protein sequences.
The retrieved amino acid sequence is compared against the proteome of the target organism

using NCBI BLASTp. After obtaining the BLASTp results, gene identifiers are assigned to the
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GPR based on our discretion as researchers. A smaller E-value and higher query coverage and
identity indicate a good match for the GPR (e.g., the E-value, identity, and query coverage cut-
offs of Raven Toolbox are 1e-30, 40%, and 50%, respectively). The lack of a homologous might
be due to missing genetic information (an empty GPR is added) or a falsely added reaction (the
reaction is removed). Experimental or collected literature data is used to confirm the presence of

the gene in the organism.

For eukaryotic cells, protein compartmentalization needs to be considered when assigning gene
identifiers to GPR associations. It is recommended to complete the protein localization and
comparison of the whole proteome before manually curating the draft model (Fig 2). Tools such
as TargetP (40), HECTAR (41), DeepLoc (42) and PredAlgo (43) can determine signal peptides,
chloroplast and mitochondria localization of the proteins. It is best to run multiple localization tools
and compare outcomes. After a BLASTp search is run, the found gene identifiers can be
compared to the predicted localization and added as the GPR association if the given reaction
location matches. For example, this will prevent chloroplast-localized enzymes from being added

to mitochondrion reactions, resulting in a more accurate model.
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Fig 2. Collecting information for manual curation. Workflow of GPR associations for a target
organism. Several resources are used during the manual curation phase, such as primary
literature and the databases BiGG (44), KEGG (45), IntEnz (37), PMN (46), ModelSEED (47),
ENZYME@EXPASYy (48), and UniProt (49). Information regarding transport proteins are obtained
from TCDB (38). Subcellular protein localizations are predicted using TargetP (40), DeepLoc (42),

HECTAR (41), and PredAlgo (43).
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Tip 5. Addition of constraints to simulate basic

metabolic capabilities, generating the QC/QA script

An M-model can estimate the growth rates of an organism for various environmental and genetic
conditions using Flux Balance Analysis (FBA) (50). FBA calculates metabolic fluxes while
constrained for an objective function and substrate uptake rates (50). These constraints are
defined as mathematical equations or inequalities that limit the range of possible solutions for the
simulated metabolic fluxes and can be identified through experimental data (6,50). For example,
the constraints associated with nutrient uptake or enzyme activities (e.g., gene expression) limit

biomass formation during computational simulations (51).

Changes in the architecture of the model while following Tip 4, can result in changes in
stoichiometric constraints and affect the functionality of the model (11). A Quality Control and
Quality Assurance (QC/QA) script is generated to assess the energetic feasibility and the mass
and charge balance of the model. The energetic feasibility test verifies that the metabolic fluxes
adhere to the principles of thermodynamics, ensuring that no matter or energy is generated
without mass input (52,53). The mass balance test verifies the total consumption of each
metabolite produced within the metabolic network (6). Finally, the charge balance test evaluates

that the sum of the reagent and product charges of each biochemical equation equals zero (6).

QC/QA scripts help identify and correct errors in the metabolic model to ensure the reconstruction
of a high-quality M-model. Open-source software, such as MEMOTE (54), offers a QC/QA script
that automatically evaluates the quality of M-models. However, organism-specific growth
simulations are out of its scope. Hence, it is recommended to build your own QC/QA script. There
are example protocols available for organisms like E. coli (50) and Chlamydomonas reinhardtii

(55) that use The COBRA Toolbox.

11
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Tip 6. Determination of the biomass objective

function.

An M-model is a network of interconnected biochemical reactions that can predict growth rates
through the sum of individual fluxes of biomass metabolites. The biomass components (i.e.,
carbohydrates, lipids, proteins, nucleotide triphosphates, and RNA) are integrated into the
metabolic network through an artificial modeling reaction defined as the Biomass Objective
Function (BOF) (56). The stoichiometric coefficients of each metabolite in the BOF reaction
represent the molar composition of the structural components of the cell in units of mmol per gram
of cell dry weight. Therefore, the stoichiometric coefficient values can be experimentally
calculated as previously described by Lanchance et al., 2019 (57). For the model functionality, at
least one BOF is needed. Nevertheless, several BOFs can be generated for unconventional
organisms that dramatically change their biomass composition depending on environmental
conditions (e.g., phototrophs, yeast) (14,17) or the BOF can be split for easier model manipulation

(58).

Available computational tools, such as BOFdat (59), use experimental measurements of structural
macromolecule compositions to generate BOFs automatically. However, when the experimental
determination of the proportional contribution of biomass components is not feasible, a BOF from

a previously reconstructed M-model can be imported (13,19).

Tip 7. Addition of new metabolites and pathways

based on untargeted metabolomics data

12
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Untargeted metabolomics is an analytical approach to determine as many metabolites as possible
in the biomass of the target organism (59). In addition to biomass composition compounds,
organism-specific metabolites are usually identified through untargeted metabolomics data,
depending on the growth conditions (59—-61). Therefore, the template model might not contain the
biosynthesis reactions of the whole metabolome of the target organism. In those cases, the
metabolic pathways are manually added to the draft model to allow simulation of the production
of those molecules (see Tip 8). This process is widespread during the reconstruction of lipid-
producing organism M-models. Since the lipid profile varies among organisms, researchers

manually add new pathways for lipid production to their M-models (14).

