

1 Evolutionary divergence of plasticity in brain morphology between ecologically divergent
2 habitats of Trinidadian guppies
3

4

5 **Abstract**

6

7 Phenotypic plasticity is critical for organismal performance and can evolve in response to natural
8 selection. Brain morphology is often developmentally plastic, affecting animal performance in a
9 variety of contexts. However, the degree to which plasticity of brain morphology evolves has
10 rarely been explored. Here we use Trinidadian guppies (*Poecilia reticulata*), which are known
11 for their repeated adaptation to high-predation (HP) and low-predation (LP) environments, to
12 examine the evolution and plasticity of brain morphology. We exposed second-generation
13 offspring of individuals from HP and LP sites to two different treatments: predation cues and
14 conspecific social environment. Results show that LP guppies had greater plasticity in brain
15 morphology compared to their ancestral HP population, suggesting that plasticity can evolve in
16 response to environmentally divergent habitats. We also show sexual dimorphism in the
17 plasticity of brain morphology, highlighting the importance of considering sex-specific variation
18 in adaptive diversification. Overall, these results may suggest the evolution of brain morphology
19 plasticity as an important mechanism that allows for ecological diversification and adaptation to
20 divergent habitats.

21

22

23 **Keywords:**

24 Phenotypic Plasticity, Brain Morphology, Rapid Evolution, Local Adaptation, Trinidadian
25 Guppy, Sexual Dimorphism

26

27 **Introduction**

28 Phenotypic plasticity, the ability of a single genotype to manifest different phenotypes in
29 response to environmental cues, is widespread across taxa¹. During adaptation, plasticity can
30 influence the strength of selective pressures and shift population responses to such pressures^{2,3,4}.
31 Plasticity in novel environments may be especially critical for mediating rapid adaptation
32 because plasticity can change the expression of traits, and consequently individual fitness, in the
33 new habitat. Therefore, the evolution of plasticity of key adaptive traits is hypothesized to
34 facilitate population survival and persistence in novel environments^{5,6,7,8}, as well as increase
35 population performance in highly variable environments^{1,6}. As such, it is critical to study not
36 only the evolution of trait values under ecological variation, but also the impact of trait flexibility
37 on local adaptation. One trait that is well suited for studying the impact of plasticity on rapid
38 evolution and adaptive diversification is brain morphology. Brain morphology is influenced by
39 both heritable genetic variation and phenotypic plasticity. Heritable genetic variation has been
40 demonstrated using artificial selection experiments^{9,10} and common garden studies^{11,12}. Variation
41 in brain morphology can also be due to developmental plasticity. An early demonstration of
42 brain morphology plasticity was in Diamond et al.¹³, who showed that rats reared in enriched
43 environments developed larger brains and more glial cells. Brain morphology in fish also
44 responds plastically to predator cues^{14,15}, light environment¹⁶, social environment¹⁷, and spatial
45 environmental enrichment^{18,19,20}. Fish brain morphology in particular is expected to be highly
46 plastic as fish brains maintain widespread neurogenesis, the generation of new neurons, well into
47 adulthood^{21,22}.

48 Brain morphology, including brain size and the proportions of different brain regions, correlates
49 with a range of cognitive, behavioral, and ecological characteristics of organisms²³, and can be
50 under selection during adaptation to novel environments. For example, larger brain size is linked
51 to greater cognition (e.g. learning and problem-solving ability) in carnivores²⁴, primates²⁵, and
52 fish^{26,9}. Variation in brain size is also linked to behavioral flexibility²⁷, foraging behavior²⁸, and
53 mating behavior^{29,30}. These links are thought to result from more neurons and neuronal
54 connections in larger brains^{31,32}. However, despite the broad benefits of larger brains, having
55 larger brains trades off with increased energetic costs, as brains are a metabolically expensive
56 tissue^{33,34,35,36}. The proportional sizes of individual brain regions also correlate with ecologically

57 relevant aspects of cognition, sensory integration, and behavior^{37,38,39,40,23,24,25}. The importance of
58 brain morphology for ecological performance is further supported by observational studies
59 showing differences in brain morphology across habitats of varying complexity and predation
60 risk, both at the intraspecific^{44,11} and interspecific^{45,46,47} levels. For example, sunfish living in the
61 complex littoral habitat of a lake show larger brain size than individuals living in the pelagic
62 habitat of the same lake⁴⁸.

63 Brain morphology is considered a key characteristic influencing ecological performance under
64 ecologically divergent conditions. The cognitive buffer hypothesis posits that larger brains allow
65 organisms to respond to variability in their environment⁴⁹. Comparative tests of this hypothesis
66 have linked brain morphology to environmental variability and colonization success in birds^{50,51}
67 and primates⁵². However, a key unknown in our effort to understand the role of brain
68 morphology in adaptation is the degree to which plasticity in brain morphology is itself an
69 evolvable characteristic⁵³. We propose that along with larger brains, more plastic brains may
70 similarly facilitate performance when adapting to different environmental conditions. The
71 evolution of phenotypic plasticity is hypothesized as a major contributor to phenotypic
72 diversity^{1,54}, and empirical studies in bird breeding season length² and fruit fly heat temperature
73 tolerance⁵⁵ demonstrate that such evolution is possible. Though rarely studied, brain morphology
74 plasticity can evolve^{56,57,58}. The evolution of brain plasticity therefore has the potential to shape
75 brain divergence in novel or variable habitats.

76 We examined evolution and plasticity of brain morphology using Trinidadian guppies (*Poecilia*
77 *reticulata*) collected from habitats with and without large fish predators (high versus low
78 predation population; hereafter HP vs. LP respectively). In Trinidad, guppies from inland stream
79 populations with large aquatic predators have repeatedly colonized low-predation areas upstream
80 of natural waterfalls^{59,60}. In adapting to their local environments the ancestral HP and derived LP
81 guppies have diverged in ecological, morphological, life-history, and behavioral traits across
82 streams (reviewed in Endler 1995⁵⁹). This system is excellent for testing brain plasticity
83 hypotheses for a few reasons. Guppy males from HP sites have larger brains than those from LP
84 sites^{15,61}, suggesting that predation (and/or other characteristics correlated with it) imposes
85 selection on brain morphology. Additionally, guppies are sexually dimorphic and sexual
86 selection in guppies is influenced by predation. For example, male HP guppies show reduced

87 color ornaments and increased sexual harassment^{59,62}, and female HP guppies show reduced
88 preference for colorful males^{63,62}. These differences allow us to test whether sexes under
89 different selective pressures differ in the evolution of brain morphology as well as brain
90 morphology plasticity in ecologically divergent habitats, which is important because brain
91 morphology can be sexually dimorphic in certain species including fish²⁷. The differences in
92 behavior between habitats also indicate differences in the social environment of HP and LP
93 habitats that could impose additional selection on brains.

94 To achieve our goals, we reared both male and female guppies from LP and HP populations
95 under two different plasticity treatments: predator chemical cues (presence or absence) and social
96 environments (reared alone (solo), with LP adults, or with HP adults), in a full-sibling fully
97 factorial design. The addition of the social treatment allowed us to assess how multiple
98 environmental cues influence the development or evolution of brain morphology, as social
99 behavior differs between HP and LP populations⁵⁹. We used second-generation offspring of wild
100 caught individuals to ensure any differences between populations were the result of evolved
101 genetic differences. We measured brain mass and estimated the volumes of five brain regions
102 and compared these across HP and LP source populations and plasticity treatments. Evolved
103 genetic differences in brain morphology would be indicated by differences between source
104 populations. Phenotypic plasticity in brain morphology would be indicated by differences
105 between rearing treatments. Evolved differences in plasticity would be evidenced by different
106 responses to plasticity treatments between source populations. Finally, differences between
107 males and females in how brain morphology varies between source and treatments would
108 provide evidence that selection on brain morphology or plasticity in brain morphology varies
109 between the sexes.

110

111 **Methods**

112 *Experimental Methods*

113 We collected wild guppies from HP and LP localities on the Aripo drainage in Trinidad in March
114 2020 and transported them to our laboratory at Washington University in St. Louis, where they

115 were quarantined and treated prophylactically for a variety of parasites. We raised these wild fish
116 in group tanks under common garden conditions to generate the first-generation (F1) lab-bred
117 fish. We raised F1 guppies in an aquatic housing system (Aquaneering Inc., USA) and separated
118 males and females before sexual maturity. We then randomly paired our F1 fish to create 29
119 unique family lines (HP: 15, LP: 14). We separated the F2 siblings at birth and reared them in
120 isolation for 2 weeks, then randomly split them into 6 different treatments: 3 social treatments x
121 2 predator treatments. Families were not equally represented across treatments due to uneven
122 numbers of births from different mothers. We kept all experimental fish in 1.8-liter tanks in the
123 flow-through Aquaneering system.

124

125 In the social treatments, we reared individual juveniles with either adults from the HP or LP
126 populations or on their own (HP conspecifics / LP conspecifics /solo, hereafter). In the two
127 treatments with conspecifics, we added two adult males and one adult female from either HP or
128 LP population into the juvenile tank at week two when juveniles were large enough to avoid
129 adult cannibalism. We removed the conspecific fish from the tanks on day 45 to ensure that the
130 juveniles remained unmated.

131

132 We manipulated whether guppies experienced high- or low-predation cues by raising them in
133 water with or without predator chemical cues (pred+ and pred-, hereafter). In the predator cue
134 treatment, we connected a tank containing a pike cichlid (*Crenicichla alta*) to the flow-through
135 water system of the guppies. The guppies could not see the predator, but they received chemical
136 cues through the water. Every day the cichlid was fed two guppies, so possible cues included
137 chemical signals from the cichlid and alarm or injury cues from the predated guppies.

138

139 We maintained all fish in the lab at 25-27°C under a 12L:12D light cycle. We fed wild caught
140 and F1 juvenile guppies live brine shrimp, and adults crushed Tetramin Tropical Flakes (Tetra
141 Co., USA). We fed experimental F2 fish quantified amounts of brine shrimp or liver paste
142 throughout the experiment. We chose the quantified feeding amounts so as to optimize growth,
143 while not overfeeding, and to ensure similar levels of food across treatments. Food amounts
144 through the experiment can be seen in Table S3.

145 *Sample Processing*

146 Once individuals reached sexual maturity, we euthanized all fish with an overdose of tricaine
147 methanesulfonate (MS-222). We then photographed, weighed, and preserved the fish in 10%
148 buffered-formalin for 1-3 months before processing. We extracted brains from each individual
149 using dorsal dissection. All dissections and measurements were done by the same individual
150 (C.J.A.). After dissection, we gave all brains non-identifying labels to avoid unconscious bias
151 during brain measurements. We photographed brains from dorsal, ventral, and lateral angles
152 using a Leica MC190 HD microscope camera. We took an additional photo with a closer zoom
153 of the olfactory bulb to ensure accurate measurement of this region. We trimmed the excess
154 nerves from the brains and cut the spinal cord consistently at the level of the obex. We then
155 measured the blotted wet mass of the brains with a Mettler Toledo XPR2 microbalance at a
156 resolution of 0.01mg.

