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Abstract

We study a reaction-diffusion equation that describes the growth of a population with a strong
Allee effect in a bounded habitat which shifts at a speed ¢ > 0. We demonstrate that the existence
of forced positive traveling waves depends on habitat size L, and c*, the speed of traveling wave
for the corresponding reaction-diffusion equation with the same growth function all over the entire
unbounded spatial domain. It is shown that for ¢* > ¢ > 0 there exists a positive number L*(c)
such that for L > L*(c) there are two positive traveling waves and for L < L*(c) there is no positive
traveling wave. It is also shown if ¢ > ¢* for any L > 0 there is no positive traveling wave. The
dynamics of the equation are further explored through numerical simulations.

1 Introduction

Climate change has resulted in poleward and upslope range shifts in many species across the globe, and
it becomes important whether or not species maintain in their current ranges (Parmesan and Yohe [36],
Parmesan [37], Walther et al. [43]). Species may respond to climate change by shifting their distribution
or phenology, acclimating or adapting to changes; however the inability to sufficiently adapt will result
in extinction (Aitken et al. [1], Cleland et al. [11], Valladares et al. [42]). Species potential to successfully
adapt or shift distributions in response to climate change depends on a host of factors, such as the speed
and variability of changing conditions, species’ dispersal abilities, characteristics of a species climatic
niche and species interactions. Several reaction-diffusion models have been developed to explore species
persistence using shifting boundary conditions or shifting growth functions (Berestycki et al. [7], Li et
al. [24], MacDonald and Lutscher [31], Potapov and Lewis [39]).

The early work by Potapov and Lewis [39] conceptualized the shifting suitable habitat of a species.
The single-species version of their model takes the form

Ut = Ugg + f(u,z —ct), (1.1)

with
glu) f0<z<IL,

—ru, if 2<0 or z> L. (1.2)

/ (uv Z) = {
Here u(x,t) is the density of a population at location = and time ¢, f(u, 2z — ct) describes the population
growth at point = at time ¢, c is the speed at which the habitat shifts, L and r are positive constants,
and g satisfies g(0) = ¢g(1) = 0 and g(u) > 0 on (0,1). g(u) exhibits monostability, and a prototype
example is g(u) = u(l — w). In this model the population grows in the interval [0, L] and declines
outside this interval. Berestycki et al. [7] provided the critical length of L and showed that for L
above the critical length equation (1.1) has a globally attracting nontrivial forced traveling wave with
speed c. The authors extended the results to a general class of equations by studying the eigenvalue
problem of a linearized system. MacDonald and Lutscher [31] extended the results in [7] by including
individual movement behavior at habitat edges. Piecewise growth functions similar to (1.2) have been
also used to study promotion zones and barrier zones for species persistence and spread in heterogeneous
environments (Du et al. [15] and Li et al. [27]).

The equation (1.1) has also been investigated for f(u,z) in other forms different from (1.2). Li et
al. [24] and Hu et al. [13] considered spreading speeds for (1.1) where f(u,z —ct) = u(s(z —ct) —u) and
s(x) is a nondecreasing function for —oo < z < co. Bouhours and Giletti [9] studied the spreading and
vanishing dynamics for a general two-dimensional reaction-diffusion equation which includes f(u,z —
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ct) = u(s(xz — ct) — u) as a special case. Berestycki and Fang [8] established the existence and stability
of traveling waves for a one-dimensional reaction-diffusion equation with a general nonlinear growth
function f(z — ct,u). The results in [8] allow both s(oco) and s(—oo) to have same sign in the case of
f(z—ct,u) = u(s(x—ct)—u). For more results regarding traveling waves for reaction-diffusion equations
with a shifting habitat, the reader is referred to Berestycki et al. [7], Berestycki and Rossi [5, 6],
Hamel [19], Hamel and Roques [20], and Fang et al. [16]. Mathematical models have been developed
in other forms that are used to describe species development in shifting habitats; see, for example,
Zhou and Kot [45], Li et al. [25, 27], and Li et al. [29], where integro-difference equations and integro-
differential equations are involved.

The aforementioned papers assume no Allee effect in species growth. An Allee effect arises when
the per-capita birth rate increases at lower population densities, and a strong Allee effect is an Allee
effect with a critical population density [2, 35]. There are cases where Allee effects occur when species
distributions shift in response to climate change (Livshultz et al. [30], Samuel and Chandler [40], Shanks
et al. [41], Wood et al. [44]). It is of great interest to explore the population dynamics of species with
a strong Allee effect in a shifting habitat. In this paper we study (1.1) and (1.2) where g has a strong
Allee effect, i.e., bistability. The reaction-diffusion equation

Ut = Ugg + g(u), —o0 <z < o0, (1.3)

with g(u) exhibiting bistability has been well studied (see Fife [17] and references cited therein). It is
well-known that there exists a real number ¢* which is the unique speed of traveling waves connecting
zero to the carrying capacity, and the sign of ¢* is the same as that of the integral of g(u) from zero
to the carrying capacity. ¢* can be calculated using variation techniques (Benguria and Depassier [4])
when it is positive.

In this paper, we study whether or not a species governed by (1.1) with (1.2) and a strong Allee
effect can keep pace with a shifting habitat. We find that the wave speed ¢* and the habit shift speed
¢ both play important roles in determining species persistence. We particularly establish the existence
forced positive traveling waves. A positive traveling wave is a nonnegative traveling wave which is not
uniformly zero valued. We show that if ¢* > ¢ > 0 there exists a positive number L*(¢) such that for
L > L*(c) there are two positive traveling waves and for L < L*(c) there is no positive traveling wave,
and if ¢ > ¢* for any L > 0 there is no positive traveling wave. We provide numerical simulations
to further examine the behavior of the system. Our numerical results demonstrate that the larger
traveling wave attracts solutions with proper initial data so that persistence takes place, and in case of
no traveling wave, solutions approach zero and extinction occurs.

This paper is organized as follows. The analytical results regarding the existence of traveling waves
are presented in Section 2. The numerical simulations are given in Section 3. Some concluding remarks
are provided in Section 4.

