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Abstract: We present a Raman spectroscopy study of the vibrational properties of free-base meso-
tetra(4-pyridyl) porphyrin polycrystals under various temperature and hydrostatic pressure condi-
tions. The combination of experimental results and Density Functional Theory (DFT) calculations
allows us to assign most of the observed Raman bands. The modifications in the Raman spectra when
excited with 488 nm and 532 nm laser lights indicate that a resonance effect in the Qy band is taking
place. The pressure-dependent results show that the resonance conditions change with increasing
pressure, probably due to the shift of the electronic transitions. The temperature-dependent results
show that the relative intensities of the Raman modes change at low temperatures, while no frequency
shifts are observed. The experimental and theoretical analysis presented here suggest that these
molecules are well represented by the C2v point symmetry group.

Keywords: porphyrin; resonance Raman spectroscopy; hydrostatic pressure; low temperature

1. Introduction

Over the past few decades, porphyrin molecules have attracted a great deal of atten-
tion given their central role in numerous fundamental natural processes [1]. The interplay
between the structural and spectroscopic properties of these molecules enables the opti-
mization of their electronic characteristics aiming at specific applications [2,3].

The structure of porphyrins consists of a macrocycle formed by four pyrrolic rings
interconnected with methyne bridges, and this arrangement is upheld by the insertion of
either two hydrogen atoms (free-base porphyrins) or a metal ion (in metalloporphyrins) at
the center of the macrocycle [1,4]; see Figure 1. The study of the optical properties as-
sociated with distinct porphyrins is driven by their cyclic conjugation, which leads to
a pronounced absorption of near-ultraviolet and visible light as well as a red emission
that is readily observable with the naked eye [1,4]. Additionally, these molecules present
intriguing nonlinear optical traits [5,6]. Their absorption spectra are primarily composed of
two characteristic bands known as the B-bands (or Soret bands), localized in the blue region
of the spectrum, and the Q-bands, found in the green-red portion of the spectrum [1,4,7,8].
These spectroscopic responses are related to porphyrin’s electronic and vibronic properties,
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tuned through the modification of its structure, such as the substitution of the central ion
and the addition of outlying and axial groups [3,6–10]. Those are very desirable possibili-
ties since they create opportunities to employ porphyrin derivatives in many applications
such as (i) photovoltaic cells [11–13], (ii) sensors [8,14], (iii) cancer treatment [15–17], and
(iv) fluorescence imaging [18,19], among others.

Dissolved in organic solvents, free-base tetrapyridyl porphyrin (H2TPyP), as shown
in Figure 1, depicts a complex Q-band with multiple electronic transitions and their corre-
sponding vibronic progressions [20].
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descriptions of their symmetries [26,27], which are intimately connected with porphyrin’s 
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In the present work, we combine Raman spectroscopy measurements with first-
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temperatures, and different excitation energies is addressed. In addition, we elucidate the 
modifications in porphyrin´s resonance conditions under high pressures, along with 
possible symmetry changes occurring at both high pressures and low temperatures. 

  

Figure 1. Schematic representation of free-base tetrapyridyl porphyrin (H2TPyP). Within the macro-
cycle’s plane, two distinct directions are defined: (i) the x-direction containing only nitrogen atoms,
and (ii) the y-direction containing nitrogen atoms bonded with hydrogen. The indices α and β

give the carbon positions in the pyrrolic rings, and m indicates the carbon position in the methynic
bridge. The carbon atoms occupying these positions are labeled as follows: Cα, linked to the central
nitrogen atoms; Cβ, located at the outer edge of the macrocycle; and Cm (meso-carbon), connecting
the pyrrolic rings.

While the optical properties of tetrapyridyl porphyrins have been extensively stud-
ied [6,10,20,21], their vibrational properties, especially in their crystalline form, remain
poorly explored. Although the vibrational modes of other porphyrins have been investi-
gated [22–25], their behaviors are substantially different from H2TPyP’s vibrational modes.
In addition, the few studies of H2TPyP modes lack proper assignments and detailed de-
scriptions of their symmetries [26,27], which are intimately connected with porphyrin’s
vibronic transitions [20]. In this context, Raman spectroscopy emerges as a non-invasive,
fast, and reproducible method to study the properties of these vibrational modes under
different thermodynamic conditions, e.g., low temperatures and high pressures [28–33].

In the present work, we combine Raman spectroscopy measurements with first-
principle calculations to provide assignments for the Raman modes in poly-crystals of
free-base tetrapyridyl porphyrin or C-H2TPyP (see Figure S1 in Supplementary Materials).
The evolution of the assigned modes in C-H2TPyP under high pressures, low temperatures,
and different excitation energies is addressed. In addition, we elucidate the modifications
in porphyrin’s resonance conditions under high pressures, along with possible symmetry
changes occurring at both high pressures and low temperatures.

2. Results and Discussion
2.1. Raman Bands Assignments

The Raman spectra of C-H2TPyP show a rich distribution of bands, ranging from
150 cm−1 to 1650 cm−1; see Figure 2.
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Figure 2. Raman spectra of C-H2TPyP experimentally obtained with excitation centered at 488 nm
(represented by a blue solid line) and 532 nm (green solid line), and the DFT–calculated Raman
spectrum for the H2TPyP molecule (gray solid line). In the theoretical spectrum, Raman intensity (in
A4/amu) refers to the Raman activity (scattering factor).

These spectra were acquired by exciting the sample at 488 nm (resonant with the
Qy1

(0, 2) absorption band), and at 532 nm (resonant with the intersection between the
Qy1(0, 0) and Qy2(0, 0) bands, referred to herein as the Qy(0, 0) band) [20]. These vibronic
progressions arise from the coupling of the electronic absorption band Qy(0, 0) with the
vibrational modes centered around 1245 cm−1 (Qy1

(0, 2) band) [20]. To provide a clearer
depiction of the investigated modes, we present and discuss the results by zooming into
the specific spectral regions, as depicted in Figures 3–11. The experimental spectra were
deconvoluted using Lorentzian functions. This constitutes a conventional approach in
Raman spectroscopy, stemming from the intrinsic properties of Raman scattering (RS). The
semi-classical interpretation of RS relies on the forced damped oscillator model, which
follows the Lorentzian function. In the quantum mechanical framework, each vibration
exhibits a Lorentzian probability of light scattering [34]. The fitting procedure enables us
to identify the spectral band positions with a deviation of ∼0.2 cm−1. The corresponding
center-peak wavenumbers (κ) of the Raman bands, obtained with 488 nm and 532 nm, are
listed in Table 1. Illustrations with an overview of the identified vibration patterns are
provided in Table S2 in Supplementary Materials.

Table 1. H2TPyP experimental and DFT–calculated Raman modes. In the table, ν stands for stretching;
δ for bending; and τ for twist modes, respectively. The index “Pyr” identifies Raman modes related to
the pyridyl ring. The indexes “IP” and “OP” stand for in-plane and out-of-plane modes, respectively.
The indexes “x” and “y” indicate vibrations only in the respective direction.

Raman Mode Symmetry
(C2v)

Calculated
(cm−1)

Experimental (cm−1)
488 nm
Qy(0,2)

532 nm
Qy(0,0)

δIP(Cm − Pyrrole) A1 163 164 160 Out-of-phase (XY) bending of the angles
between the pyrrole groups.

τOP(Pyrrole) A1 199 199 195 Out-of-phase twist of the pyrrole
groups.

τ(Pyridyl) A1 213 223 218 In-phase twist of the pyridyl groups.

δIP(Cm − Pyrrole)x + τ(Pyridyl) B1 233 - 239
Bending of the angles between the Cm
and the X pyrrole groups and
out-of-phase twist of the pyridyl groups.
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Table 1. Cont.

Raman Mode Symmetry
(C2v)

Calculated
(cm−1)

Experimental (cm−1)
488 nm
Qy(0,2)

532 nm
Qy(0,0)

PBM
δIP(Cm − Pyrrole) A1 327 321 317

Porphyrin Breathing Mode (PBM):
In-phase bending of the angles between
the pyrrole groups.

