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ABSTRACT: The potential energy landscape (PEL) formalism has been used
in the past to describe the behavior of classical low-temperature liquids and
glasses. Here, we extend the PEL formalism to describe the behavior of liquids
and glasses that obey quantum mechanics. In particular, we focus on the (i)
harmonic and (ii) Gaussian approximations of the PEL, which have been
commonly used to describe classical systems, and show how these
approximations can be applied to quantum liquids/glasses. Contrary to the
case of classical liquids/glasses, the PEL of quantum liquids is temperature-

and (ii) depend on the nature (classical vs quantum) of the system. The

Potential Energy

2.3

dependent, and hence, the main expressions resulting from approximations (i) ’%%

9160 ‘

resulting theoretical expressions from the PEL formalism are compared with

results from path-integral Monte Carlo (PIMC) simulations of a monatomic model liquid. In the PIMC simulations, every atom of
the quantum liquid is represented by a ring-polymer. Our PIMC simulations show that at the local minima of the PEL (inherent
structures, or IS), sampled over a wide range of temperatures and volumes, the ring-polymers are collapsed. This considerably
facilitates the description of quantum liquids using the PEL formalism. Specifically, the normal modes of the ring-polymer system/
quantum liquid at an IS can be calculated analytically if the normal modes of the classical liquid counterpart are known (as obtained,
e.g,, from classical MC or molecular dynamics simulations of the corresponding atomic liquid).

1. INTRODUCTION

Understanding the behavior of liquids at low temperatures,
close to their glass transition temperature, and understanding
the nature of the associated glass state have been fundamental
issues in material science for many decades.'”’ Numerous
theoretical/computational approaches have been proposed to
address these issues.”’~"" In most of these approaches, the
focus is on classical liquids and glasses, where nuclear quantum
effects (NQEs) are neglected. While this is justified in the case
of high-temperature glass-formers, such as silica, the role of
atom delocalizations due to NQEs cannot be ignored in
substances composed of light elements, such as H, and He, as
well as in liquids/glasses composed of small molecules
containing H, including water.'”"® The case of water is a
clear example since computer simulations show that NQE can
alter the thermodynamic properties of crystalline and
amorphous ice (glassy water) at cryogenic temperatures.14

A particularly successful theoretical/computational approach
to describe liquids and glasses is the potential energy landscape
(PEL) formalism.'”">~*" The PEL formalism is based on
statistical mechanics and, in its original formulation,' it is
limited to classical liquids/glasses. However, as we explain in
ref 22, the PEL formalism can be extended to the case of
quantum liquids/glasses by using the path-integral formulation
of statistical mechanics. As explained in detail below, the basic
idea of this approach is to apply the PEL formalism to the PEL
defined by the ring-polymers that represent the atoms in the
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system. In principle, the ring-polymer system PEL (RP-PEL)
can be used to extract thermodynamic properties of the
quantum liquid/glass of interest (with NQE included).”” A few
years ago, the concept of RP-PEL [or, path-integral (potential)
energy landscape] was applied to study a small cluster of water
molecules.”® However, ref 23 focused on the characterization
of the transition states of the system. The extension of the PEL
formalism to study the thermodynamic properties of quantum
systems, including liquids/glasses, is not yet well understood.””
Interestingly, the relevance of extending the PEL formalism to
study quantum liquids/glasses was already noticed by Stillinger
approximately 35 years ago.”* However, probably due to the
limited computational resources at the time, the PEL
formalism to study quantum liquids/glasses was not developed
in ref 24.

In this work, we build upon our previous study”* and further
develop the PEL formalism to the case of liquids/glasses that
obey quantum mechanics. We first provide the mathematical
background necessary to understand how the PEL can be
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combined with the path-integral formulation of statistical
mechanics to study quantum systems, including liquid/glasses,
Section 3.1. In particular, we also extend the (i) harmonic
approximation and (ii) revisit the Gaussian approximation of
the PEL. Approximations (i) and (ii) have been used
extensively in the past to study classical liquids and make the
PEL formalism of practical use. For example, with these
approximations, the PEL formalism has been used to obtain
the thermodynamic and dynamical properties of liquids,
including silica” and water.”® In ref 22 we performed path-
integral Monte Carlo simulations of an atomistic model liquid
(Fermi—Jagla model, FJ) and found that, curiously, the ring-
polymers representing the atoms of the liquid collapsed after
potential energy minimization, i.e., at the local minima of the
PEL (inherent structures, IS). In this work, we extend these
calculations to include a wide range of volumes and
temperatures and find that the collapse of the ring-polymers
after minimization of the system potential energy is rather
general. As discussed in Section 3.1, this enormously simplifies
the application of the harmonic approximation to the case of
quantum liquids. For example, as shown in the Appendix, the
normal modes of the quantum liquid at the IS sampled by the
system can be calculated analytically if the normal modes of
the corresponding classical liquid are known. The reported
theoretical predictions based on the harmonic and Gaussian
approximations of the PEL for quantum liquids are also tested
using path-integral Monte Carlo simulations of the FJ liquid
(Section 3.2).

2. COMPUTATIONAL METHODS

We perform path-integral Monte Carlo (PIMC) simulations of
a monatomic liquid with isotropic pair interactions given by
the Fermi—Jagla (FJ) potential. The FJ potential is
characterized by a core-softened part and two length-scales, a
hard-core radius r & a, and an attractive minimum at r = b =
1.97a; see Figure 1. Specifically,

" A B
U(r)=e0a—n+ 0 - 0

1+ exp[A%(r/a - Az)] 1+ exp[%(r/a - Bz)]
(1)
The parameters A; and B, (i = 0, 1, 2) are provided in Table 1

(the parameters ¢, and a are irrelevant since they define,
respectively, the units of energy and length). The FJ potential
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Figure 1. Fermi—Jagla pair interaction potential U(r). The FJ
potential is characterized by a hard-core radius r & g, a core-softened
part at approximately a < r < b & 24, and a weak attractive part at r &
b. For comparison, we include a Lennard-Jones pair potential with
same minimum depth and location as U(r).

Table 1. Pair Interaction Potential Parameters Used in
Equation 1; See Figure 1

n A, A, A, B, B, B,
20 4.56 28.88 1.36 1.00 3.57 2.36

is truncated at the cutoff distance r, = 4.0 and a switching
function is added as implemented in ref 27. The switching
function introduces minor modifications in the original FJ
potential, at 3.6 < r < 4.0 only, and makes the potential energy
and the corresponding forces smooth functions of r (which is
suitable for potential energy minimizations). In this work, all
properties are given in reduced units by setting the atom mass
m = 1 and the Boltzmann constant k; = 1. Accordingly, the
units of energy and distance are, respectively, €, and g; the
units of T are k/€,. As a reference, we note that the Lennard-
Jones parameters for the case of He atoms are ¢, =~ 0.085 kJ/
mol and a & 2.28 A while, for argon, €, & 0.996 kJ/mol and a
~ 3.41 A (see page 21 in ref 28).

The classical FJ liquid is a model liquid that has been useful
in understanding the thermodynamic and dynamic properties
of water. Indeed, the FJ liquid exhibits many water-like
anomalous properties including the presence of an isothermal
compressibility maximum upon isobaric cooling and a
diffusivity maximum upon isothermal compression. In
addition, as for the case of water,”” this model liquid exhibits
a first-order liquid—liquid phase transition (LLPT) that
separates a low-density and high-density liquid state (LDL
and HDL) at low temperatures, and glass polymorphism at
very low temperatures. In the present study, we mainly focus
on PIMC simulations at v = V/N = 2.2, corresponding to the
HDL state; this volume is small enough so that the LLPT does
not interfere with our results.”””'

In order to understand the role of quantum mechanics in the
PEL formalism, we follow refs 22 and 31—33 and perform
PIMC simulations of the FJ liquid using different values of the
Planck’s constant h. This allows us to simulate the same liquid
in the classical limit (h = 0) as well as in the quantum regime
(h > 0). As discussed in Section 3.1.1, the quantum character
of the liquid increases with increasing values of h since the
atom delocalization becomes more pronounced as h increases.
In this study, we consider the cases h = hy, hy, h,, and h; where
hy = 0.0000, h; = 0.2474, h, = 0.5150, and h; = 0.7948, in
reduced units of a(eym)'/% The case h = hy corresponds to the
classical liquid where the ring-polymers are collapsed at all
times (for h = 0, the spring constant of the ring-polymers is ki,
— o0; see below). Hence, for the case h = h, we perform
PIMC simulations where the ring-polymers are composed of
one bead.”’ We note that the values of & > 0 considered here
are not negligible. For example, as discussed in detail in ref 22
one obtains k& = 1.78 (in reduced units) if the values for (m, a,
€o) are appropriate to the case of H,; for argon, h ~ 0.18 (in
reduced units).*®

Details of the PIMC simulations can be found in ref 31.
Briefly, the PIMC simulations are performed for a system of N
= 1000 atoms located in a cubic box, with periodic boundary
conditions. Each atom is represented by a ring-polymer with n,
= 10 beads (for h > 0; n, = 1 for h = 0); additional PIMC
simulations are included in the Supporting Information (SI)
using different values of ;. Simulations are performed at
constant temperature and volume. In one MC step, we first
attempt to move all of the 10000 beads. This is followed by
MC moves where the ring-polymer centers of mass (centroids)
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are attempted to move. The systems are equilibrated for 10°
MC steps and simulations are run for at least 10° additional
MC steps for data analysis. After equilibration, we save
configurations of the system every 10000 MC steps and the
corresponding inherent structures (local potential energy
minimum) are obtained by using the conjugate gradient
algorithm.34 Hence, for each state point simulated, we calculate
100 IS.

