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AbstractÐThe modern power grid continues to grow in com-
plexity and dynamics due to the addition of various inverter
based resources (IBRs), which require further oversight from
system operators. Maintaining adequate system-wide voltage reg-
ulation through remote control of distributed solar photovoltaic
(PV) inverters offers flexibility for grid operators, but becomes
computationally challenging when using traditional optimization
approaches due to model complexities, measurement uncertain-
ties, and increasing numbers of interconnected devices. This work
proposes a Deep Reinforcement Learning (DRL) based model-
free volt-var control (VVC) of smart inverters for an optimal
system-wide voltage regulation. Our controller also includes a
limited set of reactive power dispatch rules for smart inverters,
specified by the IEEE 1547-2018 standard, through an informa-
tive reward design process to embed these additional operational
constraints. Preliminary results carried out on the IEEE 123 bus
network demonstrate the ability of a single centralized controller
with no prior system knowledge to achieve successful bus voltage
deviation minimization through VVC selective action learning
of several solar PV units. Furthermore, the results show the
effectiveness of incorporating learnable barrier limits within the
reward function design, and expose the importance of reward
shaping and variability in DRL algorithms.

I. INTRODUCTION

A. Motivation for Centralized Learning-Based Control

Traditional distribution networks are shifting from passive

delivery systems to active, bi-directional networks hosting

a mixture of legacy and smart devices [1]. Increasing pen-

etrations of distributed energy resources (DERs) introduces

various uncertainties into system operations, reducing the

accuracy of deterministic solutions, and requiring attention

to faster timescale dynamics. The simultaneous deployment

of measurement devices, both at the grid-edge (via advanced

metering infrastructures) and at the system-level (using mi-

croPMUs and other wide-area monitoring systems) provide

massive amount of potential real-time data that can be used

for operational decision-making [2].

With the influx of DERs at the grid edge, optimal Volt-Var

control (VVC) has been extensively studied for the goal of

providing reactive power support to enhance feeder voltages

and achieve other operational benefits such as conservation

voltage reduction or loss minimization, etc. Moreover, to

address the voltage regulation problem due to growing pene-

trations of DERs, IEEE 1547-2018 standard was established

to allow for reactive power support via local autonomous

control of smart inverters [3]. From the system operations

standpoint, the coordination among smart inverters is vital

to meet global system-level objectives. Various traditional

optimization and control approaches have been developed in

past; however, due to various uncertainties resulting from mea-

surement and model errors, and the problem dimentionality,

traditional optimization-based models are extremely difficult

to solve within the desired operational time-scale [4], [5].

For example, centralized and distributed optimal power flow

(OPF) methods have been developed to determine optimal

setpoint dispatch for DERs to minimize power losses and limit

operating limit violations while maximizing power delivery

to the consumer. The non-linearity of the OPF problems is

generally handled using several convex relaxation techniques

[6]. However, due to forecasting and physical model uncertain-

ties, existing models may only provide limited information or

unsatisfactory input data resulting in poor quality solutions

[7]. The optimization under uncertainty requires stochastic or

robust optimization approaches, both are extremely difficult

to scale and generalize for general noise distributions. For

example, stochastic programming formulations under adverse

uncertainty for unit commitment are discussed in [8], [9]

where robust non-linear formulations require longer time to

achieve an optimal solution and can be difficult to scale.

Another complexity for inverter control arises from need to

incorporate difficult mathematical constraints resulting from

the IEEE 1547-2018 standard. For example, in [10], authors

use distributed OPF to learn VVC and Volt-Watt control

(VWC) droop control settings by incorporating piecewise

curves with the addition of the inverter standards. However,

embedding the IEEE 1547-2018 standard into the optimization

problem introduces integer variables, and the non-linear power

flow model is simplified to form a Mixed Integer Linear

Programming (MILP) problem that proves more difficult to

solve due to the introduction of larger numbers of additional

integer variables. Similarly, [11] formulates centralized VVC

for DERs to minimize operational cost as a Mixed Integer

Nonlinear Program (MINLP), that are extremely difficult to

solve or scale. Looking ahead, it is estimated that these pitfalls

will become increasingly problematic as the grid becomes

more complex, motivating data driven control methods that are

robust to uncertainties, which can learn and make decisions in

diverse environments.

