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Abstract9

We study a reaction-diffusion equation that describes the growth of a population with a strong10

Allee effect in a bounded habitat which shifts at a speed c > 0. We demonstrate that the existence11

of forced positive traveling waves depends on habitat size L, and c∗, the speed of traveling wave12

for the corresponding reaction-diffusion equation with the same growth function all over the entire13

unbounded spatial domain. It is shown that for c∗ > c > 0 there exists a positive number L∗(c)14

such that for L > L∗(c) there are two positive traveling waves and for L < L∗(c) there is no positive15

traveling wave. It is also shown if c > c∗ for any L > 0 there is no positive traveling wave. The16

dynamics of the equation are further explored through numerical simulations.17

1 Introduction18

Climate change has resulted in poleward and upslope range shifts in many species across the globe, and19

it becomes important whether or not species maintain in their current ranges (Parmesan and Yohe [36],20

Parmesan [37], Walther et al. [43]). Species may respond to climate change by shifting their distribution21

or phenology, acclimating or adapting to changes; however the inability to sufficiently adapt will result22

in extinction (Aitken et al. [1], Cleland et al. [11], Valladares et al. [42]). Species potential to successfully23

adapt or shift distributions in response to climate change depends on a host of factors, such as the speed24

and variability of changing conditions, species’ dispersal abilities, characteristics of a species climatic25

niche and species interactions. Several reaction-diffusion models have been developed to explore species26

persistence using shifting boundary conditions or shifting growth functions (Berestycki et al. [7], Li et27

al. [24], MacDonald and Lutscher [31], Potapov and Lewis [39]).28

The early work by Potapov and Lewis [39] conceptualized the shifting suitable habitat of a species.29

The single-species version of their model takes the form30

ut = uxx + f(u, x− ct), (1.1)

with31

f(u, z) =

{
g(u) if 0 ≤ z ≤ L,
−ru, if z < 0 or z > L.

(1.2)

Here u(x, t) is the density of a population at location x and time t, f(u, x−ct) describes the population32

growth at point x at time t, c is the speed at which the habitat shifts, L and r are positive constants,33

and g satisfies g(0) = g(1) = 0 and g(u) > 0 on (0, 1). g(u) exhibits monostability, and a prototype34

example is g(u) = u(1 − u). In this model the population grows in the interval [0, L] and declines35

outside this interval. Berestycki et al. [7] provided the critical length of L and showed that for L36

above the critical length equation (1.1) has a globally attracting nontrivial forced traveling wave with37

speed c. The authors extended the results to a general class of equations by studying the eigenvalue38

problem of a linearized system. MacDonald and Lutscher [31] extended the results in [7] by including39

individual movement behavior at habitat edges. Piecewise growth functions similar to (1.2) have been40

also used to study promotion zones and barrier zones for species persistence and spread in heterogeneous41

environments (Du et al. [15] and Li et al. [27]).42

The equation (1.1) has also been investigated for f(u, x) in other forms different from (1.2). Li et43

al. [24] and Hu et al. [13] considered spreading speeds for (1.1) where f(u, x−ct) = u(s(x−ct)−u) and44

s(x) is a nondecreasing function for −∞ < x <∞. Bouhours and Giletti [9] studied the spreading and45

vanishing dynamics for a general two-dimensional reaction-diffusion equation which includes f(u, x −46
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ct) = u(s(x− ct)− u) as a special case. Berestycki and Fang [8] established the existence and stability47

of traveling waves for a one-dimensional reaction-diffusion equation with a general nonlinear growth48

function f(x − ct, u). The results in [8] allow both s(∞) and s(−∞) to have same sign in the case of49

f(x−ct, u) = u(s(x−ct)−u). For more results regarding traveling waves for reaction-diffusion equations50

with a shifting habitat, the reader is referred to Berestycki et al. [7], Berestycki and Rossi [5, 6],51

Hamel [19], Hamel and Roques [20], and Fang et al. [16]. Mathematical models have been developed52

in other forms that are used to describe species development in shifting habitats; see, for example,53

Zhou and Kot [45], Li et al. [25, 27], and Li et al. [29], where integro-difference equations and integro-54

differential equations are involved.55

The aforementioned papers assume no Allee effect in species growth. An Allee effect arises when56

the per-capita birth rate increases at lower population densities, and a strong Allee effect is an Allee57

effect with a critical population density [2, 35]. There are cases where Allee effects occur when species58

distributions shift in response to climate change (Livshultz et al. [30], Samuel and Chandler [40], Shanks59

et al. [41], Wood et al. [44]). It is of great interest to explore the population dynamics of species with60

a strong Allee effect in a shifting habitat. In this paper we study (1.1) and (1.2) where g has a strong61

Allee effect, i.e., bistability. The reaction-diffusion equation62

ut = uxx + g(u), −∞ < x <∞, (1.3)

with g(u) exhibiting bistability has been well studied (see Fife [17] and references cited therein). It is63

well-known that there exists a real number c∗ which is the unique speed of traveling waves connecting64

zero to the carrying capacity, and the sign of c∗ is the same as that of the integral of g(u) from zero65

to the carrying capacity. c∗ can be calculated using variation techniques (Benguria and Depassier [4])66

when it is positive.67

In this paper, we study whether or not a species governed by (1.1) with (1.2) and a strong Allee68

effect can keep pace with a shifting habitat. We find that the wave speed c∗ and the habit shift speed69

c both play important roles in determining species persistence. We particularly establish the existence70

forced positive traveling waves. A positive traveling wave is a nonnegative traveling wave which is not71

uniformly zero valued. We show that if c∗ > c > 0 there exists a positive number L∗(c) such that for72

L > L∗(c) there are two positive traveling waves and for L < L∗(c) there is no positive traveling wave,73

and if c > c∗ for any L > 0 there is no positive traveling wave. We provide numerical simulations74

to further examine the behavior of the system. Our numerical results demonstrate that the larger75

traveling wave attracts solutions with proper initial data so that persistence takes place, and in case of76

no traveling wave, solutions approach zero and extinction occurs.77

This paper is organized as follows. The analytical results regarding the existence of traveling waves78

are presented in Section 2. The numerical simulations are given in Section 3. Some concluding remarks79

are provided in Section 4.80

2 Main results81

We begin with the following hypotheses to address the presence of a strong Allee effect in g:82

Hypotheses 2.1.83

i. g(u) ∈ C1[0, 1], g(0) = g(1) = 0, g′(0) < 0, g′(1) < 0, and there is a number a such that 0 < a < 1,84

g(a) = 0, g(u) < 0 on (0, a), and g(u) > 0 on (a, 1).85
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ii. g′(0) > −r.86

Hypotheses 2.1 (i) indicates that g(u) exhibits a strong Allee effect with a the Allee threshold87

and 1 the (scaled) carrying capacity. A protype example is g(u) = u(u − a)(1 − u) with 0 < a < 1.88

