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Abstract

We study an integro-difference equation model that describes the spatial dynamics of a species
with a strong Allee effect in a shifting habitat. We examine the case of a shifting semi-infinite
bad habitat connected to a semi-infinite good habitat. In this case we rigorously establish species
persistence (non-persistence) if the habitat shift speed is less (greater) than the asymptotic spreading
speed of the species in the good habitat. We also examine the case of a finite shifting patch of
hospitable habitat, and find that the habitat shift speed must be less than the asymptotic spreading
speed associated with the habitat and there is a critical patch size for species persistence. Spreading
speeds and traveling waves are established to address species persistence. Our numerical simulations
demonstrate the theoretical results and show the dependence of the critical patch size on the shift
speed.

1 Introduction

In this paper, we are concerned with an integro-difference equation with a non-homogenous and tem-
porally shifting habitat. Such an equation takes the form

[e.e]
wnsa() = [ ko= )gly — e un(w)dy (1)
—0oQ

where uy,(z) is the density of a population at x for the nth generation, k(x — y) is the probability of
dispersing from y to z, ¢ is the speed of the habitat shift, and g(y,u) describes the net fecundity at
location y from the population u. We will study the case of a shifting gradient connecting unbounded
poor habitat to unbounded high quality habitat, and the case of a shifting finite patch of high quality
habitat.

Integro-difference equations model populations where a relatively synchronized reproduction pro-
cess is followed by the spatial redistribution of the offspring. This has advantages over frameworks
such as reaction-diffusion models in that it can model a wide variety dispersal behavior [18, 23, 37].
The flexibility of the integro-difference framework has made it possible to include a variety of biological
details such as stage structure [37], mixed dispersal strategies [50], resource gradients [26], and over-
compensation [40]. Therefore the integro-difference framework has been applied to a wide variety of
ecological problems [13, 14, 15, 20, 21, 22, 23].

In this paper we are particularly interested in growth functions exhibiting a strong Allee effect. An
Allee effect is said to occur if per-capita birth rates decline at low densities. A strong Allee effect occurs
when there is a critical density below which the populations fails. A variety of biological factors can
cause the Allee effect [1, 5, 6, 8, 41]. For the case of integro-difference equations with a strong Allee
effect and a static and homogenous habitat, Lui [33] showed that there exists a spreading speed that
is the unique speed for traveling waves connecting zero to the carrying capacity. Wang et al. [51] gave
conditions, related to the integral of the growth function, under which the spreading speed is zero,
positive, or negative. This can be interpreted as a static, advancing, or retreating invasion. These
results have been used to study a variety of invasion processes [8, 23, 24, 29, 34, 36, 48, 49]. Recently
Li and Otto [30] generalized the results in [33, 51] by removing some of the strong hypotheses. In this
paper, the authors also showed that for habitats of finite size, a critical patch size is needed for survival.
For a comprehensive treatment of integro-difference models, the reader should refer to the monograph
by Lutscher [35].

With the acceleration of climate change, modeling the effects of non-static habitats has taken on
greater importance. As is noted in an increasing number of ecological studies, climate change can impact



invasion processes [16, 46]. These warming trends can result in habitat shifts [44, 43], expansion [11, 39],
and contraction[11, 39, 43]. There are examples of climate change exacerbating invasions by non-native
species [9, 47]; triggering an invasion by a range expansion of a native species [32, 52]; or even disrupting
an invasion [4, 42]. Habitat gradients, whether climatological or otherwise, greatly impact the spatial
structure of biodiversity. The location of some of these gradients have shifted substantially due to
climate change processes. Temperature gradients have shifted polewards and to higher elevations. This
has for example, resulted in coral communities on the west coast of Australia shifting southward [12],
and has caused some insect populations to move to higher elevations in alpine habitat [17]. For more
discussions with species specific examples, we would refer the reader to the papers [7, 27, 28] and the
references cited therein.

