STEIN TRACES AND CHARACTERIZING SLOPES

ROGER CASALS, JOHN ETNYRE, AND MARC KEGEL

ABSTRACT. We show that there exists an infinite family of pairwise non-isotopic Legendrian
knots in the standard contact 3-sphere whose Stein traces are equivalent. This is the first
example of such phenomenon. Different constructions are developed in the article, including
a contact annulus twist, explicit Weinstein handlebody equivalences, and a discussion on
dualizable patterns in the contact setting. These constructions can be used to systematically
construct distinct Legendrian knots in the standard contact 3-sphere with contactomorphic
(—1)-surgeries and, in many cases, equivalent Stein traces. In addition, we also discuss
characterizing slopes and provide results in the opposite direction, i.e. describe cases in
which the Stein trace, or the contactomorphism type of an r-surgery, uniquely determines
the Legendrian isotopy type.

1. INTRODUCTION

The existence of distinct Legendrian knots in (53, &) with equivalent Stein traces, or even
just contactomorphic (—1)-surgeries, has remained an interesting open question in low-
dimensional contact and symplectic topology. This manuscript shows that many instances of
such pairs of Legendrian knots, and even infinite families, do indeed exist. In particular, our
results imply that, in general, the contactomorphism type of a (—1)-surgery along a Legen-
drian knot L in (S3,&4), or even the equivalence class of the Stein trace, knows relatively
little about the Legendrian knot L. In fact, we present different techniques, including explicit
Weinstein-Kirby calculus and abstract contact topological arguments, that lead to the con-
struction of such Legendrian knots. In contrast, the article also explores different cases in
which the contactomorphism type(s) of a contact r-surgery along L in (S3, &) does actually
recover the Legendrian isotopy class of L. The manuscript concludes with a discussion on
conjectural matters which are naturally inferred from our results.

1.1. Scientific Context. A natural and much studied problem in low-dimensional topology
asks when the diffeomorphism type of a surgery on a knot in S? determines the smooth
isotopy class of the knot [Bra80, Kir78, Oso06]. In fact, there has been abundant work on the
construction of families of knots which share not only a common 3-dimensional n-surgery,
but also have a common 4-dimensional n-trace, see e.g. [AJLO15, AJOT13, MP18, Pic19]. As
a complement to these results, it is also known that any surgery on the unknot [KMOS07],
the trefoil and the figure eight knot [OS19], actually characterizes the smooth type of these
knots. For instance, if the r-surgery on a knot K in S is diffeomorphic to the r-surgery
on the unknot, then K is smoothly isotopic to the unknot; similarly for the trefoil and the
figure eight knot. Given all these results, the problem is, in a sense, quite well-studied in
smooth low-dimensional topology. The aim of this article is to study the analogous problem
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in low-dimensional contact and symplectic topology, and provide some (encouraging) initial
answers.

In precise terms, let L in (S%, &) be a Legendrian knot in the standard contact 3-sphere,
which is seen as the contact boundary of the standard symplectic 4-ball (D*, \s). By per-
forming contact (£1)-surgery on L we produce a new contact manifold L(£1). Contact
(—1)-surgery is sometimes also called Legendrian surgery. In fact, we may also construct a
new symplectic (even Stein) 4-manifold Wy, whose contact boundary is L(—1). The Stein
4-manifold W7, is said to be the Stein trace of L, and it is obtained by attaching a Weinstein
2-handle along L to (D* \g), following [Wei91, Section 3]. For the necessary background,
see e.g. [AGO1, Gei08, Wei9l].

In this manuscript, two Stein manifolds are said to be equivalent if they are symplectomorphic
after possibly deforming the symplectic structure on one of the manifolds.

Definition 1.1. Let L in (53, &) be a Legendrian knot. By definition, L is said to be Stein
characterized if whenever W7, is equivalent to Wy, for some Legendrian knot L’ in (53,§St)
then L’ is Legendrian isotopic to L. Similarly, the contact surgery slope —1 (or +1) is called
characterizing for L if whenever L(—1) (or L(+1)) is contactomorphic to L'(—1) (or L'(4+1))
for some Legendrian knot L’ in (53, &), then L' is Legendrian isotopic to L. U

Since the boundary of W, carries a natural contact structure contactomorphic to L(—1), it
follows that if the slope —1 is characterizing for L, then L is also Stein characterized. (Note
that we will later also discuss contact r-surgeries for other slopes r # £1.) The definition of
a non-characterizing slope is extended to general contact manifolds in the natural way.

1.2. Non-characterizing slopes. In [Etn08], the first examples of Legendrian knots in
(53, &) where (41) is non-characterizing were given, using convex surface theory. By using
the cancellation lemma one sees directly that there exist Legendrian knots L and L’, the
dual surgery knots, in a contact manifold different from (S3, &) such that (—1) is a non-
characterizing contact surgery slope. It remained open if there exist non-isotopic Legendrian
knots in (53, &) for which (—1) is a non-characterizing slope [Etn08, Question 14].

In this manuscript, we give several constructions that lead to pairs, and even infinite families,
of Legendrian knots in (S3, &) that have the contactomorphic contact (—1)-surgeries and, in
some cases, even equivalent 4-dimensional Stein traces. This answers the above question in
the affirmative. Our first construction is the contact annulus twist, a contact version of the
smooth annulus twist developed in the series of articles [AJLO15, AJOT13, MP18, Oso06].
This is discussed in Section 3 and will lead to constructions of infinite families of Legendrian
knots in (53, &) that have the same Legendrian surgeries and, in some cases, the same Stein
traces. In particular, we prove the following result:

Theorem 1.2. Let (S3,&4) be the standard contact 3-sphere. Then the following holds:

(i) There exist infinitely many pairwise non-isotopic Legendrian knots Ly in (S3, &),
n € N, such that their Stein traces Wy, are all equivalent to Wr,, for any n € N.
These knots Ly, all have (tb,rot) = (1,0).

For more general tb, we have:

(i) For each m € Z, there exist pairs of non-isotopic Legendrian knots Ly, L., in (S3, &),
with tb(Ly,) = tb(L;,) = m, such that their Stein traces Wy, and Wi, are equiva-
lent.

The Legendrian knots L,, in Theorem 1.2.(i), as well as the pairs in Theorem 1.2.(ii), are all
pairwise distinguished by their smooth isotopy types, and thus they are readily not Legen-
drian isotopic. Theorem 1.2.(i) implies that there exist infinitely many non-isotopic Legen-
drian knots L,, in (83, &), n € N, such that L,(—1) is contactomorphic to Lo(—1), and thus
(—1) is not a characterizing slope for either of these Legendrian knots.
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In Section 3.5.2 we also construct examples of Legendrian knots with contactomorphic Le-
gendrian surgeries but non-equivalent Stein traces.

Theorem 1.3. There exist pairs of Legendrian knots L and L' in (S3, &) that have contac-
tomorphic Legendrian surgeries but whose Stein traces are not homeomorphic.

In particular, there exists a contact manifold (M, §) that admits (at least) two non-equivalent
simply connected Stein fillings, and each of these two Stein fillings is obtained by attaching
a single Weinstein 2-handle to the standard symplectic 4-ball.

FIGURE 1. Instances of Legendrian knots Ly and L; for Theorem 1.2.(i).

Example 1.4. Instances of Ly and L; for Theorem 1.2.(i) are shown in Figure 1 and, in
general, L, is obtained by a contact annulus twist on L,,_1, as we have developed in Section 3.
An explicit Stein equivalence between Wr,, and Wp, is shown in Figure 2. Of course, once we
have given our candidates Lo and L; in (83, &s) one may try to explicitly show they give the
same Stein manifolds. However, without some good conceptual framework to systematically
construct such pairs (and even infinite families) of knots, as developed in Sections 3 and 3.5,
it is not easy to find them, much less find the explicit handle slides to demonstrate that they
are equivalent. O

The proof of Theorem 1.2.(i) is given in Section 3. First, we construct the candidate knots L,
in (S3,&4), n € N, and prove that their contact (—1)-surgeries are all contactomorphic. This
is achieved by explicitly describing the knots L,, in their front projections and exhibiting the
contactomorphisms between their Legendrian surgeries via sequences of contact handle slides.
This requires us to generalize contact handle slides [DG09] to surgery coefficients of the form
+1/n and then develop a contact version of the annulus twist [Oso06], which both might be
of independent interest. Then, the equivalence of Stein traces in Theorem 1.2.(i) is obtained
by showing that these 3-manifold contactomorphisms extend to an equivalence of their 4-
dimensional Stein traces. This is achieved by generalizing a construction of Akbulut [Akb77],
which allows to extend certain diffeomorphisms of a 3-manifold over a 4-manifold that it
bounds, to contact and symplectic topology. Theorem 1.2.(ii) is proven similarly.

In Section 3.5 we will also develop other methods to create pairs of Legendrian knots that
share the same Legendrian surgery or Stein traces. In particular, we will generalize dualiz-

able patterns [Bra80, MP18] and RGB links [Pic19, Tag20b] to the contact and symplectic
framework.

1.3. Characterizing slopes. In contrast to Theorem 1.2 above, we also show that certain
Legendrian knots L in (S3, &) have characterizing slopes. Let us start by proving that certain
Legendrian knots are determined by their Stein traces:

Theorem 1.5. Let L in (S &) be a Legendrian realization of the unknot, the right- or
left-handed trefoil, or the figure eight knot, and let L' in (S3,&s) be another Legendrian knot.
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FIGURE 2. A sequence of equivalent Weinstein handlebodies, starting at the
Stein trace Wy, and ending at Wr,. This explicitly exhibits two Legendrian
knots, Lo and Ly in (S3, &), and the equivalence between their Stein traces.
(1) to (ii) is a Legendrian isotopy. In (iii) we introduce a canceling 1-/2-handle
pair. We go from (iv) to (iii) by sliding the black 2-handle over the red one as
indicated with the blue arrow. Finally we can go from (v) to (iv), respectively
(vi), by handle slides as indicated with the blue, respectively black arrows.
To our knowledge, this is the first example of such a phenomenon. Theo-
rem 1.2 and the techniques we develop in Sections 3 and 3.3 vastly generalize
this equivalence and provide more conceptual arguments and techniques to
construct them.

Suppose that the Stein trace Wi, of L is equivalent to the Stein trace Wi, of L'. Then L' is
Legendrian isotopic to L in (S3,&).

In fact, for many of these Legendrian knots (—1) is also a characterizing slope, as we show
in the following result.

Theorem 1.6. Let L and L' be two Legendrian knots in (S3,&s) such that L is

(1) any Legendrian unknot,
(2) a right-handed Legendrian trefoil with rot(L) =0, or tb(L) € {1,0,—1},
(3) a left-handed Legendrian trefoil, or a Legendrian figure eight knot with
(a) rot(L) =0, or
(b) tb(L) > —10 (and in the case that tb(L) = —6 we have rot(L) # 0), or
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(c) rot(L) > /6(1 — tb(L)).

If contact (—1)-surgery on L is contactomorphic to contact (—1)-surgery on L', then the
Legendrian knot L' is Legendrian isotopic to L in (S3,&4).

We can also show that a few of these knots also have (+1) as a characterizing slope.

Theorem 1.7. Let L in (S3,&s) be a Legendrian realization with rot(L) = 0 of the unknot,
the right- or left-handed trefoil, or the figure eight knot, and let L' in (S3,&s) be another
Legendrian knot. Suppose that the contact (+1)-surgery L(+1) is contactomorphic to L'(+1).
Then the Legendrian knot L' is Legendrian isotopic to L in (S%,&4).

We note that, among other realizations of L in (93, &), the theorem covers the maximal
Thurston—Bennequin invariant realizations of these knots. The results for the unknot with
tb = —1 also follow from results on contact surgery numbers in [EKO]. In fact, they also can
handle the case when tb = —2, and the arguments in the proof of Theorem 1.7 can handle
those cases, and some other cases, as well, even though they are not stated in the theorem.

