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Abstract
We consider the finite element approximation of a coupled
fluid-structure interaction (FSI) system, which comprises a
three-dimensional (3D) Stokes flow and a two-dimensional
(2D) fourth-order Euler–Bernoulli or Kirchhoff plate. The
interaction of these parabolic and hyperbolic partial dif-
ferential equations (PDE) occurs at the boundary interface
which is assumed to be fixed. The vertical displacement of
the plate dynamics evolves on the flat portion of the bound-
ary where the coupling conditions are implemented via the
matching velocities of the plate and fluid flow, as well as
the Dirichlet boundary trace of the pressure. This pressure
term also acts as a coupling agent, since it appears as a forc-
ing term on the flat, elastic plate domain. Our main focus
in this work is to generate some numerical results concern-
ing the approximate solutions to the FSI model. For this, we
propose a numerical algorithm that sequentially solves the
fluid and plate subsystems through an effective decoupling
approach. Numerical results of test problems are presented
to illustrate the performance of the proposed method.
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1 INTRODUCTION

The qualitative and quantitative analysis of (PDE) systems, which are modeled via the interaction
of a fluid flow with a deformable structure, have sparked great interest in the last decade. These
fluid-structure interaction (FSI) dynamics appear in the modeling of a variety of physical phenomena,
for example, the fluttering of an airplane/airfoil wing, the movement of wind turbines and bridges,
blood transportation processes within arterial walls [3-5,8,9,11,15,21]. Since these systems are gov-
erned by multi-physics PDE models of generally high complexity, the theoretical and numerical
analysis of solutions remain to be quite challenging.

Analytical results for various linear and nonlinear FSI PDE models, such as well-posedness and
longtime behavior of solutions, have been studied in various settings; for example, [3-5,11,15]. The
model of interest here, which describes the interaction of a 3D homogeneous viscous incompress-
ible fluid with a 2D thin elastic plate, is well established in both physical and mathematical literature
[2,12]. Moreover, these mathematical models are connected to FSI dynamics of the eye in biomedical
applications. Basically, the ocular pressure in the eye plays a major role in the interaction process, and
indeed the coupling in this model occurs through this pressure term [28]. In addition to eye dynamics,
such FSI models describe the motions of a viscous incompressible fluid within a bounded cavity with
elastic membrane. This is the problem of “sloshing” [22].

Our particular FSI describes the vibrations of the fluid within the 3D cavity as it interacts with
the elastic membrane on the “free” upper boundary of the cavity. This model was initially considered
in [12] from a theoretical point of view. In [12], the well-posedness result was initially shown via the
Galerkin method. Subsequently, the authors analyzed the long time dynamics of the solutions in the
sense of compact global attractors. In [2], the authors provided an alternative proof of well-posedness
which relies on a semigroup formulation of the FSI model. In particular, their proof is based on generat-
ing a nonstandard mixed variational formulation and ultimately the application of the Babuska-Brezzi
Theorem. We note that in [2], the obtained variational formulation is driven by the structure (plate)
PDE component. However, in the current manuscript, we have a weak formulation given in Remark 3.2,
which includes both the fluid and structure solution variables of the coupled PDE system. Also, the
coupling of the parabolic and hyperbolic dynamics is given via both the matching velocity terms and
the flux of the fluid (which is essentially the Dirichlet trace of the fluid pressure), as opposed to the
matching fluxes of the fluid and plate dynamics. In turn, it is not all together clear how to decouple the
given dynamics, and this is the heart of the matter in this manuscript.

Although the modeling and numerical analysis of “sloshing” PDE dynamics appears in the liter-
ature as a main application of 3D fluid-3D structure interactions [7], where a finite element method
to approximate the vibration modes of a plate in contact with an incompressible fluid is analyzed,
the body of work with respect to the quantitative properties and numerical analysis of such 3D-2D
Stokes flow and plate interaction FSI systems is limited. This is in contrast to the present literature on
the qualitative analysis of this particular FSI model. A very first numerical contribution to this model
was made in [2], where the authors’ well-posedness argument gives insight into a mixed finite ele-
ment method (FEM) formulation in order to approximate the solution of the FSI system. In [2], some
convergence results were provided for the approximation to the solutions, relative to “mesh parameter
h,” and moreover, an explicit numerical implementation of the derived mixed FEM was given. How-
ever, it should be noted that the authors in [2] operated in the frequency domain which requires solving
the corresponding static PDE equations. As a result, the numerical method developed there solves and
approximates static (time-independent) solution variables.

