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a b s t r a c t

According to the theory of derived attention, organisms attend to cues with strong associations.
Prior work has shown that – combined with a Rescorla–Wagner style learning mechanism – derived
attention explains phenomena such as learned predictiveness, inattention to blocked cues, and value-
based salience. We introduce a Bayesian derived attention model that explains a wider array of results
than previous models and gives further insight into the principle of derived attention. Our approach
combines Bayesian linear regression with the assumption that the associations of any cue with various
outcomes share the same prior variance, which can be thought of as the inherent importance of that
cue. The new model simultaneously estimates cue–outcome associations and prior variance through
approximate Bayesian learning. A significant cue will develop large associations, leading the model
to estimate a high prior variance and hence develop larger associations from that cue to novel
outcomes. This provides a normative, statistical explanation for derived attention. Through simulation,
we show that this Bayesian derived attention model not only explains the same phenomena as previous
versions, but also retrospective revaluation. It also makes a novel prediction: inattention after backward
blocking. We hope that further development of the Bayesian derived attention model will shed light
on the complex relationship between uncertainty and predictiveness effects on attention.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Selective attention is a key part of learning theory. Many ex-
perimental results can be explained by supposing that organisms
pay attention to some cues and ignore others, and that attention
changes as a result of experience. For decades, researchers have
attempted to mathematically model this interplay between se-
lective attention and memory formation. One prominent class of
models assumes that organisms form direct associations between
cues and predicted outcomes (e.g. food, shock, category labels);
selective attention acts to re-scale cues and/or control learning
rates (e.g. Esber & Haselgrove, 2011; Frey & Sears, 1978; Kruschke,
2001) In this paper, we shall focus on a sub-class of such models
based on the principle of derived attention.

Derived attention theories assume that the attention paid to
a cue is proportional to the size of its association weights. A cue
with large association weights (whether positive or negative) will
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thus be attended to, while one with small association weights
will be ignored. Attention is thus derived from existing associa-
tions. Derived attention models have been proposed in several
forms (Esber & Haselgrove, 2011; Frey & Sears, 1978; Le Pelley,
Mitchell, Beesley, George, & Wills, 2016), but a review article
by Le Pelley et al. (2016) has brought the theory into particular
prominence.

Le Pelley et al. (2016) show how derived attention can explain
many important learning results, despite its simplicity compared
to other attention learning rules (e.g. Kruschke, 2001). For ex-
ample, consider the learned predictiveness effect (Le Pelley &
McLaren, 2003; Lochmann & Wills, 2003). During initial training,
certain cues (A, B, C, and D) are correlated with category labels,
while others (V, W, X, and Y) are not. In a later transfer stage,
people pay more attention to the previously relevant cues than
the previously irrelevant ones, even though all cues perfectly
predict the new categories (see Fig. 2(a)). Derived attention ex-
plains this result by noting that the predictive cues develop
larger associations in the first stage and hence greater attention
during the second. Similar reasoning explains why people pay a
great deal of attention to cues associated with large monetary
rewards (Anderson, Laurent, & Yantis, 2011; Le Pelley, Mitchell,
& Johnson, 2013, see Fig. 4(a)) and little attention to redundant
(blocked) cues (Beesley & Le Pelley, 2011; Kruschke & Blair,
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2000, see Fig. 3(a)). However, not all attentional phenomena are
explained by derived attention (Medin & Edelson, 1988; Swan &
Pearce, 1988).

In this paper we offer a normative foundation for derived
attention by reformulating it in terms of Bayesian inference,
and show how this significantly expands the scope of the the-
ory. The new model is based on an insight of Le Pelley et al.
(2016): ‘‘The idea that attention toward a cue increases to the
extent that it predicts a high-value outcome – attention is deter-
mined by associative strength – is very intuitive, and is consistent
with the idea that attention goes to cues that are known to be
significant’’ (page 1129). We develop this insight into a proba-
bilistic generative model of the organism’s environment, and then
derive an online variational Bayesian regression algorithm. The
resulting algorithm resembles previous derived attention models
and explains the same experimental results, including learned
predictiveness (Lochmann & Wills, 2003), inattention after block-
ing (Beesley & Le Pelley, 2011; Kruschke & Blair, 2000), and
value-based attention (Anderson et al., 2011; Le Pelley et al.,
2013).

The new Bayesian derived attention model can also explain
retrospective revaluation effects (which are characterized by
learning about absent cues), a class of phenomena that Le Pelley
et al.’s (2016) derived attention model cannot handle. Backward
blocking is one example of retrospective revaluation (Kruschke &
Blair, 2000; Shanks, 1985, see Fig. 5(a)). In a backward blocking
task, participants receive paired cue training (A.X! I, B.Y! II)
followed by further training with only one cue from each pair
(A ! I, B ! II). This continued single cue training weakens
the associative strength of the dropped cues (X and Y) even
though they are not present during it. Le Pelley et al.’s (2016)
model cannot explain this or other retrospective revaluation
effects because its learning rule (based on Rescorla & Wagner,
1972), only updates the value of cues that are present during a
trial. It is thus not adequate to describe backward blocking or
other retrospective revaluation phenomena. However, the new
Bayesian derived attention model produces these effects through
an explaining away mechanism: if further training shows that
A and B are sufficient to explain the outcomes, then X and Y’s
weights decrease toward zero (Dayan & Kakade, 2001). Moreover,
casting derived attention into a Bayesian framework produces a
novel prediction that goes beyond both Le Pelley et al.’s (2016)
version of derived attention and Dayan and Kakade’s (2001)
Bayesian regression model: cues suffer a loss of attention after
being subject to backward blocking.

2. Step by step toward a Bayesian derived attention model

Because the new Bayesian derived attention model is some-
what complex, we shall build up to it step by step by describing
a series of simpler models. At each stage of the process we
shall first describe a generative model of the learner’s environ-
ment, i.e. a set of implicit probabilistic assumptions held by the
learner (computational level model). We then describe a cor-
responding inference algorithm suitable for modeling learning
(algorithmic level model). In this way we shall gradually build
up the necessary machinery for the Bayesian derived attention
model.

2.1. Basic linear regression

The first step toward building our new learning model is
to describe the learner’s environment statistically. Assume that
there are nx cues (i.e. stimulus features). The cue vector for trial
t is denoted x1,t , . . . , xnx,t = xt . These cues (xi,t ) can be either
continuously valued (e.g. brightness of a light) or coded as {0, 1}

to indicate the presence or absence of a discrete stimulus or
property. The experiments described in this paper use discrete
cues. We also have ny outcomes, denoted y1,t , . . . , yny,t = yt .
In category learning experiments such as those described in this
paper, each outcome (yj,t ) corresponds to a category label and
is coded as 1 if category j is the correct answer for the current
stimulus and 0 otherwise. Each response option corresponds to a
category label (outcome) and only one response is correct on each
trial, so feedback is complete on each trial and does not depend
on the learner’s choices. We use lrnj,t as an indicator of whether
learning about outcome j should occur on trial t; lrnj,t equals zero
during test stages without feedback or when j is not a possible
outcome in the current stage. Similarly, psbj,t indicates whether
outcome j is possible during the current trial (= 1 if yes and = 0
if no). The same models can be applied to Pavlovian conditioning,
with the difference that there is typically only one outcome – the
unconditioned stimulus – and hence only one set of association
weights (ny = 1; e.g. Rescorla & Wagner, 1972), with the outcome
always considered possible with full feedback (i.e. psbt = 1 and
lrnt = 1).1

An example will be help to explain the notation. Consider the
simplified learned predictiveness design described in Fig. 2(a),
which is based on Lochmann and Wills (2003) and Le Pelley,
Suret, and Beesley (2009). The nature of the category labels
and cues depends on the experiment’s cover story. For exam-
ple in Lochmann and Wills (2003) participants pretended to be
allergists, with the categories corresponding to different allergic
reactions and the cues to different foods a hypothetical patient
might eat. Let us label the elements of the cue (xt ), outcome (yt ),
outcome possibility (psbt ), and outcome feedback (lrnt ) vectors
in the following manner:

xt = [cue A; cue B; cue X; cue Y] (1)

yt = [outcome I; outcome II; outcome III; outcome IV] (2)

psbt = [outcome I; outcome II; outcome III; outcome IV] (3)

lrnt = [outcome I; outcome II; outcome III; outcome IV] (4)

On A.X trials, we have xt = [1; 0; 1; 0]. In the initial stage
(Relevance) on A.X trials yt = [1; 0; 0; 0] (category I is cor-
rect), while in the second stage (Transfer) on A.X trials yt =

[0; 0; 1; 0] (category III is correct). On B.X trials, xt = [0; 1; 1; 0]
and yt = [0; 1; 0; 0] (category II is correct). The vectors xt and
yt are defined similarly for the other trial types. The outcome
possibility indicator (psbt ) is equal to [1; 1; 0; 0] for all trials in
the Relevance stage and to [0; 0; 1; 1] throughout the Transfer
and Test stages. The outcome feedback indicator (lrn) is equal to
[1; 1; 0; 0] in the Relevance stage, to [0; 0; 1; 1] in the Transfer
stage; and to [0; 0; 0; 0] in the Test stage. Hopefully this example
will clarify the notation to the reader.