Two early attempts at mathematically modeling the effects of habitat shifts in the framework of
reaction-diffusion models were by Patapov and Lewis [45] and Berestycki et al. [2]. Patapov and Lewis
considered the effects of a moving range boundary on the invasibility by a competing species, while
Berestycki et al. considered if a single species can spread fast enough to keep up with a patch of
suitable habitat. Zhou and Kot [53] later considered the question of a single species keeping up with a
shifting finite patch of suitable habitat within the context of integro-difference equations. Their results
established that if the asymptotic spreading speed is greater than the habitat shift speed and the size of
the patch is greater than a critical size, the species persists. Li et al. [28] and Li and Wu [29] considered
integro-difference equations in two connected static semi-infinite habitats with different levels of quality,
and studied the existence of spreading speeds and traveling waves. Related results for reaction-diffusion
models with an unbounded shifting habitat have also been obtained (e.g., Berestycki and Fang [3], Fang
et al. [10], Hu et al. [19], and Li et al. [27]). In a recent paper by Lewis et al.[24] questions regarding
persistence, neutral genetic diversity, and inside dynamics were addressed within the framework of
integro-difference equations and shifting habitats. None of these works however, addressed questions
about persistence of a species in a moving habitat if the growth function exhibits a strong Allee effect.

In this paper we will explore species persistence in the face of a shifting habitat and strong Allee
effect in the integro-difference framework. We will examine the case of a shifting semi-infinite bad
habitat connected to a semi-infinite good habitat. In this case we will rigorously establish persistence
(non-persistence) if the habitat shift speed is less (greater) than the asymptotic spreading speed of
the species in the good habitat. We will also examine the case of a finite shifting patch of hospitable
habitat. Analogously to the results of Zhou and Kot [53], we find that with the presence of a strong
Allee effect, in order for species to persist, the habitat shift speed must be less than the asymptotic
spreading speed associated with the habitat. We also find that there is a critical patch size which
depends on the shift speed.

This paper is organized as follows. In section 2 we present the hypotheses assumed for the growth
function and dispersal kernel. In section 3 we present theorems and proofs related to the results for an
unbounded habitat. In section 4 a theorem and its proof for a bounded habitat are provided. In section
5 numerical simulations supporting and complementing the theoretical results are presented. Finally,
in section 6 a concluding discussion is given.

2 The hypotheses

For convenience, we use Q) as a shorthand for the nth year map, and define

Q)= [ " ke — y)gly — ne, u(y))dy,

—0o0



so that (1.1) can be written in the form
n () = QM un](x).
We make the following hypotheses on k().
Hypotheses 2.1.

i. k(z) > 0 and k(z) is even. If B = inf{x : k(z) > 0}, then k(z) > 0 in (—B,B). B = oo is
allowed so that k(x) need not have compact support.

it. k(x) is continuous in R except possibly at —B, B where lim,_,g-k(x) = p. Also k(x) may be
written in the form

k(x) = k(%) — PX(—00,—B] — PX[B,00)>
where kq(x) is absolutely continuous and xs is the indicator function of the set S.

119, fR x)dx = 1.

0. f et k(x)dx is finite for one nonzero .

Hypotheses 2.1 are the same as Hypotheses 2.1 (i)-(iv) in [30] with k(z) even. They are satisfied
by many dispersal kernels used in applications. Recall that a function v (x) is absolutely continuous if
Y’ (x) exists almost everywhere and for all s and ¢ and (s) — ¥(t) = fst Y (x)dx

We first make the following hypotheses on g(x,u).
Hypotheses 2.2.

i. g(z,u) is nonnegative and nondecreasing in x and u for —oo < x < oo and u > 0, and g(x,u)

is continuous except at possibly the points in a finite number of sets in the form {(x;,u)|lu > 0}
where x; is fized.

it. There exists f(oc0) > 0 such that g(oo,u) = lim, o0 g(z,u) uniformly for u € [0, B(c0)], and
9(00, B(00)) = B(o0).