Hypotheses 2.1 (ii) assumes that the population decay rate at low densities in the moving patch is89

less than that outside the patch. Biologically this means the environment outside the growth zone is90

harsher than that inside the patch. We shall consider c > 0 as the case of c < 0 can be treated in a91

similar way.92

The function f(u, x) is discontinuous at x = 0, L. Following Berestycki et al. [7], we seek traveling93

wave solutions for (1.1), which are globally of class C1 (indeed, to guarantee that diffusion conserves94

mass, the flux ux should be continuous [7]) and piecewise of class C2 and satisfy the equation at each95

point with x 6= 0, L. It is known that the problem of (1.1) with appropriate initial data u(x, 0) has a96

unique, globally defined, solution u = u(x, t), which, as a function of x has such smoothness (Berestycki97

et al. [7] and Du et al. [15]). Berestycki et al. [7] determined the critical patch size and established98

the existence of a positive traveling wave for g(u) = r̃u(1 − u
k̃
) with r̃ > 0 and k̃ > 0 by glueing99

phase portraits. There is long history of using phase portrait analysis to study traveling waves; see100

for example Fife [17] and references cited therein. For some recent work on phase portrait analysis for101

systems with a strong Allee effect and stationary habitat, the reader may refer to Pouchol et al. [38]102

and Li et al. [27, 28].103

We have the following proposition (see Fife [17]).104

Proposition 2.1. Assume that Hypotheses 2.1 (i) is satisfied. Then the equation (1.3) has a unique105

nonincreasing traveling wave solution (up to translation) u(x, t) = w∗(x − c∗t) with w∗(−∞) = 1 and106

w∗(∞) = 0. Furthermore, c∗ > 0 if and only if
∫ 1

0 g(u)du > 0, c∗ = 0 if and only if
∫ 1

0 g(u)du = 0, and107

c∗ < 0 if and only if
∫ 1

0 g(u)du < 0.108

For g(u) = u(u− a)(1− u), the unique traveling wave speed is c∗ =
1− 2a√

2
(see Hadeler and Rothe

[18] and Nagumo et al. [34]). In general for
∫ 1

0 g(u)du > 0 (i.e., c∗ > 0), c∗ can be obtained using the
following variational formula given by Benguria and Depassier [4]:

(c∗)2 = max
h(u)∈C1[0,1],h′(u)<0

{ 2
∫ 1

0 g(u)h(u)du∫ 1
0 (−h2(u)/h′(u))du

}
.

A traveling wave u(x, t) = w(x− ct) for (1.3) satisfies109

w′′(z) + cw′(z) + g(w(z)) = 0, (2.1)

with z = x− ct. This is equivalent to the planar system110

w′ = v,
v′ = −cv − g(w).

(2.2)

Phase plane analysis for the existence of a traveling wave for (2.2) can be found in [17]. We further111

analyze (2.2) in order to study traveling waves for (1.1) with (1.2). System (2.2) has three equilibria112

4



(0, 0), (a, 0) and (1, 0). For c ≥ 0, both (0, 0) and (1, 0) are saddles. For convenience, we use Sc0 and U c0113

to denote the stable and unstable manifolds of (0, 0) corresponding to c for 0 < w < 1, respectively, and114

use Sc1 and U c1 to denote the stable and unstable manifolds of (1, 0) corresponding to c for 0 < w < 1,115

respectively.116

The Jacobian matrix of (2.2) is

J =

(
0 1

−g′(w) −c

)
.

At (0, 0) the eigenvalues are λ±0 =
−c±
√
c2−4g′(0)

2 . The corresponding eigenvectors are given by

(
1
λ±0

)
.117

At (1, 0) the eigenvalues are λ+
1 =

−c±
√
c2−4g′(1)

2 , and the corresponding eigenvectors are given by118 (
1
λ±1

)
. Clearly, λ+

0 > 0, λ+
1 > 0, λ−0 < 0, and λ−1 < 0. All the eigenvalues λ±0 and λ±1 decrease in c.119

Note that here a stable or unstable manifold of an equilibrium is tangent to the line passing through the120

equilibrium with the slope determined by the corresponding eigenvector. These lead to the following121

lemma.122

Lemma 2.1. Assume that Hypotheses 2.1 hold and c ≥ 0. We have the following statements for (2.2):123

i. Near (0, 0), Sc0 lies below the w-axis and U c0 lies above the w-axis. Furthermore for c2 > c1 ≥ 0,124

near (0, 0), Sc20 is below Sc10 and U c20 is below U c10 .125

ii. Near (1, 0), Sc1 lies above the w-axis and U c1 lies below the w-axis. Furthermore for c2 > c1 ≥ 0,126

near (1, 0), Sc21 is above Sc11 and U c21 is above U c10 .127

Lemma 2.2. Assume that Hypotheses 2.1 hold. We have the following statements for (2.2):128

i. If c2 > c1 ≥ 0, Sc20 is below Sc10 whenever v < 0, and U c20 is below U c10 whenever v > 0.129

ii. If c2 > c1 ≥ 0, Sc21 is above Sc11 whenever v > 0, and U c21 is above U c11 whenever v < 0.130

Proof. The proof of the statement (i) is similar to that of Lemma 4.14 in Fife [17] (also see Kanel’ [21]).131

For the sake of completeness, we provide the proof here. When v 6= 0, v can be viewed as a function of132

w, and133

dv

dw
= −c− g(w)

v
. (2.3)

Let v = v1(w) represent Sc10 and v = v2(w) represent Sc20 for v < 0. In view of Lemma 2.1 (i), we
choose w0 to be a small positive number such that v1(w) > v2(w) for 0 < w ≤ w0. From (2.3),

dv1(w)

dw
− dv2(w)

dw
− g(w)

v1v2
(v1 − v2) = −(c1 − c2),

so that for
D(w) = (v1(w)− v2(w))e

∫ w
w0

(−g(y)/(v1(y)v2(y)))dy
,

we have134

dD(w)

dw
= (c2 − c1)e

∫ w
w0

(−g(y)/(v1(y)v2(y)))dw
. (2.4)
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Since dD(w)
dw > 0 and v1(w0) − v2(w0) > 0, the function D(w) increases for w > w0 and thus is135

positive whenever w > w0, v1 < 0 and v2 < 0. It follows that v1(w) > v2(w) whenever w > w0,136

v1(w) < 0 and v2(w) < 0. This proves the first part of statement (i). The proof of the second part of137

statement (i) is similar and omitted.138

We next let v = v1(w) represent Sc11 and v = v2(w) represent Sc21 for v > 0. In view of Lemma 2.1 (ii),139

we choose w0 to be a positive number close to but less than 1 so that v1(w) < v2(w) for w0 ≤ w < 1.140

(2.4) still holds with these v1 and v2. Since D(w) increases for w < w0, v1(w) < v2(w) whenever141

w0 > w ≥ 0, v1(w) > 0, and v2(w) > 0. This proves the first part of statement (ii). The proof of the142

second part of statement (ii) is similar and omitted.143

Lemma 2.3. Assume that Hypotheses 2.1 hold. Let c2 > c1 ≥ 0. Let v = v1(w) and v = v2(w) be the144

two solutions of (2.3) corresponding to ci, respectively. Let w0 be a number such that 1 > w0 > 0.145

i. If v1(w0) ≥ v2(w0) > 0 then v1(w) > v2(w) whenever 1 > w > w0, v1(w) > 0 and v2(w) > 0.146

ii. If 0 > v1(w0) ≥ v2(w0) then v1(w) > v2(w) whenever 1 > w > w0, v1(w) < 0 and v2(w) < 0.147

The proof of this lemma is similar to that of Lemma 2.2 and is omitted.148

When c = 0, the system (2.2) becomes149

w′ = v,
v′ = −g(w),

(2.5)

so that for v 6= 0,
dv

dw
= −g(w)

v
.