We now describe a probabilistic model of the organism’s en-
vironment. We begin with the standard assumption that learning
is a linear regression problem. The cues combine linearly with
association weights (wji) to produce each outcome j:

yj,t =

X

i

xi,twj,i + ✏j,t (5)

= x
T

t
wj + ✏j,t for each outcome (j) such that psbj,t = 1 (6)

1 A note on notation: the value of outcome j on time step t is denoted yj,t

the total outcome vector for time step t is denoted yt , the vector of outcome
j values across all time steps is denoted yj , and the totality of all observed
outcome values across both outcomes and time steps is denoted y. Notation for
cues (x) is similar. All vectors such as xt , yt , xi , yj etc. should be considered
column vectors.
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Fig. 1. Generative statistical models discussed in the text. Square nodes indicate fixed variables and circular nodes indicate random variables. Filled nodes represent
variables that are directly observed by the learner, while unfilled nodes represent variables that are not directly observed.

where ✏j,t
iid

⇠ N (0, � 2) is Gaussian noise. In other words, yj,t ⇠
N (xT

t
wj, �

2). This is simply a linear regression model repeated
ny times, once for each outcome j.2 If we assume that the true
association weights (wji) are fixed but unknown quantities then
this model is ordinary frequentist regression, as typically taught
in university statistics courses (see Fig. 1(a) for a graphical depic-
tion). We can use ŵ to denote the learner’s estimates of w from
observed data, and ŷ to denote the learner’s outcome predictions
given a set of cues (xt ). Given ŵ, ŷ is computed as follows:

ŷj,t =

X

i

xi,tŵj,i (7)

= x
T

t
ŵj for each outcome (j) such that psbj,t = 1 (8)

2 Because the outcomes in category learning experiments are nominal (cat-
egory labels), strictly speaking it would be more appropriate to use something
like probit regression than linear regression as described here. We have in fact
implemented a version of probit regression (using a mean field approximation of
the latent variable) in the full Bayesian derived attention model described below:
it did not produce substantially different results. Thus for the sake of simplicity
we shall use linear regression, which after all is consistent with existing models
of human classification learning (e.g. Gluck & Bower, 1988; Kruschke, 1996).

2.1.1. The Rescorla–Wagner model

In order to obtain an online estimate of w that can be con-
stantly revised as new observations are made, we can use
stochastic gradient ascent on the likelihood to obtain an approx-
imate maximum likelihood estimate. We denote these estimated
association weights as ŵ; they represent the associations as they
exist in the learner’s mind. The resulting inference algorithm is
the commonly used Delta Rule/Rescorla–Wagner model (Gluck
& Bower, 1988; Rescorla & Wagner, 1972, see Algorithm 1 in
Appendix A for pseudocode):

ŵj,i  ŵj,i + �i(yj,t � ŷj,t ) for j such that lrnj,t = 1 (9)

where �i = �parxi is the learning rate (�par is a fixed model
parameter) and ŷj,t = x

T

t
ŵj is the predicted outcome. Learning

is driven by prediction error, i.e. the difference between the
outcome observed (yj,t ) and the outcome predicted (ŷj,t ). When
prediction error is small (ŷj,t ⇡ yj,t ) then not much learning oc-
curs. This explains blocking, i.e. the fact that very little is learned
about a redundant cue is introduced when the outcome is al-
ready predicted by previous conditioning to another cue (Kamin,
1968). However the basic Rescorla–Wagner model cannot explain

3
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Fig. 2. Simulation 1 (learned predictiveness).

selective attention or retrospective revaluation phenomena such
as those described above.

2.1.2. The Derived Attention Model of Le Pelley et al. (2016)

The derived attention model of Le Pelley et al. (2016) is a
modified version of the Rescorla–Wagner model (see Algorithm
2 in Appendix A for pseudocode). Each cue has its own learning
rate (�i) that changes with time, representing selective attention.
The attention paid to each cue is proportional to the current size
of its estimated association weights (

P
j
|ŵj,i|). Thus, cues with

large associations receive more attention. This model explains a
great deal of data, but does not explicitly provide any norma-
tive justification for derived attention, i.e. explain why it might
be useful to organisms. In the following sections we develop a
Bayesian derived attention model that derives a similar attention
mechanism through probabilistic inference.

2.2. Bayesian regression (with conjugate prior)

We shall now make the leap from frequentist to Bayesian
statistics. Instead of viewing each association weight (wji) as
unknown but fixed, wji is now a random variable. Rather than

computing a single estimate (ŵji), the learner’s beliefs about the
value of wji are represented by a probability distribution which
is updated based on new information. For example if wji ⇠

N (m, s2), then the learner believes that m is the most likely value
of wji and that there is a 95% probability that wji lies in the
interval (m� 1.96s,m + 1.96s). With one additional assumption
(a conjugate prior), the resulting Bayesian inference algorithm
closely resembles the Rescorla–Wagner/Delta Rule model but has
additional capabilities.

We must give wj a prior distribution, which represents the
learner’s beliefs previous to observing any actual data (i.e. before
starting the learning task). Choosing a conjugate (in this case
multivariate normal) prior makes inference very simple, as we
explain below. Thus

wj ⇠ N (µ̃, ⌃̃) for each outcome (j) (10)

where µ̃ and ⌃̃ are the prior mean and covariance matrix re-
spectively. In particular, we shall choose µ̃ = 0 and ⌃̃ = ⌧ 2I ,
where ⌧ 2 is the prior variance for each weight. We can interpret
this choice of prior in the following terms: before the task begins,
the environment produces each association weight (wji) via an
independent draw from a normal prior distribution with mean 0

4
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Fig. 3. Simulation 2 (inattention after blocking).

(so that it is a priori equally likely to be positive or negative) and
variance ⌧ 2. In other words, wji ⇠ N (0, ⌧ 2). Fig. 1(b) represents
this generative model graphically.

Prior variance (⌧ 2) affects how large the model’s posterior
weight estimates will be; a smaller value of ⌧ 2 will produce
smaller estimated weights, an effect called shrinkage. Because the
prior mean is zero, prior variance (⌧ 2) represents the model’s ex-
pectation for the size (squared magnitude) of the average weight:

⌧ 2 = V [wj,i] = E[(wj,i � E[wj,i])2]

= E[w2
j,i] = average size of cue–outcome associations (11)

When ⌧ 2 is small and the true weights are large, the model
will require more data to overcome its prior bias toward small
weights. Conversely, if ⌧ 2 accurately reflects the average weight
size than the model will learn accurate weight estimates more
quickly.

Learning consists of updating the prior distribution (p(wj))
with information from each successive observation (yj) to pro-
duce a posterior distribution (p(wj|yj)) using Bayes’ rule:

p(wj|yj) / p(yj|wj)p(wj) (12)

Because our prior is conjugate to the likelihood, the resulting
posterior distribution has the same form as the prior (multivariate

normal):

wj|yj ⇠ N (µj,⌃j) (13)

where µj and ⌃j are termed the hyperparameters of wj. The
posterior mean (µj) represents the learner’s best point estimate
of wj. The diagonal elements of the posterior covariance matrix
(⌃j) are posterior variances for each element of wj, and can be
interpreted as the learner’s level of confidence in the estimate
(smaller posterior variance means more confidence). The off-
diagonal elements of ⌃j represent covariance between different
cues’ weights. When two cues are repeatedly paired together, this
covariance will become negative (this can be seen as cue–cue
associative learning). This negative covariance between the cues’
weights represents the fact that the two cues offer competing
explanations for any associated outcomes: the larger one cue’s
weight is, the smaller the one cue’s weight must be (Dayan &
Kakade, 2001). Thus, evidence that the first cue has a large weight
causes the learner to infer that the second cue has a small weight.
The posterior distribution after each observation serves as the
prior distribution for the next observation, producing an exact
inference algorithm that naturally accommodates trial-by-trial
learning.

5
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Fig. 4. Simulation 4 (value effect).

We can write this inference algorithm in two equivalent ways.
In Algorithm 3, the updates to the hyperparameters are written
explicitly. This form is very similar to the Rescorla–Wagner/Delta
Rule model (Algorithm 1); the update for µj (analogous to the
point estimate ŵj) has the same form. In fact, Algorithm 3 is very
similar to the Kalman filter regression algorithm that has been
used in psychology to model learning (Dayan & Kakade, 2001).
The difference is that in our generative model we assume that
wj remains constant from trial to trial, whereas the Kalman filter
assumes that wj gradually drifts from its original value via a nor-
mally distributed random walk. Thus Algorithm 3 is equivalent to
Kalman filter regression with a random walk standard deviation
of zero.3

In order to develop the Bayesian derived attention model,
it is convenient to write the inference algorithm in a different
but equivalent form (Algorithm 4). Here we write the conjugate
prior/posterior distribution of wj in the form of an exponential

3 So far, we have not been able to incorporate the random walk into our
Bayesian derived attention model.

family, i.e. in terms of its natural hyperparameters ( 0,j = ⌃�1
j

µj

and  1,j = ⌃�1
j

) and sufficient statistics (T0,j =
P

t

xt yj,t

�2 and

T1,j =
P

t

xt x
T
t

�2 ). Learning consists simply of updating the suffi-
cient statistics by summing across trials. To obtain the natural
hyperparameters  0,j and  1,j (and hence the conventional hy-
perparameters µj and ⌃j) for the posterior, we add the sufficient
statistics to the prior values for the natural hyperparameters.
This way of writing the calculation makes it much simpler to
change the prior distribution later in the course of learning than
with the conventional form (Algorithm 3), something that will be
critical for the algorithmic approximation we propose below for
the Bayesian derived attention model. The equivalence between
Algorithms 3 and 4 is worked out in Appendix B.