Our main goal in this manuscript is to develop an efficient numerical algorithm to approximate the
solutions to the time-dependent FSI model using an accurate temporal discretization scheme. There
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have been extensive studies on numerical methods for standard FSI problems with moving or non-
moving interfaces, where the structure is modeled by linear [10,24] or nonlinear elasticity [5,6,25].
Numerical techniques for such problems are broadly classified as monolithic or partitioned methods.
In a monolithic approach, the equations governing the fluid and structure, are integrated into a sin-
gle unified system and solved simultaneously. This approach is known for its robust stability, making
it advantageous in some applications. However, for the fluid-plate model where the plate structure
is governed by the fourth-order PDE, a monolithic approach may not be desirable because the fluid
and structure problems require different levels of solution regularity. The biharmonic operator within
the plate equation presents a numerical challenge that arises from the necessity of utilizing finite ele-
ments of class C1 for accurate approximation, while the fluid velocity can be simulated using C0 class
elements. Hence, we consider a domain decomposition approach for the coupled PDE system and
develop a decoupling algorithm to solve the fluid and plate subproblems separately. The regularity issue
associated with the biharmonic operator can be handled by either using mixed finite element meth-
ods [1,13,23], conforming high-order elements [34,36], or nonconforming elements such as Morley
elements [27,30,31].

Our numerical algorithm is developed in the following way. Firstly, the model equations are dis-
cretized in time using a second-order temporal discretization scheme, and then a decoupling method is
applied to the steady state problem at each time step. For the accuracy of the solution, we use an implicit
approach, that is, the fluid and plate subsystems are solved sequentially until convergence is obtained.
For the numerical analysis of the proposed method, we first show the stability of a solution to the con-
tinuous weak problem and then prove the stability of a solution to the semi-discrete (time-discretized)
system. Numerical experiments are conducted for two examples. The first example is designed for the
convergence test of the finite element solutions with a known exact solution, and the second examines
the free vibration behavior of a plate. We choose using P2−Morley elements [16] for the plate subprob-
lem in all the numerical simulations. Numerical findings regarding the 3D fluid-2D plate interaction
system are relatively scarce in the literature. As mentioned before, only time-independent manufac-
tured solutions are considered for the numerical experiment in [2]. To the best of our knowledge, this
study marks the initial exploration of time discretization within the fluid-plate model system through
numerical testing.

The paper is organized as follows. Section 2 introduces the model equations governing the interac-
tion between a 3D fluid and a 2D plate structure. We present the weak formulation of the system and
investigate its stability. In Section 4, we introduce and analyze the time discretization scheme for stabil-
ity and present the computational algorithm for domain decomposition. Section 5 presents numerical
results for test problems. Finally, the conclusion is provided in Section 6.

2 MODEL EQUATIONS

We consider the structure domain Ωp ⊂ {x = (x1, x2, 0)}, and surface S ⊂ {x = (x1, x2, x3) ∶ x3 ≤ 0}
and the fluid domain Ωf⊂ ℜ3 such that the boundary of Ωf is "Ωf ∶= Ωp ∪ S. The domain Ωf is
occupied by the free fluid while the domain Ωp indicates the plate region. See Figure 1. We consider
the flow in Ωf to be governed by the time-dependent Stokes equation and the plate structure is modeled
by the “Euler–Bernoulli” or “Kirchhoff” equation. The fluid-plate system is then written as, for the
final time T > 0:

⎧
⎪
⎨
⎪⎩

ut − #fΔu + ∇p = ff in Ωf × (0,T),
∇ ⋅ u = 0 in Ωf × (0,T),
u = 0 on S

(2.1)
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FIGURE 1 Fluid-structure interaction geometry.

⎧
⎪
⎨
⎪⎩

wtt − $Δwtt + Δ2w = p|Ωp in Ωp × (0,T),
w = "w

"np
= 0 on "Ωp,

(2.2)

u = [u1, u2, u3] = [0, 0,wt] on Ωp × (0,T), (2.3)
where u(x, t) and p(x, t) denote the fluid velocity and the fluid pressure respectively in Ωf . And
#f , ff (x, t) denote the constant fluid viscosity, and the body force, respectively. Furthermore, w(x, t) is
the displacement of the plate structure, and np denotes the outward unit normal vector to Ωp. The con-
stant $ ≥ 0 is the rotational inertia parameter which is proportional to the square of the thickness of the
plate. The case $ = 0 indicates that there is no rotational plate dynamics in play (i.e., the thickness of
the plate is neglected), whereas $ > 0 refers to the presence of rotational forces (full Kirchhoff plate).
The model equations (2.1)-(2.3) are accompanied by the initial conditions

w = w0, wt = wt0, u = u0 at t = 0.

3 WEAK FORMULATION AND STABILITY ANALYSIS

We first derive a weak formulation of the problem using a Lagrange multiplier. We use the standard
notation for Sobolev spaces and their associated norms and seminorms. We denote L2 inner product
and norm over Θ by (⋅, ⋅)Θ and || ⋅ ||Θ, respectively. Define

U ∶= {v = (v1, v2, v3) ∈ H1(Ωf ) ∶ v1 = v2 = 0 on Ωp, v = 0 on S},
Q ∶= L2(Ωf ),

W ∶= {z ∈ H2(Ωp) ∶ z = "z
"np

= 0 on "Ωp}.