1.4. Results for general surgery slopes. Let L be a Legendrian knot in (S3,&). In
Section 4 we consider more general characterizing slopes, and study whether contact (7)-
surgery L(r) on the Legendrian knot L can be characterizing, with » € Q \ {0} a non-
vanishing rational number. In this case L(r) might not be a unique contact 3-manifold,
and thus we will momentarily provide details on what is meant by a contact (r)-surgery
being characterizing. For known results on characterizing slopes in the smooth setting, see
e.g. [BM18, KMOSO07, Lac19, McC19, McC20, NZ14, OS19] and the references therein.

Consider the smooth 3-manifold M obtained from S® by topological tb(L) + r surgery on L.
The manifold M has two pieces, one is the complement S 3\1/0L of a standard neighborhood v L
of L in S3 and the other is a solid torus V which is glued to 53\1/OL, so that its meridian is the
curve of slope th(L)+r on 8(5%\ vL). We can restrict & to S\ vL and would like to extend
this over V. By work of Giroux [Gir00] and Honda [Hon00], there are finitely many tight
contact structures on V with the given boundary conditions if r # 0, and at least one such
tight contact structure exists. We say that any one of these extensions is a contact structure
on M obtained by contact (r)-surgery on L. The set of all contact structures constructed
this way will be denoted by L(r).

The collection L(r) is said to be contactomorphic to the collection L'(r') if there exists a bijec-
tion between the elements in L(r) and L'(r") such that paired elements are contactomorphic
manifolds. Then, a contact surgery coefficient p/q € Q is called characterizing if whenever
the collection L(p/q) is contactomorphic to the collection L'(p/q) for some Legendrian knot
L' in (83,&4), then L' is Legendrian isotopic to L in (S2,&y). This generalizes the notion for
contact (+1)-surgery.

We show that certain Legendrian knots L in (S2, £5;) have more general characterizing contact
surgery coefficients, as follows:

Theorem 1.8. Let L in (S3,&s) be a Legendrian realization of the unknot.

(i) If r < 4, r € Q, except r € {0,2,3}, then r is a characterizing contact slope for L.
(ii) In addition, —tb(L) and (1—q-tb(L))q*, for ¢ € Z\ {0}, are characterizing contact
slopes for L.

For reference, we note that L(r) consists of a unique contact manifold if and only if r = 1/n for some
integer m. So our notation for L(+1) agrees with the notation above. If n > 1 is an integer, then L(r) consists
of two contact manifolds, and if n is a negative integer, then L(n) consists of |n| contact manifolds, which are
not always different.

We observe that the question which contact surgery coefficients are characterizing differs from the topo-
logical question since we have always infinitely many Legendrian realizations of a single topological knot type
and the framings are measured with respect to the contact framing.
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Example 1.9. Note that it is not true that any slope is characterizing for Legendrian un-
knots. For instance, contact (46)-surgery on a Legendrian unknot with tb = —11 and rot = 0
is contactomorphic to contact (+6)-surgery on a Legendrian right-handed trefoil with tbh = —1
and rot = 0. This may be seen by noting that the corresponding smooth surgeries produce
L(5,1). The contact structures from both surgeries are readily seen to be overtwisted and
homotopic as plane fields, thus contactomorphic. By stabilizing these knots further we get
an infinite sequence of non-characterizing contact slopes. U

Let us write n > 1 for n sufficiently large. For more general knot types, we will prove the
following result:

Theorem 1.10. Let K in S3 be a Legendrian simple knot, and L in (S°,£s) a Legendrian
realization of K. Then the following holds:

(i) If K is hyperbolic, then (£1/n) is a contact characterizing slope of L for n > 1.

(i) If tb(L) € {—1,0,1}, then (£1/n) is a contact characterizing slope of L for n > 1.

(iii) If K is the left- or right-handed trefoil, or the figure eight knot. Then (£1/n) is a
contact characterizing slope of L for n > 3.

(iv) In addition, we have:
(1) If K is a left- or right-handed trefoil, then —1 —tb(L) is a contact characterizing

slope of L.

(2) If K is a figure eight knot, then 1 —tb(L) is a contact characterizing slope of L.

In Section 5, the manuscript concludes with a few natural questions and conjectures stemming
in Theorems 1.2, 1.5, 1.6, 1.7, 1.8, and 1.10 above. Section 5 can be read directly after this
introduction, if the reader so desires.

Conventions. Throughout this paper, we assume the reader to be familiar with Dehn
surgery and contact topology on the level of [GS99, Gei08]. For the background on contact
surgery and Kirby calculus of symplectic manifolds, in particular for details on the cancella-
tion lemma, contact handle slides and handle cancellations, we refer to [DG09, DGS04, EKO].

We work in the smooth category. All manifolds, maps, and ancillary objects are assumed
to be smooth. We assume all 3-manifolds to be connected closed oriented, and all contact
structures to be positive and co-orientable. Legendrian links in (53, &) are always presented
in their front projection.

In this article we consider unoriented Legendrian knots. Whenever we speak about the rota-
tion number of a Legendrian knot, we mean the absolute value of the rotation number of the
Legendrian knot with one of its orientations (the absolute value will be independent of the
chosen orientation). This is necessary since the change of orientation of a Legendrian knot will
in general change its isotopy class (as an oriented Legendrian knot) but its Stein traces and
contact surgeries will not be affected, up to symplectic equivalence and contactomorphism,
by an orientation change. O
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2. CONTACT SURGERY AND CONTACT HANDLE SLIDES

In this section, we first state known facts about contact surgeries, and computation of in-
variants of contact structures after contact surgery, that we use in the manuscript. Then, we
discuss the notion of a contact handle slide in the context of a contact surgery with coeffi-
cient (£1/n). The section ends with a discussion on some contact surgeries on the standard
Legendrian unknot that will be used later in the article.

2.1. Contact surgery. Two of the homotopical invariants of a contact 3-manifold are the
Fuler class of the underlying 2-plane distribution and the ds-invariant. We will need to
compute these invariants for contact structures obtained via contact surgeries in Section 4.
For that we will use the formulas by Gompf [Gom98| and Ding-Geiges—Stipsicz [DGS04] (and
their slight extension for more general surgery coefficients from [DK16]).

Theorem 2.1. Let (M, £) be the contact structure obtained from (S3, &) by contact surgery
along an oriented Legendrian link L = L1U. ..U Ly with contact surgery coefficients (£1/n;),
n; € N, of the L;.

e Then, the Poincaré dual of the Euler class e(&) € H2(M;Z) is given by

k
PD (e(¢)) = Y nirot(Ly)[p] € Hi(M;Z),
i=1
where w; is the meridian of the component L;.

e The Buler class e(€) is torsion if and only if there exists a rational solution b € QF of
Qb = rot, where rot is the vector of rotation numbers of L and Q) is the generalized
linking matriz of L. In this case, the ds-invariant is well defined and computes as

3

k
ds3(&) = % (Z nib;rot(L;) + (3 — n;) Signl) — ZO’(Q),
i=1

where sign; denotes the sign of the contact surgery coefficient of L;.

Note that our definition of the ds-invariant differs from the definition in the cited pa-
pers [Gom98, DGS04, DK16] by 1/2. We choose this convention as it has the ds-invariants
of all the contact structures on S? being integers and it is additive under connected sums.

Remark 2.2. Note that the d3(§) invariant associated to a contact structure &, as described
in Theorem 2.1, is a constant multiple of R. Gompf’s §(§)-invariant, as introduced in [Gom98,
Section 4]. In a minor abuse of notation, this is also referred to as d3(€) in the literature, in line
with the d3(&1,&2) secondary obstruction class associated to a pair &1, & of contact 2-plane
fields. We point out that [Gom98, Corollary 4.6] therein also deduces that two Legendrian
knots L1, Ly C (53, &) with contactomorphic (—1)-surgeries must have tb(L;) = tb(Lz) and
|rot(L1)| = |rot(L2)| . O

Throughout the article, especially in Section 3, we repeatedly use the surgery Cancellation
Lemma, which reads as follows.

Lemma 2.3 (Ding and Geiges [DGO04]). Let (M,§) be a contact manifold, and L in (M,§) a
Legendrian knot and L' a (small) Reeb push-off of L. Then, the result of contact (£1)-surgery
on L and contact (F1)-surgery on L' is contactomorphic to (M,§).

The contact (4+1/n)-surgery on L is equivalent to contact (£1)-surgery on L and n — 1
Legendrian push-offs of L. Hence, Lemma 2.3 also shows that contact (+£1/n)-surgery on L
and contact (F1/n)-surgery on its Reeb push-off cancel as well.
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2.2. Contact handle slides. In Section 3, we need a version of contact handle slides for
contact (+1/n)-surgeries on Legendrian knots, which were obtained earlier for contact (£1)-
surgeries in [DG09], using convex surface theory, and later generalized in [Avd13]. We gen-
eralize these handle slides to contact (41/n)-surgeries.

N
\\/%w

F1GURE 3. The Legendrian knot J consists of n push-offs of L away from the
shown segment. We call J the (£1,n)-Legendrian cable of L.

We begin by introducing the notation of a (41,n)-Legendrian cable J along a Legendrian
knot L. This is the Legendrian knot J depicted in Figure 3: it is obtained by considering the
Reeb n-copy of L and inserting one of the patterns in Figure 3. For the (—1,n)-Legendrian
cable, we use the pattern depicted on the left, and for the (1,n)-Legendrian cable, we use
the pattern depicted on the right. The statement for contact handle slides in these general
surgeries reads as follows.

Lemma 2.4 (Contact handle slides). Let L in (S3,&s) be a Legendrian knot along which we
perform a contact (£1/n)-surgery, J its (1, n)-Legendrian cable, and K a Legendrian knot
in the exterior of L.

Then, the Legendrian knot K seen as a knot in the surgered manifold L(+1/n) is isotopic to
the Legendrian connected sum K#.J. Figure 4 depicts local models for fronts for K#.J. In
addition, if K initially comes equipped with a contact surgery coefficient v € Q \ {0}, then
the contact surgery coefficient r is not changing under the isotopy, i.e the contact surgery
coefficient of K#J in L(£1/n) is again r.

Proof. First, we show that J represents a standard Legendrian unknot, with th(J) = —1,
in the surgered manifold L(£1/n). For that, notice that J can be isotoped to lie on the
boundary of a tubular neighborhood d(vL) of L and represents there the curve +u + nAc,
where A\¢ represents the contact longitude of L. Therefore, in the contact surgered manifold
L(+1/n), the knot J bounds a meridional disk of the newly glued-in solid torus. We may
isotop the boundary of vL so that J is a ruling curve that intersects the dividing curves
of d(vL) two times. Thus the twisting relative to d(vL), which is the same as the twisting
relative to the meridional disk is —1. So we see that Thurston-Bennequin invariant of J is
—1 and thus represents the maximal Thurston-Bennequin invariant Legendrian unknot in
L(£1/n).

The statement of Lemma 2.4 is deduced as follows. Given a Legendrian knot K in the exterior
of L, K can be considered as a Legendrian knot in the surgered manifold L(+1/n). Since J
represents a Legendrian unknot with tb = —1 in the surgered manifold, the isotopy type of
K will not change under taking a Legendrian connected sum with J.

Now, to argue that Figure 4 indeed represents the connected sum K#.J, we note that the
Legendrian connected sum can come in different incarnations in the front projections. Figure 5
depicts three different possibilities. The first move in Figure 4 follows directly from the third
version of the connected sum, and the second move follows from the second version of the
connected sum. For moves three and four, we first modify J by Legendrian isotopies as shown
in Figure 6 and 7 and then perform the third version of the Legendrian connected sum with
K. O
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FIGURE 4. Local models for the contact handle slides in the framework of
contact (+1/n)-surgeries. These appear in the statement of Lemma 2.4.
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FiGURE 5. Three different incarnations of the Legendrian connected sum.
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FiGURE 6. Performing a Legendrian connected sum of the Legendrian knot
K with the Legendrian cable J. This yields the third move from Figure 4.