δ(C − C)Pyr A2 367 357 354 In-phase bending of the C − C bonds in
pyridyl groups.

τIP(Pyrrole) A2 427 - 426 Twist of the Y pyrrole groups.

δ(C − C)Pyr + δ(C − N)Pyr A1 501 - 511 Out-of-phase bending of the C − C and
C − N bonds in the pyridyl groups.

δOP(Cm − Cα − N) A1 557 - 561 In-phase bending of the angles between
the Cm − Cα and Cα − N bonds.

δOP(N − H) + δOP(Cβ − H) A2 630 636 633 Out-of-phase bending of the N − H and
Cβ − H bonds.

δOP(N − Cα − Cβ) A2 672 - 666 In-phase bending of angles between the
N − Cα and Cα − Cβ bonds.

δOP(N − H) + δOP(Cβ − H) A1 719 - 710 In-phase bending of the N − H and
Cβ − H bonds.

δOP(Cm − Cα − Cβ) A2 739 - 730 Out-of-phase bending of angles between
the Cm − Cα and Cα − Cβ bonds.

δ(C − H)Pyr A2 752 - 744 In-phase bending of the C − H bonds in
the pyridyl groups.

δOP(Cβ − H) A1 772 - 786 Out-of-phase bending of the
Cβ − H bonds.

δ(C − H)Pyr A2 789 - 797 In-phase bending of the C − H bonds in
the pyridyl groups.

δ(C − H)Pyr A2 859 - 844 In-phase bending of the C − H bonds in
the pyridyl groups.

δ(C − H)Pyr A1 864 - 855 Out-of-phase bending of the C − H
bonds in the pyridyl groups.

δOP
(
Cβ − H)y A2 884 - 871 Bending of the Cβ − H in the Y

pyrrole groups.

δIP(Cm − Cα − N) A1 887 - 892 In-phase bending of the angles between
the Cm − Cα and N − Cα bonds.

δ(C − H)Pyr A1 966 967 966 Out-of-phase bending of the C − H
bonds in the pyridyl groups.

δ(C − N)Pyr + δ(C − C)Pyr A1 980 991 989 In-phase bending of the C − N and
C − C bonds.

δIP(Cβ − H)x + ν(N − Cα − Cβ)x A2 1003 1001 1000
Bending of the Cβ − H bonds and
stretching of the N − Cα − Cβ bonds in
the X pyrrole groups.

ν(Cα − Cβ) A1 1006 1017 1014 Out-of-phase stretching of the
Cα − Cβ bonds.

δIP(Cβ − H) A1 1065 1063 1063 In-phase bending of the Cβ − H bonds.

δIP(Cβ − H) A1 1069 1086 1085 Out-of-phase bending of the
Cβ − H bonds.

δIP(N − H) A2 1122 - 1142 Bending of the N − H bonds.

δ(C − H)Pyr A1 1206 1211 1213 Out-of-phase bending of the C − H
bonds in the pyridyl groups.

ν(Cm − Pyridyl) + δ(C − H)Pyr A1 1235 1241 1241
In-phase stretching of the Cm − Pyridyl
bonds and bending of the C − H bonds
in the pyridyl groups.

δIP(N − Cα)x + ν(Cα − Cβ)x + ν(N − Cα)y A1 1289 1287 -

Bending of the N − Cα bonds and
stretching of the Cα − Cβ bonds in the
X pyrrole groups. Stretching of the
N − Cα bonds in the Y pyrrole groups.

δ(C − H)Pyr A2 1310 1324 1314 Out-of-phase bending of the C − H
bonds in the pyridyl groups.
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Table 1. Cont.

Raman Mode Symmetry
(C2v)

Calculated
(cm−1)

Experimental (cm−1)
488 nm
Qy(0,2)

532 nm
Qy(0,0)

δIP(Cβ − H) + ν(Cα − Cβ)x A2 1316 1324 1330
In-phase bending of the Cβ − H bonds.
Stretching of the Cα − Cβ in the X
pyrrole groups

δIP(N − Cα) + ν(Cα − Cβ) A1 1356 1357 1357
In-phase bending of the angles between
the N − Cα bonds and stretching of the
Cα − Cβ bonds.

δIP(Cβ − H) + ν(N − Cα − Cβ)y A2 1366 1373 1373
Bending of the Cβ − H bonds.
Stretching of the N − Cα and Cα − Cβ

bonds in the Y pyrrole groups.

ν(Cβ − Cβ) + ν(Cm − Cα − N) A1 1438 1436 1434 In-phase stretching of the Cβ − Cβ,
Cm − Cα, and N − Cα bonds.

ν(Cm − Cα)x + ν(Cα − Cβ)x A2 1448 1454 1451 Stretching of the Cm − Cα and Cα − Cβ

bonds in the X pyrrole groups.

δ(C − H)Pyr A2 1474 1470 - Out-of-phase bending of the C − H
bonds in the pyridyl groups.

ν(Cβ − Cβ) + ν(Cm − Cα − N)y A1 1499 1489 1495
Out-of-phase stretching of the Cβ − Cβ.
Stretching of the Cm − Cα and N − Cα

bonds in the Y pyrrole groups.

ν(Cβ − Cβ) + ν(Cm − Cα − N)x A1 1545 1538 -
In-phase stretching of the Cβ − Cβ

bonds. Stretching of the Cm − Cα and
N − Cα bonds in the X pyrrole groups.

δIP(N − Cα)y + ν(Cβ − Cβ)x + ν(Cm − Cα) A1 1554 1553 1549

Bending of the angles between the
N − Cα bonds in the Y pyrrole groups.
Stretching of the Cβ − Cβ bonds in the
X pyrrole groups. Out-of-phase
stretching of the Cm − Cα bonds.

ν(C − C)Pyr A1 1581 1589 1580 In-phase stretching of the C − C bonds
in the pyridyl groups.

In Figure 3, the spectral region of 100 cm−1 < κ < 400 cm−1 is displayed. Five Raman
bands are observed for both excitations and are located at 164 cm−1 (161 cm−1), 199 cm−1

(195 cm−1), 223 cm−1 (221 cm−1), 321 cm−1 (317 cm−1), and 357 cm−1 (354 cm−1) when ex-
cited at 488 nm (532 nm). A Raman band at 239 cm−1 is observed in the spectrum obtained
with 532 nm excitation, presenting no corresponding band in the spectrum obtained with
488 nm. Within this same spectral region, theoretical calculations predict nine Raman-active
vibrational modes for the H2TPyP molecule. These modes are assigned to the following
vibrations (OP stands for out-of-plane, and IP stands for in-plane): δIP(Cm − Pyrrole) at
163 cm−1; ν(Cm − Pyridyl) at 189 cm−1; τOP(Pyrrole) at 199 cm−1; τ(Pyridyl) at 213 cm−1;
δIP(Cm − Pyrrole)x + τ(Pyridyl) at 233 cm−1; τ(Pyrrole) at 284 cm−1; δIP(Cm − Pyrrole)
at 327 cm−1; τ(Pyrrole) at 352 cm−1; and δ(C − C)Pyr at 367 cm−1. Despite the shifts when
compared to experimental results, the calculations indicate that the vibrations at 163 cm−1,
199 cm−1, 213 cm−1, 233 cm−1, 327 cm−1, and 367 cm−1 correspond to the six observed
Raman bands, as shown in Figure 3 and summarized in Table 1 and Table S2 in SI (illus-
trations 1–6). No Raman bands were observed below 150 cm−1 under ambient conditions
or either excitation wavelengths. We note that the in-phase δIP(Cm − Pyrrole) mode at
327 cm−1, from now on designated as “Pophyrin’s Breathing Mode (PBM)”, represents the
breathing of porphyrin’s central ring.

As depicted in Figure 3, it is evident that the spectrum acquired with excitation at
532 nm exhibits greater resolution compared to the spectrum acquired with excitation at
488 nm. This observation aligns with the fact that the absorbance at 532 nm is approximately
twice that at 488 nm [20], potentially resulting in a stronger resonance effect.