157 We estimated the volumes of five external brain regions (cerebellum, optic tectum,
158 telencephalon, olfactory bulb, and hypothalamus) using the ellipsoid formula ($V =$
159 $L \times W \times H \times \pi / 6$)⁶⁴. We measured the length, width, and depth of each region using the line
160 measurement tool in Image J (see fig S4). Only one side of the brain was photographed, so the
161 depth of bilaterally symmetrical lobes was assumed to be the same. Sample sizes of each group
162 can be seen in Table S4. We use this method for estimating brain region volumes, rather than
163 more precise methods such as magnetic resonance imaging⁶⁵, due to the feasibility of use with
164 large numbers of individuals.

165 *Statistical Methods*

166 To assess the impact of evolved differences and plasticity on brain morphology in divergent
167 populations, we used linear mixed effects models to partition variance in brain morphology
168 between source populations, treatments, and their interaction. We used models that included
169 brain mass or each of the five brain region volumes as the response variables and body mass (for
170 brain mass model) or brain mass (for region models) as a covariate to control for allometric
171 scaling of brain size and region sizes. We natural log-transformed body mass, brain mass, and
172 region volumes to improve residual normality. We included source population (HP vs LP),

173 predator cue treatment (pred- vs pred+), social treatment (solo vs HP conspecifics vs LP
174 conspecifics), and the two-way interactions between each of these as fixed effects. We
175 subsequently removed non-significant interactions. Finally, we included family as a random
176 effect to account for covariation among siblings. Additionally, to assess how plasticity treatments
177 and source populations may have affected body size, we performed a separate linear mixed
178 model with body mass as the response variable and the same predictor variables as the above
179 models except for the scaling covariate. Final models are reported in Table 1. We further
180 examined significant social effects and interaction using Tukey posthoc tests. For significant
181 social treatment effects, we used posthoc tests to test for pairwise differences between the three
182 treatments. For significant source by predator treatment or source by social treatment
183 interactions, we report treatment effects specific to each source population. For significant
184 predator treatment by social treatment interactions, we report both social treatment effects for
185 each predator treatment, and predator treatment effects for each social treatment. All statistics
186 were performed using the R program version 3.6.3⁸⁴. We used the ‘lmer’ function in the ‘lme4’
187 package⁸⁵ for mixed-effects models, and the ‘emmeans’ function in the ‘emmeans’ package⁸⁶ for
188 posthoc tests.

189 Finally, by testing brain region variation in separate models for each region, allowing for
190 different patterns between regions, we are assuming that individual regions have the potential to
191 change independently of each other. We accounted for this assumption in two ways. First, we
192 generated correlation matrices examining how independent each of the regions are from each
193 other. Second, we generated principal components of brain region covariation. PC1 accounted
194 for 57% of total variance in both males and females, with all brain regions loading positively
195 (table S6), suggesting that PC1 largely represents whole brain size. This is supported by the
196 strong correlation between PC1 and brain mass in both males (correlation coefficient = 0.78) and
197 females (correlation coefficient = 0.80). We therefore did not include PC1 in any further analyses
198 because it is redundant with our analysis of brain mass. We then ran mixed effects models as
199 described above (with no covariate) with the principal components (2-4) included as response
200 variables to see if brain regions may change in concert across predator regimes or plasticity
201 treatments.

202 We analysed males and females in separate models. We chose to separate the sexes because their
203 evolutionary and plastic responses may be different due to sexual dimorphism. Their drastic
204 differences in size and morphology also make direct comparisons challenging. Indeed, initial
205 models including both sexes indicated a plethora of interactions between sex and other factors in
206 the models (see Table S5), indicating that males and females reacted differently to divergence
207 and the treatments. Separate models allowed for a clearer understanding of the nature of the
208 individual effects in both sexes.

209 Results:

210 *Body mass variation*

211 Male body mass differed among social group treatments, though this effect differed depending
212 on the predator treatment (indicated by a significant social treatment by predator treatment
213 interaction ($F_{2,133}=12.56$, $p<0.001$), suggesting that plasticity cues interact to shape somatic
214 growth in males (Table 1; Table S1; Fig 4). When reared in pred- water, individuals reared with
215 LP conspecifics were larger than those reared with HP conspecifics and those reared alone
216 (Table S1). When reared in pred+ water, individuals reared with conspecifics were larger than
217 those reared alone (Table S1).

218 Female body mass differed among social treatments and showed evidence of evolved differences
219 in predator cue plasticity. Females showed a significant social treatment effect on body mass
220 (Table 1; $F_{2,141}=3.67$, $p=0.029$), developing larger body mass when reared with HP conspecifics
221 than when reared with LP conspecifics (Table S2; Fig 5). Solo individuals had intermediate body
222 mass that was not significantly different from either conspecific group (Table S2; Fig 5). Further,
223 there was a significant interaction between source population and predator treatment on female
224 body mass (Table 1; $F_{1,140}=7.65$, $p=0.006$). However, posthoc tests of this interaction did not
225 reveal a significant predator treatment effect in either source habitat (Table S2; Fig 5).

226 *Evolved differences in brain morphology*

227 Males showed evolved differences in brain morphology between HP and LP populations.
228 Relative brain mass was larger in HP males compared to LP males, regardless of rearing

229 treatments (Table 1; Fig. 1A; $F_{1,14}=5.63$, $p=0.031$). Additionally, HP males had smaller relative
230 optic tectum (Fig 1C; $F_{1,11}=12.51$, $p=0.0047$) and telencephalon volumes (Fig. 1D; $F_{1,13}=18.76$,
231 $p<0.001$) than LP males (Table 1). Females showed no evolved differences in brain morphology
232 between populations.

233 *Plasticity of brain morphology*

234 Males showed plastic responses in brain morphology to predator cue treatment, developing
235 larger relative brain mass (Figure 1A; $F_{1,137}=4.61$, $p=0.034$) and olfactory bulb volume when
236 reared in pred+ water (Figure 1E; $F_{1,141}=6.96$, $p=0.0093$), and larger cerebellum (Figure 1B;
237 $F_{1,139}=6.97$, $p=0.0092$), and telencephalon (Fig 1D; $F_{1,135}=13.09$, $p<0.001$) volume when reared
238 in pred- water (Table 1). The plasticity in the telencephalon only occurred in LP sourced males
239 (see *Evolution of plasticity* section below).

240 Males showed limited plastic responses to their social treatment. Males reared with conspecifics,
241 regardless of the type, developed larger brains than those reared alone (Table 1; Table S1; Fig 4;
242 $F_{2,133}=6.83$, $p=0.0015$). Additionally, we found an interaction of predator treatment and social
243 treatment on male cerebellum volume (Table 1; $F_{2,139}=3.6$, $p=0.03$). Males developed a larger
244 cerebellum in pred- water than in pred+ water, but only when reared alone (Table S1; Fig 4).

245 Female guppy brain morphology showed plasticity in response to predator cues, social cues, and
246 their interaction. Social and predator treatments interacted to shape female brain mass (Table 1;
247 $F_{2,135}=3.15$, $p=0.046$). Posthoc tests indicated that brain mass was smaller in the solo treatment
248 than in conspecific treatments, but only when reared in pred- water (Fig 2A; Table S2). Females
249 reared in pred+ water, regardless of social treatment, developed brain mass similar to those in
250 pred- water with conspecifics (Fig 2A). Social and predator treatments also independently
251 shaped telencephalon volume (Table 1; Predator: $F_{1,139}=4.6$, $p=0.035$; Social: $F_{2,140}=3.9$,
252 $p=0.022$). Females developed smaller telencephalon volume when reared in pred+ water than in
253 pred- water (Fig 2B; Table S2). Female telencephalon also grew largest when reared alone,
254 smaller when reared with HP conspecifics, and smallest when reared with LP conspecifics (but
255 only the solo-LP conspecifics comparison was significant; Table S2).

256 *Evolution of brain morphology plasticity*

257 Males and females both showed evolutionary divergence in brain morphology plasticity. LP
258 males showed plasticity to predator cues in the optic tectum (Fig 1C, Fig S1; $F_{1,131}=6.15$,
259 $p=0.014$) and telencephalon (Fig 1D, Fig S1; $F_{1,134}=10.14$, $p=0.0018$), both developing larger in
260 pred- water than pred+ water. HP males did not show plasticity in these regions (Table S1).
261 Female brain morphology showed evolved plastic responses to their social treatment in
262 hypothalamus volume (Table 1, Fig S1; $F_{2,139}=4.39$, $p=0.014$). In LP sourced females, their
263 hypothalamus grew largest when they were reared alone, smaller when they were reared with LP
264 conspecifics, and smallest when they were reared with HP conspecifics. However, only the solo-
265 HP conspecifics comparison was significant (Fig 2C; Table S2). HP sourced females did not
266 show plasticity in hypothalamus volume.

267 *Absolute brain size variation*

268 Absolute brain size, though less analyzed compared to relative brain size, has also been linked to
269 cognitive performance (Marino 2006). We found that in male guppies, absolute brain size was
270 larger in HP fish than LP fish (Table 1, Fig 3A; $F_{1,14}=4.8$, $p=0.046$), and in fish reared with
271 conspecifics than fish reared alone (Table 1, Fig 3A; $F_{1,131}=25.8$, $p<0.001$). These patterns are
272 similar to our results with relative brain size. Females from the LP habitat developed larger
273 absolute brain size in the pred+ treatment than pred-, but HP females showed no difference
274 between predator treatments (Table 1, Fig 3B; $F_{1,140}=7.85$, $p=0.0058$). This is consistent with our
275 relative brain size results that indicated larger relative brain size in females from HP habitats or
276 LP females reared in the pred+ treatment.

277 *Brain region correlation and covariation*

278 The volumes of all brain regions were positively correlated in both males and females, though
279 regions also exhibited independent variation. All regions showed significant positive correlations
280 with all other regions (Fig 6), with correlation coefficients ranging from 0.25 to 0.76. In both
281 males and females, the optic tectum and telencephalon showed the highest correlation (M:0.75,
282 F:0.76), and the cerebellum and olfactory bulb showed the lowest correlation (M:0.25, F:0.26).