We note that, in the case of classical liquids, the IS sampled
by the system at a given T represent local minima where the
system would end up under an extremely fast-cooling process.
In the case of quantum liquids, this is no longer the case. This
is because (i) during the potential energy minimization
procedure at a given T, the spring constant remains
unchanged. Instead, (ii) during a fast-cooling process, the
spring constant associated with the quantum liquid/ring-
polymer system decreases with decreasing temperature (see
Section 3.1.1). In other words, processes (i) and (ii) are
fundamentally different in the quantum case.

3. RESULTS

3.1. Extending the Potential Energy Landscape
Formalism to Quantum Liquids. In this section, we present
in detail the PEL formalism extended to quantum liquids.
Specifically, in Section 3.1.1 we briefly review the path-integral
formalism of statistical mechanics that allows one to map the
canonical partition function of the quantum liquid to the
canonical partition function of a classical ring-polymer system.
The PEL formalism extended to the case of quantum liquids is
discussed in Section 3.1.2, and the corresponding harmonic
and Gaussian approximations are discussed in Sections 3.1.3
and 3.1.4.

3.1.1. Isomorphism between the Quantum Liquid and
Classical Ring-Polymer Systems. The canonical partition
function of a quantum liquid composed of N atoms is given by

QIN, V, T) = Tr(p)

where Tr(p) is the trace of the density operator p = exp(—fH)
and

+ U(®, & - ty)

N
; 2)

is the Hamiltonian operator of the system. In this expression,
(T, p;) are the position and momentum operators associated
with atom i = 1, 2, .., N, and ff = 1/k;T; ky is the Boltzmann’s
constant.

Using the path-integral formulation of statistical mechanics,
one can show that the canonical partition function of the
quantum liquid is identical to the canonical partition function
of a classical system composed of N distinguishable ring-
polymers of nh — oo distinguishable beads, and with peculiar
interactions.”>® Specifically, it can be shown that

= /. [H dr}- dr?b]
[: [1:[ dp? dpl,”b} exp(—pHyp(P, R))

©)

Q(N,V,T) = llm

where

pubs.acs.org/JCTC
n, k 2
k k
Hyp(P, R) = ZZ ksp( L pky?

i=1 k=1 i

1
+ — Z Uk, «k., 5

My k=1 4)

i=1 k=1

is the Hamiltonian of the ring-polymer system and ky, = mn;/
(7B)* is the (temperature dependent) sprlng constant of the
ring-polymers. In this expression, (rf, pf) are the vector
position and momentum of the kth bead of the ith ring-
polymer (i=1,2,.., N, k=1,2,..,n,). In eq 4, the mass of the
beads belonging to ring—polymer i is given by m'; = nym;
however, the specific value of m’; plays no relevant role in the
thermodynamic properties derlved from Q(N V, T) . Note
that in eq 4 and throughout this work, rj*" =/ fori € {1, 2,.
N}, ie, the polymers are ring-polymers.

It follows from eq 4 that the potential energy of the ring-
polymer system is given by

(LIRP(R) Z Z ksp( k+1 rf;)z

11k1

1
+ — Z U(rlf, rl;, . rlf\])

My =1 (%)

In this peculiar ring-polymer system, only beads with the same
label k interact with each other. The set of all beads with the
same label k is usually referred to as the replica k of the system,
and the term U(r%, rf, .., rk) in eqs 3 and 5 is the total
potential energy of replica k [the function U(...) is defined in
eq 2]; beads belonging to different replicas do not interact with
one another.

Strictly speaking, eq 3 provides the exact canonical partition
function of the quantum liquid if n, — o0. In computational
studies, one chooses a sufficiently large value of n, for which
the properties of the system of interest converge; i.e., they no
longer vary upon further increase in n;,. This implies that one
can associate a well-defined configurational space with the
quantum liquid (for a fixed value of n;,). In particular, the
potential energy of the ring-polymer system given in eq S
defines a PEL for the quantum liquid. The main difference
between the PELs of a classical and a quantum system is that
the PEL of the quantum liquid is T-dependent, since k,, o T?,
while the PEL is T-independent for classical systems.”

3.1.2. A PEL for the Quantum Liquid. Next, we apply the
PEL formalism to the quantum liquid/ring-polymer system
defined by eq S. The presentation below follows closely the
standard introduction to the PEL formalism for classical
systems (see, e.g, refs 10, 18, and 20), but it takes into
consideration the fact that the PEL for a quantum liquid is T-
dependent (eq 5).

The main idea of the PEL formalism is to partition the PEL
into basins.'® Each basin of Uyp(R) is characterized by a local
(potential energy) minimum, or inherent structure (IS), and
the corresponding basin is defined as the set of points in
Uyp(R) that converge to the given IS by steepest descent (i.e.,
upon potential energy minimization). With this partition of the
PEL, eq 3 can be written as

o 2 )

basin I ©

Q(N,V,T) ~ dr3mN / dp*™N ¢ PHw

(6)
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where [’ is a label that identifies the different basins of the PEL
and Vp is the volume within the configurational space
associated with basin I'. Moreover, one can group the basins
of the PEL by the corresponding IS energy, ey, and replace
Dbasint = D Dubasin I(e)- Here, D, is a sum that runs over all
values of the IS energies ey available in the PEL; the sum
D basin (o) Tuns over all basins [ of the PEL with corresponding

IS energy equal to ey It follows that eq 6 can be written as

1 e —$9
QIN,V, T) = —3n,,NZ Z fdr3””Nf dp*™Ne o
h ers basin 1(egg) v e
(7)

When the system is moving within the basin [ of the PEL, its
potential energy can be written as Tf(R) = ¢ + AU(R),
where A7, is the potential energy of the system relative to the
basin minimum energy, e;s. Using this expression, eq 7 can be
written as

o | k ’
QN, v, T) = et Y [h3ibN /_me"’zfilzkb:1<l’t)z/z'”*dp3"b”

efs basin (efg)

—PAT g, 3mN
[ ) ©

The parentheses in eq 8 indicate the canonical partition
function of basin I, Q(N, V, T), when the reference value for
the potential energy of the system is set to zero at the
corresponding IS. Specifically,

1 o N oy kN2 s "
Q[(N; V; T) = hSnbN [me ﬂzx:leZI(P[) 2 des W

/ ¢ PAthqSmN
v )

and hence,

QIN,V, T) =Y e’ 3 Q(N,V,T)

ers basin 1(erg) (10)

Next, we introduce two important definitions that allow one
to rewrite eq 10 in a more useful form. First, we introduce the
configurational entropy,

Sis(N, V, T; ) = kg In[Qs(N, V, T; ¢g)] (11)

where Q (N, V, T; e;) is the number of IS available in the
PEL with energy ey (at constant (N, V, T)). Note that,
contrary to the case of classical systems, £2;g and, hence, S;s are
now explicit functions of T. The definition of Si(N, V, T; e;5)
is evidently motivated by Boltzmann’s definition of entropy.
The second definition we introduce is the vibrational
Helmholtz free energy of the system, F,;(N, V, T; ¢), in
the imaginary situation where the system is only allowed to
visit IS with energy e,

E/ib(N; Vr T5 eIS) = _kBT ln((Q_l(N, V} T))qs) (12)

Here, (Q(N, V, T))

basins [ with energy e, i.e.,

<Q1(eIS)(N/ V; T)>
_ 1
CQu(N, V, T; ) 4.

. 1s the average partition function over all

> QW Vv, T)
in 1(erg) (13)

Equation 12 provides the single contribution to the Helmholtz
free energy that arises from the microstates belonging to the

basins with IS energy e;s. By using eqs 11, 12, and 13 in eq 10,

one obtains the following compact ex)})ression for the canonical
. . 10,18,20

partition function of the system

QIN,V, T) = Z ¢ Ples=TSis(N,V, Tie) +F (N, V, Tie))
s (14)
3.1.2.1. The Only Approximation of the PEL Formalism.