This system is integrable, and
1

2
v2 = −

∫
g(w)dw.

Assume
∫ 1

0 g(u)du > 0. S0
0 coincides with U0

0 between 0 < w < 1 forming a homoclinic orbit given by

S0
0 and U0

0 :
1

2
v2 = −

∫ w

0
g(s)ds.

S0
1 and U0

1 between 0 < w < 1 are given by

S0
1 : v =

√
2

∫ 1

w
g(s)ds; U0

1 : v = −

√
2

∫ 1

w
g(s)ds.

See Fig. 1 (a) for a graphical description of S0
0 , U0

0 , S0
1 , and U0

1 . In this figure B is the unique number150

satisfying
∫ B

0 g(s)ds = 0 and a < B < 1.151

When c = c∗, there is a traveling wave connecting 0 and 1. The corresponding heteroclinic orbit T ∗152

is depicted in Figure 1 (b)153

For c > 0, (2.2) is not integrable. In the w − v plane, the isocline for dw
dz = 0 is v = 0, and the154

isocline for dv
dz = 0 is v = −g(w)

c . See Fig. 2 for a graphical demonstration of the direction field.155
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(a) (b)

Figure 1: (a) Stable and unstable manifolds of (0, 0) and (1, 0) for 0 < w < 1 when c = 0. (b)
Heteroclinic orbit connecting (0, 0) and (1, 0) when c = c∗.

(a) (b)

Figure 2: (a) The graph of y = g(u). (b) Direction field: the isocline for dw
dz = 0 is v = 0, and the

isocline for dv
dz = 0 is v = −g(w)

c (dashed curve).

Lemma 2.4. Assume that Hypotheses 2.1 hold and c∗ > c > 0. We have the following statements:156

i. Sc1 lies above S0
1 , and below a line v = −m(w − 1) for some m > 0.157

ii. U c1 lies above U0
1 and below T ∗, and U c1 and Sc0 do not intersect.158

iii. Sc0 lies outside the loop S0
0 and U0

0 , below Sc1, and above U c1 .159

iv. U c0 lies inside the loop S0
0 and U0

0 and approaches (a, 0).160

Proof. The first part of statement (i) follows from Lemma 2.2 (ii). Sc1 is tangent to the line passing

through (1, 0) with the slope λ−0 = −
√
c2−4g′(1)+c

2 < 0. For a small δ > 0, there exists a point (w1, v1)
on Sc1 such that for w1 < w < 1, Sc1 is below the line passing through (1, 0) with the slope λ−0 − δ.
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Let (w1, ṽ1) be the point on S0
1 . Since Sc1 lies above S0

1 , we may choose w1 sufficiently close to 1 such

that Sc1 is above the line v = ṽ1 whenever w1 > w > 0. Consequently along Sc1, g(w)
v ≤ 1

ṽ1
whenever

w1 > w > 0. In view of (2.3), we find that along Sc1

dv

dw
≥ −m := min{−c− 1

ṽ1
, λ−0 − δ},

whenever 1 > w > 0. This leads to the second part of statement (i).161

The first part of statement (ii) follows from Lemma 2.2 (ii). Since c∗ > c > 0, there is no traveling162

wave and thus U c1 and Sc0 do not intercept. This proves the statement (ii).163

According to Lemma 2.2 (i), for v < 0, Sc0 lies below S0
0 . On the other hand, since c∗ > c > 0,164

Sc0 does not intercept U c1 to form a heteroclinic orbit, and thus Sc0 lies above U c1 . Consequently Sc0165

intercepts the w-axis at a number w1 between B and 1. Since the flow crosses the w-axis from above166

and since w′ = v > 0 whenever v > 0, Sc0 lies on the left-hand side of line w = w1 whenever v > 0. If167

Sc0 intersects with U0
0 at a point (w2, v2) with w2 > 0 and v2 > 0, then w2 < B. By Lemma 2.3 (i),168

U0
0 is above Sc0 whenever w is between w2 and w1. This leads to that U0

0 is above the w-axis whenever169

w is between w2 and w1, so that U0
0 cannot intercept the w-axis at B. This contradiction shows that170

Sc0 does not intersect with U0
0 whenever w > 0 and v > 0. We therefore conclude that Sc0 is above171

U0
0 whenever v > 0, and thus Sc0 stays outside the loop determined by U0

0 . Finally the uniqueness of172

solutions implies Sc0 does not intercept with Sc1 nor U c1 , so that Sc0 lies below Sc1, and Sc0 lies above U c1 .173

This completes the proof of the statement (iii).174

By Lemma 2.2 (i), U c0 stays below S0
0 and U0

0 whenever v > 0. If U c0 intercepts U0
0 and S0

0 below
w-axis, we use (w0, v0) to denote the first point at which U c0 intercepts U0

0 and S0
0 from above such that

v0 < 0 and U c0 lies above U0
0 and S0

0 whenever v < 0 and w > w0. On the other hand, by Lemma 2.3
(ii), U c0 lies below S0

0 whenever w > w0 and v < 0. This leads to a contradiction. It follows that
U c0 stays inside the loop S0

0 and U0
0 for v > 0 and v ≤ 0. Since g′(a) ≥ 0, (a, 0) is stable for c > 0.

Furthermore for system (2.2),
dv

dw
+
d(−cv − g(w))

dv
= −c < 0.

By Dulac’s criterion, there is no limit cycle. It follows from the Poincaré-Bendixson Theorem that U c0175

approaches (a, 0). The proof is complete.176

According to this lemma, Sc1 lies above Sc0, and below a line v = −m(w − 1) with m > 0. In view177

of the Poincaré-Bendixson Theorem, Sc1 must intersect the v-axis at a number v1 > 0. Since Sc0 lies178

outside the loop S0
0 and U0

0 , below Sc1, and above U c1 , Sc0 must intersect the v-axis at a number v0 > 0.179

See a graphical demonstration of the statements in Lemma 2.4 in Fig. 3 (a). Consider a trajectory T c180

of (2.2) for c∗ > c > 0 that starts at a number between v0 and v1 on the v-axis; see Fig. 3 (b) for a181

graphical description.182

To study traveling waves for (1.1) and (1.2), we glue the phase portraits of (2.2) inside the patch to183

those outside the patch. Using phase plane analysis, we determine a critical patch size for the existence184

of traveling waves. Using z = x− ct and the substitution u(x, t) = ū(z, t), (1.1) becomes185

ūt = ūzz + cūz + f(ū, z). (2.6)

