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We consider adaptive least-squares finite element methods. First, we develop a guaranteed upper bound for the
dual error in the 𝐿2 norm, and this can be used as a stopping criterion for the adaptive procedures. Secondly,
based on the a posteriori error estimates for the dual variable, we develop an error indicator that identifies the
local area to refine, and establish the convergence of the adaptive procedures based on the Dörfler’s marking
strategy. Our convergence analysis is valid for the entire range of the bulk parameter 0 < Θ ≤ 1 and it shows 
the effect of bulk parameter and reduction factor of elements on the convergence rate. Confirming numerical
experiments are provided.
1. Introduction

Self-adaptive finite element methods have gained enormous impor-
tance for the numerical solution of partial differential equations. Typi-
cally, a posteriori error estimates are used to identify the local regions
to refine the current discretization and repeat the process until the
desired accuracy is achieved. There has been tremendous progress in
developing error estimators and establishing convergence of adaptive
procedures for the standard and mixed Galerkin finite element meth-
ods, see [1,3,9,11,13,15,17,19,23] and references therein.

Least-squares finite element methods (LSFEMs) provide competitive
alternatives for computations of approximate solutions, see [4] and ref-
erences therein. One of the main advantages of the LSFEMs is that they
have a built-in a posteriori error estimator in the natural energy-type
norms. However, there is only a limited number of results concerning
the mathematical theory of adaptive least-squares finite element meth-
ods (ALSFEMs). Recently, convergence results concerning ALSFEMs are
obtained in [7,8,10,11,14]. In particular, optimal convergence rates are
obtained in [7,8,10,11]. These are significant advances. However, they
are valid with some restrictions. For example, the results in [7,8,10,11]
are restricted to the lowest-order Raviart-Thomas or Nédélec elements,
and the results in [14] require a local bounded assumption. More im-
portantly, the existing convergence results do not show the effect of
bulk parameters and reduction rate of elements (ratio of new and cur-
rent elements) on the convergence. It is expected and observed that
there is a sharper decrease in the error between two consecutive lev-
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els when a large bulk parameter and small element reduction rate are
used. There is no theoretical analysis justifying this for the ALSFEMs.
Another important issue concerning ALSFEMs is that there are no guar-
anteed upper bounds for the ALSFEMs that can be used as a stopping
criterion in the adaptive procedures. This can limit the application of
ALSFEMs in practice. There is a result proving the asymptotic exactness
of the least-squares functional and the error in 𝐻(div) ×𝐻1 norm for 
the dual and primary variables, see [12].

There are two main goals in this paper. First, we develop a guaran-
teed upper bound for the dual error in the 𝐿2 norm. This can be used 
as a stopping criterion in the adaptive procedures. Our numerical ex-
periments show that the upper bounds are accurate and overestimate
the actual error by a factor of less than 2. Secondly, we establish the 
convergence of ALSFEMs. A weighted version of a posteriori error es-
timators developed in [16] is proposed as an error indicator. With the
weighted residual as an error indicator, convergence is established us-
ing the reduction of the indicator in the adaptive procedures based on
the Dörfler marking strategy. Our approach establishes convergence of
ALSFEMs in the 𝐿2 ×𝐻1 norm of dual and primary variables. The argu-
ment can be easily extended to the convergence in the natural energy
norm, i.e. 𝐻(div) ×𝐻1 norm. As observed in [8], the difference between 
these two norms is that the first one uses data oscillation while the lat-
ter uses data approximation. Our analysis is valid for the entire range
of the bulk parameter 0 <Θ ≤ 1 and it shows that a larger bulk param-
eter Θ and small reduction rate elements 𝛾 result in a sharper decrease 
in the error between two consecutive levels in the adaptive procedure.
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More precisely, we show that for any given 𝜖 > 0, there exists 𝑁0 such 
that

‖𝑢− 𝑢
𝑁0+𝑘
ℎ

‖21 + ‖𝝈 − 𝝈
𝑁0+𝑘
ℎ

‖20 ≤ 𝜖 +𝐶𝛿𝑘, (1.1)

for 𝑘 = 1, 2, ..., where 0 < 𝛿 =
√
1 −Θ(1 − 𝛾2) < 1, and (𝑢𝑛

ℎ
, 𝝈𝑛

ℎ
) is the ap-

proximate solution at the 𝑛-th step. Thus, one can expect that a linear 
rate of convergence, modulo 𝜖, from 𝑁0-step. While we prove the exis-
tence of such 𝑁0, we cannot determine the actual value since it depends 
on many quantities such as 𝜖 and shape regularity of the elements etc.

One can use the marking strategy for weighted residuals in this 
paper to complement the existing strategies for the convergence of ALS-
FEMs. It is easy and simple to implement the marking strategy for the 
weighted residual along with the existing ones, and the convergence 
of the adaptive procedure is guaranteed from the convergence result 
of the weighted residual. For example, ALSFEMs in [11] converge at an 
optimal rate with the lowest-order Raviart-Thomas elements, the results 
do not extend to higher-order elements. By incorporating the marking 
strategy in this paper, convergence is guaranteed with higher-order el-
ements.

This paper is organized as follows. Section 2 introduces the second-
order elliptic problems and the least-squares formulation of the prob-
lem. The finite element approximations and some preliminary results 
are presented in Section 3. In Section 4, we establish an upper bound for 
the dual error. In Section 5, we show that the sequence of the approx-
imate solutions is a Cauchy sequence in a Hilbert space and Section 6
presents a posteriori error indicators and mesh refinement strategy to 
guarantee convergence to the true solutions. Numerical examples are 
presented in Section 7.

2. Problem formulation

Let Ω ⊂ℝ𝑑 , 𝑑 = 2, 3, be a bounded polygonal domain with boundary 
𝜕Ω. Let 𝐻𝑠(𝐷) denote the Sobolev space of order 𝑠 defined on 𝐷, and 
the norm and semi-norm in 𝐻𝑠(𝐷) are denoted by ‖ ⋅ ‖𝑠,𝐷 and | ⋅ |𝑠,𝐷
respectively. When 𝐷 = Ω, we will use ‖ ⋅ ‖𝑠, and 𝐻1

0 (𝐷) denote the 
functions in 𝐻1(𝐷) with zero trace on 𝜕𝐷. We shall also use the space

𝐻(div) = {𝝉 ∈ (𝐿2(Ω))𝑑 ∶ ∇ ⋅ 𝝉 ∈𝐿2(Ω)},

with the norm ‖𝝉‖2
𝐻(div) = (∇ ⋅ 𝝉 , ∇ ⋅ 𝝉) + (𝝉 , 𝝉).

2.1. Second-order elliptic problems

We consider the following model elliptic partial differential equa-
tion:

−∇ ⋅𝐴∇𝑢 = 𝑓 in Ω, 𝑢 = 0 on 𝜕Ω, (2.1)

where 𝑓 ∈ 𝐿2(Ω) and 𝐴 = (𝑎𝑖𝑗 (𝑥))𝑑𝑖,𝑗=1. We assume that 𝑎𝑖𝑗 is Lipschitz 
continuous and the matrix 𝐴 is symmetric and uniformly positive defi-
nite, i.e. there exist constants 𝛼0 and 𝛼1 satisfying

𝛼0‖𝐱‖2 ≤ 𝐱𝑇 𝐴𝐱 ≤ 𝛼1‖𝐱‖2, for all 𝐱 ∈ℝ𝑑 . (2.2)

We assume that 𝑢 ∈𝐻2 with the following regularity estimate:

‖𝑢‖2 ≤ 𝐶‖𝑓‖0. (2.3)

Here and hereafter, we use 𝐶 to denote a generic positive constant, that 
is, a constant independent of the mesh and 𝑓 , but that may depend on 
the domain Ω.

Remark 2.1. We assume 𝑢 ∈ 𝐻2(Ω) for a simple presentation. If 𝑢 ∈
𝐻1+𝛼(Ω) with 0 < 𝛼 < 1, then the weight of the error indicator defined 
in (3.13) becomes ℎ2𝛼 instead of ℎ2 , where ℎ𝑇 is the diameter of 𝑇 .
𝑇 𝑇
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2.2. Least-squares variational problems

The second-order equation is transformed into a system of first order 
by introducing dual variable 𝝈 = −𝐴∇𝑢. Then, (2.1) becomes

∇ ⋅ 𝝈 = 𝑓 and 𝝈 +𝐴∇𝑢 = 0. (2.4)

Let

𝐕 =𝐻(div) and 𝑆 =𝐻1
0 (Ω)

Then, the least squares method for the first-order system (2.4) is: Find 
𝑢 ∈ 𝑆, 𝝈 ∈𝐕 such that

𝑏(𝝈, 𝑢;𝝉 , 𝑣) = 𝐹 (𝝉 , 𝑣), for all (𝝉 , 𝑣) ∈𝐕 ×𝑆, (2.5)

where

𝑏(𝝈, 𝑢 ;𝝉 , 𝑣) = (∇ ⋅ 𝝈,∇ ⋅ 𝝉) + (𝐴−1(𝝈 +𝐴∇𝑢),𝝉 +𝐴∇𝑣)

and

𝐹 (𝝉 , 𝑣) = (𝑓,∇ ⋅ 𝝉).

