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Abstract—The modern power grid continues to grow in com-
plexity and dynamics due to the addition of various inverter
based resources (IBRs), which require further oversight from
system operators. Maintaining adequate system-wide voltage reg-
ulation through remote control of distributed solar photovoltaic
(PV) inverters offers flexibility for grid operators, but becomes
computationally challenging when using traditional optimization
approaches due to model complexities, measurement uncertain-
ties, and increasing numbers of interconnected devices. This work
proposes a Deep Reinforcement Learning (DRL) based model-
free volt-var control (VVC) of smart inverters for an optimal
system-wide voltage regulation. Our controller also includes a
limited set of reactive power dispatch rules for smart inverters,
specified by the IEEE 1547-2018 standard, through an informa-
tive reward design process to embed these additional operational
constraints. Preliminary results carried out on the IEEE 123 bus
network demonstrate the ability of a single centralized controller
with no prior system knowledge to achieve successful bus voltage
deviation minimization through VVC selective action learning
of several solar PV units. Furthermore, the results show the
effectiveness of incorporating learnable barrier limits within the
reward function design, and expose the importance of reward
shaping and variability in DRL algorithms.

I. INTRODUCTION
A. Motivation for Centralized Learning-Based Control

Traditional distribution networks are shifting from passive
delivery systems to active, bi-directional networks hosting
a mixture of legacy and smart devices [1]. Increasing pen-
etrations of distributed energy resources (DERs) introduces
various uncertainties into system operations, reducing the
accuracy of deterministic solutions, and requiring attention
to faster timescale dynamics. The simultaneous deployment
of measurement devices, both at the grid-edge (via advanced
metering infrastructures) and at the system-level (using mi-
croPMUs and other wide-area monitoring systems) provide
massive amount of potential real-time data that can be used
for operational decision-making [2].

With the influx of DERs at the grid edge, optimal Volt-Var
control (VVC) has been extensively studied for the goal of
providing reactive power support to enhance feeder voltages
and achieve other operational benefits such as conservation
voltage reduction or loss minimization, etc. Moreover, to
address the voltage regulation problem due to growing pene-
trations of DERs, IEEE 1547-2018 standard was established
to allow for reactive power support via local autonomous
control of smart inverters [3]. From the system operations
standpoint, the coordination among smart inverters is vital
to meet global system-level objectives. Various traditional
optimization and control approaches have been developed in

past; however, due to various uncertainties resulting from mea-
surement and model errors, and the problem dimentionality,
traditional optimization-based models are extremely difficult
to solve within the desired operational time-scale [4], [5].

For example, centralized and distributed optimal power flow
(OPF) methods have been developed to determine optimal
setpoint dispatch for DERs to minimize power losses and limit
operating limit violations while maximizing power delivery
to the consumer. The non-linearity of the OPF problems is
generally handled using several convex relaxation techniques
[6]. However, due to forecasting and physical model uncertain-
ties, existing models may only provide limited information or
unsatisfactory input data resulting in poor quality solutions
[7]. The optimization under uncertainty requires stochastic or
robust optimization approaches, both are extremely difficult
to scale and generalize for general noise distributions. For
example, stochastic programming formulations under adverse
uncertainty for unit commitment are discussed in [8], [9]
where robust non-linear formulations require longer time to
achieve an optimal solution and can be difficult to scale.

Another complexity for inverter control arises from need to
incorporate difficult mathematical constraints resulting from
the IEEE 1547-2018 standard. For example, in [10], authors
use distributed OPF to learn VVC and Volt-Watt control
(VWC) droop control settings by incorporating piecewise
curves with the addition of the inverter standards. However,
embedding the IEEE 1547-2018 standard into the optimization
problem introduces integer variables, and the non-linear power
flow model is simplified to form a Mixed Integer Linear
Programming (MILP) problem that proves more difficult to
solve due to the introduction of larger numbers of additional
integer variables. Similarly, [11] formulates centralized VVC
for DERs to minimize operational cost as a Mixed Integer
Nonlinear Program (MINLP), that are extremely difficult to
solve or scale. Looking ahead, it is estimated that these pitfalls
will become increasingly problematic as the grid becomes
more complex, motivating data driven control methods that are
robust to uncertainties, which can learn and make decisions in
diverse environments.