iti. g(x,0) =0 for all x, and there exists M such that for x > M, there is f(x) with B(c0) > f(x) >0
and g(z, B(x)) = B(x), and for x > M and x = oo, the following statements hold:

a. There exists a(z) € (0, 8(x)) such that g(z,a(x)) = a(z), g(x,u) < u for u € (0,a(x)), and
g(z,u) >u inu e (a(x), B(x));

b. Lgéi’u) is continuous in u and W >0 for u € [0, B(x)], and if

o1(x) = inf{u : g(z,u) > 0}, oa2(z) =sup{u: g(z,u) < f(x)},

then M > 0 for u € (01(x),092(x)); and
.. 89(96 0 1, 89(»’06&(50)) >1, (9C ﬁ( ) 1.

iv. There exists 0 <r <1 and A such that for x < A and u >0, g(z,u) < ru.



In Hypotheses 2.2 (i) the monotonicity of g(x,u) in x reflects that the quality of the habitat improves
to the right along the z-axis, and the discontinuity of g(x,u) in z implies that the environmental
conditions may change abruptly at some points in space. This hypothesis is the same as Hypotheses
1 (i) in Li et al. [28] for the growth function of a model with a shifting habitat and no Allee effect.
Hypotheses 2.1 (ii) shows that g(x, u) converges to g(oco, u) uniformly in . Hypotheses 2.1 (iii) indicates
that the system exhibits a strong Allee effect for large x. This hypothesis is equivalent to Hypotheses 2.1
(v)-(ix) in Li and Otto [30] for the growth function of a model with a strong Allee effect and stationary
habitat. Hypotheses 2.2 (iv) implies that the population declines near —oc.

Hypotheses 2.2 (i)-(iii) shows a(z) < a(z) and B(x) > B(Z) for x > T > M, limy_,o a(x) = a(00),
and lim,_, B(x) = f(0).

Alternatively, we make the following hypotheses for g(z,u).

Hypotheses 2.3.
B go(u)7 for —lﬁxﬁla l>0’
g(:z;,u)—{ 0, for x < —l and = > I,

and there exist 0 < ag < By such that go(0) = 0, go(an) = a0, go(Bo) = Bo, and Hypotheses 2.2
(iii) (a)-(c) is satisfied with g(x,u) replaced by go(u), a(zx) replaced by ap, and B(x) replaced by Bo,
respectively.

Under Hypothese 2.3, (1.1) becomes

l+nc
() = [ ke = )goa))dy. (2.1)

This model shows that the population growth with a strong Allee effect takes place in a bounded habitat
[—1 + ne,l + nc] which shifts at the speed c¢. Problems in this form have been studied with no Allee
effect (Zhou [53]), with no Allee effect and ¢ = 0 (see Chapter 3 in Lutscher [35] for a review), and

with growth exhibiting a strong Allee effect and ¢ = 0 (Li and Otto [30], Section 4.5 and Section 6.4 in
Lutscher [35]).

Lemma 2.1. (Comparison principle) Assume that Hypotheses 2.1-2.2 or Hypotheses 2.1 and Hy-
potheses 2.3 hold. If un(z) and vy(z) are two sequences of continuous and nonnegative function-
s with the properties vpp1(x) < QM |v,](z) and upyi(z) > QM [u,](x) for all nonnegative n and
0 <wo(x) <up(z) < B, then 0 < vy(x) < up(z) < B with B = B(oo) or B = Bo, for all positive integer
n.

This lemma can be easily shown to be true by using the method of induction.