3. Finite element approximation

To approximate the solution of (2.5), let Tℎ be a partition of Ω
into triangles or rectangles (or their higher-dimensional analogues). For 
simplicity of presentation, we consider only triangular elements. We as-
sume that the triangulation Tℎ is regular [5]. Let ℎ𝑇 be the diameter 
of element 𝑇 ∈ Tℎ and let ℎ(𝑥) = ℎ𝑇 , where 𝑥 ∈ 𝑇 ∈ Tℎ, denote a mesh 
function from Ω to [0, 1].

Let 𝑃𝑘(𝑇 ) be the space of polynomials of degree 𝑘 on triangle 𝑇 . For 
theoretical analysis, consider

𝑄ℎ = {𝑞 ∈𝐿2(Ω) ∶ 𝑞|𝑇 ∈ 𝑃𝑘(𝑇 ), for each 𝑇 ∈ Tℎ}. (3.1)

Let 𝑃ℎ ∶𝐿2(Ω) →𝑄ℎ be local 𝐿2 projection satisfying

(𝑣− 𝑃ℎ𝑣, 𝑞ℎ) = 0, ∀𝑞ℎ ∈𝑄ℎ. (3.2)

The projection operator 𝑃ℎ satisfies the following approximation prop-
erty:

‖𝑣− 𝑃ℎ𝑣‖0,𝑇 ≤ 𝐶ℎ𝑠
𝑇
|𝑣|𝑠,𝑇 . (3.3)

For the dual approximation spaces, we use the Raviart-Thomas 
spaces [21] or Brezzi-Douglas-Marini spaces [6]. For simplicity, we 
present our results based on the Raviart-Thomas spaces. The key re-
quirement for the dual approximation spaces is the commuting diagram 
property given in (3.4). Denote the local Raviart-Thomas space of or-
der 𝑘:

𝑅𝑇𝑘(𝑇 ) = 𝑃𝑘(𝑇 )𝑑 + 𝐱𝑃𝑘(𝑇 )

with 𝐱 = (𝑥1, ..., 𝑥𝑑 ). The standard 𝐻(div) conforming Raviart-Thomas 
space of index 𝑘 is defined by

𝐕ℎ = {𝝉 ∈𝐕 ∶ 𝝉|𝑇 ∈𝑅𝑇𝑘(𝑇 ) for all 𝑇 ∈ Tℎ}.

Then, we require that there exists an interpolant Πℎ ∶ 𝐕 ∩ [𝐿𝑝(Ω)]𝑛 →
𝐕ℎ, for some fixed 𝑝 > 2, satisfying the following commuting diagram 
property.

∇ ⋅Πℎ𝝉 = 𝑃ℎ∇ ⋅ 𝝉 , (3.4)

for any 𝝉 ∈𝐕. With the above commuting diagram property with (3.2), 
we have

(∇ ⋅ (𝝉 −Πℎ𝝉), 𝑣ℎ) = (∇ ⋅ 𝝉 − 𝑃ℎ∇ ⋅ 𝝉 , 𝑣ℎ) = 0, (3.5)

for all 𝑣ℎ ∈𝑄ℎ. For approximation properties, we have
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‖𝝉 −Πℎ𝝉‖0,𝑇 ≤ 𝐶ℎ𝑠
𝑇
|𝝉|𝑠,𝑇 , for 1

2
< 𝑠 ≤ 𝑘+ 1. (3.6)

For the approximation spaces for the primary variable, we use the 
standard continuous piecewise polynomial spaces 𝑆ℎ defined as

𝑆ℎ = {𝐯 ∈ 𝑆 ∶ 𝐯|𝑇 ∈ 𝑃𝑘+1(𝑇 ) for all 𝑇 ∈ Tℎ}.

It has the following approximation property [22]:

‖𝑢− 𝑢𝐼‖1,𝑇 ≤ 𝐶ℎ𝑙−1
𝑇

|𝑢|𝑙,𝑇 , for 1 ≤ 𝑙 ≤ 𝑘+ 2. (3.7)

Let 𝐕ℎ ×𝑆ℎ ⊂𝐕 × 𝑆 be the finite element space to approximate the 
dual variable 𝝈 and primary function 𝑢.

3.1. Finite element approximation

We define an approximate solution (𝝈ℎ, 𝑢ℎ) ∈ 𝐕ℎ × 𝑆ℎ for (𝝈, 𝑢) in 
(2.5) as

𝑏(𝝈ℎ, 𝑢ℎ; 𝝉ℎ, 𝑣ℎ) = 𝐹 (𝝉ℎ, 𝑣ℎ), ∀(𝝉ℎ, 𝑣ℎ) ∈𝐕ℎ × 𝑆ℎ. (3.8)

Then, we have the following orthogonality property by subtracting (3.8)
from (2.5):

𝑏(𝝈 − 𝝈ℎ,𝐮− 𝐮ℎ ; 𝝉ℎ,𝐯ℎ) = 0, for all(𝝉ℎ,𝐯ℎ) ∈𝐕ℎ × 𝑆ℎ. (3.9)

Using the definition of the bilinear form 𝑏(⋅ ; ⋅), we have

𝑏(𝝈 − 𝝈ℎ, 𝑢− 𝑢ℎ ; 𝝉ℎ, 𝑣ℎ) = (∇ ⋅ (𝝈 − 𝝈ℎ),∇ ⋅ 𝝉ℎ)

+(𝐴−1(𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ)), 𝝉ℎ +𝐴∇𝑣ℎ)

= 0, ∀(𝝉ℎ, 𝑣ℎ) ∈𝐕ℎ × 𝑆ℎ. (3.10)

Taking 𝝉ℎ = 0 and using 𝝈 +𝐴∇𝑢 = 0 in the above, we have

(𝝈ℎ +𝐴∇𝑢ℎ , ∇𝑣ℎ) = 0, for all 𝑣ℎ ∈ 𝑆ℎ. (3.11)

The inequality (3.11) plays an important role in the development 
of a posteriori error indicators in this paper. It is well-known that the 
approximate solution (𝝈ℎ, 𝐮ℎ) satisfies the minimization property.

3.2. Error estimators

To present our error estimators and indicators, first define

𝜂2(𝑇 ) = ‖𝐴−1∕2(𝝈ℎ +𝐴∇𝑢ℎ)‖20,𝑇 , (3.12)

𝜁2(𝑇 ) = ℎ2
𝑇
‖𝐴−1∕2(𝝈ℎ +𝐴∇𝑢ℎ)‖20,𝑇 , (3.13)

osc2(𝑓,𝑇 ) = ‖ℎ𝑇 (𝑓 − 𝑃ℎ𝑓 )‖20,𝑇 . (3.14)

For any subset M ⊂ Tℎ, we define

𝜂2(M) =
∑
𝑇∈M

𝜂2(𝑇 ),

and 𝜁2(M) and osc2(𝑓, M) are defined similarly.

Remark 3.1. For the remainder of this paper, for any 𝑔 ∈ 𝐿2(Ω) and a 
triangularion Tℎ, set

‖ℎ𝑔‖0 = ( ∑
𝑇∈Tℎ

ℎ2
𝑇
‖𝑔‖20,𝑇)1∕2

,

where ℎ is a mesh function with ℎ(𝑥) = ℎ𝑇 for 𝑥 ∈ 𝑇 ∈ Tℎ.

In [16], the following inequality is obtained:

Theorem 3.1. Let (𝝈ℎ, 𝑢ℎ) be the approximate solution defined in (3.8), 
and let 𝑓ℎ =∇ ⋅ 𝝈ℎ. Then,

‖𝝈 − 𝝈ℎ‖20 + ‖∇(𝑢− 𝑢ℎ)‖20 ≤ 𝐶

( ∑
𝑇∈T

𝜂2(𝑇 ) + ‖ℎ(𝑓 − 𝑓ℎ)‖20). (3.15)
ℎ
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The following lower bound (efficiency bound) is obtained in [20, 
Theorem 5.2].