We also define the div-free space for the fluid velocity,
V ∶= {v ∈ U ∶ (q,∇ ⋅ v)Ωf = 0,∀q ∈ Q},

and the mean zero space for the pressure,

Q0 ∶= L2
0(Ωf ) = {q ∈ L2(Ωf ) ∶ ∫Ωf

q %Ωf = 0}.
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The spaces U and Q satisfy the inf-sup condition,

inf
q∈Q

sup
v∈U

(q,∇ ⋅ v)Ωf

||q||Ωf ||∇v||Ωf

≥ & > 0. (3.4)

The dual spaces U∗ and V∗ are endowed with the following dual norms

||w||U∗ ∶= sup
v∈U

(w, v)Ωf

||∇v||Ωf

, ||w||V∗ ∶= sup
v∈V

(w, v)Ωf

||∇v||Ωf

.

These norms are equivalent for functions in V. See Lemma 1 in [17]. For the variational formulation
of (2.1) and (2.2) with the constraint (2.3), we introduce a Lagrange multiplier g ∈ G ∶= H−1∕2(Ωp),
representing

g ∶= (!f nf )3 on Ωp × (0,T), (3.5)
where !f = #f∇u − pI and nf = [0 0 1]T . Given the Babuska–Brezzi problem in Remark 3.2 is
well-posed, we note that the normal component of the Stokes flux (!f nf ) is well defined on the
boundary portion Ωp, and g ∶= (!f nf )3 ∈ H−1∕2(Ωp) (See [35, page 9, Theorem 1.2]).

Remark 3.1. When the plate model (2.2) was introduced in [12], the original equation
included the surface forcing term (−!f nf )|Ωp exerted by the fluid on the plate. Since nf =
[0 0 1]T , the stress force is simplified to #f "zu3 − p, and the div free condition ∇ ⋅ u =
0 in Ωf together with the boundary condition (u1, u2) = (0, 0) on Ωp yield "zu3 = 0 on Ωp.
See [12] for details. Hence, the pressure function in (2.2) is indeed identical to −(!f nf )3
in Ωp and can be represented by the Lagrange multiplier function −g.

In the weak formulation followed, the Lagrange multiplier function g will replace the pressure in
the plate equation. We now multiply the governing equations by appropriate test functions and use
integration by parts to obtain the following continuous variational formulation:

Given the initial conditions, find (u, p,w, g) ∈ (U,Q,W,G), for a.e. t ∈ (0,T), such that

(ut, v)Ωf
+ (#f∇u,∇v)Ωf − (p,∇ ⋅ v)Ωf − (g, v3)Ωp = (ff , v)Ωf ∀v ∈ U, (3.6)

(q,∇ ⋅ u)Ωf = 0, ∀q ∈ Q, (3.7)

(wtt, z)Ωp
+ $(∇wtt,∇z)Ωp + (Δw,Δz)Ωp + (g, z)Ωp = 0 ∀z ∈ W, (3.8)

(wt − u3, ')Ωp = 0, ∀' ∈ G. (3.9)
Note that (3.9) weakly enforces continuity of velocity at the plate structure.

Remark 3.2. If we define the bilinear form B(⋅, ⋅) ∶ (U × W) × (Q × G) → ℜ by
B((v, z), (q, h)) ∶= −(q,∇ ⋅ v)Ωf − (v3 − z, h)Ωp ,

the system (3.6)-(3.9) has the structure of a saddle point problem
A((u,w), (v, z)) + B((v, z), (p, g)) = (ff , v)Ωf ,

B((u,wt), (q, ')) = 0,
where
A((u,w), (v, z)) ∶= (ut, v)Ωf

+ (#f∇u,∇v)Ωf + (wtt, z)Ωp
+ $(∇wtt,∇z)Ωp + (Δw,Δz)Ωp .
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The inf-sup condition of B(⋅, ⋅) has been proved in [14] for the time-discretized
Stokes-linear elasticity FSI system, where the structure equation is the 2nd order PDE and
the displacement has an H1-regularity. We believe a similar approach can be used for the
inf-sup condition of B(⋅, ⋅) with the H2-regular displacement. Also, when time-discretized,
the associated bilinear form A(⋅, ⋅) can be shown to be coercive and continuous in the
corresponding function spaces. Since this work focuses on the study of the numerical algo-
rithms for time-stepping, stability analysis, and implementation of a partitioning method,
the well-posedness is not considered here but will be investigated in a later work.

To study the stability of the semi-discrete system in the following section, in the next theorem, we
establish the stability of a weak solution to the system (3.6)–(3.9). Since the unknown forcing term g
represents the pressure on Ωp in the current problem setting with n = [0 0 1]T , we will keep utilizing
the general force g as formulated in (3.8) instead of −p and show the pressure stability in terms of the
given data and the forcing function g.