283 Analyses of principal components of brain region covariation are largely consistent with the
284 variation we found between individual brain regions. In males, PC2 largely represents variation

285 in olfactory bulb volume, with a small contribution of the cerebellum (Table S6). PC2 varied
286 between predator plasticity treatments similarly to the olfactory bulb (Table S7, Fig 7A;
287 $F_{1,131}=19.03$, $p<0.001$). PC3 in males was not influenced by source population or plasticity
288 treatments (Table S7). PC4 in males represents positive covariation between the optic tectum and
289 telencephalon, which trade off with the hypothalamus and cerebellum (Table S6). PC4 showed a
290 significant effect of source population (Table S7, Fig 7B; $F_{1,141}=20.28$, $p<0.001$) and an
291 interaction effect between source population and predator treatment. This was similar to the optic
292 tectum and telencephalon (Table S7, Fig 7B; $F_{1,141}=2.36$, $p=0.023$). Female PC2 and PC3 were
293 not influenced by source population or plasticity treatments (Table S7). Female PC4, similar to
294 males, represents positive covariation between the optic tectum and telencephalon, which trade
295 off with the cerebellum and hypothalamus (Table S6). Female PC4 showed a significant
296 interaction between source population and social treatment (Table S7, Fig 7C; $F_{2,136}=2.36$,
297 $p=0.0062$),

298 Discussion:

299 We examined the influence of evolutionary divergence, plasticity, and plasticity evolution on
300 brain morphology in divergent groups of Trinidadian guppies. From our results we derive three
301 main conclusions. First, variation in brain morphology among populations and plasticity
302 treatments suggests that brain morphology responds evolutionarily and plastically to differences
303 in level of predation. Second, a greater degree of plasticity in LP sourced fish compared to HP
304 fish indicates that brain plasticity can evolve and that this evolution is associated with adaptation
305 to a novel LP habitat. Finally, male and female guppies differ in how their brain morphology
306 responds to ecological cues, as males respond mainly to predator cues and females respond
307 mainly to social cues. We discuss these results in further detail below.

308 *Evolved and plastic variation in brain morphology*

309 We found both evolved genetic differences and plastically induced variation in brain
310 morphology. The variation in brain morphology may stem from several potential mechanisms,
311 including selection on cognition and behavior, energetic limitations, and selection or plasticity of
312 correlated traits. While our study cannot discern among them, we can speculate based on

313 previous studies. All fish were fed the same amount and type of food, so differences in nutrition
314 or available energy are unlikely to explain differences in brain morphology between
315 experimental treatments. However, natural differences in food availability between HP and LP
316 sites could influence evolution of brain size differences between populations. Differences in
317 brain morphology between groups could be the result of changes in correlated traits, such as
318 cranium morphology, however we consider this unlikely because brain morphology is generally
319 not constrained by head morphology in fish³⁹. Additionally, we found that brain regions, though
320 positively correlated with each other, all show some degree of independence, allowing for
321 individual responses to selection or plasticity cues. In terms of cognitive consequences of brain
322 variation, shifts in behavior and exposure to enrichment have been linked to brain size plasticity,
323 specifically in guppies²⁰. Further, a previous analysis of mating behavior plasticity in the fish
324 from this experiment indicate that shifts in behavior in response to predator cues are associated
325 with plasticity in brain morphology⁶⁶. We thus consider variation in brain morphology in our
326 study to most likely be linked to variation in cognitive, behavioral, and/or sensory functions,
327 though we cannot rule out other explanations. Below we discuss the potential cognitive links to
328 brain morphology that could explain the differences.

329 Variation in relative brain size is often thought to represent variation in general cognitive ability,
330 and larger brains are usually associated with more cognitively demanding environments^{48,67}. In
331 our experiment, a larger relative guppy brain size was associated with high predation
332 environments. Both sexes showed a plastic increase in brain size when reared with predator cues.
333 Males, but not females, that were sourced from HP habitats had a larger brain compared to those
334 sourced from LP habitats, indicating an evolved response in brain size. Previous work has found
335 that in wild guppies, larger brain size is associated with greater predator threat⁶⁸. In an artificial
336 selection study, large-brained females, but not males, were better at avoiding predation than
337 small-brained individuals⁶⁹. This evidence and our results broadly support our hypothesis that
338 large brains (either genetically determined or plastically induced) evolved as an anti-predator
339 response, though results are inconsistent, particularly across sexes. On the other hand, smaller
340 brain size has also been linked to higher predation environments^{11,70}. The benefits of increased
341 cognition afforded by a larger brain size in a high predation environment may depend on the
342 specific nature of predator-prey interactions and other aspects of the environment.

343 Our results further suggest that environments with increased social interactions may require
344 larger brains in guppies as males and females developed larger brains when reared with adult
345 conspecifics. A review of brain size variation across mammals proposed increased sociality as a
346 mechanism of the evolution of larger brains⁷¹. This result is in contrast to a previous study in
347 reptiles that found larger brain sizes are associated with solitary lifestyles⁷². It is also possible
348 that responses in brain size to plasticity treatments does not reflect adaptation to the specific
349 environment of the source population. For example, increased social interaction may also be
350 viewed as a form of environmental enrichment. Enrichment has consistently been shown to lead
351 to increased brain size^{13,18,20}. Alternatively, stress caused by unknown or alarming cues from
352 predators may impact the development of brain morphology^{73,74}. Elucidating the ultimate drivers
353 of larger brain size in high predator and high sociality environments in guppies will require
354 further experiments that directly test the effect of brain size on the various aspects of ecological
355 performance in HP *versus* LP habitats.

356 Differences in the relative sizes of specific brain regions among source populations and plasticity
357 treatments may reflect adaptive cognitive and sensory functions of those regions. Brain regions
358 are highly connected, with behavioral functions regulated, at least to some degree, by many
359 regions in combination. However, distinct regions are associated with certain functions more
360 than others. We found that both the cerebellum (motor coordination^{37,38,40}) and the optic tectum
361 (visual integration^{38,40}) are smaller in males reared in predator water. The telencephalon
362 (learning, memory, and navigation^{37,40,75,76}) is similarly smaller in both males and females reared
363 in pred+ water. This result suggests that while males develop smaller relative brain size in pred-
364 water, they maintain a larger telencephalon. This may reflect a benefit of memory or quicker
365 decision making when reared in the absence of predators, with other cognitive functions being
366 less important. The olfactory bulb (olfaction^{38,40,77}) is larger in males reared with predator cues,
367 likely indicating a benefit to greater olfaction to perceive predators. Broadly, these responses to
368 predator cues indicate that specific cognitive abilities associated with these regions may be
369 associated with greater performance in HP and LP habitats. Finally, the hypothalamus (social
370 behavior and endocrine control^{37,40,78}) varies with the social treatment in females, supporting that
371 this region is associated with social behavior, as previously hypothesized. The larger
372 hypothalamus size of LP females when reared with LP compared to HP conspecifics suggests

373 that LP guppies interact with each other in more cognitively demanding ways, potentially an
374 association linked with stronger sexual selection in LP guppies⁶². Differences in plastic
375 responses in different regions suggest either that plasticity cues are specific in their effect on
376 regions, or that certain regions are more generally plastic than others. We are unable to
377 distinguish between these possibilities, though they raise interesting questions for future
378 research. Broadly, these results suggest that predator and social environments are associated with
379 specific cognitive and sensory differences in guppies. However, as with whole brain size,
380 understanding the specific functional reason for links between brain regions and environments
381 will require further study.

382 *Absolute and relative brain size*

383 Finally, the differences in relative brain size between source populations and plasticity
384 treatments seem to result largely from changes to the development of brain size, but also from
385 differences in fish body size. For example, male guppies develop smaller when reared in pred+
386 water, but have the same absolute brain size as those reared in pred- water, resulting in larger
387 relative brain size. This raises the question of whether differences in relative brain size between
388 these groups represent selection for plasticity only in body size, or on the maintenance of
389 absolute brain size in a smaller body size. Due to the high metabolic costs of growth and
390 maintenance of brain tissue^{34,35,36}, brains are generally expected to be just large enough to
391 maintain necessary cognitive function. Therefore, the maintenance of absolute brain size in male
392 guppies reared in pred+ water likely may indicate selection on plasticity to preserve function
393 despite reductions in body size when predators are present. However, the importance of relative
394 brain size *versus* absolute brain size in affecting cognitive and behavioral performance is still a
395 debated topic⁹. Future studies explicitly testing this on guppies, perhaps with artificial selection,
396 would shed light on this interesting topic.

397 *Evolution of plasticity*

398 Differences in plastic responses to predator and social cues between source populations indicate
399 evolutionary divergence of brain plasticity. Males and females both show divergence in plasticity
400 (albeit in different brain regions and in response to different cues), suggesting that brain

401 plasticity is an evolvable trait. When plasticity diverges between populations, our results show a
402 trend of greater plasticity in LP compared to HP guppies. Males sourced from LP populations
403 show plasticity in response to predator cues in optic tectum and telencephalon size, while HP
404 males do not. Interestingly, the optic tectum and telencephalon show the highest levels of
405 correlation of all brain regions (75% in males, 76% in females), and show similar patterns of
406 evolution of plasticity in males. These similar patterns could therefore result from independent
407 selection on plasticity in each region or could be due to indirect selection from one region on the
408 other. Further, LP females show social cue plasticity in hypothalamus size, while, again, HP
409 females do not show significant plasticity.

410 Two patterns of selection are typically hypothesized to result in divergence of plasticity between
411 populations. First, colonization of novel habitats can select for increased plasticity. High
412 predation populations are ancestral to low predation populations, as low predation habitats are
413 colonized during upstream movement. The colonization process can select for increased
414 plasticity if more plastic individuals have higher survival and reproductive advantage during the
415 invasion of a novel habitat^{2,4}. This hypothesis is supported by our study, which consistently
416 showed a greater degree of plasticity in LP guppies than HP guppies. Evidence from prior
417 research on the divergence of plasticity between HP and LP guppies is mixed, with HP guppies
418 showing greater plasticity in reproductive traits in response to food availability cues⁷⁹, but LP
419 guppies showing greater plasticity of body and head morphology in response to predation cues⁸⁰.
420 The bias towards greater plasticity in the derived LP populations in this study aligns with
421 previous research showing greater plasticity in derived pelagic populations compared to ancestral
422 littoral populations of pumpkinseed sunfish⁵⁸. Further tests of divergence in brain plasticity
423 between HP and LP guppy populations that differ in their patterns and timing of colonization
424 could provide greater support for this hypothesis.

425 An alternative selective hypothesis is that habitats differ in environmental variability, which can
426 select for increased plasticity⁸¹. Highly variable environments can select for greater plasticity
427 because this permits individuals to match their traits to changing conditions. As of yet, it is not
428 known whether HP habitats or LP habitats are more variable, or what specific ecological aspects
429 are more variable in each habitat. If low predation habitats have greater variability in their eco-
430 cognitive requirements, this could select for greater plasticity in brain morphology there, such as

431 we observed in this study. The specific aspects of environmental variability that may select for
432 plasticity in this habitat are not yet known. Though data are consistent with colonization in a
433 novel habitat as a selective agent on plasticity, our study cannot distinguish between these two
434 alternative patterns of selection. Further research testing specific agents of selection across
435 different stages of colonization will be required to fully understand why increased plasticity in
436 brain morphology has evolved in LP guppies.