B. Deep Reinforcement Learning for Volt-Var Control

Reinforcement learning (RL) for power systems applications

have been proven to provide strong performance under model

and measurement uncertainties when compared to traditional

optimization and control approaches [12]. However, they suffer

from lack of exploration and safety guarantees, scalability

issues and policy degradation over time leading to poor online
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transfer, known as the simulation-to-reality gap [13]. In [14],

authors discussed the use of constrained optimization tech-

niques in deep RL (DRL) problems for safety, that often in-

volve setting fixed limits on exploration boundaries; however,

they do not discuss learning these parameters as formulaic

reward objectives. It has been shown that fixing bounds of

the observation and state spaces to enforce strict exploration

rules can lead to online under-performance, conservatism, or

potential failure when exposed to different/varying real world

conditions/scenarios [15].

Specifically on VVC using DRL, [16] establishes a DRL-

based VVC to minimize operational cost while respecting

physical constraints using Trust Region Policy Optimization

(TRPO); however, they do not learn the physical boundaries of

the system and address scalability in larger networks. In [17],

authors use a Soft Actor Critic (SAC) algorithm for coordi-

nated inverter control via Markov Game and experience replay

buffer. The method achieves promising results for reduction

of power curtailment, but includes hard constraints of inverter

regulations in the OPF model as opposed to the DRL learning

process, which could lead to online control exploration actions

that may violate limits when exposed to a different data distri-

bution. Finally, [18] uses Deep Deterministic Policy Gradient

(DDPG) with Actor Critic model for VVC, but uses a reward

function with large penalty resulting in potential scalability

and sim-to-real policy transfer challenges, or failure over time

when exposed to unseen operational conditions.

The contribution(s) of this work is to demonstrate the

capabilities of a centralized DRL agent learning VVC for

a distribution network (with no prior system knowledge)

containing randomly distributed DERs through informative

reward design of physical solar inverter regulatory standards

and active action selection. Our simulation results using an Ad-

vantage Actor-Critic (A2C) algorithm to learn VVC controls

are promising in achieving system-level goals to reduce nodal

voltage deviations and power losses while learning to operate

within regulatory standards as specified by the existing IEEE

1547-2018 standard [3]. Note that IEEE 1547-2018 standard

is fairly comprehensive and in this paper, we include only a

limited set of inverter operating conditions (Section 5.2 in [3])

that previously have not been included in the related literature.

Our future work will entail more comprehensive treatment on

this subject via including recommended Volt-VAR and Volt-

WATT curves. This study also aims to expose limitations of

the learning algorithm to emphasize further study on obtaining

safe solutions for model-free DRL controllers.

II. PROBLEM FORMULATION

This section details a systematic approach to develop the

proposed DRL-based VVC controller. First, we introduce a

mathematical formulation for the centralized OPF-based VVC

with the goal of dispatching reactive power setpoints for solar

PVs with smart inverters, referred to as DERs. The distribution

system model with the VVC objective is discussed, along

with the device model for DERs. The optimization problem

is used to motivate the DRL model for VVC formulated

as a constrained Markov Decision Process (MDP). To fully

describe the DRL model, we introduce the state and action

space definitions and multi-objective reward design. We also

introduce the Advantage Actor-Critic (A2C) algorithm as

model-free approach to train DRL-based VVC controller.

A. Centralized OPF and Distribution System Model

We assume a distribution network graph G = {N , E}
containing a set of N nodes and E lines (edges) such that

N = {1 : N}, where DERs have been installed at NDER

buses such that |NDER| ≤ |N | and NDER ⊂ N . Any two

nodes i and j are connected by an edge (i, j) representing

a physical line connection, where node i is the parent of

child node j. The objective of the central controller is to

dispatch optimal reactive power setpoints to selected DERs

in the system based on the measured voltages at the DER

buses, which are centrally collected at each time step t; t is

omitted in the formulation for brevity.

The objective function in (1) minimizes voltage deviations

Vdev =
∑N

i=1
(vi − 1)2 from 1 pu at all buses under obser-

vation, total system active power losses Ploss =
∑

Pgen −
∑

Pload, and provides a metric Q
ρ
DER to indicate a violation

of VVC limits from those stated in IEEE 1547-2018 [3] (see

next section). The VVC must also abide by the physical,

operational and technical constraints of the power system and

its components (1a) - (3).

min

N
∑

i=1

Vdev + Ploss +QρDER
(1)

subject to

P
inj
i −P

spec
i = Vi

N
∑

j=1

VjYij cos(δi − δj − θij)− (PDER,i −PD,i)

(1a)

Q
inj
i −Q

spec
i = Vi

N
∑

j=1

VjYij sin(δi − δj − θij)− (QDER,i −QD,i)

(1b)

P
min
ij ≤ Pij ≤ P

max
ij , ∀(i, j) ∈ E (1c)

Q
min
ij ≤ Qij ≤ Q

max
ij , ∀(i, j) ∈ E (1d)

Constraints (1a)-(1d) delineate the mismatch between real

and reactive injected power P
inj
i , Q

inj
i at a bus i and the

specified powers P
spec
i , Q

spec
i , equivocal to generation minus

demand PDER,i−PD,i, QDER,i−QD,i, with line flow limits

on Pij , Qij . Similarly, the operational voltage limits for all

buses as per the ANSI Standard [19] are given as V max
i = 1.05

pu and V min
i = 0.95 pu in (2). Finally, each DER is limited

by its rated apparent power, SRated
DER,i in (3).