Theorem 3.3. For any ff ∈ L2(0,T ,L2(Ωf )) a solution to (3.6)–(3.9) is stable. For any
t > 0 and CPF > 0,

||u||2Ωf
+ #f∫

t

0
||∇u||2Ωf

%s + ||wt||2Ωp
+ $||∇wt||2Ωp

+ ||Δw||2Ωp
≤ CPF

#f ∫
t

0
||ff ||2Ωf

%s + C0,

(3.10)
where C0 = ||u0||2Ωf

+ ||wt0||2Ωp
+ $||∇wt0||2Ωp

+ ||Δw0||2Ωp
. Furthermore, for some C& > 0,

we have

∫
t

0
||p||2Ωf

%s ≤ C&

(
∫

t

0
||ff ||2Ωf

%s + ∫
t

0
||g||2H−1∕2(Ωp)%s + C0

)
. (3.11)

Proof. Choose v = u in (3.6), q = p in (3.7), z = wt in (3.8) and ' = g in (3.9). Adding
all the terms together, we get

(ut, u) + #f ||∇u||2Ωf
+ (wtt,wt)Ωp + $(∇wtt,∇wt)Ωp + (Δw,Δwt)Ωp = (ff ,u)Ωf ,

and, using Cauchy–Schwarz inequality, and multiplying by 2 on both sides, we get
%
%t

||u||2Ωf
+ 2#f ||∇u||2Ωf

+ %
%t

||wt||2Ωp
+ $ %

%t
||∇wt||2Ωp

+ %
%t

||Δw||2Ωp
≤ 2||ff ||Ωf ||u||Ωf .

Integrate over (0,t) for a.e. t ∈ (0,T) to obtain

||u||2Ωf
+ 2#f∫

t

0
||∇u||2Ωf

%s + ||wt||2Ωp
+ $||∇wt||2Ωp

+ ||Δw||2Ωp

≤ 2∫
t

0
||ff ||Ωf ||u||Ωf %s + ||u0||2Ωf

+ ||wt0||2Ωp
+ $||∇wt0||2Ωp

+ ||Δw0||2Ωp
.

(3.12)

Then, Young’s inequality and Poincare Friedrich’s inequality yield, for some ( > 0 and
CPF > 0,

∫
t

0
||ff ||Ωf ||u||Ωf %s ≤ 1

2(∫
t

0
||ff ||2Ωf

%s + (CPF
2 ∫

t

0
||∇u||2Ωf

%s.

Using this estimate and setting ( = (#f∕CPF) in (3.12), we obtain (3.10).
To estimate the bound for the pressure p, we use a similar approach mentioned in [20].

We first estimate a bound for the time derivative of the flow velocity term in (3.6). For
v ∈ V the equation (3.6) is written as

(ut, v)Ωf = −#f (∇u,∇v)Ωf + (ff , v)Ωf + (g, v3)Ωp . (3.13)

 10982426, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/num

.23132, W
iley O

nline Library on [01/08/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



GEREDELI ET AL. 7 of 17

The last term on the right-hand side of (3.13) is bounded as
(g, v3)Ωp ≤ ||g||H−1∕2(Ωp)||v||H1∕2(Ωp) ≤ C||g||H−1∕2(Ωp)||v||H1(Ωf ),

using the trace theorem. Now, using Cauchy–Schwarz inequality and Poincaré–Friedrichs
inequality in (3.13), we have, for some constant Ĉ > 0,

||ut||V∗ ≤ Ĉ( ||∇u||Ωf + ||ff ||Ωf + ||g||H−1∕2(Ωp)).

The norm equivalence of || ⋅ ||U∗ and || ⋅ ||V∗ (see Lemma 1 in [17]) then implies, for some
constant C∗ > 0,

||ut||U∗ ≤ C∗( ||∇u||Ωf + ||ff ||Ωf + ||g||H−1∕2(Ωp)). (3.14)
To estimate a bound for the pressure term p, consider (3.6) with v ∈ U. We isolate the
pressure term, divide by ||∇v||Ωf , take supremum over v ∈ U. Then the inf-sup condition
(3.4) and the estimate (3.14) yield

&||p||Ωf ≤ (1 + C∗)( ||∇u||Ωf + ||ff ||Ωf + ||g||H−1∕2(Ωp) ).

for some & > 0. Finally, we square both sides, integrate over (0, t), use (3.10), to obtain

∫
t

0
||p||2Ωf

%s ≤ C&

(
∫

t

0
||ff ||2Ωf

%s + ∫
t

0
||g||2H−1∕2(Ωp)%s + C0

)

or some constant C& > 0. ▪

4 TEMPORAL DISCRETIZATION SCHEME

In this section, we discuss the second-order temporal discretization scheme for the fluid-plate system
and study its stability. To discretize the above equations in time, we set for T > 0, * = T∕M, where M
is a positive integer and we set for n = 0, 1, 2, … ,M, tn = n*. For any sufficiently smooth function
v(x, t), both constant and vector-valued, we define vn(x) ∼ v(x, tn). The fluid equations are discretized
in time using a second-order Crank–Nicolson scheme while the plate equations are discretized using a
second-order Newmark scheme [26]. Further, we introduce an additional variable ẇ ∈ W, representing
wt in the plate subsystem. Also, denote for any function ,,

,n = ,n + ,n−1

2 .