While, within the PEL formalism, eq 14 is exact (it involves no
assumption or approximation), it is of limited practical use.
Equation 14 can be reduced to a more practical form by
noticing that the argument of exp(...) is proportional to N."’
Hence, in the thermodynamic limit, only the term that
maximizes the sum in eq 14 should be dominant.'”*’ Indeed,
in the PEL formalism, one uses a saddle-point approximation
in eq 14:101820

Q(Nl V} T) ~ e_/j(Els_Tsls(N;VrTiEls)+E,,b(NrVrTiEjs)) (15)

where E¢(N, V, T) is the IS energy that maximizes the
argument in the sum of eq 14. Specifically, E;¢(N, V, T) is the
solution of

L T( 9S(N, V, T; els)] . (on.b(N, v, T; e,s)] —o
de N,V,T des N,V,T

ateg = Eyg (16)

Equation 15 also follows by assuming that, at the working
conditions, the system can only sample a very narrow
distribution of e;g-values, with e & Ej. This is indeed found
in computer simulations of finite-size atomistic and molecular
classical systems (see, e.g., ref 37). In computational studies,
Ejs is identified with the average value of the IS energies e
sampled by the liquid in equilibrium (at a given (N, V, T)). We
note, however, that this picture may break down across first-
order phase transitions where the distributions of IS-energies
may become bimodal (see, e.g,, refs 38, 39, and 40).

3.1.3. The Gaussian and Harmonic Approximations for
the PEL. There are two important approximations that are
commonly used to study the properties of classical liquids and
glasses using the PEL formalism: (i) The Gaussian
approximation of the PEL, which assumes that Q(es) is a
Gaussian distribution; and (ii) the harmonic approximation
(HA), which assumes that the basins of the PEL have a
parabolic (quadratic) shape about the IS [in (3N + 1)-
dimensional space].'”"**>*! Approximation (i) allows one to
calculate analytically S;¢(N, V, T; Ej); approximation (ii)
allows one to calculate analytically F,;(N, V, T). Together,
approximations (i) and (i) allow one to write a closed
expression for Q(N, V, T) (see eq 15) from which all the
thermodynamic properties follow.'”'%*%*!

(i) In the Gaussian approximation of the PEL, one assumes
that the distribution of IS energies in the PEL is given by

1 eaNe—(eIS—EU)Z/Z(rz
NEY T (17)

where, for classical systems, @, Ey, and ¢ depend only on V. In
the case of quantum liquids, however, one may expect that a =
a(V, T), E, = Eo(V, T), and 6 = 6(V, T) since the PEL varies
with T. Equation 17 implies that, in equilibrium (ie., e;g —
Ej5), the configurational entropy is given by (see eq 11)*'

2
(EIS - Eo)
2

Qu(N, V, T; ¢) =

S(N, V, T; Ey) ~ kB[aN -

20

(18)

https://doi.org/10.1021/acs.jctc.3c01085
J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01085?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

(ii) In the HA of the PEL, one assumes that the basins of the
PEL, about the corresponding IS, are quadratic functions.'’
This allows one to calculate the Helmholtz free energy of the
independent basins of the PEL (eq 9). As shown in the SI, in
the HA of the PEL,

Ey(N, V, T) = 3NnkyT In(pha,)
+ kyTS(N, V, T; E) (19)
where

3m,N
S(N; V) T? EIS) = In H (wj/wo)

=1

! By (20)
is the so-called basin-shape function™ (in equilibrium, e,z —
Ej). In this expression, the 3n,N values {a)}z} are the
eigenvalues of the Hessian matrix of the ring-polymer system
at the IS with energy e;s = Ej5, and (...)p indicates an average

over all basins of the PEL with energy e = Ej. While for
classical systems @; = @,(N, V; ejs), for quantum liquids, w; =
@{(N, V, T; ers). The constant @, is an arbitrary quantity that
makes the argument of In(...) in egs 19 and 20 unitless.”’
S(N, V, T; ¢g) is a very important property of the PEL that
quantifies the average local curvature of the basins with IS
energy equal to e; it is the only term in eq 19 that makes F,;,
dependent on the PEL of the system.”

3.1.3.1. Energy of the Quantum Liquid. Using the Gaussian
and harmonic approximations of the PEL, one can obtain all of
the thermodynamic properties of the quantum liquid using eq
1S. In particular, the energy of the quantum liquid is given by

E(N,V,T) = —(M) which, using eq 15, can be
% N,V
written as
E(N,V, T) = E; + ﬁ(% - L(—aS’S(N' VT E’S)]
op N,V ks op N,V

4 (a(ﬂE;ib(Nz V, T; EIS))]
9p NV

(21)

The second term in the expression above is the so-called
vibrational energy,

/1[ OEg ] 1 (BSIS(N, v, T; EIS)]
N,V N,V

E,=E—Eg=
vib IS 0ﬂ kB 6/1

+ (a(ﬁEn’b(Nf V, T; EIS))]
9P NV

(22)
and represents the energy of the ring-polymer system due to

the exploration of the PEL basins about the corresponding IS.
Using eqs 18 and 19 in eq 16, one obtains

Ex(N, V, T) = E, — o”(f + b) (23)
where b = (M) . Interestingly, in classical
s N,V,T

atomic and molecular systems, it is usually found that b =
b(N, V), ie, S(N, V; E;g) = a(N, V) + b(N, V)E.

Similarly, using eqs 18, 19, and 23 in eq 22, it can be shown
that

a8 0
E, (N, V, T) = 3Nnk,T + [—] - N[ a)
N,V,Ej v

op P
OE (B +b)* (062]
=2 -2 7|7
+ (B + )["ﬂ]v 2 7).
(24)

The square brackets in this expression are unique to the
quantum liquid. This is because for classical systems, the PEL
is T-independent and, hence, so are S, a, E, and 6. Indeed, it
has been shown that, for a classical system composed of N
atoms, E ; = 3NkBT,10’19’20 in agreement with eq 24.

3.1.4. IS with Collapsed Ring-Polymers. In a previous
study”* based on PIMC simulations of the QFJ liquid, we
noticed that the ring-polymers collapsed when the system was
found at an IS. The PIMC simulations of ref 22 were
performed at v=2.2, T < 5.0, and h = hy, h,, hy, and h,, but we
find that the collapsing of the ring-polymers onto a single
point, when the system is at an IS, seems to be a rather general
result. As shown in the SI, additional PIMC simulations of the
QFJ liquids over a wide range of volumes v = 1.0—6.0 and h
show that, even at low temperatures, the ring-polymers
collapse at the IS; the range of v considered expand over the
whole liquid state, from the vapor spinodal to the ultradense
liquid state.*’

The collapse of the ring-polymers at the IS of the RP-PEL
provides an important simplification of the PEL formalism
when applied to quantum liquids; specifically, it makes the
calculation of the shape function straightforward. This is
because, when the ring-polymers are collapsed, the IS sampled
by the ring-polymer system in the RP-PEL are also IS of the
associated N-atoms system (in the N-particle “classical” PEL,
CL-PEL).”* Specifically, under these conditions, the IS of the
RP-PEL is defined by R; = R, = ... = R, = Ry (where we
denote R, = (r, .., r%)), i.e, all replicas are identical, and the
N-atoms classical configuration defined by Rys defines an IS of
the CL-PEL (see ref 22). As shown in the Appendix, this
implies that the normal modes of (i) the ring-polymer system
at the IS of the RP-PEL can be obtained from (ii) the normal
modes of the associated N-atoms system at the corresponding
IS of the CL-PEL.

In the Appendix, we show that the normal modes
frequencies of the ring-polymer system at the IS of the RP-
PEL, {a)i,}-}, are given by

2
w, 2
a)i,zj =0 _ 2k, cos(—ﬂj] -1
m, m, (25)

where {®;o} are the normal modes frequencies of the
associated N-atoms system at the IS of the CL-PEL defined
by R Ineq25,i=1,2,..,3Nandj=1,2,..n,and, hence, a
given frequency w,, of the N-atoms system gives rise to a set of
n, frequencies of the ring-polymer system, {wi,j}jzl,z,...,nh'
Equation 25 is similar to eq 2.38 of ref 42 obtained
independently, in the application of the instanton method to
transition state theory.*~*

;o
Note that w,_, = —
J=m 1,

frequencies of the ring-polymer system for j = n, are equal
to the vibrational frequencies of the associate N-atoms system,
rescaled by the factor 1/ /n,. Moreover, as shown in the

and, hence, the vibrational
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Figure 2. (a) Total energy of the quantum FJ liquids with different values of the Planck’s constant h and at v = 2.2 (squares). Also included are the
corresponding IS energies (circles). (b) Magnification of the IS energies sampled by the quantum liquids/ring-polymer systems included in (a). As
h increases, and the liquid becomes more quantum, Ej5(T) shifts toward lower temperatures. (c) Vibrational energy per particle obtained from (a)
and (b); E,,(T) = E(T) — Ej5(T). All energies are given per atom (i.e., divided by the number of atoms N). Empty and solid symbols correspond to

equilibrium and out-of-equilibrium states, respectively.