Theorem 3.2. Assume that there exists 𝑠 ∈ 𝐍 such that (𝐴∇𝑢ℎ)𝑇 belongs 
to 𝑃𝑠(𝑇 )𝑛, for all 𝑇 ∈ Tℎ. Then, the following local lower bound holds:

ℎ𝑇 ‖𝝈ℎ +𝐴∇𝑢ℎ‖0,𝑇 ≤ 𝐶(‖𝝈 − 𝝈ℎ‖0,𝑇 + ‖𝑢− 𝑢ℎ‖0,𝑇 ).
4. Guaranteed upper bounds

We develop an upper bound for the dual error ‖𝐴−1∕2(𝝈−𝝈ℎ)‖0 and ‖𝐴1∕2∇(𝑢 − 𝑢ℎ)‖0. We use the following Poincaré inequality, see [2].
‖𝑣− 𝑃ℎ𝑣‖0,𝑇 ≤

ℎ𝑇

𝜋
‖∇𝑣‖0,𝑇 , (4.1)

and Friedrichs inequality

‖𝑣‖0 ≤ diam(Ω)‖∇𝑣‖0. (4.2)

Theorem 4.1. Let (𝝈ℎ, 𝑢ℎ) be the approximation of (3.8). Then,

‖𝐴−1∕2(𝝈 − 𝝈ℎ)‖0 ≤ (‖𝐴−1∕2(𝝈ℎ +𝐴∇𝑢ℎ)‖20
+ 2

𝛼20𝜋
2
‖ℎ(𝑓 − 𝑃ℎ𝑓 )‖20

+ 2( diam(Ω)
𝛼0

)2‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖20)1∕2
, (4.3)

and

‖𝐴1∕2∇(𝑢− 𝑢ℎ)‖0 ≤ (‖𝐴−1∕2(𝝈ℎ +𝐴∇𝑢ℎ)‖0
+ 1

𝛼0𝜋
‖ℎ(𝑓 − 𝑃ℎ𝑓 )‖0

+ ( diam(Ω)
𝛼0

)‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖0). (4.4)

Remark 4.1. The last two terms ‖ℎ(𝑓 − 𝑃ℎ𝑓 )‖0 and ‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖0
are higher order terms. Clearly, ‖ℎ(𝑓 −𝑃ℎ𝑓 )‖0 is higher order compared 
to ‖𝐴−1∕2(𝝈ℎ+𝐴∇𝑢ℎ)‖0. In section 6, we show that ‖∇ ⋅ (Πℎ𝝈−𝝈ℎ)‖0 ≤‖ℎ(𝝈ℎ +𝐴∇𝑢ℎ)‖0.
Proof. Using the integration by parts, 𝝈 + 𝐴∇𝑢 = 0 and Cauchy-
Schwarz inequality, we have

‖𝐴−1∕2(𝝈 − 𝝈ℎ)‖20 = (𝐴−1(𝝈 − 𝝈ℎ),𝝈 − 𝝈ℎ)

= (𝐴−1(𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ)),𝝈 − 𝝈ℎ) + (∇ ⋅ (𝝈 − 𝝈ℎ), 𝑢− 𝑢ℎ)

= (𝐴−1(𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ)),𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ))

+ (∇ ⋅ (𝝈 − 𝝈ℎ), 𝑢− 𝑢ℎ) − ((𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ)),∇(𝑢− 𝑢ℎ))

= (𝐴−1(𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ)),𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ))

+(∇ ⋅ (𝝈 − 𝝈ℎ), 𝑢− 𝑢ℎ) − (𝝈 − 𝝈ℎ,∇(𝑢− 𝑢ℎ)) − ‖𝐴1∕2∇(𝑢− 𝑢ℎ)‖20
= (𝐴−1(𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ)),𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ))

+2(∇ ⋅ (𝝈 − 𝝈ℎ), 𝑢− 𝑢ℎ) − ‖𝐴1∕2∇(𝑢− 𝑢ℎ)‖20
= ‖𝐴−1∕2(𝝈ℎ +𝐴∇𝑢ℎ)‖20 − ‖𝐴1∕2∇(𝑢− 𝑢ℎ)‖20
+2(∇ ⋅ (𝝈 − 𝝈ℎ), 𝑢− 𝑢ℎ). (4.5)

We have

(∇ ⋅ (𝝈 − 𝝈ℎ), 𝑢− 𝑢ℎ) = (∇ ⋅ (𝝈 −Πℎ𝝈), 𝑢− 𝑢ℎ) + (∇ ⋅ (Πℎ𝝈 − 𝝈ℎ), 𝑢− 𝑢ℎ)

= 𝐼1 + 𝐼2. (4.6)

Now, using the orthogonal property (3.2) and approximation prop-
erty (3.3), we have
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𝐼1 = (∇ ⋅ (𝝈 −Πℎ𝝈ℎ), 𝑢− 𝑢ℎ − 𝑃ℎ(𝑢− 𝑢ℎ))

≤

∑
𝑇

‖∇ ⋅ (𝝈 −Πℎ𝝈ℎ)‖0,𝑇 ‖𝑢− 𝑢ℎ − 𝑃ℎ(𝑢− 𝑢ℎ)‖0,𝑇
≤

∑
𝑇

‖∇ ⋅ (𝝈 −Πℎ𝝈ℎ)‖0,𝑇 ℎ𝑇

𝜋
‖∇(𝑢− 𝑢ℎ)‖0,𝑇

≤
1
𝜋
‖ℎ(𝑓 − 𝑃ℎ𝑓 )‖‖∇(𝑢− 𝑢ℎ)‖0

≤
1
𝜋
‖ℎ(𝑓 − 𝑃ℎ𝑓 )‖ 1

𝛼0
‖𝐴1∕2∇(𝑢− 𝑢ℎ)‖0

≤
1

𝛼20𝜋
2
‖ℎ(𝑓 − 𝑃ℎ𝑓 )‖20 + 1

4
‖𝐴1∕2∇(𝑢− 𝑢ℎ)‖20.

For 𝐼2, using Friedrichs inequality, we have

𝐼2 ≤ ‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖0‖𝑢− 𝑢ℎ‖0
≤ diam(Ω)‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖0‖∇(𝑢− 𝑢ℎ)‖0
≤

diam(Ω)
𝛼0

‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖0‖𝐴1∕2∇(𝑢− 𝑢ℎ)‖0
≤ ( diam(Ω)

𝛼0
)2‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖20 + 1

4
‖|𝐴1∕2∇(𝑢− 𝑢ℎ)‖20.

Now, plugging the inequalities for 𝐼1 and 𝐼2 into (4.6) and then 
(4.5), we have

‖𝐴−1∕2(𝝈 − 𝝈ℎ)‖20
≤ ‖𝐴−1∕2(𝝈ℎ +𝐴∇𝑢ℎ)‖20 + 2

𝛼20𝜋
2
‖ℎ(𝑓 − 𝑃ℎ𝑓 )‖20

+2( diam(Ω)
𝛼0

)2‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖20.
Taking square root on both sides, we obtain (4.3).

Similarly, we have

‖𝐴1∕2∇(𝑢− 𝑢ℎ)‖20 = (𝐴∇(𝑢− 𝑢ℎ) , ∇(𝑢− 𝑢ℎ))

= (𝐴−1(𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ)),𝐴∇(𝑢− 𝑢ℎ))

+ (∇ ⋅ (𝝈 − 𝝈ℎ), 𝑢− 𝑢ℎ)

≤ ‖𝐴−1∕2(𝝈ℎ +𝐴∇𝑢ℎ)‖0‖𝐴1∕2∇(𝑢− 𝑢ℎ)‖0
+ (∇ ⋅ (𝝈 − 𝝈ℎ), 𝑢− 𝑢ℎ).

Now, using the argument for 𝐼1 and 𝐼2 we have

(∇ ⋅ (𝝈 − 𝝈ℎ), 𝑢− 𝑢ℎ)

≤

( 1
𝛼0𝜋

‖ℎ(𝑓 − 𝑃ℎ𝑓 )‖0 + diam(Ω)
𝛼0

‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖0)
×‖𝐴1∕2∇(𝑢− 𝑢ℎ)‖0.

Finally, using the above two inequalities and canceling ‖𝐴1∕2∇(𝑢 −
𝑢ℎ)‖0, we obtain (4.4). This completes the proof. □

5. Convergence of the approximate solutions {(𝝈𝒏

𝒉
, 𝒖𝒏

𝒉
)}∞
𝒏=𝟏

Let

𝐗 =𝐕 ×𝑆.

For notational convenience, we use U = (𝝉 , 𝑣) ∈ 𝐗 and define the 
energy-type norm for U = (𝝉 , 𝑣) as follows:

|‖U‖|2 = 𝑏(𝝉 , 𝑣;𝝉 , 𝑣). (5.1)

It is well-known that there exists 𝐶 > 0 independent of meshsize satis-
fying

1 (‖𝝉‖2
𝐻(div) + ‖𝑣‖21) ≤ |‖U‖|2 ≤ 𝐶(‖𝝉‖2

𝐻(div) + ‖𝑣‖21), (5.2)

𝐶

55
Let 𝐗𝑛
ℎ
=𝐕𝑛

ℎ
×𝑆𝑛

ℎ
, 𝑛 = 1, 2, 3, ... be the nested sequence of approxima-

tion spaces on T 𝑛
ℎ
, and U𝑛

ℎ
= (𝝈𝑛

ℎ
, 𝑢𝑛

ℎ
) ∈𝐗𝑛

ℎ
be the approximate solution 

defined by

𝐵(U𝑛
ℎ
,V𝑛

ℎ
) = 𝐹 (Vℎ), for all V𝑛

ℎ
= (𝝉𝑛

ℎ
, 𝑣𝑛

ℎ
) ∈𝐗𝑛

ℎ
, (5.3)

where

𝐵(U𝑛
ℎ
,V𝑛

ℎ
) = 𝑏(𝝈𝑛

ℎ
, 𝑢𝑛

ℎ
;𝝉𝑛

ℎ
, 𝑣𝑛

ℎ
) and 𝐹 (V𝑛

ℎ
) = 𝐹 (𝝉𝑛

ℎ
, 𝑣𝑛

ℎ
).

