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We consider adaptive least-squares finite element methods. First, we develop a guaranteed upper bound for the
dual error in the L, norm, and this can be used as a stopping criterion for the adaptive procedures. Secondly,
based on the a posteriori error estimates for the dual variable, we develop an error indicator that identifies the
local area to refine, and establish the convergence of the adaptive procedures based on the Dorfler’s marking

strategy. Our convergence analysis is valid for the entire range of the bulk parameter 0 < ® < 1 and it shows
the effect of bulk parameter and reduction factor of elements on the convergence rate. Confirming numerical

experiments are provided.

1. Introduction

Self-adaptive finite element methods have gained enormous impor-
tance for the numerical solution of partial differential equations. Typi-
cally, a posteriori error estimates are used to identify the local regions
to refine the current discretization and repeat the process until the
desired accuracy is achieved. There has been tremendous progress in
developing error estimators and establishing convergence of adaptive
procedures for the standard and mixed Galerkin finite element meth-
ods, see [1,3,9,11,13,15,17,19,23] and references therein.

Least-squares finite element methods (LSFEMs) provide competitive
alternatives for computations of approximate solutions, see [4] and ref-
erences therein. One of the main advantages of the LSFEMs is that they
have a built-in a posteriori error estimator in the natural energy-type
norms. However, there is only a limited number of results concerning
the mathematical theory of adaptive least-squares finite element meth-
ods (ALSFEMs). Recently, convergence results concerning ALSFEMs are
obtained in [7,8,10,11,14]. In particular, optimal convergence rates are
obtained in [7,8,10,11]. These are significant advances. However, they
are valid with some restrictions. For example, the results in [7,8,10,11]
are restricted to the lowest-order Raviart-Thomas or Nédélec elements,
and the results in [14] require a local bounded assumption. More im-
portantly, the existing convergence results do not show the effect of
bulk parameters and reduction rate of elements (ratio of new and cur-
rent elements) on the convergence. It is expected and observed that
there is a sharper decrease in the error between two consecutive lev-
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els when a large bulk parameter and small element reduction rate are
used. There is no theoretical analysis justifying this for the ALSFEMs.
Another important issue concerning ALSFEMs is that there are no guar-
anteed upper bounds for the ALSFEMs that can be used as a stopping
criterion in the adaptive procedures. This can limit the application of
ALSFEMs in practice. There is a result proving the asymptotic exactness
of the least-squares functional and the error in H(div) X H! norm for
the dual and primary variables, see [12].

There are two main goals in this paper. First, we develop a guaran-
teed upper bound for the dual error in the L, norm. This can be used
as a stopping criterion in the adaptive procedures. Our numerical ex-
periments show that the upper bounds are accurate and overestimate
the actual error by a factor of less than 2. Secondly, we establish the
convergence of ALSFEMs. A weighted version of a posteriori error es-
timators developed in [16] is proposed as an error indicator. With the
weighted residual as an error indicator, convergence is established us-
ing the reduction of the indicator in the adaptive procedures based on
the Dorfler marking strategy. Our approach establishes convergence of
ALSFEMs in the L, X H'! norm of dual and primary variables. The argu-
ment can be easily extended to the convergence in the natural energy
norm, i.e. H(div)x H'! norm. As observed in [8], the difference between
these two norms is that the first one uses data oscillation while the lat-
ter uses data approximation. Our analysis is valid for the entire range
of the bulk parameter 0 < ® <1 and it shows that a larger bulk param-
eter ® and small reduction rate elements y result in a sharper decrease
in the error between two consecutive levels in the adaptive procedure.
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More precisely, we show that for any given € > 0, there exists N such
that

No+k

No+k 2
"l h

flu— +llo -0, <e+Cs", (.1

fork=1,2,..,where 0 <d=11-0(1—-y2)< 1, and (”Z’GZ) is the ap-
proximate solution at the n-th step. Thus, one can expect that a linear
rate of convergence, modulo €, from N,-step. While we prove the exis-
tence of such N, we cannot determine the actual value since it depends
on many quantities such as ¢ and shape regularity of the elements etc.

One can use the marking strategy for weighted residuals in this
paper to complement the existing strategies for the convergence of ALS-
FEMs. It is easy and simple to implement the marking strategy for the
weighted residual along with the existing ones, and the convergence
of the adaptive procedure is guaranteed from the convergence result
of the weighted residual. For example, ALSFEMs in [11] converge at an
optimal rate with the lowest-order Raviart-Thomas elements, the results
do not extend to higher-order elements. By incorporating the marking
strategy in this paper, convergence is guaranteed with higher-order el-
ements.