2 Main results

We begin with the following hypotheses to address the presence of a strong Allee effect in g:
Hypotheses 2.1.

i. g(u) € C0,1], g(0) = g(1) =0, ¢'(0) < 0, ¢'(1) < 0, and there is a number a such that0 < a < 1,
g(a) =0, g(u) <0 on (0,a), and g(u) >0 on (a,1).
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ii. ¢'(0) > —r.

Hypotheses 2.1 (i) indicates that g(u) exhibits a strong Allee effect with a the Allee threshold
and 1 the (scaled) carrying capacity. A protype example is g(u) = u(u — a)(1 — u) with 0 < a < 1.
Hypotheses 2.1 (ii) assumes that the population decay rate at low densities in the moving patch is
less than that outside the patch. Biologically this means the environment outside the growth zone is
harsher than that inside the patch. We shall consider ¢ > 0 as the case of ¢ < 0 can be treated in a
similar way.

The function f(u,z) is discontinuous at x = 0, L. Following Berestycki et al. [7], we seek traveling
wave solutions for (1.1), which are globally of class C! (indeed, to guarantee that diffusion conserves
mass, the flux u, should be continuous [7]) and piecewise of class C? and satisfy the equation at each
point with x # 0, L. It is known that the problem of (1.1) with appropriate initial data u(z,0) has a
unique, globally defined, solution u = u(x,t), which, as a function of = has such smoothness (Berestycki
et al. [7] and Du et al. [15]). Berestycki et al. [7] determined the critical patch size and established
the existence of a positive traveling wave for g(u) = 7u(l — %) with # > 0 and k > 0 by glueing
phase portraits. There is long history of using phase portrait analysis to study traveling waves; see
for example Fife [17] and references cited therein. For some recent work on phase portrait analysis for
systems with a strong Allee effect and stationary habitat, the reader may refer to Pouchol et al. [38]
and Li et al. [27, 28].

We have the following proposition (see Fife [17]).

Proposition 2.1. Assume that Hypotheses 2.1 (i) is satisfied. Then the equation (1.8) has a unique
nonincreasing traveling wave solution (up to translation) u(z,t) = w*(x — ¢*t) with w*(—o0) =1 and
w*(00) = 0. Furthermore, ¢* > 0 if and only if fol g(u)du > 0, ¢* =0 if and only if fol g(u)du =0, and
c* < 0 if and only if fol g(u)du < 0.

— 2a
V2

[18] and Nagumo et al. [34]). In general for fol g(u)du > 0 (ie., ¢* > 0), ¢* can be obtained using the
following variational formula given by Benguria and Depassier [4]:

For g(u) = u(u — a)(1 — u), the unique traveling wave speed is ¢* = (see Hadeler and Rothe

2 [ g(u)h(u)du
= e o fol({ohg((u))/ff’(zz))du )
A traveling wave u(z,t) = w(z — ct) for (1.3) satisfies
w”(2) + cw'(2) + g(w(2)) = 0, (2.1)
with z = x — ct. This is equivalent to the planar system
w' =,

v = —cv — g(w).

Phase plane analysis for the existence of a traveling wave for (2.2) can be found in [17]. We further
analyze (2.2) in order to study traveling waves for (1.1) with (1.2). System (2.2) has three equilibria
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(0,0), (a,0) and (1,0). For ¢ > 0, both (0,0) and (1,0) are saddles. For convenience, we use S§ and U
to denote the stable and unstable manifolds of (0, 0) corresponding to ¢ for 0 < w < 1, respectively, and
use S§ and U{ to denote the stable and unstable manifolds of (1,0) corresponding to ¢ for 0 < w < 1,

respectively.
0 1
J = .
( —g'(w) —c )

b S AT(O) 1
At (0,0) the eigenvalues are )\ét = M. The corresponding eigenvectors are given by < \E )
0

The Jacobian matrix of (2.2) is

— 2_Aq’
At (1,0) the eigenvalues are )\;r = M, and the corresponding eigenvectors are given by

( Alic > Clearly, /\g > 0, /\T >0, Ay <0, and A\] < 0. All the eigenvalues )\S—L and )\{E decrease in c.
Note that here a stable or unstable manifold of an equilibrium is tangent to the line passing through the
equilibrium with the slope determined by the corresponding eigenvector. These lead to the following

lemma.
Lemma 2.1. Assume that Hypotheses 2.1 hold and ¢ > 0. We have the following statements for (2.2):
i. Near (0,0), S§ lies below the w-axis and U§ lies above the w-axis. Furthermore for ca > ¢ > 0,

near (0,0), Sy? is below Sg* and Ug? is below Uy*.

it. Near (1,0), SY lies above the w-azis and U lies below the w-axis. Furthermore for ca > ¢ > 0,
near (1,0), S7? is above S7* and U? is above Uj*.

Lemma 2.2. Assume that Hypotheses 2.1 hold. We have the following statements for (2.2):

i. If co > ¢1 >0, Sg? is below SG' whenever v < 0, and US? is below US' whenever v > 0.

ii. If cg > ¢1 >0, S7? is above S whenever v > 0, and Uy? is above U;' whenever v < 0.

Proof. The proof of the statement (i) is similar to that of Lemma 4.14 in Fife [17] (also see Kanel’ [21]).
For the sake of completeness, we provide the proof here. When v # 0, v can be viewed as a function of
w, and

dv g(w)

= —c— . 2.3
dw ¢ v (2.3)

Let v = vi(w) represent Sg' and v = va(w) represent Si* for v < 0. In view of Lemma 2.1 (i), we
choose wyp to be a small positive number such that v;(w) > ve(w) for 0 < w < wp. From (2.3),

dir(w) _ doa(w) _ g(w),

dw dw V1V v =) = (1= e2),
so that for
D(w) = (v (w) — vz(w))efﬂg(*g(y)/(vl(y)w(y)))dy
we have D
deW) = (3 — ¢1)eun IO rvalw))dw (2.4)
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Since %&”) > 0 and v1(wo) — v2(wp) > 0, the function D(w) increases for w > wy and thus is
positive whenever w > wg, v1 < 0 and vy < 0. It follows that vi(w) > wva(w) whenever w > wy,
v1(w) < 0 and ve(w) < 0. This proves the first part of statement (i). The proof of the second part of
statement (i) is similar and omitted.