A traveling wave of (1.1) is a steady solution of (2.6) satisfying186

w′′(z) + cw′(z) + f(w, z) = 0, z ∈ (−∞, 0) ∪ (0, L) ∪ (L,∞), (2.7)
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(a) (b)

Figure 3: (a) The solid curves describe the stable and unstable manifolds Sc0 and U c0 of (0, 0) and stable
and unstable manifolds Sc1 and U c1 of (1, 0) for 0 < w < 1 when c∗ > c > 0. The dashed curves describe
stable and unstable manifolds of (0, 0) and (1, 0) when c = 0. (b) The solid curve describe an orbit T c

governed by (2.2) for 0 < w < 1 when c∗ > c > 0. The dashed curves describe stable and unstable
manifolds of (0, 0) and (1, 0) when c∗ > c > 0.

with187

w(0+) = w(0−), w(L+) = w(L−), w′(0+) = w′(0−), w′(L+) = w′(L−). (2.8)

The corresponding planar system is188

w′ = v, 0 ≤ z ≤ L
v′ = −cv − g(w), 0 ≤ z ≤ L (2.9)

and189

w′ = v, z < 0 or z > L
v′ = −cv + rw, z < 0 or z > L,

(2.10)

with
w(0+) = w(0−), w(L+) = w(L−), v(0+) = v(0−), v(L+) = v(L−).

Throughout this paper we consider bounded traveling waves with values between 0 and 1. Bounded190

solutions with w > 0 for linear system (2.10) are given by191 (
w
v

)
= k1e

m+z

(
1
m+

)
for z < 0;

(
w
v

)
= k1e

m−z

(
1
m−

)
for z > L, (2.11)

where m± = −c±
√
c2+4r

2 , and k1 and k2 are positive constants. Here w(−∞) = w(∞) = 0. It follows192

that v = m+w for z < 0 and v = m−w for z > L.193

In the w − v plane, a bounded positive traveling wave described by (2.9) and (2.10) to a path194

involving v = m+w, T c (a trajectory of (2.2) or (2.9)), and v = m−w. We use (wc0, v
c
0) and (wc1, v

c
1)195

to denote the interception points of Sc0 with line v = m+w, and Sc1 with line v = m+w, respectively.196

We use (pc1, q
c
1) and (pc2, q

c
2) to denote the interception points of T c and line v = m+w, and T c and line197
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(a)

(b)

Figure 4: (a) A path for a positive traveling wave involving line v = m+w, a trajectory T c, and
v = m−w. (b) The corresponding traveling wave as a function of z = x− ct.

v = m−w, respectively. Note that wc0 < pc1 < wc1. See Fig. 4 (a) for a graphical description. The graph198

of the corresponding traveling wave is provided in Fig. 4 (b).199

We now discuss how L is related to a traveling wave. In the first quadrant, by (2.9), w′ = v > 0, so200

that w(x) increases in x and thus v can be viewed as a function of w. We use v = v+(pc1;w) to describe201

the upper part of T c above the w-axis. Similarly v can be viewed as a function of w on T c in the fourth202

quadrant. We use v = v−(pc1;w) to denote the lower part of T c below the w-axis. We use wc∗ to denote203

the intersection of T c and the w-axis. Observe wc∗ > B > a so that g(wc∗) > 0.204

10



The first equation of (2.9) shows that L is given by205

L = H(pc1) :=

∫ wc∗

pc1

1

v+(pc1;w)
dw +

∫ wc∗

pc2

1

−v−(pc1;w)
dw. (2.12)

It should be noted that this is an improper integral due to v+(pc1, w) and v−(pc1, w) being zero at w = wc∗.206

Lemma 2.5. H(pc1) is continuous in pc1 for pc1 ∈ (wc0, w
c
1).207

Proof. Since g(w) ∈ C1[0, 1], the solution (w(z), v(z)) along T c continuously depends on the initial208

values w(0) = pc1 and v(0) = m+pc1 and thus on pc1 (see Theorem 1.3.1 in [14]). Consequently, pc2 = w(L)209

and qc2 = v(L) = m−pc2 continuously depend on pc1. Along v = v+(pc1;w) > 0, the first equation of (2.9)210

shows dw
dz > 0, so that w(z) is strictly increasing and thus x is a continuous function of w. We conclude211

that v+(pc1;w) is a continuous function of w for pc1 ≤ w ≤ wc∗. Similarly, v−(pc1;w) is a continuous212

function of w for pc2 ≤ w ≤ wc∗.213

In view of (2.9), near (wc∗, 0), v′ u −g(wc∗) < 0, so that w is a function of v on T c. Furthermore,

dw(v)

dv
|v=0 = − v

cv + g(w)
|w=wc∗,v=0 = − 0

g(wc∗)
= 0,

and
d2w(v)

dv2
|v=0 = −

cv + g(w)− v(c+ g′(w)dwdv )

[cv + g(w)]2
|w=wc∗,v=0 = − 1

g(wc∗)
< 0.

It follows that for any small ε > 0, there exists γ > 0 such that for w ∈ [wc∗−γ,wc∗], w > wc∗+(− 1
g(wc∗)

−214

ε)v2, so that215

1

|v|
<

√
(

1

g(wc∗)
+ ε)

1

wc∗ − w
. (2.13)

This particularly is true when v is replaced by v±(pc1;w). Therefore H(pc1) given by (2.12) is well-defined.216

Consider a trajectory T̃ c of (2.9) with p̃c1 as the w-coordinate of the intersection point with v = m+w,217

p̃c2 as the w-coordinate of the intersection point with v = m−w, and w̃c∗ as the w-intercept. Assume218

wc1 > pc1 > p̃c1 > wc0. Lemma 2.3 (i) shows that T c is above T̃ c for v > 0, and consequently wc∗ > w̃c∗.219

For any small ε > 0, continuity and (2.13) imply that there exists δ1 > 0 such that for pc1 − p̃c1 < δ1,220 ∫ wc∗

w̃c∗

1

v+(pc1;w)
dw <

ε

3
. (2.14)

Use ṽ+(p̃c1;w) (ṽ−(p̃c1;w)) to denote the part of T̃c above (below) the w-axis. Choose w0 with pc1 <221

w0 < w̃c∗ and w0 sufficiently close to w̃c∗, such that222 ∫ w̃c∗

w0

1

ṽ+(p̃c1;w)
dw <

ε

3
, (2.15)

and ṽ+(p̃c1;w) ≥ ṽ+(p̃c1;w0) for p̃c1 ≤ w ≤ w0. For δ2 = ṽ+(p̃c1;w0) ε3 and pc1 − p̃c1 < δ2,223 ∫ pc1

p̃c1

1

ṽ+(p̃c1;w)
dw ≤ pc1 − p̃c1

ṽ+(p̃c1;w0)
<
ε

3
. (2.16)
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Let S = v+(pc1;w)− ṽ+(p̃c1;w) for w ∈ [pc1, w0] ⊂ [0, 1]. The equation (2.3) shows that

S′ = − g(w)

v+(pc1;w)ṽ+(p̃c1;w)
S.