Then, the orthogonality property (3.9) can be written as

𝐵(U −U𝑛
ℎ
,V𝑛

ℎ
) = 0, for all V𝑛

ℎ
∈𝐗𝑛

ℎ
, (5.4)

where U = (𝝈, 𝐮) in (2.5).

Lemma 5.1. For 𝑛 = 1, 2, 3, ..., let U𝑛
ℎ
∈𝐗ℎ be the solution defined in (5.3), 

and U ∈𝐗 be the solution of (2.5). Then, for 𝑚 > 𝑛

|‖U𝑛
ℎ
−U𝑚

ℎ
‖|2 = 𝑚−1∑

𝑖=𝑛
|‖U𝑖

ℎ
−U𝑖+1

ℎ
‖|2. (5.5)

Proof. For 𝑚 > 𝑛, using the orthogonality (5.4), we have

|‖U𝑚
ℎ
−U𝑛

ℎ
‖|2 =𝐵(U𝑚

ℎ
−U𝑛

ℎ
,U𝑚

ℎ
−U𝑛

ℎ
)

=𝐵(U −U𝑛
ℎ
,U𝑚

ℎ
−U𝑛

ℎ
)

=𝐵(U −U𝑛
ℎ
,U𝑚

ℎ
−U) +𝐵(U −U𝑛

ℎ
,U −U𝑛

ℎ
)

= −𝐵(U −U𝑛
ℎ
,U −U𝑚

ℎ
) +𝐵(U −U𝑛

ℎ
,U −U𝑛

ℎ
)

= −𝐵(U −U𝑚
ℎ
,U −U𝑚

ℎ
) +𝐵(U −U𝑛

ℎ
,U −U𝑛

ℎ
)

= −|‖U −U𝑚
ℎ
‖|2 + |‖U −U𝑛

ℎ
‖|2.

Rearranging the terms, we obtain

|‖U −U𝑚
ℎ
‖|2 = |‖U −U𝑛

ℎ
‖|2 − |‖U𝑚

ℎ
−U𝑛

𝑚
‖|2. (5.6)

Now, using (5.6) repeatedly, we have

|‖U −U𝑛+1
ℎ

‖|2 = |‖U −U𝑛
ℎ
‖|2 − |‖U𝑛 −U𝑛+1

ℎ
‖|2,

|‖U −U𝑛+2
ℎ

‖|2 = |‖U −U𝑛+1
ℎ

‖|2 − |‖U𝑛+1 −U𝑛+2
ℎ

‖|2,
∶

|‖U −U𝑚−1
ℎ

‖|2 = |‖U −U𝑚−2
ℎ

‖|2 − |‖U𝑚−2 −U𝑚−1
ℎ

‖|2,
|‖U −U𝑚

ℎ
‖|2 = |‖U −U𝑚−1

ℎ
‖|2 − |‖U𝑚−1 −U𝑚

ℎ
‖|2.

Adding the above equations and canceling the same terms, we obtain

|‖U −U𝑚
ℎ
‖|2 = |‖U −U𝑛

ℎ
‖|2 − 𝑚−1∑

𝑖=𝑛
|‖U𝑖

ℎ
−U𝑖+1

ℎ
‖|2.

Now, using (5.6) with the above equality, we obtain (5.5). This com-
pletes the proof. □

Theorem 5.2. For 𝑛 = 1, 2, 3, ..., let U𝑛
ℎ
= (𝝈𝑛

ℎ
, 𝑢𝑛

ℎ
) ∈ 𝐗𝑛

ℎ
be the solution 

defined in (5.3). Then, {U𝑛
ℎ
}∞
𝑛=1 is a Cauchy sequence in 𝐗, and

lim
𝑛→∞

U𝑛
ℎ
=U∞, for some U∞ = (𝝈∞, 𝑢∞) ∈𝐗 =𝐕 ×𝑆,

i.e.

𝝈𝑛
ℎ
→ 𝝈∞ in 𝐻(div), and 𝑢𝑛

ℎ
→ 𝑢∞ in 𝐻1

0 (Ω).

Proof. Define a sequence 𝑎𝑖 and 𝑆𝑖 as

𝑎𝑖 = |‖U𝑖
ℎ
−U𝑖+1

ℎ
‖|2, 𝑆𝑖 =

𝑖∑
𝑗=1

𝑎𝑖, for 𝑖 = 1,2,3, ...

Note that using (5.5),
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𝑆𝑖 =
𝑖∑

𝑗=1
𝑎𝑗 =

𝑖∑
𝑗=1

|‖U𝑗

ℎ
−U𝑗+1

ℎ
‖|2 = |‖U1

ℎ
−U𝑖+1

ℎ
‖|2.

Now, using (5.6) with 𝑚 = 𝑖 + 1, 𝑛 = 1 and using the above equality, we 
have

|‖U −U𝑖+1
ℎ

‖|2 = |‖U −U1
ℎ
‖|2 − |‖U1

ℎ
−U𝑖+1

ℎ
‖|2 = |‖U −U1

ℎ
‖|2 −𝑆𝑖.

Thus, {𝑆𝑖}∞𝑖=1 is nonnegative, increasing, and bounded above with an 
upper bound |‖U −U1

ℎ
‖|2. Hence, {𝑆𝑖}∞𝑖=1 converges, and this implies 

that {𝑆𝑖}∞𝑖=1 is a Cauchy sequence.
Now, to show that {U𝑛

ℎ
}∞
𝑛=1 is a Cauchy sequence, let 𝛿 > 0 be given. 

Then, there exists 𝑁 > 0 such that |𝑆𝑙 − 𝑆𝑘| < 𝛿2 for 𝑘, 𝑙, > 𝑁 since 
{𝑆𝑖}∞𝑖=1 is a Cauchy sequence. Without loss of generality, 𝑙 > 𝑘. Now, |𝑆𝑙 − 𝑆𝑘| = |‖U𝑘+1 −U𝑙+1‖|2. Thus,
|‖U𝑘+1 −U𝑙+1‖| < 𝛿, for 𝑘, 𝑙 > 𝑁.

This implies that {U𝑛
ℎ
}∞
𝑛=1 ⊂𝐗 is a Cauchy sequence. Thus, the Cauchy 

sequence {U𝑛
ℎ
}∞
𝑛=1 converges since 𝐗 = 𝐻(div) × 𝐻1

0 (Ω) is a Ba-
nach space, see [5]. We denote the limit as U∞. This completes the 
proof. □

6. A posteriori estimates

In this section, we establish an upper bound for ‖𝐴−1∕2(𝝈ℎ +
𝐴∇𝑢ℎ)‖20, and this will be used to develop an error indicator to mark 
the local region to refine in the mesh refinement strategy.

6.1. Error indicators

We use the a posteriori error indicator 𝜁 defined in (3.13) for a 
marking of current mesh, and show that the indicator is an upper bound 
for the error of the LS approximate solutions, and converges to 0 in the 
adaptive procedures.

Theorem 6.1. Let (𝝈ℎ, 𝑢ℎ) be the approximate solution for (2.5) and Πℎ

be the Fortin interpolant in 𝐕ℎ. Then, for 𝑟 = 1, 2

‖𝐴−1∕2(𝝈ℎ +𝐴∇𝑢ℎ)‖20 + ‖∇ ⋅ (Πℎ𝝈 −𝝈ℎ)‖𝑟0 ≤ 𝐶 ‖𝑢‖2 ⋅ ‖ℎ(𝝈ℎ +𝐴∇𝑢ℎ)‖0,
(6.1)

Remark 6.1. From the above inequality and definitions (3.12) and 
(3.13), we have

𝜂2(Tℎ) ≤ 𝐶 ‖𝑢‖2 𝜁 (Tℎ). (6.2)

Proof. Using the commuting diagram property (3.4), orthogonality 
(3.10), 𝝈 +𝐴∇𝑢 = 0 and 𝐴 being uniformly positive definite, we have

‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖20 = (∇ ⋅ (Πℎ𝝈 − 𝝈ℎ) , ∇ ⋅ (Πℎ𝝈 − 𝝈ℎ))

= (∇ ⋅ (𝝈 − 𝝈ℎ) , ∇ ⋅ (Πℎ𝝈 − 𝝈ℎ))

= −(𝐴−1(𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ)) ,Πℎ𝝈 − 𝝈ℎ)

= −(𝐴−1(𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ)) ,Πℎ𝝈 − 𝝈 + 𝝈 − 𝝈ℎ)

= −(𝐴−1(𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ)) ,Πℎ𝝈 − 𝝈)

−(𝐴−1(𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ)) ,𝝈 − 𝝈ℎ)

= −(𝐴−1(𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ)) ,Πℎ𝝈 − 𝝈)

−(𝐴−1(𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ)) ,𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ))

+(𝝈 − 𝝈ℎ +𝐴∇(𝑢− 𝑢ℎ),∇(𝑢− 𝑢ℎ))

= (𝝈ℎ +𝐴∇𝑢ℎ,Πℎ𝝈 − 𝝈) − ‖𝐴−1∕2(𝝈ℎ +𝐴∇𝑢ℎ)‖20
− (𝝈ℎ +𝐴∇𝑢ℎ,∇(𝑢− 𝑢ℎ)).
56
Thus, we have

‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖20 + ‖𝐴−1∕2(𝝈ℎ +𝐴∇𝑢ℎ)‖20
= (𝝈ℎ +𝐴∇𝑢ℎ,Πℎ𝝈 − 𝝈) − (𝝈ℎ +𝐴∇𝑢ℎ,∇(𝑢− 𝑢ℎ)).