As a model of learning, Bayesian regression has some addi-
tional capabilities compared to the Rescorla–Wagner model. Be-
cause both Bayesian regression and the Rescorla–Wagner model
have additive predictions and learning based on prediction error,
both can explain cue additivity effects such as blocking and
overshadowing (Rescorla & Wagner, 1972). However, Bayesian
regression has two attributes that the Rescorla–Wagner model

6
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Fig. 5. Simulation 4 (backward blocking).

lacks: cue-specific learning rates and learning for absent cues.
Both of these follow from the fact that the Bayesian model tracks
uncertainty in the weights (⌃) in addition to point estimates (µ).
Repeated observations of a cue decrease the posterior variance of
its weights (a diagonal element of ⌃), reducing its learning rate:
this familiarity effect explains phenomena such as latent inhibi-
tion (Gershman, 2015).4 In addition, Bayesian regression models
can explain retrospective revaluation phenomena, because obser-
vations about one cue can be informative about others through
the off-diagonal elements of ⌃ , which represent the posterior
covariance between cue weights (Dayan & Kakade, 2001). As we
shall show below, the Bayesian derived attention model has the
same property but can also explain selective attention effects.

2.3. Bayesian derived attention

To turn the Bayesian regression model described above into
a Bayesian derived attention model, we make some additional
assumptions about ⌧ 2 (the prior variance of w). Our approach
somewhat resembles Automatic Relevance Determination (Neal,
1996). Instead of assuming that ⌧ 2 is constant across all weights
(wj,i), we instead suppose that there is a separate variance (⌧ 2

i
)

for all of the weights pertaining to a given cue:

wj,i
iid

⇠ N (0, ⌧ 2
i
) for each outcome (j) (14)

⌧ 2
i
expresses the average size of all of cue i’s weights (c.f. Eq. (11)),

or in other words the importance or relevance of cue i (larger
weights mean more impact on outcomes). Unlike the standard
Bayesian regression model described above, we do not treat the
values of ⌧ 2

i
as known: ⌧ 2

i
for each cue is a random variable

subject to Bayesian inference.5 In particular, we give each cue’s

4 As noted above, most psychological models using Bayesian regression have
in fact used a Kalman filter, which differs from the plain regression model in
assuming that weights randomly drift from trial to trial (Dayan & Kakade, 2001;
Gershman, 2015). This behaves similarly to the plain regression model described
here, except that posterior weight variance (and hence learning rates) does not
converge to zero as it does in the present model.
5 Technically this makes it incorrect to call ⌧ 2

i
‘‘prior variance’’ in this model.

However, we retain the term because it helps to clarify the Bayesian derived
attention model’s relationship to simple Bayesian regression, which in turn helps
to explain the role that ⌧ 2

i
plays in inference.

⌧ 2
i
an inverse gamma prior (or equivalently give the precision ⌧�2

i

a gamma prior):

⌧ 2
i
⇠ InvGamma(↵̃, �̃) for each cue (i) (15)

where ↵̃ and �̃ are prior hyperparameters. The complete gener-
ative model is represented schematically in Fig. 1(c). The learner
must simultaneously infer ⌧ 2 and w. We shall see that this
process yields a form of derived attention.

Because we must estimate posterior distributions for both the
weights (wj,i) and their prior variances (⌧ 2

i
), we no longer have an

exact update rule as in the ordinary Bayesian regression model
described above. Instead, we must approximate the posterior
distribution. For the present paper, we use a streaming version
of mean field variational Bayes as our approximate inference
algorithm (Broderick, Boyd, Wibisono, Wilson, & Jordan, 2013),
because its calculations shed light on the generative model’s
psychological interpretation. We expect that other computational
methods such as Markov Chain Monte Carlo or a particle filter
would yield similar simulation results.

What follows is only a brief overview of the variational Bayes
algorithm; see Appendix B for more details and Algorithm 5 in
Appendix A for pseudocode. The algorithm maintains approxi-
mate posterior distributions for w and ⌧ 2 (indicated below by
the subscript q) and alternates between using expectations over
w to approximate the posterior distribution of ⌧ 2 and using
expectations over ⌧ 2 to approximate the posterior distribution of
w. The rest of this section explains these approximations, how
they are updated to reflect learning after each trial, and how they
can be interpreted as derived attention.

The variational Bayes algorithm computes its approximate
posterior distribution of w in much the same way as the simple
Bayesian regression model described above. Instead of a single
known value of ⌧ 2, it substitutes the approximate posterior mean
of ⌧ 2

i
for each cue, which we denote Eq[⌧

2
i
]. Thus in effect the

vector of weights pertaining to a particular outcome (j) has the
following prior distribution:

wj ⇠ N (0, diag(Eq[⌧ 21 ], Eq[⌧
2
2 ], Eq[⌧

2
3 ], . . .)) for each outcome (j)

(16)

Learning, i.e. updating the distribution of wj following new obser-
vations, works the same as in the standard Bayesian regression

7
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model described above, except for the critical difference that
Eq[⌧

2
i
] varies across cues. Due to the differential effects of shrink-

age, this will bias the model toward inferring larger or smaller
values (regardless of sign) for each weight (wj,i) depending on
whether its estimated prior variance (Eq[⌧ 2i ]) is large or small.
We can interpret this as selective attention. Associative learning
models (those based on a regression framework, such as those
we have considered so far) represent selective attention in var-
ious ways. Some use cue-specific learning rates (e.g. Le Pelley
et al., 2016), while others also scale the influence of cues on
prediction (e.g. Kruschke, 2001). However, all such attentional
mechanisms have the basic effect of modulating the influence of
each cue based on the attention paid to it.

To estimate ⌧ 2, the variational Bayes algorithm uses the ap-
proximate posterior means of w2 (denoted Eq[w

2]). Estimating
⌧ 2
i
is a simple matter of using Eq[w

2
1,i], Eq[w

2
2,i], . . . to update the

conjugate inverse gamma prior (or equivalently gamma prior on
the precision ⌧�2

i
):

Eq[⌧
2
i
] =

�̃ +
1
2

P
j
Eq[w

2
j,i]

↵̃ +
k

2 � 1
(17)

where �̃+
1
2

P
j
Eq[w

2
j,i] and ↵̃+

k

2�1 are posterior hyperparame-
ters and k is the number of unique outcomes observed so far. This
is exactly the same type of calculation as if w1,i, w2,i, . . . were
directly observed. Recalling that ⌧ 2

i
corresponds to attention to

cue i, we see that this expresses the same principle as the derived
attention formula used by Le Pelley et al. (2016): pay attention to
cues with big weights (Le Pelley et al. use |wj,i| instead of w2

j,i and
sum across outcomes rather than averaging; see Algorithm 2 in
Appendix A). In the following part of the paper, we shall show
that simulations of the Bayesian derived attention model confirm
that it displays very similar behavior to Le Pelley et al.’s (2016)
derived attention model (and hence to actual human participants)
in key experiments.

The Bayesian model described here offers us a normative
interpretation of derived attention: one can view it as a form
of inductive reasoning about cue significance. This is a math-
ematical formalization of an insight by Le Pelley et al. (2016)
quoted in the beginning of this paper. Observe that because the
prior mean on weights is zero, ⌧ 2

i
represents the average size

(squared magnitude) of cue i’s weights (this is a cue-specific
version of Eq. (11)):

⌧ 2
i

= V [wj,i] = E[(wj,i � E[wj,i])2]

= E[w2
j,i] = average size of cue i’s associations (18)

Weight size corresponds to cue significance: a cue is important
for making predictions only to the extent that it has large weights.
Eq. (14) thus embodies the assumption that a cue that is sig-
nificant for predicting some outcomes (i.e. has large weights)
will tend to be significant for predicting other outcomes. This
assumption supports inductive reasoning about cue significance
and hence allows us to interpret posterior belief in ⌧ 2

i
as the de-

terminer of selective attention. For example, the Bayesian derived
attention model explains learned predictiveness effects (Le Pelley
& McLaren, 2003; Lochmann & Wills, 2003, see Fig. 2(a)) as due
to participants inferring that cues will be more or less relevant in
the transfer stage based on their relevance in stage 1: relevance
in stage 1 leads to large estimated weights (w), which leads to
large estimated ⌧ 2

i
, which leads to larger estimated weights (w)

in stage 2. The following simulations illustrate how this happens
in practice. The assumption that each cue’s value of ⌧ 2

i
(i.e. cue

importance or average weight size) is constant across stages is
not in fact always valid in the case of experimental tasks, but it
may be valid in many natural environments, and if so this could

produce an evolutionary drive for organisms to develop derived
attention.

3. Simulations

The following simulations demonstrate the explanatory capa-
bilities of the new Bayesian derived attention model. In the first
three simulations, we show that it explains the same data as
Le Pelley et al.’s (2016) version of derived attention, viz. learned
predictiveness (Lochmann & Wills, 2003), inattention after block-
ing (Beesley & Le Pelley, 2011; Kruschke & Blair, 2000), and atten-
tional capture by high-value cues (Anderson et al., 2011; Le Pelley
et al., 2013). In each of these cases, the Bayesian derived attention
model infers a higher prior weight variance (⌧ 2

i
) for cues that

have large association weights, which leads to greater attention.
Simulation 4 shows that the Bayesian derived attention model
can also produce retrospective revaluation, specifically backwards
blocking (a form of learning about absent cues; Shanks, 1985) in
the same manner as Dayan and Kakade’s (2001) Bayesian regres-
sion model (Kalman filter). Thus the Bayesian derived attention
model combines the explanatory capabilities of Le Pelley et al.’s
(2016) derived attention model and Dayan and Kakade’s (2001)
Bayesian regression model under a single mechanism of joint
Bayesian inference of weights across different cues and outcomes.

