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Introduction 44 

 45 

Systems biology tools integrate experimental and computational data to study the cellular and 46 

molecular biological interactions of organisms (1). The continuous development of sequencing 47 

methodologies and computational tools has improved the elucidation of interactions between 48 

different metabolic network components in complex biological systems (2–5). Constraint-based 49 

modeling involves formulating algorithmic protocols to create and simulate genome-scale 50 

metabolic models (M-models). M-models are comprehensive knowledge bases organized by 51 

gene-reaction, metabolite-reaction, and gene-protein-reaction (GPR) associations (6). These 52 

associations enable the in-silico simulation of growth phenotypes and metabolite production under 53 

a broad variety of conditions (7,8). Therefore, metabolic modeling aims to analyze physiological 54 

and big data (multi-omics information) to generate testable hypotheses (9). In addition, M-models 55 

are accompanied by the tools developed for metabolic engineering, which specialize in analyzing 56 

and modifying metabolic pathways to maximize the production of compounds of interest (10). 57 

Nowadays, evolution can be accelerated through the development of new metabolic engineering 58 

strategies aided by identifying metabolic targets using M-models (11).  59 

In 2010, a 96-step detailed protocol for generating metabolic models was developed (6). It 60 

encompassed four stages: i) draft model generation, ii) model refinement/curation, iii) model 61 

conversion, and iv) model validation. The draft model can be generated automatically using one 62 

or more available pipelines (8,12–18), such as CarveMe, Model SEED, and Reconstruction, 63 

Analysis, and Visualization of Metabolic Networks Toolbox (RAVEN) (19–21). During model 64 

refinement, draft models are manually curated by verifying the metabolic pathways for the 65 

organism of interest (6). Manual curation allows the researcher flexibility in verifying the reactions, 66 
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metabolites, and GPR associations. This step is critical to providing a high-quality model with 67 

specific metabolic details.  68 

 69 

Despite advances in the automated generation of draft metabolic reconstructions, the manual 70 

curation of these networks remains a labor-intensive and challenging task. Hence, this paper will 71 

provide ten quick tips to guide and optimize the manual curation procedure for genome-scale 72 

metabolic modeling, ensuring the generation of high-quality M-models. Later, those models can 73 

be used to predict phenotypes accurately, contextualize big data, and be templates for expression 74 

and transcription (22,23), multi-strain, and community modeling (24,25).  75 

 76 

Tip 1. Retrieve the genomic and proteomic 77 

information of the target organism. 78 

The goal of creating an M-model is to define a metabolic network that connects each gene with 79 

its biochemical function. The process to obtain genomic and proteomic information depends on 80 

the accessibility of the data and the category of the organism (e.g., eukaryotic, prokaryotic, virus). 81 

If the genomic data is unavailable, it must be assembled using genome assembly tools (e.g., 82 

SPAdes (28), Velvet (29), Canu (30)). However, several public databases are available that store 83 

genome sequence information for various organisms (S1 Table). 84 

The PATRIC Database (31), now the Bacterial and Viral Bioinformatics Resource Center (BV-85 

BCR), has been broadly used to retrieve comprehensive genomic, proteomic, and other omics 86 

information of a wide range of bacterial species for M-models reconstruction (16,32). Moreover, 87 

BV-BCR (35) also integrates data, tools, and infrastructure from the Influenza Research Database 88 
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(IRD) and Virus Pathogen Resource (ViPR) databases containing an extensive amount of 89 

metadata of viruses. 90 

The National Center for Biotechnology Information (NCBI) (36) is a prominent database that 91 

possesses a vast collection of biomedical and molecular biology data on prokaryotic and 92 

eukaryotic organisms. It hosts the Reference Sequence (RefSeq) (37) and GenBank (38) 93 

databases. The GenBank resource is fed by the public effort of independent laboratories that 94 

submit their novel or updated genome assemblies. RefSeq focused on curating the data in 95 

GenBank to provide well-annotated genomic sequences. 96 

BioCyc (39) and The Kyoto Encyclopedia of Genes and Genomes (KEGG) (40) are bioinformatic 97 

repositories containing an extensive microbial genome collection. The data contained in BioCyc 98 

has been extensively curated from biological literature. KEGG analyzes the interaction of genes 99 

with their biological functions in a metabolic pathway within an organism. KEGG also provides 100 

genomic and proteomic information on prokaryotic and eukaryotic organisms. 101 

Finally, single protein data can be retrieved instead of complete genome sequences. UniProt (41), 102 