Appendix, in these normal modes, the ring-polymers remain
collapsed at all times and oscillate in the same manner as the
classical particles do when the vibrational frequency is @, .
3.2. Computer Simulations of a Quantum Liquid:
Testing the PEL Formalism. In this section, we compare the
predictions for Ei(N, V, T) and E,;(N, V, T) from the
Gaussian and harmonic approximations of the PEL (eqs 23
and 24) with results from PIMC simulations of the FJ liquid.
In particular, we find that the PEL properties of (i) the ring-
polymer/quantum liquid (RP-PEL) and (ii) the associated N-
atoms classical system (CL-PEL) behave qualitatively differ-
ently. For simplicity, we will assume that a, Ey, and ¢ have a
very weak or null T-dependence so eq 24 can be approximated

by

oS
E,(N, V, T) = 3Nnk,T + (—]
N,V,E

(26)

Briefly, we show that our PIMC simulations for the QFJ model
at v = 2.2 are in very good agreement with eq 23 at low
temperature and with eq 26 at very low temperatures.
Importantly, we also validated eq 25.

In order to identify the relevant T-interval for the QFJ
liquids considered, we include in Figure 2 the (a) total energy
E(T), (b) IS energy E;4(T), and (c) vibrational energy E,;(T)
of the QFJ liquids with h = hy, hy, hy, and h; from PIMC
simulations (v = 2.2). Briefly, the qualitative behavior of E4(T)
is common to all QF]J liquids studied, independently of h, i.e.,
of the quantum character of the liquid. At high temperatures,
approximately T > 0.20—0.25, Ej(T) is approximately
constant, while at lower temperatures, Ejg(T) decreases rapidly
until crystallization intervenes or the liquid is no longer in
equilibrium (empty and solid symbols indicate, respectively,
the temperatures at which the liquid reaches/does not reach
equilibrium within the total number of PIMC simulation
steps). The PEL approach is of practical use in the T range

where Ej(T) is temperature dependent.”’ Accordingly, based
on Figure 2, one may want to focus on the temperatures T <
0.25—0.30. Alternatively, one may want to focus on the T-
range of the equilibrium liquid where the values of Ej are not
negligible, for example, at temperatures at which the total
change in the IS energy AE;g = E(T) — E;(T = 0) > 10%
E,(T). Since AE;g < 0.1, this implies that the relevant
temperatures are those for which E,;(T) < 1.0. In this case, the
temperatures of interest are approximately T < 0.06 (h = h;), T
<013 (h=hy), T<025 (h=hy),and T < 0.30 (h = hy).
3.2.1. Harmonic Approximation of the PEL. In order to
test eq 26, we first confirm that eq 25 is consistent with our
PIMC simulations. Figure 3 shows the probability distribution
of the normal modes vibrational frequencies, P(w), for the
ring-polymer system with h = h;, when the system is at the IS
of the PEL [the vibrational frequencies are the square-root of
the eigenvalues of the Hessian matrix associated with the ring-
polymer system (at the IS)]. At very high temperatures, e.g,, T
= 0.50, P(w) shows a wide peak at @ < 8 and a few sharp peaks

at higher frequencies. The wide peak at @ < 8 corresponds to
(Ur,D

=
Hence, these frequencies correspond to the normal-mode
frequencies of the corresponding classical liquid. Indeed, we
find that this wide maximum overlaps with the distribution
Py(w) obtained for the case h = hy, after rescaling the
frequencies by 1/ /i, . The sharp peaks at @ > 8 are due to the

presence of the springs in the ring-polymer system (second
term in eq 25 for j < n,). Since k, o T2, the location of the
sharp peaks shown in Figure 3a shift toward lower temper-
atures upon cooling [Figure 3b—h]. At approximately T < 0.15,
the low- and high-frequency peaks fully overlap and there is no
trace of Py(w) in the corresponding P(w) .

The distributions P(w) obtained from the PIMC simulations
are also compared with the theoretical prediction (eq 25) in
Figure 3. The agreement between the PIMC simulations and

the frequencies given in eq 25 with j = ny, ie, o, ;

ij=n, —
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Figure 3. Inherent structure normal-mode frequencies distribution,
P(w), of the ring-polymer system associated with the QFJ liquid.
Results are from PIMC simulations using a Planck’s constant h = h;.
P(w) shifts to lower frequencies with decreasing temperatures. Red
lines correspond to the frequencies obtained numerically, by
calculating the eigenvalues of the Hessian matrix of the ring-polymer
system; blue lines are the frequencies given by eq 25.

the theory is remarkable; a similar agreement is found at h = h,
and h, over a wide range of temperatures (v = 2.2); for
example, see Figure 4 and the SI. It follows from eq 20 that a
similar agreement, between PIMC simulations and theory,
holds for the case of S as well; see Figure S.

The T-dependence of the shape function is remarkably
different for the classical (h = h,) and quantum FJ liquids (h =
hy, hy, hs). As shown in the inset of Figure S, for the classical FJ
liquid, S(T) is constant at high temperatures (T > 0.20) and
increases very slightly at low temperatures, before the system is
no longer in the equilibrium liquid state (T < 0.09). Instead,
for the quantum liquids, S(T) decreases monotonically upon
cooling. This implies that while for classical liquids the shape
of the basins about the corresponding IS remains constant or
becomes slightly thinner (larger curvature) upon cooling, for
the quantum liquids/ring polymer systems the basins become
wider (smaller curvature) with decreasing temperature.

wlwo]

Figure 4. Distribution of IS normal-mode frequencies P(w) of the
ring-polymer systems associated with the QF]J liquids with Planck’s
constant (a) h = hy, (b) h = hy, and (c) h = h;. The temperature is T =
0.10 in all cases. Red lines correspond to the frequencies obtained
numerically, by calculating the eigenvalues of the Hessian matrix of
the ring-polymer systems; blue lines are the frequencies given by eq
2S.

Figure S. Shape function (per particle) divided by the number of
beads per ring-polymer, n,, as a function of temperature from PIMC
simulations at v = 2.2 (circles). Results are for the QFJ liquids with
Planck’s constant h = hy, h,, h;. Lines are the theoretical results based
on eqs 20 and 25. Also included is the shape function (per particle)
for the classical FJ liquid (h = hy = 0, red circles) (also shown in the
inset). Empty and solid symbols correspond, respectively, to
equilibrium and out-of-equilibrium states. For the quantum liquids/
ring-polymer system (h > 0), the shape function decreases
monotonically with decreasing temperatures, i.e., the RP-PEL basins
become wider upon cooling, Instead, in the classical case (inset), the
shape function increases slightly with decreasing temperatures.

Next, we compare the T-dependence of E,; obtained from
PIMC simulations of the QFJ liquids with the corresponding
prediction of the PEL formalism given by eq 26, based on the
harmonic and Gaussian approximations. At first sight, this may
seem straightforward to do since S(T) is given in Figure S.
However, the second term in eq 26 is not the slope resulting
from Figure S since the partial derivative in eq 26 must be
calculated at a constant Ej. Therefore, to calculate (ﬁ) s
P INV B
we take advantage of eqs 20 and 25, and calculate S(T, ¢) as
explained below.

As discussed in Section 3.1.4, we only need to consider the
IS of the RP-PEL for which all of the ring-polymers are
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collapsed. Under these conditions, an IS of the RP-PEL is also
an IS of the CL-PEL.*” It can be shown that the opposite is
also true, i.e., an IS of the CL-PEL is also an IS of the RP-PEL
with collapsed ring-polymers.*® It follows that there is a one-to-
one relationship between the IS of the CL-PEL and the IS of
the RP-PEL with collapsed ring-polymers. Therefore, to calculate
S(T, ¢g), we first obtain the IS from the classical N-atom
system, using classical MC simulations (1, = 1). Each of these
IS of the CL-PEL has a well-defined energy e;g and curvatures
{w,} (i=1,2, ., 3N). We then obtain the corresponding
curvatures {@;;} (i=1,2,.,3Nandj = 1,2, .., n,) of the RP-
PEL using eq 2S. The shape function of the PR-PEL for the
given IS with energy ey is then calculated by using eq 20.
Summarizing, S(T, ¢g) is obtained from IS sampled by the
classical liquid in MC simulations, and using the analytical
expression in eq 25 to get the corresponding curvatures at any
temperature T. Figure 6 shows the so obtained S(T, ¢) as a
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Figure 6. Shape function of the ring-polymer system/QF]J liquid as a
function of ey, at selected temperatures and for the case h = h;
(similar results hold for h = hy, hy, h,). Straight lines are guides to the

eye.

function of e, for selected values of T. We find that, for a
given T (v = 2.2 and N = 1000),

S(T, ) = a(T) + b(T)eg (27)

where the coefficients a(T) and b(T) are shown in Figure 7.