This paper is organized as follows. Section 2 introduces the second-
order elliptic problems and the least-squares formulation of the prob-
lem. The finite element approximations and some preliminary results
are presented in Section 3. In Section 4, we establish an upper bound for
the dual error. In Section 5, we show that the sequence of the approx-
imate solutions is a Cauchy sequence in a Hilbert space and Section 6
presents a posteriori error indicators and mesh refinement strategy to
guarantee convergence to the true solutions. Numerical examples are
presented in Section 7.

2. Problem formulation

Let Q C R?, d = 2,3, be a bounded polygonal domain with boundary
0Q. Let H*(D) denote the Sobolev space of order s defined on D, and
the norm and semi-norm in H*(D) are denoted by || - || p and | - |, p
respectively. When D = Q, we will use || - ||, and H(} (D) denote the
functions in H'(D) with zero trace on dD. We shall also use the space

H(div)={r e (L>Q)? : V-1 € L*(Q)},

with the norm ||T||§1(dw) =(V-7,V-1)+(1,7).

2.1. Second-order elliptic problems

We consider the following model elliptic partial differential equa-
tion:

-V-AVu=f inQ, u=0 onoQ, (2.1)

where f € L,(Q) and A = (a;;(x)) _,.
continuous and the matrix A is symmetric and uniformly positive defi-

nite, i.e. there exist constants a; and «a; satisfying

We assume that a;; is Lipschitz

allx|> <xT Ax < o [|x||?, for all x € R9. (2.2)
We assume that u € H? with the following regularity estimate:
llully < Cllf Mlo- (2.3)

Here and hereafter, we use C to denote a generic positive constant, that
is, a constant independent of the mesh and f, but that may depend on
the domain Q.

Remark 2.1. We assume u € H%(Q) for a simple presentation. If u €
H'*%(Q) with 0 < @ < 1, then the weight of the error indicator defined
in (3.13) becomes h%.”‘ instead of h%, where hq is the diameter of T'.
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2.2. Least-squares variational problems

The second-order equation is transformed into a system of first order
by introducing dual variable 6 = —AVu. Then, (2.1) becomes
Vee=f 6+ AVu=0.

and 2.9

Let

V = H(div) and S = H;(Q)
Then, the least squares method for the first-order system (2.4) is: Find
u € S,o €V such that

b(o,u;t,v) = F(t,v), for all (r,v) €V XS, (2.5)

where

b(o,u;t,0)=(V-6,V-1)+ (A" (6 + AVu), T + AVD)

and
F@z,v)=(f,V-7).
3. Finite element approximation

To approximate the solution of (2.5), let 7, be a partition of Q
into triangles or rectangles (or their higher-dimensional analogues). For
simplicity of presentation, we consider only triangular elements. We as-
sume that the triangulation 77, is regular [5]. Let A, be the diameter
of element T € 7}, and let h(x) = hy, where x € T € 7, denote a mesh
function from Q to [0, 1].

Let P, (T') be the space of polynomials of degree k on triangle T'. For
theoretical analysis, consider

0,={9€ L) Q) : q|r € P(T), foreach T €T }. (3.1)
Let P, : L,(Q) — Qy, be local L, projection satisfying
(v—Pyv,q,)=0, Vg, €Qy. (3.2)

The projection operator P, satisfies the following approximation prop-
erty:

llo = Pyollor < Chylols - (33)

For the dual approximation spaces, we use the Raviart-Thomas
spaces [21] or Brezzi-Douglas-Marini spaces [6]. For simplicity, we
present our results based on the Raviart-Thomas spaces. The key re-
quirement for the dual approximation spaces is the commuting diagram
property given in (3.4). Denote the local Raviart-Thomas space of or-
der k:

RT(T) = P(T)? +xP(T)

with X = (xy,...,x,). The standard H(div) conforming Raviart-Thomas
space of index k is defined by

V,={teV: 7| eRT (T)forall T € T,}.

Then, we require that there exists an interpolant IT;, : VN [L?(Q)]" —
V,,, for some fixed p > 2, satisfying the following commuting diagram

property.
V-l,t=P,V -1, 3.4

for any 7 € V. With the above commuting diagram property with (3.2),
we have

(V-(r-Iy7),v,)=(V-T=P,V-1,0,)=0, (3.5)

for all v;, € Q;,. For approximation properties, we have
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llz =Ty zllor < Chlel, 7 for % <s<k+1. (3.6)

For the approximation spaces for the primary variable, we use the
standard continuous piecewise polynomial spaces .S}, defined as

S,={veS vlrepP (T forallT €T,}.