BRENDA (42), and the Protein Data Bank (PDB) (43) provide information on amino acid 103 

sequences, three-dimensional structures, function, and enzymology of proteins. 104 

  105 

Tip 2. Identify basic metabolic your microorganism of 106 

interest. 107 

The genomic information of the target organism and a previously published model as a template 108 

is needed to start the reconstruction of an M-model. This first version of the metabolic network 109 
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(draft model) must simulate as many metabolic capabilities of the target organism as possible. It 110 

is essential to select a template model that best matches the biological features of the target 111 

organism. Key characteristics such as phylogenetic relationship, protein homology, cell wall 112 

composition (gram-negative or gram-positive), growth mode (e.g., auto-, hetero-, mixotrophic, 113 

aerobic, anaerobic), and prokaryotic or eukaryotic features are critical when selecting the template 114 

organism (Fig. 1).  115 

 116 

The growth mode of template organisms can affect the functionality of a newly reconstructed draft 117 

model. Some important growth modes of prokaryotic and eukaryotic organisms include aerobic, 118 

anaerobic, light-dependency, and nitrogen fixation conditions, among many others. Thus, the 119 

model template must be selected based on protein homology and metabolic capabilities. Fig 1 120 

highlights common growth modes of microbes and suggests template models that have been 121 

extensively validated. 122 

 123 

 124 

Fig 1. Template organisms with their model IDs used for M-models reconstruction. 125 

Organisms are organized depending on the carbon source they consume (organic carbon, CO2, 126 

CO+H2, CO+H2+CO2, and organic carbon+CO2), their metabolisms (A, aerobic; An, anaerobic, 127 

NF, nitrogen-fixing; AO, ammonia-oxidizing; LU, light uptake) and their category (gram-positive 128 

rod, gram-negative rod, mammal cell, yeast, green microalga, cyanobacterium). Organisms 129 
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highlighted in blue and green mean prokaryote or eukaryote, respectively. References in 130 

parentheses.  (8,13,14,26–32) 131 

 132 

Tip 3. Semi-automatic reconstruction of a draft 133 

model 134 

Semi-automatic reconstruction is an automated step that generates a draft model using a 135 

template model. Generating an initial good-quality draft model using automatic reconstruction 136 

methods and algorithms (19,20) reduces the time required during manual curation. For the semi-137 

automatic reconstruction, the following inputs must be provided: i) the FASTA formatted proteome 138 

of the target organism, ii) the proteome and metabolic network of the template model, and ii) the 139 

minimal culture media. The algorithm performs bidirectional BLASTp to find homologous proteins 140 

between the target and template organisms. Subsequently, the reactions associated with the 141 

homologous proteins in the template model are added to the metabolic network generated for the 142 

target organism. The algorithm must ensure the connectivity and functionality of the model to 143 

perform growth rate simulations. Therefore, essential reactions are expected to be added to the 144 

network even if no homologous proteins are found. These reactions might be associated with no 145 

genes (orphan reactions) or genes belonging to the template organism (exogenous genes). 146 

Reactions associated with exogenous genes and orphan reactions are addressed through manual 147 

verification of GPR associations, as explained in Tip 4.  148 

The algorithms that generate draft models can be designed by the researcher who aims to create 149 

a new M-model (13,14). Examples of those algorithms are currently available in The Constraint-150 

Based Reconstruction and Analysis (COBRA) (33) and RAVEN (21) Toolboxes. Additionally, 151 
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some automated reconstruction tools, such as CarveMe, PathwayTools, Agora, and ModelSEED, 152 

are available online (19,20,34,35). 153 

 154 

Tip 4. Manual verification of GRP associations.  155 

As mentioned in Tip 3, a draft model may contain issues related to exogenous genes and orphan 156 

reactions. These issues are addressed by ensuring reactions only correspond with genes from 157 

the target organism (verification of GPR associations). 158 

The quickest and most reliable way to verify a GPR is by searching for the assigned Enzyme 159 