We next let v = v (w) represent S7' and v = ve(w) represent S7? for v > 0. In view of Lemma 2.1 (ii),
we choose wg to be a positive number close to but less than 1 so that vi(w) < va(w) for wy < w < 1.
(2.4) still holds with these v; and ve. Since D(w) increases for w < wy, vi(w) < vo(w) whenever
wo > w >0, vy(w) > 0, and ve(w) > 0. This proves the first part of statement (ii). The proof of the
second part of statement (ii) is similar and omitted. O

Lemma 2.3. Assume that Hypotheses 2.1 hold. Let ca > ¢1 > 0. Let v =vi(w) and v = va(w) be the
two solutions of (2.3) corresponding to ¢;, respectively. Let wy be a number such that 1 > wy > 0.

i. If vi(wo) > va(wo) > 0 then vi(w) > vao(w) whenever 1 > w > wo, vi(w) > 0 and va(w) > 0.

it. If 0 > vi(wg) > va(wo) then vi(w) > va(w) whenever 1 > w > wp, vi(w) < 0 and va(w) < 0.

The proof of this lemma is similar to that of Lemma 2.2 and is omitted.

When ¢ = 0, the system (2.2) becomes

v = —g(’LU), (25)
so that for v # 0,

dv _ g(w)

dw v

This system is integrable, and

Assume fol g(w)du > 0. Sy coincides with UJ between 0 < w < 1 forming a homoclinic orbit given by
1 w
Sy and U : 5212 = —/ g(s)ds.
0

S9 and U between 0 < w < 1 are given by

See Fig. 1 (a) for a graphical description of SJ, UJ, S9, and UY. In this figure B is the unique number
satisfying fOB g(s)ds=0and a < B < 1.

When ¢ = ¢*, there is a traveling wave connecting 0 and 1. The corresponding heteroclinic orbit T
is depicted in Figure 1 (b)

For ¢ > 0, (2.2) is not integrable. In the w — v plane, the isocline for % = 0is v = 0, and the
isocline for % =0isv = —%w). See Fig. 2 for a graphical demonstration of the direction field.



(a) (b)

Figure 1: (a) Stable and unstable manifolds of (0,0) and (1,0) for 0 < w < 1 when ¢ = 0. (b)
Heteroclinic orbit connecting (0,0) and (1,0) when ¢ = ¢*.

y \'
y=g(u)
~
N\
—> —
: /—\ O /‘ |
a 1T U o a Y 1w
. g -
\ _____
-~

(a) (b)

Figure 2: (a) The graph of y = g(u). (b) Direction field: the isocline for %" = 01is v = 0, and the
dv

isocline for 2 = 0 is v = —@ (dashed curve).

156 Lemma 2.4. Assume that Hypotheses 2.1 hold and c* > ¢ > 0. We have the following statements:

157 i. S§ lies above SV, and below a line v = —m(w — 1) for some m > 0.
158 ii. U lies above Uy and below T*, and U and S§ do not intersect.
wo i S§ lies outside the loop Sy and UY, below S§, and above UY.

160 iv. U§ lies inside the loop SY and UY and approaches (a,0).

Proof. The first part of statement (i) follows from Lemma 2.2 (ii). S is tangent to the line passing

through (1,0) with the slope Ay = —w < 0. For a small 6 > 0, there exists a point (wy,v1)

on S{ such that for w; < w < 1, S{ is below the line passing through (1,0) with the slope Ay — 6.

7
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Let (w1, 1) be the point on SY. Since S¢ lies above S, we may choose w; sufficiently close to 1 such

g(w)

that S{ is above the line v = ¥ whenever w; > w > 0. Consequently along SY,
wy > w > 0. In view of (2.3), we find that along S

1
v > —m :=min{—c— —,\; — ¢},
U1

< % whenever

dw

whenever 1 > w > 0. This leads to the second part of statement (i).

The first part of statement (ii) follows from Lemma 2.2 (ii). Since ¢* > ¢ > 0, there is no traveling
wave and thus U{ and S§ do not intercept. This proves the statement (ii).

According to Lemma 2.2 (i), for v < 0, S§ lies below SJ. On the other hand, since ¢* > ¢ > 0,
S§ does not intercept Uy to form a heteroclinic orbit, and thus S§ lies above Uf. Consequently S§
intercepts the w-axis at a number w; between B and 1. Since the flow crosses the w-axis from above
and since w’ = v > 0 whenever v > 0, S§ lies on the left-hand side of line w = w; whenever v > 0. If
S§ intersects with U§ at a point (ws,v2) with wy > 0 and vy > 0, then wy < B. By Lemma 2.3 (i),
Ug is above S§ whenever w is between w and w;. This leads to that Ug is above the w-axis whenever
w is between wsy and wq, so that Ug cannot intercept the w-axis at B. This contradiction shows that
S§ does not intersect with U((]) whenever w > 0 and v > 0. We therefore conclude that Sj is above
Ug whenever v > 0, and thus S§ stays outside the loop determined by Ug. Finally the uniqueness of
solutions implies S§ does not intercept with S{ nor U7, so that S§ lies below S{, and S§ lies above UT.
This completes the proof of the statement (iii).

By Lemma 2.2 (i), US stays below S and U] whenever v > 0. If U§ intercepts U and Sj below
w-axis, we use (wg,vo) to denote the first point at which US intercepts U and S from above such that
vg < 0 and Uy lies above Ug and 5'8 whenever v < 0 and w > wp. On the other hand, by Lemma 2.3
(ii), U lies below SJ whenever w > wy and v < 0. This leads to a contradiction. It follows that
U§ stays inside the loop S§ and UJ for v > 0 and v < 0. Since ¢'(a) > 0, (a,0) is stable for ¢ > 0.

Furthermore for system (2.2),
dv n d(—cv — g(w))

— =—c<0.
dw dv ¢
By Dulac’s criterion, there is no limit cycle. It follows from the Poincaré-Bendixson Theorem that U§
approaches (a,0). The proof is complete. O
According to this lemma, S{ lies above S§, and below a line v = —m(w — 1) with m > 0. In view

of the Poincaré-Bendixson Theorem, S{ must intersect the v-axis at a number v; > 0. Since S§ lies
outside the loop 5’8 and U(? , below S{, and above U}, S§ must intersect the v-axis at a number vy > 0.
See a graphical demonstration of the statements in Lemma 2.4 in Fig. 3 (a). Consider a trajectory 7
of (2.2) for ¢* > ¢ > 0 that starts at a number between vy and v; on the v-axis; see Fig. 3 (b) for a
graphical description.