437 Our study has certain limitations that must be considered. First, we performed our study on one
438 pair of HP and LP populations, and thus cannot rule out the possibility that the patterns we found
439 are due to genetic drift. However, the central result of our study, that plasticity in brain
440 morphology shows evolutionary divergence between habitats, is interesting regardless of the
441 specific evolutionary mechanism generating that divergence⁸. The populations in this study are
442 representative of HP/LP populations across Trinidad that have shown adaptive variation between
443 habitats across several studies^{15,18,60}, and future studies investigating other divergent populations
444 of guppies would clarify the generalizability of our findings. Additionally, while we focus on
445 plasticity in brain morphology, other aspects of brain physiology and neuron structure, such as
446 neurotransmitter levels and the strength of neuron connections, can exhibit plasticity. The
447 evolution of these types of neuroplasticity may also be important for adaptation to novel or
448 changing habitats⁸.

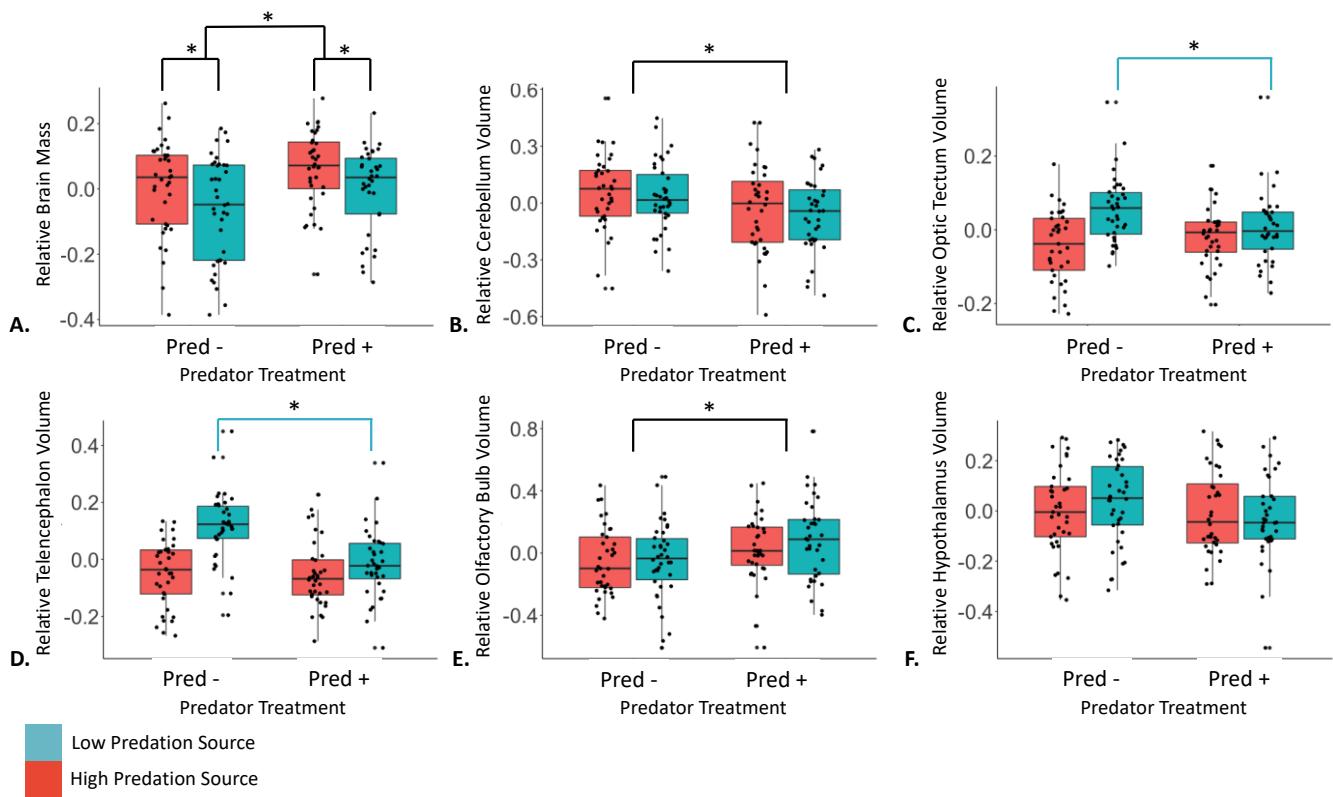
449 *Sexual dimorphism in plasticity*

450 Male and female guppies differ in their morphology and behavior⁶². Here we show that they also
451 differ in the types of environmental cues that induce developmental plasticity in brain
452 morphology, with males responding more to predator cues and females responding more to
453 social cues. Male brain morphology responded plastically in at least one population to predator
454 cues in whole brain size, cerebellum size, optic tectum size, telencephalon size, and olfactory
455 bulb size, while only their brain size and cerebellum size displayed any response to the social
456 environment. Females, on the other hand, displayed plasticity in at least one population in
457 response to the social environment in brain size, cerebellum size, telencephalon size, and
458 hypothalamus size, while only showing responses to predator cues in brain size and
459 telencephalon size. Males are more prone to predation than females⁶⁹, potentially due to their

460 more conspicuous coloration. This added challenge of predation for males could explain why
461 their brains respond more to predator cues than do female brains. Our results indicate that
462 females, though less prone to predation, experience more brain plasticity in response to variation
463 in their conspecifics, perhaps indicating their greater reliance on social interaction and
464 information. Generally, these differences provide evidence that male and female guppies
465 experience divergent selection, and primarily evolve in response to different ecological
466 characteristics.

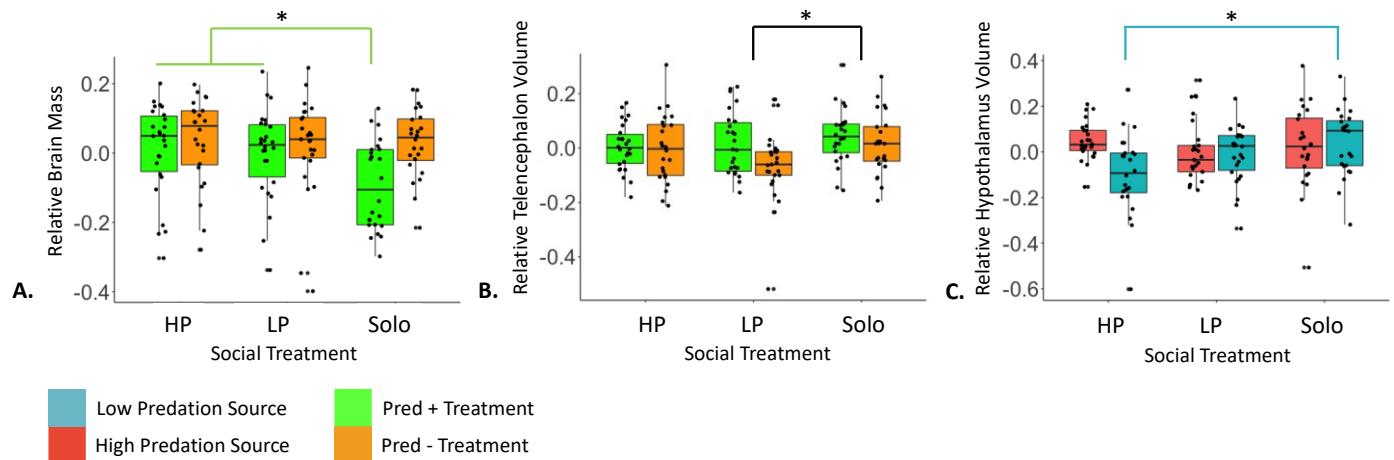
467 Sexual dimorphism in phenotypic plasticity exists in a variety of animal species, mostly in
468 response to temperature variation or sexual selection (reviewed in Hangartner et al. 2022⁸²).
469 However, research has not shown consistent patterns of plasticity dimorphism across species,
470 and the ubiquity of sexual dimorphism in phenotypic plasticity is unclear. Our results suggest
471 that divergent selection between males and females may lead to differences in brain plasticity.
472 Guppies show sexual differences in the plasticity of sex-specific life history traits⁸³. To our
473 knowledge, this is the first study to demonstrate sexual differences in the evolution of brain
474 plasticity, as we show that males and females both diverge in brain plasticity in different
475 environments, but in different brain regions and in response to different cues.

476 Conclusion


477 Understanding the proximate mechanisms that shape trait variation and facilitate adaptive
478 divergence is critical for understanding and predicting patterns of evolution and
479 diversification^{2,3,4}. Here, we show the importance of developmental plasticity and the evolution
480 of such plasticity of brain morphology in Trinidadian guppies. Our results support that plasticity
481 of brain morphology is itself a sexually dimorphic, evolvable trait. We also suggest that
482 colonization of novel habitats selects for increased plasticity, indicating that brain morphology
483 plasticity may be critical for performance during colonization. Further research is required to
484 elucidate the functional causes and consequences of variation in brain morphology and plasticity,
485 as well as the importance of these traits for organism fitness during adaptation to rapidly
486 changing environments.

487 Table 1. Summary of analysis of variance of mixed-effects models predicting brain and body
 488 morphology. All models include source habitat (Source), predator treatment (Predator), and
 489 social treatment (Social). The model prediction brain mass also includes body mass (g) as a
 490 covariate, and the models predicting brain region volumes include brain mass (g) as a covariate.
 491 Absolute brain mass models do not include a covariate. Response variables and covariates were
 492 natural log transformed in every model. Significant two-way interactions are also included in the
 493 model. Family was included as a random effect in all models. P-values of significant predictors
 494 are bolded. Restricted maximum likelihood (REML) at convergence values for each model are
 495 listed below response variables.