3 Spread and persistence with growth in an unbounded habitat

In this section we study population spread and persistence for (1.1) under Hypotheses 2.1 and Hy-
potheses 2.2. We first recall the framework developed in Lui [33]. For £ > M and ¢ = oo, we consider

o0

1 () = Qelun] = / Bz — )96, un(y))dy. (3.1)

— 00



Let ¢(¢,x) be a continuous nonincreasing function such that ¢(¢, —oc0) € (a(¢),5(¢)) and ¢(¢,z) =0
for x > 0. Define the sequence

an+1(4, ¢, x) = max{p(l,z), Qelan)(¢,é,x + €)}, ao(l,é,x) = P(L, ).

an (¢, ¢, ) is nondecreasing in n and x for each fixed ¢, and a,(¢,¢,x) increases to a limit function
( ¢, x) as n—o00. Define

c"(f) =sup{¢: a(l,¢,00) = S(0)}. (3.2)

Proposition 3.1. Assume that Hypotheses 2.1-2.2 are satisfied. For £ > M and { = oo, the following
statements hold for (3.1):

i. There exists a nonincreasing traveling wave solution uny(x) = w(x — nc*(€)) for (3.1) such that
w(—00) = B(¢) and w(oco) = 0, and c*(¢) is the only wave speed for which a nonincreasing traveling
wave with values B(£) at —oo and 0 at oo can ezist.

it.  a. c*(€) >0 if and only if fO’B(z) [g(¢,u) — uldu > 0.
b. ¢*(¢) =0 if and only if foﬁ(e) [g(€,u) — u]du = 0.
c. ¢*(0) <0 if and only if foﬁ(@ g(4,u) — uldu < 0.

i11. Assume foﬁw) [g(¢,u) — uldu > 0. Let € be any given small positive number.

a. If up(x) is piecewise continuous, ug(x) = 0 for large z, 0 < ug(z) < 0 < B(¢) in R with § a
constant, then the solution u, satisfies

lim sup  up(z) =0.
00 g >n(c* (£)+€)
b. For any o > a({), there ezists a constant ro > 0 such that if uo(x) is piecewise continuous
and B(€) > ug(x) > o on an interval of length equal to 2r,, then the solution w, satisfies

lim min un(x) = B(L).

Nn—00 —n(c*(0)—e)<z<n(c*(£)—¢)

In this proposition, statement (i) shows that ¢*(¢) is the unique speed of nonincreasing traveling
waves connecting 0 and [(¢), statement (ii) indicates that the sign of ¢*(¢) is the same as that of
fo e) g(4,u) — u]du, and statement (iii) shows that when f’B( (¢,u) —uldu > 0 (i.e., c*(£) > 0), c*(¢)
is the asymptotic spreading speed for solutions with compact support and initial values larger than
a(f) in a large interval.

Proposition 3.1 directly follows from Theorem 3.1 and Theorem 3.2 in Li and Otto [30].

Proposition 3.2. Assume that Hypotheses 2.1-2.2 are satisfied. For £ > M, if w(x — né) is a nonin-
creasing traveling wave of (3.1) with w(—o00) = a(f) and w(co) =0, then ¢ < 0.

According to Hypotheses 2.2 (iii) fo g(4,u) — u]du < 0. This and a simplified version of the
proof of Theorem 3.2 (iii) in [30] prove th1s proposmon.

Lemma 3.1. Assume that Hypotheses 2.1-2.2 are satisfied. Let w(x — nc*(00)) be a nonincreasing
traveling wave solution with w(—o0) = B(00) and w(oo) = 0 for (3.1) with ¢ = co. Let ¢ > ¢*(00). If
up(x) = w(x), the solution uy, of (1.1) has the property that for any positive e there exits an integer
N > 0 such that forn > N, uy(x) < € for all x.



Proof. Since g(oco,u(z)) > g(x — nc,u(z)) for u(x) > 0, the comparison principle shows wu,(x) <
w(z — nc*(00)), and thus

o0

Un () S/Oo k(x—y)g(y—nc,w(y—m*(w)))dy=/ k(z —y—mnc*(00))g(y +n(c(o0) — ), w(y))dy.