B. Deep Reinforcement Learning for Volt-Var Control

Reinforcement learning (RL) for power systems applications
have been proven to provide strong performance under model
and measurement uncertainties when compared to traditional
optimization and control approaches [12]. However, they suffer
from lack of exploration and safety guarantees, scalability
issues and policy degradation over time leading to poor online
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transfer, known as the simulation-to-reality gap [13]. In [14],
authors discussed the use of constrained optimization tech-
niques in deep RL (DRL) problems for safety, that often in-
volve setting fixed limits on exploration boundaries; however,
they do not discuss learning these parameters as formulaic
reward objectives. It has been shown that fixing bounds of
the observation and state spaces to enforce strict exploration
rules can lead to online under-performance, conservatism, or
potential failure when exposed to different/varying real world
conditions/scenarios [15].

Specifically on VVC using DRL, [16] establishes a DRL-
based VVC to minimize operational cost while respecting
physical constraints using Trust Region Policy Optimization
(TRPO); however, they do not learn the physical boundaries of
the system and address scalability in larger networks. In [17],
authors use a Soft Actor Critic (SAC) algorithm for coordi-
nated inverter control via Markov Game and experience replay
buffer. The method achieves promising results for reduction
of power curtailment, but includes hard constraints of inverter
regulations in the OPF model as opposed to the DRL learning
process, which could lead to online control exploration actions
that may violate limits when exposed to a different data distri-
bution. Finally, [18] uses Deep Deterministic Policy Gradient
(DDPG) with Actor Critic model for VVC, but uses a reward
function with large penalty resulting in potential scalability
and sim-to-real policy transfer challenges, or failure over time
when exposed to unseen operational conditions.

The contribution(s) of this work is to demonstrate the
capabilities of a centralized DRL agent learning VVC for
a distribution network (with no prior system knowledge)
containing randomly distributed DERs through informative
reward design of physical solar inverter regulatory standards
and active action selection. Our simulation results using an Ad-
vantage Actor-Critic (A2C) algorithm to learn VVC controls
are promising in achieving system-level goals to reduce nodal
voltage deviations and power losses while learning to operate
within regulatory standards as specified by the existing IEEE
1547-2018 standard [3]. Note that IEEE 1547-2018 standard
is fairly comprehensive and in this paper, we include only a
limited set of inverter operating conditions (Section 5.2 in [3])
that previously have not been included in the related literature.
Our future work will entail more comprehensive treatment on
this subject via including recommended Volt-VAR and Volt-
WATT curves. This study also aims to expose limitations of
the learning algorithm to emphasize further study on obtaining
safe solutions for model-free DRL controllers.

II. PROBLEM FORMULATION

This section details a systematic approach to develop the
proposed DRL-based VVC controller. First, we introduce a
mathematical formulation for the centralized OPF-based VVC
with the goal of dispatching reactive power setpoints for solar
PVs with smart inverters, referred to as DERs. The distribution
system model with the VVC objective is discussed, along
with the device model for DERs. The optimization problem
is used to motivate the DRL model for VVC formulated

as a constrained Markov Decision Process (MDP). To fully
describe the DRL model, we introduce the state and action
space definitions and multi-objective reward design. We also
introduce the Advantage Actor-Critic (A2C) algorithm as
model-free approach to train DRL-based VVC controller.

A. Centralized OPF and Distribution System Model

We assume a distribution network graph G = {N,&}
containing a set of A" nodes and £ lines (edges) such that
N = {1 : N}, where DERs have been installed at Npgg
buses such that [Npgr| < |[N| and Npgr C N. Any two
nodes ¢ and j are connected by an edge (i,j) representing
a physical line connection, where node ¢ is the parent of
child node j. The objective of the central controller is to
dispatch optimal reactive power setpoints to selected DERs
in the system based on the measured voltages at the DER
buses, which are centrally collected at each time step ¢; ¢ is
omitted in the formulation for brevity.

The objective function in (1) minimizes voltage deviations
Viev = Zi\;(vi — 1)? from 1 pu at all buses under obser-
vation, total system active power losses Ploss = Y Pgen —
>~ Pioad, and provides a metric Q% gr to indicate a violation
of VVC limits from those stated in IEEE 1547-2018 [3] (see
next section). The VVC must also abide by the physical,
operational and technical constraints of the power system and
its components (1a) - (3).

N
min» " Vaes + Pioss + Qopin M

=1

subject to

N
P — PP = Z V;Yij cos(6; — 8; — 0ij) — (PpeR,: — Pp,3)

j=1
(1)
N
Qi — Q" = Vi Y V;Yisin(6i —6; —0i;) — (QpEr: — Qp.i)
j=1
. (1b)
P < Py < PFYY, V(i) €E (o)
Q™ < Qu < QI V(i) eE 1d

Constraints (1a)-(1d) delineate the mismatch between real
and reactive injected power P Q:™ at a bus i and the
specified powers PP, Q:P“, equivocal to generation minus
demand Ppgr; — Pp.i, @pER,: — @ D,i> With line flow limits
on P;;,Q;;. Similarly, the operational voltage limits for all
buses as per the ANSI Standard [19] are given as V;"%* = 1.05
pu and V;™" = 0.95 pu in (2). Finally, each DER is limited

by its rated apparent power, SEHEY in (3).