V
min
i ≤ Vi ≤ V

max
i , ∀i ∈ N (2)

0 ≤
√

P 2

DER,i +Q2

DER,i ≤ S
rated
DER,i, ∀NDER ∈ N (3)

There are additional constraints imposed on reactive power

dispatch from DER (QDER,i) as per the recommendations

from IEEE 1547-2018 standard [3]. A limited set of oper-

ational constraints on inverter reactive power limits as per
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Figure 1. PV System Single Phase Model

the IEEE 1547-2018 standard, especially under low lighting

conditions, are included in this paper, further discussed in the

following section.

B. DER Model: PV with Smart Inverter Control

The DER model, used in this paper, is shown in Figure 1.

It combines the solar array panel with inputs temperature T

and irradiance I , maximum power point tracking (MPPT) as

PMPP maximum real power delivery at unity power factor,

and inverter module with efficiency curves Effxy provided

from [20]. The output is represented as a Norton equivalent

current source Inort at the point of common coupling (PCC).

Each PV system includes grid reference control monitoring for

frequency and local grid voltage . We also assume a physical

line of communication exists for centralized monitoring and

control as per grid requirements in [3].

The recommended ratings for smart inverter requires having

44% of Srated
DER,i being available when PV is generating its peak

active power P rated
DER,i. However, additional operational limits

are imposed as stated in (4a) - (4b). These are defined as

per Section 5.2 of the IEEE 1547-2018 standard for voltage

reactive power control of category A and B inverters [3].

Specifically, the available reactive power absorptions, Qlimit
DER,i

and injections are limited to 44% of Srated
DER,i, but also depend

on the amount of active power produced as a percentage of

Srated
DER,i. During low sunlight hours, Qlimit

DER,i decreases further

in (4a) as a fraction of the actual real power being produced

by 20% of the inverter rated real power P rated
DER,i.

Q
limit
DER,i ≤ 0.44Srated

DER,i×
PDER,i

0.2× P rated
DER,i

, if PDER,i < 0.2Srated
DER,i

(4a)

0.44Srated
DER,i ≤ Q

limit
DER,i ≤

√

(

(Srated
DER,i)

2 − P 2

DER,i

)

(4b)

else if, PDER,i ≥ 0.2Srated
DER,i.

We would like to highlight that there are additional and more

comprehensive set of recommendation on inverter reactive

control as per the IEEE 1547-2018, such as the recommended

Volt-VAR curves included in [10]. We aim to include these

difficult constraints as an extension of this work.

C. Constrained MDP Formulation for Volt-Var Dispatch

This section describes the formulation of centralized VVC

DER dispatch as a constrained Markov Decision Process

Figure 2. RL agent power system interaction process

(CMDP). The sequential nature of the RL learning pro-

cess can be modeled as an MDP defined by the tuple

< S,A, T ,R, C >, consisting of an action space A, state

space S , the transition probability function P (st, at, s
′
t) =

Pr(s′t|st, at) = T : SXA → S ′, reward function r(st, at) :
SXA → R, and C, a set of constraints applied to the learned

policy π(at|st) ∈ A. Generally speaking, the environment

begins in an initial state s0 ∈ S , and at each time step t,

the DSO (distribution system operator) agent chooses action

at ∈ A and receives a reward r(st, at) dependent on the

current state/action pair, after which the system moves to the

next state st+1 generated from P (·|st, at) (see Figure 2).

The goal of the central controller is to find the optimal

policy π∗ (5) for dispatching VVC setpoint adjustments to

maximize the expected value of the discounted reward over a

given time horizon. In the model-free approach taken due to

various uncertainties, π∗ is derived without explicitly learning

the model when it becomes difficult to learn or express using

Q-Learning. Instead of learning the optimal value function, the

optimal Q-function Q∗ is learned directly as Q(s, a) given in

(6) for an infinite time horizon starting from an initial state

and action. A discount parameter γ [0:1] is used to determine

the value of future rewards.