—0o0 —0o0

Since w(x) decreases to zero as x—00, for a small € > 0 with g(oo, €) < a(c0), there exists x1 such that
w(z) < € for x > x1. On the other hand, ¢ > ¢*(c0), monotonicity of g and Hypotheses 2.1 (iv) indicate
that there exists Ny such that for n > Ny and = < 21, g(z +n(c*(c0) —¢),w(x)) < g(A, w(z)) < rw(x).
It follows from this and w(x) < (o0) that for n > Ny and all z,

wnle) < [ o=y ety + [k~ y —ne (00))glo0. )y < max{r(), (00, €).

—00 T

Particularly, un,(z) < max{rg(co), g(co,€)} for all x. If r5(c0) > g(o0, €) so that max{rps(co), g(co,€)}
= r/3(00), a similar argument shows uy,11(z) < max{r max{r3(co), g(co, )}, g(c0, €)} = max{r?s(co),
g(00,€)}. Induction shows uy,;(x) < max{r/™'g(cc), g(cc, €)} if 77 5(c0) > g(c0,€). Since 0 <7 < 1,

there must exist jo such that r703(cc) < g(0o,€). We conclude that there exist N > Ny such that
ug(x) < g(oo,€) for all x. It follows that for all x

o0

ug . (2) < / " k(e — )gly — ne,g(oo, &))dy < / k(z — 9)g(00, 9(00, €))dy = g(00, g(00, €)).

—00 —00

Induction shows for all x,
uN—‘,—n(x) < gn(OO,g(oo,e))—)O7 as n—o0.

Here ¢" (00, g(00,€)) is the nth iteration of g(oco,u) at g(co,€). The conclusion of this lemma follows
immediately. The proof is complete. O

Theorem 3.1. Assume that Hypotheses 2.1-2.2 are satisfied. Additionally, assume that ¢ > c¢*(o00). If
the continuous initial function ug(z) is zero for sufficiently large x and 0 < ug(z) < p < f(o0) where
p is a constant, then the solution u,(x) of (1.1) has the property that for any positive € there exits an
integer N > 0 such that for n > N, u,(z) < € for all x.

Proof. Let w(z —nc*(00)) denote a nonincreasing traveling wave connecting 0 and §(oo) for (3.1) with
¢ = o0o. Since 0 < wup(xz) < p < B(o0) and ug(z) is zero for sufficiently large x, ug(x) is bounded
above by w(x — d) for some real number d. Note w(x —d — nc*(00)) is also a traveling wave for (3.1)
with £ = co. Let @,(x) be the solution of (1.1) with @y(z) = w(z — d). The comparison principle
shows up(z) < tp(z). The conclusion of the theorem follows from this and Lemm 3.1. The proof is
complete. ]

Theorem 3.1 indicates that a population with zero initial value for large = dies out eventually in
space if ¢ > ¢*(00).

We now introduce truncated kernels to approximate k(x). For an integro-differnce equation with
dispersal kernel having compact support, a solution with compact initial data has the property that
the (n+1)th generation density distribution is determined by the nth generation density distribution in
a bounded interval. This is useful to establish population persistence for (1.1) when ¢*(o0) > ¢ > 0.



Let ((s) be a differentiable nonincreasing function with the properties

|1, for s <1/2,
C(s) = { 0, for s > 1.

For m > 0, let k,(x) = k(m){(‘%) and Ly, = [ km(x)dz. Clearly ky,(z)—k(z) and l,,—1 as m—oo.

—0o0
Consider
oo

o) = [ Fn(® = 9)y o0, () dy = |l = wygltvat)is (3.3)