FIGURE 7. Performing a connected sum of K with J yields the last move from Figure 4.

For the record, the name handle slide might be a bit misleading because the rational surgery
does not correspond to a 4-dimensional handle attachment. However, we are isotoping the
knot K over the meridional disk of the newly glued-in solid torus corresponding to the surgery
knot L. Since the same is happening if one does an actual handle slide, the operation at hand
can be seen as a generalization of a handle slide, and thus the terminology.

Remark 2.5. A few minor comments might be in order:

(1) There are other ways to perform the connected sum K#.J in a front projection:
another example is shown in [DGO09], where the connected sum is performed using
the first incarnation from Figure 5.

(2) Since (z,y, z) + (—z,y, —2) is a contactomorphism of (R?, ker zdy + dz) we can also
reflect the front projections from Figures 4 along the y-axis and obtain more front
versions of contact handle slides.

(3) Note that a contact handle slide for general integer surgery is not possible. Indeed,
the (£p, ¢)-Legendrian cable of L represents a tb = —p unknot in L(+p/q).

(4) It is also possible to express the contact handle slides in Lemma 2.4, over a Legendrian
knot with coefficient +1/n, as an n-fold sequence of handle slides over (+1)-framed
Legendrian push-offs of the surgery knot. (|

2.3. Contact surgeries on the unknot. Let U in (S3,&) be the standard Legendrian
unknot, with tb(U) = —1. In the proof of Theorem 1.2, and in Section 3.4, we use contact
(1+1/n)-surgeries on U in (53, &) for n > 0. In the following result, we record the possible
resulting contact structures and the way certain Legendrian knots can be presented in the
surgery.
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Theorem 2.6. Let U in (S3,&y) be the standard Legendrian unknot, and let (U(1+1/n), &),
ke {-n,—n+2,...,n}, denote the (n+ 1) (a priori) distinct contact (1 + 1/n)-surgeries &
along U in (S3,&x).

Then, the contact manifold (U(1 + 1/n), &) is contactomorphic to (S3,&x), for any k €
{—n,—n+2,...,n}. In addition, if L is a Legendrian link in the exterior of U linking U as
shown on the left of Figure 8, then under the contactomorphism from U(1+1/n) to (S3, &),
L changes as indicated on the right of Figure 8.

Proof. Contact (1 + 1/n)-surgery for n > 0 along a Legendrian knot is contactomorphic to
contact (+1)-surgery along the same knot followed by a contact (—1)-surgery along its n-fold
stabilization. The (n+ 1) contact structures & correspond to the different possible choices of
the n-fold stabilizations [DGS04]. That (U(1 + 1/n),&) are all contactomorphic to (S2, &)
follows now from the fact that U(+1) is the fillable contact structure on S! x S? and that
contact (—1)-surgery preserves fillability. Hence we get a tight contact structure on S, which
must be the standard tight contact structure.

To see how the Legendrian link L in the exterior of U changes under this contactomorphism,
we perform handle slides as shown in the middle of Figure 8. The last figure is obtained by
an isotopy and by canceling the unknots. ([

Il

(1+3)

FI1GURE 8. On the left, the unknot U in black and a linking Legendrian link
L in red. On the right, the image of L under contact (1 + 1/n)-surgery on U.
The box labeled by n is our notation for an n-fold stabilization of the knots
running through that box. The signs of the stabilizations are determined by
the precise contact structure on U(1 + 1/n).

Remark 2.7. In the proof of Theorem 1.2 we use that Theorem 2.6 implies that any n-fold
stabilization of a Legendrian knot can be affected by some contact (1 + 1/n)-surgery on its
meridian. ([

3. CONTACT ANNULUS PRESENTATIONS

In this section we prove Theorem 1.2 and, in particular, develop the notion of a contact
annulus twist and pre-Lagrangian annulus presentations. The statements in Theorem 1.2 are
then proven by applying these constructions and an extension result for contactomorphisms.
The section is organized in parallel to the developments in the smooth category, as follows.

In the smooth context, the first infinite family of knots in S? sharing the same O-surgery were
created in [Oso06]. In that paper, Osoinach introduced an annulus twist to construct these
examples. First, we develop that construction in the contact topological setting in Subsec-
tion 3.1. Osoinach’s construction was later generalized by Abe, Jong, Omae, and Takeuchi
in [AJOT13], where the notion of an annulus presentation for a knot was introduced. Sec-
ond, in Subsection 3.2, we generalize this annulus presentation to contact and symplectic
topology. Third, in Subsection 3.3 we develop results based on the work of Akbulut [Akb77],
and in particular its application in [AJLO15, AJOT13], to show that some of the previously
constructed Legendrian knots have the same Stein trace.
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These constructions all produce knots with the same 0-surgery, and this translates into the
fact that all the Legendrian knots that we produce have Thurston—Bennequin invariant 1.
In the smooth context, the annulus twist was also modified in [AJLO15] in order to produce
examples with any integer surgery coefficient. We adapt this construction to the contact cate-
gory in Subsections 3.4 and produce pairs of Legendrian knots with any Thurston—Bennequin
invariant that share equivalent Stein traces. In Subsection 3.5 we generalize other smooth
constructions of pairs of knots with the same surgery to the contact and symplectic frame-
work.

3.1. Contact annulus twists. The first crucial ingredient in the proof of Theorem 1.2 is a
contact version of the smooth annulus twist. We expect this contact annulus twisting to be
useful in future situations, and we present it as the separate Lemma 3.2. First, we use the
following notion.

Definition 3.1. Let (M, &) be a contact manifold and K in (M,€&) a Legendrian knot. A
pre-Lagrangian annulus A in (M, §) in the Legendrian knot type K is any embedded annulus
formed by flowing the Legendrian knot K for a short time under a Reeb flow associated to
a contact 1-form for &. O

Note that a pre-Lagrangian annulus A in the Legendrian knot type K is foliated by copies
of K; we also denote the boundary of A by K U K’, where K’ always denotes a (small) Reeb
push-off of K. The contact annulus twist reads as follows.

Lemma 3.2 (Contact annulus twist). Let K in (M,§) be a Legendrian knot and L a Legen-
drian link in the exterior of K. Consider a pre-Lagrangian annulus A in the knot type K,
with boundary 0A = K U K', such that L intersects A transversely in its interior A.

For any n € N and a choice of contact surgery coefficients on L, let (M, &+) be the result of
contact (£1/n)-surgery on K, contact (F1/n)-surgery on K' and contact surgery on L with
the chosen coefficients, then

(i) The manifold (M4,&y) is contactomorphic to the result of contact surgery on the
link L' obtained form L by performing a connected sum with the (—1,n)-Legendrian
cable of K' at each intersection point of L with A. In addition, the contact surgery
coefficients on L' are the same as those on L. See Figure 9 (top).

(i) The manifold (M_,&_) is contactomorphic to the result of contact surgery on the link
L" obtained form L by performing a connected sum with the (1,n)-Legendrian cable of
K’ at each intersection point of L with A. Similarly, the contact surgery coefficients
on L" are the same as those on L. See Figure 9 (bottom).

By definition, L' or L" is said to be obtained from L by an n-fold contact annulus twist.

Proof. In case that the Legendrian L in (M, &) does not intersect A, this is the Cancellation
Lemma, as stated in Lemma 2.3. For each intersection point of L with A, we use Lemma 2.4
to perform a contact handle slide of L over K’ along an arc contained in A. See Figure 10.
Then the new link L’ has no intersections with A and thus K and K’ can be canceled,
obtaining the claimed result. Alternatively, we can also slide L over K and get the same
surgery diagram. A similar argument works for the manifold (M_,¢_). O

3.2. Contact annulus presentations. Let K in (M, &) be a Legendrian knot and a pre-
Lagrangian annulus A in the knot type K, with boundary 0A = K U K'. Let v in (M, &) be
a Legendrian arc that begins on K, ends on K’ and transversely intersects A in its interior.
Form a knot Ly, in (M,§) by removing a small neighborhood of the end points of 7 from
K and K’, and then taking v and a push-off of v to create a Legendrian band sum of K and
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L//

FIGURE 9. The knots L' and L” that feature in the Contact Annulus Twist
stated in Lemma 3.2. They are obtained by contact handle slides, as in the
proof of the lemma.

K’

F1GURE 10. The pre-Lagrangian annulus A and its intersections with L. The
surgery coefficients on L are indicated by r. The black arrow indicates a handle
slide. Note that we are only drawing a local picture of A and L, this is part
of a larger contact surgery diagram in (M, ¢).

K'. By definition, the pair (A,7) of a pre-Lagrangian annulus A and the Legendrian arc
is said to be a contact annulus presentation of the Legendrian knot L4 . This is illustrated
in Figure 11. In this manuscript we only consider the case where the annulus A union the
band along 7 is an (immersed) oriented surface; it is then verified that tb(L4,) = 1 and
rot(L4,) = 0.

Given a contact annulus presentation (A, ) and associated knot L4 ~, we denote by A’ C A
a pre-Lagrangian sub-annulus in the interior of A that contains all the intersections of v with
A, as well as the band about v used to form Ly . Let K7, K3 be the boundary components
of A/, 9A’ = K1 U Ky, with K closer on A to K than K5. The following lemma, with the
notations as above, is crucial to show that the Legendrian knots in Theorem 1.2.(i) have
contactomorphic (—1)-surgeries.

Lemma 3.3. The Legendrian knots K1 and Ko, considered as Legendrian knots in the surg-
ered contact manifold La~(—1), are Legendrian isotopic.

Proof. We represent our Legendrian knots in surgery diagrams for (M, &), drawn as front
projections, and the Legendrian arc v will be attached to K and K’ at cusps in the front
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AN

h

Axy

F1Gure 11. Contact annulus presentation of a Legendrian L. In the top fig-
ure, we have depicted K and its Legendrian push-off K’, co-bounding an
annulus A, and the Legendrian arc . The box around < indicates that - is
allowed to intersect the annulus A again. In the bottom figure, we have de-
picted the resulting Legendrian knot L, ., obtained as the band sum of K
and K’ along ~.

diagram. Figure 12 (top) shows the Legendrian knot L4, and the two Legendrian knots, K
and K>, that bound the pre-Lagrangian sub-annulus A’. We perform a contact (—1)-surgery
along L4 . After performing a handle slide of Ky over L4, we obtain Figure 12 (bottom).
Note that the Legendrian knot L4 - is made out of four Legendrian arcs: K’ and K , Where
K denotes K with a small neighborhood of the &y removed from it (and similarly for K )
and two copies of v, that we denote «" and ~”.

Ky

N

///

Ky

—~
[y
~—,

\ZZ\Y
7T

—~
—_
~—

FIGURE 12. The top diagram is L4 , together with the Legendrian knots K3
and Kj. The bottom figure is the result of Legendrian surgery on L4, and
sliding K5 over L4 .

The Legendrian knot Ky, after the slide, and the Legendrian arc K’ are joined by a cusp, as
depicted in the upper left of the front diagram in Figure 12 (bottom). Since Ky and K’ are
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LA77

La, /

V.
/

FIGURE 13. Steps in the Legendrian isotopy from Ks to K7, as used in the
proof for Lemma 3.3.

parallel, there is a Legendrian isotopy ending in the upper diagram of Figure 13. Now, the
Legendrian curves 7/ and 7" are Legendrian push-offs of v, and connected with a cusp as in
the upper diagram in Figure 13. Thus, there is a Legendrian isotopy to the bottom diagram
in Figure 13, which is isotopic to K, as required. [l

Let us now readily deduce from Lemma 3.3 that contact annulus twists preserve the contact
type of the contact (—1)-surgery.