In view of this and ṽ+(p̃c1;w) < v+(pc1;w) for w > 0, we have for w ∈ [pc1, w0],

S(w) = S(pc1)e
−
∫ w
pc1

g(ξ)

v+(pc1;ξ)ṽ
+(p̃c1;ξ)

dξ
≤ S(pc1)e

−(w−pc1)
g−

(ṽ+(p̃c1;w0))
2 ≤ (v+(pc1; pc1)− ṽ+(p̃c1; pc1))e

− g−
(ṽ+(p̃c1;w0))

2
,

where g− < 0 is the minimal value of g(w) for w ∈ [0, 1]. We therefore have that∫ w0

pc1
( 1
ṽ+(p̃c1;w)

− 1
v+(pc1;w)

)dw

=
∫ w0

pc1

v+(pc1;w)−ṽ+(p̃c1;w)
v+(pc1;w)ṽ+(p̃c1;w)

dw

≤ (w0 − pc1)
v+(pc1;pc1)−ṽ+(p̃c1;pc1)

(ṽ+(p̃c1;w0))2
e
− g−

(ṽ+(p̃c1;w0))
2

≤ v+(pc1;pc1)−ṽ+(p̃c1;pc1)
(ṽ+(p̃c1;w0))2

e
− g−

(ṽ+(p̃c1;w0))
2
.

Since v+(pc1; pc1) − ṽ+(p̃c1; pc1) approaches 0 as pc1 approaches p̃c1, there exists δ3 > 0 such that for224

pc1 − p̃c1 < δ3,225 ∫ w0

pc1

(
1

ṽ+(p̃c1;w)
− 1

v+(pc1;w)

)
dw <

ε

3
. (2.17)

Combining (2.14)-(2.17), we obtain that for pc1 − p̃c1 < δ with δ = min1≤i≤3{δi},∣∣∣∣∣
∫ wc∗

pc1

1

v+(pc1;w)
dw −

∫ w̃c∗

p̃c1

1

ṽ+(p̃c1;w)
dw

∣∣∣∣∣ < ε.

Similarly, for the given ε, there exists δ̂ > 0 such that for pc1 − p̃c1 < δ̂,∣∣∣∣∣
∫ wc∗

pc2

1

v−(pc1;w)
dw −

∫ w̃c∗

p̃c2

1

ṽ−(p̃c1;w)
dw

∣∣∣∣∣ < ε.

We have shown that H(pc1) is a continuous function of pc1. The proof is complete.226

Lemma 2.6. Assume that Hypotheses 2.1 hold and c∗ > c > 0. Then H(pc1) given by (2.12) satisfies227

limpc1→wc0+
H(pc1) =∞ and limpc1→wc1−

H(pc1) =∞.228

Proof. The tangent line to Sc1 at (1, 0) is v = λ−1 (w − 1) with λ−1 = −
√
c2−4g′(1)+c

2 < 0. For any small
number δ > 0, there exists a number w1 < 1 and w1 close to 1 such that Sc1 lies below v = (λ−1 −δ)(w−1)
for w1 ≤ w < 1. Consider a trajectory T c of (2.9) close to Sc1 near (1, 0) with wc∗, the w-intercept
satisfying w1 < wc∗ < 1. Since T c lies below Sc1, T c has a point with w1 as the w-coordinate. Since T c

lies below v = (λ−1 − δ)(w − 1) for w1 ≤ w < 1, (2.12) shows

H(pc1) ≥
∫ wc∗

w1

1

v+(pc1;w)
dw ≥

∫ wc∗

w1

1

(λ−1 − δ)(w − 1)
dw.
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This shows H(pc1)→∞ as wc∗ approaches 1 from the left. Due to continuous dependence of a solution on229

its initial value, wc∗→1 from the left if pc1→wc1 from the left. We therefore have H(pc1)→∞ as pc1→wc1−.230

The tangent line to Sc0 at (0, 0) is v = λ−0 w with λ−0 = −
√
c2−4g′(0)+c

2 < 0. For any small positive
number δ with δ < |λ−0 |, there exists a point (w0, v0) on Sc0 close to (0, 0) with 0 < w0 < a and v0 < 0
such that Sc0 lies below the line v = (λ−0 + δ)w for 0 < w ≤ w0, and g(w) > (g′(0)− δ)w for 0 < w ≤ w0.
Consider a trajectory T c of (2.9) close to Sc0 near (0, 0) with pc2 < w0 and qc2 > v0. Since T c is below
Sc0 for v < 0, T c has a point (w0, v1) with v < 0, v1 < v0. In view of (2.3), along T c for pc2 ≤ w ≤ w0,

dv−

dw
= −c− g(w)

v−
< −c < 0,

so that v−(pc1;w) is a decreasing function in w. Since T c lies below Sc0 near (0, 0), T c lies below the line
v = (λ−0 + δ)w for qc2 > v ≥ v0. We therefore use (2.12), a variable change, and (2.3) to obtain

H(pc1) ≥
∫ w0

pc2

1
−v−(pc1;w)

dw =
∫ v1
qc2

1
−v−

1
−c−g(w)/v−dv

− =
∫ qc2
v1

1
−cv−−g(w)

dv−

≥
∫ qc2
v0

1
−cv−−(g′(0)−δ)wdv

− ≥
∫ qc2
v0

1(
−c− g

′(0)−δ
λ−0 +δ

)
v−
dv−.

This shows that H(pc1)→∞ as qc2→0+. Due to continuous dependence of a solution on its initial value,231

qc2→0+ if pc1→wc0+. This completes the proof.232

Define233

L∗(c) = inf
wc0<p

c
1<w

c
1

H(pc1), (2.18)

where H(pc1) is given by (2.12). Lemma 2.5 and Lemma 2.6 show that L∗(c) is well-defined. Clearly,234

L∗(c) ≥ 0. Ecologically speaking, L∗(c) is the critical patch size for a population to persist. We will235

further explore L∗(c) in the rest of this section.236

We shall show that L∗(c) is positive. To this end, we introduce an integral operator. Integral oper-
ators have been proven useful in studying traveling waves for reaction-diffusion systems [23]. Consider
Qc defined by

Qc[u](z) :=

∫ ∞
−∞

mc(z − y)
f(u(y), y) + ρu(y)

ρ
dy,

with

mc(z) =
ρ√

c2 + 4ρ

{
e−λ1z if z ≥ 0,
eλ2z if z < 0,

where λ1 = 1
2(
√
c2 + 4ρ+ c) > 0, λ2 = 1

2(
√
c2 + 4ρ− c) > 0, and ρ is a positive constant satisfying237

ρ > maxu∈[0,1] |g′(u)| and ρ > r. It is easily seen that mc(z) is a probability density function, that is,238

mc(z) > 0 and
∫∞
−∞mc(z)dz = 1. Since f(u,y)+ρu

ρ is increasing in u, Qc is a monotone operator.239

The next lemma shows that w(x− ct) is a bounded traveling wave of (1.1) if and only if w is a fixed240

point of Qc.241

Lemma 2.7. Assume that Hypotheses 2.1 hold. Then w satisfies (2.7) and (2.8) with w(−∞) =242

w(∞) = 0 if and only if w(z) is a fixed point of Qc (i.e., w(z) = Qc[w](z)) with w(−∞) = w(∞) = 0.243
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If w satisfies (2.7) and (2.8) with w(−∞) = w(∞) = 0, a slightly revised version of the first part of244

the proof Theorem 3.2 in [23] shows that w(z) is a fixed point of Qc. If w(z) is a fixed point of Qc with245

w(−∞) = w(∞) = 0, a proof similar to that of Lemma 3.1 in [27] and the second part of Theorem 3.2246

in [23] show that w satisfies (2.7) and (2.8). We omit the details here.247

Lemma 2.8. Assume that Hypotheses 2.1 hold and c∗ > c ≥ 0. Then there exists a positive number248