Within the spectral range of 400 cm−1 < κ < 600 cm−1, no Raman bands were de-
tected in the spectrum at 488 nm, as shown in Figure 4. Nevertheless, at 532 nm, three
distinct Raman bands emerge at 426 cm−1, 511 cm−1, and 561 cm−1, indicating the reso-
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nance of these modes with Qy(0, 0) electronic transition. The observed Raman bands are
assigned to the vibrations τIP(Pyrrole) at 427 cm−1, δ(C − C)Pyr + δ(C − N)Pyr at 501 cm−1,
and δOP(Cm − Cα − N) at 557 cm−1 in the calculated spectrum, respectively; see Table 1
and Table S2 in SI (illustrations 7–9).
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Figure 3. Experimental Raman spectra (top and middle) measured for C-H2TPyP (black dots) and
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the spectral
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( 633 cmିଵ , 666 cmିଵ , 710 cmିଵ , 730 cmିଵ , 744 cmିଵ , 786 cmିଵ , and 797 cmିଵ ), 
whereas the spectrum obtained with 488 nm excitation exhibits only one Raman band at 636 cmିଵ  (corresponding to 633 cmିଵ  at 532 nm ). According to DFT calculations (see 
Tables 1 and S2 in SI (illustrations 10–16)), these Raman bands are assigned to the follow-
ing vibrations: δ୓୔(N − H) + δ୓୔൫Cஒ − H൯  at 630 cmିଵ , δ୓୔൫N − C஑ − Cஒ൯  at 672 cmିଵ , δ୓୔(N − H) + δ୓୔൫Cஒ − H൯  at 719 cmିଵ , δ୓୔൫C୫ − C஑ − Cஒ൯  at 739 cmିଵ , δ(C − H)୔୷୰ 
at 752 cmିଵ, δ୓୔൫Cஒ − H൯ at 772 cmିଵ, and δ(C − H)୔୷୰ at 789 cmିଵ.  

Figure 4. Experimental Raman spectra (top and middle) measured for C-H2TPyP (black dots) and
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the spectral
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range of 400 cm−1 < κ < 600 cm−1. The experimental spectra were obtained by exciting the sample
at 488 nm (middle spectrum) and 532 nm (top spectrum). The blue (488 nm) and green (532 nm) solid
curves represent the fittings obtained through the deconvolution process using Lorentzian functions
(red solid lines). In the theoretical spectrum, Raman intensity (in A4/amu) refers to the Raman
activity (scattering factor).

Figure 5 presents the Raman spectra within the range of 600 cm−1 < κ < 830 cm−1.
Several Raman bands are resonant when porphyrins are excited under 532 nm (633 cm−1,
666 cm−1, 710 cm−1, 730 cm−1, 744 cm−1, 786 cm−1, and 797 cm−1), whereas the spec-
trum obtained with 488 nm excitation exhibits only one Raman band at 636 cm−1 (cor-
responding to 633 cm−1 at 532 nm). According to DFT calculations (see Table 1 and
Table S2 in SI (illustrations 10–16)), these Raman bands are assigned to the following
vibrations: δOP(N − H) + δOP(Cβ − H) at 630 cm−1, δOP(N − Cα − Cβ) at 672 cm−1,
δOP(N − H) + δOP(Cβ − H) at 719 cm−1, δOP(Cm − Cα − Cβ) at 739 cm−1, δ(C − H)Pyr

at 752 cm−1, δOP(Cβ − H) at 772 cm−1, and δ(C − H)Pyr at 789 cm−1.
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Figure 5. Experimental Raman spectra (top and middle) measured for C−H2TPyP (black dots) and 
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the spec-
tral range of 600 cmିଵ < κ < 830 cmିଵ . The experimental spectra were obtained by exciting the 
sample at 488 nm (middle spectrum) and 532 nm (top spectrum). The blue (488 nm) and green 
(532 nm) solid curves represent the fittings obtained through the deconvolution process using Lo-
rentzian functions (red solid lines). In the theoretical spectrum, Raman intensity (in A4/amu) refers 
to the Raman activity (scattering factor). 

The spectral region of 830 cmିଵ < κ < 1040 cmିଵ (Figure 6) displays eight resonant 
Raman bands ( 844 cmିଵ , 855 cmିଵ , 871 cmିଵ , 892 cmିଵ , 966 cmିଵ , 989 cmିଵ , 1000 cmିଵ , and 1014 cmିଵ ) under 532 nm  excitation. However, when excited under 488 nm , only the higher energy bands at 967 cmିଵ , 991 cmିଵ , 1001 cmିଵ , and 1017 cmିଵ are resonant. The DFT calculations (see Tables 1 and S2 in SI (illustrations 17–
24)) suggest the following assignments to these bands: two δ(C − H)୔୷୰ at 859 cmିଵ and 864 cmିଵ , δ୓୔(Cஒ − H)୷  at 884 cmିଵ , δ୍୔(C୫ − C஑ − N)  at 887 cmିଵ , δ(C − H)୔୷୰  at 966 cmିଵ , δ(C − N)୔୷୰ + δ(C − C)୔୷୰  at 980 cmିଵ , δ୍୔൫Cஒ − H൯୶ + ν൫N − C஑ − Cஒ൯୶  at 1003 cmିଵ, and ν൫C஑ − Cஒ൯ at 1006 cmିଵ.  

Figure 5. Experimental Raman spectra (top and middle) measured for C-H2TPyP (black dots) and
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the
spectral range of 600 cm−1 < κ < 830 cm−1. The experimental spectra were obtained by exciting
the sample at 488 nm (middle spectrum) and 532 nm (top spectrum). The blue (488 nm) and
green (532 nm) solid curves represent the fittings obtained through the deconvolution process using
Lorentzian functions (red solid lines). In the theoretical spectrum, Raman intensity (in A4/amu) refers
to the Raman activity (scattering factor).

The spectral region of 830 cm−1 < κ < 1040 cm−1 (Figure 6) displays eight resonant
Raman bands (844 cm−1, 855 cm−1, 871 cm−1, 892 cm−1, 966 cm−1, 989 cm−1, 1000 cm−1,
and 1014 cm−1) under 532 nm excitation. However, when excited under 488 nm, only
the higher energy bands at 967 cm−1, 991 cm−1, 1001 cm−1, and 1017 cm−1 are reso-
nant. The DFT calculations (see Table 1 and Table S2 in SI (illustrations 17–24)) suggest
the following assignments to these bands: two δ(C − H)Pyr at 859 cm−1 and 864 cm−1,
δOP

(
Cβ − H)y at 884 cm−1, δIP(Cm − Cα − N) at 887 cm−1, δ(C − H)Pyr at 966 cm−1,

δ(C − N)Pyr + δ(C − C)Pyr at 980 cm−1, δIP(Cβ − H)x + ν(N − Cα − Cβ)x at 1003 cm−1,
and ν(Cα − Cβ) at 1006 cm−1.
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Figure 6. Experimental Raman spectra (top and middle) measured for C−H2TPyP (black dots) and 
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the spec-
tral range of 830 cmିଵ < κ < 1040 cmିଵ. The experimental spectra were obtained by exciting the 
sample at 488 nm (middle spectrum) and 532 nm (top spectrum). The blue (488 nm) and green 
(532 nm) solid curves represent the fittings obtained through the deconvolution process using Lo-
rentzian functions (red solid lines). In the theoretical spectrum, Raman intensity (in A4/amu) refers 
to the Raman activity (scattering factor). 

As shown in Figure 7, the spectral region of 1040 cmିଵ < κ < 1180 cmିଵ  exhibits 
three resonant Raman bands under 532 nm  excitation: 1068 cmିଵ , 1085 cmିଵ , and 1142 cmିଵ. The spectrum acquired with 488 nm displays two bands at 1068 cmିଵ and 1086 cmିଵ  (the same bands observed at 532 nm ). These bands are assigned to the δ୍୔൫Cஒ − H൯  vibrations at 1065 cmିଵ  and 1069 cmିଵ , and the δ୍୔(N − H)  vibration at 1122 cmିଵ, respectively; see Tables 1 and S2 in SI (illustrations 25–27). 