To study traveling waves for (1.1) and (1.2), we glue the phase portraits of (2.2) inside the patch to
those outside the patch. Using phase plane analysis, we determine a critical patch size for the existence
of traveling waves. Using z = x — ¢t and the substitution u(zx,t) = u(z,t), (1.1) becomes

Uy = Uy + cly + f(@, 2). (2.6)
A traveling wave of (1.1) is a steady solution of (2.6) satisfying
w”(2) + ew'(2) + f(w,2) =0, z€ (—00,0)U(0,L)U(L,0c0), (2.7)
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188
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191

ST w

Figure 3: (a) The solid curves describe the stable and unstable manifolds S§ and U§ of (0,0) and stable
and unstable manifolds S{ and U of (1,0) for 0 < w < 1 when ¢* > ¢ > 0. The dashed curves describe
stable and unstable manifolds of (0,0) and (1,0) when ¢ = 0. (b) The solid curve describe an orbit T
governed by (2.2) for 0 < w < 1 when ¢* > ¢ > 0. The dashed curves describe stable and unstable
manifolds of (0,0) and (1,0) when ¢* > ¢ > 0.

with
w(07) =w(07), w(L*) = w(L™), w'(07) =w'(07), w' (L") = w'(L7). (2.8)
The corresponding planar system is

w=v, 0<z2<L

v =—cv—g(w), 0<z<L (2.9)
and )
w=v, z<0orz>1L
vV=—cv+rw, z<0orz>L, (2.10)
with

w(0T) =w(07), w(LT) =w(L™), v(0T) =v(07), (L") =v(L").

Throughout this paper we consider bounded traveling waves with values between 0 and 1. Bounded
solutions with w > 0 for linear system (2.10) are given by

( w ) :klem+z< 1+ ) for z < 0; ( b > = klemz< 1, > for z > L, (2.11)
v m v m

where m* = =cEveddr V2‘32+4’", and ki and kg are positive constants. Here w(—o00) = w(oo) = 0. It follows
that v = mTw for 2 < 0 and v = m~w for 2 > L.

In the w — v plane, a bounded positive traveling wave described by (2.9) and (2.10) to a path
involving v = m*w, T¢ (a trajectory of (2.2) or (2.9)), and v = m~w. We use (w§,v§) and (w§,vf)
to denote the interception points of S§ with line v = m*w, and S¢ with line v = m™w, respectively.
We use (p§, ¢§) and (p$, ¢5) to denote the interception points of T¢ and line v = m*™w, and T and line
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199

200

201

202
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204

Figure 4: (a) A path for a positive traveling wave involving line v = m*tw, a trajectory T°¢, and
v =m"w. (b) The corresponding traveling wave as a function of z = x — ct.

v = m~w, respectively. Note that w§ < p{ < w{. See Fig. 4 (a) for a graphical description. The graph
of the corresponding traveling wave is provided in Fig. 4 (b).

We now discuss how L is related to a traveling wave. In the first quadrant, by (2.9), v’ =v > 0, so
that w(xz) increases in x and thus v can be viewed as a function of w. We use v = v (p§; w) to describe
the upper part of T above the w-axis. Similarly v can be viewed as a function of w on T in the fourth
quadrant. We use v = v~ (p{; w) to denote the lower part of T below the w-axis. We use w¢ to denote
the intersection of T and the w-axis. Observe w¢ > B > a so that g(w¢) > 0.

10
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The first equation of (2.9) shows that L is given by

c

ws 1 ws 1
L =H(S) ;:/ de+/ —dw. (2.12)
' pe vH(pf;w) pg U (Phiw)

c

It should be noted that this is an improper integral due to v (p§, w) and v~ (p§, w) being zero at w = w¢.

Lemma 2.5. H(p{) is continuous in p§ for p§ € (w§, wf).

Proof. Since g(w) € C1[0,1], the solution (w(z),v(z)) along T° continuously depends on the initial
values w(0) = p§ and v(0) = m™p§ and thus on p§ (see Theorem 1.3.1 in [14]). Consequently, p§ = w(L)
and ¢5 = v(L) = m™ p§ continuously depend on p§. Along v = v (p§;w) > 0, the first equation of (2.9)
shows ‘%’ > 0, so that w(z) is strictly increasing and thus x is a continuous function of w. We conclude
that vt (p§;w) is a continuous function of w for p§ < w < w¢. Similarly, v~ (p§; w) is a continuous
function of w for p§ < w < wg.

In view of (2.9), near (w¢,0), v' & —g(ws) < 0, so that w is a function of v on T°. Furthermore,
dw(v)| B v | B 0o 0
do T eotg(w) T glws)
and
d2w(1))’ o+ g(w) —v(c+g’(w)%)‘ B 1 <0
dv? 0 [ev + g(w)? T g(we)

It follows that for any small € > 0, there exists v > 0 such that for w € [w§ —~, w¢], w > ws + (—ﬁ

wg)
€)v?, so that

1 1 1
o < \/(g(wg) Jre)w5 — (2.13)

This particularly is true when v is replaced by v*(p$; w). Therefore H(p§) given by (2.12) is well-defined.