Moreover, casting derived attention into a Bayesian frame-
work allows the new model to make a novel prediction: inatten-
tion after backward blocking (Simulation 5). Neither the Le Pelley
et al. (2016) or Dayan and Kakade (2001) models make this pre-
diction. Experimental confirmation of inattention after backward
blocking would support the Bayesian derived attention model’s
core assumption, that inference of weights across different cues
(as in retrospective revaluation effects) and inference of weights
across different outcomes (as in derived attention) are facets of
the same mechanism.

3.1. Methods

All simulations were performed using statsrat, a Python pack-
age written by one of the authors (SP) for simulating psycho-
logical learning models. The source code for statsrat is available
at https://github.com/SamPaskewitz/statsrat, while the code for
these particular simulations is available at https://github.com/
SamPaskewitz/Bayesian-derived-attention; it allows the reader
to replicate all of our results. For ease of presentation, we sim-
ulated simplified experimental designs that retain all the essen-
tial elements of previously published studies with fewer stimuli.
Simulations of the actual experimental designs produced similar
results.

The focus of these simulations was to reproduce ordinal re-
sponse patterns, i.e. a greater probability of choosing one re-
sponse over another in critical trials (during the test stage). This
is a common method for analyzing category learning data, and
a similar approach called the ordinal adequacy test (OAT) is
often used to evaluate mathematical models (Wills & Pothos,
2012). We used the statsrat package’s perform_oat function for
this purpose. Performing an OAT consists of the following steps.
First, a behavioral score is defined that captures the empirical
pattern of results. For each test trial type, one response is em-
pirically more common than the other. The behavioral score for a
simulation consists of the sum across test trials of the simulated
probability of the empirically more common response minus
that of the less common response. Positive values of this score
represent the same ordinal pattern as that observed empirically,
while negative values represent the opposite pattern. Next, a
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function is defined that gives the behavioral score averaged across
several random trial sequences (we used 10) as a function of
the model’s free parameters. Finally, a non-linear optimization
function is used to search the model’s parameter space to find
the maximum and minimum behavioral score values (averaged
across trial sequences) that the model can produce.

An OAT has three possible results:

1. The maximum behavioral score produced by the model is
positive, and the minimum is negative: this means that the
model can reproduce the empirical pattern, but can also
produce the opposite.

2. The minimum score is positive: the model strictly predicts
the observed pattern (it cannot produce the opposite).

3. The maximum score is negative: the model cannot repro-
duce the observed pattern.

In all the experimental designs tested with the Bayesian de-
rived attention model we obtained result 2, indicating that the
model strictly predicts the observed phenomena. In other words,
this aspect of the model’s behavior is not parameter dependent.
Therefore, we used the same set of parameter values (�̃0 =

�0.4, �̃1 = 2.0, � 2 = 1.0,  = 5.0) for producing simulation
graphs.

In all of these simulations we use a softmax function to trans-
form category label predictions (ŷ) into response probabilities:

P(answer category h) =
psbh exp( ŷh)P
j
psbj exp( ŷj)

(19)

or equivalently in vector form:

response probabilities =
psb � exp( ŷ)P
j
psbj exp( ŷj)

(20)

Here  is a positive response scaling parameter (recall that psbj =

1 if category j is a possible response option and 0 otherwise).
This softmax response function is commonly used in learning
and decision making research. The current simulations aim only
to reproduce ordinal patterns in the data, i.e. a greater response
probability for one category than another for defined test stimuli.
Therefore any other monotonic transformation of ŷ into response
probabilities would produce exactly the same results as the
softmax function we use.

3.2. Simulation 1: Learned predictiveness

Learned predictiveness consists of the fact that organisms pay
attention (as assessed by choice data and eye gaze) to cues in
accordance with their task relevance and that this attentional bias
transfers to later learning (Le Pelley & McLaren, 2003; Lochmann
& Wills, 2003). Fig. 2(a) shows a simplified experimental design.
In the first stage (Relevance), participants learn to classify stimuli
into two categories. Each stimulus consists of two cues, A or B
and X or Y. Cues A and B are predictive of category member-
ship: A consistently indicates category I, while every stimulus
with B is in category II. In contrast, cues X and Y are irrelevant
to the task. In the following Transfer stage, the same cues are
associated with two entirely new category labels; all of the cues
are now equally relevant. In the final Test stage, ambiguous cue
pairs test the relative strength of the cues’ associations acquired
in the Transfer stage. It has been consistently found that the
formerly predictive cues (A and B) form stronger associations in
the Transfer stage than the formerly irrelevant cues (X and Y),
as indicated by subjects’ test responses (Le Pelley & McLaren,
2003; Le Pelley et al., 2009; Lochmann & Wills, 2003; Mitchell,
Griffiths, Seetoo, & Lovibond, 2012). Because the two stages use

different category labels, this finding suggests that the Relevance
stage trained participants to pay more attention to A and B
than to X and Y. Eye-tracking results support this attentional
interpretation (Mitchell et al., 2012).

The Bayesian derived attention model explains learned predic-
tiveness in the following manner. In the first (Relevance) stage,
the predictive cues (A and B) form large associations (wj,i) with
the categories, while the irrelevant cues (X and Y) have associa-
tions that are closer to zero (Fig. 2(c)). By the end of this stage, the
model thus infers that ⌧ 2

i
is larger for the predictive cues (A and B)

than for the irrelevant ones (X and Y) (Fig. 2(b); see also Eq. (17)).
This difference in estimated ⌧ 2

i
values – which we interpret as

greater attention to A and B than to X and Y – leads to larger
weight estimates for the former cues in the Transfer and Test
stages (Fig. 2(d)). This explanation is very similar to that provided
by the Le Pelley et al. (2016) derived attention model (compare
Fig. 2 with Le Pelley et al.’s Figure 3).

3.3. Simulation 2: Reduced attention to blocked cues

Derived attention also explains inattention to blocked cues.
When an outcome is already well predicted, new, redundant cues
do not form strong associations. In other words, existing associ-
ations block new learning. Blocking is widespread in both animal
and human learning (Kamin, 1968; Shanks, 1985). Blocking itself
is not the primary phenomenon of interest to us here: it can be
explained by simple error-correction principles common to every
model of the Rescorla–Wagner/linear regression family (including
both the Le Pelley et al. and Bayesian versions of derived atten-
tion). Rather, we are interested in the fact that cues suffer a loss of
attention after being blocked (Beesley & Le Pelley, 2011; Kruschke
& Blair, 2000; Le Pelley, Beesley, & Suret, 2007).

We illustrate inattention after blocking using a simplified de-
sign (see Fig. 3(a)). In the Single Cue stage, participants learn A
! I and B ! II associations, followed by the addition of the
redundant cues X and Y in the Double Cue stage. Thus, X and
Y are blocked by A and B. (The design could easily include a
test for blocking but we omit this for simplicity.) The Transfer
stage sees the blocked cues (X and Y) paired with control cues
(E and G) and uses new category labels. The test stage has pairs
of blocked and control cues with opposite associations, allowing
us to indirectly compare attention during the Transfer stage. The
basic logic of the Transfer and Test stages is the same as in the
learned predictiveness experiments described above.

Inattention after blocking is easy for the derived attention the-
ory to explain: blocked cues have small association weights and
are thus ignored (Le Pelley et al., 2016). Fig. 3 shows simulation
results from the new Bayesian derived attention model. As in
Simulation 1 (learned predictiveness), cues X and Y have small
association weights (w) prior to the Transfer stage and thus low
attention (⌧ 2

i
). This reduces the size of the weights they develop

in the Transfer stage, leading to the observed result.

3.4. Simulation 3: Attention toward high value cues (value effect)

Cues associated with large rewards attract more attention than
those associated with small rewards. This effect has been found
in both visual search (Anderson et al., 2011; Le Pelley, Pearson,
Porter, Yee, & Luque, 2018) and category learning experiments (Le
Pelley et al., 2013). This value effect on attention is a key support
of Le Pelley et al.’s (2016) derived attention theory: high-value
cues have larger association weights, and thus receive more at-
tention. We shall show that our new Bayesian derived attention
model also captures the value effect.
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To simulate the value effect, we use a category learning task
based loosely on Le Pelley et al. (2013), but simplified for ease of
presentation (see Fig. 4(a)). In the Value stage, correct categoriza-
tion answers are worth different amounts of reward depending
on the cue present: cues A and B are high-value cues (reward
of 100) while C and D are low-value cues (reward of 10; both
rewards were divided by a factor of 100 in the simulation). This
is followed by a Transfer stage similar to those described above,
in which the high- and low-value cues from the Value stage are
paired together and predict new category labels. The Test stage
shows that Transfer stage learning was dominated by A and B (the
high-value cues), suggesting that these cues received more atten-
tion than did C and D (this is further supported by eye-tracking;
Le Pelley et al., 2009). Simulation shows that the Bayesian derived
attention model reproduces the empirical result (Fig. 4). In the
Value stage, the high-value cues (A and B) develop larger weights
(wj,i) than do the low-value cues (C and D), because the former
are associated with larger outcomes (see Fig. 4(c)). The model
thus infers that the high-value cues are more significant (i.e.
have greater ⌧ 2

i
; Fig. 4(b)), and this affects weight estimates in

the Transfer stage similarly to the experiments described above
(Fig. 4(d)).