When adding a new pathway not in the database used to create your model, new reaction and
metabolite identifiers must be created. Additionally, compartmentalization, GPR association,
reversibility, directionality, and the mass and charge balance of each reaction must be defined
(6). Furthermore, it is essential to verify the stoichiometric coefficients and the charged formulas

of the metabolites in the growth condition in which the model is being reconstructed.

Tip 8. Gap-filling using high-throughput experimental
data.

During an M-model reconstruction, high-throughput data is added (e.g., omics, phenotyping) to
increase the feasible simulations of growth phenotypes under known physiological states. To
achieve this goal, the concept of gap-filling was introduced (62). Gap-filling utilizes manual
methods and algorithms to detect missing reactions of a specific pathway likely to be present in
the metabolism of the target organism (62). These gaps exist in metabolic networks due to

incomplete organism knowledge and the lack of genomic and functional annotations. Therefore,

13
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the gap-filling process will cover missing reactions, unknown pathways, unannotated genes, and
promiscuous enzymes in the M-model (63). Gap-filling can be performed manually (guided by
literature and bioinformatic databases) or automatically with the help of computer algorithms

(63,64) such as Fastgapfill and Globalfit (65,66).

The prediction capabilities of an M-model can be determined from the Matthews Correlation
Coefficient (MCC). This is a common metric used to evaluate the accuracy of M-models. MCC
calculation can be performed for gene essentiality and growth phenotypes by comparing in-vitro
and in-silico analysis (67). The MCC is computed from a confusion matrix of true positive (TP,
positive growth in-vitro and in-silico), true negative (TN, negative growth in-vitro and in-silico),
false positive (FP, negative growth in vitro and positive growth in-silico), and false negative (FN,
positive growth in-vitro and negative growth in-silico) simulations (57). With this approach,

Equation 1 can be used to estimate the MMC.

TNxTP—FNxFP

MCC =
J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(1)

Tip 9. Addition of metadata to metabolites and

reactions is critical to ensure compatibility.

While reconstructing an M-model, different databases and tools are used to find detailed
information about reactions, metabolites, genes, etc (S1 Table). In order to facilitate the exchange
of information between M-models reconstructed based on different databases, an additional
mapping of elements must be carried out. Standardization tools are also available to facilitate the
mapping process (e.g., MetaboAnnotator) (68—71). This process consists of connecting the
specific identifiers from one model to another as described in the following steps: a) Determine if

the reaction/enzyme has an associated Enzyme Commission (EC) number. EC numbers are

14



289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

usually common "threads" between all databases. b) If no EC number exists or is outdated, search
for the reaction/enzyme name in the Integrated Relational Enzyme database (IntEnz) (37). A
reaction could have more than one name. ¢) ldentify the different reaction IDs in the databases
of interest. It is recommended to consider information from Rhea (72), BiGG (44), KEGG (45),
MetaNetX (73), BioCyc (74), ModelSEED (20) and Reactome (75). d) Confirm the reaction is the
same by verifying the stoichiometric coefficients and metabolites involved. e) Add the identifiers

and links to the model. f) If a reaction is not found in a database, it can be skipped.

Tip 10. Sharable format JSON, MAT, SBML, XML, and

visualization

M-models must be ready to simulate, user-friendly, shareable, open-access, and compatible with
different programming languages. Remarkable progress has been made in this front of constraint-
based modeling (70). Table S2 shows the most common formats in which M-models are publicly

available.

The Systems Biology Markup Language (SBML) format is a widely adopted standardized format
that facilitates the sharing of models (76). It is highly encouraged to follow the SBML XML Schema
format, such as XML format to ensure that SBML Models adhere to their specified structures and
data types (77). XML Schema format allows for compatibility and consistency in SBML models

across various software applications.

M-models can also be stored in JSON (JavaScript Object Notation) format (78). This format
includes the necessary components of an M-model, such as reactions, proteins, metabolites,

genes, compartments, and their respective properties (44). Moreover, The JSON format is

15
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compatible with Constraint-Based Reconstruction and Analysis for Python (COBRApy) (79) and

the M-models visualization software Escher (80).

Another essential format is the MATLAB binary file format "mat”. The "mat" format is compatible
with the COBRA Toolbox (33) which has the same applications as COBRApy but runs in the

MATLAB environment.

Finally, the YAML format (YAML Ain't Markup Language) (81) is a human-readable data-
serialization format designed to provide simple readability that promotes sharing and
collaboration. Researchers can edit the format without reliance on specialized tools or software,

facilitating the communication and exchange of biological models.

Conclusion

The semi-automatic reconstruction of an M-model involves generating a draft model using
automatic tools followed by applying manual curation to improve the model prediction accuracy.
Despite several recent advances in the automated generation of draft metabolic reconstructions,
the manual curation of these networks remains a labor-intensive and challenging task. Rigorous
manual curation of genome-scale metabolic models is a high-work-high-reward process. An M-
model with high accuracy will enable building on top of it as a template for future reconstructions
or advanced modeling approaches such as multi-strain modeling (82), metabolism and gene
expression models (ME-models) (22,83), community models (CM-models) (24,25,84,85), and

multi-scale models (7).
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