Commission (EC) number or enzyme name of the reaction in the proteome FASTA file of the 160 

target organism. The genes found in the FASTA file are recorded to confirm that particular GPR 161 

is present. If multiple enzymes are found to catalyze the same reaction independently, then all 162 

gene identifiers are added to the GPR association using the operator "or" to separate entries. If 163 

multiple subunits for a particular enzyme are identified, then all gene identifiers are connected 164 

through the operator "and" (Fig 2). 165 

GPRs that could not be located via EC number or enzyme name can be identified using BLASTp 166 

(36). First, the reaction ID must be located in the database used to create the draft model. Each 167 

database provides information about the target reaction and the protein that catalyzes it. For 168 

example, BiGG entries show the reaction formula, models containing the reaction, and external 169 

links to other databases with additional information (e.g., IntEnz, KEGG) (37). The goal is to 170 

retrieve a protein amino acid sequence from phylogenetically close organisms using the different 171 

enzyme names. TCDB (38) and ExPASy (39) are good resources for finding protein sequences. 172 

The retrieved amino acid sequence is compared against the proteome of the target organism 173 

using NCBI BLASTp. After obtaining the BLASTp results, gene identifiers are assigned to the 174 
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GPR based on our discretion as researchers. A smaller E-value and higher query coverage and 175 

identity indicate a good match for the GPR (e.g., the E-value, identity, and query coverage cut-176 

offs of Raven Toolbox are 1e-30, 40%, and 50%, respectively). The lack of a homologous might 177 

be due to missing genetic information (an empty GPR is added) or a falsely added reaction (the 178 

reaction is removed). Experimental or collected literature data is used to confirm the presence of 179 

the gene in the organism.  180 

For eukaryotic cells, protein compartmentalization needs to be considered when assigning gene 181 

identifiers to GPR associations. It is recommended to complete the protein localization and 182 

comparison of the whole proteome before manually curating the draft model (Fig 2). Tools such 183 

as TargetP (40), HECTAR (41), DeepLoc (42) and PredAlgo (43) can determine signal peptides, 184 

chloroplast and mitochondria localization of the proteins. It is best to run multiple localization tools 185 

and compare outcomes. After a BLASTp search is run, the found gene identifiers can be 186 

compared to the predicted localization and added as the GPR association if the given reaction 187 

location matches. For example, this will prevent chloroplast-localized enzymes from being added 188 

to mitochondrion reactions, resulting in a more accurate model. 189 

 190 

 191 
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 192 

Fig 2. Collecting information for manual curation. Workflow of GPR associations for a target 193 

organism. Several resources are used during the manual curation phase, such as primary 194 

literature and the databases BiGG (44), KEGG (45), IntEnz (37), PMN (46), ModelSEED (47), 195 

ENZYME@ExPASy (48), and UniProt (49). Information regarding transport proteins are obtained 196 

from TCDB (38). Subcellular protein localizations are predicted using TargetP (40), DeepLoc (42), 197 

HECTAR (41), and PredAlgo (43). 198 

 199 
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Tip 5. Addition of constraints to simulate basic 200 

metabolic capabilities, generating the QC/QA script 201 

An M-model can estimate the growth rates of an organism for various environmental and genetic 202 

conditions using Flux Balance Analysis (FBA) (50). FBA calculates metabolic fluxes while 203 

constrained for an objective function and substrate uptake rates (50). These constraints are 204 

defined as mathematical equations or inequalities that limit the range of possible solutions for the 205 

simulated metabolic fluxes and can be identified through experimental data (6,50). For example, 206 

the constraints associated with nutrient uptake or enzyme activities (e.g., gene expression) limit 207 

biomass formation during computational simulations (51). 208 

Changes in the architecture of the model while following Tip 4, can result in changes in 209 

stoichiometric constraints and affect the functionality of the model (11). A Quality Control and 210 

Quality Assurance (QC/QA) script is generated to assess the energetic feasibility and the mass 211 

and charge balance of the model. The energetic feasibility test verifies that the metabolic fluxes 212 

adhere to the principles of thermodynamics, ensuring that no matter or energy is generated 213 

without mass input (52,53). The mass balance test verifies the total consumption of each 214 

metabolite produced within the metabolic network (6). Finally, the charge balance test evaluates 215 

that the sum of the reagent and product charges of each biochemical equation equals zero (6).  216 