π
∗ = E

[

γ
t
r(st, at)

]

(5)

Q
∗(s, a) = Eπ

[

∞
∑

t=0

γ
t
r(st, at)|s0 = s, a0 = a

]

(6)

1) State Space: : The observation space of each envi-

ronmental state of the agent is composed of DERs and the

voltages vi measured at each respective PCC at each time

step t at the respective buses. In addition, the real, reactive,

and complex powers of the DER units are measured to

compute the Qlimit
DER,i for VVC in (7), where QDER,i =

√

S2
DER,i − P 2

DER,i for each DER.

Q
ρ
DER,i = |

QDER,i

Qlimit
DER,i

| (7)

Thus, at any given time step t, the state st of the en-

vironment observed by the central controller is given by

st = [NDER, vi, PDER,i, QDER,i, SDER,i, Q
ρ
DER,i] ∈ S .
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2) Action Space: : For this particular study, a unique action

selection space A is constructed using a set of 1-D vectors

which contain affiliated PV System IDs PV and an action

selection vector ASV responsible for reactive power setpoint

computation. Let the action space A be defined as a set of

1-D vectors such that at each time step t, an action at ∈
A is selected from each action vector in sequence, given the

possible action set in the current observed state st.

At each step, the agent selects an action tuple from the

vector set. During observation of the PCC voltages and

inverter powers, an action is selected for the amount of

reactive power adjustment Qadj constrained to (4a) and (4b) as

Qadj = |(vi − 1)| ∗ 100±Qcsp using the directly proportional

relationship which exists between reactive power and voltage.

The parameter Qadj is computed as the percentage maximum

limit of adjustment during action selection relative to the

observed normalized bus/PCC voltage and the current reactive

power setpoint of the inverter under examination Qcsp. In

this manner, the agent is trained to make more conservative

adjustments when the local grid health is optimal.

3) Multi-Objective Reward Function:: The multi-objective

reward function uses a negative penalty scheme to train the

agent on VVC . First, a voltage deviation penalty utilizes

local voltage measurement vi compared to the target 1 pu,

with total system loss given as Ploss =
∑

Pgen −
∑

Pload.

Finally, Q
ρ
DER,i < 1 if no 1547 violation occurs, bound by

Qlimit
DER,i in (4a) and (4b). The constrained objective in (8) is to

maximize the expected cumulative total reward where the ith

constraint must be satisfied by π in the set of allowable policies

Π. However, it is also critical to incorporate system knowledge

and optimization constraints into reward functions to guide the

agent towards state boundary learning. More importantly, it has

been shown in [21], [22] that treating constraints as learnable

parameters, as opposed to fixing boundaries to limit an agent’s

exploration space in training, can produce more robust policies

which generalize to those constraints naturally.

max
π∈Π

EπR(st, at) = −
∑

iϵN

(vi − 1)2 − Ploss −Q
ρ
DER,i (8)

D. Advantage Actor-Critic

Advantage Actor-Critic (A2C) is an on-policy synchronous

variation of A3C (Asynchronous Advantage Actor-Critic), a

deterministic multi-worker DRL algorithm which uses a policy

gradient method averaged by all actors (bootstrapping) to

make a decision. From [23], the critic estimates the value

function Vπ(s) = E [
∑∞

t=0
γtRt|π, st] by approximating the

Q-function from (6), while the actor(s) update the policy

distribution π(at|st, θ) suggested by the critic(s) via the gra-

dient. The critic makes use of the Advantage function to

update the temporal difference target of the expected reward

minus average reward based on the current action, given

as Advπ(s, a) = r(st, at) + γtVπ(st) − Vπ(s
′
t) in Figure

3. Actor-Critic methods have shown tremendous success in

DRL applications with scarce data, but are known for policy

variability and scalability issues (discussed further in section

III).

Figure 3. Advantage Actor-Critic (A2C)

III. SIMULATIONS AND RESULTS

A. Simulation Case Study

The IEEE 123 bus network used in this case study shown in

Figure 4 is modified with ten solar PV systems installed at bus

locations which exhibited weaker voltage profiles identified

after an initial steady-state power flow. All default network

voltage regulation controls are set to disengage at the initial

step of each training episode, and the network is overloaded

at 135% to simulate a weakened but flexible system. Each PV

system is sized using maximum local nodal demand for peak

PV hosting capacity SRated
DER,i. The three-phase inverter model

used in this study follows the single-phase inverter equivalent

circuit shown in Figure 1 (representing only a single phase),

determined again by load type. The reactive power control are

disabled for all PVs at initialization to allow the A2C agent to

adjust inverter reactive power injections Qinj or absorptions

Qabs via controlled setpoint adjustments. The dispatched Q

targets are based on the PV system reference readings imme-

diately following a centralized load flow, performed by the

DSS power flow solver at every time step t.