VMV SV Yie N )

ted
0< \/Phon+ Qben, < SEEL..

There are additional constraints imposed on reactive power
dispatch from DER (Qpgr,) as per the recommendations
from IEEE 1547-2018 standard [3]. A limited set of oper-
ational constraints on inverter reactive power limits as per

VNper €N (3)
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Figure 1. PV System Single Phase Model

the IEEE 1547-2018 standard, especially under low lighting
conditions, are included in this paper, further discussed in the
following section.

B. DER Model: PV with Smart Inverter Control

The DER model, used in this paper, is shown in Figure 1.
It combines the solar array panel with inputs temperature 7'
and irradiance I, maximum power point tracking (MPPT) as
Prrpp maximum real power delivery at unity power factor,
and inverter module with efficiency curves Ef f,, provided
from [20]. The output is represented as a Norton equivalent
current source I,,,; at the point of common coupling (PCC).
Each PV system includes grid reference control monitoring for
frequency and local grid voltage . We also assume a physical
line of communication exists for centralized monitoring and
control as per grid requirements in [3].

The recommended ratings for smart inverter requires having
44% of Sg‘é‘jg ; being available when PV is generating its peak
active power Pg}feﬁl However, additional operational limits
are imposed as stated in (4a) - (4b). These are defined as
per Section 5.2 of the IEEE 1547-2018 standard for voltage
reactive power control of category A and B inverters [3].
Specifically, the available reactive power absorptions, ngggi
and injections are limited to 44% of S}“jaée}g,i, but also depend
on the amount of active power produced as a percentage of
Sty ;- During low sunlight hours, QY52 ; decreases further
in (4a) as a fraction of the actual real power being produced
by 20% of the inverter rated real power PB‘};‘;@{%

PpER,:

Limit ted . ted
DER: < 0.44STER ;X X032 x prated if Poer: <0.25pF%.
. DER,i

(4a)

(4b)

0448, < Qlmit | < \/ ((Spgted )2 —
else lf, PDER,i 2 0.25%”&81%14.

We would like to highlight that there are additional and more
comprehensive set of recommendation on inverter reactive
control as per the IEEE 1547-2018, such as the recommended
Volt-VAR curves included in [10]. We aim to include these
difficult constraints as an extension of this work.

PI2)ER,'L)

C. Constrained MDP Formulation for Volt-Var Dispatch

This section describes the formulation of centralized VVC
DER dispatch as a constrained Markov Decision Process
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RL Agent
policy it
ar™ m(ag|se)

O¢, 1

>

observation (power flow)
reward

|

=

Figure 2. RL agent power system interaction process

action
(control adjustment)

Electric Power Grid Simulator

M ﬁdt

Sex1™ Pe(Se+1 1St @), Tear™ RelSesas St at

(CMDP). The sequential nature of the RL learning pro-
cess can be modeled as an MDP defined by the tuple
< S§,AT,R,C >, consisting of an action space A, state
space S, the transition probability function P(s,ay,s;) =
Pr(sjlss,ar) =T : SXA — S', reward function 7(sq, ay) :
SXA — R, and C, a set of constraints applied to the learned
policy m(a¢|s;) € A. Generally speaking, the environment
begins in an initial state so € S, and at each time step ¢,
the DSO (distribution system operator) agent chooses action
a; € A and receives a reward r(s;,a;) dependent on the
current state/action pair, after which the system moves to the
next state s;41 generated from P(-|s;, a;) (see Figure 2).

The goal of the central controller is to find the optimal
policy 7* (5) for dispatching VVC setpoint adjustments to
maximize the expected value of the discounted reward over a
given time horizon. In the model-free approach taken due to
various uncertainties, 7* is derived without explicitly learning
the model when it becomes difficult to learn or express using
Q-Learning. Instead of learning the optimal value function, the
optimal Q-function Q* is learned directly as Q(s,a) given in
(6) for an infinite time horizon starting from an initial state
and action. A discount parameter ~y [0:1] is used to determine
the value of future rewards.

mt =K [y'r(se, ar)] ®)
Q*(s,a) =E Z’ytr(st,atﬂso =s,a0=a (6)
t=0

1) State Space: : The observation space of each envi-
ronmental state of the agent is composed of DERs and the
voltages v; measured at each respective PCC at each time
step t at the respective buses. In addition, the real, reactive,
and complex powers of the DER units are measured to

compute the lf,”];illf“ for VVC in (7), where QpEr,;

\/&%ER,i - P,%ER’Z- for each DER.