L0(c) such that for L < L0(c), there is no positive traveling wave connecting 0 and 0 for (1.1).249

Proof. We consider250

wn+1(z) = Qc[wn](z), w0(z) ≡ 1. (2.19)

SinceQc is monotone, w1(z) =
∫∞
−∞mc(z−y)f(w0(y),y)+ρw0(y)

ρ dy =
∫∞
−∞mc(z−y)f(1,y)+ρ

ρ dy ≤
∫∞
−∞mc(z−251

y)dy = 1 so that w1(z) ≤ w0(z). Induction shows wn+1(z) ≤ wn(z) ≤ 1 for all n.252

Let w̄n = sup−∞<z<∞wn(z). If follows from (2.19) that

wn+1(z) ≤ Qc[w̄n](z) :=
ρ√

c2 + 4ρ

{∫ z

−∞
e−λ1(z−y) f(w̄n, y) + ρw̄n

ρ
dy+

∫ ∞
x

eλ2(z−y) f(w̄n, y) + ρw̄n
ρ

dy
}
.

For z ≤ 0,

Qc[w̄n](z)

= ρ√
c2+4ρ

{
e−λ1z

∫ z
−∞ e

λ1y ρ−r
ρ w̄ndy + eλ2z

∫ 0
z e
−λ2y ρ−r

ρ w̄ndy + eλ2z
∫ L

0 e−λ2y g(w̄n)+ρw̄n
ρ dy

+ eλ2z
∫∞
L e−λ2y ρ−rρ w̄ndy

}
≤ ρ√

c2+4ρ

{ρ−r
ρ [ 1

λ1
+ 1−eλ2z+eλ2(z−L)

λ2
] + 2

λ2
(1− e−λ2L)eλ2z

}
w̄n.

Here we have used the simple fact g(w̄n)+ρw̄n
ρ ≤ 2w̄n. For z ≤ 0, eλ2z ≤ 1, 0 < 1− eλ2z + eλ2(z−L) < 1.253

We therefore have for z ≤ 0,254

Qc[w̄n](z) ≤ ρ√
c2 + 4ρ

{
ρ− r
ρ

[
1

λ1
+

1

λ2

]
+

2

λ2
(1− e−λ2L)

}
w̄n. (2.20)

For 0 < z ≤ L,255

Qc[w̄n](z)

= ρ√
c2+4ρ

{
e−λ1z

∫ 0
−∞ e

λ1y ρ−r
ρ w̄ndy + e−λ1z

∫ z
0 e

λ1y g(w̄n)+ρw̄n
ρ dy + eλ2z

∫ L
z e
−λ2y g(w̄n)+ρw̄n

ρ dy

+ eλ2z
∫∞
L e−λ2y ρ−rρ w̄ndy

}
≤ ρ√

c2+4ρ

{ρ−r
ρ [ e

−λ1z

λ1
+ eλ2(z−L)

λ2
] + 2

λ1
(1− e−λ1z) + 2

λ2
(1− eλ1(z−L))

}
w̄n

≤ ρ√
c2+4ρ

{ρ−r
ρ [ 1

λ1
+ 1

λ2
] + 2

λ1
(1− e−λ1L) + 2

λ2
(1− e−λ2L)

}
w̄n.

(2.21)

For z > L,256

Qc[w̄n](z)

= ρ√
c2+4ρ

{
e−λ1z

∫ 0
−∞ e

λ1y ρ−r
ρ w̄ndy + e−λ1z

∫ L
0 eλ1y g(w̄n)+ρw̄n

ρ dy + e−λ1z
∫ z
L e

λ1y ρ−r
ρ w̄ndy

+ eλ2z
∫∞
z e−λ2y ρ−rρ w̄ndy

}
≤ ρ√

c2+4ρ

{ρ−r
ρ [1−e−λ1(z−L)+e−λ1z

λ1
+ 1

λ2
] + 2

λ1
(eλ1L − 1)e−λ1z

}
w̄n

≤ ρ√
c2+4ρ

{ρ−r
ρ [ 1

λ1
+ 1

λ2
] + 2

λ1
(eλ1L − 1)

}
w̄n.

(2.22)
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Observe ρ√
c2+4ρ

[ 1
λ1

+ 1
λ2

] = 1. Since ρ−r
ρ < 1, (2.20)-(2.22) show that there exist positive numbers257

σ < 1 and L0(c) such that for L ≤ L0(c) and any z, wn+1(z) ≤ σw̄n leading to w̄n+1 ≤ σw̄n. Therefore258

for L ≤ L0(c) , w̄n → 0 as n → ∞. We conclude that for L ≤ L0(c), the solution wn(z) of (2.19)259

approaches 0 as n → ∞. This and Lemma 2.7 imply that for L ≤ L0(c), system (1.1) has no positive260

traveling wave. The proof is complete.261

Theorem 2.1. Assume that Hypotheses 2.1 hold. Let
∫ 1

0 g(u) > 0. Then for c∗ > c > 0 and L∗(c)262

defined by (2.18),263

i. L∗(c) > 0;264

ii. If L = L∗(c), equation (1.1) has a positive traveling wave connecting 0 and 0;265

iii. If L > L∗(c), equation (1.1) has two positive traveling waves connecting 0 and 0; and266

iv. If L < L∗(c), equation (1.1) has no positive traveling wave connecting 0 and 0.267

Proof. By Lemma 2.5 and Lemma 2.6, L∗(c), the infinum of H(pc1) occurs at a number between wc0 and268

wc1, so that there is a corresponding traveling wave. For L > L∗(c), there exists two different numbers269

in (wc0, w
c
1) at which H has the value L, and thus there exist two positive corresponding traveling waves.270

These prove (ii) and (iii). On the other hand, a positive traveling wave corresponds to the existence271

of pc1 ∈ (wc0, w
c
1) such that L = H(pc1). Consequently if L∗(c) > 0, for 0 < L < L∗(c) there is no272

positive traveling wave. Lemma 2.8 shows that there exists L0(c) > 0 such that for L < L0(c) there273

is no positive traveling wave. If follows that L∗(c) ≥ L0(c). These prove (i) and (iv). The proof is274

complete.275

The statements (ii) and (iii) of this theorem show the existence of one or two positive traveling276

waves. The problem of exact number of positive traveling waves is open. Our numerical simulations277

in the next section indicate that for g(u) in the form of u(u − a)(1 − u) and for L > L∗(c), there are278

exactly two positive traveling waves.279

Theorem 2.2. Assume that Hypotheses 2.1 hold. If either (i)
∫ 1

0 g(u)du > 0 and c > c∗, or (ii)280 ∫ 1
0 g(u)du < 0 and c ≥ 0, then for any L > 0 equation (1.1) has no positive traveling wave connecting281