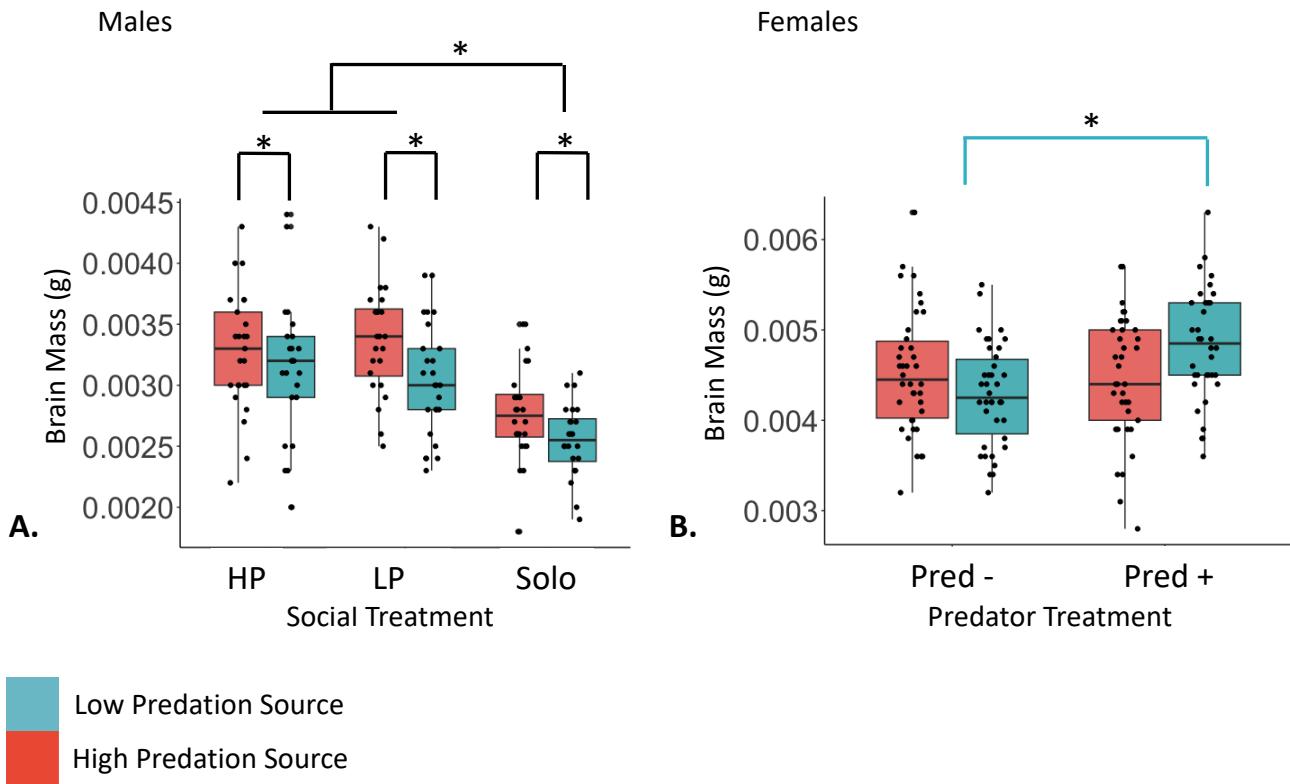
496


Response Variable	Predictor Variable	F	Sum of Squares	p
Males				
Brain Mass REML= -147.1	Body Mass Source Predator Social	28.8 5.4 4.67 6.87	0.49 0.092 0.080 0.23	<0.001 0.035 0.032 0.0015
Cerebellum Volume REML=-31.7	Brain Mass Source Predator Social Predator*Social	24 1.25 6.97 0.73 3.6	0.94 0.048 0.27 0.056 0.28	<0.001 0.27 0.0092 0.49 0.03
Optic Tectum Volume REML=-250.9	Brain Mass Source Predator Social Source*Predator	144.28 12.23 1.31 1.31 6.06	1.09 0.093 0.010 0.020 0.046	<0.001 0.0049 0.25 0.27 0.015
Telencephalon Volume REML=-183.9	Brain Mass Source Predator Social Source*Predator	90.75 19.1 13.03 1.66 10.09	1.14 0.24 0.16 0.04 0.13	<0.001 <0.001 <0.001 0.19 0.0019
Olfactory Bulb Volume REML=14.8	Brain Mass Source Predator Social	47.8 0.74 6.96 0.45	2.7 0.042 0.39 0.051	<0.001 0.39 0.0093 0.64
Hypothalamus Volume REML=-82	Brain Mass Source Predator Social	28.47 0.028 1.58 0.74	0.75 0.00073 0.042 0.039	<0.001 0.87 0.21 0.48
Body Mass REML=-667.2	Source Predator	0.017 2.57	0.0000063 0.00095	0.90 0.11

	Social Predator*Social	35.1 12.5	0.026 0.0093	<0.001 <0.001
Absolute Brain Mass REML= -1770.17	Source Predator Social	4.80 2.10 25.83	0.097 0.042 1.04	0.046 0.15 <0.001
Females				
Brain Mass REML=-160.5	Body Mass Source Predator Social Predator*Social	49.37 0.0022 7.44 2.85 3.15	0.70 0.00003 0.11 0.081 0.089	<0.001 0.96 0.0073 0.061 0.046
Cerebellum Volume REML=-64.9	Brain Mass Source Predator Social	61.96 1.04 0.33 1.73	1.99 0.033 0.011 0.11	<0.001 0.33 0.57 0.18
Optic Tectum Volume REML=-264.9	Brain Mass Source Predator Social	220.50 0.92 0.0081 1.01	1.60 0.067 0.00006 0.015	<0.001 0.35 0.93 0.37
Telencephalon Volume REML=-196.9	Brain Mass Source Predator Social	180.0 0.53 4.6 3.9	2.19 0.0065 0.055 0.096	<0.001 0.48 0.035 0.022
Olfactory Bulb Volume REML=-27.2	Brain Mass Source Predator Social	32.0 0.38 1.24 1.02	1.24 0.015 0.048 0.079	<0.001 0.54 0.27 0.36
Hypothalamus Volume REML=-124.2	Brain Mass Source Predator Social Source*Social	38.91 2.6 0.62 1.89 4.39	0.77 0.051 0.012 0.074 0.17	<0.001 0.14 0.43 0.15 0.014
Body Mass REML=-360.73	Source Predator Social Source*Predator	0.035 0.0005 3.67 7.65	0.00013 0.0000019 0.014 0.030	0.85 0.98 0.028 0.006
Absolute Brain Mass REML= -1681.54	Source Predator Social Source*Predator	0.22 5.29 2.40 7.85	0.0044 0.10 0.047 0.15	0.64 0.023 0.094 0.0058

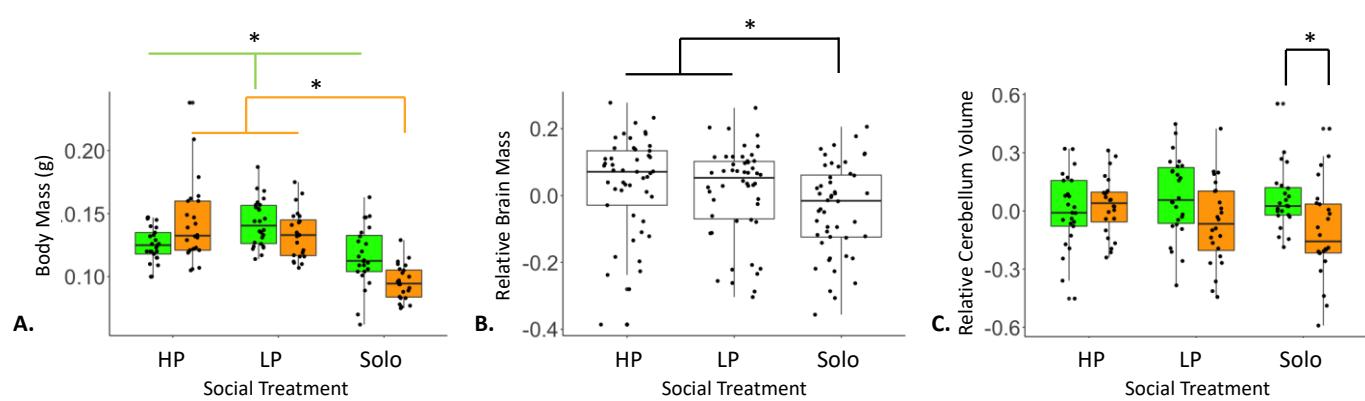
501 Figure 1. Box plots showing male guppy brain morphology across predator treatments and
 502 source habitats. Panels show different aspects of brain morphology: A) relative brain mass, B)
 503 relative cerebellum volume, C) relative optic tectum volume, D) relative telencephalon volume,
 504 E) relative olfactory bulb volume, F) relative hypothalamus volume. Source habitat is
 505 represented by red (HP) and blue (LP) colours. Relative brain size is estimated as the residuals
 506 from a linear model of brain mass regressed against body mass (both natural log transformed)
 507 (Fig S2). Relative brain region volumes are estimated as the residuals from a linear model of
 508 each region volume regressed against brain mass (both natural log transformed). These measures
 509 of relative brain and brain region size are used for visualization purposes only. Statistical
 510 significance indices (based on mixed-effects models) in black indicate simple differences
 511 between predator treatments or source habitats. Significance indices in color indicate that
 512 differences between predator treatments occur only in the designated source habitat. Boxes show
 513 median and interquartile range (25th to 75th), and whiskers show the data range. Dots show
 514 individual data points.

515



516

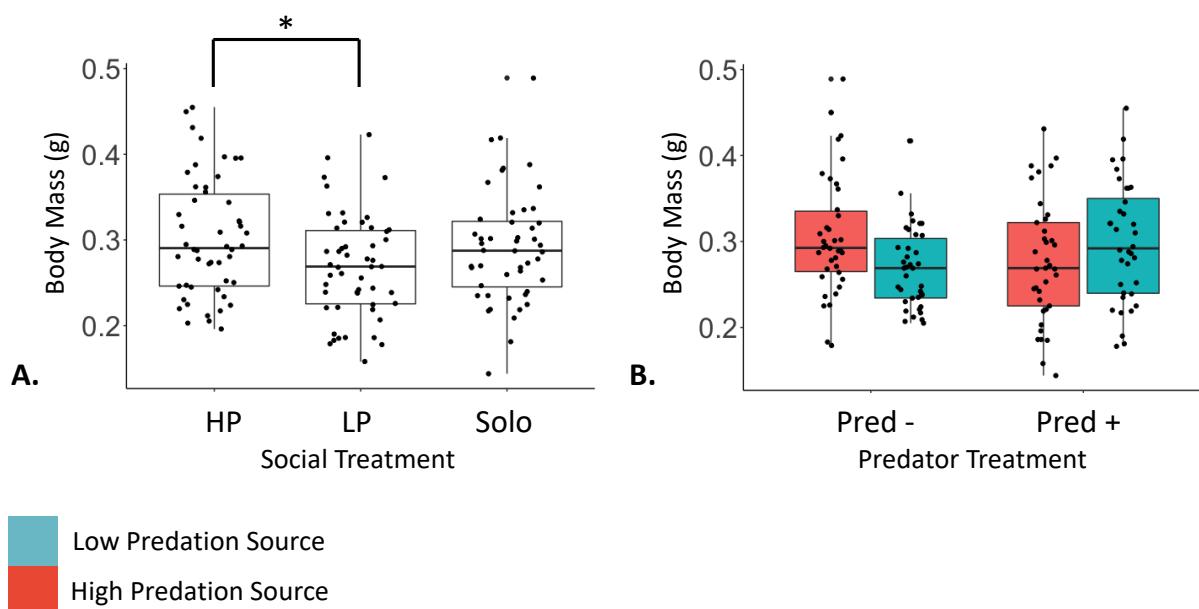
517 Figure 2. Box plots showing female guppy brain morphology across social treatments and
 518 predator treatments (panels A and B) or source habitats (panel C). Panels show different aspects
 519 of brain morphology: A) relative brain mass, B) relative telencephalon volume, C) relative
 520 hypothalamus volume. Predator treatment in panels A and B is represented by green (Control)
 521 and orange (Predator) color. Source habitat in panel C is represented by red (HP) and blue (LP)
 522 colours. Relative brain size is estimated as the residuals from a linear model of brain mass
 523 regressed against body mass (both natural log transformed) (Fig S3). Relative brain region
 524 volumes are estimated as the residuals from a linear model of each region volume regressed
 525 against brain mass (both natural log transformed). These measures of relative brain and brain
 526 region size are used for visualization purposes only. Statistical significance indices (based on
 527 mixed-effects models) in black indicate simple differences between social treatments.
 528 Significance indices in color indicate that differences between social treatments occur only in the
 529 designated predator treatment or source habitat. Boxes show median and interquartile range (25th
 530 to 75th), and whiskers show the data range. Dots show individual data points.