Figure 8 shows E,;,(T) obtained from the PIMC simulations
at h = hy, h,, and h; [solid/empty symbols; from Figure 2c]
together with the prediction from eq 26 (lines). The
agreement between PIMC simulations and the PEL approach
is very good at low temperatures, at approximately T < 0.10—
0.12 for h = hy, h;, and T < 0.05 at h = h,, h;. We note that at
the lowest temperatures (solid circles) the system is in the out-
of-equilibrium liquid state or in the glassy state (where the
system is trapped in a basin of the RP-PEL). The deviations
between PIMC simulations and the PEL predictions at higher
temperatures (empty symbols) can be explained in terms of
anharmonicities of the basins about the IS.*° Indeed, even for
the classical FJ liquid at T > 0.11, the behavior of E,;(T)
deviates from the expected behavior based on the HA of the
PEL, E,;,(T) ~ 3Nk;T. Importantly, in the SI, we also perform
PIMC simulations where the QF]J liquids are initially trapped
at an IS, and then increase the temperature from T = 0
(heating runs). It is shown that eq 26 holds at low
temperatures, while the system remains in the starting IS.
Summarizing, our results strongly indicate that the HA
approximation holds for the QFJ at very low temperatures,
but anharmonicities of the RP-PEL basins are important at the
low and intermediate temperatures at which the QFJ liquids
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Figure 8. (a) Vibrational energy E,;(T) of the classical/quantum FJ
liquids with Planck’s constants h = hy, hy, h,, hy [circles, taken from
Figure 2c] together with the corresponding prediction from the PEL
formalism using the harmonic and Gaussian approximations [lines, eq
26]. (b) Anharmonic contributions to E,;(T) calculated from (a).
Anarmonicities are present at low temperatures, approximately T >
0.05—-0.13, depending on h.

reach equilibrium. In this regard, we stress that the behavior of
E,»(T) shown in Figure 8 for the quantum liquids (h > 0) is
highly nontrivial, and very different from the corresponding
behavior of the classical liquid (h = 0). Yet, eq 26 captures the
differences between the cases h = 0 and h > 0.

3.2.2. Gaussian Approximation. In ref 22, we showed that,
at low temperatures, the values of E;g(T) of the classical/
quantum FJ liquids with h = hy, hy, h,, h; were consistent with
the Gaussian approximation of the PEL. In particular, it was
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Figure 9. (a) Inherent structure energy E;¢(T) of the classical/quantum FJ liquids with different Planck’s constants h. Circles are results from the
PIMC simulations [taken from Figure 2c]; lines are the predictions using the harmonic and Gaussian approximations of the PEL [eq 23 (lines)].
(b) E(T) [from (a)] as a function of b(T) + f3 restricted to the T-interval where the Gaussian approximation of the PEL agrees with the results
from the PIMC simulations. (c, d) Fitting parameters 6*(h) and E(h) obtained from (b) using eq 23.

found that, for all values of h considered, E;(T) = E, — ¢/
(ksT). However, this equation, and the results from ref 22, are
based on the implicit assumption that b(N, V, T) = 0 (see the
definitions introduced in eqs 23 and 24 of the SI in ref 22)
which implies that the shapes of the basins of the PEL are
independent of Ej. In this section, we consider the general
case where the quantity b is not necessarily equal to zero, and
show that E;¢(T) obeys eq 23 at low temperatures.

As shown in Figure 9a, the Gaussian and harmonic
approximations of the PEL work remarkably well at
intermediate temperatures. For example, for h = h; the
PIMC simulation results for the equilibrium liquid (empty
circles) overlap with the Gaussian and harmonic approxima-
tion predictions, eq 23 (lines), for T ~ 0.05—0.12. The
Gaussian approximation does not hold at low temperatures
because the quantum liquids become trapped in an out-of-
equilibrium glass state; this is common in classical liquids.*®
For h = h, this happens at approximated T < 0.05 (solid
symbols), i.e., at the same temperature at which the PIMC data
(symbols) no longer overlap the predictions based on the
Gaussian and harmonic approximation (lines). Deviations
between the PIMC simulations results and eq 23 at high
temperatures [in Figure 9a] or equivalently, at low b(T) + f
[in Figure 9b] are also expected and have been observed in
many computational studies of classical liquids.*” The
Gaussian approximation is expected to hold only below the
so-called onset temperature,” below which the relaxation of
the liquid is no longer exponential, and E;s(T) starts to deviate
from its plateau value at high temperatures (e.g, the onset
temperature for h = hy is T ~ 0.1S; see Figure 9a).

The fitting parameters 6(h) and Eo(h) defined in eq 23 are
given in Figure 9c,d. Interestingly, both ¢*(h) and E,(h)
decrease with increasing h. This suggests that, as the liquid
becomes more quantum, the distribution of IS energies
available in the RP-PEL, Qs(ess, T), (i) shifts slightly toward
lower values of e;g and (ii) becomes thinner (see also ref 22).

4. SUMMARY AND DISCUSSION

In this work, (i) we extend the PEL formalism to the case of
quantum liquids and (ii) test the corresponding theoretical
predictions with PIMC simulations of a monatomic model
liquid (FJ model).

(i) Our presentation of the PEL formalism for quantum
liquids is self-contained and is discussed in Section 3.1. Taking
advantage of the isomorphism between quantum liquids and
classical ring-polymer systems, in Section 3.1.1, we identify a
PEL (RP-PEL) that can be associated univocally with the
quantum liquid of interest (for a fixed number of beads, n,).
The PEL formalism is also revisited in Section 3.1.2 using the
RP-PEL, stressing the differences between classical and
quantum liquids. The main difference between these cases is
that, for quantum liquids, the PEL is temperature-dependent,
while, for classical liquids, it is not.

From a practical point of view, the PEL is important
because, under a few physical assumptions, it provides a closed
analytical form for the partition function of the system of
interest (from which all of the thermodynamic properties of
the system can be obtained). The most common assumptions
that allow one to do so are the (a) Gaussian and (b) harmonic
approximations. Accordingly, in Section 3.1.3, we also extend
approximations (a) and (b) to the case of quantum liquids. It
is shown that (a) and (b) lead to an expression for E;4(N, V, T)
that is formally identical for quantum/classical liquids (eq 23).
Instead, the expression for E,;,(N, V, T) differs for quantum/
classical liquids in a nontrivial manner (eq 24).

In ref 22, it was found that the ring-polymers of the FJ
liquids collapse when the system is at an IS of the RP-PEL.
The results from ref 22 are limited to v = 2.2. In this work, we
perform additional simulations over a wide range of temper-
atures and volumes and confirm that, in all cases studied, the
ring-polymers of the FJ liquids collapse at the IS of the RP-
PEL. Accordingly, in Section 3.1, we also discuss the PEL
formalism for the case where the ring-polymers are collapsed
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(a) Column = (i, k, o) (b) Order of indices along a column:
Pl —
2 2 1
HERP = 3Nn, X 3Nn, i % I
5 S
=
- Order of indices along a row: & T
:Q) [\
k=1 k=2 k k=mny = L
[ ] ] [ ] —— g
N
‘ < -
N
L1k (Lky) (Lk2) 2k3) (2k3) (2h2) . NED) (Ny) (NA2) | = «
9 -
3 L
(c) Column = (i, &) ; _
Hy, + Hpyq = g
S e 8 = T
H? = .Hk'l‘ where  Hp,;=|3Nx3N | ¥ E &
: . N E L
Hl,nb"' ° Hnb,nb = E

Figure 10. (a) Schematic diagram showing how the elements of the Hessian matrix, [H*"]

12

Il are ordered within a given row with variable indices

(i, k, &) . Along a row, all coordinates with the same value of k (replica number) are grouped together (k = 1, 2, ..., n, increasing from left to right).
Within the sequence of Hessian elements corresponding to replica k, the Hessian matrix elements are grouped depending on the ring-polymer
number i = 1, 2, .., N and component @ = x, y, z, as indicated. (b) A similar ordering of the Hessian matrix elements is used for any given column
with variable indices (j, I, #) [j and [ indicate, respectively, the ring-polymer and replica number; 8 = %, y, z]. (c) The resulting Hessian matrix is a
(3N X 3n,N)-square matrix composed of (n;, X n,) blocks Hy; with k = 1, 2, ..., n,, increasing from left to right, and I = 1, 2, ..., n, increasing from

top to bottom. The blocks Hy; are (3N X 3N)-submatrices; see text.

when the system is at the IS of the RP-PEL. It is shown that
when this is the case, the PEL formalism simplifies in a
profound manner. Specifically, within the harmonic approx-
imation, the eigenvalues and eigenvectors of the Hessian of the
ring-polymer system can be calculated analytically from the
eigenvalues/eigenvectors of the Hessian of the classical N-
atoms systems (with the same potential energy as for the
quantum liquid; see Appendix and Section 3.1.4).

(i) In the second part of this work, we perform PIMC
simulations of a family of quantum FJ liquids and test the
predictions of the PEL formalism obtained in (i). Specifically,
we find that the PIMC simulations are consistent with the PEL
of the QFJ liquids being Gaussian (eq 23) at low temperatures
and that the nontrivial behavior of the vibrational energy of the
liquids is consistent with the harmonic approximation of the
PEL (eq 26). In addition, we show that, as predicted in (i), the
vibrational frequencies of the ring-polymer/quantum liquid
can be obtained from the vibrational frequencies of the
classical FJ liquid (eq 25).

Overall, our results indicate that the PEL formalism may
indeed be applied to study low-temperature liquids and glasses
that obey quantum mechanics. This allows for a common
understanding of classical and quantum liquids in terms of the
topography of the PEL.'”*" It also allows for the inclusion of
nuclear quantum effects in the PEL formalism to study atomic
and molecular liquids/glasses. In the future, it would be
important to test the present results for the case of atomic glass
former systems, such as Lennard-Jones binary mixtures, as well

as molecular systems, such as water.