Consider a trajectory T¢ of (2.9) with p{ as the w-coordinate of the intersection point with v = m*w,
PS5 as the w-coordinate of the intersection point with v = m~w, and @S as the w-intercept. Assume
w§ > pf > pf > w§. Lemma 2.3 (i) shows that T is above T¢ for v > 0, and consequently w¢ > w¢.
For any small € > 0, continuity and (2.13) imply that there exists §; > 0 such that for p§ — p§ < d1,

C

w¢ 1
/ —— dw< S (2.14)

we v (pfw) 3

Use o1 (p$;w) (57 (p$;w)) to denote the part of T above (below) the w-axis. Choose wg with p§ <
wo < wS and wy sufficiently close to w¢, such that

ws 1
/ — dw< S, (2.15)

wy T (PT;w) 3

and 0% (pf; w) > 07 (pf; wo) for pf < w < wp. For 6y = 07 (pf;wo)§ and p§ — p§ < d2,

D 1 pc —]50 c
———dw < ~1~71 < z. 2.16
/ﬁg ot (pf; w) ot (pfwo) 3 (2.16)

11



Let S = vt (p§;w) — 07 (p§; w) for w € [p§, wp] C [0,1]. The equation (2.3) shows that

Sl — _ g(w)
vt (pf; w)ot (P w)

In view of this and o7 (p§; w) < vt (p§;w) for w > 0, we have for w € [p$, wo,

_ fw 9(&) 9 g_

C fd - —p§ pe __ T X cCc.... 2
S(w) = S()e 7 TEITIIE < () TTVTOTWR < (0 () — 5 () e OO,

where g_ < 0 is the minimal value of g(w) for w € [0, 1]. We therefore have that

wo 1 1
fpi (f}+(ﬁi;w) N v*(pﬁ;w))dw

= [ v (pw) vt (L) g
pi vt (pf;w)oT (Bf;w)

g_
vt (p§3pD) =0 (B5pY) T GF 5% wg))2
< (wo = M) G tarmnt €

F (€ nC) 7 (HE - I e —
v (p17p1)7v (pl 7p1) e (5+(ﬁ%;w0))2
= (0 (pf5wo))? '

24 Since vt (p§;p§) — 07 (p§;p§) approaches 0 as p§ approaches p§, there exists d3 > 0 such that for

225 p% —ﬁf < 53,
wo 1 1 > €
— — dw < —. 2.17
/p«; <v+(p’i;w) vt (pf; w) 3 (2.17)

Combining (2.14)-(2.17), we obtain that for p{ — p{ < 0 with § = minj<;<3{d;},

ws 1 ws 1
dw—/ fdw < €.
/p; vt (pf;w) 5 UT(Pfw)

Similarly, for the given e, there exists 6 > 0 such that for pf —p§ <

w§ 1 ws 1
ps V(P w) 5 U7 (Phw)

226 We have shown that H(p{) is a continuous function of p{. The proof is complete. O

\.0'»

27 Lemma 2.6. Assume that Hypotheses 2.1 hold and ¢* > ¢ > 0. Then H(p$) given by (2.12) satisfies
e+ H(p7) = 0o and lim H(pf) = oc.

228 llm pqlz —HUf -

C
Pf—w,

Proof. The tangent line to S{ at (1,0) is v = A\] (w — 1) with \| = —w < 0. For any small

number 6 > 0, there exists a number w; < 1 and wy close to 1 such that S lies below v = (A] —d)(w—1)
for w; < w < 1. Consider a trajectory T¢ of (2.9) close to S{ near (1,0) with w$, the w-intercept
satisfying wy < w§ < 1. Since T lies below S{, T has a point with w; as the w-coordinate. Since T
lies below v = (A\] —J)(w — 1) for w; < w < 1, (2.12) shows

c

ws 1 ws 1
H(p}) > de/ — dw.
#h) /w 5w S S O — 0w 1)

12



229

231

232

233

234

235

237

238

239

240

241

242

243

This shows H (p§)—o0 as w§ approaches 1 from the left. Due to continuous dependence of a solution on
its initial value, wS—1 from the left if p{—w{ from the left. We therefore have H(p{)—o0 as p{—w{~.
. . — . — c2—4g'(0)+c .-
The tangent line to S§ at (0,0) is v = A\jw with \j = —¥——5—"— < 0. For any small positive
number ¢ with § < |\ |, there exists a point (wg,vg) on S§ close to (0,0) with 0 < wp < a and vy < 0
such that S§ lies below the line v = (A\; +0)w for 0 < w < wyp, and g(w) > (¢'(0) —0)w for 0 < w < wp.
Consider a trajectory T of (2.9) close to S§ near (0,0) with p§ < wp and ¢§ > vo. Since T is below
S for v < 0, T has a point (wp,v1) with v < 0, v; < vg. In view of (2.3), along T° for p§ < w < wy,

do—
L:—C—M<—C<O,
dw v

so that v~ (p§; w) is a decreasing function in w. Since T lies below S§ near (0,0), 7 lies below the line
v= (A, +)w for ¢§ > v > vg. We therefore use (2.12), a variable change, and (2.3) to obtain

c wo 1 _ (v 1 1 - _ 149 1 —
H(pt) 2 [’ = = Jog == =gom v = o} o=@
q5 1 - qas 1 -
Z Juo —CU’—(Q’(O)—fs)wdv Z Juo IPICE dv™.
A6+5

This shows that H(p{)—o0 as ¢5—0T. Due to continuous dependence of a solution on its initial value,
g5—07" if pf—w§T. This completes the proof. O

Define
L*(¢)= inf H(p7), (2.18)
w<p]<wf
where H(p{) is given by (2.12). Lemma 2.5 and Lemma 2.6 show that L*(c) is well-defined. Clearly,
L*(c¢) > 0. Ecologically speaking, L*(c) is the critical patch size for a population to persist. We will
further explore L*(c) in the rest of this section.

We shall show that L*(c) is positive. To this end, we introduce an integral operator. Integral oper-
ators have been proven useful in studying traveling waves for reaction-diffusion systems [23]. Consider

Q. defined by .
Qulul(2)i= [ el - 0! (“(y)’y; o) gy,

—0o0

with

_ p e MZif 2 >0,
me(z) =

/21 4p | e if 2 <0,

where A\; = 2(\/2+4p+c) >0, Ao = 2(\/c2+4p—c) > 0, and p is a positive constant satisfying
p > maxyeoq] |9’ (u)| and p > r. It is easily seen that mc(z) is a probability density function, that is,

me(z) >0 and [* me(z)dz = 1. Since w is increasing in u, Q. is a monotone operator.

The next lemma shows that w(x — ct) is a bounded traveling wave of (1.1) if and only if w is a fixed
point of Q..