531

532

533
534 Figure 3. Box plots showing male (panel A) and female (panel B) guppy absolute brain mass
535 across social treatments (males) and predator treatments (females). Source habitat in both panels
536 is represented by red (HP) and blue (LP) colours. Statistical significance indices (based on
537 mixed-effects models) in black in panel A indicate simple differences between social treatments
538 and source populations. Significance indices in color in panel B indicate that differences between
539 predator treatments occur only in the designated source habitat. Boxes show median and
540 interquartile range (25th to 75th), and whiskers show the data range. Dots show individual data
541 points.

542

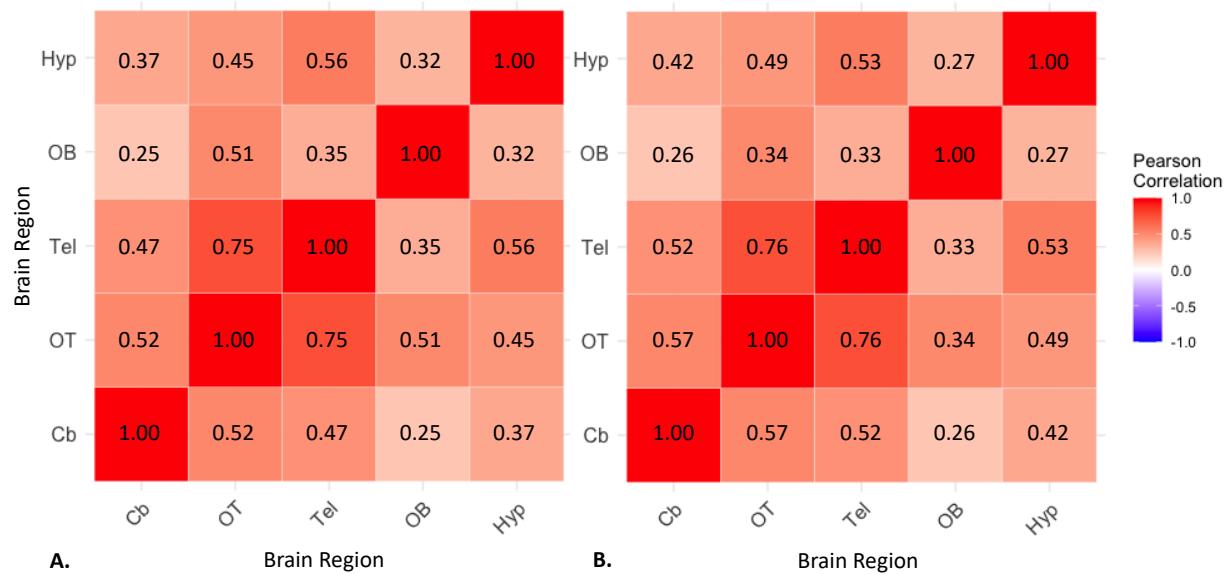

543

544 Figure 4. Box plots showing male guppy body mass (g) (panel A), relative brain mass (panel B),
 545 and relative cerebellum volume (panel C) across social treatments and predator treatments
 546 (panels A; C). Predator treatment in panels A and C is represented by green (Control) and orange
 547 (Predator) color. Relative brain size is estimated as the residuals from a linear model of brain
 548 mass regressed against body mass (both natural log transformed) (figure S2). Relative
 549 cerebellum volume is estimated as the residuals from a linear model of cerebellum volume
 550 regressed against brain mass (both natural log transformed). These measures of relative brain and
 551 brain region size are used for visualization purposes only. Statistical significance indices (based
 552 on mixed-effects models) in black indicate simple differences between social treatments in panel
 553 B, or between predator treatments within social treatments in panel C. Significance indices in
 554 color in panel A indicate that differences between social treatments occur only in the designated
 555 predator treatment (green indices in panel A indicate that the LP group is significantly different
 556 from both the HP and Solo groups. Boxes show median and interquartile range (25th to 75th), and
 557 whiskers show the data range. Dots show individual data points.

558

559

560

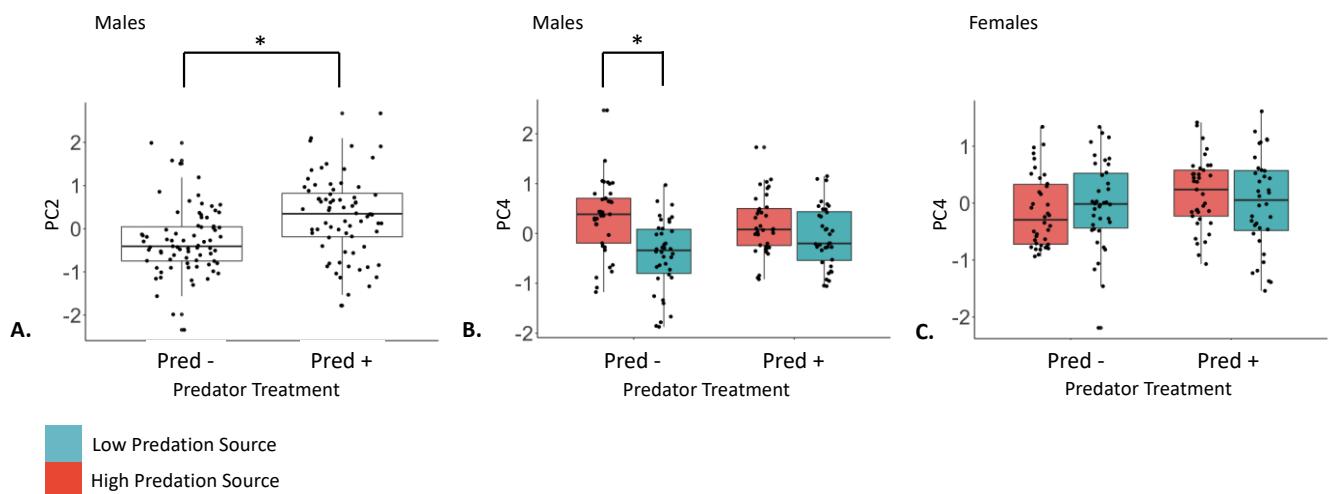


561

562 Figure 5. Box plots showing female guppy body mass (g) across social treatments (panel A) and
 563 predator treatments (panel B). Source habitat in panel B is represented by red (HP) and blue (LP)
 564 color. Statistical significance indices (based on mixed-effects models) in black indicate simple

565 differences between social treatments. Boxes show median and interquartile range (25th to 75th),
 566 and whiskers show the data range. Dots show individual data points.

567


568

569 Figure 6. Correlation matrices showing Pearson correlation coefficients between the volumes of
 570 five brain regions (CB: Cerebellum, OT: Optic Tectum, Tel: Telencephalon, OB: Olfactory Bulb,
 571 Hyp: Hypothalamus) for male (panel A) and female (panel B) guppies.

572

573

574

575

576

577 Figure 7. Box plots showing male (panels A and B) and female (panel C) guppy brain region
 578 principal components compared across predator treatments. Source habitat in panels B and C is
 579 represented by red (HP) and blue (LP) colours. Statistical significance indices (based on mixed-

580 effects models) in black in panel A and B indicate simple differences between predator
581 treatments or source populations. Significance indices in color in panel B indicate that
582 differences between predator treatments occur only in the designated source habitat. Boxes show
583 median and interquartile range (25th to 75th), and whiskers show the data range. Dots show
584 individual data points.

585
586
587
588
589

590 References

- 592 1. Schlichting, C.D., and Pigliucci, M. (1998). Phenotypic evolution: a reaction norm
593 perspective. Sinauer Associates.
- 594 2. Yeh, P.J., Price, T.D., and Huey, A.E.R.B. (2004). Adaptive Phenotypic Plasticity and the
595 Successful Colonization of a Novel Environment. *The American Naturalist* *164*, 531–542.
596 10.1086/423825.
- 597 3. Muschick, M., Barluenga, M., Salzburger, W., and Meyer, A. (2011). Adaptive phenotypic
598 plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation.
599 *BMC Evolutionary Biology* *11*, 116–127. 10.1186/1471-2148-11-116.
- 600 4. Rohner, P.T., and Moczek, A.P. (2020). Rapid differentiation of plasticity in life history and
601 morphology during invasive range expansion and concurrent local adaptation in the horned
602 beetle *Onthophagus taurus*. *Evolution* *evo.14045*. 10.1111/evo.14045.
- 603 5. Robinson, B.W., and Dukas, R. (1999). The Influence of phenotypic modifications on
604 evolution: the baldwin effect and modern perspectives. *Oikos* *85*, 582–589.
605 10.2307/3546709.
- 606 6. West-Eberhard, M.J. (2003). Developmental plasticity and evolution. Oxford University
607 Press.
- 608 7. Levis, N.A., and Pfennig, D.W. (2016). Evaluating “plasticity-first” evolution in nature: key
609 criteria and empirical approaches. *Trends in Ecology and Evolution* *31*, 563–574.
610 10.1016/j.tree.2016.03.012.
- 611 8. Axelrod, C.J., Gordon, S.P., and Carlson, B.A. (2023). Integrating neuroplasticity and
612 evolution. *Current Biology* *33*, R288–R293. 10.1016/j.cub.2023.03.002.
- 613 9. Kotrschal, A., Rogell, B., Bundsen, A., Svensson, B., Zajitschek, S., Bränström, I., Immel, S.,
614 Maklakov, A.A., and Kolm, N. (2013). Artificial selection on relative brain size in the
615 guppy reveals costs and benefits of evolving a larger brain. *Current Biology* *23*, 168–171.
616 10.1016/j.cub.2012.11.058.