B APPENDIX: NORMAL MODES OF THE
RING-POLYMER SYSTEM AT THE INHERENT
STRUCTURES

In this Appendix, we calculate the eigenvalues and eigenvectors
of the Hessian matrix associated with a classical system
composed of N identical ring-polymers, each ring-polymer
being composed of n;, beads. Motivated by the findings in the
main manuscript, we limit ourselves to the case where (i) the
system is trapped in an inherent structure (IS) of its potential
energy landscape (RP-PEL), with (ii) every ring-polymer being
collapsed onto a single point.

Let rf-c € R® denote the vector position of bead k € {1, 2, ...,
n,} that belongs to ring-polymer i € {1, 2, .., N}; r{-fa is the
component of vector r; along the direction @ € {x, y, z}. It
follows that the configuration of the ring-polymer system is

given by the vector R = (R, R,, ..., Rnb) (S [R3N"‘°, where we

use the compact notation R, = (rf, rf, .., r¥) e R®®V. R,
contains the vector position of all the beads that belong to
replica k € {1, 2, .., n,}. Similarly, we denote

P=(P,P, .., Pnb) e R, where

P = (plf, p];, wy pllcv) e R* and pf € R® is the momentum
of bead k of ring-polymer i.

The canonical partition function of the classical ring-
polymer system (with distinguishable ring-polymers and
beads) is given by

N N
an(N, V,T) = ﬁ / H drilu.dr;’bf H dp:...dp?b
V=1 T =1
X exp(—fHpp(R, P)) (28)

where f = 1/kgT (kg is the Boltzmann’s constant) and
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N n (Pk 2 N n 1 . .
i 1
Hep(R, P) = D) D)+ 27 7~k (e = xf)
=1 k=1 2™ im1 k=1 2
1+ K ok ok
+ — Z U(x}, 15y Ty)
My k=1 (29)

is the Hamiltonian of the ring-polymer system; k,, is the spring
constant of the ring-polymers. UG5k, 1) is the potential
energy of replica k and, hence, U defines the interactions
among the kth beads of the different rin%-polymers. Note that
in eq 29 and throughout this section, =l forie{1,2, ..,
N} (i.e., the polymers are ring-polymers). It follows from eq 29
that the potential energy of the ring-polymer system (and
hence, the RP-PEL) is given by

N n
1 k k
Unp(R) = 7 D)k (ef* = x0)’
i=1 k=1
1 ¥ ko k k
+ — Z U(ry, 13 oy Ty)
nb k=1 (30)

The Hessian at an IS
The Hessian of the ring-polymer system is a (3Nn, X 3Nn,)-
square matrix with elements given by

, 0°U.
LB
B = ——

k 1
0ri,(zarj,/i (31)

where i, j € {1,2, .., N; kK, 1€{L,2,.,n};and o, § € {, ,
z}. We order the elements of the Hessian matrix so that, along
any given row, all coordinates with the same value of k (replica
number) are grouped together, with k = 1, 2, .., n, increasing
from left to right [see Figure 10a]. Moreover, within the
sequence of (consecutive) elements in the Hessian matrix with
a given value of k, we group together all the coordinates with
same value of i, with i = 1, 2, .., N increasing from left to right
[Figure 10a]. For given values of i and k, there are only three
elements, differing by the corresponding value of a = x, y, z.
These three elements are ordered so @ = x, y, z, from left to
right [Figure 10a]. A similar ordering of the Hessian elements
is used for any given column with indices (j, I, #) [see Figure
10b]. As shown in Figure 10c, the resulting Hessian matrix has
a simple structure. Specifically, the Hessian matrix is a square
block-matrix composed of (n, X n;,) blocks [see Figure 10c].
Each block is a square 3N X 3N-submatrix that can be located
within the Hessian matrix by the indices (k, I), with k=1, 2, ...,
ny, increasing from left to right, and I = 1, 2, .., n, increasing
from top to bottom.

It follows from eq 31 that the Hessian matrix is symmetric;
as we show below, most blocks in the Hessian matrix are equal
to the null matrix [see eq 32 below].

The first-order derivatives of the ring-polymers potential
energy (eq 30) are given by

U

_ k k+1 k-1
= ksp(zri,a “lia ~lia

i,

k k k k k k
1 dU(er, Ty Tz5 =5 TN TNy rN'Z)

k
ny ari ,a

It follows from this expression that the Hessian elements are

given by

2
[HEP = 0" Ugp
pka = ok o
ri,a rj,/i
— jiLB P jip
- ksp(25i,k,(l - 5i,k+1,(1 - 5i,k—1,(1)
2 k k k k k k
1 la U(rl,x! rl,y! rl,z5 s rN,x! rN,y! rN,z)
e k o1
nb ariy{larjyﬁ
(32)
where 5{}({2 =lifi=jandk=land a =f; 5{,% = 0, otherwise.

The last term of eq 32 has a very simple interpretation.
Specifically, let’s consider a classical system of N atoms with a
potential energy given by U(ri, 71, iz i Tnw Ny 'ne)
where (11, 71, 7145 NNy rx..) are the atoms coordinates.
The function U(...) defines the PEL of such an atomic system,
which we will refer to as the classical PEL (CL-PEL). The last
term of eq 32 is nothing else but the Hessian matrix of the N-
atoms system evaluated at point R = (rjfx, r’f,y, rlf,z; — rlf\],x, r]{\,’y,
k) of the CL-PEL, ie,

2 k k k k k k
0 U(rl‘x, MLy M,zi =5 TN TNy rN‘Z)

k 1
dri‘ aar,.‘ )

cL i _
[H™(R,) f(/z =

It follows that

[HRP]j’l'/}

i,k,a

= ksp(257£ - 51£+1 - 515—1)51‘5}

1 .
+ —HE (RS

ﬂb 1, (33)
i.e, the Hessian of the ring-polymer system at the
configuration given by R depends solely on the ring-polymers
springs (first term of eq 33) and on the Hessian matrix of the
classical atomic system evaluated at the replica configurations
R, R, ..., and R, (second term of eq 33).

Equation 33 implies that, consistent with Figure 10c, the
Hessian matrix of the ring-polymer system is a block matrix,
specifically,
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HER
n,
b
HY(R,)
kgl 2kl =kl
b
HY¥(R) = —k,,1
HCL(Rn 1)
-
stpl + n—b —kspl
HCL(Rnb)
k1 k1 2yl + ——
b (34)

where each block is a (3N X 3N) matrix. In eq 34, only the
non-zero block matrices are included; 1 is the identity matrix
of (3N X 3N)-dimensions.

Eigenvectors and Eigenvalues of the Hessian Matrix

We rewrite the Hessian matrix of the ring-polymer system, eq
34, as

(=2)1 1 1
1 (=211
HY(R) = -k, 1
(=21 1
1 1 (-2)1
HCL(RIS)
1 cr
+ H™(R)
y
HCL(RIS)
(3%)
where we substituted R; = R, = ... = R, = Ry since all ring-

polymers are assumed to be collapsed at the IS.

Equation 35 implies that the Hessian matrix is the sum of
two terms, where each term is the tensor product of two
matrices (linear maps). Specifically,

1
HRP(RIS) = _ksan,, ®1+ _ln,, ® HCL(RIS)
m, (36)

where 1 and H(Rys) are (3N X 3N)-square matrices, and 1,
and T, are (n, X n,)-square matrices. 1 and 1, are the identity

matrices and

1 1 -2 37)

It follows from eq 36 that H*"(Ry) is the representation of a
linear operator acting on the tensor product U @ V of the

vector spaces U = R* and V = R, e, H¥R,): UQ V —
U® V.

In order to obtain the eigenvectors/eigenvalues of H**(R),
we start from eq 36 and introduce the eigenvectors/
eigenvalues of H(Ry),

HCL(RIS)vn = j'nvn (38)

where v, = (v,; v, - V,3y)" and n € {1, 2, .., 3N}. The 3N
pairs (0 = \//Tn , v,) have an important physical meaning;
they represent the vibrational frequencies and normal modes of
the classical N-atoms system when it oscillates about the IS of
the CL-PEL given by Ry

We also introduce the eigenvectors/eigenvalues of T,,

T, w, =14, (39)
where u,, = (1, t,; - t,,,)" and m € {1, 2, ..., m;}. It can be
shown by direct substitution that the eigenvalues of T, are
n,=-2+2 cos(zn—”m) with m = 1, 2, .., n. If ny, is even, the

b

corresponding orthonormal eigenvectors u,, are defined by the
following vector components,

m = nb
my, (40)

2 2
U, ,= |— cos L m , m=1,.,n/2-1
‘ "y 1, (41)
2 |2
Uy~ = n_b sm[n—bnm], m=1,.,m/2 -1 (@)

Uy = (—1)”, m = ”b/z (43)
where n =1, 2, ..., m. If n;, is odd, the vector components of u,,
are also given by eqs 40—43 but with the following
modifications: (i) m = 1, .., (n, — 1)/2 in eqs 41 and 42,
and (ii) eq 43 is removed.*”