QDER,i

pDER,i =| limit - ™
DER,i

Thus, at any given time step ¢, the state s; of the en-

vironment observed by the central controller is given by

st = [NpER: Vi, PDER,iy @DER, SDER,iaQ%ERJ'} es.
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2) Action Space: : For this particular study, a unique action
selection space A is constructed using a set of 1-D vectors
which contain affiliated PV System IDs PV and an action
selection vector ASV responsible for reactive power setpoint
computation. Let the action space A be defined as a set of
1-D vectors such that at each time step ¢, an action a; €
A is selected from each action vector in sequence, given the
possible action set in the current observed state s;.

At each step, the agent selects an action tuple from the
vector set. During observation of the PCC voltages and
inverter powers, an action is selected for the amount of
reactive power adjustment (), 4; constrained to (4a) and (4b) as
Qadj = |(v; — 1)| %100 £ Q.sp using the directly proportional
relationship which exists between reactive power and voltage.
The parameter (),q; is computed as the percentage maximum
limit of adjustment during action selection relative to the
observed normalized bus/PCC voltage and the current reactive
power setpoint of the inverter under examination Qcsp. In
this manner, the agent is trained to make more conservative
adjustments when the local grid health is optimal.

3) Multi-Objective Reward Function:: The multi-objective
reward function uses a negative penalty scheme to train the
agent on VVC . First, a voltage deviation penalty utilizes
local voltage measurement v; compared to the target 1 pu,
with total system loss given as Poss = > Pyen — > Ploqd-
Finally, Q’E, ERi < 1 if no 1547 violation occurs, bound by

%%ifé’i in (4a) and (4b). The constrained objective in (8) is to
maximize the expected cumulative total reward where the ith
constraint must be satisfied by 7 in the set of allowable policies
II. However, it is also critical to incorporate system knowledge
and optimization constraints into reward functions to guide the
agent towards state boundary learning. More importantly, it has
been shown in [21], [22] that treating constraints as learnable
parameters, as opposed to fixing boundaries to limit an agent’s
exploration space in training, can produce more robust policies
which generalize to those constraints naturally.

mazEx R(s;, 1) = — > (Wi = 1) = Pioss — Qhpr;  8)

ieN

D. Advantage Actor-Critic

Advantage Actor-Critic (A2C) is an on-policy synchronous
variation of A3C (Asynchronous Advantage Actor-Critic), a
deterministic multi-worker DRL algorithm which uses a policy
gradient method averaged by all actors (bootstrapping) to
make a decision. From [23], the critic estimates the value
function V,(s) = E[> 2, " Rf|m,s;] by approximating the
Q-function from (6), while the actor(s) update the policy
distribution 7(a¢|s, #) suggested by the critic(s) via the gra-
dient. The critic makes use of the Advantage function to
update the temporal difference target of the expected reward
minus average reward based on the current action, given
as Advr(s,a) = r(st,ar) + v'Va(st) — Vr(s;) in Figure
3. Actor-Critic methods have shown tremendous success in
DRL applications with scarce data, but are known for policy
variability and scalability issues (discussed further in section
III).

DRL Agent
:
—» i Critic Actor
E
1 R A, mm——— "
R $ o)
T 4 Policy ™
........ B S —— .
- -
U Adv = Q(s,) —Vy(s) | Action ®
e —————— A
Observed State Power Grid

Environment

Action

Reward

Figure 3. Advantage Actor-Critic (A2C)

III. SIMULATIONS AND RESULTS

A. Simulation Case Study

The IEEE 123 bus network used in this case study shown in
Figure 4 is modified with ten solar PV systems installed at bus
locations which exhibited weaker voltage profiles identified
after an initial steady-state power flow. All default network
voltage regulation controls are set to disengage at the initial
step of each training episode, and the network is overloaded
at 135% to simulate a weakened but flexible system. Each PV
system is sized using maximum local nodal demand for peak
PV hosting capacity S7i4/5%. The three-phase inverter model
used in this study follows the single-phase inverter equivalent
circuit shown in Figure 1 (representing only a single phase),
determined again by load type. The reactive power control are
disabled for all PVs at initialization to allow the A2C agent to
adjust inverter reactive power injections (Q,; or absorptions
Qaps via controlled setpoint adjustments. The dispatched @
targets are based on the PV system reference readings imme-
diately following a centralized load flow, performed by the
DSS power flow solver at every time step t.