Figure 6. Experimental Raman spectra (top and middle) measured for C-H2TPyP (black dots) and
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the
spectral range of 830 cm−1 < κ < 1040 cm−1. The experimental spectra were obtained by exciting
the sample at 488 nm (middle spectrum) and 532 nm (top spectrum). The blue (488 nm) and
green (532 nm) solid curves represent the fittings obtained through the deconvolution process using
Lorentzian functions (red solid lines). In the theoretical spectrum, Raman intensity (in A4/amu) refers
to the Raman activity (scattering factor).

As shown in Figure 7, the spectral region of 1040 cm−1 < κ < 1180 cm−1 exhibits three
resonant Raman bands under 532 nm excitation: 1068 cm−1, 1085 cm−1, and 1142 cm−1.
The spectrum acquired with 488 nm displays two bands at 1068 cm−1 and 1086 cm−1 (the
same bands observed at 532 nm). These bands are assigned to the δIP(Cβ − H) vibrations
at 1065 cm−1 and 1069 cm−1, and the δIP(N − H) vibration at 1122 cm−1, respectively; see
Table 1 and Table S2 in SI (illustrations 25–27).
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Figure 7. Experimental Raman spectra (top and middle) measured for C−H2TPyP (black dots) and 
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the spec-
tral range of 1040 cmିଵ < κ < 1180 cmିଵ. The experimental spectra were obtained by exciting the 
sample at 488 nm (middle spectrum) and 532 nm (top spectrum). The blue (488 nm) and green 
(532 nm) solid curves represent the fittings obtained through the deconvolution process using Lo-
rentzian functions (red solid lines). In the theoretical spectrum, Raman intensity (in A4/amu) refers 
to the Raman activity (scattering factor). 

Figure 8 shows the spectral range of 1180 cmିଵ < κ < 1320 cmିଵ. In this range, three 
Raman bands are resonant under both 532 nm (1213 cmିଵ, 1241 cmିଵ, and 1314 cmିଵ), 
and 488 nm  (1211 cmିଵ , 1241 cmିଵ , and 1287 cmିଵ ) excitations. The lower energy 
bands 1213 cmିଵ  and 1241 cmିଵ  at 532 nm  (1211 cmିଵ  and 1241 cmିଵ  at 488 nm ) 
are assigned to the calculated vibrations δ(C − H)୔୷୰  at 1206 cmିଵ , and ν(C୫ −Pyridyl) +  δ(C − H)୔୷୰ at 1235 cmିଵ, respectively. The theoretical mode δ୍୔(N − C஑)୶ +ν൫C஑ − Cஒ൯୶ + ν(N − C஑)୷  at 1289 cmିଵ  is assigned to the 1287 cmିଵ  band at 488 nm , 
while the δ(C − H)୔୷୰  mode at 1310 cmିଵ  is assigned to the 1314 cmିଵ  band at 532 nm; see Tables 1 and S2 in SI (illustrations 28–31). 

Figure 7. Experimental Raman spectra (top and middle) measured for C-H2TPyP (black dots) and
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the spectral
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range of 1040 cm−1 < κ < 1180 cm−1. The experimental spectra were obtained by exciting the sample
at 488 nm (middle spectrum) and 532 nm (top spectrum). The blue (488 nm) and green (532 nm) solid
curves represent the fittings obtained through the deconvolution process using Lorentzian functions
(red solid lines). In the theoretical spectrum, Raman intensity (in A4/amu) refers to the Raman
activity (scattering factor).

Figure 8 shows the spectral range of 1180 cm−1 < κ < 1320 cm−1. In this range, three
Raman bands are resonant under both 532 nm (1213 cm−1, 1241 cm−1, and 1314 cm−1),
and 488 nm (1211 cm−1, 1241 cm−1, and 1287 cm−1) excitations. The lower energy bands
1213 cm−1 and 1241 cm−1 at 532 nm (1211 cm−1 and 1241 cm−1 at 488 nm) are assigned to
the calculated vibrations δ(C − H)Pyr at 1206 cm−1, and ν(Cm − Pyridyl) + δ(C − H)Pyr at
1235 cm−1, respectively. The theoretical mode δIP(N − Cα)x +ν(Cα − Cβ)x +ν(N − Cα)y

at 1289 cm−1 is assigned to the 1287 cm−1 band at 488 nm, while the δ(C − H)Pyr mode
at 1310 cm−1 is assigned to the 1314 cm−1 band at 532 nm; see Table 1 and Table S2 in SI
(illustrations 28–31).
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Figure 8. Experimental Raman spectra (top and middle) measured for C−H2TPyP (black dots) and 
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the spec-
tral range of 1180 cmିଵ < κ < 1320 cmିଵ. The experimental spectra were obtained by exciting the 
sample at 488 nm (middle spectrum) and 532 nm (top spectrum). The blue (488 nm) and green 
(532 nm) solid curves represent the fittings obtained through the deconvolution process using Lo-
rentzian functions (red solid lines). In the theoretical spectrum, Raman intensity (in A4/amu) refers 
to the Raman activity (scattering factor). 

The spectral range of 1290 cmିଵ < κ < 1410 cmିଵ exhibits the same four resonant 
Raman bands under both 532 nm  and 488 nm  excitations (see Figure 9) centered at 1314 cmିଵ  (the same 1314 cmିଵ  band discussed above in Figure 8), 1330 cmିଵ , 1357 cmିଵ, and 1373 cmିଵ. The main difference between the two spectra lay on the in-
tensity (i.e., resonant effects) of the bands: the bands at 488 nm appear less structured 
when compared with the band at 532 nm. According to the DFT calculations, these bands 
are assigned to the following vibrations: δ(C − H)୔୷୰  at 1310 cmିଵ , δ୍୔൫Cஒ − H൯ +ν൫C஑ − Cஒ൯୶  at 1316 cmିଵ , δ୍୔(N − C஑) + ν൫C஑ − Cஒ൯  at 1356 cmିଵ , and δ୍୔൫Cஒ − H൯ +ν൫N − C஑ − Cஒ൯୷ at 1366 cmିଵ; see Tables 1 and S2 in SI (illustrations 31–34). 

Figure 8. Experimental Raman spectra (top and middle) measured for C-H2TPyP (black dots) and
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the spectral
range of 1180 cm−1 < κ < 1320 cm−1. The experimental spectra were obtained by exciting the sample
at 488 nm (middle spectrum) and 532 nm (top spectrum). The blue (488 nm) and green (532 nm) solid
curves represent the fittings obtained through the deconvolution process using Lorentzian functions
(red solid lines). In the theoretical spectrum, Raman intensity (in A4/amu) refers to the Raman
activity (scattering factor).

The spectral range of 1290 cm−1 < κ < 1410 cm−1 exhibits the same four resonant Ra-
man bands under both 532 nm and 488 nm excitations (see Figure 9) centered at 1314 cm−1 (the
same 1314 cm−1 band discussed above in Figure 8), 1330 cm−1, 1357 cm−1, and 1373 cm−1.
The main difference between the two spectra lay on the intensity (i.e., resonant effects) of
the bands: the bands at 488 nm appear less structured when compared with the band at
532 nm. According to the DFT calculations, these bands are assigned to the following vibra-
tions: δ(C−H)Pyr at 1310 cm−1, δIP(Cβ −H) + ν(Cα −Cβ)x at 1316 cm−1, δIP(N−Cα) +

ν(Cα −Cβ) at 1356 cm−1, and δIP(Cβ −H) + ν(N−Cα −Cβ)y at 1366 cm−1; see Table 1
and Table S2 in SI (illustrations 31–34).
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Figure 9. Experimental Raman spectra (top and middle) measured for C−H2TPyP (black dots) and 
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the spec-
tral range of 1290 cmିଵ < κ < 1410 cmିଵ. The experimental spectra were obtained by exciting the 
sample at 488 nm (middle spectrum) and 532 nm (top spectrum). The blue (488 nm) and green 
(532 nm) solid curves represent the fittings obtained through the deconvolution process using Lo-
rentzian functions (red solid lines). In the theoretical spectrum, Raman intensity (in A4/amu) refers 
to the Raman activity (scattering factor). 