Theorem 3.4. Let (M, §) be a contact 3-manifold and (A,~) a contact annulus presentation.
Consider the Legendrian knots Ly, in (M,§), n € N, obtained by performing an n-fold contact
annulus twist using the knots OA’ applied to La . Then, the contactomorphism type of the
Legendrian (—1)-surgery on Ly, in (M,§) is independent of n, i.e. the contact (—1)-surgery
on Ly, is contactomorphic to the contact (—1)-surgery on L4 for all n € N.

Proof. Let (M',&') be the result of a Legendrian surgery on L4 .. By Lemma 3.3 above
and Lemma 2.3, performing a Legendrian surgery on Lg4., and then a contact (£1/n)-
surgery on Kj and contact (F1/n)-surgery on Ko, results in (M’ £'). At the same time,
performing the same surgeries on K3 and K before the Legendrian surgery on L4, results
in the Legendrian knots L,,, and thus the Legendrian surgery on L,, also yields the contact
3-manifold (M’ ¢’). O

Remark 3.5. It is reasonable to denote Lo := L4, so that n € N includes the n = 0 case.
For future use, we notice that there is an explicit contactomorphism from the Legendrian
surgery on Lg to the Legendrian surgery on L,,. Indeed, it is given by starting with Legendrian
surgery on Lo, adding a canceling pair of surgeries along K; and K (from Lemma 3.3), then
sliding K} over Ly to obtain Ko, and finally performing the contact annulus twist, as in
Lemma 3.2, using K7 and Ks. An example is shown in Figure 14. ([

The construction in Theorem 3.4 produces many families of Legendrian knots L, in (M, ¢)
on which Legendrian surgery produces the same contact 3-manifold. That said, it is not clear
that these Legendrian knots L,, are necessarily all distinct. In fact, there are situations where
all these Legendrian knots L,, are isotopic. Let us now show that, with the appropriate choice
of contact annulus presentation (A,~), they are indeed all non-isotopic.

Theorem 3.6. Let (S3,&4) be the standard contact 3-sphere. There exists a contact annulus
presentation (A,7) such that the n-fold contact annulus twists Ly, in (S°,&s) are pairwise
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FIGURE 14. The top left figure shows contact (—1) surgery along the Legen-
drian knot Lg. In the top right we have introduced a canceling pair. In the
bottom right surgery diagram we can perform a handle slide as indicated with
the red arrow to arrive at the top right picture. On the other hand we can
slide the two black arcs as indicated with the black arrow to get Legendrian
surgery along L,, (depicted in the bottom left for n = 1). The composition of
these contact Kirby moves yields an explicit contactomorphism ¢: Lo(—1) —
L,(-1).

not Legendrian isotopic. In particular, there exists an infinite family of distinct Legendrian
knots Ly, in (S3,&s) whose contact (—1)-surgeries are all contactomorphic.

Proof. Consider the Legendrian knot L. in (S3,&s) in Figure 15: the corresponding pre-
Lagrangian annulus A is formed from a maximal Thurston-Bennequin unknot, and = is
readily deduced from the picture. Figure 15 also depicts the Legendrian knots K; and K3 in
(93, &4t), that we can use to perform the contact annulus twists.

Let us denote Ly := L4, as in Remark 3.5, and denote by L, in (83, &5¢) the image of Lo
under contact (1/n)-surgery on K; and contact (—1/n)-surgery on Ko. The resulting knots
Lo and L, are shown in Figure 1. By Theorem 3.4, the contactomorphism type of the contact
(—1)-surgery on L, is independent of n € N, and thus it suffices to argue that the L,, in
(83, &) are pairwise non-isotopic Legendrian knots. It is readily seen that their Thurston—
Bennequin invariants and rotation numbers are (tb(Ly),rot(Ly,)) = (1,0) for all n € N: we
shall instead show that the L,, are pairwise distinct as smooth knots, i.e. L,, is not smoothly
isotopic to Ly, if n # m, n,m € N. This can be done with different methods, we proceed as
follows, in line with the strategy originally used by Osoinach in the smooth case, [Oso06].

The software SnapPy [CDGW], as part of SageMath, readily verifies that the exterior of the
three component link L = L4, U K7 U K3 in Figure 15 is hyperbolic. Dehn filling the blue

and red knots, K7 and K>, with topological surgery coefficients %ﬂ yields the exterior of
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FIGURE 15. The Legendrian knot L4, in the proof of Theorem 3.6.

the knot L,. Since the length of these surgery slopes increases monotonically to infinity it
follows that, for n sufficiently large, all the resulting L,, are hyperbolic knots and the volumes
of these L,, converge strictly monotonic to the volume of L [NZ85, Thu80]. In particular, it
follows that at most finitely many of the L, are smoothly isotopic. This argument can be
improved by using SnapPy and computing all short slopes, verifying the hyperbolicity of
the corresponding fillings, and rigorously computing their volumes. We have performed these
precise calculations, together with some additional data, in a Jupyter SageMath Notebook
which can be accessed at [CEK]. The computations do indeed conclude that all the knots L,
are pairwise smoothly non-isotopic, as required. O

Remark 3.7. Showing that finitely many of the L, are different is readily achieved by
computing classical topological knot invariants. For instance, we can compute the HOMFLY
polynomials p(Lg) and p(L1) of Ly and L to be different:

p(Lo)(1,m) =17OmA + (172 =204 =317 — I ®Ym2 + (=172 + 2074 + 3175 4+ 178),
p(L)(L,m) =1 MmA (172 =17 1S 1B M Oy (12 B 3 M 21706,

It appears to be reasonable that a general formula for all the HOMFLY polynomials p(Ly,)
could be found, and distinguish them all as well. Nevertheless, note that the Alexander
polynomials A(L,) of all these knots L,, in S coincide, since the Alexander polynomial of a
knot is an invariant of the 0-surgery. (]

Theorem 3.6 presents the first instance of distinct Legendrian knots in (52, &y;) with contac-
tomorphic Legendrian surgeries, and even shows that infinitely many such Legendrian knots
exist. Theorem 1.2.(i) is even stronger than that, as it claims that there are instances of
distinct Legendrian knots whose Stein traces are equivalent. In fact, we shall prove Theo-
rem 1.2.(i) by using Theorem 3.6: we now show that the Legendrian knots L, in (S3, &)
constructed in the proof of Theorem 3.6 — obtained as contact annulus twists on Figure 15 —
have equivalent Stein traces.

3.3. Extending contactomorphisms over Stein traces. In this section we conclude the
proof of Theorem 1.2.(i). This is achieved by showing that we can extend the contactomor-
phisms in Theorem 3.6 to the bounding Stein traces.

First, we state a result from [CET21], which is also a fact well-known to experts. Specifically,
see [CET21, Lemma 3.3] for its proof.
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Lemma 3.8 ([CET21)). Let (W,w) be a symplectic manifold with concave boundary OW,
D c (W,w) a properly embedded Lagrangian disk transverse to OW. Then, there ezists a
neighborhood Op(D) C (W,w) of D in W symplectomorphic to a neighborhood of the co-core
of a Weinstein 2-handle and such that the Liouville vector field defined near the OW agrees
with the Liouville vector field on the Weinstein 2-handle. In addition, this symplectomorphism
can be assumed to agree with any preassigned symplectomorphism from a neighborhood of 0D
to a neighborhood of the boundary of the co-core. O

Lemma 3.8 can now be used in order to establish a sufficient criteria for contactomorphisms
between Legendrian surgeries to extend to their Stein traces.

Lemma 3.9. Let L and L' in (S3,&:) be Legendrian knots such that there is a contacto-
morphism ¢ : L(—1) — L'(—1) between their Legendrian surgeries. Consider a Legendrian
meridian p in L(—1) to L that bounds the Lagrangian co-core D of the 2-handle in the Stein
trace W, and suppose that the image ¢(u) in L'(—1) bounds a Lagrangian disk D" in Wp,.
Then, the contactomorphism ¢ extends to a symplectomorphism ® : W — Wy, of the Stein
traces Wi, and Wy, possibly after deforming the symplectic structure on one of these Stein
traces.

Remark 3.10. Lemma 3.9 is a symplectic analogue of Akbulut’s lemma [Akb77]. Note
that the topological version of this lemma requires an additional hypothesis; however, in the
symplectic framework, the existence of additional geometry suffices to conclude the same
result without the hypothesis being required in the statement. O

Proof. First, we extend the contactomorphism ¢ : OWy — W, to a symplectomorphism
in an open neighborhood of the boundary. By Lemma 3.8, we can further extend this sym-
plectomorphism to a symplectomorphism ¢’ : N — N’ from an open neighborhood N of
OWr UD in Wy, to an open neighborhood N’ of 9W, U D’ in Wp,. It suffices to extend to
the complements B := Wy \ N and B’ := W, \ N’. For that, we notice that — by choosing
the neighborhood N appropriately — B is a symplectic manifold with concave boundary and
0B = S3. In consequence, both contact boundaries B and 9B’ are contactomorphic to the
standard contact 3-sphere (S3, & ).

Since B C W and B’ C Wy, are subsets of a Stein manifold, they are minimal. Under
this hypothesis, the Gromov-McDuff Theorem [Gro85, McD90] implies that B and B’ are
symplectomorphic to a standard symplectic 4-ball. In particular, possibly after a deformation
of one of the Stein structures, they are symplectomorphic [CE12, Theorem 16.6]. This allows
us to extend the symplectomorphism ¢’ : N — N’ to an equivalence ® : W, — W, of the
Stein traces, as required. U

Lemma 3.9 can now be applied to Legendrian knots with a contact annulus presentation,
discussed in Subsections 3.1 and 3.2 above.

Theorem 3.11. Let (A,v) be a contact annulus presentation in (S°, &), with the pre-
Lagrangian annulus A in the type of the maximal-tb Legendrian unknot. Let Ly be the result
of an 1-fold annulus twist on La . Then the Stein traces of L4, and L1 are equivalent.

Proof. Let us denote Lo := Lj, for simplicity, and consider the Weinstein handlebody
diagram for Wp,, | shown in the upper left of Figure 16, where the co-core p of the Weinstein
2-handle is also shown. The remaining three diagrams in Figure 16 depict a contactomorphism
¢: Lo(—1) — L1(—1), as described in Remark 3.5. Specifically, in the upper right diagram, a
canceling pair of contact (+1)-surgeries is added, which does not affect the contactomorphism
type by Lemma 2.3. The diagram depicted in the lower left shows a handle slide of the (—1)-
framed unknot over the Legendrian knot L4, followed by an isotopy. Finally, in the lower
right diagram, we have depicted the result of the contact annulus twist on Ly and the image
of the meridian p. Note that the Legendrian arc 4" depicted in Figure 16 is obtained from the
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FiGURE 16. The diagrams used in the proof of Theorem 3.11, showing that
¢(u) bounds a Lagrangian disk.

Legendrian arc 7y by a contact annulus twist. Now, the image ¢(u) is a maximal-tb Legendrian
unknot in the boundary of the standard symplectic 4-ball, and thus it bounds an embedded
Lagrangian disk. Hence, we can apply Lemma 3.9 in order to extend the contactomorphism
¢ to an equivalence ® : Wi, — W, of the Stein traces W, and Wp,, as claimed. g

Remark 3.12. Theorem 3.11 remains true for any pre-Lagrangian annulus A in the type of
a Legendrian knot L in (83, &) that bounds a Lagrangian disk in the standard symplectic
4-ball. Indeed, the above proof shows that ¢(u) is again isotopic to L in the boundary of the
standard symplectic 4-ball and thus will bound again a Lagrangian disk such that Lemma 3.9
applies. O

Theorem 1.2.(i) now follows.

Proof of Theorem 1.2.(i). Consider the infinite family of Legendrian knots L, in (53, &)
build in Theorem 3.6. Each L, is the result of an n-fold contact annulus twist applied to
the knot L, in Figure 15, whose contact annulus presentation (A,v) indeed satisfies that
A is in the type of the standard Legendrian unknot. Theorem 3.6 states that the Legendrian
(—1)-surgeries are contactomorphic. By construction, each L, is obtained from L,_; by a
1-fold contact annulus twist. Hence, the hypothesis of Theorem 3.11 are satisfied, and we
deduce from Theorem 3.11 that the Stein traces of the L,, must all be equivalent. U

We now turn to Theorem 1.2.(ii).