1185 -
Three-phase PV System @ Single-phase PV System @

Figure 4. IEEE 123 Bus Network with Distributed Solar PV Systems
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The following assumptions are also made from from
IEEE1547-2018, Section V [3].

1) All inverters assume a continuous operational region
of 0~88VNominal < Vref < 1-1VNom,inal, where
VNomimat = 1pu and V.. is the noisy measurement
taken from the reference controller of the inverter

2) No fixed power factor for inverter operation is specified

3) Single line of centralized communication for remote
monitoring/control exists at each PV location

Irradiance, temperature, and efficiency curves applied to
each PV system timeseries simulation are taken from the
National Solar Radiation Database (NSRDB) [24]. Dynamic
loadshape curves from [20] are interpolated to match the
time series simulation step for each load type (residential or
commercial) system wide. The learning process is constructed
over a consecutive 90 day finite time horizon (March - May)
with a step/observation/action process frequency of 3 minutes,
yielding a total of 43200 steps per training episode.

B. Simulation Results

All simulations are performed using a developed Python
wrapper which combines the OpenDSS distribution simulator
with OpenAl and DRL algorithms from Stable Baselines into
a realistic distribution system trainable environment using
Python 3.9 on a Linux server with 24 CPU cores and 64 GB
of memory.

04 ; learning rate
™ — 0.0001

\ —— 0.00005

0.00001
—100 A

—200 4

—300 4

Cumulative Total Reward

—400 4

T T T
20000 30000 40000

Time Step

T
o] 10000

Figure 5. A2C Cumulative Rewards per Learning Rate

Figures 5 and 6 show the differences between three separate
learning rates tested with the A2C algorithm for model free
voltage reactive power control across all ten solar PV inverters
in the network. Each learning rate converges to indicate
successfully learned control policies. Figure 5 shows that
the smallest learning rate of 0.00001 achieved the highest
cumulative reward per episode at -200, while a learning rate of
0.00005 provided the least amount of policy variance after the
task is learned. This can be seen in Figure 6 towards the last 50
episodes of training as the learning rate of 0.0001 continues to
exhibit higher variance of the learned policy, while the others
remain stable. Thus, the learning rate of 0.00001 is selected
for the 123-bus case study.
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Figure 7. 90 Day Bus Voltage Profile Comparison

Figure 7 demonstrates the effectiveness of the DRL agent
at coordinating bus voltage regulation among DERs via VVC
dispatch. Nearly all bus voltages improved over the 90 day
horizon by an average of 0.945 pu to 1.01 pu. Although a
majority of nodes began the simulation at severe undervoltage
levels due to heavy overloading, the central agent control
correctly helped the system voltages to recover back to healthy
levels. More importantly, it is noted in Figure 7 that the voltage
at bus 66 was seemingly ignored from the agent’s selection
process during training after day 20, as seen by its voltage
dropping below regulatory limits without recovery. This issue
raises an interesting variability concern about the potential
risks of a data-driven single centralized controller with device
selection suffering from monolithic reward design.

Finally, bus voltage and solar PV power for buses 37 and 47
are compared in Figures 8 and 9, showing similar bus voltage
improvement (green), with reactive power (pink) and active
power (blue) output. In both cases, reactive power from both
inverters remains tolerant of nameplate ratings as 7* is learned.
In Figure 8, injected reactive power (neg) increases beyond
regulatory limits immediately to compensate for the weakened
bus voltage, but is slowly corrected over time by reward
function design to achieve 1547 compliance as the policy
improves. Figure 9 shows an initial absorption of reactive
power by the inverter, followed by gradual injection of reactive
power over time, while active power remains consistent.
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Figure 9. Bus 47 PV Voltage and Power Comparison
IV. CONCLUSIONS AND FUTURE WORK DIRECTION

In conclusion, this study shows how a DRL controller
can provide centralized VVC to multiple DERs at the grid-
edge, while effectively reducing system losses and learning to
operate within the regulatory standards put in place for these
devices. Development of a reward function which captures the
optimization criterion and allows for constraint-based learning
of physical rules for the power grid is essential to closing the
Sim-to-Real gap that exists for data-driven controllers in power
systems. Although control was achieved, policy variability
issues prevented complete learning of all devices, as the
agent differently prioritizes system objectives. Therefore, we
continue to explore alternative techniques in reward shaping
to enhance the robustness and reliability of DRL controllers.
Future work includes the addition of a comprehensive set
of volt-var curves as per [3] which will result in numerous
additional hard constraints for improved safety training.
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