The spectral range 1400 cmିଵ < κ < 1530 cmିଵ, shown in Figure 10, exhibits three 
common Raman bands for each excitation. At 532 nm (488 nm), these bands are centered 
at 1434 cmିଵ  (1436 cmିଵ ), 1451 cmିଵ  (1454 cmିଵ ), and 1495 cmିଵ  (1489 cmିଵ ). The 
DFT calculations indicate that these bands correspond to the following vibrations: ν൫Cஒ − Cஒ൯ + ν(C୫ − C஑ − N)  at 1438 cmିଵ , ν(C୫ − C஑)୶ + ν൫C஑ − Cஒ൯୶  at 1448 cmିଵ , 
and ν൫Cஒ − Cஒ൯ + ν(C୫ − C஑ − N)୷ at 1499 cmିଵ; see Tables 1 and S2 in SI (illustrations 
35, 36 and 38). The vibration δ(C − H)୔୷୰ at 1474 cmିଵ is only resonant at 488 nm (see 
Tables 1 and S2 in SI (illustrations 35–38)).  

Figure 9. Experimental Raman spectra (top and middle) measured for C-H2TPyP (black dots) and
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the spectral
range of 1290 cm−1 < κ < 1410 cm−1. The experimental spectra were obtained by exciting the sample
at 488 nm (middle spectrum) and 532 nm (top spectrum). The blue (488 nm) and green (532 nm) solid
curves represent the fittings obtained through the deconvolution process using Lorentzian functions
(red solid lines). In the theoretical spectrum, Raman intensity (in A4/amu) refers to the Raman
activity (scattering factor).

The spectral range 1400 cm−1 < κ < 1530 cm−1, shown in Figure 10, exhibits three
common Raman bands for each excitation. At 532 nm (488 nm), these bands are centered
at 1434 cm−1 (1436 cm−1), 1451 cm−1 (1454 cm−1), and 1495 cm−1 (1489 cm−1). The DFT
calculations indicate that these bands correspond to the following vibrations: ν(Cβ −Cβ) +
ν(Cm −Cα −N) at 1438 cm−1, ν(Cm −Cα)x +ν(Cα −Cβ)x at 1448 cm−1, and ν(Cβ −Cβ)
+ ν(Cm −Cα −N)y at 1499 cm−1; see Table 1 and Table S2 in SI (illustrations 35, 36 and 38).
The vibration δ(C−H)Pyr at 1474 cm−1 is only resonant at 488 nm (see Table 1 and Table S2
in SI (illustrations 35–38)).

As shown in Figure 11, the spectral range 1500 cm−1 < κ < 1620 cm−1 exhibits three
resonant Raman bands centered at 1538 cm−1, 1553 cm−1, and 1589 cm−1 in the 488 nm
spectrum. The lower energy Raman band (1538 cm−1) is absent in the 532 nm spectrum,
while the other two are also resonant, with their centers (1549 cm−1 and 1594 cm−1) slightly
redshifted. These bands are assigned to the vibrations ν(Cβ − Cβ) + ν(Cm − Cα − N)x at
1545 cm−1, δIP(N − Cα)y + ν(Cβ − Cβ)x + ν(Cm − Cα) at 1554 cm−1, and ν(C − C)Pyr at
1581 cm−1; see Table 1 and Table S2 in SI (illustrations 39–41).

Table 1 provides assignments for a total of forty-one vibrational modes, comprising
fifteen that resonate exclusively with Qy(0, 0) electronic transition, three resonating only
with Qy(0, 2) vibronic progression, and twenty-three that resonate with both. It is note-
worthy that reference [20] elucidated, via the deconvolution of the absorbance UV-Vis
spectrum, that the Qy(0, 2) vibronic progression arises from the coupling between Qy(0, 0)
electronic transition and a vibrational mode centered at 1245 cm−1. This mode closely
aligns in energy with δ(Cm − Pyridyl) + δ(C − H)pyr (1241 cm−1) which resonates with
both 488 nm (Qy(0, 2)) and 532 nm (Qy(0, 0)); see Figure 8 and Table 1.
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Figure 10. Experimental Raman spectra (top and middle) measured for C-H2TPyP (black dots) and 
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the spec-
tral range of 1400 cmିଵ < κ < 1530 cmିଵ. The experimental spectra were obtained by exciting the 
sample at 488 nm (middle spectrum) and 532 nm (top spectrum). The blue (488 nm) and green 
(532 nm) solid curves represent the fittings obtained through the deconvolution process using Lo-
rentzian functions (red solid lines). In the theoretical spectrum, Raman intensity (in A4/amu) refers 
to the Raman activity (scattering factor). 

As shown in Figure 11, the spectral range 1500 cmିଵ < κ < 1620 cmିଵ exhibits three 
resonant Raman bands centered at 1538 cmିଵ , 1553 cmିଵ , and 1589 cmିଵ  in the 488 nm spectrum. The lower energy Raman band (1538 cmିଵ) is absent in the 532 nm 
spectrum, while the other two are also resonant, with their centers (1549 cmିଵ  and 1594 cmିଵ) slightly redshifted. These bands are assigned to the vibrations ν൫Cஒ − Cஒ൯ +ν(C୫ − C஑ − N)୶  at 1545 cmିଵ , δ୍୔(N − C஑)୷ + ν൫Cஒ − Cஒ൯୶ + ν(C୫ − C஑)  at 1554 cmିଵ , 
and ν(C − C)୔୷୰ at 1581 cmିଵ; see Tables 1 and S2 in SI (illustrations 39–41). 

Figure 10. Experimental Raman spectra (top and middle) measured for C-H2TPyP (black dots) and
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the spectral
range of 1400 cm−1 < κ < 1530 cm−1. The experimental spectra were obtained by exciting the sample
at 488 nm (middle spectrum) and 532 nm (top spectrum). The blue (488 nm) and green (532 nm) solid
curves represent the fittings obtained through the deconvolution process using Lorentzian functions
(red solid lines). In the theoretical spectrum, Raman intensity (in A4/amu) refers to the Raman
activity (scattering factor).
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Figure 11. Experimental Raman spectra (top and middle) measured for C−H2TPyP (black dots) and 
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the spec-
tral range of 1500 cmିଵ < κ < 1620 cmିଵ. The experimental spectra were obtained by exciting the 
sample at 488 nm (middle spectrum) and 532 nm (top spectrum). The blue (488 nm) and green 
(532 nm) solid curves represent the fittings obtained through the deconvolution process using Lo-
rentzian functions (red solid lines). In the theoretical spectrum, Raman intensity (in A4/amu) refers 
to the Raman activity (scattering factor). 

Table 1 provides assignments for a total of forty-one vibrational modes, comprising 
fifteen that resonate exclusively with Q୷(0,0) electronic transition, three resonating only 
with Q୷(0,2) vibronic progression, and twenty-three that resonate with both. It is note-
worthy that reference [20] elucidated, via the deconvolution of the absorbance UV-Vis 
spectrum, that the Q୷(0,2)  vibronic progression arises from the coupling between Q୷(0,0) electronic transition and a vibrational mode centered at 1245 cmିଵ. This mode 
closely aligns in energy with δ(C୫ − Pyridyl) + δ(C − H)୮୷୰ (1241 cmିଵ) which resonates 
with both 488nm (Q୷(0,2)) and 532nm (Q୷(0,0)); see Figure 8 and Table 1.  

2.2. Hydrostatic Pressure Experiments 
To explore the structural stability of C-H2TPyP, studies were conducted under high-

pressure conditions, from 0.1 GPa to 7.7 GPa. In Figure 12, the Raman spectra acquired 
from samples under ambient conditions and submitted to various loads are presented. To 
facilitate a more comprehensive discussion, the Raman spectra are divided into three dis-
tinct wavenumber regions: 80– 680 cmିଵ , 960– 1250 cmିଵ , and 1435– 1650 cmିଵ . It is 
worth noting that even at a very low pressure (0.1 GPa), some modes that were not visible 
under ambient conditions become apparent. The lack of theoretical prediction for some of 
these modes as vibrational modes of the H2TPyP molecule suggests that the bands in the 
low-wavenumber region (100– 150 cmିଵ) are associated with the lattice vibration of C-
H2TpyP, i.e., librations and the torsion of porphyrin’s ring. 