3.4. Contact (xn) moves. This section proves one half of Theorem 1.2.(ii), showing that
for any m < 1, m € Z, we can construct distinct Legendrian knots L, and L/, in (S3, &),
both with tb(L,,) = tb(L},) = m, such that their Stein traces are equivalent, i.e. Wy, is
Stein equivalent to Wy, . For that, we define the contact (*n) move, adapting the topological
(*n) move developed in [AJLO15, Section 3] to the contact setting.

In line with Subsection 3.3, let (A,v) be a contact annulus presentation in the standard
contact (93, &), with the pre-Lagrangian annulus A in the type of the maximal-tb Legendrian
unknot. Consider the associated Legendrian knot L4 ., depicted in the front diagram as in
the upper left of Figure 16, and let U in (S3, &) be the Legendrian unknot depicted in orange
in this same front diagram. Note that U is a standard Legendrian unknot but links L4 in
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a specific manner. In addition, for n € N, any of the contact 3-manifolds (U(1 + 1/n), &),
ke{-n+1,—n+3,...,n—1}, following Theorem 2.6, is endowed with a contactomorphism
b (U(1+1/n),&) — (S3,£4). In the notation above, we define the following two moves.

Definition 3.13. A Legendrian knot L in (53 &) is said to be obtained by a contact
(T) move from L, if it is the image ¢y(La,) of the Legendrian knot L, under the
contactomorphism ¢ : (U(1 + 1/n), &) — (S3,&x).

A Legendrian knot LY in (53, &) is said to be obtained by a contact (xn) move from L, ., if
it is the result of a contact annulus twist on L 4, followed by a contact (7},) move. O

The moves in Definition 3.13, in conjunction with Theorem 3.11, can now be used to conclude
the first half (tb < 1) of the proof of Theorem 1.2.(ii), as follows. The other cases (tb > 1)
will be discussed in Section 3.5.2.

Proof of Theorem 1.2.(ii) (The case of tb < 1). Let (A,~) be a contact annulus presentation
in (S3,¢&), with the pre-Lagrangian annulus A in the type of the maximal-tb Legendrian
unknot and, given m < 0, m € Z, let L,, in (S3 &) be the Legendrian knot Ly, in
(53, &) stabilized |m| times. For instance, we may choose L4 ., as in Figure 15. As noted in
Remark 2.7, L, can obtained from the Legendrian L,4 . by performing contact (1 + 1/m)-
surgery on a meridian u, if one chooses the appropriate contact structure & on the surgery.

Let LI, in (53 &) be the result of a contact annulus twist on Ly, followed by a contact
(T},) move on the image p/ of p under the contact annulus twist, as depicted in Figure 16.
That is, in the language of Definition 3.13, L}, is obtained from Ly ., by a contact («xm) move.
Lemma 3.2 implies that the contact (—1)-surgery on L4 ~ and contact (1+1/m)-surgery on p
is contactomorphic to contact (—1)-surgery on the contact annulus twisted L4, and contact
(1 4+ 1/m)-surgery on p/, if we use the same contact structures on the (1 4+ 1/m)-surgeries.
Now, by Theorem 2.6, the first contact manifold is the result of contact (—1)-surgery on L,
in (S3,&), and the second contact structure is the result of contact (—1)-surgery on L/ .
Hence, these contact structures are contactomorphic.

It now suffices to argue that this contactomorphism extends over the Stein traces. Indeed, if
one takes two meridians p; and pg to L4, that are unlinked, then their images under the
contact annulus twist are unlinked. This can be pictorially verified by following the moves in
Figure 16 with both meridians. In consequence, when one performs the contact (7,) move
on fi1, po is still a maximal-tb standard Legendrian unknot and Lemma 3.9 gives the desired
result.

It remains to show that tb(L},) =1 —m and that L, and L,, are not isotopic. For the first
equation, we use Figure 16 bottom right to compute that the linking number of the two knots
is 1 and thus the formula from [Kegl8, Lemma 6.2] implies that tb(L!,) = tb(La,) —m =
1—m.

For the second statement, we will use the example from Figure 15 and show that in that
example L' and L,, are not smoothly isotopic. For that we use again SnapPy and the limit
formula for the volume from [NZ85] to show that the volume of L/, is always larger than the
volume of L,,. (Note that the L,, are all smoothly isotopic to Ly and thus all have the same
volume.) These computations are saved at [CEK]. O

Example 3.14. Figure 17 shows an example of a contact (*n) move starting with the contact
annulus presentation from Figure 15. The sequence of moves is following the arguments from
the above proof and yields an explicit contactomorphism from L,,(—1) to L], (—1). Also note
it is straightforward to compute in the front projections of L, and L, that both knots have
tb=1—m.

Finally, we remark that computer experiments suggest that L/, is always a stabilized knot.
However, the destabilization is not straightforward to see. For example for m = 1 we have
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FIGURE 17. An example of a contact (*¥n) move. The box stands for an m-fold
stabilization, except on the bottom right where it stands for the Legendrian
3-copy of the m-fold stabilization of an arc.

transformed the front projection of L) to the corresponding grid diagram. Via gridlink we
could find a sequence of moves to a grid that corresponds to a destabilizable front projection.
The data can be found at [CEK]. O

3.5. Additional constructions. In this section we present a few more ways to construct
examples of non-isotopic Legendrian knots with the same Stein trace or the same Legen-
drian surgeries. In the smooth context, both dualizable patterns and RGB-diagrams gener-
alize (special) annulus twists, see e.g. [MP18, Tag20a, Tag20b], especially [MP18, Section 6]
and [Tag20b, Theorem 4.8]. Let us present the contact and symplectic analogues of dualizable
patterns and RGB-diagrams, with the connection between them and contact annulus twist
left for future work.
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3.5.1. Dualizable patterns. In [Bra80], Brakes introduced dualizable patterns for smooth
knots as a method to create pairs of knots with diffeomorphic zero surgeries. In [MP18],
smooth dualizable patters are extensively studied, and a criteria for a pattern to be dualiz-
able is given. In addition, the relation to the smooth annulus twist is discussed in [MP18],
and see also [Tag20a, Section 3.2]. In our context, Legendrian dualizable patterns can be
defined as follows.

Let V = (S! x D2¢) be the solid torus with the unique tight contact structure having
convex boundary with two longitudinal dividing curves. Note that any Legendrian knot has
a neighborhood contactomorphic to V. By definition, a Legendrian knot P in V is called a
Legendrian pattern. Given a Legendrian knot L in (53, &), we denote by P(L) in (53, &st) the
(satellite) Legendrian knot obtained by first embedding P into V and then V into (S3, &)
as the standard neighborhood of L. We denote a closed standard neighborhood of P in V' by
vP.

Definition 3.15. Let P in V be a Legendrian pattern. A Legendrian pattern P* in V* is
called the dual pattern of P if there exists a contactomorphism ¢ : V' \ vP — V* \ v P~
between the contact complement V' \ vP and the contact complement V* \ vP* such that ¢
restricted to the respective boundaries acts as:

)\V — /\p* )\p — Av*
By > — i p Hp = — =,

where pup denotes the meridian to P, A\p is the longitude for v P determined by the contact
framing, uy is the boundary of {pt} x D? in V and Ay is a curve parallel to the dividing set
of V. (Analogous definitions for P* in V*.) O

The Legendrian dualizable patterns in Definition 3.15 can be used to construct Legendrian
knots with the same Stein traces. The necessary result is the following proposition:

Proposition 3.16. Let U in (S3, &) be the Legendrian unknot with tb = —1 and P a
dualizable pattern with dual pattern P*. Then, the two Legendrian knots P(U) and P*(U) in
(83, &4t) have the equivalent Stein traces.

Proof. Let us choose a framing on the solid tori V' and V* such that Ay and Ay« have slope
—1. Note that (53, &) is obtained from V' by Dehn filling along the curve Ay + iy, i.e. along
a curve of slope 0, and then extending the contact structure over the filling torus so that it
is tight (and there is a unique way to do this). Thus, contact Dehn surgery on P(U)(—1) is
simply the result of Dehn filling the contact complement V' \ vP with slopes A\p — up and
Ay + py of V. Since P is dualizable, the last manifold is contactomorphic to the Dehn filling
of V*\ vP* with slopes py+ + Ay« and Apx — pp~ which is again the same as Legendrian
surgery on P*(U). Now, the contactomorphism can be chosen to take the meridian of P(U)
to py+ in P*(U)(—1) which bounds a Lagrangian disk in the associated Stein trace. Thus
Lemma 3.9 implies that such a contactomorphism must extend to a symplectomorphism of
the Stein traces, possibly after a deformation. The conclusion follows. O

The construction of Legendrian dualizable patterns in the contact setting can be done similar
to the smooth construction developed in [MP18]. For that, we denote by I': V' — (S1x 52, &)
the embedding of a solid torus V' as the tubular neighborhood of the Legendrian curve S\V,
shown in Figure 18, and by P the Legendrian knot in (S! x S2, &) obtained by embedding
P into V, and then V into (S x §2,&) via T

Lemma 3.17. Suppose that the Legendrian knot P in (S' x 82 &) is Legendrian isotopic
to Ay in (S' x 8%, &4). Then, P is dualizable with dualizable pattern P* = Ay, seen as a
pattern in the contact complement V* = (St x §2 &) \ T'(V).
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Proof. Let us choose a framing on the solid torus V' such that the Legendrian curve Ay has
slope 0. Then, the contact 3-manifold (S x S2, &) is obtained from V by first Dehn filling
the solid torus V with slope oo, and then extending the contact structure to the surgery torus
so that it is tight. Notice that V C S! x S% is a . neighborhood of Ay and (ST x 5’2) \Vis
contactomorphic to V. Now, if a Legendrian knot P is isotopic to Ay, then V* = (S*x S?)\vP
is also contactomorphic to V. We set P* = Av in the complement solid torus V*. In this case,
(St x §2)\ v(P U P*) is contactomorphic to both V' \ v(P) and V* \ v(P*) and it is readily
verified that the contactomorphism from V \ v(P) to V* \ v(P*) exchanges the meridians
and longitudes as required. O

FIGURE 18. The Legendrian knot Ay in (S* x S2, &y ).

Lemma 3.17 is the contact analogue of [MP18, Proposition 3.5]. The analogue of [MP18,
Proposition 6.3] should also hold in our context, i.e. given a Legendrian knot L with an
annulus presentation (A, ~) where A is a pre-Lagrangian annulus obtained form the maximal
Thurston-Bennequin invariant unknot and L’ obtained from L by a 1-fold annulus twist,
there is a dualizable pattern realizing L with dual giving L’. This can be done by finding an
appropriate Legendrian unknot associated to the annulus A and L in its complement will be
the pattern. A detailed discussion of this relation and applications are left for future work.

Example 3.18. We present a simple example, which is inspired by the topological ex-
ample from [MP18]. We consider the Legendrian pattern P and its Legendrian satellite

P(U) depicted in Figure 19. Figure 20 demonstrates that P is Legendrian isotopic to Ay in
(S!x 82 &) and it follows by using Lemma 3.17 that P is dualizable. Thus Proposition 3.16
implies that P(U) and its dual Legendrian satellite P*(U) have equivalent Stein traces. While
we have not constructed an explicit front of the Legendrian knot P*(U), it is not hard to see
that P(U) and P*(U) are not smoothly isotopic. O

-/ Na
)

FIGURE 19. A Legendrian dualizable pattern P and its Legendrian satellite P(U).