Next, we show that the vectors
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U, 1,1 HCL(Rls)
um,lvn,?, ”m,lvn
um,ZVn
HCL(RIS)
U, 1%,3N
um,nb
Uy 2V 1 H (Ry)
Uy 1Y U 2V2 cL
e thy, T (Ryg)v, U, 1V,
“m,z" cL
Wi, = W ® Vi = = Uy 2V 3N — uerH (Rls)Vn =1 o 2
n
Upn,n, Vo
L Ui, i
um,an (RIS)vn e (48)
Yo, my Vi, 1 where we made use of eq 38.
TR (ii) Similarly,
(-2)1 1 1
u v ( ) um,lvn
m,ny, n,3N 1 -2)1 1
(44) Uy, 5V,
with m € {1, 2, .., n,} and n € {1, 2, .., 3N} are 3Nn, 1 (-2)1 1
u
eigenvectors of H*(R;5) with corresponding eigenvalues 1 1 (=21 ity 1
1
ym,n - _kSPrlm + n_blln (_zum,l + um,l + um,nh)vn
Using eq 36, one can write
(um,l - 2um,2 + um,3)vn
HY(R =H"(R 45
Ryg)w,, = B (R;5)(w, ® v,) (45) G = 20,5+ w0y,
. =
= _ksanh ®1+ _1% ® HCL(RIS) (um ® vn) (46)
1,
(um,nb—?, - Zum,nb—l + um,nb)vn
Since
(um,l ++ um,nb—l - 2um,nb)vn (49)
(Tnb ® 1(u,®v,) = T,u, ® 1v, = ,(8, ® ¥,) However, it follows from eqs 37 and 39 that
and _Zum,l + um,2 + um,nb = nnum,l
cL cL um,l - Z“m,z + um,S = nnum,l
(ln ® H (RIS))(um ® Vn) = ln u, ® H (RIS)Vn
" b Uy — Zum,3 + Up 4 = 1 Uy 3
= j’n(um ® vn)
it follows from eq 46 that U, my—2 ™ 21 F Uy = T 1
1 um,1++ um,nb—l - zum,nb = nnum,nb
RP
H™ (R =|—-k —A1
( IS)wm,n [ i t n, n]wm,n (47) and, hence,
(=2)1 1 1
In other words, the vector w,,, is an eigenvector of H®(Rj) 1 (-1 1 Yo, 1 Vi Y, 1 Vi
. . 1 - U2V A
with eigenvalues Vn = —kspnm + n—b/ln. R . =1,
Alternative (Brute Force) Method to Obtain the 1 (=21 1 U, Vi U, Vi
Eigenvectors/Eigenvalues of the Hessian Matrix 1 1 (-2)1
The eigenvectors/eigenvalues of H*"(R) can also be obtained (50)

from eq 35 by working with block matrices. To do so, we
evaluate separately the effect of each of the two matrices of eq

35 on the vector w,, .

(i) Using eq 44 for w,,,, one can write

Therefore, using eqs 48, 50, and 35, one can recover the final
result, eq 47.
Physical Interpretation
Summarizing, we found that if (i) the ring-polymer system is at
an IS of the RP-PEL, and (ii) all ring-polymers are collapsed

https://doi.org/10.1021/acs.jctc.3c01085
J. Chem. Theory Comput. XXXX, XXX, XXX—XXX


pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c01085?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Theory and Computation

pubs.acs.org/JCTC

into a single point (ie, R; = R, = ... = R, = Ry), then the
eigenvalues of the ring-polymer hessian matrix H**(Rs) are
given by,

2 1
Yy = —kgp| =2 + 2 cos Zoll+ —4,
" , n (51)

where m =1, 2, .., n, and n = 1, 2, ..., 3N. Importantly, the 3N
values {4,} are the eigenvalues of H*(Rys). This means that

every vibrational mode with frequency 0 " = \//T of the N-

atom system (when it is at the IS of the CL-PEL given by Ry)
generates 1, vibrational modes for the ring-polymer system
with frequencies a)"}}i = \/m .

The eigenvectors w,,, of H(R), associated with the
eigenvalues y,,,, are given by eq 44. These eigenvectors define
the normal modes of vibration of the ring-polymer system. The
first 3N components of w,, define the normal mode
components of the beads belonging to replica 1, the next 3N
components of w,,, define the normal mode components of
the beads belonging to replica 2, and so on.

An interesting conclusion follows from eq 51. In the case

where m = n, eq S1 indicates that y

1, . .
iz = n—b/ln, i.e., the ring-
polymers’ normal modes have the same frequencies as the N-

atoms system but re-scaled by the factor %, ie.,
"

wnfﬁ = ﬁa)nc L. The corresponding eigenvectors can be
written in a simple form (see eqs 40 and 44),
Vﬂ
— 1 Y
m=ny,n — \/Vl_b .
Vo (52)

Therefore, in the ring-polymer normal modes with m = n, (and
n =1, 2, .., 3N), the normal mode components of all the
replicas are identical, and given by v,. In other words, all ring-
polymers remain collapsed and oscillate as a single atom.
Moreover, the normal mode (m = n,, n) of the collapsed ring-
polymers is the same as the normal mode n of the classical N-

atom system, re-scaled by the factor % (eq 52).
m,
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1 Results from PIMC simulations Using Different Num-
ber of Beads per Ring-Polymer

Fig. S1(a) shows the total energy of the quantum Fermi-Jagla (QFJ) liquids £ (7T") from PIMC
simulations with Planck’s constant h = hg. Included are the values of E(T) reported in Fig.
2(a) of the main manuscript for a system composed of N = 1000 atoms/ring-polymers and
for the case of n, = 10 beads per ring-polymer. Also included are the results from PIMC
simulations for (a) (N = 512, n, = 10), and (N = 512, n, = 20). Fig. S1(b) and S1(c)
are, respectively, the inherent structures (IS) energy E;g(7") and vibrational energy FE,;(T)
corresponding to the simulations included in Fig. S1(a). Briefly, the values of E(T), Ers(T),
and F,;(T) practically overlap for the cases (N = 512, n, = 10) and (N = 1000, n, = 10)
suggesting that our results are not affected by system size effects (N). This applies to the
temperatures at which the system is in equilibrium (empty symbols) and out-of-equilibrium
(solid symbols).

A comparison of the values of E(T), Ers(T'), and E,;(T) for the cases (N = 512, n;, = 10)
and (N = 512, n, = 20) show that, in the equilibrium liquid state at 7' > 0.09 (h = hg),
our results in the main manuscript for the case n, = 10 practically converged with respect
to n,. However, small deviations remain in the equilibrium liquid state at 7" = 0.06 — 0.09
and at lower temperatures, in the out-of-equilibrium states studied. For the smaller values

of h = hy, hy, our results converged with n, = 10 (see Ref.1).

2 Ring-polymer Collapse at the IS

Fig. S2(a) shows the radius of gyration R,(T") as a function of temperature associated with
the QFJ liquids at v = 2.2 and Planck’s constants h = hy, ho, hs. Triangles are the
R,(T) calculated from the instantaneous configurations; circles, are the values of R,(T) at

the corresponding IS. For all the values of h studied, we find that the ring-polymers are



spread at all temperatures studied; R,(7") > 0 and increases upon cooling in the equilibrium
liquid states (empty triangles). However, at the corresponding IS, the ring-polymers collapse.
Indeed, at the IS and for all temperatures where the system is in equilibrium (empty circles),
R,(T) = 0. We note that in Fig. S2(a) R, > 0 for the IS obtained at 7' < 0.02 and h = ha, ha;
a larger values of n;, at these conditions lead to R, = 0 (see Ref.!).

The results shown in Fig. S2(a) are general and valid to volumes that expand from the
liquid-to-vapor spinodal, v ~ 5.0—6.0 to the very high-density liquid state, v ~ 1.0.% To show
this, included in Fig. S2(b) is the radius of gyration R,(7") as a function of volume associated
with the QFJ liquids for the Planck’s constants h = hq, hs, hs. The results for h = hq, hs, hs
are for T'= 0.13, 0.09, 0.05, respectively (in the three cases, T = 0.83 T, where T, is the
liquid-liquid critical point temperature of the corresponding QFJ liquid?). Fig. S2(b) shows
that for all the values of h and volumes studied, R,(v) > 0 in the instantaneous configurations
(triangles), i.e., the ring-polymers are expanded. Instead, the ring-polymers are collapsed

(R, = 0) at the corresponding IS.

3 Normal Modes Vibrational Frequencies of the Ring-
Polymer System

In the main manuscript, it is shown that Eq. 25 predicts remarkably well the vibrational
frequencies associated with the normal modes of the ring-polymer system. The tests in
the main manuscript are performed for n, = 10; see Figs. 3 and 4. In Fig. S3 we include
additional results obtained with different numbers of beads and atoms/ring-polymers. The

predictions from Eq. 25 are in agreement with our PIMC simulations.