Consider the semi-discrete fluid-plate system:
$f (un − un−1) − #f *Δun + *∇pn = *fn

f in Ωf , (4.15)

∇ ⋅ un = 0 in Ωf , (4.16)

(ẇn − ẇn−1) − $Δ(ẇn − ẇn−1) + *Δ2wn = *pn|Ωp in Ωp, (4.17)

wn − wn−1 = *ẇn in Ωp, (4.18)

u3
n = ẇn in Ωp. (4.19)

In the next theorem, we show the stability of the numerical scheme.
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Theorem 4.1. The method (4.15)–(4.19) is unconditionally stable. Moreover, for some
constants CM ,CT > 0, and for any tn, the following relations hold:

$f ||uM||2Ωf
+ 2#f *

M∑
n=0

||∇un||2Ωf
+ ||ẇM||2Ωp

+ ||ΔwM||2Ωp
+ $||∇ẇM||2Ωp

≤ *CM
#f

M∑
n=0

||ff
n||2Ωf

,

(4.20)

||wn||2Ωp
≤ (CT*)2CM

4#f

M∑
n=0

||ff
n||2Ωf

. (4.21)

Additionally, we have

||pn||2Ωf
≤ C&( ||ff

n||2Ωf
+ ||gn||2H−1∕2(Ωp) ) (4.22)

for some C& > 0.

Proof. For simplicity, let u0 = 0 and w0 = wt0 = 0. Multiplying (4.15) and (4.16) by un

and pn respectively, integrating over Ωp, and adding the results yield
$f

2
(
||un||2Ωf

− ||un−1||2Ωf

)
+ #f *||∇un||2Ωf

≤ *(fn
f ,un)Ωf + *(gn, un

3)Ωp . (4.23)

Similarly, multiplying (4.17) by ẇn and integrating over Ωp give:

(ẇn − ẇn−1, ẇn)Ωp − ($Δ(ẇn − ẇn−1), ẇn)Ωp + (Δ2wn, *ẇn)Ωp = *(pn, ẇn)Ωp . (4.24)

Note that, using Green’s theorem,

(Δ2wn, *ẇn)Ωp = −(∇Δwn,∇*ẇn)Ωp = (Δwn,Δ*ẇn)Ωp (4.25)

and
−($Δ(ẇn − ẇn−1), ẇn)Ωp = ($∇(ẇn − ẇn−1),∇ẇn)Ωp , (4.26)

since ẇn and "ẇn

"np
are zero on "Ωp by (4.18). Then, (4.18) and (4.24)–(4.26) yield

(ẇn − ẇn−1, ẇn)Ωp + ($∇(ẇn − ẇn−1),∇ẇn)Ωp + (Δwn,Δ(wn − wn−1))Ωp = *(pn, ẇn)Ωp . (4.27)

This implies
1
2
(
||ẇn||2Ωp

− ||ẇn−1||2Ωp

)
+ $

2
(
||∇ẇn||2Ωp

− ||∇ẇn−1||2Ωp

)
+ 1

2
(
||Δwn||2Ωp

− ||Δwn−1||2Ωp

)
= *(pn, ẇn)
(4.28)

Also, multiplying (4.19) by gn and integrating over Ωp, we have

(un
3, gn)Ωp = (ẇn, gn)Ωp . (4.29)

Using (4.29) with gn = −pn in (4.23) (see Remark 3.1) and adding (4.23) to (4.28), we
obtain

$f

2
(
||un||2Ωf

− ||un−1||2Ωf

)
+ #f *||∇un||2Ωf

+ 1
2
(
||ẇn||2Ωp

− ||ẇn−1||2Ωp

)

+ 1
2
(
||Δwn||2Ωp

− ||Δwn−1||2Ωp

)
+ $

2
(
||∇ẇn||2Ωp

− ||∇ẇn−1||2Ωp

)

≤ *(fn
f ,un)Ωf ≤ *||fn

f ||Ωf ||un||Ωf .
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GEREDELI ET AL. 9 of 17

Now, Young’s inequality and Poincare–Friedrich’s inequality for any ( > 0 and for some
CPF > 0 give

$f

2
(
||un||2Ωf

− ||un−1||2Ωf

)
+ #f *||∇un||2Ωf

+ 1
2
(
||ẇn||2Ωp

− ||ẇn−1||2Ωp

)

+ 1
2
(
||Δwn||2Ωp

− ||Δwn−1||2Ωp

)
+ $

2
(
||∇ẇn||2Ωp

− ||∇ẇn−1||2Ωp

) ≤ *
2( ||f

n
f ||2Ωf

+ (CPF*
2 ||∇un||2Ωf

.