QC/QA scripts help identify and correct errors in the metabolic model to ensure the reconstruction 217 

of a high-quality M-model. Open-source software, such as MEMOTE (54), offers a QC/QA script 218 

that automatically evaluates the quality of M-models. However, organism-specific growth 219 

simulations are out of its scope. Hence, it is recommended to build your own QC/QA script. There 220 

are example protocols available for organisms like E. coli (50) and Chlamydomonas reinhardtii 221 

(55) that use The COBRA Toolbox. 222 
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Tip 6. Determination of the biomass objective 223 

function. 224 

An M-model is a network of interconnected biochemical reactions that can predict growth rates 225 

through the sum of individual fluxes of biomass metabolites. The biomass components (i.e., 226 

carbohydrates, lipids, proteins, nucleotide triphosphates, and RNA) are integrated into the 227 

metabolic network through an artificial modeling reaction defined as the Biomass Objective 228 

Function (BOF) (56). The stoichiometric coefficients of each metabolite in the BOF reaction 229 

represent the molar composition of the structural components of the cell in units of mmol per gram 230 

of cell dry weight. Therefore, the stoichiometric coefficient values can be experimentally 231 

calculated as previously described by Lanchance et al., 2019 (57). For the model functionality, at 232 

least one BOF is needed. Nevertheless, several BOFs can be generated for unconventional 233 

organisms that dramatically change their biomass composition depending on environmental 234 

conditions (e.g., phototrophs, yeast) (14,17) or the BOF can be split for easier model manipulation 235 

(58). 236 

Available computational tools, such as BOFdat (59), use experimental measurements of structural 237 

macromolecule compositions to generate BOFs automatically. However, when the experimental 238 

determination of the proportional contribution of biomass components is not feasible, a BOF from 239 

a previously reconstructed M-model can be imported (13,19).  240 

 241 

Tip 7. Addition of new metabolites and pathways 242 

based on untargeted metabolomics data 243 
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Untargeted metabolomics is an analytical approach to determine as many metabolites as possible 244 

in the biomass of the target organism (59). In addition to biomass composition compounds, 245 

organism-specific metabolites are usually identified through untargeted metabolomics data, 246 

depending on the growth conditions (59–61). Therefore, the template model might not contain the 247 

biosynthesis reactions of the whole metabolome of the target organism. In those cases, the 248 

metabolic pathways are manually added to the draft model to allow simulation of the production 249 

of those molecules (see Tip 8). This process is widespread during the reconstruction of lipid-250 

producing organism M-models. Since the lipid profile varies among organisms, researchers 251 

manually add new pathways for lipid production to their M-models (14). 252 

When adding a new pathway not in the database used to create your model, new reaction and 253 

metabolite identifiers must be created. Additionally, compartmentalization, GPR association, 254 

reversibility, directionality, and the mass and charge balance of each reaction must be defined 255 

(6). Furthermore, it is essential to verify the stoichiometric coefficients and the charged formulas 256 

of the metabolites in the growth condition in which the model is being reconstructed.  257 

 258 

Tip 8. Gap-filling using high-throughput experimental 259 

data.  260 

During an M-model reconstruction, high-throughput data is added (e.g., omics, phenotyping) to 261 

increase the feasible simulations of growth phenotypes under known physiological states. To 262 

achieve this goal, the concept of gap-filling was introduced (62). Gap-filling utilizes manual 263 

methods and algorithms to detect missing reactions of a specific pathway likely to be present in 264 

the metabolism of the target organism (62). These gaps exist in metabolic networks due to 265 

incomplete organism knowledge and the lack of genomic and functional annotations. Therefore, 266 
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the gap-filling process will cover missing reactions, unknown pathways, unannotated genes, and 267 

promiscuous enzymes in the M-model (63). Gap-filling can be performed manually (guided by 268 

literature and bioinformatic databases) or automatically with the help of computer algorithms 269 

(63,64) such as Fastgapfill and Globalfit (65,66). 270 

The prediction capabilities of an M-model can be determined from the Matthews Correlation 271 