It has the following approximation property [22]:

lu—upllyp <Ch uly g, for 1 <T<k+2. 3.7)

Let V;, X.S), C VX .S be the finite element space to approximate the
dual variable o and primary function u.

3.1. Finite element approximation

We define an approximate solution (6,,u;,) € V, X S}, for (o,u) in
(2.5) as

b(oy,uy; Ty, 0,) = F(ty,v0,), Y(T,,0,) €V XS, (3.8)

Then, we have the following orthogonality property by subtracting (3.8)
from (2.5):

b(O' —OopUu—u,; Th,Vh) = O, for al].(Th,Vh) (S Vh X Sh' (3.9)

Using the definition of the bilinear form b(-; -), we have
blc—opu—uy;tyv,)=(V-(c—0,),V- 1))

+(A7 (6 =6, + AV —up)), T, + AV0y)

=0, VY(rj,v,)€V,XS,. (3.10)
Taking 7, =0 and using ¢ + AVu =0 in the above, we have
(6, + AVuy,, Vu,) =0, for all v, € S, (3.11)

The inequality (3.11) plays an important role in the development
of a posteriori error indicators in this paper. It is well-known that the
approximate solution (o, u,) satisfies the minimization property.

3.2. Error estimators

To present our error estimators and indicators, first define

()= A~ (o, + AVup)ll§ 1 (3.12)
T =A™ (o), + AVuIG 7» (3.13)
os¢*(f, ) = lhp(f = PoPlIg - (3.14)

For any subset M C 7, we define
M= Y 7 (T),
TeM
and ¢%(M) and osc?(f, M) are defined similarly.

Remark 3.1. For the remainder of this paper, for any g € L>(Q) and a
triangularion 77,, set

1/2
hglo=( Y, mlel3,) ",
TET)

where 4 is a mesh function with h(x) = hy for xeT € T,
In [16], the following inequality is obtained:

Theorem 3.1. Let (6, u;,) be the approximate solution defined in (3.8),
and let f;, =V - 6. Then,

lo=oull3+1Ve-uplE <C( Y, @+ 1n(s - f)IF).  (3.15)

TET)
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The following lower bound (efficiency bound) is obtained in [20,
Theorem 5.2].

Theorem 3.2. Assume that there exists s € N such that (AVu,,)r belongs
to P(T)", for all T € T},. Then, the following local lower bound holds:

hrllep + AVupllor < Cle —opllor + llu—upllor)-
4. Guaranteed upper bounds

We develop an upper bound for the dual error [|A~'/%(6 — 6,,)||, and
|AY2V(u - up)llp- We use the following Poincaré inequality, see [2].

hr
[lo=Pyollor < 7||VU||0,T, 4.1)
and Friedrichs inequality
llvlly < diam(Q)[[Voll,. (4.2)
Theorem 4.1. Let (6,,,u;,) be the approximation of (3.8). Then,
1472 = ol < (1470, + AV I
2
+ == Ia(f = PO
a;r
diam(Q2 1/2
AR o) L @)
0
and
A2V @ = uplly < (1470, + AVl
1
+ Eﬂh(f = Ppllo
0
diam(L2
+ (v 11,0~ 0l )- (4.4)
0

Remark 4.1. The last two terms ||A(f — P, f)llp and ||V - (1,6 — 6 ,)llo
are higher order terms. Clearly, ||A(f — P, f)ll, is higher order compared
to ||A_l/2(0'h + AVuy)l|o. In section 6, we show that ||V -(I1,6 —6)lly <
[|h(o), + AVu)llo-

Proof. Using the integration by parts, ¢ + AVu = 0 and Cauchy-
Schwarz inequality, we have

14726 =65 = (A" (6 —op) 0 — o)
=(A N o -0, +AVU—up),6 —6,)+(V-(6 =), u—up)
=AY o -0, + AV —up)),0 — 6, + AV(U —uy,))
+(V-(o—0op)u—uy)—((6—0,+AVU—uy), V(u—u))
= (A_I(O' -0, +AV(u—uy)), 0 —o,+AV(u—uy))
+H(V (6 =0y u—up) — (6= 6, Vu—up) - [|AV*V—uy)l2
= (A_l(o -0, +AVu—uy)),0 —o,+AV(u—uy))
+2V - (6 = op).u—up) = | A2V —up)||?
=147y + AVup)llg = 1A' 2V = up)Il
+2(V - (6 —6p),u—uy). (4.5)
We have
(V-(o—0p),u—up)=(V-(c—10),u=up)+ (V-0 —06p),u—up)
=1 +1,. (4.6)