Now, using (3.11), the approximation properties (3.6) and (3.7), we 
have

‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖20 + ‖𝝈ℎ +∇𝑢ℎ‖20
= (𝝈ℎ +𝐴∇𝑢ℎ,Πℎ𝝈 − 𝝈) − (𝝈ℎ +𝐴∇𝑢ℎ,∇(𝑢− 𝑢ℎ))

= (𝝈ℎ +𝐴∇𝑢ℎ,Πℎ𝝈 − 𝝈) − (𝝈ℎ +𝐴∇𝑢ℎ,∇(𝑢− 𝑢𝐼 ))

≤

∑
𝑇∈Tℎ

‖𝝈ℎ +𝐴∇𝑢ℎ‖0,𝑇 ‖𝝈 −Πℎ𝝈‖0,𝑇
+

∑
𝑇∈Tℎ

‖𝝈ℎ +𝐴∇𝑢ℎ‖0,𝑇 ‖𝑢− 𝑢𝐼‖1,𝑇
≤

∑
𝑇∈Tℎ

ℎ𝑇 ‖𝝈ℎ +𝐴∇𝑢ℎ‖0,𝑇 (‖𝝈‖1,𝑇 + ‖𝑢‖2,𝑇 )
≤ 𝐶(‖𝝈‖1 + ‖𝑢‖2)‖ℎ(𝝈ℎ +𝐴∇𝑢ℎ)‖0
≤ 𝐶‖𝑢‖2‖ℎ(𝝈ℎ +𝐴∇𝑢ℎ)‖0.
This proves for 𝑟 = 2.

Now, in order to reduce the power of ‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖20 to ‖∇ ⋅
(Πℎ𝝈 − 𝝈ℎ)‖0, consider the following auxiliary problem:
−∇ ⋅𝐴∇𝑤 =∇ ⋅ (Πℎ𝝈 − 𝝈ℎ), 𝜼 = −𝐴∇𝑤

Then, ∇ ⋅𝜼 =∇ ⋅ (Πℎ𝝈−𝝈ℎ) with ‖𝜼‖1 ≤ 𝐶‖∇ ⋅ (Πℎ𝝈−𝝈ℎ)‖0. Using the 
above, we have

‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖20
= (∇ ⋅ (Πℎ𝝈 − 𝝈ℎ) , ∇ ⋅ (Πℎ𝝈 − 𝝈ℎ))

= (∇ ⋅ (𝝈 − 𝝈ℎ) , ∇ ⋅ (Πℎ𝝈 − 𝝈ℎ))

= (∇ ⋅ (𝝈 − 𝝈ℎ) , ∇ ⋅ 𝜼)

= (∇ ⋅ (𝝈 − 𝝈ℎ) , ∇ ⋅ (𝜼−Πℎ𝜼)) − (𝐴−1(𝝈ℎ +𝐴∇𝑢ℎ),Πℎ𝜼)

= −(𝐴−1(𝝈ℎ +𝐴∇𝑢ℎ),Πℎ𝜼) = −(𝐴−1(𝝈ℎ +𝐴∇𝑢ℎ),Πℎ𝜼− 𝜼+ 𝜼)

= −(𝐴−1(𝝈ℎ +𝐴∇𝑢ℎ),Πℎ𝜼− 𝜼) − (𝐴−1(𝝈ℎ +𝐴∇𝑢ℎ),−∇𝑤)

= −(𝐴−1(𝝈ℎ +𝐴∇𝑢ℎ),Πℎ𝜼− 𝜼) + ((𝝈ℎ +𝐴∇𝑢ℎ),∇𝑤−∇𝑤𝐼 )

≤ 𝐶‖ℎ(𝝈ℎ +𝐴∇𝑢ℎ)‖0 ⋅ (‖𝜼‖1 + ‖𝑤‖2)
≤ 𝐶‖ℎ(𝝈ℎ +𝐴∇𝑢ℎ)‖0‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖0

This completes the proof for (6.1). □

We present one of the main results in this paper.

Theorem 6.2. Let (𝝈ℎ, 𝑢ℎ) be the approximate solution for (2.5) and Πℎ

be the Fortin interpolant in 𝐕ℎ. Then,

‖𝝈 − 𝝈ℎ‖20 + ‖∇(𝑢− 𝑢ℎ)‖20 ≤ 𝐶 ‖𝑢‖2 𝜁 (Tℎ) +𝐶osc2(𝑓,Tℎ). (6.3)

Remark 6.2. The following efficiency bound is presented in Theo-
rem 3.2, see [20, Theorem 5.2].

𝜁 (𝑇 ) ≤ ‖𝝈 − 𝝈ℎ‖0,𝑇 + ‖𝑢− 𝑢ℎ‖0,𝑇 .
Proof. Using (3.15) and (6.2), we have

‖𝝈 − 𝝈ℎ‖20 + ‖∇(𝑢− 𝑢ℎ)‖20 ≤ 𝐶𝜂2(Tℎ) +𝐶‖ℎ(𝑓 − 𝑓ℎ)‖20
≤ 𝐶 ‖𝑢‖2 𝜁 (Tℎ) +𝐶‖ℎ(𝑓 − 𝑓ℎ)‖2. (6.4)
0
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Using 𝑓ℎ = ∇ ⋅ 𝝈ℎ, the triangle inequality (3.14) and Theorem 6.1, we 
have

‖ℎ(𝑓 − 𝑓ℎ)‖20 = ‖ℎ∇ ⋅ (𝝈 − 𝝈ℎ)‖20
≤ 𝐶‖ℎ∇ ⋅ (𝝈 −Πℎ𝝈)‖20 +𝐶‖ℎ∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖20
≤ 𝐶‖ℎ∇ ⋅ (𝝈 −Πℎ𝝈)‖20 +𝐶‖∇ ⋅ (Πℎ𝝈 − 𝝈ℎ)‖20
≤ 𝐶‖ℎ∇ ⋅ (𝝈 −Πℎ𝝈)‖20 +𝐶‖ℎ(𝝈ℎ +𝐴∇𝑢ℎ)‖0
= 𝐶

(
osc(𝑓,Tℎ)

)2
+𝐶 ‖𝑢‖2 𝜁 (Tℎ).

Now, plugging the above inequality into (6.4), we obtain (6.3). This 
completes the proof. □

6.2. Bulk parameter and refinement strategy

Let T 𝑛
ℎ
be the current triangulation. For any subset D ⊂ T 𝑛

ℎ
we define

𝜁2(D) =
∑
𝑇∈D

𝜁2(𝑇 ).

Based on Theorem 6.2, we first present a mesh refinement strategy for 
the weighted residual 𝜁 and we provide a convergence analysis based 
on the strategy.

Marking strategy for weighted residual
Given a parameter 0 <Θ ≤ 1, construct a subset M𝑛

ℎ
of T 𝑛

ℎ
such 

that

Θ 𝜁2(T 𝑛
ℎ
) ≤ 𝜁2(M𝑛

ℎ
). (6.5)

Using 𝜁2(T 𝑛
ℎ
) = 𝜁2(M𝑛

ℎ
) +𝜁2((M𝑛

ℎ
)𝐶 ), then isolating 𝜁2((M𝑛

ℎ
)𝐶 ), we have

Θ 𝜁2((M𝑛
ℎ
)𝐶 ) ≤ (1 − Θ)𝜁2(M𝑛

ℎ
).

Now, adding (1 −Θ)𝜁2((M𝑛
ℎ
)𝐶 ) on both sides of the above, we obtain

𝜁2((M𝑛
ℎ
)𝐶 ) ≤ (1 − Θ) 𝜁2(T 𝑛

ℎ
). (6.6)

Concerning the relationship between two consecutive levels of mesh 
refinement, we assume the following: Let T 𝑛

ℎ
and T 𝑛+1

ℎ
be two consec-

utive triangulations in {T 𝑛
ℎ
}𝑛≥0 so that T 𝑛+1

ℎ
is a refinement of T 𝑛

ℎ
. We 

assume that there exists a positive constant 0 < 𝛾 < 1, the reduction rate 
of elements, satisfying

ℎ𝑇 ′ ≤ 𝛾ℎ𝑇 if 𝑇 ∈ T 𝑛
ℎ
, 𝑇 ′ ∈ T 𝑛+1

ℎ
and 𝑇 ′ ⊂ 𝑇 . (6.7)

Let ℎ𝑛 be the mesh function on T 𝑛
ℎ
defined by

ℎ𝑛(𝑥) = ℎ𝑇 , where 𝑥 ∈ 𝑇 ∈ T 𝑛
ℎ
. (6.8)

Then, (6.7) becomes
ℎ𝑛+1
ℎ𝑛

≤ 𝛾, for 𝑥 ∈ 𝑇 ∈M𝑛
ℎ
. (6.9)

6.3. Convergence

Now, we are ready to show the key ingredient for the convergence of 
adaptive procedures. The result states that 𝜁 converges linearly modulo 
𝜖 > 0, and the results are valid for any bulk parameter 0 < Θ ≤ 1 and 
any order of approximation spaces.