3.5.2. RGB links & Cancelling 1-and 2-handles. In [Pic19], the use of RGB links was intro-
duced to construct pairs of knots with the same surgeries, see also [Tag20b, Section 4]. This
readily generalizes to the setting of contact surgeries, and here we record the definitions and
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O~ <6

F1GURE 20. A sequence of Reidemeister moves shows that P is Legendrian
isotopic to Ay in (S! x S2, &).

(

basic results. As an application we will also construct pairs of Legendrian knots with any
possible Thurston—Bennequin invariant that share the same Stein trace and thus finish the
proof of Theorem 1.2.(ii).

Definition 3.19. A 3-component Legendrian link R U G U B in (53 &) is said to be a
Legendrian RGB link if the following properties hold:

(1) RUG is Legendrian isotopic to ug U G, where pg is a meridian to G with tb = —1,
(2) RU B is Legendrian isotopic to up U B, where up is a meridian to B with tb = —1.

By definition, K in (S3, &) is the Legendrian knot obtained from G in (53, &) by perform-
ing a contact (+1)-surgery on R and a contact (—1)-surgery on B. Similarly, Kp in (5%, &)
is the Legendrian knot obtained from B in (S3, &) by performing a contact (4-1)-surgery on
R and a contact (—1)-surgery on G. O

Note that R in (S2,&s) must be a maximal-tb unknot, and thus the contact (4-1)-surgery
on R will cancel the contact (—1)-surgery on either G or B. Indeed, R is isotopic to a
Legendrian push-off of G or B after one has surgered G or B as we can see by performing a
single handle slide. Hence, performing the given surgeries on R and B (or R and G) yields
the standard contact 3-sphere (S2,&). These particular configurations of knots, forming a
link as in Definition 3.19, are useful thanks to the following result.

Theorem 3.20. Let RUG U B in (S3, &) be a Legendrian RGB link. Then the Stein traces
of Kg and Kp are Stein equivalent.

Proof. The contact 3-manifold R(+1) UG(—1) U B(—1) is contactomorphic to both Kq(—1)
and Kp(—1), and thus the latter two are contactomorphic. The contactomorphism from
R(+1) U G(—1) U B(—1) to Kg(—1) sends a meridian of G to a meridian of Kg, while
the contactomorphism from R(+1) U G(—1) U B(—1) to Kp(—1) sends a meridian of G
to a maximal Thurston-Bennequin unknot linking Kp several times. In consequence, the
contactomorphism from K¢g(—1) to Kp(—1) sends the meridian of K¢ to a Legendrian knot
bounding a Lagrangian disk in the Stein trace. Hence, Lemma 3.9 applies and we conclude
that the contactomorphism extends to a symplectomorphism of the Stein traces of Kq and
Kp, up to deformation, as required. [l



STEIN TRACES AND CHARACTERIZING SLOPES 25

It is possible to use RGB links to construct pairs of Legendrian knots with arbitrary classical
invariants that share the same Stein traces. In the following we present an explicit example
that proves the remaining case of Theorem 1.2.(ii).

FIGURE 21. An infinite family of Legendrian RGB links. The box labeled n
means here n extra full positive twists.

Proof of Theorem 1.2.(ii) (The case of tb > 1). We start with the family of RGB links, in-
dexed by n € N, shown in Figure 21. By sliding the three green arcs that link R over B and
then canceling R and G we are left with the Legendrian knot K in (S3,&s). And conversely,
we can slide B three times over G and then cancel R and B to get the Legendrian knot K¢ in
(53, &). This yields an explicit contactomorphism between Kg(—1) and Kp(—1) which by
Theorem 3.20 also extends to an equivalence of the Stein traces. Front projections of K¢ and
Kp are shown in the top of Figure 22 from which we compute tb(K¢g) = tb(Kp) = 2n — 6.
Thus, we get any positive even tb. In order to obtain positive odd tb, we stabilize once B in
Figure 21 and then proceed analogously.

Ficure 22. Canceling R with G or B in Figure 21 yields the Legendrian
knots K and Kp shown in the top row. The bottom row shows smooth
surgery descriptions of these knots.
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It remains to show that the knots K¢ and Kp are not isotopic. In fact, we will argue that
they are not even smoothly isotopic. For a particular value of n, it is again a simple task
by computing some knot invariants. For the whole family, we consider the smooth surgery
diagrams of K and K shown in the bottom row of Figure 22 and use again the limit formula
from [NZ85] for the volume together with SnapPy to distinguish all pairs. The computations
can be found at [CEK]. O

Remark 3.21. Note that by changing the right part of B in Figure 21 it is also straightfor-
ward to construct examples of pairs of Legendrian knots with any given values of (tb, rot) that
share the same Stein trace. We also remark that from the above proof it follows that the un-
derlying smooth knot type of the Kp has any integer slope non-characterizing, a phenomena
previously discussed in [BM18]. O

In line with [Tag20b], and [Tag20b, Theorem 4.8], there might be an equivalence between
Legendrian dualizable patterns and RGB links, both generalizing contact annulus twist (when
the annulus is obtained form the maximal Thurston-Bennequin invariant unknot); we hope
to explore this in the future. Finally, we emphasize that using contact Kirby moves might
also be useful for the endeavor of building distinct Legendrian knots with contactomorphic
Legendrian surgeries. Along the same lines as in Theorem 1.2 of [MP21], we get:

Theorem 3.22. Let L(+1) U K1(—1) U Ka(—1) in (S3, &) be a 3-component Legendrian
surgery link such that L(+1) U K;(—1) is contactomorphic to (S®,&y), i = 1,2. Consider the
Legendrian knot K| in (S3,&s) given as the image of K1 under the surgery along L U K,
and similarly KY in (S3,&4). Then, K and K} have contactomorphic Legendrian surgeries.

Proof. Let (M,€) be the contact 3-manifold represented by the surgery diagram L(+1) U
K1(—1) U K3(—1). By construction (M,¢) is contactomorphic to the Legendrian surgery
along K| and to the Legendrian surgery along KJ. O

Note that, a priori, Theorem 3.22 works in more general situations than Theorem 3.20, since
L might not be a standard Legendrian unknot. For instance, we can choose the surgery link
such that K; is a push-off of L. On the other hand, the Stein traces of Legendrian knots
produced via Theorem 3.22 might not be equivalent, in general, since even the smooth knot
traces might not always be diffeomorphic. Here we work out an explicit example and thus
prove Theorem 1.3.

Proof of Theorem 1.3. We consider Figure 23. On the left column we see two isotopic copies
of the same 3-component surgery link together with an orange meridian of the green knot.
We observe that the green and the blue knots are push-offs of the red knot. On the right
column of Figure 23 we see the image of the green knot L and the image of the blue knot
L' under the annulus twist of the two other knots. By construction (or by Theorem 3.22) L
and L’ have contactomorphic Legendrian surgeries where an explicit contactomorphism ¢ is
given by the handle slides and isotopies in Figure 23

Via SnapPy we can compute that both knots, L and L', are hyperbolic with different volumes
and thus are smoothly non-isotopic.

To show that the Stein traces are not equivalent, we first verify that L(—1) and L'(—1) have
vanishing hyperbolic symmetry group and thus any smooth diffeomorphism from L(—1) to
L'(—1) is isotopic to ¢. Thus, it is enough to show that ¢ does not extend to a homeomorphism
of the knot traces. For that we follow the strategy from Theorem 3.7 of [MP21]. If ¢ extends
to a homeomorphism ®: Wy — W, then ® induces a homeomorphism

DWWy =W, U-Wr, — Wp, Ug W = X.

Since tb(L) = 1, we conclude that the double DW, of Wi, has even intersection form and
thus X has even intersection form if ¢ extends to a homeomorphism of the Stein traces.
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To conclude the theorem we will show that X has odd intersection form. For that we will
describe a Kirby diagram of X from which it is straightforward to compute the intersection
form. We recall that doubling the knot trace of a knot L corresponds to adding a 0-framed
meridian py of L to the Kirby diagram [GS99]. Thus we get a Kirby diagram of X by
attaching a 2-handle along ¢(uz) to the Stein trace of L'. In Figure 23 we have depicted
a meridian p7 of L and its image ¢(ur) in orange. Since the topological O-framing of uf
corresponds to a contact (+1)-framing, we also need to add a 2-handle with contact framing
(4+1) to ¢(pr) in the bottom right of Figure 23 to get a Kirby diagram of X.

But then the intersection form of X can be represented in the basis given by the 2-handles
by the odd matrix

(tb (p(pr)) +1 1k (L’,QS(ML))) _ (1 1>.

Ik (L', ¢(ur))  th(L) -1 10

Y i

I] ]

F1GURE 23. Non-isotopic Legendrian knots with contactomorphic Legendrian
surgeries, but non-equivalent Stein traces.

This concludes our discussion on distinct Legendrian links in the standard contact 3-sphere
with equivalent Stein traces, i.e. cases in which the (—1)-slope is not characterizing, and
not even Stein characterizing. The manuscript now proceeds with results on characterizing
slopes.
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4. CHARACTERIZING SLOPES

In this section we present results on characterizing slopes, in particular proving Theorems 1.5,
1.6, 1.7, 1.8 and 1.10. In Subsection 4.1, we first consider characterizing (£1)-slopes and in
the following Subsection 4.2 we consider general characterizing slopes.

4.1. Contact (+1) characterizing slopes. Let us prove Theorem 1.5 that says any Le-
gendrian realization of the unknot, right or left handled trefoil, or figure eight knot is char-
acterized by its Stein trace.

Proof of Theorem 1.5. Let L in (S3, &) be a Legendrian realization of one of the knots listed
in the statement of the theorem, with Thurston-Bennequin invariant tb(L) = ¢, and L’ in
(53, &) be another Legendrian knot such that its Stein traces Wy, and W, are equivalent.
Then the contact boundary OW7, is diffeomorphic to 0Wp,. Since the homology of OW7, is
isomorphic to Zy_|, ' = tb(L') must be ¢t or 2 —t. Since W, and W, are orientation
preserving diffeomorphic, their intersection forms coincide, and thus ¢ must be equal to t.
Now, the smooth knot type of L is determined by smooth surgeries on it [KMOS07, OS19],
and thus L' must be smoothly isotopic to L in S®. In addition, the Chern classes of the Stein
traces Wy, and Wy, are given by the rotation numbers of L and L', respectively, under the
identification of the second cohomology of the Stein traces with the integers. Hence, since
they are the same, we must have that rot(L) = rot(L’). Finally, it suffices to note that the
knot types under consideration are Legendrian simple [EF98, EHO1|, and thus L and L’ are
Legendrian isotopic in (53, &). O

Let us now proceed with Theorem 1.6 by showing that some of the Legendrian knots are
contact (—1)-surgery characterized.

Proof of Theorem 1.6. For proving (1), let us consider a Legendrian realization L in (53, £y)
of the unknot with tb(L) = ¢, and L’ in (S3, &) another Legendrian knot such that L'(—1)
is contactomorphic to L(—1). As the homology of these manifolds is Z_y, we must have
that ¢/ =tb(L')=tort' =2 —t.

If t' = ¢, then we know that L’ is smoothly an unknot [KMOS07], and since, by Theorem 2.1,
the Euler classes of L(—1) and L'(—1) are determined by the rotation number r of L and ' of
L', respectively, we must have that » = ' mod (1 —t). From the classification of Legendrian
unknots [EF98], it follows that 0 < r,7’ < —1 —¢ < 1 — ¢ and thus r = ¢/, implying that L’
is Legendrian isotopic to L.

Now consider the case t' = 2 — ¢, then we notice that L(—1) is the lens space L(1 —t,1). The
article [McD90] has classified their Stein fillings, and the only simply connected Stein fillings
are disk bundles over S? with negative Euler class. In particular, the intersection form of
any such filling is negative definite. However, the Stein trace Wy, of L is a symplectic filling
of L'(—1) with intersection pairing positive definite. Hence, if L(—1) were contactomorphic
to L'(—1) we would have a symplectic filling of L(1 — ¢,1) that is not allowed by [McD90].
Thus (—1) is a contact characterizing slope for any Legendrian unknot. This concludes The-
orem 1.6.(1).