Lemma 2.7. Assume that Hypotheses 2.1 hold. Then w satisfies (2.7) and (2.8) with w(—o0) =
w(oo) = 0 if and only if w(z) is a fivred point of Q. (i-e., w(z) = Q.[w](z)) with w(—o00) = w(oco) = 0.
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249

250

251

252

253

254

255

256

If w satisfies (2.7) and (2.8) with w(—o0) = w(oco) = 0, a slightly revised version of the first part of
the proof Theorem 3.2 in [23] shows that w(z) is a fixed point of Q.. If w(z) is a fixed point of Q. with
w(—o00) = w(oo) = 0, a proof similar to that of Lemma 3.1 in [27] and the second part of Theorem 3.2
in [23] show that w satisfies (2.7) and (2.8). We omit the details here.

Lemma 2.8. Assume that Hypotheses 2.1 hold and ¢* > ¢ > 0. Then there exists a positive number
Lo(c) such that for L < Lo(c), there is no positive traveling wave connecting 0 and 0 for (1.1).

Proof. We consider

Wn+1(2) = Qcwn)(2), wo(z) = 1. (2.19)
Since Q. is monotone, wi(z) = [%_mc(z—y) (wo(y)’?ﬁ+pw°( )dy 75 me(z—y) (1’Z)+pdy < [ me(z—
y)dy = 1 so that wi(z) < wo( ). Inductlon shows wp4+1(2) < wp(z) § 1 for all n.
Let @y, = SUP_ o, <00 Wn(2). If follows from (2.19) that

et (2) < Qi )(2) 1= o L) 22 gy [ rte I ) 20 g

S R /
VeA+4p ) p z
For z <0,
Qc[iﬂn](z) o
= {6_’\13 f—oo e)‘ly—p;rwndy + g2 fzo e_Azy—p;Twndy + er2® fOL e_)‘zyig(w”):pw" dy

+€A2z fL Azyﬂ Ly dy}
_ 1 1 Aoz Ao (z—L) 2 “ Mo L\ A _
Aty e St R (L—em e,
Here we have used the simple fact M < 2w,. For z <0, er2? < 1,0<1— e 4 e(e=L) 1
We therefore have for z < 0,

Qclion] (2) < \/62’174[) {p ; - [All + ;2] + iu - e)‘QL)} W (2.20)
For 0 < 2 < L,
Qclwn](2) o o
_ \/cirﬁ{e_/\lz fi)oo e’\ly%wndy 4Nz IOZ My g(wn)erpwn dy + e*2? sz o2y g(wn)p+pwn dy
rere @21)

N

> \/02+4p{p T N + £ 3 ]+%(1—6—)\1Z)_’_%(1_6)\1(2—L))}wn
= \/m{ﬂp’" )\71 )\72] + %(1 — 6_)\1L) + %2(1 _ e—)\QL)}w
For z > L,
Qclwn](2)
= \/Ci_ﬁ{e—hz fi)oo )\1ypp7"w dy + e~ Alzf eklywdy+e—/\lz fz Alypprwndy

+ e [ eV Ty dy | (2.22)

_»—A1(2—L) -1z _ _
- «cé’w{u S et - e,

\/m{p >\1 /\2]+ A G )}wn
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Observe 62”+4p[)%1 + )\%} = 1. Since % < 1, (2.20)-(2.22) show that there exist positive numbers

o < 1 and Ly(c) such that for L < Ly(c) and any z, wy41(2) < ow, leading to wy4+1 < ow,. Therefore
for L < Lo(c) , w, — 0 as n — oo. We conclude that for L < Lg(c), the solution wy(z) of (2.19)
approaches 0 as n — oo. This and Lemma 2.7 imply that for L < Ly(c), system (1.1) has no positive
traveling wave. The proof is complete. ]

Theorem 2.1. Assume that Hypotheses 2.1 hold. Let fol g(u) > 0. Then for ¢* > ¢ > 0 and L*(c)
defined by (2.18),

i. L*(c) >0;
it. If L = L*(c), equation (1.1) has a positive traveling wave connecting 0 and 0;
iti. If L > L*(c), equation (1.1) has two positive traveling waves connecting 0 and 0; and

w. If L < L*(c), equation (1.1) has no positive traveling wave connecting 0 and 0.

Proof. By Lemma 2.5 and Lemma 2.6, L*(c¢), the infinum of H (p§) occurs at a number between w§ and
w$, so that there is a corresponding traveling wave. For L > L*(c), there exists two different numbers
in (w§, w{) at which H has the value L, and thus there exist two positive corresponding traveling waves.
These prove (ii) and (iii). On the other hand, a positive traveling wave corresponds to the existence
of p{ € (w§,w{) such that L = H(p{). Consequently if L*(¢) > 0, for 0 < L < L*(c) there is no
positive traveling wave. Lemma 2.8 shows that there exists Lo(c) > 0 such that for L < Lg(c) there
is no positive traveling wave. If follows that L*(¢) > Lo(c). These prove (i) and (iv). The proof is
complete. ]

The statements (ii) and (iii) of this theorem show the existence of one or two positive traveling
waves. The problem of exact number of positive traveling waves is open. Our numerical simulations
in the next section indicate that for g(u) in the form of u(u — a)(1 — u) and for L > L*(¢), there are
exactly two positive traveling waves.

Theorem 2.2. Assume that Hypotheses 2.1 hold. If either (i) folg(u)du > 0 and ¢ > ¢*, or (i)

fol g(u)du < 0 and ¢ > 0, then for any L > 0 equation (1.1) has no positive traveling wave connecting
0 and 0.

Proof. Assume that w(x — ct) is a traveling wave connecting 0 and 0 for (1.1) and (1.2) in the case of
fol g(u)du > 0 and ¢ > ¢* > 0. Since 0 < w(z) <1 and 0 < w < 1 for all z, and since
0 < [w@a)tpwl) p—;rw(az) < p—;r < 1, w(z) = Q.[w](x) implies that 0 < w(x) < 1 for all z. Since
w(oo) = w(—o00) = 0, there exists a positive number vy < 1 such that

0 <w(x) <7, (2.23)

for all z. w(x) = k1™ * for z > 0, where k; is a positive number and m~ = _C%‘/m <0.