Now, using the orthogonal property (3.2) and approximation prop-
erty (3.3), we have
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Iy =(V-(c—-1,0p),u—uy— P,(u—uy))

< 2 IV - (e —-Top)llorllu—up = Py —upllor
T

h
< 2V (@ =p)llor —- IV =up)llo;r

=~

< —lh(f = POV @ = up)ll

— 8

<Lynir - th>||a—10||A'/ZV<u—uh>||o

8

< (7 = Puf I + 142V @ = I,

%7
For 1,, using Friedrichs inequality, we have

I < ||V -0 —op)llollu —uglly
< diam(Q)||V - 1,0 - O'h)”o”V(u - uh)||0
diam(Q
< T 11,0 - o)l 1AV V= )l
0
diam(Q 1
< (DR (0 - oI+ HIAY VG- up) I,
0

Now, plugging the inequalities for /; and I, into (4.6) and then
(4.5), we have

14726 —a))II2

<|lA” ]/2(0',,+AVuh)||0+ SlIn(f - POl

0

+2( dia;n(Q)

0

PV - @6 —op)l3.

Taking square root on both sides, we obtain (4.3).
Similarly, we have

A2V = up)|} = (AV(@ = up), Viu—uy))
= (A_I (6 —0,+ AV(u—uy)), AV —up))
+(V-(o—0p),u—uy)
<1470 + AVuR) oIl AV @ = )l
+(V-(o—0p),u—up).
Now, using the argument for I, and I, we have
(V-(6—o0p)u—up)

d Q
< (G = Pupll + S

IV @ =l )

XIIAY2Y (= up)llo.-

Finally, using the above two inequalities and canceling ||A}/2V(u —
up)|ly, we obtain (4.4). This completes the proof. []

5. Convergence of the approximate solutions {(oz,u:)};":l

Let

X=VxS.

For notational convenience, we use U = (r,v) € X and define the

energy-type norm for U = (z,v) as follows:

NUNI* = b(z,v;7,0). 6.1

It is well-known that there exists C > 0 independent of meshsize satis-
fying

<IITIIH@M + 0l < U < ClelGy gy, + 101D, (5.2)
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Let X; = VZ xS Z n=1,2,3,... be the nested sequence of approxima-
tion spaces on 7, and U} = (6},u}) € X} be the approximate solution
defined by

B(U,, V)= F(Vy), forall vV, =(z}, v)) €X], (5.3
where

B(Uy, Vi) =bloy,uy;ty,0p)  and  F(Vy) = F(t}, vp).

Then, the orthogonality property (3.9) can be written as

B(U - w",q/;) =0, for all (V;’l S XZ’ (5.4)

where U = (o,u) in (2.5).

Lemma 5.1. Forn=1,2,3, .., let 'LI;'[ € X, be the solution defined in (5.3),
and U € X be the solution of (2.5). Then, for m> n

m—1

Medy — a1 = ) g, — i || 2. (5.5)
i=n

Proof. For m > n, using the orthogonality (5.4), we have

2y —Up|l1* = By — Uy, Uy —uy)
= B(U - U,, U —U,)
= B(U - Uy, Uy —U) + B(U-U,, U~-U))
=-B(U-U,, U~-U)+ BU-U,, U~-Uy)
=-B(U-U;, U~-U)+ BU—-U,, U-U,)
==l = U + U = Uyl

Rearranging the terms, we obtain

2_ 2 2
e =212 = [ = Ul = [y — 2l 5.6)

Now, using (5.6) repeatedly, we have

e = v P = =gl = U =2,

U = U212 = (U =2 = e =22,

e — 2= 1P = U =212 = a2 =2,
e =21 = U == 2 = =" =) 2.

Adding the above equations and canceling the same terms, we obtain
m—1
e =2l = = vl = Y U, — Uit )
i=n
Now, using (5.6) with the above equality, we obtain (5.5). This com-
pletes the proof. []

Theorem 5.2. For n=1,2,3, ..., let 712 = (0';",1,42) S X’;l be the solution
defined in (5.3). Then, {U}}>  is a Cauchy sequence in X, and

lim ’UZ =U™, for some U® =(c®,u®)eX=V XS,
n—oo

ie.

o}, — 6% in H(div), and uj — u® in Hé Q).