Figure 11. Experimental Raman spectra (top and middle) measured for C-H2TPyP (black dots) and
calculated (bottom) for the H2TPyP molecule (gray solid line) under ambient conditions in the spectral
range of 1500 cm−1 < κ < 1620 cm−1. The experimental spectra were obtained by exciting the sample
at 488 nm (middle spectrum) and 532 nm (top spectrum). The blue (488 nm) and green (532 nm) solid
curves represent the fittings obtained through the deconvolution process using Lorentzian functions
(red solid lines). In the theoretical spectrum, Raman intensity (in A4/amu) refers to the Raman
activity (scattering factor).
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2.2. Hydrostatic Pressure Experiments

To explore the structural stability of C-H2TPyP, studies were conducted under high-
pressure conditions, from 0.1 GPa to 7.7 GPa. In Figure 12, the Raman spectra acquired
from samples under ambient conditions and submitted to various loads are presented.
To facilitate a more comprehensive discussion, the Raman spectra are divided into three
distinct wavenumber regions: 80–680 cm−1, 960–1250 cm−1, and 1435–1650 cm−1. It is
worth noting that even at a very low pressure (0.1 GPa), some modes that were not visible
under ambient conditions become apparent. The lack of theoretical prediction for some
of these modes as vibrational modes of the H2TPyP molecule suggests that the bands in
the low-wavenumber region (100–150 cm−1) are associated with the lattice vibration of
C-H2TpyP, i.e., librations and the torsion of porphyrin’s ring.
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(c) 1435–1650 cm−1. The spectrum at 0.0 GPA was acquired at ambient conditions and it is being
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Figure 13 shows the evolution of the Raman band frequencies with increasing pressure,
presenting distinct rates dω/dP, as summarized in Table 2. Notably, at pressures of 0.8 GPa,
1.5 GPa, 2.5 GPa, and 5.6 GPa, changes in the wavenumber displacement are evident for
some Raman bands, as indicated in Table 2.

The crystal lattice frequency vibrations undergo high blueshift rates (10.1–25 cm−1 GPa−1).
The vibrations initially at 98 cm−1 and 133 cm−1 disappear at 0.8 GPa, and the vibra-
tion initially at 117 cm−1 disappears at 1.5 GPa. The remaining lattice vibrations at
103 cm−1 and 81 cm−1 have their shift rates decreased at 1.5 GPa and at 2.5 GPa, re-
spectively. Moreover, the τOP(Pyrrole) vibration (199 cm−1) undergoes a blueshift at a
rate of 3.8 cm−1 GPa−1, manifesting a gradual decrease in intensity, followed by an in-
crease in its Full Width at Half Maximum (FWHM). Both PBM (323 cm−1) and δ(C − C)Pyr

(359 cm−1) vibrations display a blueshift at comparable rates of 2.7 cm−1 GPa−1 and
3.1 cm−1 GPa−1, with δ(C − C)Pyr observed until 4.5 GPa, while PBM remains up to
7.7 GPa. The δIP(Cm − Pyrrole) + τ(Pyridyl) (242 cm−1) vibration undergoes a high
blueshift rate (10.1 cm−1 GPa−1). In contrast, a minor displacement rate is identified
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for the δOP(N − H) + δOP(Cβ − H) (636 cm−1) mode (1.3 cm−1 GPa−1) throughout the
entire process. This rate is notably lower when compared to the displacement rates of other
vibrational modes within the range of 100 to 400 cm−1. Furthermore, the disappearance of
some lattice modes beyond 0.8 GPa and the observed increase in the FWHM bands suggest
the initiation of an amorphization process.
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Table 2. Experimental dω/dP rates for the observed Raman bands. CLV stands for Crystal Lattice
Vibration. Some Raman modes present two slopes with pressure; their intercept and dω/dP at such
pressures are indicated as follows: # 0.8 GPa, ** 1.5 Gpa, * 2.5 Gpa, and $ 5.6 GPa. The numbers in
brackets are the errors in the intercept and dω/dP rates obtained from fitting.

Raman Mode Intercept Position at
0.1 GPa (cm−1)

dω/dP
(cm−1/GPa)

CLV 81.2 (3.6); 100.4 (2.6) * 10.1 (2.0); 1.6 (0.8) *

CLV 98.5 (1.4) 10.1 (2.7)

CLV 102.6 (0.9); 117.6 (1.4) ** 14.6 (0.9); 5.6 (0.3) **

CLV 116.6 (1.0) 14.7 (1.1)

CLV 133.2 (2.2) 25.0 (4.3)

δIP(Cm − Pyrrole) 162.9 (1.1) 8.1 (2.1)

τOP(Pyrrole) 203.1 (0.8) 3.8 (0.2)

τ(Pyridyl) 221.4 (0.4) 2.1 (0.6)

δIP(Cm − Pyrrole) + τ(Pyridyl) 242.0 (1.7) 10.1 (3.2)

PBM 322.8 (0.4) 2.7 (0.1)

δ(C − C)Pyr 358.9 (0.5) 3.1 (0.2)

δOP(N − H) + δOP
(
Cβ − H

)
636.1 (0.5) 1.3 (0.1)

δ
(
N − Cα − Cβ

)
642.0 (1.2); 670.0 (0.8) * 3.3 (1.1); 1.3 (0.2) *

δ(C − H)Pyr 970.4 (0.4); 1017.6 (5.0) $ 2.3 (0.1); −1.1 (0.7) $

δ(C − N)Pyr + δ(C − C)Pyr 993.8 (0.7) 2.3 (0.2)

δIP
(
Cβ − H

)
x + ν

(
N − Cα − Cβ

)
x 1004.1 (0.7) 2.9 (0.2)

δIP
(
Cβ − H

)
1066.4 (0.8) 3.3 (0.2)

δIP
(
Cβ − H

)
1088.0 (0.5) 3.5 (0.1)

δIP(N − H) 1145.9 (0.8); 1142.7 (0.8) ** −8.8 (1.2); 2.5 (0.2) **
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Table 2. Cont.

Raman Mode Intercept Position at
0.1 GPa (cm−1)

dω/dP
(cm−1/GPa)

δIP(N − H) 1167.5 (1.0) * 3.0 (0.2) *

δ(C − H)Pyr 1216.8 (0.5) 2.5 (0.1)

ν(Cm − Pyridyl) + δ(C − H)Pyr 1250.5 (0.9) 4.2 (0.2)

ν
(
Cβ − Cβ

)
+ ν(Cm − Cα − N) 1438.7 (0.4) 2.6 (0.1)

ν(Cm − Cα)x + ν
(
Cα − Cβ

)
x 1455.8 (0.5) 4.0 (0.1)

ν
(
Cβ − Cβ

)
+ ν(Cm − Cα − N)y 1488.6 (1.1) 11.7 (2.1)

ν
(
Cβ − Cβ

)
+ ν(Cm − Cα − N)x 1537.4 (0.3); 1550.8 (0.4) # 11.4 (0.7); 2.9 (0.1) #

δIP(N − Cα)y + ν
(
Cβ − Cβ

)
x +

ν(Cm − Cα)
1555.5 (0.7); 1563.5 (0.6) # 7.5 (1.6); 4.5(0.1) #

ν(C − C)Pyr 1602.9 (0.8) 2.5 (0.2)

In the region ranging from 960 cm−1 and 1250 cm−1, most of the Raman bands un-
dergo a gradual blueshift, except for the band centered around 1144 cm−1, which initially
displays a redshift at a rate of −8.8 cm−1 GPa−1 (see Table 2 and Figure 13b). In the
region within 1440 cm−1 and 1650 cm−1, the vibrations ν(Cβ − Cβ) + ν(Cm − Cα − N)
(1439 cm−1), ν(Cm − Cα)x + ν(Cα − Cβ)x (1456 cm−1), δIP(N − Cα)y + ν(Cβ − Cβ)x +

ν(Cm − Cα) (1555 cm−1), and ν(C − C)Pyr (1603 cm−1) undergo a blueshift, presenting
rates from 2.5 cm−1/ GPa to 4.0 cm−1/ GPa. The vibrations ν(Cβ −Cβ) +ν(Cm −Cα −N)y

(1489 cm−1) and ν(Cβ − Cβ) +ν(Cm − Cα − N)x (1537 cm−1) undergo an initial blueshift,
with rates around 11 cm−1/ GPa. The former Raman band disappears at 0.8 GPa, and the
latter has its shift rate greatly decreased at the same pressure.