Consider the nonincreasing traveling wave w*(z — ¢*t) for (2.1) with w*(—o0) = 1 and w*(c0) =0
described by Proposition 2.1. This traveling wave corresponds the orbit 7* from (1,0) to (0,0) in the
w-v plane. We use v = h(w*) to describe this orbit. The tangent line to v = h(w*) at (0,0) is v = A\j w*
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where A\, = —y (02)2_49,(0) < 0. Since r > —¢’(0) and ¢ > ¢*, for \; —m~ > € > 0, there exists
d > 0 such that h(w*) > (A; — €)w* for 6 > w* > 0. This and the first equation of (2.2) show that
there exists xy such that for x > x,

(W) = (Ag — e,

leading to w*(z) > kge(*0 ~9% for > ¢ and some ko > 0. This, w(z) = k;e™ ® for 2 > 0, (2.23), and
w*(—o00) = 1 show that there is a real number d such that w*(x + d) > w(zx) for —co < z < co. Since
g(u) > f(u,x), comparison shows that w*(z +d — ¢*t) > w(x — ct) for all t > 0 and —o0 < x < 0. If
w(z1) > 0 for some real number z1, there exists xo such that zo —d > x1 and w*(x2) < w(z1). For
tp =222 5 0 and 3 = 31 +cty, w* (x5 +d — c*t1) = w* (v2) < w(z1) = w(w3 —ct1), a contradiction.
We conclude w(z) = 0. We have shown when fol g(u)du > 0 and ¢ > ¢*, for any L > 0 equation (1.1)
has no positive traveling wave. The proof for the case of fol g(u)du < 0 is similar and omitted, as in
this case ¢ > 0 > ¢*. The proof is complete. O

3 Simulations

In these simulations we first numerically study the phase plane equations given by (2.9) and (2.10).
We will also numerically study the fully time dependant solutions to (1.1) and (1.2). Throughout this
section we will use g(u) = u(u — a)(1 — u), therefore the dynamics are characterized by the parameters
a, ¢, v and L. For simplicity, we use L* to denote L*(c) for a given c.

In Fig. 5 we integrate the phase plane equations for the parameters ¢ = 0.2, r = 1, and ¢ =
0.5¢* = 0.212. We use MATLAB’s ode45 to accomplish the integration. For this choice of parameters
(w, v§) = (0.185,0.167) and (w{,v{) = (0.424,0.381). This was determined by backwards integration
of the equations with initial conditions (0.001,0.001m~) and (1,0.001) respectively. The intersection
with v = mTw was determined by using the odeset ‘Events’ option to terminate integration.

To create Fig. 5-(b) we forward integrate trajectories initiated along the line segment connecting
(w§, v§) and (w§, v§). The initial point is related to 8 by w = (1 — f)w§ + fwS and v = (1 — B)v§ + Bvy.
To determine the length of the habitat corresponding to the solution we used ‘Events’ to terminate
integration when the intersection with v = m~w is detected. The returned value of the independent
variable is the length. We see there is a broad minima approximately near § = 0.6 and L = 7 with
L asymptotically approaching infinity as 8 approaches 0 and 1. The exact values of the minima (as
determined by the minima of the 500 sample points) is f = 0.611 and L* = 6.790. The values of
B corresponding to L = 8 are § = 0.197 and 8 = 0.923 as determined by linear interpolation. The
trajectories are plotted Fig. 5-(a). The corresponding travelling waves are plotted in Fig. 6.

In Fig. 7 we show the relation between L* and the habitat shift speed relative to ¢*. In Fig. 7-(a)
r = 1 and several different value of a are displayed. We see that for a fixed ¢ the minimum habitat
size increases as a increases. Since a smaller of @ means stronger growth, this is not surprising. In
Fig. 7-(b) a = 0.2 and several different value of r are displayed. As a larger r means faster die off in
the bad habitat, we see the minimum habitat size increases with r. We also see that L* increases very
gradually with ¢ until roughly 80% of ¢* where it begins increasing more rapidly. Due to the limits of
numerical accuracy, L* was only computed up to ¢ = 0.99¢*. To compute L*, L versus 3 was computed
as in Fig. 5-(b) for 250 sample points on the interval 0.01 < 5 < 0.99. The minimum of these values
was assigned to L*.
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Figure 5: In (a) several phase plane trajectories for the parameters a = 0.2, r =1, ¢ = 0.5¢* are shown.
The blue curves (T and T5) correspond to the solutions with L = 8, and the red curve (7},;,) is the
trajectory corresponding to the minimum habitat size, L*, which is 6.79. In (b) we show how habitat
length varies with 8. 3 defines the initial point via w = (1 — g)w§ + fw§ and v = (1 — B)v§ + Bus.
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Figure 6: The travelling waves corresponding to the trajectories in Fig. 5.
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Figure 7: We show the minimum habitat size, L*, as a function of the habitat shift speed relative to
c¢*. In (a) 7 is 1 and the curves for several values of a are shown. In (b) a is 0.2 and the curves for

several values of r are shown.

In figures 8-10 we examine the evolution of the fully time dependant solutions. To avoid compli-
cations of dynamically updating the effectively populated domain, we use the moving frame equation
given by (2.6).

To numerically approximate the equation we used uniform spatial sampling with dz = 0.2 or the
nearest number that insures a whole number of sample points in the interval [0, L]. The first and
second derivatives are interpolated up to fourth order in dx. To deal with the discontinuity in the
second derivative at z = 0 and z = L, the boundary conditions that v and u, are continuous there is
applied and appropriate end-point interpolations are used. The domain was extended to the left (right)
of z=0 (z = L) by 25 units and the boundary condition u = 0 was applied at the end-points. A fixed
time step dt = 0.006 with a second order Runge-Kutta method is used for time integration. Larger
values of dt, such as §t = 0.1, exhibited unstable oscillations consistent with a stiff-system. In future
updates to this code, it may be desirable to implement an implicit solver such as Backward-Euler or
Crank-Nicolson. The code used can be viewed at

https://github.com/glotto01/Reaction_Diffusion.git

In Fig. 8 and 9 we show the dynamics of a solution where L > L*. We use the same parameters as in
Fig. 6-(a). Namely, a = 0.2, r =1, ¢ = 0.5¢* and L = 8. In Fig. 8-(a) we see that a solution converges
from above to the T3 equilibrium. The initial condition used is u(z,0) = 1. In Fig. 8-(b) we see a solution
converge from below to the T equilibrium. The initial condition used is u(z,0) = 0.6 0-1@=9*  The
black dashed curve is the T equilibrium as computed from the phase-plane equations. Qualitatively
similar dynamics where seen with other parameter choices when L > L*.