Setting ( = #f∕(CPF) and summing from n = 0 to M, we get, for some constant CM > 0

$f ||uM||2Ωf
+ #f *

M∑
n=0

||∇un||2Ωf
+ ||ẇM||2Ωp

+ ||ΔwM||2Ωp
+ $||∇ẇM||2Ωp

≤ *CM
2#f

M∑
n=0

||fn
f ||2Ωf

. (4.30)

We multiply (4.19) by ẇn, integrate over Ωp, and use Cauchy–Schwarz inequality to
obtain,

||ẇn||2Ωp
≤ ||un

3||Ωp ||ẇ
n||Ωp .

Applying the trace theorem and Young’s inequality, for some CT > 0,

||ẇn||2Ωp
≤ CT ||∇un||Ωf ||ẇ

n||Ωp ≤ C2
T

2 ||∇un||2Ωf
+ 1

2 ||ẇ
n||2Ωp

,

which implies
||ẇn||2Ωp

≤ C2
T ||∇un||2Ωf

.

Next, multiply (4.18) with wn − wn−1, integrate over Ωp and use Cauchy–Schwarz
inequality.

||wn − wn−1||2Ωp
≤ *||ẇn||Ωp ||wn − wn−1||Ωp ,

⇒
1
2 ||w

n − wn−1||2Ωp
≤ *2

2 ||ẇn||2Ωp
,

⇒
1
2 ||w

n||2Ωp
− 1

2 ||w
n−1||2Ωp

≤ *2

2 ||ẇn||2Ωp
. (4.32)

Finally using (4.31) in (4.32), summing from n = 0 to n = m, where m ∈ {1, 2, … ,M},
we get

||wn||2Ωp
≤ (CT*)2

m∑
n=0

||∇un||2Ωf
≤ (CT*)2

M∑
n=0

||∇un||2Ωf
. (4.33)

For the stability of pn, we mimic the proof of the continuous case. We isolate the pres-
sure term in (4.15), multiply with un, integrate over Ωf and divide by ||∇v||Ωf and take
supremum over v ∈ U. Then, the inf-sup condition (3.4) yields that

&||pn||Ωf ≤ (1 + C∗)( ||∇un||Ωf + ||ff
n||Ωf + ||gn||H−1∕2(Ωp)) (4.34)

for some &,C∗ > 0. Squaring on both sides of (4.34), using (a + b + c)2 ≤ 3(a2 + b2 + c2)
on the right side and finally using (4.30), we get, for some C& > 0,

||pn||2Ωf
≤ C&( ||ff

n||2Ωf
+ ||gn||2H−1∕2(Ωp) ). (4.35)

(4.35) now implies the stability of pn. ▪

For the numerical simulation of the coupled fluid-plate system, we employ a partitioning method
using fixed-point iteration. In this approach, we impose the condition u3 = wt strongly as the
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10 of 17 GEREDELI ET AL.

Dirichlet condition for the fluid problem. Each time step begins with solving the fluid subproblem,
where an initial guess for ẇ is used, followed by solving the plate equation using the pressure. The
fluid and the plate subsystem are solved serially and implicitly in time using iterations that terminate
when the relative residual is smaller than a chosen tolerance. However, an issue arises when solving
the subsystems separately using Dirichlet conditions. Because the pressure is not uniquely deter-
mined, an appropriate shifting method needs to be developed. Note that ∫Ωp

wt %Ωp = ∫Ωp
u3 %Ωp =

∫"Ωf
u ⋅ nf %("Ωf ) = 0 due to the incompressibility condition ∇ ⋅ u = 0 [2,18]. This additional

constraint can be incorporated into the plate system to determine the correct pressure. At the k-th
fixed point iteration, the pressure, p̂ is computed with the mean zero condition. Subsequently, the
plate problem is solved for the additional unknown scalar value s with the pressure p replaced by
p̂ − s in (4.17) and the additional constraint equation ∫Ωp

ẇ %Ωp = 0. Then p̂ − s is expected to
be the pressure satisfying (4.15)–(4.19) [33]. We summarize the complete numerical algorithm in
Algorithm 1.