Figure 14 shows representative C-H2TPyP Raman spectra for selected hydrostatic
pressures. When compared with the spectrum at 0.1 GPa (the lowest pressure in the
experiment), the spectrum at 2.5 GPa shows three new Raman modes centered at 673 cm−1,
1150 cm−1, and 1175 cm−1; see Figure 14a. In addition, the intensity of the Raman mode at
1017 cm−1 (see illustration 24 in Table S2 in Supplementary Materials) increases relative to
the intensity of the mode at 1001 cm−1 (see illustration 23 in Table S2 in Supplementary
Materials), making both modes (see Table 1), which are associated with a distinct stretching
of the carbons β and α, distinguishable.
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Figure 14. Raman spectra ranging from (a) 300 cmିଵ  to 1200 cmିଵ , and (b) from 1500 cmିଵ  to 1800 cmିଵ. The spectra were excited at 488 nm and acquired under different hydrostatic pressures. 

Figure 14. Raman spectra ranging from (a) 300 cm−1 to 1200 cm−1, and (b) from 1500 cm−1 to
1800 cm−1. The spectra were excited at 488 nm and acquired under different hydrostatic pressures.
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The Raman band initially at 1086 cm−1 (out-of-phase bending of the Cβ − H pair; see
illustration 26 in Table S2 in Supplementary Materials) undergoes a frequency upshift and
an intensity decrease, favoring the observation of the lower energy band at 1077 cm−1

(in-phase bending of the Cβ − H pair; see illustration 25 in Table S2 in Supplementary
Materials), whose main change is connected to its intensity increase. These two bands
start fading and lose resolution when the pressure is further increased to 3.3 GPa. It is
important to comment that the in-phase bending of the Cβ − H pair at 1077 cm−1 appears
at 1063 cm−1 when measured at ambient conditions. With increasing pressure, the inactive
vibration at ambient conditions δIP(N − H) centered at 1171 cm−1 (see Figure 15) becomes
active with the frequency slightly upshifted to 1175 cm−1. It is worth mentioning that
the modes centered at 673 cm−1 and 1150 cm−1 only undergo a slight enhancement of
their intensities.
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From Figures 12 and 14b, it is noteworthy that the modes centered at 1537 cm−1

(ν(Cβ − Cβ) + ν(Cm − Cα − N)x; see illustration 39 in Table S2 in Supplementary Mate-
rials) and at 1555 cm−1 (δIP(N − Cα)y + ν(Cβ − Cβ)x + ν(Cm − Cα); see illustration 40
in Table S2 in Supplementary Materials) gradually upshift in frequency for pressures
up to 7.7 GPa. Initially, ν(Cβ − Cβ) + ν(Cm − Cα − N)x displays an higher upshift
rate of 11.4 cm−1 GPa−1 compared to the 7.5 cm−1 GPa−1 observed for δIP(N − Cα)y +

ν(Cβ − Cβ)x + ν(Cm − Cα). However, beyond 0.8 Gpa, both rates decrease to 2.9 cm−1

GPa−1 and to 4.5 cm−1 GPa−1, respectively. This implies that after 0.8 GPa, δIP(N − Cα)y +

ν(Cβ − Cβ)x + ν(Cm − Cα) upshifts more than one and a half times when compared
with ν(Cβ − Cβ) + ν(Cm − Cα − N)x. This observation explains the observed split-
ting in the Raman bands with increasing pressure. Their relative intensities present
an interesting behavior: the intensity of the mode ν(Cβ − Cβ) + ν(Cm − Cα − N)x is
first enhanced and then suppressed with increasing pressure, while the intensity of the
mode δIP(N − Cα)y + ν(Cβ − Cβ)x + ν(Cm − Cα) is continuously suppressed. Finally,
the Raman-active vibration ν(C − C)Pyr theoretically centered at 1581 cm−1 (see illustra-
tion 41 in Table S2 in Supplementary Materials) undergoes both a frequency upshift to
1604 cm−1 and a substantial enhancement of its intensity with increasing pressure.

In addition to structural modifications observed, our findings indicate the influence
of pressure load on resonance conditions of C-H2TPyP, probably due to modifications in
the Qy(0, 2) and Qy(0, 0) bands’ energy gap. Indeed, as mentioned in Section 2.1, some
of the Raman bands observed at 532 nm (488 nm) do not have a correspondent in the
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spectra at 488 nm (532 nm), evidencing the resonance effect [31,33,34], which occurs when
the different regions of the optical absorption spectrum (i.e., the Qy1(0, 2) and the Qy(0, 0)
bands) are excited [34]. It is also known that the resonance conditions of vibrational modes
are often affected by external stimuli (e.g., temperature and pressure) that perturb the
molecular geometry [35,36].

A new Raman mode at 242 cm−1 is observed at 0.1 GPa with excitation at 488 nm,
as shown in Figure 16a, and its intensity increases with compression, up to 0.8 GPa. Fur-
thermore, as shown in Figure 16b, the Raman-active vibration centered at 673 cm−1 (not
present in the spectrum at 0.1 GPa) has emerged in the spectrum acquired at 2.5 GPa with
the excitation at 488 nm. These bands are assigned to the δIP(Cm − Pyrrole)x + τ(Pyridyl)
and δOP(N − Cα − Cβ) vibrations, respectively, as seen in Table 1 and Table S2 in SI (il-
lustrations 4 and 11). Although not present when the sample is excited at 488 nm, these
bands are resonant with the 532 nm excitation at ambient conditions. The Raman features
centered at 1007 cm−1, 1150 cm−1, and 1604 cm−1 (Figure 16c,d), which are assigned to the
ν(Cα − Cβ), δIP(N − H), and ν(C − C)Pyr vibrations (Table 1 and Table S2 in SI (illustra-
tions 24, 27, and 41)), present the same behavior: they appear in the spectrum obtained
at 4.5 GPa with excitation at 488 nm, but they are not present when the pressure is set to
0.1 GPa. In addition, these bands are also resonant with the 532 nm excitation at ambient
conditions. These results suggest that the resonance conditions of the porphyrin molecules
are changing with changing pressure. In other words, the increase in pressure seems
to result in an increased energy separation between electronic levels. Therefore, bands
which are resonant at 532 nm (ambient conditions) become resonant at 488 nm for higher
pressures.

It is also important to note that the results associated with the molecules’ decom-
pression show that the frequency shifts are reversible for most bands, but the vibrations
between 970 cm−1 and 1003 cm−1 present signs of irreversibility (see Figure S3 in Supple-
mentary Materials).
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(c) 800 cm−1 to 1200 cm−1, and (d) from 1400 cm−1 to 1700 cm−1. The spectra were acquired under
different hydrostatic pressures and excited at both 488 nm and 532 nm (ambient conditions).

2.3. Low-Temperature Experiments

Temperature-dependent Raman spectroscopy has also been performed to complement
the understand of porphyrin’s vibrational properties. The C-H2TPyP molecules were
submitted to temperatures ranging from 78 K to 299 K. Differently from the behavior
presented at variable pressures, no shifts in the Raman band centers or broadenings of the
bands’ linewidths were detected in this range of temperatures, as shown in Figure 17.
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Figure 17. Raman spectrum of C-H2TPyP excited at 532 nm with temperatures ranging from 78 K to
299 K.