—00 lm —00

where £ T kn(2) is o probability density with Iz k’"fnx) dr = 1. Hypotheses 2.1 are satisfied with k(x) replaced

by le"W(L ). Hypotheses 2.2 (i)-(iii) show that there exist my and ¢y > M such that for m > mg and
x > Ly, lypg(z,u) has three equilibria 0 < oy, (z) < Bm(z), and Hypotheses 2.2 (i)-(ii) and (iii) (a)-(c)
are satisfied with g(x,u) replaced by l,g(z,u), a(x) replaced by ay,(x), and S(x) replaced by B, (x),
and foﬁ(m)[ (,u) — u]du and fﬁm(m) [lmg(z,u) — u]du have same sign in case of fﬁ( Ng(x,u) — u)du # 0.
Clearly for m > m, am(z) < ap (), Bm(x) > Bm(x), and ap(z)—a(x) and By, (z)—5(z) as m—oo.
We use ¢}, (¢) to denote the wave speed for (3.3) for m > mg and ¢ > ¢y and ¢ = co. The definition
(3.2) clearly shows c*(¢) > c&,(£) > ¢&, (€) for m > 1 > mg and £ > > 4.

Lemma 3.2. Assume that Hypotheses 2.1-2.2 are satisfied, and fﬁ(g (byu) — uldu > 0 for £ > ly.
The following statements hold:

i. For >ty and ¢ = oo, ci,({)—c*(£) as m—o0.

it. Form > mq and £ > £y, ¢, (£)—ck (00) as {—o0.

Proof. Let vy, (z — nc) be a nonincreasing traveling wave of (3.3) connecting 0 and ,,(¢). Then

B /_OO (2 + 5, (€) — y)g(€; v (y))dy.

For > 0,
[vm (2 + 1) —vm(@)] =] 7 k(@ + i, (6) + 1 = y) — km(z + €, (0) = 1) g(€, vm(y))dy]
< B0) [, Tl + 1) — ()l >
and
[Vm(z + 1) — vm(2)]
< B 2 Nk (y + 1) = km(y)|dy
< BT [k (y +n) — k(y +n)ldy + [7, k(y +n) — k(y)|dy + [7 [k(y) = km(y)|dy] (3.5

< B Vkm(y +m) — k(y +n)ldy + [Zo [k(y +n) — k(y)|dy + [Z2, k() — km(y)|dy]

04 35, ky)dy + [ |k(y +n) — k(y)|dy].



As indicated in Li et al. [25],

oo

o0
lim lkm (y + 1) — km(y)|dy = 0 for every m,  lim / |k(y +n) — k(y)|dy = 0. (3.6)
nN—0 J_~o =0/
The first statement is obvious, and the second statement lies in the convergence of [ fooo k(y)dy and that
continuity of k(z) results in uniform continuity of k(y) on a closed bounded interval. It follows from
(3.4)-(3.6) that for any ¢ > 0, there exist m; > mg and positive numbers 7;, i = 1,2,...,mgp + 1, such
that
[vm(x + 1) —vm(x)] <e, 0<n<n, m=mgy,mo+1,..my,

and
[vm(x 4+ 1) —vm(2)] <&, 0<n<nmet1, m > my.

Choose 7 = min{n;, i = 1,2,...mg + 1}. Then
|2)m(:13+7’]) - Um(x)‘ <eg, 0<n<n, m=m.

This implies that the family {v,,(z), m = mg, mo+1,...} is equicontinuous. Since each v,,(x) decreases
from B,,(¢) to 0 as x increases from —oo to co. We may assume v,,(0) = vo with 0 < vg < a(¥) (by a
translation if necessary). Then Ascoli’s theorem implies that every sequence v,,(x) has a subsequenence
U, (7) that converges to a nonincreasing function w(x) uniformly on every bounded interval. Since
Cp, (€) increases as m; increases and cj, (¢) is bounded above by ¢*(€), ¢y, (£) approaches ¢ as m;—o0.
Since ¢, (¢) > 0 for large m, ¢ > 0.