In Fig. 9 we numerically examine the stability of the 77 equilibrium. In (a) we initiate with
u(x,0) = 1.0571(z). We see that the solution asymptotically approaches the T, equilibrium. In (b)
we initiate with u(x,0) = 0.9577(x). We see that the solution asymptotically approaches zero. This
strongly suggests that 7T} acts as a separatrix, where solutions initiated below it go extinct, and solutions
initiated above it grow to the T equilibrium. Similar results were seen with other parameter choices.

In Fig. 10 we show an example of extinction occurring when L < L* and when ¢ > ¢*. In Fig.
10-(a) the habitat size used is L = 6 which is less than L* which is 6.79 for the parameters used
(¢ =0.5¢*, a =0.2, r =1). The initial condition used is u(z,0) = 1. We see by ¢ = 38 the maximum
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353

354

355

density has fallen below the Allee threshold of 0.2. In Fig. 10-(b), ¢ = 1.2¢* so the habitat shift speed
is greater then species spread speed and by the theory developed we would expect even for large values
of L extinction will eventually occur. We use the parameters a = 0.2, r =1 and L = 10. We see that
by ¢t = 55 the maximum density has already fallen below the Allee threshold.

1.0

0.81

0.6¢

0.4;

Figure 8: Time dependent solutions for the parameters ¢ = 0.5¢*, a = 0.2 , r =1, and L = 8. In (a)
we see that the solution converges to the T equilibrium from above. The initial condition used was
u(z,0) = 1. In (b) we see the solution converges to the T equilibrium from below. The initial condition
used was u(x,0) = 0.6e~0-1z—4)*,
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Figure 9: The evolution of solutions initiated near the T equilibrium for parameters ¢ = 0.5¢*, a = 0.2
,7=1,and L = 8. In (a) we see that a solution initiated 5% above T} asymptotically approaches Tb.
In (b) we see that a solutions initiated 5% below T} asymptotically approach extinction.
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Figure 10: The evolution of a solution leading to extinction. In (a) L < L*. The parameters used are
c¢=0.5¢", a =0.2 and r = 1 for which L* = 6.79 but L = 6. In (b) ¢ = 1.2¢* indicating extinction will
occur even for a large L. The parameters used are ¢ = 0.2, =1 and L = 10.

4  Concluding remarks

In this paper, we studied traveling waves for (1.1) and (1.2) with a strong Allee effect in a finite
shifting patch of hospitable habitat. We demonstrated that the existence of positive traveling waves
is determined by the patch shift speed ¢, the patch size L, as well as the traveling wave speed ¢* of
the corresponding system with the same growth function in (—o0, 00). Specifically we showed that for
c¢* > ¢ > 0, there exists L*(c) > 0 such that if L > L*(c) there are two different positive traveling waves
with speed ¢ and if L < L*(c¢) such a traveling wave does not exist, and for ¢ > ¢* there is no positive
traveling wave with speed ¢ for any L > 0. These results are supported by our numerical simulations.

Our analysis indicates that positive traveling waves constitute a single-hump profile that vanishes
far from origin, and they represent traveling pulses. Such traveling pulses are driven by the shifting
patch inside which population grows and outside which population declines. It is well-known that for
the reaction-diffusion equation with the reaction term u(a — u)(1 — u) (i.e., the Nagumo equation) in
a stationary patch with homogeneous Dirichlet boundary conditions, there exist exactly two positive
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steady states through a fold bifurcation with the bigger steady state stable and smaller one unstable; see
Figure 17.8 in Kot [22]. We conjecture that for ¢* > ¢, L*(c) is the fold bifurcation value, there is exactly
one positive traveling wave if L = L*(c¢), and there are exactly two positive traveling waves if L > L*(c)
with the bigger (smaller) traveling wave stable (unstable) in (1.1) with (1.2) under Hypotheses 2.1. This
conjecture is supported by our numerical simulations which show solutions initiated near but below the
lower equilibrium go extinct while those initiated slightly above the lower equilibrium converge to the
upper equilibrium (see Fig. 8 and Fig. 9).

It was shown in Berestycki et al. [7] that for (1.1) with no Allee effect, the unique travelig wave
(traveling pulse) is globally attracting. As shown in the present paper, the presence of a strong Allee
effect leads to the multiplicity of traveling waves (Theorem 2.1(iii)). Our simulations show that the
critical patch size L*(c) increases as ¢ increases (see Fig. 7). This implies that a species persisting in a
stationary habitat may eventually die out when the habitat shifts.

The methodology developed in this paper might work for reaction-diffusion models in a shifting
patch with other growth functions and boundary conditions. Inside the patch the growth function
g(u) could exhibit a weak Allee effect, with an example given by g(u) = u?(1 — u). MacDonald and
Lutscher [31] considered a model in a form similar to (1.1) and (1.2) with no Allee effect, different
matching boundary conditions and more general movement behavior. The matching conditions in [31]
are determined by the probability with which an individual at a boundary point decides to move into
or out of the suitable habitat. One may consider a model with a strong Allee effect and the matching
conditions given in [31]. The phase plane analysis presented in this paper might be extended to study
the existence of positive traveling waves for these models. This paper considered the case of a bounded
shifting habitat. It would be of interest to investigate persistence and spread in a reaction-diffusion
model with an unbounded shifting habitat and strong Allee effect. The most cited and obvious cause of
the Allee effect is the difficulty of finding mates at low population sizes in sexually reproducing species
(Boukal and Berec [10], Courchamp et al. [12]). There are works on traveling wave solutions, spreading
phenomena, and critical patch sizes for two-sex populations (Ashih and Wilson [3], Maciel et al [32],
Miller et al. [33]). It is worth of studying two-sex species models with shifting habitats by extending
the framework developed in this paper.
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