Figure 4. IEEE 123 Bus Network with Distributed Solar PV Systems
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The following assumptions are also made from from

IEEE1547-2018, Section V [3].

1) All inverters assume a continuous operational region

of 0.88VNominal ≤ Vref ≤ 1.1VNominal, where

VNomimal = 1pu and Vref is the noisy measurement

taken from the reference controller of the inverter

2) No fixed power factor for inverter operation is specified

3) Single line of centralized communication for remote

monitoring/control exists at each PV location

Irradiance, temperature, and efficiency curves applied to

each PV system timeseries simulation are taken from the

National Solar Radiation Database (NSRDB) [24]. Dynamic

loadshape curves from [20] are interpolated to match the

time series simulation step for each load type (residential or

commercial) system wide. The learning process is constructed

over a consecutive 90 day finite time horizon (March - May)

with a step/observation/action process frequency of 3 minutes,

yielding a total of 43200 steps per training episode.

B. Simulation Results

All simulations are performed using a developed Python

wrapper which combines the OpenDSS distribution simulator

with OpenAI and DRL algorithms from Stable Baselines into

a realistic distribution system trainable environment using

Python 3.9 on a Linux server with 24 CPU cores and 64 GB

of memory.

Figure 5. A2C Cumulative Rewards per Learning Rate

Figures 5 and 6 show the differences between three separate

learning rates tested with the A2C algorithm for model free

voltage reactive power control across all ten solar PV inverters

in the network. Each learning rate converges to indicate

successfully learned control policies. Figure 5 shows that

the smallest learning rate of 0.00001 achieved the highest

cumulative reward per episode at -200, while a learning rate of

0.00005 provided the least amount of policy variance after the

task is learned. This can be seen in Figure 6 towards the last 50

episodes of training as the learning rate of 0.0001 continues to

exhibit higher variance of the learned policy, while the others

remain stable. Thus, the learning rate of 0.00001 is selected

for the 123-bus case study.

Figure 6. A2C Mean Episodic Rewards per Learning Rate

Figure 7. 90 Day Bus Voltage Profile Comparison

Figure 7 demonstrates the effectiveness of the DRL agent

at coordinating bus voltage regulation among DERs via VVC

dispatch. Nearly all bus voltages improved over the 90 day

horizon by an average of 0.945 pu to 1.01 pu. Although a

majority of nodes began the simulation at severe undervoltage

levels due to heavy overloading, the central agent control

correctly helped the system voltages to recover back to healthy

levels. More importantly, it is noted in Figure 7 that the voltage

at bus 66 was seemingly ignored from the agent’s selection

process during training after day 20, as seen by its voltage

dropping below regulatory limits without recovery. This issue

raises an interesting variability concern about the potential

risks of a data-driven single centralized controller with device

selection suffering from monolithic reward design.

Finally, bus voltage and solar PV power for buses 37 and 47

are compared in Figures 8 and 9, showing similar bus voltage

improvement (green), with reactive power (pink) and active

power (blue) output. In both cases, reactive power from both

inverters remains tolerant of nameplate ratings as π∗ is learned.

In Figure 8, injected reactive power (neg) increases beyond

regulatory limits immediately to compensate for the weakened

bus voltage, but is slowly corrected over time by reward

function design to achieve 1547 compliance as the policy

improves. Figure 9 shows an initial absorption of reactive

power by the inverter, followed by gradual injection of reactive

power over time, while active power remains consistent.
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Figure 8. Bus 37 PV Voltage and Power Comparison

Figure 9. Bus 47 PV Voltage and Power Comparison

IV. CONCLUSIONS AND FUTURE WORK DIRECTION

In conclusion, this study shows how a DRL controller

can provide centralized VVC to multiple DERs at the grid-

edge, while effectively reducing system losses and learning to

operate within the regulatory standards put in place for these

devices. Development of a reward function which captures the

optimization criterion and allows for constraint-based learning

of physical rules for the power grid is essential to closing the

Sim-to-Real gap that exists for data-driven controllers in power

systems. Although control was achieved, policy variability

issues prevented complete learning of all devices, as the

agent differently prioritizes system objectives. Therefore, we

continue to explore alternative techniques in reward shaping

to enhance the robustness and reliability of DRL controllers.

Future work includes the addition of a comprehensive set

of volt-var curves as per [3] which will result in numerous

additional hard constraints for improved safety training.
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