We take the limit m;j—o0 in

o () = / " oy (@4 o (0) = 9)g (s v, (1))

to find -

w(@) = [ b+ e~ p)g(t,w(w)dy.
w(x — né) is a nonincreasing traveling wave of (3.3) with w(0) = vy. By taking y— £ oo in (3.4), we
find that g(¢, w(+o00)) = w(4o0) so that w(+oo) are equilibria of g(¢,u). Since w(oo) < vy < a(¥),
w(oo) = 0. w(—o00) is either a(¢) or B(¢). If w(—o0) = a(f), w(z — né) is a nonincreasing traveling
wave connecting 0 and «(¢) with a positive speed ¢. This contradicts Proposition 3.2. Therefore
w(—o00) = B(¢). The uniqueness of traveling wave speed for (3.3) indicate ¢ = ¢*(¢). The fact that

¢, () increases in m shows ¢, (¢)—c*(£) as m—oo. This proves statement (i).

Let vy, o(x — nc;, (€)) be a nonincreasing traveling wave of (3.3) connecting 0 and S3,,(¢). Then

Ome(z) = / (@ + €0 (6) — )96, vma(y))dy.
For n > 0,
[Om (4 1) = Vm g (@) < S o (£ 1+ g — 1) — Fon(+ € g — )90 Ve (9))y

< B(00) [, lkm(y 4+ 1) — km(y)|dy.

Since limy—o [*° [(km(y + 1) — km(y))|dy = 0, the sequence vy, ¢(x) is equicontinuous. The rest of the
proof of statement (ii) is similar to the part of the proof of statement (i) after the equicontinuity of vy,
is established. We omit the details here. O



Lemma 3.3. Assume that Hypotheses 2.1-2.2 hold, and foﬂ(oo) [g(c0,u) —u]du > 0. For any B(oc0) >
o > a(o0) and any small positive € > 0, there exist r, > 0 and my > mg and 1 > {y such that for any
x1 and xo with xe — x1 > 2r, and vo(x) = o on [x1,x2] and vo(x) = 0 otherwise, and for m > my and
0> {q, the solution v,(x) of (3.3) has the property that there exists ng such that for n > ng,

min vp(z) > 0. (3.7)
z1—n(c*(00)—¢/2)<z<zo+n(c*(c0)—e/2)

Proof. In view of Lemma 3.2, for any $(c0) > o > «a(oc0) and small positive € > 0, we may chose m; >
mg and £1 > {g so large that ¢}, (00)—cy,, (€) < €/16, c¢*(00) —cyy,, (00) < €/4, and B, (£) > 0 > vy (£).
Note cj,, (£) > 0. By Proposition 3.1 (iii), there exists r, > 0 that depends on m; and /; such that
for vo(x) = 0 > am, (¢) on [—rs,75] and vo(z) = 0 outside [—r,, 7], the solution v, (z) of (3.3) with
m = my and ¢ = ¢ satisfies

n(2) = Bm, (01)-

lim min v
n—00 —n(c},, (£)—e/16)<z<n(c;;, (€1)—€/16)

It follows that there exists ng such that for n > ny,

min vp(z) > 0.
—n(cn, (00)—€/8)<z<n(cf,, (00)—€/8)

8rg

= so that for n > ng,

We may choose ng >

min vp(z) > 0,
—ro—n(ch, (00)—¢/4)<z<rotn(cs,, (00)—€/4))

and thus

min vp(z) > 0.
—re—n(c*(00)—€/2)<z<rs+n(c*(co)—e€/2))

This and homogeneity of (3.3) show that for vo(z) = o on [z1,z2] with 3 — z1 > 2r,, there exists

ng such that for n > ng,
min vn(x) > 0. (3.8)
z1—n(c*(00)—¢/2)<z<zo+n(c*(c0)—e/2)
Since kp,(z) increases as m increases and g(¢,u) increases as ¢ increase, (3.8) holds for the solution
vp(x) of (3.3) with m > my and £ > ¢; and the same vg(x). This completes the proof. O

Theorem 3.2. Assume that Hypotheses 2.1-2.2 hold, foﬁ(oo) [g(c0,u) — u]du > 0, and c*(c0) > ¢ > 0.
For f(00) > 0 > a(00) and any small positive € > 0, there exist T1 and ro > 0 such that for ug(x) > o
on [Z1,%1 + 2r,], there exists a positive integer ny such that the solution u, of (1.1) satisfies

lim sup |B(00) — tUpny(x)|| = 0. (3.9)