Proof. Define a sequence a; and S; as

i
S;=Y a, fori=1,23,..
Jj=1

i _qgtlp2
a; = |luy, — U, 1%,

Note that using (5.5),
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i i
S =

==

j=1

j j+1,2 1 i+1)12
W2 =212 = [l — i) 2.
Jj=1

Now, using (5.6) with m =i+ 1,n =1 and using the above equality, we
have

M = 1P = U = Ul = U, = P = U =2l = S

Thus, {Si},i] is nonnegative, increasing, and bounded above with an
upper bound |||U —U }'l|| |2. Hence, {S, i};2, converges, and this implies
that {.S;}7, is a Cauchy sequence.

Now, to show that {’LIZ ;’;1 is a Cauchy sequence, let 6 > 0 be given.

Then, there exists N > 0 such that |.S; — S| < §* for k,I,> N since
{:$;}72, is a Cauchy sequence. Without loss of generality, / > k. Now,

|SI - Sk| = |||‘L{k+| —'ZI,+| |||2- Thus,
U1 — U lll <6, for k,I> N.

This implies that {2/}~  C X is a Cauchy sequence. Thus, the Cauchy
sequence {‘LIZ};‘;I converges since X = H(div) X HA(Q) is a Ba-
nach space, see [5]. We denote the limit as ¢/*. This completes the
proof. []

6. A posteriori estimates

In this section, we establish an upper bound for IA~/2(c nt+
AVuy)||?, and this will be used to develop an error indicator to mark
the local region to refine in the mesh refinement strategy.

6.1. Error indicators

We use the a posteriori error indicator { defined in (3.13) for a
marking of current mesh, and show that the indicator is an upper bound
for the error of the LS approximate solutions, and converges to 0 in the
adaptive procedures.

Theorem 6.1. Let (6,,,u;,) be the approximate solution for (2.5) and I1,,

be the Fortin interpolant in V. Then, for r=1,2

1471 2(e), + AVuRIZ+ IV - (0 — o) < C llully - 1A(o), + AVup)llo,
(6.1)

Remark 6.1. From the above inequality and definitions (3.12) and
(3.13), we have

n*(T3) < C llully C(T5). 6.2)

Proof. Using the commuting diagram property (3.4), orthogonality
(3.10), 6 + AVu=0 and A being uniformly positive definite, we have

IV-@Myo - ol = (V-6 —0,), V- (1,06 — 6,))
=(V-(6—-0y), V- -(l,0-0y)
=—(A o -0, +AVu—uy)).ll6 —06),)
=—(A"Y 6 -6, +AV(u—-uy)),ll,6 —6+06—0a))
=—(A Yo -0, +AV(u—u,)) .16 — )
—(A Yo -0, +AV(u—-u,)).0—0cy)
=—(A o -0, + AV —u,)) .16 — 6)
—(A™ N6 -0, + AV(u—up)) .6 — ) + AV(U — up))
+(o -0, +AV(Uu—uy),V(u—uy))
= (04 + AVup,, 1,0 — 6) — | A7 (6, + AVuy)|12

— (6, + AVu,, V(u—uy)).
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Thus, we have
2 -1/2 2
IV - (Mo — oI5+ 14720, + AVu,)II3

= (0 + AVuy. 11,6 — 6) — (6, + AVuy, V(u —up)).

Now, using (3.11), the approximation properties (3.6) and (3.7), we
have

IV - @0 = ap)lig + lon + Vuyllg
=(oy + AVuy, 11,6 —0) — (o, + AVuy, V(u —up))
=(o,+ AVuy, 1,6 —0) — (6, + AVuy,,V(u—uy))

< Z lloy + AVuyllgrlle —Iollgr

TeT),
+ Z lloy+ AVupllorllu—u;lly 7
TeT),
< Y hplioy + AVuyllor(lloll 1 + llullr)
TeT),

<C(lelly + llullplh(e, + AVuy)lly
< Cllullzlth(o, + AVup)llo.