Theorem 6.3. Let (𝝈𝑛
ℎ
, 𝑢𝑛

ℎ
) be the approximate solutions of (2.5) on trian-

gulations T 𝑛
ℎ
, 𝑛 = 0, 1, 2, 3, .... Then, with the refinement strategy (6.5), we 

have
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𝜁 (T 𝑛
ℎ
) =

( ∑
𝑇∈T 𝑛

ℎ

ℎ2
𝑇
‖𝝈𝑛

ℎ
+𝐴∇𝑢𝑛

ℎ
‖20,𝑇)1∕2

→ 0, as 𝑛→∞. (6.10)

Moreover, for any 𝜖 > 0, there exists 𝑁0 > 0 such that

𝜁 (T𝑁0+𝑘
ℎ

) ≤ 𝜖 + 𝛿𝑘 ⋅ 𝜁 (T𝑁0
ℎ

) for 𝑘 = 1,2,3, .... (6.11)

where

𝛿 =
√
(1 − Θ(1 − 𝛾2) < 1. (6.12)

Proof. Using Theorem 5.2, we have

𝝈𝑛
ℎ
→ 𝝈∞ and 𝑢𝑛

ℎ
→ 𝑢∞.

Also, for each 𝑥 ∈ Ω, {ℎ(𝑥)}∞
𝑛=0, with 0 ≤ ℎ𝑛(𝑥) ≤ 1, is decreasing and 

bounded below by 0. Thus, ℎ𝑛(𝑥) converges, and we denote the limit as 
ℎ∞(𝑥). Then, we have

𝝈𝑛
ℎ
+𝐴∇𝑢𝑛

ℎ
→ 𝝈∞ +𝐴∇𝑢∞ in 𝐿2, and ℎ𝑛(𝑥)→ ℎ∞(𝑥) pointwise

and ‖ℎ𝑛‖∞ ≤ 1. Thus,

‖ℎ𝑛(𝝈𝑛
ℎ
+𝐴∇𝑢𝑛

ℎ
)‖0 → ‖ℎ∞(𝝈∞ +𝐴∇𝑢∞)‖0 = 𝛽, for some 𝛽 ≥ 0. (6.13)

Using the triangle inequality and 0 ≤ ℎ𝑛 ≤ 1 for all 𝑛, we have

‖ℎ𝑛+1(𝝈𝑛+1
ℎ

+𝐴∇𝑢𝑛+1
ℎ

)‖0
≤ ‖ℎ𝑛+1(𝝈𝑛+1

ℎ
− 𝝈𝑛

ℎ
+𝐴∇(𝑢𝑛+1

ℎ
− 𝑢𝑛

ℎ
))‖0 + ‖ℎ𝑛+1(𝝈𝑛

ℎ
+𝐴∇𝑢𝑛

ℎ
)‖0

=𝐸𝑛 + ‖ℎ𝑛+1(𝝈𝑛
ℎ
+𝐴∇𝑢𝑛

ℎ
)‖0, (6.14)

where 𝐸𝑛 = ‖ℎ𝛼
𝑛+1(𝝈

𝑛+1
ℎ

−𝝈𝑛
ℎ
+𝐴∇(𝑢𝑛+1

ℎ
−𝑢𝑛

ℎ
))‖0. Now, using the refine-

ment strategy satisfying ℎ𝑛+1
ℎ𝑛

≤ 𝛾 < 1 for the triangles marked for refine-
ment and (6.6), i.e. ‖ℎ𝑛(𝝈𝑛

ℎ
+ ∇𝑢𝑛

ℎ
)‖0,M𝐶 ≤ (1 − Θ)‖ℎ𝑛(𝝈𝑛

ℎ
+ ∇𝑢𝑛

ℎ
)‖0,Ω, 

we have

‖ℎ𝑛+1(𝝈𝑛
ℎ
+A∇𝑢𝑛

ℎ
)‖20

= ‖ℎ𝑛+1(𝝈𝑛
ℎ
+𝐴∇𝑢𝑛

ℎ
)‖20,M𝐶

+ ‖ℎ𝑛+1
ℎ𝑛

ℎ𝑛(𝝈𝑛
ℎ
+𝐴∇𝑢𝑛

ℎ
)‖20,M

≤ ‖ℎ𝑛(𝝈𝑛
ℎ
+𝐴∇𝑢𝑛

ℎ
)‖20,M𝐶

+ 𝛾2‖ℎ𝑛(𝝈𝑛
ℎ
+𝐴∇𝑢𝑛

ℎ
)‖20,M

= (1 − 𝛾 )‖ℎ𝑛(𝝈𝑛
ℎ
+𝐴∇𝑢𝑛

ℎ
)‖20,M𝐶

+ 𝛾2‖ℎ𝑛(𝝈𝑛
ℎ
+𝐴∇𝑢𝑛

ℎ
)‖20,Ω

≤ (1 − 𝛾2) (1 − Θ)‖ℎ𝑛(𝝈𝑛
ℎ
+𝐴∇𝑢𝑛

ℎ
)‖20,Ω + 𝛾2‖ℎ𝑛(𝝈𝑛

ℎ
+𝐴∇𝑢𝑛

ℎ
)‖20,Ω

=
(
(1 − 𝛾2)(1 − Θ) + 𝛾2

)‖ℎ𝑛(𝝈𝑛
ℎ
+𝐴∇𝑢𝑛

ℎ
)‖20,Ω

=
(
(1 − Θ(1 − 𝛾2)

)‖ℎ𝑛(𝝈𝑛
ℎ
+𝐴∇𝑢𝑛

ℎ
)‖20,Ω

= 𝛿2‖ℎ𝑛(𝝈𝑛
ℎ
+𝐴∇𝑢𝑛

ℎ
)‖20,Ω,

where 0 ≤ 𝛿 =
√
1 −Θ(1 − 𝛾2) < 1. Plugging the above inequality into 

(6.14), we have

‖ℎ𝑛+1(𝝈𝑛+1
ℎ

+𝐴∇𝑢𝑛+1
ℎ

)‖0 ≤𝐸𝑛 + 𝛿‖ℎ𝑛(𝝈𝑛
ℎ
+𝐴∇𝑢𝑛

ℎ
)‖0. (6.15)

To show that the limit converges to 0, using 0 ≤ ℎ𝑛 ≤ 1 and convergence 
of {𝝈𝑛

ℎ
}, {𝑢𝑛

ℎ
} we have

0 ≤𝐸𝑛 ≤ ‖𝝈𝑛+1
ℎ

− 𝝈𝑛
ℎ
‖0 + ‖𝐴(𝑢𝑛+1

ℎ
− 𝑢𝑛

ℎ
)‖0 → 0 as 𝑛→∞. (6.16)

Taking 𝑛 →∞ in (6.15) with using (6.13) and (6.16), we have

0 ≤ 𝛽 ≤ 𝛿 ⋅ 𝛽, with 𝛿 =
√
1 −Θ(1 − 𝛾2) < 1.

Thus, 𝛽 = 0, i.e.

‖ℎ𝑛(𝝈𝑛
ℎ
+𝐴∇𝑢𝑛

ℎ
)‖0 → 0, as 𝑛→∞.

This completes (6.10).
Now, using (6.16), i.e. lim𝑛→∞𝐸𝑛 = 0, given 𝜖 > 0, there exists 𝑁0

such that
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𝐸𝑛 < (1 − 𝛿) ⋅ 𝜖, for all 𝑛 >𝑁0. (6.17)

Set

𝜁𝑁 = 𝜁 (T𝑁
ℎ
).

Now using (6.11) repeatedly and (6.17), we have

𝜁𝑁0+𝑘 ≤𝐸𝑁0+𝑘 + 𝛿𝜁𝑁0+𝑘−1 ≤𝐸𝑁0+𝑘 + 𝛿(𝐸𝑁0+𝑘−1 + 𝛿𝜁𝑁0+𝑘−2)

≤𝐸𝑁0+𝑘 + 𝛿𝐸𝑁0+𝑘−1 + 𝛿2𝜁𝑁0+𝑘−2

≤ ⋅ ⋅ ⋅

≤𝐸𝑁0+𝑘 + 𝛿𝐸𝑁0+𝑘−1 + ⋅ ⋅ ⋅+ 𝛿𝑘−1𝐸𝑁0+1 + 𝛿𝑘 ⋅ 𝜁𝑁0

≤ (1 − 𝛿)𝜖(1 + 𝛿 + 𝛿2 + ⋅ ⋅ ⋅+ 𝛿𝑘−1) + 𝛿𝑘 ⋅ 𝜁𝑁0

≤ (1 − 𝛿)𝜖 1
1 − 𝛿

+ 𝛿𝑘 ⋅ 𝜁𝑁0

= 𝜖 + 𝛿𝑘 ⋅ 𝜁𝑁0
.