617 10. Triki, Z., Fong, S., Amcoff, M., and Kolm, N. (2022). Artificial mosaic brain evolution of
618 relative telencephalon size improves inhibitory control abilities in the guppy (*Poecilia*
619 *reticulata*). *Evolution* *76*, 128–138. 10.1111/evo.14405.

620 11. Walsh, M.R., Broyles, W., Beston, S.M., and Munch, S.B. (2016). Predator-driven brain size
621 evolution in natural populations of Trinidadian killifish (*Rivulus hartii*). *Proceeds of the*
622 *Royal Society B* *283*, 20161075. 10.1098/rspb.2016.1075.

623 12. Mitchell, D.J., Vega-Trejo, R., and Kotrschal, A. (2020). Experimental translocations to low
624 predation lead to non-parallel increases in relative brain size. *Biology Letters* *16*, 20190654.
625 10.1098/rsbl.2019.0654.

626 13. Diamond, M.C., Law, F., Rhodes, H., Lindner, B., Rosenzweig, M.R., Krech, D., and
627 Bennett, E.L. (1966). Increases in cortical depth and glia numbers in rats subjected to
628 enriched environment. *Journal of Comparative Neurology* *128*, 117–125.
629 10.1002/cne.901280110.

630 14. Gonda, A., Herczeg, G., and Merilä, J. (2011). Population variation in brain size of nine-
631 spined sticklebacks (*Pungitius pungitius*) - local adaptation or environmentally induced
632 variation? *BMC Evolutionary Biology*; London *11*, 75. 10.1186/1471-2148-11-75.

633 15. Reddon, A.R., Chouinard-Thuly, L., Leris, I., and Reader, S.M. (2018). Wild and laboratory
634 exposure to cues of predation risk increases relative brain mass in male guppies. *Functional*
635 *Ecology* *32*, 1847–1856. <https://doi.org/10.1111/1365-2435.13128>.

636 16. Eifert, C., Farnworth, M., Schulz-Mirbach, T., Riesch, R., Bierbach, D., Klaus, S., Wurster,
637 A., Tobler, M., Streit, B., Indy, J.R., et al. (2015). Brain size variation in extremophile fish:
638 local adaptation versus phenotypic plasticity: Brain size variation in extremophile fish.
639 *Journal of Zoology* *295*, 143–153. 10.1111/jzo.12190.

640 17. Kotrschal, A., Rogell, B., Maklakov, A.A., and Kolm, N. (2012). Sex-specific plasticity in
641 brain morphology depends on social environment of the guppy, *Poecilia reticulata*. *Behavior,*
642 *Ecology, and Sociobiology* *66*, 1485–1492. 10.1007/s00265-012-1403-7.

643 18. Burns, J.G., Saravanan, A., and Rodd, F.H. (2009). Rearing environment affects the brain
644 size of guppies: lab-reared guppies have smaller brains than wild-caught guppies. *Ethology*
645 *115*, 122–133. <https://doi.org/10.1111/j.1439-0310.2008.01585.x>.

646 19. Herczeg, G., Gonda, A., Balázs, G., Noreikiene, K., and Merilä, J. (2015). Experimental
647 evidence for sex-specific plasticity in adult brain. *Frontiers in Zoology* *12*, 38.
648 10.1186/s12983-015-0130-0.

649 20. Fong, S., Buechel, S.D., Boussard, A., Kotrschal, A., and Kolm, N. (2019). Plastic changes
650 in brain morphology in relation to learning and environmental enrichment in the guppy
651 (*Poecilia reticulata*). *Journal of Experimental Biology* *222*. 10.1242/jeb.200402.

652 21. Zupanc, G.K.H. (2006). Neurogenesis and neuronal regeneration in the adult fish brain.
653 *Journal of Comparative Physiology A* *192*, 649. 10.1007/s00359-006-0104-y.

654 22. Kaslin, J., Ganz, J., and Brand, M. (2008). Proliferation, neurogenesis and regeneration in the
655 non-mammalian vertebrate brain. *Philosophical Transactions of the Royal Society of London*
656 B 363, 101–122. 10.1098/rstb.2006.2015.

657 23. Striedter, G.F. (2005). *Principles of brain evolution*. Sinauer Associates.

658 24. Benson-Amram, S., Dantzer, B., Stricker, G., Swanson, E.M., and Holekamp, K.E. (2016).
659 Brain size predicts problem-solving ability in mammalian carnivores. *Proceedings of the*
660 *National Academy of Sciences* 113, 2532–2537. 10.1073/pnas.1505913113.

661 25. MacLean, E.L., Hare, B., Nunn, C.L., Addessi, E., Amici, F., Anderson, R.C., Aureli, F.,
662 Baker, J.M., Bania, A.E., Barnard, A.M., et al. (2014). The evolution of self-control.
663 *Proceedings of the National Academy of Sciences* 111, E2140–E2148.
664 10.1073/pnas.1323533111.

665 26. Buechel, S.D., Boussard, A., Kotrschal, A., van der Bijl, W., and Kolm, N. (2018). Brain size
666 affects performance in a reversal-learning test. *Proceedings of the Royal Society B*. 285,
667 20172031. 10.1098/rspb.2017.2031.

668 27. Herczeg, G., Urszán, T.J., Orf, S., Nagy, G., Kotrschal, A., and Kolm, N. (2019). Brain size
669 predicts behavioural plasticity in guppies (*Poecilia reticulata*): An experiment. *Journal of*
670 *Evolutionary Biology* 32, 218–226. 10.1111/jeb.13405.

671 28. Kotrschal, A., Corral-Lopez, A., Szidat, S., and Kolm, N. (2015). The effect of brain size
672 evolution on feeding propensity, digestive efficiency, and juvenile growth. *Evolution* 69,
673 3013–3020. 10.1111/evo.12784.

674 29. Corral-López, A., Bloch, N.I., Kotrschal, A., van der Bijl, W., Buechel, S.D., Mank, J.E., and
675 Kolm, N. (2017). Female brain size affects the assessment of male attractiveness during mate
676 choice. *Scientific Advances* 3, e1601990. 10.1126/sciadv.1601990.

677 30. Corral-López, A., Romensky, M., Kotrschal, A., Buechel, S.D., and Kolm, N. (2020). Brain
678 size affects responsiveness in mating behaviour to variation in predation pressure and sex
679 ratio. *Journal of Evolutionary Biology* 33, 165–177. 10.1111/jeb.13556.

680 31. Herculano-Houzel, S., and Lent, R. (2005). Isotropic fractionator: a simple, rapid method for
681 the quantification of total cell and neuron numbers in the brain. *Journal of Neuroscience*. 25,
682 2518–2521. 10.1523/JNEUROSCI.4526-04.2005.

683 32. Marhounová, L., Kotrschal, A., Kverková, K., Kolm, N., and Němec, P. (2019). Artificial
684 selection on brain size leads to matching changes in overall number of neurons. *Evolution*
685 73, 2003–2012. 10.1111/evo.13805.

686 33. Aiello, L.C., and Wheeler, P. (1995). The expensive-tissue hypothesis: the brain and the
687 digestive system in human and primate evolution. *Current Anthropology* 36, 199–221.

688 34. Isler, K., and van Schaik, C.P. (2006). Metabolic costs of brain size evolution. *Biology*
689 Letters 2, 557–560. 10.1098/rsbl.2006.0538.

690 35. Niven, J.E., and Laughlin, S.B. (2008). Energy limitation as a selective pressure on the
691 evolution of sensory systems. *Journal of Experimental Biology* *211*, 1792–1804.
692 10.1242/jeb.017574.

693 36. Sukhum, K.V., Freiler, M.K., Wang, R., and Carlson, B.A. (2016). The costs of a big brain:
694 extreme encephalization results in higher energetic demand and reduced hypoxia tolerance in
695 weakly electric African fishes. *Proceedings of the Royal Society B* *283*, 20162157.
696 10.1098/rspb.2016.2157.

697 37. Gonzalez-Voyer, A., and Kolm, N. (2010). Sex, ecology and the brain: evolutionary
698 correlates of brain structure volumes in tanganyikan cichlids. *PLoS ONE* *5*, e14355.
699 10.1371/journal.pone.0014355.

700 38. Huber, R., van Staaden, M.J., Kaufman, L.S., and Liem, K.F. (1997). Microhabitat use,
701 trophic patterns, and the evolution of brain structure in African cichlids. *Brain, Behavior, and
702 Evolution* *50*, 167–182. 10.1159/000113330.

703 39. Kotrschal, K., Van Staaden, M.J., and Huber, R. (1998). Fish brains: evolution and
704 environmental relationships. *Reviews in Fish Biology and Fisheries* *8*, 373–408.
705 10.1023/A:1008839605380.

706 40. Pollen, A.A., Dobberfuhl, A.P., Scace, J., Igulu, M.M., Renn, S.C.P., Shumway, C.A., and
707 Hofmann, H.A. (2007). Environmental complexity and social organization sculpt the brain in
708 lake tanganyikan cichlid fish. *Brain, Behavior, and Evolution* *70*, 21–39.
709 10.1159/000101067.

710 41. Hoops, D., Ullmann, J.F.P., Janke, A.L., Vidal-Garcia, M., Stait-Gardner, T., Dwihapsari,
711 Y., Merkling, T., Price, W.S., Endler, J.A., Whiting, M.J., et al. (2017). Sexual selection
712 predicts brain structure in dragon lizards. *Journal of Evolutionary Biology* *30*, 244–256.
713 10.1111/jeb.12984.

714 42. Sukhum, K.V., Shen, J., and Carlson, B.A. (2018). Extreme enlargement of the cerebellum in
715 a clade of teleost fishes that evolved a novel active sensory system. *Current Biology* *28*,
716 3857-3863.e3. 10.1016/j.cub.2018.10.038.

717 43. Schumacher, E.L., and Carlson, B.A. (2022). Convergent mosaic brain evolution is
718 associated with the evolution of novel electrosensory systems in teleost fishes. *eLife* *11*,
719 e74159. 10.7554/eLife.74159.

720 44. Gonda, A., Herczeg, G., and Merilä, J. (2009). Habitat-dependent and -independent plastic
721 responses to social environment in the nine-spined stickleback (*Pungitius pungitius*) brain.
722 *Proceedings: Biological Sciences* *276*, 2085–2092.