This proves for r =2.
Now, in order to reduce the power of ||V - (Il,o — Gh)”% to ||V -
(I1,0 — 6)lly, consider the following auxiliary problem:

-V-AVw=V-{l,6 —op), n=-AVw

Then, V-n=V . {l,6 — o)) with |||, <C||V-I,6 —0op)lly. Using the
above, we have

IV- (1,6 =6,
=(V-{l,6 —06,), V-0 —6}))
=(V-(6-0y), V-6 —0,)
=(V-(6-0,),V-n)
=(V-(6-0y), V-(1=T,p) — (A" (o}, + AVu,), I1,1)
=—(A" Yo, + AVuy). I,m) = —(A" (), + AVup), T,n—n+n)
=—(A"Y o) + AV, T — 1) — (A" (6, + AVu,,), —Vw)
=—(A"Y o), + AVu), Tn— 1) + (6, + AVu,), Vw — Vwy)
< Cllh(oy + AVup)llo - (inlly + llwlly)
<Cllh(oy, + AVup)lipllV - 6 —6)llg

This completes the proof for (6.1). []

We present one of the main results in this paper.

Theorem 6.2. Let (6,,,u;) be the approximate solution for (2.5) and I1,,
be the Fortin interpolant in V,. Then,

llo = o,lI2 + 1V @ — up)li2 < Cllull, £(T5,) + Cosc (£, Tp)- (6.3)

Remark 6.2. The following efficiency bound is presented in Theo-
rem 3.2, see [20, Theorem 5.2].

(M) <o —oullor + llu—upllor-
Proof. Using (3.15) and (6.2), we have

llo = o4lI3 + IV @ —up)llg < Cn*(Ty) + CllAGS = fl3

< Cllully ¢T3 + CllA = fDIG. (6.4)



J. Ku

Using f, =V - 0}, the triangle inequality (3.14) and Theorem 6.1, we
have

IA(f = fllg = 1RV - (6 = o)l
< |V - (6 ~T1,0)lIg + ClIAY - (T,6 — o)l
<ClhV - (6 = T,0)lIg + CIIV - (M0 — 63
<C||hV - (6 - 11,0)[1 + Cllh(o), + AVu,)lly
= C(osetr 7))+ Cllully £,
Now, plugging the above inequality into (6.4), we obtain (6.3). This

completes the proof. []

6.2. Bulk parameter and refinement strategy

Let 7 be the current triangulation. For any subset O C 7 we define

@)= Y .

TeD
Based on Theorem 6.2, we first present a mesh refinement strategy for
the weighted residual ¢ and we provide a convergence analysis based
on the strategy.

Marking strategy for weighted residual
Given a parameter 0 <© < 1, construct a subset M} of 7, such
that

O (T <M. (6.5)

Using CZ(T;:) = CZ(MZ) + §2((M’;I)C), then isolating {2((MZ)C), we have

O X (MDS) < (1 -\ (MY).

Now, adding (1 — ©)¢ 2((MZ)C) on both sides of the above, we obtain

CAMHS) <1 =) (T (6.6)

Concerning the relationship between two consecutive levels of mesh
refinement, we assume the following: Let 7' and 7, ;l’“ be two consec-
utive triangulations in {7 ,’,' }n>0 SO that 7, ,”'“ is a refinement of 7 ;: We

assume that there exists a positive constant 0 < y < 1, the reduction rate
of elements, satisfying

hp <yhp T €T, T' €T/ and T' CT. 6.7
Let h,, be the mesh function on 7' defined by
h,(x)=hy, where x€T €7} (6.8)
Then, (6.7) becomes
h

" <y, forxeT e M. 6.9)

n

6.3. Convergence

Now, we are ready to show the key ingredient for the convergence of
adaptive procedures. The result states that { converges linearly modulo
€ >0, and the results are valid for any bulk parameter 0 < ® < 1 and
any order of approximation spaces.

Theorem 6.3. Let (6}, u}) be the approximate solutions of (2.5) on trian-
gulations 7',n =0,1,2,3,.... Then, with the refinement strategy (6.5), we
have
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1/2
ca=( X Mlioh+AValZ, ) =0, asn—co. (6.10)
TeTy
Moreover, for any € > 0, there exists N, > 0 such that
(TN <ew 6h 0T fork=1,2.3, .. (6.11)
where
s=vV1-0(-y2) <1. 6.12)

Proof. Using Theorem 5.2, we have

n

Op

— 6% and uj — u®.