0 and 0.282

Proof. Assume that w(x− ct) is a traveling wave connecting 0 and 0 for (1.1) and (1.2) in the case of283 ∫ 1
0 g(u)du > 0 and c > c∗ > 0. Since 0 ≤ w(x) ≤ 1 and 0 ≤ f(w(x),x)+ρw(x)

ρ ≤ 1 for all x, and since284

0 ≤ f(w(x),x)+ρw(x)
ρ = ρ−r

ρ w(x) ≤ ρ−r
ρ < 1, w(x) = Qc[w](x) implies that 0 ≤ w(x) < 1 for all x. Since285

w(∞) = w(−∞) = 0, there exists a positive number γ < 1 such that286

0 ≤ w(x) ≤ γ, (2.23)

for all x. w(x) = k1e
m−x for x > 0, where k1 is a positive number and m− = −c−

√
c2+4r

2 < 0.287

Consider the nonincreasing traveling wave w∗(x− c∗t) for (2.1) with w∗(−∞) = 1 and w∗(∞) = 0
described by Proposition 2.1. This traveling wave corresponds the orbit T ∗ from (1, 0) to (0, 0) in the
w-v plane. We use v = h(w∗) to describe this orbit. The tangent line to v = h(w∗) at (0, 0) is v = λ−0 w

∗
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where λ−0 =
−c∗−
√

(c∗)2−4g′(0)

2 < 0. Since r > −g′(0) and c > c∗, for λ−0 −m− > ε > 0, there exists
δ > 0 such that h(w∗) ≥ (λ−0 − ε)w∗ for δ > w∗ > 0. This and the first equation of (2.2) show that
there exists x0 such that for x > x0,

(w∗)′ ≥ (λ−0 − ε)w
∗,

leading to w∗(x) ≥ k0e
(λ−0 −ε)x for x > x0 and some k0 > 0. This, w(z) = k1e

m−x for x > 0, (2.23), and288

w∗(−∞) = 1 show that there is a real number d such that w∗(x+ d) > w(x) for −∞ < x <∞. Since289

g(u) ≥ f(u, x), comparison shows that w∗(x+ d− c∗t) ≥ w(x− ct) for all t > 0 and −∞ < x <∞. If290

w(x1) > 0 for some real number x1, there exists x2 such that x2 − d > x1 and w∗(x2) < w(x1). For291

t1 = x2−d−x1
c−c∗ > 0 and x3 = x1 + ct1, w∗(x3 +d− c∗t1) = w∗(x2) < w(x1) = w(x3− ct1), a contradiction.292

We conclude w(x) ≡ 0. We have shown when
∫ 1

0 g(u)du > 0 and c > c∗, for any L > 0 equation (1.1)293

has no positive traveling wave. The proof for the case of
∫ 1

0 g(u)du < 0 is similar and omitted, as in294

this case c ≥ 0 > c∗. The proof is complete.295

3 Simulations296

In these simulations we first numerically study the phase plane equations given by (2.9) and (2.10).297

We will also numerically study the fully time dependant solutions to (1.1) and (1.2). Throughout this298

section we will use g(u) = u(u− a)(1− u), therefore the dynamics are characterized by the parameters299

a, c, r and L. For simplicity, we use L∗ to denote L∗(c) for a given c.300

In Fig. 5 we integrate the phase plane equations for the parameters a = 0.2, r = 1, and c =301

0.5c∗ = 0.212. We use MATLAB’s ode45 to accomplish the integration. For this choice of parameters302

(wc0, v
c
0) = (0.185, 0.167) and (wc1, v

c
1) = (0.424, 0.381). This was determined by backwards integration303

of the equations with initial conditions (0.001, 0.001m−) and (1, 0.001) respectively. The intersection304

with v = m+w was determined by using the odeset ‘Events’ option to terminate integration.305

To create Fig. 5-(b) we forward integrate trajectories initiated along the line segment connecting306

(wc0, v
c
0) and (wc1, v

c
1). The initial point is related to β by w = (1−β)wc0 +βwc1 and v = (1−β)vc0 +βvc1.307

To determine the length of the habitat corresponding to the solution we used ‘Events’ to terminate308

integration when the intersection with v = m−w is detected. The returned value of the independent309

variable is the length. We see there is a broad minima approximately near β = 0.6 and L = 7 with310

L asymptotically approaching infinity as β approaches 0 and 1. The exact values of the minima (as311

determined by the minima of the 500 sample points) is β = 0.611 and L∗ = 6.790. The values of312

β corresponding to L = 8 are β = 0.197 and β = 0.923 as determined by linear interpolation. The313

trajectories are plotted Fig. 5-(a). The corresponding travelling waves are plotted in Fig. 6.314

In Fig. 7 we show the relation between L∗ and the habitat shift speed relative to c∗. In Fig. 7-(a)315

r = 1 and several different value of a are displayed. We see that for a fixed c the minimum habitat316

size increases as a increases. Since a smaller of a means stronger growth, this is not surprising. In317

Fig. 7-(b) a = 0.2 and several different value of r are displayed. As a larger r means faster die off in318

the bad habitat, we see the minimum habitat size increases with r. We also see that L∗ increases very319

gradually with c until roughly 80% of c∗ where it begins increasing more rapidly. Due to the limits of320

numerical accuracy, L∗ was only computed up to c = 0.99c∗. To compute L∗, L versus β was computed321

as in Fig. 5-(b) for 250 sample points on the interval 0.01 ≤ β ≤ 0.99. The minimum of these values322

was assigned to L∗.323
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Figure 5: In (a) several phase plane trajectories for the parameters a = 0.2, r = 1, c = 0.5c∗ are shown.
The blue curves (T1 and T2) correspond to the solutions with L = 8, and the red curve (Tmin) is the
trajectory corresponding to the minimum habitat size, L∗, which is 6.79. In (b) we show how habitat
length varies with β. β defines the initial point via w = (1− β)wc0 + βwc1 and v = (1− β)vc0 + βvc1.
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Figure 6: The travelling waves corresponding to the trajectories in Fig. 5.
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Figure 7: We show the minimum habitat size, L∗, as a function of the habitat shift speed relative to
c∗. In (a) r is 1 and the curves for several values of a are shown. In (b) a is 0.2 and the curves for
several values of r are shown.