This proves (6.11). This completes the proof. □

Remark 6.3. With a larger bulk parameter Θ and a smaller refine-
ment parameter 𝛾 , 𝛿 =

√
1 −Θ(1 − 𝛾2) becomes smaller and indicates a 

sharper decrease in the error. Note that a larger bulk parameter means 
marking more triangles for refinement and smaller 𝛾 implies more re-
fined meshes.

Note that ‖𝝈 − 𝝈ℎ‖0 is bounded by 𝜁 and the data oscillation 
osc(𝑓, ⋅). Thus, we use the following marking strategy to ensure a de-
crease in the data oscillation.

Marking strategy for data oscillation
Given a parameter 0 <Θ ≤ 1 and subset Mℎ ⊂ T𝑛, enlarge M𝑛

such that

Θosc2(𝑓,T𝑛) ≤ osc2(𝑓,M𝑛). (6.18)

Remark 6.4. One can choose different bulk parameters for the weighted 
residual and the data oscillation. In this case, the convergence rate will 
be different. Also, in our numerical experiments, the marking strategy 
for data oscillation does not add significantly many elements to the 
existing M𝑛 from the marking of the weighted residual.

With the bulk parameter Θ and reduction parameter 𝛾 , the following 
reduction of the data oscillation is well known, e.g. [18, Lemma 3.9]

osc(𝑓,T𝑛) ≤ 𝛿𝑛osc(𝑓,T0) for 𝑛 = 0,1,2, ... (6.19)

Theorem 6.4. Let 𝜖 > 0 be given. Then, there exists 𝑁0 > 0 such that

‖𝝈 − 𝝈
𝑁0+𝑘
ℎ

‖20 + ‖∇(𝑢− 𝑢
𝑁0+𝑘
ℎ

)‖20 ≤ 𝜖 +𝐶‖𝑓‖20𝛿𝑘, (6.20)

where

𝛿 =
√
1 −Θ(1 − 𝛾2).

Proof. Using Theorem 3.1 and Theorem 6.3, and (6.19), we have

‖𝝈 − 𝝈
𝑁0+𝑘
ℎ

‖20 + ‖∇(𝑢− 𝑢
𝑁0+𝑘
ℎ

)‖20
≤ 𝐶 ‖𝑢‖2 𝜁𝑁0+𝑘 +𝐶

(
osc(𝑓,T𝑁0+𝑘)

)2

≤ 𝐶 ‖𝑢‖2 𝜖 +𝐶 ‖𝑢‖2 𝛿𝑘𝜁𝑁 +𝐶𝛿2(𝑁0+𝑘)(osc(𝑓,T 0))2.

0
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Now, using (2.2), we have

‖𝝉‖0 ≤ 𝐶‖𝐴−1∕2𝝉‖0, for all 𝝉 ,
and using (3.8), the arithmetic-geometric inequality, we have

‖𝐴−1∕2(𝝈𝑁0
ℎ

+𝐴∇𝑢
𝑁0
ℎ

)‖0 ≤ 1
2
‖𝑓‖0.

Using 0 < ℎ𝑛 < 1 and combining the above two inequalities, we have

𝜁𝑁0
= ‖ℎ𝑁0

(𝝈𝑁0
ℎ

+𝐴∇𝑢
𝑁0
ℎ

)‖0 ≤ ‖(𝝈𝑁0
ℎ

+𝐴∇𝑢
𝑁0
ℎ

)‖0
≤ 𝐶‖𝐴−1∕2(𝝈𝑁0

ℎ
+𝐴∇𝑢

𝑁0
ℎ

)‖0
≤ 𝐶‖𝑓‖0.

Clearly,

osc(𝑓,T 0) ≤ ‖𝑓‖0.
Thus, we have

‖𝝈 − 𝝈
𝑁0+𝑘
ℎ

‖20 + ‖∇(𝑢− 𝑢
𝑁0+𝑘
ℎ

)‖20
≤ 𝐶 ‖𝑢‖2 𝜖 +𝐶

(‖𝑢‖2‖𝑓‖0 + 𝛿2𝑁0+𝑘‖𝑓‖20)𝛿𝑘.
Now, scaling 𝐶‖𝑢‖2𝜖 to 𝜖, using 0 < 𝛿 < 1 and the regularity esti-

mate (2.3), we obtain

‖𝝈 − 𝝈
𝑁0+𝑘
ℎ

‖20 + ‖∇(𝑢− 𝑢
𝑁0+𝑘
ℎ

)‖20 ≤ 𝜖 +𝐶‖𝑓‖20 𝛿𝑘.
This completes the proof. □

7. Numerical examples

In this section, we present numerical examples showing the con-
vergence behavior of the ALSFEMs using the new error indicator 𝜁 (⋅)
defined in (3.13) and data oscillation osc(𝑓, ⋅) defined in (3.14), and 

Fig. 7.1. A surface plot of the true solution 𝑢.

Fig. 7.2. Left: initial mesh with DoF = 2092; Right: generated by adaptive pro-
cedure with DoF = 82350.
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Fig. 7.3. Contour plots of 𝑢ℎ, Left: DoF = 2092; Right: DoF = 82350.

Table 7.1

Convergence and upper bounds with Θ = 0.8 and 𝛿 = 0.6325.

DoFs ‖𝐴−1∕2(𝝈 − 𝝈ℎ)‖0 rate U𝐵(𝝈) ‖𝐴1∕2∇(𝑢− 𝑢ℎ)‖0 rate U𝐵(𝑢)

2092 0.2171 - 0.3383 0.2338 - 0.4228

5201 0.1296 0.5970 0.1944 0.1494 0.6256 0.2255

13805 0.0832 0.6420 0.1241 0.0949 0.6352 0.1370

33693 0.0541 0.6502 0.0813 0.0605 0.6375 0.0906

82350 0.0339 0.6266 0.0518 0.0392 0.6479 0.0559

203907 0.0221 0.6519 0.0335 0.0253 0.6454 0.0348

Table 7.2

Convergence and upper bounds with Θ = 0.4 and 𝛿 = 0.8367.

DoFs ‖𝐴−1∕2(𝝈 − 𝝈ℎ)‖0 rate U𝐵(𝝈) ‖𝐴1∕2∇(𝑢− 𝑢ℎ)‖0 rate U𝐵(𝑢)

2092 0.2171 - 0.3383 0.2338 - 0.4228

2941 0.1686 0.7766 0.2523 0.1915 0.8191 0.2894

4495 0.1371 0.8132 0.2067 0.1570 0.8198 0.2267

6539 0.1172 0.8549 0.1775 0.1334 0.8497 0.1930

9962 0.0971 0.8285 0.1472 0.1107 0.8298 0.1567

14766 0.0787 0.8105 0.1204 0.0914 0.8257 0.1264
accuracy of upper bounds obtained in (4.3) for ‖𝐴−1∕2(𝝈 − 𝝈ℎ)‖0 and 
(4.4) for ‖𝐴1∕2∇(𝑢 −𝑢ℎ)‖0. Let Ω = [−1, 1] ×[−1, 1] and we consider the 
following model problem

−∇ ⋅𝐴∇𝑢 = 𝑓 in Ω, 𝑢 = 0 on 𝜕Ω,

where 𝐴 =
[
2 + sin(𝑥𝑦) 0

0 1

]
with the true solution 𝑢 = (𝑥2 +𝑦2)0.51(1 −

𝑥2)(1 − 𝑦2).
For the approximation spaces, we use the lowest-order Raviart-

Thomas spaces for the flux variable 𝝈 = −𝐴∇𝑢 and the standard con-
tinuous piecewise linear functions for the primary variable 𝑢. With the 
reduction rate for elements 𝛾 = 1

2 , we choose Θ = 0.8 and Θ = 0.4 for 
the bulk parameters. Our algorithm selects a subset M of Tℎ that satis-
fies Θ 𝜁2(Ω) ≤ 𝜁2(M) and Θ osc(𝑓, Tℎ) ≤ osc(𝑓, M). Then, the MATLAB 
function “refinement.m” is used to refine the current mesh by dividing 
each marked triangle into four triangles of the same shape. The reduc-
tion rate of the error for ‖𝐴−1∕2(𝝈−𝝈ℎ)‖0 and ‖𝐴1∕2∇(𝑢 −𝑢ℎ)‖0 is close 
to 𝛿 =

√
1 −Θ(1 − 𝛾2), and this is better than the rate of convergence 

expected from (6.20). Also, the guaranteed upper bounds are close to 
the actual errors, and they are overestimated by a factor less than 2.

Tables 7.1 and 7.2 present the convergence behavior of error ‖𝐴−1∕2(𝝈 − 𝝈ℎ)‖0 and ‖𝐴1∕2∇(𝑢 − 𝑢ℎ)‖0 and their upper bounds. Note 
that U𝐵(𝝈) and U𝐵(𝑢) are the upper bounds of ‖𝐴−1∕2(𝝈 − 𝝈ℎ)‖0 and ‖𝐴1∕2∇(𝑢 − 𝑢ℎ)‖0 defined in (4.3) and (4.4) respectively. Fig. 7.1 shows 
the surface plot of the true solution, and Fig. 7.2 shows the initial and 
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adaptive meshes. Moreover, we present the contour plot of the approx-
imation solution 𝑢ℎ in Fig. 7.3.