Also, for each x € Q, {h(x)}:"zo, with 0 < h,(x) < 1, is decreasing and
bounded below by 0. Thus, A, (x) converges, and we denote the limit as
hy(x). Then, we have

o} + AVu} - 6 + AVu™ in L?, and h,(x) — hy,(x) pointwise

and ||h,||, < 1. Thus,

1,(67 + AVUlg = 1heo (6% + AVu™)||y = f, for some f>0. (6.13)

Using the triangle inequality and 0 < 4, <1 for all n, we have

171 (0} + AV
<Ay (6] = o + AV =)l + g (0], + AVE) [l

=E, + |, 1(a), + AVl (6.14)

where E, = ||h% (o"lfrl -0+ AV(u;’;rl —u}))lo- Now, using the refine-
ment strategy satisfying h;“ <y < 1 for the triangles marked for refine-
ment and (6.6), i.e. ||h,(c} + Vip)llg pc < (1 = 0O)lh, (0} + Vu)lloo,
we have

741 (0, + AVUDI

n ny2 hVH’l n ny| 2
= h,41 (o) + AVuh)llo’MC + | h h, (o), + AVuh)llo’M
n
<|lh,(c} + AVu;)na et Pk, (a + AVEDIS
= (L= llhy(c) + AVUPIIZ | o + 7>, (0) + AVUDIG
<=y (A =)k, (c) + AVupI§ o + 1 lIA, () + AVUDIG o

= (1 =710+ 72 ) I, (0 + AVIR

= ((1=001 =) Ih(0} + AV

=8%||h,(c + AVUDIIG o

where 0 <6 =
(6.14), we have

1 —0(1 —y2) < 1. Plugging the above inequality into
1 (05! + AVUT)lg < E, + 8|, (07} + AVl (6.15)
To show that the limit converges to 0, using 0 < 4, < 1 and convergence

of {o-Z},{uZ} we have

0<E, <o} — o}l + AW —u})llg - 0 as n — co. (6.16)

Taking n — oo in (6.15) with using (6.13) and (6.16), we have

0Sﬂ55ﬂ,wlth6: 1_8(1_]/2)<].

Thus, f =0, i.e.

lh,(c}, + AVup)llg — 0, as n — co.

This completes (6.10).
Now, using (6.16), i.e. lim,_,  E, =0, given € > 0, there exists N
such that
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E,<(1—=06)-¢, forall n> N,. (6.17)
Set

Oy =T

Now using (6.11) repeatedly and (6.17), we have

ENp+k S Engak + 088 1h-1 S Engii + 0(Eng i1 + 68N 1x2)

2
SEngk T 0EN -1 + 6 Cnpri—2

IN

-1 k
< Engek + 8 Enppiot + -+ 8 Ey oy +65 - Oy

<A =-8)e(l+6+8>+---+8H+6" ¢y,

1 k
<A - +8* Ly,

= k.
=e+6" Ly,

This proves (6.11). This completes the proof. []

Remark 6.3. With a larger bulk parameter ® and a smaller refine-
ment parameter y, 6 = 1/1 — ©(1 — y2) becomes smaller and indicates a
sharper decrease in the error. Note that a larger bulk parameter means
marking more triangles for refinement and smaller y implies more re-
fined meshes.

Note that |6 — ol is bounded by ¢ and the data oscillation
osc(f,+). Thus, we use the following marking strategy to ensure a de-
crease in the data oscillation.

Marking strategy for data oscillation
Given a parameter 0 < ® <1 and subset M, C 7, enlarge M,
such that

Qosc?(f,T,) <osc>(f, M,). (6.18)

Remark 6.4. One can choose different bulk parameters for the weighted
residual and the data oscillation. In this case, the convergence rate will
be different. Also, in our numerical experiments, the marking strategy
for data oscillation does not add significantly many elements to the
existing M,, from the marking of the weighted residual.

With the bulk parameter ® and reduction parameter y, the following
reduction of the data oscillation is well known, e.g. [18, Lemma 3.9]

osc(f,7T,) < é"osc(f,Ty) forn=0,1,2,... (6.19)

Theorem 6.4. Let € > 0 be given. Then, there exists N > 0 such that

No+k 2 N0+k

llo =6, "5 + 11V =1, " I < e+ ClLF NG, (6.20)

I3
where

s=v1-01-7y2).

Proof. Using Theorem 3.1 and Theorem 6.3, and (6.19), we have

No+k 12 N0+k

llo = o, +||V(u—-

g

ll5

2
< Cllully Engar + C(osc( f,TNo+k)>
< Cllully € +C llully 8, +C&* N0t ose( £, 7).
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Now, using (2.2), we have

lizlly < CllA™ 22|, for all z,
and using (3.8), the arithmetic-geometric inequality, we have
- N N 1
14772(e,° + AV, )llo < 511 fllo-
Using 0 < h,, < 1 and combining the above two inequalities, we have
N N N
Eng = hny (@) + AV O)lly < [l (o0