4 Vibrational Free Energy with the Harmonic Approx-

imation of the PEL

In this section, we evaluate the vibrational Helmholtz free energy of the ring-polymer system,
F,(N,V,T), within the harmonic approximation (HA) of the RP-PEL. Eq. 12 of the main
manuscript gives the the free energy of the system in the imaginary situation where the

system is only allowed to visit IS with energy e;g,
Fup(N,V,T;er5) = —kpTIn ((Qu(N,V,T)),,.) (1)

Here, (...).,s represents an average over all basins with IS energy erg, and we assume that all
atoms have the same mass. In equilibrium, e;5 — E;s(N,V,T) and hence, F,;,(N,V,T) =
Fow(N,V,T;ers = Erg). In Eq. 1, Q;(N,V,T) is the canonical partition function of basin
[ (when the reference value for the potential energy of the system is set to zero at the

corresponding IS), and is given by Eq. 9 of the main manuscript; specifically,

) k2
QNVT) = i [ e PR S g [ oot 2)
o v

In the HA,* the potential energy about the IS of basin [ is approximated by a quadratic
function (i.e, the first non-zero term of the Taylor expansion of Alf; about the corresponding

IS),

N n 3
=33 Y Y (Gras) bt
7 ork_orn Tia ™ Tia 58— Tip
hex at IS

i,j=1kn=1 a,f=1 7.8

where {rﬁa} are the coordinates of bead k = 1, 2...n; of ring-polymer i = 1,2...N, component
a=uwx,v, 2, and {rf 55} are the corresponding coordinates at the IS of basin I.
By introducing a set of 3n, N generalized coordinates {q;};=12. 3n,~ (normal mode coor-

dinates), it is possible to rewrite Eq. 3 as a sum of 3n,/N independent harmonic oscillators



. 5
with frequency {w;}i=12. 3n,n,
37’LbN

1 2 2
At~ 5 2 m'wiq; (4)
j:

The term mw]z is the spring constant associated to the harmonic oscillator j. The 3n, N

values {m/w?} are the eigenvalues of the Hessian matrix,

‘ o*U,
W = 5
ik, (ark 87"7‘ > ( )
bt g8 at IS

Using the generalized coordinates {g;}, Eq. 2 can be expressed in terms of Gaussian

distributions,

3ny N

o0 2
QuN,V,T) = 1 / eﬁZfob;i/dp?mbN/ e~ B2 mwfflqu?’Nnb (6)
PN v

 p3mN

Since at sufficient low temperatures one may approximate sz dgP N — [ LdgPN Eq. 6

can be solved,* leading to the expression

3npy N

QN V,T) = ] (Bhw))™ (7)

Jj=1

It follows that the vibrational free energy of the system within the HA of the PEL is given
by

j=1

Fu(N,V,T) = kT < I (ﬁhwj)> (®)

1S

where, again, (...)g,, represents an average over all basins with IS energy e;s = Erg(N,V, T).

For classical systems composed on N atoms, the following approximation is commonly used



in the literature (see, e.g., Ref.”)

(i)l o

which usually introduces an error smaller than 1%.% Using Eq. 9 (with N — n,N), the

vibrational Helmholtz free energy is given by "
Fm‘b(N, ‘/, T) ~ SNTL(,/{ZBT In (61}%@)0) + kBTS(N, V, T; E]S) (10)

where wy is an arbitrary constant with the same units as w;, and

S(N,V,T; E;5) = <ln (ﬁ (wj/w0)>> (11)

j=1 IS

is the so-called basin shape function (Eq. 20 of the main manuscript).

5 Harmonic Approximation of the PEL: Heating Runs
starting from IS

Here, we perform additional tests of the harmonic approximation of the PEL for the QFJ
liquids/ring-polymer systems studied. Specifically, we perform out-of-equilibrium PIMC
simulations where we heat configurations of the system from 7" = 0 up to 7" > 0.10 (at
which the system may reach equilibrium). The starting configurations of the system are
IS obtained from the equilibrium liquid at a temperature Ty (v = 2.2). The expectation is
that during the heating runs, at least for very low temperatures, the system will remain in
a single basin of the PEL. Accordingly, upon heating at very low temperatures, one should
observe that the total energy of the system is given by E(T) = E% + E,(T), where EY

is the (constant) IS energy of the basin where the system is trapped, and E,;(7") is given



by Eq. 26 of the main manuscript (harmonic approximation). During the heating runs, we
perform PIMC simulations at 7" = 0.005, 0.010, 0.015, 0.020, 0.040, ...0.20, sequentially. At
each T, PIMC simulations are performed for 2000 simulation steps and 100 IS are calculated
every 20 PIMC steps.

Fig. S4 shows the total energy F(T), IS energy E;s(T'), and vibrational energy of the
QFJ liquid E,i(T) = E(T) — Ers(T) during the out-of-equilibrium heating runs. For each
value of the Planck’s constant h, we consider two values of Ty; results for h = hs are for
Ty = 0.06, 0.08 while results for h = hy, hy are for T, = 0.10, 0.14. The results are
summarized as follows.

(i) For the case h = hy, Fig. S4(c) shows that the harmonic approximation (Eq. 26) holds
up to ~ 0.16 — 0.20. This is a large temperature considering that the system leaves the basin
of the RP-PEL, where it is initially located, at approximately 7" > 0.10. Indeed, E;s(T)
remains constant only for approximately 7' < 0.10 (blue lines in Fig. S4(b)).

(ii) The cases h = hy, hg are complicated by the fact that Ejg is not constant at very
low temperatures. Specifically, in these cases, Ejs decreases slightly upon heating at T' <
0.020, suggesting that the starting basin may be very shallow and hence, the system can
move to nearby basins of the RP-PEL. Nonetheless, Fig. S4(c) shows that the harmonic
approximation (Eq. 26) holds up to ~ 0.04 — 0.06. We note that if the basins explored by
the system at T' < 0.04 — 0.06 are similar, i.e., have a similar shape function, then Eq. 26 is

expected to hold as well.
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Figure S1: (a) Total energy of the QFJ liquid with Planck’s constant h = hg, and for different
number of atoms N and beads per ring-polymer n;, (v = 2.2). For comparison, also included
are the corresponding IS energy of the system. (b) IS energy and (c) vibrational energy
of the ring-polymer system from the PIMC simulations included in (a). All energies are
given per atom (divided by N). Empty and solid symbols indicate equilibrium liquid and
out-of-equilibrium states, respectively.



LA L L L L I L Y L L LB

0.300 4= h13
F @ A—a h2
0.25F i h34
__0.20f 3
S, ]
015 .
0.10 =
0.05
0. 01 02 03 04 05
T[Eo/kB]
AR B B I B
0.30F (b 4= h1 4
() i
0.25F s h34
__0.20F =
8, . ah MM‘*‘“‘“‘““?
gjbuo-'IS?//ﬁ B _;
010, aursrsettt B =
0_055_ o aasaaa Lhbkkd hbbbbbkkkk bbb f
0'00:????‘(1’YTTTTTTTTTTTTTTTTT:
1 2 3 4 5 6

Figure S2: (a) Radius of gyration R,(7") as a function of temperature associated with the
atoms of the QFJ liquids at v = 2.2 and Planck’s constants h = hy, hs, hs. Triangles are
the R,(T) calculated from the instantaneous configurations; circles, are the values of Ry(T')
at the corresponding IS. Empty and solid symbols correspond to the equilibrium liquid and
out-of-equilibrium states, respectively. (b) Same as (a) for the case of PIMC simulations
performed at different volumes and 7" = 20.13 (h = hy), T'= 0.09 (h = hs), and T' = 0.05
(h = hg). In all cases, the ring-polymers are expanded in the liquid state (R, > 0) but

collapse at the corresponding

v [a?%]

IS (R, = 0).
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Figure S3: Distribution of IS normal mode frequencies P(w) of the ring-polymer system
systems associated to the QFJ liquids with Planck’s constant h = hs. Results are for
systems with N = 512 atoms/ring-polymers and n, = 10, 15,20 beads per ring-polymer;
T = 0.15 and v = 2.2. Magenta lines correspond to the frequencies obtained numerically, by
calculating the eigenvalues of the Hessian matrix of the ring-polymer systems; blue lines are
the frequencies given by Eq. 25 of the main manuscript.
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Figure S4: (a) Total energy F(T') and (b) IS energy E;s(T) (per particle) during out-of-
equilibrium heating runs at v = 2.2. The starting configurations at 7" = 0 are IS taken from
equilibrium runs at temperature 7y (v = 2.2). Results for h = hy are for Ty = 0.06 (circles),
0.08 (triangles); results for h = hy are for T = 0.08 (circles), 0.10 (triangles); results for
h = hy are for Ty = 0.10 (circles), 0.14 (triangles) [for each Ty and h, all properties are
averaged over five independent runs|. (c) Vibrational energy, E,,(T) = E(T) — Es(T),
extracted from (a) and (b). The dashed line is the E,;,(7") predicted by Eq. 26 of the main
manuscript based on the harmonic approximation of the RP-PEL. In all cases, and at low
temperatures, the behavior of F,;(T) is fully consistent with the harmonic approximation

of the RP-PEL.
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