Data availability

No data was used for the research described in the article.

Acknowledgements

The author would like to thank two anonymous referees for their 
careful reading of this paper and their many helpful suggestions for 
improving the presentation of the results.

References

[1] M. Ainsworth, J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis, 
Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], 
New York, 2000.

[2] M. Bebendorf, A note on the Poincaré inequality for convex domains, Z. Anal. An-
wend. 22 (2003) 751–756.

[3] P. Binev, W. Dahmen, R. DeVore, Adaptive finite element methods with convergence 
rates, Numer. Math. 97 (2004) 219–268.

[4] P.B. Bochev, M.D. Gunzburger, Least-Squares Finite Element Methods, Applied 
Mathematical Sciences, vol. 166, Springer, New York, 2009.

[5] S.C. Brenner, L.R. Scott, The Mathematical Theory of Finite Element Methods, third 
ed., Texts in Applied Mathematics, vol. 15, Springer, New York, 2008.

[6] F. Brezzi, J. Douglas Jr., L.D. Marini, Two families of mixed finite elements for 
second order elliptic problems, Numer. Math. 47 (1985) 217–235.

http://refhub.elsevier.com/S0898-1221(24)00101-9/bib2C64C5CF613D8B9F4F7F3980D29ACA10s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib2C64C5CF613D8B9F4F7F3980D29ACA10s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib2C64C5CF613D8B9F4F7F3980D29ACA10s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib10BC31583371402D02A00FAD0FBD0057s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib10BC31583371402D02A00FAD0FBD0057s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bibDD9BB197199AB4FD6242DAE6A810EF5Cs1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bibDD9BB197199AB4FD6242DAE6A810EF5Cs1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib461B1990FE86AF962CD15A16A26DCEB8s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib461B1990FE86AF962CD15A16A26DCEB8s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib9A231C14A3416B1055B8FFB960151AEEs1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib9A231C14A3416B1055B8FFB960151AEEs1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib50DA550C18CC55D6202D622223FB407Ds1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib50DA550C18CC55D6202D622223FB407Ds1


J. Ku Computers and Mathematics with Applications 162 (2024) 52–60
[7] P. Bringmann, C. Carstensen, G. Starke, An adaptive least-squares FEM for linear 
elasticity with optimal convergence rates, SIAM J. Numer. Anal. 56 (2018) 428–447.

[8] C. Carstensen, Collective marking for adaptive least-squares finite element methods 
with optimal rates, Math. Comput. 89 (2020) 89–103.

[9] C. Carstensen, R.H.W. Hoppe, Error reduction and convergence for an adaptive 
mixed finite element method, Math. Comput. 75 (2006) 1033–1042.

[10] C. Carstensen, E.-J. Park, Convergence and optimality of adaptive least squares finite 
element methods, SIAM J. Numer. Anal. 53 (2015) 43–62.

[11] C. Carstensen, E.-J. Park, P. Bringmann, Convergence of natural adaptive least 
squares finite element methods, Numer. Math. 136 (2017) 1097–1115.

[12] C. Carstensen, J. Storn, Asymptotic exactness of the least-squares finite element 
residual, SIAM J. Numer. Anal. 56 (2018) 2008–2028.

[13] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. 
Anal. 33 (1996) 1106–1124.

[14] T. Führer, D. Praetorius, A short note on plain convergence of adaptive least-squares 
finite element methods, Comput. Math. Appl. 80 (2020) 1619–1632.

[15] D. Gallistl, E. Süli, Mixed finite element approximation of the Hamilton-Jacobi-
Bellman equation with Cordes coefficients, SIAM J. Numer. Anal. 57 (2019) 
592–614.

[16] J. Ku, A posteriori error estimates for the primary and dual variables for the div 
first-order least-square finite element method, Comput. Methods Appl. Mech. Eng. 
200 (2011) 830–836.

[17] P. Morin, R.H. Nochetto, K.G. Siebert, Data oscillation and convergence of adaptive 
FEM, SIAM J. Numer. Anal. 38 (2000) 466–488.

[18] P. Morin, R.H. Nochetto, K.G. Siebert, Convergence of adaptive finite element meth-
ods, SIAM Rev. 44 (2002) 631–658, Revised reprint of “Data oscillation and conver-
gence of adaptive FEM”, SIAM J. Numer. Anal. 38 (2) (2000) 466–488 (electronic), 
MR1770058 (2001g:65157).

[19] P. Morin, K.G. Siebert, A. Veeser, A basic convergence result for conforming adaptive 
finite elements, Math. Models Methods Appl. Sci. 18 (2008) 707–737.

[20] S. Nicaise, E. Creusé, Isotropic and anisotropic a posteriori error estimation of the 
mixed finite element method for second order operators in divergence form, Elec-
tron. Trans. Numer. Anal. 23 (2006) 38–62.

[21] P.-A. Raviart, J.M. Thomas, A mixed finite element method for 2nd order elliptic 
problems, in: Mathematical Aspects of Finite Element Methods, Proc. Conf., Con-
siglio Naz. delle Ricerche (C.N.R.), Rome, 1975, in: Lecture Notes in Math., vol. 606, 
Springer, Berlin, 1977, pp. 292–315.

[22] L.R. Scott, S. Zhang, Finite element interpolation of nonsmooth functions satisfying 
boundary conditions, Math. Comput. 54 (1990) 483–493.

[23] R. Verfürth, Robust a posteriori error estimators for a singularly perturbed reaction-
diffusion equation, Numer. Math. 78 (1998) 479–493.
60

http://refhub.elsevier.com/S0898-1221(24)00101-9/bibAE9178757DD2A29CF80C1F5B9F34882Es1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bibAE9178757DD2A29CF80C1F5B9F34882Es1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bibD4282998ADD2C544656B874C327D39D9s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bibD4282998ADD2C544656B874C327D39D9s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib1EE0BF89C5D1032317D13A2E022793C8s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib1EE0BF89C5D1032317D13A2E022793C8s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bibB78CC6909042016DAAA04D83BAC97E90s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bibB78CC6909042016DAAA04D83BAC97E90s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bibDDE97851EF7F5FD5A96B3D764EB7B5F2s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bibDDE97851EF7F5FD5A96B3D764EB7B5F2s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib8D7E99C73CD5A10ADAAF4C9F9A520368s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib8D7E99C73CD5A10ADAAF4C9F9A520368s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib0567953871B1BF589B797D9B178D5A94s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib0567953871B1BF589B797D9B178D5A94s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib4EBADA6A2AF2BCBA53DED1D7B414F081s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib4EBADA6A2AF2BCBA53DED1D7B414F081s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib71A75A167C33C58BFB561764255C880As1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib71A75A167C33C58BFB561764255C880As1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib71A75A167C33C58BFB561764255C880As1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib4BB896CB8E10DA8A3F6FACA812DE5816s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib4BB896CB8E10DA8A3F6FACA812DE5816s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib4BB896CB8E10DA8A3F6FACA812DE5816s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib89DE288518DEE2E0C400A89CFF7B1774s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib89DE288518DEE2E0C400A89CFF7B1774s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bibA54D358BB74742C5218264AA6C5EBC7As1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bibA54D358BB74742C5218264AA6C5EBC7As1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bibA54D358BB74742C5218264AA6C5EBC7As1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bibA54D358BB74742C5218264AA6C5EBC7As1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib1391CB523E1FA6217ED4EFD3418A01E8s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib1391CB523E1FA6217ED4EFD3418A01E8s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib90581D96B500FD2D3FD701A583409CB8s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib90581D96B500FD2D3FD701A583409CB8s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib90581D96B500FD2D3FD701A583409CB8s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib822050D9AE3C47F54BEE71B85FCE1487s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib822050D9AE3C47F54BEE71B85FCE1487s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib822050D9AE3C47F54BEE71B85FCE1487s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib822050D9AE3C47F54BEE71B85FCE1487s1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib715F9A16AD2C8290EFE57B63D279D8FAs1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib715F9A16AD2C8290EFE57B63D279D8FAs1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib5206560A306A2E085A437FD258EB57CEs1
http://refhub.elsevier.com/S0898-1221(24)00101-9/bib5206560A306A2E085A437FD258EB57CEs1

	Adaptive least-squares finite element methods: Guaranteed upper bounds and convergence in L2 norm of the dual variable
	1 Introduction
	2 Problem formulation
	2.1 Second-order elliptic problems
	2.2 Least-squares variational problems

	3 Finite element approximation
	3.1 Finite element approximation
	3.2 Error estimators

	4 Guaranteed upper bounds
	5 Convergence of the approximate solutions {(σnh,unh)}∞n=1
	6 A posteriori estimates
	6.1 Error indicators
	6.2 Bulk parameter and refinement strategy
	6.3 Convergence

	7 Numerical examples
	Data availability
	Acknowledgements
	References