3.5. Simulation 4: Backward blocking (retrospective revaluation)

A cue’s ability to control behavior can change even when
that cue is not present; this is called retrospective revaluation.
Backward blocking (Shanks, 1985) is one example. As in the
other simulations, we illustrate backward blocking using a simple
category learning task (Fig. 5(a)). In the first (Double Cue) stage,
various pairs of cues are associated with different outcomes (A.X
! I, B.Y ! II, E.F ! I and G.H ! II). In the following Single
Cue stage, cues A and B are presented alone and followed by
the same outcomes as before. This weakens the control of the
cues previously paired with A and B (respectively X and Y) over
behavior, as assessed in the Test stage. The design is called
backward blocking because – compared to ordinary blocking – the
order of the Single and Double Cue stages is reversed. Ordinary
blocking is easy for all Rescorla–Wagner family models (including
Le Pelley et al.’s derived attention model) to explain via prediction
error (Rescorla & Wagner, 1972). However, these models cannot
explain retrospective revaluation effects such as backward block-
ing because they do not allow for learning about absent cues.
For the sake of thoroughness, we confirmed via simulation (using
the perform_oat function in statsrat) that Le Pelley et al.’s (2016)
derived attention model could not produce a backward blocking
effect with any combination of free parameter values (maximum
behavioral score of 0 across all parameter combinations).

The Bayesian derived attention model easily produces back-
ward blocking, as shown in Fig. 5. This is a consequence of its
Bayesian regression machinery, as originally explained by Dayan
and Kakade (2001). When cues are presented together, their
association weights become negatively correlated in the learner’s
posterior distribution. Therefore, when the estimate of one of
these weights increases during subsequent learning, the other
decreases. For example, the weights of cues A and X become
negatively correlated in the Double Cue stage because the two
cues are presented together; this can be seen as a sort of Hebbian
learning about cue relationships. During the following Single Cue
stage, further training increases the estimate of cue A’s weights,
thus decreasing the estimate of cue X’s weights and leading to
a backward blocking effect (see Fig. 5(b)). Thus retrospective
revaluation in the Bayesian derived attention model can be seen
as complementary to its selective attention mechanism: the latter
produces positive generalization between weights from the same
cue to different outcomes due to their prior positive correla-
tion (from shared ⌧ 2

i
), whereas the former produces negative

generalization between weights from different cues to the same
outcome due to their prior negative correlation (from previous

joint presentation). The final simulation reported here tests a key
prediction of the model that emerges from the combination of
these two mechanisms.

3.6. Simulation 5: Reduced attention after backward blocking

By recasting derived attention (Le Pelley et al., 2016) within
the context of Bayesian regression (Dayan & Kakade, 2001), the
Bayesian derived attention model makes a novel prediction: re-
duced attention to cues that have undergone backward blocking.
So far as we are aware, it is the first computational model that has
been demonstrated to make this prediction. Fig. 6(a) illustrates a
simplified experimental design, which is the same as inattention
after (forward) blocking (Simulation 2, Fig. 3(a)) except that the
order of the first two stages is reversed. So far as we can tell,
this type of experiment has not yet been performed. Kruschke
and Blair (2000) did perform a similar experiment. However, their
design paired the backwardly blocked cues (analogous to X and
Y in our design) with the cues that backwardly blocked them
(analogous to A and B) during transfer training trials. Thus, one
cannot tell whether the former have weak associations because
they lost attention, or because attention was focused on the latter.
The design in Fig. 6(a) eliminates this confound by pairing X and
Y with cues (E and G) that have not been involved with the
backward blocking process.

The Bayesian derived attention model predicts inattention
after backward blocking. Its Bayesian regression mechanism pro-
duces a decrease in the estimated weights of cues X and Y as a
result of backward blocking (Fig. 6(c), just as in Simulation 4). This
leads to less attention to these cues, i.e. smaller estimated ⌧ 2X and
⌧ 2Y (Fig. 6(b), compare to Simulation 2) and hence smaller esti-
mated weights during the Transfer stage (Fig. 6(d)). Thus learning
about wI,A during the Single Cue stage leads to a decreased expec-
tation for the magnitude of wIV,X prior the Transfer stage, which is
possible only because the model performs inference over weights
for all cues and all outcomes jointly. Ordinal adequacy tests
confirm that neither the Le Pelley et al. (2016) derived attention
model nor Dayan and Kakade (2001) Bayesian regression model
can predict this result (maximum behavioral score of 0 for both
models across all parameter combinations). The former model
does not produce any form of backward blocking and hence of
changes to the blocked cues’ weights, while the latter model has
no mechanism for learning about the first set of outcomes (I and
II) to affect learning about the second set of outcomes (III and
IV).

4. Discussion

We interpret derived attention as Bayesian inference over a
generative model that assumes each cue’s association weights
to various outcomes have a common prior variance (⌧ 2

i
). The

estimated size of ⌧ 2
i

influences the estimated size of cue i’s
weights through the mechanism of shrinkage; ⌧ 2

i
thus can be

interpreted as selective attention. Attention learning is thus in-
ductive inference about cue significance, i.e. average weight size.
The Bayesian derived attention model explains the same set of
attentional phenomena as the Le Pelley et al. (2016) version of de-
rived attention, viz. learned predictiveness (Le Pelley et al., 2009;
Lochmann & Wills, 2003), inattention after blocking (Beesley &
Le Pelley, 2011; Kruschke & Blair, 2000; Le Pelley et al., 2007), and
the value effect (Anderson et al., 2011; Le Pelley et al., 2013). This
represents a theoretical advance over previous derived attention
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Fig. 6. Simulation 5 (inattention after backward blocking).

models (Esber & Haselgrove, 2011; Frey & Sears, 1978; Le Pelley
et al., 2016): we have explained why one might expect animals
to use derived attention. If inductive inference about cue signifi-
cance is valid in organisms’ environments, then natural selection
would tend to produce derived attention. The Bayesian derived
attention model also leverages Bayesian regression (Dayan &
Kakade, 2001) to explain phenomena that the Le Pelley et al.
(2016) model cannot, viz. retrospective revaluation effects such as
backward blocking (Shanks, 1985). Finally, the Bayesian derived
attention model predicts a result not produced by either derived
attention (Le Pelley et al., 2016) or Bayesian regression (Dayan &
Kakade, 2001) alone: reduced attention after backward blocking.

The Bayesian derived attention model ultimately explains all
of these phenomena in terms of the same process: inference

about association weights (wij). Derived attention involves infer-
ence across different weights for the same predictor (large wji

indicates large wj0 i) by the intermediate step of estimating ⌧ 2
i
.

Retrospective revaluation, on the other hand, involves inference
across different weights for the same outcome (large wji indicates
small wji0 ). The model’s prediction of inattention after backward
blocking comes from the combination of these two mechanisms.

We see several directions for future work with the Bayesian
derived attention model. The first is extending the model to
explain the phenomenon of learned helplessness. Whereas the
Bayesian derived attention model deals with inductive reasoning
about cue importance, the same approach could be extended to
modeling a learner’s beliefs about the efficacy of its own actions.
In learned helplessness experiments, participants who first are
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Table 1
The inverse base rate effect (Kruschke, 1996, Experiment 1). The Category col-
umn indicates correct responses, while the Prop. column shows the proportion
of each trial type. The rightmost two columns show some of the empirical
response proportions in the test stage. Due to the symmetry of the design, the
test results for I1 are averaged with I2, PC1 with PC2, etc. The critical finding is
that participants tend to choose the rare outcome (R1 or R2) on PC + PR test
trials: this is the inverse base rate effect.
Training Test
Cues Category Prop. Cues C Responses R Responses
PC1.I1 C1 1/8 I .746 .174
PC2.I2 C2 1/8 PC .933 .031
PR1.I1 R1 3/8 PR .040 .911
PR2.I2 R2 3/8 PC .PR .353 .612

given an impossible task to perform are less likely to solve a
possible task (Hiroto & Seligman, 1975). This can be interpreted
as inductive reasoning about the potency of one’s own actions:
if one’s actions were ineffective previously, then one infers that
they will be ineffective in the future. This could probably be mod-
eled using a variation of the Bayesian derived attention model
featuring both association weights that reflect the learner’s ac-
tions and association weights that do not reflect the learner’s
actions. If it is assumed that all of the action weights have a
shared variance, we would expect to see learned helplessness
effects in a manner analogous to the learned inattention simula-
tions presented above (low ⌧ 2

i
for action weights). Similarly, high

confidence in one’s ability to affect outcomes could be modeled
as a high ⌧ 2

i
for action weights. This approach might be useful for

understanding individual differences in perceived self-efficacy,
e.g. illusory sense of control over gambling outcomes (Joukhador,
Maccallum, & Blaszczynski, 2003).

The Bayesian derived attention model might also be fruitfully
applied to Pavlovian conditioning. Formally, there is not much
difference between category learning experiments such as those
described here and a Pavlovian conditioning experiment. Instead
of category labels, the outcomes (y) correspond to unconditioned
stimuli such as shocks or food (with lrn = 1 and psb = 1 on
each time step) while the cues (x) correspond to unconditioned
stimuli. The conditioned response (e.g. freezing, approach) is a
monotonically increasing function of the unconditioned stimulus
prediction (ŷ).

In particular, the Bayesian derived attention model might yield
insights about the persistence of conditioned responses following
extinction. Conditioned responses are not forgotten following
extinction, but persist and can be revealed by manipulations
such as changing background stimuli (renewal, Bouton & Bolles,
1979) or simply waiting before test (spontaneous recovery, Estes
& Skinner, 1941). This closely resembles the fact that in clinical
psychological practice, while exposure to fear-provoking stim-
uli (e.g. spiders, trauma reminders) tends to reduce fear, that
fear often returns over time. Modified versions of the Rescorla–
Wagner model can explain some of these results when simulated
correctly (Delamater & Westbrook, 2014; Paskewitz, Stoddard,
& Jones, 2022). During extinction or exposure therapy, back-
ground stimuli (i.e. the context) develop conditioned inhibition,
becoming safety signals that prevent the total erasure of the
fear association. We have recently shown that certain attentional
mechanisms allow Rescorla–Wagner based models to explain a
wider range of such phenomena than previously thought (Paske-
witz et al., 2022). It might well be the case that a modified version
of the Bayesian derived attention model, which is similar to the
Rescorla–Wagner model, might be able to explain a still broader
array of results relating to the return of fear.