— N, N
<Cll4A™*(6,° + AV, )l

<Clfllo-
Clearly,

N
+AVuh0)||0

osc(£, 7 < I f o
Thus, we have

No+k 2 N0+k

llo -0, oIV — )”2
<Cllull,e+ C<||u||2||f||o + 52N°+"||f||§)5k~

Now, scaling Cllul|,e to €, using 0 < 6 < 1 and the regularity esti-
mate (2.3), we obtain

N0+k”2

N k
llo =, " 12+ 1V —u, "

s <e+CllfIIG s~

This completes the proof. O

7. Numerical examples

In this section, we present numerical examples showing the con-
vergence behavior of the ALSFEMs using the new error indicator ¢(-)
defined in (3.13) and data oscillation osc(f,-) defined in (3.14), and

,."6‘3“3‘:‘3:*:\

‘ N’&"I/',';::g‘.‘;\
N7
\\““

SRR
" “‘\\\“\
‘ \\
”*“

"

03
02

0.1

m, “ 1

05

Fig. 7.1. A surface plot of the true solution u.

Fig. 7.2. Left: initial mesh with DoF = 2092; Right: generated by adaptive pro-
cedure with DoF = 82350.
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Fig. 7.3. Contour plots of uj,, Left: DoF = 2092; Right: DoF = 82350.

Table 7.1

Convergence and upper bounds with ® = 0.8 and 6§ = 0.6325.

DoFs 1A=2(6 — o))l rate UB(o) A2V (= up)lly rate UB(u)
2092 0.2171 - 0.3383 0.2338 - 0.4228
5201 0.1296 0.5970 0.1944 0.1494 0.6256 0.2255
13805 0.0832 0.6420 0.1241 0.0949 0.6352 0.1370
33693 0.0541 0.6502 0.0813 0.0605 0.6375 0.0906
82350 0.0339 0.6266 0.0518 0.0392 0.6479 0.0559
203907 0.0221 0.6519 0.0335 0.0253 0.6454 0.0348

Table 7.2

Convergence and upper bounds with ® = 0.4 and 6 = 0.8367.
DoFs 1A= 2(6 = ap)lly rate UB(o) 1AV (u = up)lly rate UBu)
2092 0.2171 - 0.3383 0.2338 - 0.4228
2941 0.1686 0.7766 0.2523 0.1915 0.8191 0.2894
4495 0.1371 0.8132 0.2067 0.1570 0.8198 0.2267
6539 0.1172 0.8549 0.1775 0.1334 0.8497 0.1930
9962 0.0971 0.8285 0.1472 0.1107 0.8298 0.1567
14766 0.0787 0.8105 0.1204 0.0914 0.8257 0.1264

accuracy of upper bounds obtained in (4.3) for IA=/2(6 — o,)llo and
(4.4) for || A2V (u—uy)|ly- Let @ =[—1,1]x[~1, 1] and we consider the
following model problem

—V-AVu=finQ, u=0o0n0dQ,

2 +sin(xy) O

where A = [ 0 |

(A= p).

For the approximation spaces, we use the lowest-order Raviart-
Thomas spaces for the flux variable 6 = —AVu and the standard con-
tinuous piecewise linear functions for the primary variable u. With the
reduction rate for elements y = %, we choose ® = 0.8 and ® = 0.4 for
the bulk parameters. Our algorithm selects a subset M of 77, that satis-
fies © ¢2(Q) < ¢2(M) and @ osc(f,T,) < osc(f, M). Then, the MATLAB
function “refinement.m” is used to refine the current mesh by dividing
each marked triangle into four triangles of the same shape. The reduc-
tion rate of the error for ||A~!/%(c — op)llp and ||A1/2V(u—uh)||0 is close
to 6 = 1/1 —O(1 —y2), and this is better than the rate of convergence
expected from (6.20). Also, the guaranteed upper bounds are close to
the actual errors, and they are overestimated by a factor less than 2.

Tables 7.1 and 7.2 present the convergence behavior of error
1A=2(6 — 6})|lp and ||A'/>V(u - uy)||, and their upper bounds. Note
that U B(o) and U B(u) are the upper bounds of 1A= 2(6 = op)llp and
1AY/2V (u—u,)llo defined in (4.3) and (4.4) respectively. Fig. 7.1 shows
the surface plot of the true solution, and Fig. 7.2 shows the initial and

] with the true solution u = (x2 + y?)*31(1 —
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adaptive meshes. Moreover, we present the contour plot of the approx-
imation solution uy, in Fig. 7.3.
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