Coefficient (MCC). This is a common metric used to evaluate the accuracy of M-models. MCC 272 

calculation can be performed for gene essentiality and growth phenotypes by comparing in-vitro 273 

and in-silico analysis (67). The MCC is computed from a confusion matrix of true positive (TP, 274 

positive growth in-vitro and in-silico), true negative (TN, negative growth in-vitro and in-silico), 275 

false positive (FP, negative growth in vitro and positive growth in-silico), and false negative (FN, 276 

positive growth in-vitro and negative growth in-silico) simulations (57). With this approach, 277 

Equation 1 can be used to estimate the MMC.  278 

𝑀𝐶𝐶 =
𝑇𝑁𝑥𝑇𝑃−𝐹𝑁𝑥𝐹𝑃

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  (1) 279 

Tip 9. Addition of metadata to metabolites and 280 

reactions is critical to ensure compatibility. 281 

While reconstructing an M-model, different databases and tools are used to find detailed 282 

information about reactions, metabolites, genes, etc (S1 Table). In order to facilitate the exchange 283 

of information between M-models reconstructed based on different databases, an additional 284 

mapping of elements must be carried out. Standardization tools are also available to facilitate the 285 

mapping process (e.g., MetaboAnnotator) (68–71). This process consists of connecting the 286 

specific identifiers from one model to another as described in the following steps: a) Determine if 287 

the reaction/enzyme has an associated Enzyme Commission (EC) number. EC numbers are 288 
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usually common "threads" between all databases. b) If no EC number exists or is outdated, search 289 

for the reaction/enzyme name in the Integrated Relational Enzyme database (IntEnz) (37). A 290 

reaction could have more than one name. c) Identify the different reaction IDs in the databases 291 

of interest. It is recommended to consider information from Rhea (72), BiGG (44), KEGG (45), 292 

MetaNetX (73), BioCyc (74), ModelSEED (20) and Reactome (75). d) Confirm the reaction is the 293 

same by verifying the stoichiometric coefficients and metabolites involved. e) Add the identifiers 294 

and links to the model. f) If a reaction is not found in a database, it can be skipped. 295 

 296 

Tip 10. Sharable format JSON, MAT, SBML, XML, and 297 

visualization  298 

M-models must be ready to simulate, user-friendly, shareable, open-access, and compatible with 299 

different programming languages. Remarkable progress has been made in this front of constraint-300 

based modeling (70). Table S2 shows the most common formats in which M-models are publicly 301 

available. 302 

The Systems Biology Markup Language (SBML) format is a widely adopted standardized format 303 

that facilitates the sharing of models (76). It is highly encouraged to follow the SBML XML Schema 304 

format, such as XML format to ensure that SBML Models adhere to their specified structures and 305 

data types (77). XML Schema format allows for compatibility and consistency in SBML models 306 

across various software applications.  307 

M-models can also be stored in JSON (JavaScript Object Notation) format (78). This format 308 

includes the necessary components of an M-model, such as reactions, proteins, metabolites, 309 

genes, compartments, and their respective properties (44). Moreover, The JSON format is 310 
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compatible with Constraint-Based Reconstruction and Analysis for Python (COBRApy) (79) and 311 

the M-models visualization software Escher (80).  312 

Another essential format is the MATLAB binary file format "mat”. The "mat" format is compatible 313 

with the COBRA Toolbox (33) which has the same applications as COBRApy but runs in the 314 

MATLAB environment.  315 

Finally, the YAML format (YAML Ain't Markup Language) (81) is a human-readable data-316 

serialization format designed to provide simple readability that promotes sharing and 317 

collaboration. Researchers can edit the format without reliance on specialized tools or software, 318 

facilitating the communication and exchange of biological models. 319 

 320 

Conclusion 321 

The semi-automatic reconstruction of an M-model involves generating a draft model using 322 

automatic tools followed by applying manual curation to improve the model prediction accuracy. 323 

Despite several recent advances in the automated generation of draft metabolic reconstructions, 324 

the manual curation of these networks remains a labor-intensive and challenging task. Rigorous 325 

manual curation of genome-scale metabolic models is a high-work-high-reward process. An M-326 

model with high accuracy will enable building on top of it as a template for future reconstructions 327 

or advanced modeling approaches such as multi-strain modeling (82), metabolism and gene 328 

expression models (ME-models) (22,83), community models (CM-models) (24,25,84,85), and 329 

multi-scale models (7). 330 
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