The Bayesian derived attention model – like Le Pelley et al.’s
(2016) version – cannot explain an important category learning
result known as the inverse base rate effect. This is a phenomenon
in which people under certain circumstances predict a rare out-
come as opposed to a common outcome when presented with
conflicting cues equally associated with both (Kruschke, 1996;
Medin & Edelson, 1988, see Table 1). The result is counterintuitive
because, if there is equal evidence for the rare and common
outcomes, one ought to choose the common one. The inverse
base rate effect and related phenomena are explained by learning
models in which cues compete for attention on the basis of
their predictiveness (Kruschke, 2001; Paskewitz & Jones, 2020).
However, derived attention cannot produce the same effect: the
common cues should always receive more attention and hence
have more control over behavior (Le Pelley et al., 2016). Ordinal
adequacy tests confirm that the Bayesian version of derived at-
tention, like the (Le Pelley et al., 2016) model, fails to produce
the inverse base rate effect.

One way to obtain the inverse base rate effect might be to limit
attentional capacity in the Bayesian derived attention model.
People can only pay attention to a limited number of stimuli at
once (Landauer, 1986). Limiting attentional capacity allows other
regression-based category learning models to explain the inverse
base rate effect in terms of cue competition (Kruschke, 2001;
Paskewitz & Jones, 2020). Future iterations of Bayesian derived
attention theory might be able to model limited capacity atten-
tion by changing the form of prior distribution on association
weights (w). We can interpret limited attention as sparsity in the
matrix of association/regression weights: most cues are ignored
and have a weight of zero, while a few cues are attended and
have non-zero weights. Other forms of prior distribution on w
used in Bayesian regression enforce sparsity more stringently
than the normal priors used here (Kuo & Mallick, 1998; Mitchell
& Beauchamp, 1988), and might thus be useful for constructing
models of limited capacity attention.

Another idea that might allow the Bayesian derived attention
model to produce the inverse base rate effect would be to incor-
porate change points into the generative model (Wilson, Nassar,
& Gold, 2013). Instead of assuming that the true association
weights remain constant across time, the model would assume
that these weights are occasionally re-drawn from a generative
prior (wj,i ⇠ N (0, ⌧ 2

i
)) at unsignaled change points. This would

tend to increase the learning rate (relative importance of new
vs. old observations) whenever the inference algorithm believes a
change point has occurred. This might increase the learning rate
in particular during rare cue/outcome trials due to the high pre-
diction error, somewhat like how the high prediction error draws
attention toward the rare cues in other models (Kruschke, 1996;
Paskewitz & Jones, 2020, see Table 1). If changepoint detection
really does this, a suitably revised version of Bayesian derived
attention might produce an inverse base rate effect. We plan to
investigate this possibility in future work.

Incorporating change points into the Bayesian derived atten-
tion model is attractive for another reason. Historically, mod-
els of selective attention in learning have tended to focus on
two competing principles: predictiveness (Mackintosh, 1975) and
uncertainty (Pearce & Hall, 1980). The first principle says that
organisms should attend to cues that are known to be good
predictors, while the second says that organisms should attend
to cues whose meaning is uncertain. Derived attention is an
expression of the predictiveness principle. However, the Bayesian
framework naturally represents the principle of uncertainty in
the form of posterior weight variance. In the current Bayesian
derived attention model, this causes the effective learning rate
for a cue to decrease the more times it is observed, which is
a very limited expression of the uncertainty principle. Adding
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Table 2
Key to mathematical symbols.
Symbol Meaning
xi indicates if cues i was present
yj indicates if outcome j occurred (e.g. category label)
psbj indicates if outcome j is possible during the current stage of the task, i.e. if category j is a response option
lrnj indicates whether feedback was given about outcome j and hence whether the organism will learn about it
fbj indicates if feedback was given about outcome j

ŷj prediction of outcome j

�j prediction error for outcome j

softmax(ŷ; ) response probabilities, equal to psb�exp( ŷ)P
j

psbj exp( ŷj)

u � v component-wise multiplication of vectors or matrices u and v (Hadamard product)
 softmax response scaling parameter
Basic Rescorla–Wagner model
�par fixed learning rate parameter
ŵji point estimate of association between cue i and outcome j

Derived attention model of Le Pelley et al.
�i learning rate for cue i

ŵji point estimate of association between cue i and outcome j

�min minimum learning rate
Bayesian Regression
wji association between cue i and outcome j (random variable)
⌧�2 unknown prior precision of w1,1, w2,2, . . . , w1,2, . . . (fixed and known, equal to 1

⌧2
)

� 2 variance of y (fixed and known)
µj conventional hyperparameter for wj (mean vector of wj)
⌃�1

j
conventional hyperparameter for wj (precision matrix, i.e. inverse covariance matrix of wj)

 0,j natural hyperparameter for wj (= ⌃�1
j

µj)
 1,j natural hyperparameter for wj (= ⌃�1

j
)

T0,j, T1,j sufficient statistics for wj

Bayesian derived attention model
wji association between cue i and outcome j (random variable)
⌧�2
i

unknown prior precision of w1,i, w2,i, . . . (random variable, equal to 1
⌧2
i

)

� 2 variance of y (fixed and known)
q variational distribution, ⇡ posterior distribution of w and ⌧ 2
Eq[wji] variational expectation (mean) of wji

Vq[wji] variational variance of wji

Eq[w
2
ji
] variational expectation of w2

ji

Eq[⌧
�2
i

] variational mean of ⌧�2
i

 0,j, 1,j variational hyperparameters for wj (respectively equal to ⌃�1
j

µj and ⌃�1j
)

�0,i,�1,i variational hyperparameters for ⌧�2
i

(respectively equal to ��i and ↵i � 1)
�̃0, �̃1 prior variational hyperparameters for ⌧�2
T0,j, T1,j sufficient statistics for wj

change point detection would allow that posterior weight vari-
ance to increase again when expectations are violated, providing
a fuller expression of the uncertainty principle. Thus, a version
of Bayesian derived attention with change point detection might
be able to integrate the two attentional principles in a principled
manner through its generative model and thereby explain a wide
range of learning data.

Appendix A. Pseudocode

Note: in order to keep the notation uncluttered, we suppress
the t subscript for time steps in the algorithm pseudocode. Thus
y, x etc. denote yt , xt etc. Table 2 explains the notation used.

Appendix B. Mathematical details

B.1. Exponential distribution forms

It will helpful to first re-write the multivariate and univariate
normal distributions – along with the gamma distribution – in
exponential family form, i.e.:

p(u) = exp
�X

k

h✓k, Tk(u)i � f (u)� g(✓ )
�

(21)

where ✓0, ✓1, . . . are the natural parameters and T0(u), T1(u), . . .
are the accompanying sufficient statistics of u. Each natural pa-
rameter (vk) can be a scalar, vector or square matrix; the corre-
sponding sufficient statistic (Tk(u)) has the same dimensions (e.g.
an m ⇥ 1 vector if vk is an m ⇥ 1 vector). The inner product
operation hvk, Tk(u)i is defined as follows for the various types
of natural parameter and sufficient statistic:

hvk, Tk(u)i

=

8
>><

>>:

vkTk(u) scalars
P

i
✓k,iTk,i(u) = vT

k
Tk(u) vectors

P
i

P
j
✓k,i,jTk,i,j(u) matrices (Frobenius inner product)

(22)

Writing distributions in exponential family forms greatly simpli-
fies Bayesian learning (conjugate prior updating).

B.1.1. Univariate normal distribution

Suppose U ⇠ N (µ, � 2) with support u 2 R. Then

p(u) = (2⇡� 2)�1/2 exp
�
�

1
2
(u�µ)2

�2

�
(23)
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Algorithm 1: The Rescorla–Wagner model (Rescorla & Wag-
ner, 1972) applied to category learning. See Table 2 for an
explanation of symbols.
input: simulation parameters (�par, ), sequences of variables
defining the experiment (x, y, psb, lrn)

output: sequence of simulated response probabilities
begin

initialize weight estimates;
for j 2 1 : ny do

ŵj  0 (nx ⇥ 1 column vector);
while task continues do

prediction and response;
for j 2 1 : ny do

ŷj  psbjx
T ŵj;

response probabilities softmax(ŷ; );
association learning;
� �parx;
for j|lrnj = 1 do

ŵj  ŵj + �(yj � ŷj);

Algorithm 2: The derived attention model of Le Pelley et al..
See Table 2 for an explanation of symbols.
input: simulation parameters (�min, ), sequences of variables
defining the experiment (x, y, psb, lrn)

output: sequence of simulated response probabilities
begin

initialize weight estimates;
for j 2 1 : ny do

ŵj  0 (nx ⇥ 1 column vector);
while task continues do

prediction and response;
for j 2 1 : ny do

ŷj  psbjx
T ŵj;

response probabilities softmax(ŷ; );
cue-specific learning rates (attention);
for i 2 1 : nx do

�i  xi min
�
max(

P
j
|ŵj,i|, �min), 1

�
;

association learning;
for j|lrnj = 1 do

ŵj  ŵj + �(yj � ŷj);

= exp
�
�

1
2
(u�µ)2

�2 �
1
2 log(2⇡ )� 1

2 log(� 2)
�

(24)

= exp
�

µ

�2 u +
1
�2
�u2

2 �
1
2 log(2⇡ )� 1

2 (
µ2

�2 + log(� 2))
�

(25)

We can express this in terms of the natural parameters ✓0 =
µ

�2

and ✓1 =
1
�2 .6 The corresponding sufficient statistics are T0(u) =

u and T1(u) =
�u2

2 .