Algorithm 1. Working algorithm

Input: ẇ initial guess, ( tolerance and Niter maximum number of iteration.
Output: ẇn,k

k = 0, error >(, ẇ0,0 = 0,u0,0 = 0
for n = 1, 2, 3,… ,N
while k<Niter and error >(, do

1. Solve for (un,k, p̂n,k) ∈ U × Q0 with un,k
3 = ẇn,k−1:

un,k − #f *Δun,k + *.p̂n,k = *fn,k
f − un−1,k in Ωf ,

. ⋅ un,k = 0 in Ωf ,
un,k = 0 on S,

un,k = [un,k
1 , un,k

2 , un,k
3 ] = [0, 0, ẇn,k−1] on Ωp,

∫Ωf

p̂n,k %Ωf = 0. (36)

2. Solve for (wn,k, ẇn,k, sn,k) in W × W × R:

ẇn,k − $Δẇn,k + *Δ2wn,k = *
(

p̂n,k|Ωp − sn,k
)
+ ẇn−1,k − $Δẇn−1,k in Ωp,

wn,k − wn−1,k = *ẇn,k in Ωp,

∫Ωp

ẇn,k %Ωf = 0,

wn,k = "wn,k

"#
= 0 on "Ωp. (37)

3. Update ẇn,k−1 = ẇn,k.

end while
Set pn = p̂n,k − sn,k

Reset k = 0.
end for
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GEREDELI ET AL. 11 of 17

5 NUMERICAL RESULTS

5.1 Test 1: Manufactured solutions
In this section, we introduce manufactured solutions for the fluid-plate system and illustrate the behav-
ior of the method by performing convergence tests. All computations are performed using freefem++
[19]. We consider the domains Ωf = [0, 1] × [0, 1] × [−1, 0] and Ωp = [0, 1] × [0, 1] × {0}. See
Figure 2 for the computational domain. Further, the manufactured fluid velocity, pressure and plate
displacement are considered as follows:

u1 = (2x3(x − 1)3(9x2 − 9x + 2)y4(y − 1)4,
+ (4∕5)x5(x − 1)5y2(y − 1)2(14y2 − 14y + 3))(−30z4 − 60z3 − 30z2)e−t,

u2 = 0,
u3 = x4(x − 1)4(2x − 1)y4(y − 1)4(−6z5 − 15z4 − 10z3 − 1)e−t,
p = 0,
w = x4(x − 1)4(2x − 1)y4(y − 1)4e−t.

Note that at z = 0, u3 = wt. The right-hand side function ff is computed using the manufactured
solution. For the finite elements simulation, we used (P2,P1,P2Morley,P2) elements for (u, p,w,wt).
We set final time Tfinal = 0.01 and * = 0.001 and evaluated errors and convergence rates for different
values of N (see Tables 1 and 2). We observed that the H1- and H2- rates of the structure are well
matched with the theoretical convergence rates [29], while L2 rates are not optimal for smaller h with
the chosen time step * = 0.001. Furthermore, we plot and compare the finite element solution, wt-FEM
and u3−FEM, with exact solutions, wt−Exact and u3−Exact, in Figures 3 and 4. The observation that
both wt and u3 functions exhibit identical behavior in the plotted solutions indicates a strong agreement
between the numerical model and the theoretical expectations.

While performing convergence tests in time, Freefem++ did not allow us to set spatial mesh size
smaller than 1

13 as the problem becomes very large due to the involvement of 3D fluid equations.
On using spatial mesh size 1

12 , we obtained that the errors evaluated for different time steps are very
small; however, they are flat (see Table 3). We then solved only the 2D plate equation in the domain
[0, 1]×[0, 1] using the exact solution and first-order time discretization and observed similar flat errors.
To address this issue, we used a very large weight (105) in the wtt term of the structure equation for
spatial mesh size 1

50 , which allowed us to achieve linear convergence in time (see Table 4). With the
weight, the structure problem is defined as follows:

(weight)wtt − $Δwtt + Δ2w = fp,

FIGURE 2 3D Fluid and 2D plate system for numerical tests.
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12 of 17 GEREDELI ET AL.

TABLE 1 Errors and convergence rates for u and p functions at final time Tfinal = 0.01 using time-step size Δt = 0.001 for
different values of h.

h L2(Velocity) H1(Velocity) L2(pressure)
1/4 1.77e − 06 4.70e − 05 6.58e − 06
1/6 4.78e − 04[3.23] 2.19e − 05[1.88] 2.82e − 06[2.09]
1/8 2.02e − 07[2.99] 1.30e − 05[1.81] 1.12e − 06[3.20]
1/10 1.09e − 07[2.75] 8.78e − 06[1.76] 5.05e − 07[3.59]
1/12 6.68e − 08[2.73] 6.34e − 06[1.79] 2.72e − 07[3.39]

TABLE 2 Errors and convergence rates for w function at final time Tfinal = 0.01 using time-step size Δt = 0.001 for
different values of h.

h L2(w-function) H1(w-function) H2(w-function)
1/4 2.22e − 07 3.13e − 06 5.83e − 05
1/6 8.49e − 08[2.37] 1.40e − 06[1.99] 4.25e − 05[0.78]
1/8 3.28e − 08[3.31] 7.33e − 07[2.24] 3.15e − 05[1.04]
1/10 2.06e − 08[2.09] 4.87e − 07[1.83] 2.59e − 05[0.88]
1/12 1.48e − 08[1.80] 3.17e − 07[2.36] 2.10e − 05[1.16]]

FIGURE 3 wt-FEM (left) and wt-Exact (right) for h = 1∕12, Tfinal = 0.01, * = 0.001.