In figures 8-10 we examine the evolution of the fully time dependant solutions. To avoid compli-324

cations of dynamically updating the effectively populated domain, we use the moving frame equation325

given by (2.6).326

To numerically approximate the equation we used uniform spatial sampling with δz = 0.2 or the327

nearest number that insures a whole number of sample points in the interval [0, L]. The first and328

second derivatives are interpolated up to fourth order in δx. To deal with the discontinuity in the329

second derivative at z = 0 and z = L, the boundary conditions that u and uz are continuous there is330

applied and appropriate end-point interpolations are used. The domain was extended to the left (right)331

of z = 0 (z = L) by 25 units and the boundary condition u = 0 was applied at the end-points. A fixed332

time step δt = 0.006 with a second order Runge-Kutta method is used for time integration. Larger333

values of δt, such as δt = 0.1, exhibited unstable oscillations consistent with a stiff-system. In future334

updates to this code, it may be desirable to implement an implicit solver such as Backward-Euler or335

Crank-Nicolson. The code used can be viewed at336

https://github.com/glotto01/Reaction_Diffusion.git337

In Fig. 8 and 9 we show the dynamics of a solution where L > L∗. We use the same parameters as in338

Fig. 6-(a). Namely, a = 0.2, r = 1, c = 0.5c∗ and L = 8. In Fig. 8-(a) we see that a solution converges339

from above to the T2 equilibrium. The initial condition used is u(x, 0) = 1. In Fig. 8-(b) we see a solution340

converge from below to the T2 equilibrium. The initial condition used is u(x, 0) = 0.6e−0.1(x−4)2 . The341

black dashed curve is the T2 equilibrium as computed from the phase-plane equations. Qualitatively342

similar dynamics where seen with other parameter choices when L > L∗.343

In Fig. 9 we numerically examine the stability of the T1 equilibrium. In (a) we initiate with344

u(x, 0) = 1.05T1(x). We see that the solution asymptotically approaches the T2 equilibrium. In (b)345

we initiate with u(x, 0) = 0.95T1(x). We see that the solution asymptotically approaches zero. This346

strongly suggests that T1 acts as a separatrix, where solutions initiated below it go extinct, and solutions347

initiated above it grow to the T2 equilibrium. Similar results were seen with other parameter choices.348

In Fig. 10 we show an example of extinction occurring when L < L∗ and when c > c∗. In Fig.349

10-(a) the habitat size used is L = 6 which is less than L∗ which is 6.79 for the parameters used350

(c = 0.5c∗, a = 0.2, r = 1). The initial condition used is u(x, 0) = 1. We see by t = 38 the maximum351
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density has fallen below the Allee threshold of 0.2. In Fig. 10-(b), c = 1.2c∗ so the habitat shift speed352

is greater then species spread speed and by the theory developed we would expect even for large values353

of L extinction will eventually occur. We use the parameters a = 0.2, r = 1 and L = 10. We see that354

by t = 55 the maximum density has already fallen below the Allee threshold.355
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Figure 8: Time dependent solutions for the parameters c = 0.5c∗, a = 0.2 , r = 1, and L = 8. In (a)
we see that the solution converges to the T2 equilibrium from above. The initial condition used was
u(x, 0) = 1. In (b) we see the solution converges to the T2 equilibrium from below. The initial condition
used was u(x, 0) = 0.6e−0.1(x−4)2 .
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Figure 9: The evolution of solutions initiated near the T1 equilibrium for parameters c = 0.5c∗, a = 0.2
, r = 1, and L = 8. In (a) we see that a solution initiated 5% above T1 asymptotically approaches T2.
In (b) we see that a solutions initiated 5% below T1 asymptotically approach extinction.
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Figure 10: The evolution of a solution leading to extinction. In (a) L < L∗. The parameters used are
c = 0.5c∗, a = 0.2 and r = 1 for which L∗ = 6.79 but L = 6. In (b) c = 1.2c∗ indicating extinction will
occur even for a large L. The parameters used are a = 0.2, r = 1 and L = 10.

4 Concluding remarks356

In this paper, we studied traveling waves for (1.1) and (1.2) with a strong Allee effect in a finite357

shifting patch of hospitable habitat. We demonstrated that the existence of positive traveling waves358

is determined by the patch shift speed c, the patch size L, as well as the traveling wave speed c∗ of359

the corresponding system with the same growth function in (−∞,∞). Specifically we showed that for360

c∗ > c > 0, there exists L∗(c) > 0 such that if L > L∗(c) there are two different positive traveling waves361

with speed c and if L < L∗(c) such a traveling wave does not exist, and for c > c∗ there is no positive362

traveling wave with speed c for any L > 0. These results are supported by our numerical simulations.363

Our analysis indicates that positive traveling waves constitute a single-hump profile that vanishes364

far from origin, and they represent traveling pulses. Such traveling pulses are driven by the shifting365

patch inside which population grows and outside which population declines. It is well-known that for366

the reaction-diffusion equation with the reaction term u(a − u)(1 − u) (i.e., the Nagumo equation) in367

a stationary patch with homogeneous Dirichlet boundary conditions, there exist exactly two positive368
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steady states through a fold bifurcation with the bigger steady state stable and smaller one unstable; see369

Figure 17.8 in Kot [22]. We conjecture that for c∗ > c, L∗(c) is the fold bifurcation value, there is exactly370

one positive traveling wave if L = L∗(c), and there are exactly two positive traveling waves if L > L∗(c)371

with the bigger (smaller) traveling wave stable (unstable) in (1.1) with (1.2) under Hypotheses 2.1. This372

conjecture is supported by our numerical simulations which show solutions initiated near but below the373

lower equilibrium go extinct while those initiated slightly above the lower equilibrium converge to the374

upper equilibrium (see Fig. 8 and Fig. 9).375

It was shown in Berestycki et al. [7] that for (1.1) with no Allee effect, the unique travelig wave376

(traveling pulse) is globally attracting. As shown in the present paper, the presence of a strong Allee377

effect leads to the multiplicity of traveling waves (Theorem 2.1(iii)). Our simulations show that the378

critical patch size L∗(c) increases as c increases (see Fig. 7). This implies that a species persisting in a379

stationary habitat may eventually die out when the habitat shifts.380

The methodology developed in this paper might work for reaction-diffusion models in a shifting381

patch with other growth functions and boundary conditions. Inside the patch the growth function382

g(u) could exhibit a weak Allee effect, with an example given by g(u) = u2(1 − u). MacDonald and383

Lutscher [31] considered a model in a form similar to (1.1) and (1.2) with no Allee effect, different384

matching boundary conditions and more general movement behavior. The matching conditions in [31]385

are determined by the probability with which an individual at a boundary point decides to move into386

or out of the suitable habitat. One may consider a model with a strong Allee effect and the matching387

conditions given in [31]. The phase plane analysis presented in this paper might be extended to study388

the existence of positive traveling waves for these models. This paper considered the case of a bounded389

shifting habitat. It would be of interest to investigate persistence and spread in a reaction-diffusion390

model with an unbounded shifting habitat and strong Allee effect. The most cited and obvious cause of391

the Allee effect is the difficulty of finding mates at low population sizes in sexually reproducing species392

(Boukal and Berec [10], Courchamp et al. [12]). There are works on traveling wave solutions, spreading393

phenomena, and critical patch sizes for two-sex populations (Ashih and Wilson [3], Maciel et al [32],394

Miller et al. [33]). It is worth of studying two-sex species models with shifting habitats by extending395

the framework developed in this paper.396
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