B.1.2. Multivariate normal distribution

Suppose U ⇠ N (µ,⌃) with support u 2 Rk. Then

p(u) = (2⇡ )�k/2|⌃ |
�1/2 exp

�
�

1
2 (u� µ)T⌃�1(u� µ)

�
(26)

= exp
�
�

1
2 (u� µ)T⌃�1(u� µ)� k

2 log(2⇡ )� 1
2 log |⌃ |

�

(27)

6 Some sources give � 1
2

1
�2 instead of 1

�2 as the second natural parameter.
We find it more convenient to assign the � 1

2 factor to the sufficient statistic
(T1) instead, so that ✓1 is intrepretable as the precision (inverse variance).

Algorithm 3: Bayesian regression model (conventional param-
eters version, equivalent to Algorithm 4). See Table 2 for an
explanation of symbols.
input: simulation parameters (⌧�2, � 2, ), sequences of variables
defining the experiment (x, y, psb, lrn)

output: sequence of simulated response probabilities
begin

initialize distribution for w;
for j 2 1 : ny do

µj  0 (nx ⇥ 1 column vector);
⌃�1

j
 ⌧�2I (nx ⇥ nx matrix);

while task continues do
prediction and response;
for j 2 1 : ny do

ŷj  psbjx
Tµj;

response probabilities softmax(ŷ; );
learning (update µ and ⌃);
for j|lrnj = 1 do

�j  
⌃jx

xT⌃jx+�
2 ;

µj  µj + �j(yj � ŷj);
⌃j  (⌃�1

j
+

xx
T

�2 )�1;

Algorithm 4: Bayesian regression model (exponential fam-
ily version, equivalent to Algorithm 3). See Table 2 for an
explanation of symbols.
input: simulation parameters (⌧�2, � 2, ), sequences of variables
defining the experiment (x, y, psb, lrn)

output: sequence of simulated response probabilities
begin

initialize sufficient statistics;
for j 2 1 : ny do

T0,j  0 (nx ⇥ 1 column vector);
T1,j  0 (nx ⇥ nx matrix);

while task continues do
distribution of w;
for j|psbj = 1 do

 0,j  T0,j;
 1,j  ⌧�2I + T1,j;
µj   �11,j  0,j;

prediction and response;
for j 2 1 : ny do

ŷj  psbjx
Tµj;

response probabilities softmax(ŷ; );
learning (update sufficient statistics);
for j|lrnj = 1 do

T0,j  T0,j +
xyj

�2 ;

T1,j  T1,j +
xx

T

�2 ;

= exp
�
u
T⌃�1µ� 1

2u
T⌃�1u� k

2 log(2⇡ )

�
1
2 (µ

T⌃�1µ + log |⌃ |)
�

(28)

= exp
�
h⌃�1µ, ui+ h⌃�1,� 1

2uu
T
i �

k

2 log(2⇡ )

�
1
2 (µ

T⌃�1µ + log |⌃ |)
�

(29)
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Algorithm 5: Bayesian derived attention model. See Table 2
for an explanation of symbols.
input: simulation parameters (�̃0, �̃1, �

2, ), sequences of variables
defining the experiment (x, y, psb, lrn)

output: sequence of simulated response probabilities
begin

initialize sufficient statistics for w;
for j 2 1 : ny do

T0,j  0 (nx ⇥ 1 column vector);
T1,j  0 (nx ⇥ nx matrix);

while task continues do
compute Eq[⌧

�2
i

];
for i 2 1 : nx do

Eq[⌧
�2
i

] 
�1,i+1
��0,i

;

update variational distribution of w;
for j|psbj = 1 do

 0,j  T0,j;
 1,j  diag(Eq[⌧�2]) + T1,j;
Eq[wj]  �11,j  0,j;
Vq[wj] the diagonal of  �11,j ;
Eq[w

2
j
] Vq[wj] + Eq[wj]

2 (the squares in the second
term are component-wise);

update variational distribution of ⌧�2;
for i 2 1 : nx do

�0,i  �̃0 �
1
2

P
j
Eq[w

2
ji
];

�1,i  �̃1 +
k

2 (k = number of outcomes so far);
prediction and response;
for j 2 1 : ny do

ŷj  psbjx
T
Eq[wj];

response probabilities softmax(ŷ; );
learning (update sufficient statistics for w);
for j|lrnj = 1 do

T0,j  T0,j +
xyj

�2 ;

T1,j  T1,j +
xx

T

�2 ;

The natural parameters are thus ✓0 = ⌃�1µ and ✓1 = ⌃�1;
the corresponding sufficient statistics are T0(u) = u and T1(u) =

�
1
2uu

T .7
Going from the second to last line to the last line we use

the following (a special case of the cyclic property of the trace
operator):

�
1
2u

T⌃�1u = �
1
2

X

i

ui(⌃�1u)i (30)

= �
1
2

X

i

ui

X

j

⌃�1
i,j uj (31)

= �
1
2

X

i

X

j

⌃�1
i,j uiuj (32)

= �
1
2

X

i

X

j

⌃�1
i,j (uuT )i,j (33)

= h⌃�1,� 1
2uu

T
i (34)

B.1.3. Gamma distribution

Suppose U ⇠ Gamma(↵,�) with support u 2 (0,1). Then

p(u) =
�↵

� (↵)
u
↵�1

e
��u (35)

7 As in the case of the univariate normal distribution, we assign the � 1
2

factor to T1 instead of ✓1 so that the latter is defined as the precision matrix
(⌃�1).

= exp
�
��u + (↵ � 1) log(u)� (log(� (↵))� ↵ log(�))

�
(36)

The natural parameters of the gamma distribution are thus ✓0 =

�� and ✓1 = ↵ � 1; the corresponding sufficient statistics are
T0(u) = u and T1(u) = log(u).

The gamma distribution is the conjugate prior for the precision
(inverse variance) of a normal distribution. If U ⇠ Gamma(↵,�),
then U

�1 ⇠ InverseGamma(↵,�). It is useful to note that E[U] =
↵
�

=
✓1+1
�✓0

and (assuming ↵ > 1) we also have E[U�1] =
�
↵�1 =

�✓0
✓1

. We shall respectively use these formulas to obtain Eq[⌧
�2
i

]

and Eq[⌧
2
i
]. in the mean field inference algorithm for the Bayesian

derived attention model.

B.2. Conjugate prior updating

B.2.1. Bayesian regression

This section shows the updating rule for Bayesian linear re-
gression (with a conjugate prior). The resulting posterior distribu-
tion can be used as the prior for the next observation in turn. This
step by step updating rule makes the most sense for modeling
learning, but it is equivalent to the batch learning rule that is
often presented (one simply adds up sufficient statistics).

For simplicity, we suppress the subscript indicating outcome
(e.g. we write µ instead of µj). We assume that yt ⇠ N (xT

t
w, � 2)

and w ⇠ N (µ̃, ⌃̃). We use the symbol ‘‘/’’ to denote ‘‘propor-
tional with respect to w’’, i.e. equal to the previous expression up
to multiplication by a value that does not involve w. Such w-less
factors can be ignored when computing the posterior distribution
because they do not effect the final shape of the curve (which is
a probability density function and hence must be normalized in
the end).

p(w|y) / p(y|w)p(w) (37)

=
�Y

t

p(yt |w)
�
p(w) (38)

=

⇣ Y

t

exp
�
yt

x
T
t
w

�2 �
y
2
t

2
1
�2 �

1
2 log(2⇡ )

�
1
2 (

(xT
t
w)2

�2 + log(� 2))
�⌘

p(w) (39)

/ exp
�X

t

yt
x
T
t
w

�2 �

X

t

1
2
(xT

t
w)2

�2

�
p(w) (40)

= exp
�X

t

yt
x
T
t
w

�2 �

X

t

1
2
(xT

t
w)2

�2

�
exp

�
wT ⌃̃�1µ̃

�
1
2w

T ⌃̃�1w � nx

2 log(2⇡ )� 1
2 (µ̃

T ⌃̃�1µ̃ + log |⌃̃ |)
�

(41)

/ exp
�X

t

yt
x
T
t
w

�2 �

X

t

1
2
(xT

t
w)2

�2 + wT ⌃̃�1µ̃� 1
2w

T ⌃̃�1w
�

(42)

= exp
�
wT (⌃̃�1µ̃ +

X

t

xt yt

�2 )� 1
2w

T (⌃̃�1 +

X

t

xt x
T
t

�2 )w
�

(43)

= exp
�
h⌃̃�1µ̃ +

X

t

xt yt

�2 , wi

+ h⌃̃�1 +

X

t

xt x
T
t

�2 ,� 1
2wwT

i
�

(44)

From this we recognize that w|y ⇠ N (µ,⌃) where ⌃ =

(⌃̃�1 +
P

t

xt x
T
t

�2 )�1 and µ = ⌃(⌃̃�1µ̃+
P

t

xt yt

�2 ). It is much more
convenient to keep track of the natural parameters  0 = ⌃�1µ
and  1 = ⌃�1 instead of µ and ⌃ . The posterior value for each
natural parameter is the sum of its prior value ( ̃0 = ⌃̃�1µ̃
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and  ̃1 = ⌃̃�1) and a sufficient statistic (T0 =
P

t

xt yt

�2 and

T1 =
P

t

xt x
T
t

�2 ).
Formulating the posterior distribution in terms of its natu-

ral parameters ( 0 and  1) makes it simple to turn the batch
learning procedure described above into a step by step learning
rule, which is more appropriate for simulating biological learning.
One needs only to update the natural parameters after each
new observation, and this is simply a matter of adding sufficient
statistics. Algorithm 4 expresses this simple learning rule, with
the assumptions that µ̃ = 0 and ⌃̃ = ⌧ 2I, or equivalently  ̃0 = 0
and  ̃1 = ⌧�2I.