FIGURE 4 u3-FEM (left) and u3-Exact (right) for h = 1∕12, Tfinal = 0.01, * = 0.001.
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GEREDELI ET AL. 13 of 17

TABLE 3 Flat errors for w function at final time Tfinal = 0.2 using mesh size 1
12 using Δt = {0.2, 0.1, 0.05, 0.025}.

Type Error
L2(w-function) 1.90e − 07
H1(w-function) 1.65e − 06
H2(w-function) 2.45e − 05

TABLE 4 L2 errors and convergence rates for w function at final time Tfinal = 4 using the first-order time discretization
method with mesh size 1

50 while solving only 2D structure problem with weight 105.

!t L2(w-function)
0.5 1.43e − 06
0.25 6.97e − 07[1.04]
0.125 3.45e − 07[1.01]
0.0625 1.73e − 07[1.00]
0.03125 8.75e − 08[0.99]

where fp is the function evaluated using manufactured w function. Another interesting point we
noticed was the need for an even larger weight to achieve linear convergence in time with
a smaller mesh size. This numerical finding suggests that errors are strongly dependent on a
spatial mesh.

5.2 Test 2: Free vibration of a plate
In this test, we examine a physical scenario involving the free vibration of a plate [32]. Consider the
domains Ωf = [0, 1] × [0, 1] × [−1, 0] and Ωp = [0, 1] × [0, 1] × {0}, set ff = 0 and impose u = 0 on
all boundary faces of Ωf , except at z = 0, where we have the condition u3 = wt. Additionally, at the
boundary of the plate we set w = "w

"n = "w
"t = 0. We use additional parameters and rewrite the plate

structure as follows:
$pwtt − $Δwtt + DΔ2w = fp in Ωp × (0,T),

where $p is the density, D ∶= Yh3∕(12(1− #)) is the flexural rigidity with # and Y being the Poisson’s
ratio and Young’s modulus, respectively. In this experiment we consider $p = 2.7,D = 6.4527 and
$ = 0. By setting D ≠ 0 and fp = $ = 0, the model reduces to the classical Kirchhoff-Love model
with only the bending dynamics accounted. For the numerical experiment, we set mesh size h = 1∕12,
Tfinal = 0.01 seconds and * = 0.001 seconds. Initially, we set u(x, 0) = 0, p(x, 0) = 0 and set the plate
in the free vibration by introducing, for some integers m and n,

wt(x, 0) = sin(m/x) sin(n/y).

We plot u3 in the fluid domain and wt in the plate domain for different values of m and n. The plots
in Figure 5 show that the vibration in the plate gets transmitted to the fluid dynamics, affecting the
vertical velocity component of the fluid (u3). Furthermore, we observed that the plot of wt is the same
as the standing wave solution mentioned in [32]. We also present the plot of u3 for the (m, n) = (1, 2)
case on the x = 0.5 plane (see Figure 6), which provides a clearer representation of u3 in the fluid
domain.
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14 of 17 GEREDELI ET AL.

FIGURE 5 wt(left) and u3(right) for h = 1∕12, Tfinal = 0.01, * = 0.001, (m, n) = (1, 2) (top) and (m, n) = (2, 2) (bottom).

FIGURE 6 u3 for h = 1∕12, Tfinal = 0.01, * = 0.001 in x = 0.5 plane.
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6 CONCLUSION

We presented a second-order temporal numerical discretization scheme for the 3D fluid-2D plate
structure interaction system and demonstrated its stability. Furthermore, we proposed a numerical
algorithm that sequentially solves the fluid and plate subsystems through a decoupling approach. The
numerical complexity arising from the biharmonic operator in the plate structure was addressed using
P2Morley elements in the structure subproblem. The accuracy of the algorithm was demonstrated
through the numerical results obtained from tests using time-dependent manufactured solutions and
those considering the free vibration of the plate.

However, in the manufactured example, we did not observe second-order convergence in time
because the errors remained consistently very small across various time step sizes. This obser-
vation motivates us to conduct further numerical studies on time discretization using different
examples, including practical applications. Additionally, the limitation of numerical tests due to
the large size of the fully discrete system may be addressed by employing a preconditioner for
a linear solver, such as GMRES. In future work, the fluid-plate problem could be studied within
a moving domain framework. This approach would involve considering a time-dependent fluid
domain and utilizing a time-dependent bijective mapping, known as Arbitrary Lagrangian–Eulerian
(ALE) mapping, to exchange information between the fixed reference domain and the physical
domain.
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