The analysis of the relative intensities of the Raman bands with respect to the PBM
(321 cm−1) intensity at 299 K shows that the intensities of most of the Raman modes remain
essentially unchanged. However, some vibrations have their intensities greatly altered at
lower temperatures, such as the τIP(Pyrrole) vibration at 429 cm−1, whose relative intensity
has an initial value of 0.3 at room temperature (299 K) that is increased to 0.7 at 180 K (see
Figure 18a), and the δ(C − H)Pyr mode at 801 cm−1, whose relative intensity goes from 0.3
to 0.9 when the temperature is lowered from 299 K to 180 K; see Figure 18b.
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Figure 18. (a) τIP(Pyrrole) (at 429 cm−1) and (b) δ(C − H)Pyr (at 802 cm−1) Raman modes’ relative
intensities as a function of temperature. The relative intensities plotted here are the ratio of the modes’
absolute intensities with relation to the absolute intensity of the PBM mode (321 cm−1) at 299 K.
The errors associated with the measurements of the relative intensities are lower than 0.1% for all
acquired spectra.

Overall, the effects observed in the relative intensities of the Raman bands are in-
dicative of perturbations in the molecular symmetry at lower temperatures, which are
likely altering the Raman activities of the modes. The graphs containing the temperature-
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dependent relative intensities for each assigned mode are available in Supplementary
Materials; see Table S3.

Finally, the literature reports that isolated H2TPyP belongs to the D2h point group [37].
For this symmetry, it is expected that antisymmetric vibrational modes with respect to the
molecule inversion center, called odd modes, will not be Raman-active [38,39]. Despite
that, some vibrations observed in this work, at ambient conditions, higher pressures, and
lower temperatures, are odd modes (for instance, τOP(Pyrrole) (199 cm−1) and δ(C − C)Pyr

(367 cm−1)). The observation of such modes in the Raman spectra strongly indicates that
a reduction in the planarity of the molecule, and consequently a change in its symmetry,
is taking place. We hypothesize that this planarity reduction could be associated with a
saddle-shaped conformation (already observed in porphyrins [40]), due to local fields in the
porphyrin crystal. Our theoretical predictions could only describe our experimental results
after considering such symmetry change, predicting that H2TPyP assumes the C2v point
group. In addition, the new vibration observed at 1175 cm−1 at higher pressures is also
an odd mode and possesses an antisymmetric vibration in the YZ plane. Its appearance
indicates a further planarity modification with pressure, without further symmetry changes.
Lastly, the changes in the relative intensities observed both at high pressures and low
temperatures also indicate changes in the molecular symmetry.

3. Materials and Methods

C-H2TPyP was synthesized following the procedures described in reference [41],
and the spectrometric analysis of the resulting crystals are in good agreement with the
literature [42].

The vibrational properties of C-H2TPyP were investigated via Raman spectroscopy
using a T64000 spectrometer from Horiba Jobin Yvon (Lille Country, France). The scattered
light was collected using a 20× magnification objective lens in a backscattering configu-
ration. The spectral resolution was ±2 cm−1. The measurements were conducted under
both ambient conditions and high pressures. C-H2TPyP was excited using two different
laser lines: 488 nm for both ambient and high-pressure conditions, and 532 nm for ambient
conditions only. No fluorescence background was observed upon sample excitation at
488 nm. However, the issue of fluorescence background arises when the sample is excited
with 532 nm. To address this problem, a baseline correction of the spectrum is performed.
The baseline determination proceeds as follows: First, a numerical derivative of the ex-
perimental data is calculated. Since the fluorescence bands are generally much broader
profiles compared to Raman bands, the first derivative is used to distinguish them. In the
derivative spectrum, each Raman band appears as two symmetric bands around zero and
the fluorescence signal grows as a background curve with the increase in the wavenumber.
This fluorescence curve is then adjusted using a multiparametric function, integrated, and
subsequently employed as the baseline for the original dataset.

The high-pressure Raman spectra were measured using a diamond anvil cell (µ-scope
DAC HT(S)) from Almax easyLab (Diksmuider, Belgium). A mineral oil, specifically Nujol,
was used as the pressure-transmitting medium [43]. The sample was loaded into a 100 µm
hole drilled in a stainless-steel gasket (thickness of 200 µm), using an electric discharge
machine from Almax easyLab. Pressure measurements were calibrated by monitoring
the shifts in the ruby fluorescence lines [44,45]. The increase in fluorescence background
originating from C-H2TPyP upon its insertion into the pressure cell makes it impractical to
acquire the Raman signal using 532 nm excitation in high-pressure experiments.

The low-temperature Raman spectra measurements were performed with the Janis
ST-500 cryostat from Lake shore Cryotornics (Westerville, OH, USA) and the samples, after
being properly accommodated in the cryostat, were excited with a 532 nm (2.33 eV) CW
laser using 40× objective lens with numerical aperture 0.60. The scattered light was
acquired in a backscattering configuration, using an Andor SR303i spectrometer operating
with a 1200 L/mm grating, coupled to an iDUS CCD camera.
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Our theoretical approach was based on the Density Functional Theory (DFT) for-
malism as implemented in the ORCA code [46], considering isolated molecules. We
employed a polarized triple-zeta basis set (def2-TZVP) and the Generalized Gradient
Approximation (GGA) within the Perdew–Burke–Ernzerhof (PBE) parametrization for
the exchange–correlation functional. The calculated main bond lengths and angles are
provided in supporting information (see Table S1 in Supplementary Materials) and were
computed with both GGA (PBE) and META-GGA (M06-L). In Figure S2 in Supplementary
Materials, the structure of H2TPyP computed with GGA (PBE) is used as reference to
the analysis of Table S1 in Supplementary Materials. We found an excellent agreement
between the two functionals, with the largest absolute difference in bond lengths being
only 0.012 Å. Following the complete geometry optimization, the Raman spectra were
determined numerically, with the best approximation to the experimental data achieved
using the PBE functional, which is consistent with previous studies [47].

4. Conclusions

Raman-active vibrations in H2TPyP have been poorly explored and, in this work,
through the combination of experiments and DFT calculations, we provide a thorough
discussion of such vibrations. Every measured Raman-active vibration within 100 cm−1

to 1700 cm−1 that is resonant with either 532 nm or 488 nm is now assigned, with their
symmetries and resonance properties properly addressed. In addition, the results show
that the resonance conditions of active vibrations are tunable under hydrostatic pressure.
In other words, bands which, under ambient conditions, are only active under 532 nm
excitation become readily active at 488 nm with increasing pressure. Finally, H2TPyP has
been reported to possess the point symmetry D2h, but the experimental results presented
here, combined with DFT calculations, suggest that these molecules are better described
under the C2v symmetry. The pressure- and temperature-dependent results indicate that
molecular planarity is being further perturbed at lower temperatures and higher pressures.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29102362/s1, Figure S1: X-ray diffractogram of C-
H2TPyP. The peaks reveal a crystalline structure of the investigated sample. Figure S2: Structure
of H2TPyP molecule calculated with GGA (PBE) and used as reference to Table S2 in SI. Figure
S3: Raman shift of the C-H2TPyP bands under compression (▲) and decompression (∇). Table S1:
Main bond lengths determined by DFT calculations employing two choices of exchange-correlation
functionals, GGA (PBE) and META-GGA (M06-L). The bonds are indicated in Figure S2, which
presents the structure of optimized porphyrin. The two functionals are in excellent agreement with
each other: the largest absolute difference is only 0.012 Å, while the largest percentage difference is
0.9%. Table S2: Schematic illustrations of the Raman modes observed in this work. The black and red
lines indicate out-of-plane opposite bonds. The arrows are in-plane vibrations, and the symbols ⊙
and ⊗ are out-of-plane opposite vibrations. Green and purple arrows represent out-of-phase modes.
The indexes “IP” and “OP” stand for in-plane and out-of-plane modes, respectively. The indexes
“x” and “y” indicate vibrations only in the respective direction. Table S3: Raman relative intensity
(Y-axis) of C-H2TPyP bands, relative to the PBM mode at 321 cm−1, as function of temperature
(X-axis), ranging from 299 K to 76 K. The inserted values indicate the ratio between the intensity at
the analyzed Raman band frequency (in cm−1) and the reference (PBM).
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