Algorithm 3 is the same thing expressed in terms of the
conventional parameters (µ and ⌃), written in a way that shows
the connection between Bayesian regression and the Rescorla–
Wagner learning rule. Let µ denote the posterior mean of w after
the first n observations, and µ0 denote the posterior mean after
observation n + 1. We wish to compute µ0 by updating µ with
prediction error (y� ŷ) times a learning rate vector (�), as in the
Rescorla–Wagner model:

µ0 = µ + �(y� ŷ) (45)

We computing the learning rate vector (�) thus:

µ0 � µ =
�
⌃�1 +

xx
T

�2

��1�
⌃�1µ +

xy

�2

�
� µ (46)

=
�
⌃�1 +

xx
T

�2

��1�
⌃�1µ +

xy

�2

�

�
�
⌃�1 +

xx
T

�2

��1(⌃�1 +
xx

T

�2 )µ (47)

=
�
⌃�1 +

xx
T

�2

��1�
⌃�1µ +

xy

�2 �⌃
�1µ� xx

T

�2 µ
�

(48)

=
�
⌃�1 +

xx
T

�2

��1 x

�2 (y� x
Tµ) (49)

=
�
⌃�1 +

xx
T

�2

��1 x

�2 (y� ŷ) (50)

=
�
� 2⌃�1 + xx

T
��1

x(y� ŷ) (51)

= ⌃⌃�1
�
� 2⌃�1 + xx

T
��1

x(y� ŷ) (52)

= ⌃
⇣�
� 2⌃�1 + xx

T
�
⌃

⌘�1
x(y� ŷ) (53)

= ⌃
⇣�
� 2

+ xx
T⌃

�⌘�1
x(y� ŷ) (54)

= ⌃
⇣�
� 2

+ x
T⌃x

�⌘�1
x(y� ŷ) (55)

=
⌃x

xT⌃x + � 2 (y� x
Tµ) (56)

so � =
⌃x

xT⌃x+�2 , as in Algorithm 3.
Note that it is more straightforward to change the prior on cue

weight variance (⌃̃ = diag(⌧ 2)) in Algorithm 4 than in Algorithm
3, even though the algorithms are equivalent. This is because
Algorithm 4 explicitly separates the posterior hyperparameter
 1 = ⌃�1 into a prior value ( ̃1 = diag(⌧�2)) and the effect of
observations (T1). This is the reason that we use Algorithm 4 in-
stead of the more familiar Algorithm 3 in developing the Bayesian
derived attention model: the model is constantly re-estimating
the variance of weights for each cue (⌧ 2

i
).

B.2.2. Prior weight variance (⌧ 2)
In the previous section, we developed the conjugate prior

learning algorithm for regression weights (w) when the prior
variance (⌧ 2) is known; now we shall do the opposite and develop
updates for ⌧ 2 when w is known. In particular, we assume that
weights (w) are generated by Eq. (14) (the inductive assumption)
and that they are known. In the following section, we shall
remove this second, unrealistic assumption by simultaneously es-
timating weights and prior variance using a variational Bayesian
method.

We will derive the result for a single cue (i) with associations
to multiple outcomes (j = 1, . . . , k), where k is the number of
possible outcomes (category labels) in the task so far (e.g. during
the first stage of the learned predictiveness design k = 2, while
in the second and test stages k = 4). It is simpler to perform
the calculations in terms of prior precision (⌧�2

i
) instead of prior

variance (⌧ 2
i
), so we shall do so. First we assume that ⌧�2

i
has

a gamma prior distribution,8 ⌧�2
i
⇠ Gamma(↵̃, �̃). Recall that

w1,i, w2,i, . . . , wk,i|⌧
2
i

iid
⇠ N (0, ⌧ 2

i
). Thus

p(⌧�2
i

|w1,i, w2,i, . . .)

/ p(w1,i, w2,i, . . . |⌧
�2
i

)p(⌧�2
i

) (57)

=
� kY

j=1

p(wj,i|⌧
�2
i

)
�
p(⌧�2

i
) (58)

=

⇣ kY

j=1

exp
�
�

w2
j,i

2 ⌧
�2
i
�

1
2 log(2⇡ ) +

1
2 log(⌧�2

i
)
�⌘

p(⌧�2
i

) (59)

/ exp
�
�⌧�2

i

kX

j=1

w2
j,i

2 +
k

2 log(⌧�2
i

)
�

⇥ exp
�
�⌧�2

i
�̃ + log(⌧�2

i
)(↵̃ � 1)

�
(60)

= exp
�
(��̃ �

kX

j=1

w2
j,i

2 )⌧�2
i

+ (↵̃ +
k

2 � 1) log(⌧�2
i

)
�

(61)

Thus we have the following posterior distribution:

⌧�2
i

|w1,i, w2,i, . . . ⇠ Gamma(↵i,�i) (62)

↵i = ↵̃ +
k

2 (63)

�i = �̃ +

kX

j=1

w2
j,i

2 (64)

Algorithm 5 performs this calculation in terms of the natural
parameters �0,i = ��i and �1,i = ↵i � 1.

B.3. Mean field approximation (variational Bayes)

We shall now briefly describe the variational inference algo-
rithm used to simulate the Bayesian derived attention model;
see Blei, Kucukelbir, and McAuliffe (2017) and Broderick et al.
(2013) for more about the underlying mathematics. Let D denote
the set of stimuli etc. observed by the learner during the exper-
iment, i.e. D = {x1, . . . , xt , y1, . . . , yt , psb1, . . . , psbt , lrn1, . . . ,
lrnt}. We shall approximate the joint posterior distribution over
weights (w) and variances (⌧ 2) using a variational distribution
denoted q

9:

p(w1, . . . , wny
, ⌧�21 , . . . , ⌧�2

nx
|D) ⇡ q(w1, . . . , wny

, ⌧�21 , . . . , ⌧�2
nx

)

(65)

For the mean-field approximation, we assume that q factorizes
into independent distributions for each wj and ⌧�2i

:

q(w1, . . . , wny
, ⌧�21 , . . . , ⌧�2

nx
) =

Y

j

qwj
(wj)

Y

i

q
⌧�2
i

(⌧�2
i

) (66)

We use Eq and Vq to respectively denote expectation and variance
according to q.

8 This is equivalent to giving ⌧ 2
i

an inverse gamma prior.
9 Recall that wj = (wj,1, wj,1, . . . , wj,nx ), i.e. the full vector of association

weights between cues and outcome j. Also, ny and nx are respectively the
number of outcomes and cues that the learner has observed so far.
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The objective is to find the variational distribution (q) that best
approximates the exact joint posterior distribution p(w1, . . . , wny

,

⌧�21 , . . . , ⌧�2
nx

|D). An iterative algorithm for finding the optimal q
consists of cycling through each variable (each wj and ⌧�2i

) and
setting its variational distribution as follows (Blei et al., 2017):

qwj
(wj) / exp

�
Eq[log(p(wj|w�j, ⌧

�2
1 , . . . , ⌧�2

nx
,D))]

�
(67)

q
⌧�2
i

(⌧�2
i

) / exp
�
Eq[log(p(⌧�2i

|w1, . . . , wny
, ⌧�2
�i

,D))]
�

(68)

where w�j denotes the set of all weight vectors except for wj and
similarly ⌧�2

�i
denotes the set of all prior weight precisions except

for ⌧�2
i

. We use a streaming version of this algorithm (Broderick
et al., 2013) in which updates are made whenever the learner
observes new data, i.e. on each trial.

If we follow through the calculations, we see that the varia-
tional distribution for wj is the same as the posterior distribu-
tion in ordinary Bayesian regression, except that Eq[⌧�2i

] is used
instead of a known value of ⌧�2

i
:

Eq[log(p(wj|w�j, ⌧
�2
1 , . . . , ⌧�2

nx
,D))]

= Eq[log(p(wj|⌧
�2
1 , . . . , ⌧�2

nx
,D))] (69)

= Eq[h

X

t

xt yj,t

�2 , wji+ hdiag(⌧�2) +

X

t

xt x
T
t

�2 ,� 1
2wjw

T

j
i+ C]

(70)

= h

X

t

xt yj,t

�2 , wji+ hdiag(Eq[⌧�2]) +

X

t

xt x
T
t

�2 ,� 1
2wjw

T

j
i+ C

(71)

Similarly, the variational distribution for ⌧�2
i

is the same as
its posterior distribution if w were known, simply substituting
Eq[w

2
j,i] for the unknown w2

j,i:

Eq[log(p(⌧�2i
|w1, . . . , wny

, ⌧�2
�i

,D))]

= Eq[log(p(⌧�2i
|w1,i, . . . , wny,i))] (72)

= Eq[(�̃0,i �
1
2

X

j

w2
j,i)⌧
�2
i

+ (�̃1,i +
ny

2 ) log(⌧�2
i

) + C] (73)

= (�̃0,i �
1
2

X

j

Eq[w
2
j,i])⌧

�2
i

+ (�̃1,i +
ny

2 ) log(⌧�2
i

) + C (74)

These calculations are the basis for mean field variational Bayes
inference of the Bayesian derived attention model (Algorithm 5).
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