Let us proceed with Theorem 1.6.(3), the argument for the left-handed trefoil and the figure
eight knot is identical. As above, L’ in (93 &) is a Legendrian knot such that L'(—1) is
contactomorphic to L(—1), and we can assume that ¢/ = 2 — ¢, since in the other case we
already know that L’ is Legendrian isotopic to L, by a similar argument as above. (Here we
use the classification of the Legendrian figure eight knots and trefoils from [EHO1].)

We proceed by computing the the ds-invariant of the contact surgeries L(—1) and L'(—1),
using Theorem 2.1. Since the first homology of both L(—1) and L'(—1) is Zj,_y| (and ¢ is
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negative since L is a figure eight knot or a left-handed trefoil) we know that the Euler classes
are torsion and thus the ds-invariants are well-defined. Then it is readily seen that

241

d3(L(-1)) = M,
2

ds(L/(~1)) = T4(15_—;)5t

Hence, if L(—1) and L'(—1) are contactomorphic, we must have that

IEEg—— 6(1 —1),

where the possibilities for r are in {—t + 1,—t + 3,...,t — 1}. For example, when ¢ = —1,
we must have r = 0 and so r’> = 12: then 7’ is not an integer and thus there is no such
L’ with ¢ = 3, and L is contact (—1)-surgery characterized. Similarly, one verifies that for
all ¢ > —10, there is no integer solution for 7’ except when ¢ = —5 and r» = 0. (In this
case ' = 6 and we cannot rule out the possibility that such an L’ exists.) This concludes
Theorem 1.6.(3b).

Let us focus on Theorem 1.6.(3a), i.e. showing that if L has rotation number r = 0, then it
is (—1) characterized. This condition would force #'* = 6(1 — t), and this only has integral
solution when ¢t = 1 — 6k?, for k € N, in which case ' = 6k. In this case we can use
Theorem 2.1 to deduce that the Euler class of L(—1) is 0 and the Euler class of L'(—1) is
6k. But in Hy(K(—1)) = Zg2, we have 6k # 0 and thus L(—1) cannot be contactomorphic
to L'(—1).

For Theorem 1.6.(3c) we want to show that if » > 1/6(1 — ¢), then L is contact (—1)-surgery

characterized. Indeed, in this case r’ 2 < 0 and thus we conclude that ' = 0, but we can rule
this case out using the Euler class, as we just did above.

Finally, for Theorem 1.6.(2), where L is a Legendrian realization of the right-handed trefoil;
suppose L' is another Legendrian knot with L/(—1) contactomorphic to L(—1). First we
address the case with ¢t = 1, in which the only possibility for ¢’ is 1. Thus, since L is smoothly
determined by any surgery, L' must be smoothly isotopic to L. In addition, since the Euler
classes of L(—1) and L'(—1), which are determined by the rotation numbers of L and L', are
the same, we must have the v = r = 0. Since the right-handed trefoil is Legendrian simple,
we conclude that L and L' are Legendrian isotopic in this case. The cases when ¢t = 0 or —1
follows by a similar argument as above in Part (3). O

Remark 4.1. Note that for a Legendrian figure eight knot L with tb(L) = —11 and rot(L) =
6, any Legendrian knot L' with tb(L’) = 13 and rot(L') = 6 will satisfy ds(L(—1)) =
d3(L'(—1)) and L(—1) and L'(—1) will also have the same Euler class. In this case, we still
believe that L is contact (—1)-surgery determined, but the above argument is not sufficient
to establish this. One runs into a similar complication when L is the right-handed trefoil with
tb = —2 and rot = 3. (]

Let us continue with the proof of Theorem 1.7 that says a Legendrian unknot, right or
left-handed trefoil, or figure eight knot is (+1) characterized if its rotation number is zero.

Proof of Theorem 1.7. For L the standard Legendrian unknot, with ¢ = —1, any another
Legendrian knot L’ for which L'(+1) is contactomorphic to L(+1), must satisfy ' = —1 as
well (which we see by comparing the homologies). Thus we conclude that L’ is isotopic to L,
as done in the previous proofs above.

Any other Legendrian realization L of an unknot, a figure eight knot or a left-handed trefoil
has t < —1. Again let L’ be another Legendrian knot such that L’(+1) is contactomorphic to
L(+1). Then the argument in the previous two proofs concludes that ¢ must be ¢t or —t — 2.
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As above, if t' = t, then we must have that L’ is isotopic to L. It remains to consider the
case t' =t — 2, and once again we compute the ds-invariants which are well defined since the
Fuler classes are torsion. By applying Theorem 2.1 we obtain

25

d3(L(-1)) = —W,
12

(D) = =

Thus r'? = 72 — 6(t + 1) and in particular for r = 0 we deduce that r’ = 0 as above.

Finally, let L be a Legendrian realization of the right-handed trefoil with » = 0 and let L’
be another Legendrian knot such that L'(+1) is contactomorphic to L(+1). By comparing
the orders of the first homologies we observe again that ¢’ is either ¢t or —t — 2. If t/ =t we
conclude again that L’ is smoothly isotopic to L. Since r = 0 the Euler class is 0 and the
ds-invariants are defined from which we conclude that ' = r = 0.

Similarly, we can compare in the case t' = —t — 2 the ds-invariants to deduce that v’ = r = 0.
(Here we need to distinguish the cases ¢t < —2,t = —1 and 0 < ¢ since the signatures of the
linking matrix will differ.) O

4.2. General characterizing slopes. Let us discuss general rational slopes. First, we note
that the notion for characterizing contact slopes presented in the introduction might appear
at a first glance unnatural. The following example explains why this is necessary.

Example 4.2. Let L in (S%,&) be the Legendrian unknot with Thurston-Bennequin in-
variant ¢ = —3 and rotation number r = 2, and L’ be the Legendrian unknot with Thurston—
Bennequin invariant ¢/ = —3 and rotation number ' = 0. We consider the set of contact
manifolds obtained from L and L’ by contact (—2)-surgery. The Euler classes of the resulting
contact structures compute to be

e(Ki(—2)) ={3,1} and
e(KQ(_Q)) ={1,-1}.

It follows that L(—2) is not contactomorphic to L(—2). On the other hand, the contact
structures in L(—2) and L'(—2) with Euler class equal to 1 are contactomorphic. O

In this context, finding examples of non-characterizing slopes for these more general coeffi-
cients is (naturally) easier than for contact (+1)-surgeries. Here is a simple example:

Example 4.3. Let L be a Legendrian realization of the torus knot 754 with ¢ = 7 and
r = 0 and let L' be a Legendrian realization of the torus knot Th1,2, with the same classical
invariants. Then L(14) is contactomorphic to L'(14). Indeed, these surgeries topologically
correspond to 21-surgery along 75 4 and 711 2, yielding diffeomorphic lens spaces by [Mos71].
The knots L and L’ are both stabilized twice with different signs [EHO1], and therefore all
contact manifolds obtained by positive surgery along them are overtwisted [EKO]. Their
homotopical invariants depend only on the classical invariants of the surgery knots and are
therefore equal. The classification of overtwisted contact structures [Eli89] concludes that the
contact manifolds are contactomorphic. U

Let us show Theorem 1.8, proving that many slopes of Legendrian unknots are characterizing.

Proof of Theorem 1.8. We start with the non-integral slopes in part (i). Let L be a Legendrian
unknot with tb(L) = ¢t and suppose there is some non-integral, rational number p/q (with
q > 0) and a Legendrian knot L’ such that L(p/q) is contactomorphic to L'(p/q). As a smooth
manifold, L(p/q) is obtained from S® by ¢ +p/q surgery on the unknot and thus its homology
i8 Zjptqi, and it follows that tb(L') = ¢’ =t or ¢’ = —t — 2L In the former case, we can
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conclude that L’ is Legendrian isotopic to L as in the proof of Theorem 1.6, so it remains to
consider the latter case.

In this case, we first notice that, for ¢ to be an integer, we must have that ¢ = 2 and then
t' = —t —p. (Or ¢ = 1, but then r is an integer and we are assuming that is not the case.)
Now, since L(p/q) is a lens space and has cyclic fundamental group, the Cyclic Surgery
Theorem [CGLS87] implies that L’ is either a Legendrian torus knot or the smooth surgery
coefficient is an integer. Since —t — p + g = _zé_p is not an integer, L must be a torus knot.
By [MosT71], the only surgery slopes on an (a,b)-torus knot 7' that yield a lens space are
ab £+ % However, for positive torus knots, the maximal Thurston—Bennequin invariant of
these torus knots is ab—a —b, and thus the contact surgery coefficient is larger than a+b6—1.
The smallest value a + b — 1 can take for a non-trivial positive torus knot is 4, and thus
any non-integer contact surgery with coefficient less than 4 on a Legendrian positive torus
knot cannot produce a lens space. For negative torus knots, the smooth surgery coefficients
yielding lens spaces are negative and strictly less that —4 for non-trivial torus knots, and
thus are not of the form @ for p/2 < 4. This concludes the case were the slope p/q is a
non-integral, rational number.

Let us proceed with the case of an integral contact surgery slope n < 1. If n < —1, then
Theorem 1.6 shows that n is contact characterizing. Technically, the theorem shows that
(—1) is contact characterizing for any unknot. That said, contact n-surgery, for n < —1, on
a Legendrian L is simply contact (—1)-surgery on L after an (|n| — 1)-fold stabilization, so
the result follows. In the case of n = 1, the result is contained in Theorem 1.7. This finishes
the proof of part Theorem 1.8.(i).

Next, we discuss part Theorem 1.8.(ii). Let L in (S3,&s) be a Legendrian realization of the
unknot with Thurston-Bennequin invariant ¢t. We need to show that —t¢ is a characterizing
contact slope for L.

First, we observe that L(—t) is topologically the O-surgery along the unknot and therefore
yields S' x S2. Let L' be another Legendrian knot with Thurston-Bennequin invariant ¢’
such that L'(—t) is contactomorphic to L(—t). Property R, proven in [Gab87|, states that
S1 x S2 has a unique topological surgery diagram along a single knot: the O-surgery along
the unknot. Therefore, L' has to be a Legendrian realization of the unknot with Thurston—
Bennequin invariant also equal to t.

Second, let us show that the rotation numbers r of L and r’ of L also agree. For that, we use
Theorem 2.1 to compute the Euler-classes of the contact structures in L(—t) and in L'(—t),
identified with elements in H?(S! x §?) = Z generated by the Poincaré dual of the meridian.
We obtain:

e(L(=t)) =t+r+1, e(L/(-t) =t+r +1,

from which we conclude that » = r’. Now, Legendrian unknots are classified by their classical
invariants [EF98| and thus L’ is Legendrian isotopic to L.

For the contact slopes of the form %, with ¢ € Z \ {0}, we argue in a similar manner.

Indeed, topologically, these slopes correspond to the (1/g)-surgery along the unknot yielding
S3. By [GL89], these are the only surgery diagrams along single knots yielding again S3.
Thus, any other Legendrian knot L’ with L' (%) contactomorphic to L(%) has to be a
Legendrian unknot with Thurston-Bennequin invariant ¢. In [EKO], the ds-invariants of the
resulting contact structures were computed, from which it follows that ¢ = ¢’ and r = 7’.
Thus, once again, L' is Legendrian isotopic to L. This concludes Theorem 1.8.(i7). O

Let us now continue with the proof of Theorem 1.10. For that, we first prove a simple lemma,
and recall that we only consider the rotation number up to sign.
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Lemma 4.4. Let L in (S3, &) be a Legendrian realization of a smooth knot K, with Thurston—
Bennequin invariant t = tb(L) and rotation number r = rot(L). Suppose that W is a
characterizing slope of K for n > 3. Then, any Legendrian knot L' in (S3, &) such that
L'(£1/n) is contactomorphic to L(+1/n) must be Legendrian realization of K with the same
classical invariants as L.