723 45. Axelrod, C.J., Laberge, F., and Robinson, B.W. (2020). Isolating the effects of ontogenetic
724 niche shift on brain size development using pumpkinseed sunfish ecotypes. *Evolution &
725 Development*, ede.12333. 10.1111/ede.12333.

726 46. Bennett, P.M., and Harvey, P.H. (1985). Relative brain size and ecology in birds. *Journal of*
727 *Zoology* 207, 151–169. 10.1111/j.1469-7998.1985.tb04920.x.

728 47. Shumway, C.A. (2008). Habitat complexity, brain, and behavior. *Brain, Behavior, and*
729 *Evolution* 72, 123–134. 10.1159/000151472.

730 48. Axelrod, C.J., Laberge, F., and Robinson, B.W. (2018). Intraspecific brain size variation
731 between coexisting sunfish ecotypes. *Proceedings of the Royal Society B* 285, 20181971.
732 10.1098/rspb.2018.1971.

733 49. Sol, D. (2009). Revisiting the cognitive buffer hypothesis for the evolution of large brains.
734 *Biology Letters* 5, 130–133. 10.1098/rsbl.2008.0621.

735 50. Sol, D., Duncan, R.P., Blackburn, T.M., Cassey, P., and Lefebvre, L. (2005). Big brains,
736 enhanced cognition, and response of birds to novel environments. *Proceedings of the*
737 *National Academy of Sciences* 102, 5460–5465. 10.1073/pnas.0408145102.

738 51. Schuck-Paim, C., Alonso, W.J., and Ottoni, E.B. (2008). Cognition in an ever-changing
739 world: climatic variability Is associated with brain size in neotropical parrots. *Brain,*
740 *Behavior, and Evolution* 71, 200–215. 10.1159/000119710.

741 52. Lefebvre, L., Reader, S.M., and Sol, D. (2004). Brains, innovations and evolution in birds
742 and primates. *BBE* 63, 233–246. 10.1159/000076784.

743 53. Axelrod, C.J., Gordon, S.P., and Carlson, B.A. (2023). Integrating neuroplasticity and
744 evolution. *Current Biology* 33, R288–R293. 10.1016/j.cub.2023.03.002.

745 54. Via, S., and Lande, R. (1985). Genotype-environment interaction and the evolution of
746 phenotypic plasticity. *Evolution* 39, 505–522. 10.2307/2408649.

747 55. Mallard, F., Nolte, V., and Schlötterer, C. (2020). The Evolution of phenotypic plasticity in
748 response to temperature stress. *Genome Biology and Evolution* 12, 2429–2440.
749 10.1093/gbe/eva206.

750 56. Crispo, E., and Chapman, L.J. (2010). Geographic variation in phenotypic plasticity in
751 response to dissolved oxygen in an African cichlid fish. *Journal of Evolutionary Biology* 23,
752 2091–2103. 10.1111/j.1420-9101.2010.02069.x.

753 57. Gonda, A., Välimäki, K., Herczeg, G., and Merilä, J. (2012). Brain development and
754 predation: plastic responses depend on evolutionary history. *Biology Letters* 8, 249–252.
755 10.1098/rsbl.2011.0837.

756 58. Axelrod, C.J., Robinson, B.W., and Laberge, F. (2022). Evolutionary divergence in
757 phenotypic plasticity shapes brain size variation between coexisting sunfish ecotypes.
758 *Journal of Evolutionary Biology* n/a. 10.1111/jeb.14085.

759 59. Endler, J.A. (1995). Multiple-trait coevolution and environmental gradients in guppies.
760 *Trends in Ecology and Evolution* 10, 22–29. 10.1016/s0169-5347(00)88956-9.

761 60. Reznick, D.N., Rodd, F.H., and Cardenas, M. (1996). Life-history evolution in guppies
762 (*Poecilia reticulata*: *Poeciliidae*). IV. parallelism in life-history phenotypes. *The American
763 Naturalist* *147*, 319–338.

764 61. Burns, J.G., and Rodd, F.H. (2008). Hastiness, brain size and predation regime affect the
765 performance of wild guppies in a spatial memory task. *Animal Behaviour* *76*, 911–922.
766 10.1016/j.anbehav.2008.02.017.

767 62. Houde, A. (1997). Sex, color, and mate choice in guppies. Princeton University Press.

768 63. Endler, J.A., and Houde, A.E. (1995). Geographic variation in female preferences for male
769 traits in *Poecilia reticulata*. *Evolution* *49*, 456–468. 10.2307/2410270.

770 64. White, G.E., and Brown, C. (2015). Variation in brain morphology of intertidal gobies: a
771 comparison of methodologies used to quantitatively assess brain volumes in fish. *BBE* *85*,
772 245–256. 10.1159/000398781.

773 65. Ullmann, J.F.P., Cowin, G., and Collin, S.P. (2010). Quantitative assessment of brain
774 volumes in fish: comparison of methodologies. *Brain, Behavior, and Evolution* *76*, 261–270.
775 10.1159/000321467.

776 66. Yang, Y., Axelrod, C.J., Grant, E., Earl, S.R., Urquhart, E.M., Talbert, K., Johnson, L.E.,
777 Walker, Z., Hsiao, K., Stone, I., et al. Evolutionary divergence of developmental plasticity
778 and learning of mating tactics in Trinidadian guppies. *Journal of Animal Ecology* *n/a*.
779 10.1111/1365-2656.14043.

780 67. Ahmed, N.I., Thompson, C., Bolnick, D.I., and Stuart, Y.E. (2017). Brain morphology of the
781 threespine stickleback (*Gasterosteus aculeatus*) varies inconsistently with respect to habitat
782 complexity: A test of the Clever Foraging Hypothesis. *Ecology and Evolution* *7*, 3372–3380.
783 10.1002/ece3.2918.

784 68. Kotrschal, A., Deacon, A.E., Magurran, A.E., and Kolm, N. (2017). Predation pressure
785 shapes brain anatomy in the wild. *Evolutionary Ecology* *31*, 619–633. 10.1007/s10682-017-
786 9901-8.

787 69. Kotrschal, A., Buechel, S.D., Zala, S.M., Corral-Lopez, A., Penn, D.J., and Kolm, N. (2015).
788 Brain size affects female but not male survival under predation threat. *Ecology Letters* *18*,
789 646–652. <https://doi.org/10.1111/ele.12441>.

790 70. Samuk, K., Xue, J., and Rennision, D.J. (2018). Exposure to predators does not lead to the
791 evolution of larger brains in experimental populations of threespine stickleback. *Evolution*
792 *72*, 916–929.

793 71. Dunbar, R.I.M., and Shultz, S. (2007). Evolution in the social brain. *Science* *317*, 1344–
794 1347. 10.1126/science.1145463.

795 72. De Meester, G., Huyghe, K., and Van Damme, R. (2019). Brain size, ecology and sociality: a
796 reptilian perspective. *Biological Journal of the Linnean Society* *126*, 381–391.
797 10.1093/biolinnean/bly206.

798 73. DePasquale, C., Neuberger, T., Hirrlinger, A.M., and Braithwaite, V.A. (2016). The
799 influence of complex and threatening environments in early life on brain size and behaviour.
800 *Proceedings of the Royal Society B* *283*. 10.1098/rspb.2015.2564.

801 74. Jenkins, M.R., Cummings, J.M., Cabe, A.R., Hulthén, K., Peterson, M.N., and Langerhans,
802 R.B. (2021). Natural and anthropogenic sources of habitat variation influence exploration
803 behaviour, stress response, and brain morphology in a coastal fish. *Journal of Animal
804 Ecology* *90*, 2446–2461. 10.1111/1365-2656.13557.

805 75. Park, P.J., and Bell, M.A. (2010). Variation of telencephalon morphology of the threespine
806 stickleback (*Gasterosteus aculeatus*) in relation to inferred ecology. *Journal of Evolutionary
807 Biology* *23*, 1261–1277. 10.1111/j.1420-9101.2010.01987.x.

808 76. Costa, S.S., Andrade, R., Carneiro, L.A., Gonçalves, E.J., Kotrschal, K., and Oliveira, R.F.
809 (2011). Sex differences in the dorsolateral telencephalon correlate with home range size in
810 blenniid fish. *Brain, Behavior, and Evolution* *77*, 55–64. 10.1159/000323668.

811 77. Laberge, F., and Hara, T.J. (2001). Neurobiology of fish olfaction: a review. *Brain Research
812 Reviews* *36*, 46–59. 10.1016/s0165-0173(01)00064-9.

813 78. O'Connell, L.A., and Hofmann, H.A. (2012). Evolution of a vertebrate social decision-
814 making Network. *Science* *336*, 1154–1157. 10.1126/science.1218889.

815 79. Gordon, S.P., Hendry, A.P., and Reznick, D.N. (2017). Predator-induced contemporary
816 evolution, phenotypic plasticity, and the evolution of reaction norms in guppies. *cope* *105*,
817 514–522. 10.1643/CE-16-522.

818 80. Torres-Dowdall, J., Handelsman, C.A., Reznick, D.N., and Ghalambor, C.K. (2012). Local
819 adaptation and the evolution of phenotypic plasticity in trinidadian guppies (*Poecilia
820 reticulata*). *Evolution* *66*, 3432–3443. 10.1111/j.1558-5646.2012.01694.x.

821 81. Buchanan, K.L., Grindstaff, J.L., and Pravosudov, V.V. (2013). Condition-dependence,
822 developmental plasticity, and cognition: implications for ecology and evolution. *Trends in
823 Ecology and Evolution* *28*, 290–296. 10.1016/j.tree.2013.02.004.

824 82. Hangartner, S., Sgrò, C.M., Connallon, T., and Booksmythe, I. (2022). Sexual dimorphism in
825 phenotypic plasticity and persistence under environmental change: An extension of theory
826 and meta-analysis of current data. *Ecology Letters* *25*, 1550–1565. 10.1111/ele.14005.

827 83. Rodd, F.H., Reznick, D.N., and Sokolowski, M.B. (1997). Phenotypic plasticity in the life
828 history traits of guppies: responses to social environment. *Ecology* *78*, 419–433.
829 10.1890/0012-9658(1997)078[0419:PPITLH]2.0.CO;2.

830 84. R Core Team. (2021). R: A language and environment for statistical computing. R
831 Foundation for Statistical Computing, Vienna, Austria. URL: <https://www.R-project.org>.
832
833 85. Bates D, Mächler M, Bolker B, Walker S (2015). Fitting Linear Mixed-Effects Models Using
834 *lme4*. *Journal of Statistical Software*, **67**(1), 1–48. doi:10.18637/jss.v067.i01.
835
836 86. Russell V. Lenth (2022). *emmeans*: Estimated Marginal Means, aka Least-Squares Means. R
837 package version 1.7.3. <https://CRAN.R-project.org/package=emmeans>.
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855