Proof. Since L(+1/n) is contactomorphic to L'(+1/n), it follows that K (#) is diffeomor-
phic to K’ (%’“ﬁ/), where K’ denotes the underlying smooth knot type of L’ and t’ is the
Thurston-Bennequin invariant of L’. By comparing the ranks of the first homology groups
we conclude that

| £1+nt]=]+1+nt|
and, for n > 3, it follows that ¢’ = t. Since w is a characterizing slope for K, we conclude
that K’ is isotopic to K. It remains to show that the rotation number ' of L’ is equal to 7.

For that, we compute the ds-invariants of the contact structure £ on L(41/n) and the contact
structure ¢’ on L'(+1/n). It follows from n > 3 that the first homology group of the underlying
topological manifold is torsion and thus their ds-invariants are well-defined. Via Theorem 2.1
we get

ds(§) 1 <m‘2 + (3 —n) — 3sign(£l + nt)) ,
4 \£1+nt
ds (&) ! (W + (3 —n) — 3sign(+1 + nt)) .
4 \£1+nt
This concludes that v = r. O

Theorem 1.10.(iii), showing that the (£1/n)-slope is contact surgery characterizing for the
right and left-handed trefoil, and figure eight knot, when n > 3, follows from Lemma 4.4, as
follows.

Proof of Theorem 1.10.(iii). Any topological slope of the figure eight and the left and right-
handed trefoil is characterizing by [0S19]. Since those knots are all Legendrian simple [EHO1],
the statement follows directly from Lemma 4.4. O

Lemma 4.4 can also be readily combined with known results on the existence on topological
characterizing slopes to deduce Theorem 1.10.(i) and Theorem 1.10.(ii).

Proof of Theorem 1.10.(i) and (ii). Let K be a hyperbolic knot. By [Lacl9], any slope p/q
is characterizing for |g| sufficiently large, and thus Theorem 1.10.(i) follows from Lemma 4.4.

For a (non-hyperbolic) topological knot, it follows from [Lacl9] that p/q is characterizing
if |p| < |g| and |g| is sufficiently large. The conditions from Theorem 1.10.(ii) on tb(L)
ensure that the corresponding topological surgery coefficients are characterizing, and thus
the statement follows again from Lemma 4.4. O

The proof of Theorem 1.10 is now concluded once we establish Theorem 1.10.(iv), as follows:

Proof of Theorem 1.10.(iv). The results about the characterizing slopes of the Legendrian
trefoils and figure eight knots, stated in Theorem 1.10.(¢v.2) and (iv.3) readily follow along
the same lines as the proof of Theorem 1.8.(77); we omit the details and only discuss the main
points. First, we use that these knots are also classified by their classical invariants [EHO1]
and that a contact (—1 — ¢)-surgery along a left-handed Legendrian trefoil with Thurston—
Bennequin invariant t corresponds to the topological (—1)-surgery along the left-handed
trefoil. Therefore, it yields the Poincaré homology sphere. By [Ghi08], this is actually the
unique topological surgery description of the Poincaré homology sphere. Then a computation
of the homotopical invariants of the resulting contact structures finishes the proof as above.
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For the results for the Legendrian realizations of right-handed trefoils and figure eight knots,
we use again that these knots are classified by their classical invariants in [EHO01] and that
the Brieskorn homology sphere (2,3, 7) has exactly two topological surgery diagrams along
a single knot: the (41)-surgery along the figure eight and the (—1)-surgery along the right-
handed trefoil [OS19]. O

4.3. Legendrian knots with infinitely many surgeries the same. The results of this
manuscript have discussed in detail similarities and differences between the smooth framework
and contact topological statements. The last result that we present emphasizes a difference,
as follows.

In smooth low-dimensional topology, a folk theorem states that if two knots K and K’ in S®
admit infinitely many slopes r such that K(r) is diffeomorphic to K'(r), then K and K’ are
isotopic. For instance, the generic case, where K and K’ are hyperbolic, follows directly from
Thurston’s hyperbolic Dehn filling theorem [Thu80]. Indeed, for a sufficiently large slope, the
core of the newly glued-in solid torus represents the shortest geodesic and thus any isometry
of the surgered manifold has to preserve that geodesic and hence restricts to an isometry of
the knot complements. That said, the analogous result in contact topology, for Legendrian
knots, does not hold.

Theorem 4.5. Let n € N be any positive integer. Then there exist n pairwise non-isotopic
Legendrian knots Lq,..., L, in (S &) such that the contactomorphism type of Li(r) is
independent of i, 1 <1i <mn, for every contact surgery coefficient r ¢ [—1,0].

Proof. We first show that there exist n pairwise non-isotopic Legendrian knots Ly,..., L, in
(53, &) such that the contactomorphism type of L;(r) is independent of i, 1 < i < n, for
every contact surgery coefficient r» > 0. Let Ly,..., L, be pairwise non-isotopic Legendrian
knots in (53, &) with the same classical invariants that are all stabilized once negatively and
once positively. For instance, cables of the right-handed trefoil provide examples of such L;,
see [ELT12].

Since the L; are stabilized with both signs, it is known that L;(r) is overtwisted for all positive
r [EKO]. Since the L; also have the same classical invariants, the contact structures on the
L;(r) have the same homotopical invariants as 2-plane fields and thus are isotopic by the
classification of overtwisted contact structures [Eli89].

We now show there exist n pairwise non-isotopic Legendrian knots L/, ..., L] in (S 3 &) such
that the contactomorphism type of L/(r) is independent of i, 1 < i < n, for every contact
surgery coefficient r < —1. Let L},...,L! be non-isotopic Legendrian knots in (S2,&)
with the same classical invariants that become isotopic after a single positive or after a single
negative stabilization. Negative twists knots provide such examples, see [ENV13]. In [DGS04],
it is shown that any contact structure in L}(r) for r < —1 can be expressed as a sequence
of contact (—1)-surgeries along stabilizations of L.. Since the stabilizations of the L. are
Legendrian isotopic, it follows that the surgered contact manifolds are contactomorphic.

To create the knots in the theorem, we just need L1, ..., L, that are stabilized both positively
and negatively, and become the same after a single positive or a single negative stabilization.
To find such knots notice that the twist knots K_g,_1 from [ENV13] have n Legendrian
representatives with tb = —3 and rot = 0, they moreover become isotopic after a single
positive or a single negative stabilization. Now take the (2, 1)-cable of these knots to get n
Legendrian knots with the same invariants. If we stabilize each of these one time positive and
one time negatively they are still distinct Legendrian knots, but after another stabilization
of either sign they will become isotopic, see [CEM20]. O
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With similar methods we observe that Theorem 1.2 also implies the existence of an infinite
family of Legendrian knots that all share the same contact (41)-surgery, a phenomena that
was only known for finitely many Legendrian knots before [Etn08].

Corollary 4.6. There exist infinitely many pairwise non-isotopic Legendrian knots L, in
(S3,&4), n € N, such that their contact (41)-surgeries are all contactomorphic, for any
n € N. These knots L, all have tb = —1 and rot =0 or rot = 2.

Proof. We define the Legendrian knots L, to be the two-fold stabilizations of the Legendrian
knots in Theorem 1.2.(i). Since the underlying smooth knots types differ, it follows that the L,
are pairwise non-isotopic. Their contact (+1)-surgeries agree smoothly with the Legendrian
surgeries of the knots from Theorem 1.2.(i) and thus are all smoothly the same. Since the
L,, are all stabilized, the surgered contact manifolds are all overtwisted. Given that the L,
have the same classical invariants, these contact structures are homotopic and thus, being
overtwisted, also contactomorphic. [l

5. QUESTIONS AND CONJECTURES

The distinct Legendrian knots with contactomorphic surgeries, or symplectomorphic Stein
traces, that we constructed are already distinguished by their underlying smooth knot type.
Thus we ask the following natural question:

Question 5.1. Do there exist non-isotopic Legendrian knots Ly and Ly in (S3,&s) with the
same underlying smooth knot type, Thurston—Bennequin invariant and rotation number, such
that their Stein traces Wi, and Wr, — or their Legendrian surgeries Lo(—1) and Li(—1) —
are equivalent?

Note that the surgery exact triangle from [BEE12] implies that Legendrian knots Ly and
Ly in (S3,&s) whose Legendrian Contact DGAs have distinct Hochschild homologies will
have non-equivalent Stein traces. To eliminate this matter, a potential class of candidates is
given by distinct Legendrian representatives of a given smooth knot, with the same (tb, rot),
which are stabilized. For instance, the twist knot m(72) has two distinct stabilized Legendrian
representatives with (tb,rot) = (0,1) [ENV13, Theorem 1.1]. Nevertheless, it might be the
case that all such knots have non-contactomorphic (—1)-surgeries if Conjecture 5.2 below is
true. Note also that the analogue of Question 5.1 in the higher-dimensional setting is known
to have an affirmative answer, e.g. see [Lazl9, Corollary 1.22], where the Stein manifold
(T*S™, \st) is presented as a Stein trace of infinitely many Legendrian (n — 1)-spheres in
(8271 &), for n > 3, which are formally isotopic but not Legendrian isotopic.

Conjecture 5.2. Let L and L' in (S3,£4) be two Legendrian knots. Suppose that L(—1) is
contactomorphic to L'(—1), and L(+1) is contactomorphic to L'(+1). Then L is Legendrian
isotopic to L' in (S3,&4).

Note that this would imply that any two stabilized Legendrian representatives of the same
smooth knot with equal (tb,rot) are characterized by their contact (—1)-surgeries, as the
(4+1)-surgeries are overtwisted (and thus contactomorphic).

Regarding the results presented in Section 1.3, the fact that the knots discussed in those
results are smoothly characterized by surgeries on them [KMOS07, OS19] indicates the fol-
lowing natural conjecture:

Conjecture 5.3. The slope £1 is a characterizing contact slope for any Legendrian figure
eight knot or torus knot (including the unknot).

We also recall that we proved many slopes of Legendrian unknots to be characterizing in
Theorem 1.8. On the other hand, we have identified in Example 1.9 slopes of Legendrian
unknots that are not characterizing. This naturally yields the following question:
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Question 5.4. What is the classification of the characterizing slopes of Legendrian unknots?

We would also like to add the following question:

Question 5.5. Does any Legendrian knot L in (S3,&4) have a (infinitely many) character-
izing contact slope(s)?

Finally, we briefly discuss the relation of Legendrian knots with the same Stein traces and
closed embedded Lagrangian surfaces in Stein traces, as follows.

Consider an infinite family of Legendrian knots L, in (S3, &) with Stein equivalent traces,
and suppose that each of the knots L,, bounds an embedded exact Lagrangian surface >, in
(D*, Ast). Then the union of the Lagrangian core of the Weinstein 2-handle and ¥, defines a
closed embedded exact Lagrangian surface ¥, in the Stein trace W, .

Question 5.6. Let L, in (S3, &) be an infinite family of Legendrian knots with equivalent
Stein traces, n € N, each knot L, bounding an embedded exact Lagrangian surface ¥, in
(D4,/\St). Having identified the Stein traces Wi, with Wr,,, are the closed embedded exact
Lagrangian surface 3, Hamiltonian isotopic in W, ?

It might be that the answer depends on the chosen family L, in (53, £4) of Legendrian knots.
It would be interesting to have examples where the Lagrangian surface ¥, yield infinitely
many different Hamiltonian isotopy classes in the same Stein trace.

As a starting example, each of the knots in the infinity family L,, in (S3, &) of Legendrian
knots obtained by considering the knots Lo and L; in Figure 1 and performing contact
annulus twist bounds an exact Lagrangian (punctured) 2-torus 3, = T,. We do not know
whether the ¥,, are Hamiltonian isotopic for different n € N. It might be the case that these
tori are all smoothly isotopic, and even Hamiltonian isotopic, but this remains to be explored.
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