=00 | nng (c+te) <z <nng(c* (co0)—¢)

Proof. In view of Lemma 3.3, for 5(c0) > o > a(o0) and small positive € > 0 with ¢*(c0) —c—¢€/2 > 0,
there exist 1, > 0 and my and ¢; such that for any x; and z9 with zo — 21 > 2r, and vo(z) = o
on [z1,x2] and vg(x) = 0 otherwise, and for m > my and ¢ > ¢;, the solution v,(x) of (3.3) has the
property that there exists ng such that for n > ng, (3.7) holds, and particularly

min Uny () > 0. 3.10
x1—ng(c* (00)—¢/2)<z<za+no(c* (c0)—e/2) o(z) =0 (3.10)
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Since ¢}, (00) — ¢*(00) as m — oo and ¢}, (00) is less than D,,,, which denotes the size of the support of
K (see Lui [33]), we may chose my so large such that 2D,,,, — ¢*(c0) — ¢/2 > 0. Consider

uo(x) > wvo(x) =0, € [l1 + 39D, €1 + 319D, + 2r5). (3.11)

Let up(z) be the solution of (1.1) with ug(z) satisfying (3.11). Since g(z,u) > g(¢,u) for z > ¢ and
u > 0, using the comparison principle and (3.10) with z1 = ¢; + 3ngDy,, and z2 = ¢1 + 3ngDy,, + 274,
we have

Uno () > Ung(2) > 0, @ € [l1 + 3ngDpm, — no(c*(00) — €/2), €1 + 3ngDp, + 215 + no(c*(00) — €/2)].
Note 3n9Dp,, — no(c*(00) — €/2) > noDyy,,. We particularly have
Ung () > Upy(x) > 0, x € [l1 + 3n0Dp, + noc, €1+ 300Dy, + 2r5 + np(c*(00) — €/2)].
By induction, for any positive integer j,
WUjng (T) > Vjno () > 0, x € [l1 + 3ng Dy, + jnoc, 1 + 309D, + 215 + jng(c*(00) —€/2)].  (3.12)

For any small € > 0, there exists my > my such that f,,,(c0) > B(c0) — /4. Consequently there
is fo > {1 such that for £ > f3, Bp,(£) > B(oo) — 5. On the other hand, there exists a positive
integer Ny such that for N > Ny, (In,g(£2, o)) V™) > B(00) — & with (In,g(fe, o))V ™) the Nngth
iteration of l,,,g(¢2,u) at . We choose jp so large that for j > jo, €1 + 3ngDm, + jnoc > ¢2 and
Jjno(c*(o00) — ¢ —€/2) + 2ry > 2ngNoDyy,, + Nonge. It follows that for j > jo,

U(j+Noyno () = B(00) — €,
x € [l1 + 3ng D, + jnoc + NonoDpm, + Nonoc, €1+ 3ngDp, + 214 + jno(c*(00) — €/2) — Nong D, ]

We may further choose j; > jo such that for j > ji, ¢1 + 3noDy,, + jnoc + NongDy,, + Nonoc <
(7 + No)no(c + €) and £ + 3ngDy,, + 215 + jno(c*(00) — €/2) — NongDpm, > (j + No)no(c*(oc0) —€). It
follows that for n > j; + Ng,

Unno () > B(00) —e, x € [nno(c+ €), nnp(c*(c0) — €)].

We conclude that for 1 = z1 = £1 + 3noDy,, and ug(x) > o on [Z1, T1 + 274, un(x) satisfies (3.9). The
proof is complete. 0

Theorem 3.2 shows that when OB(OO) [g(c0,u) — uldu > 0 (i.e., ¢*(c0) > 0) and ¢*(c0) > ¢ > 0,
a population with initial values above the Allee threshold on an appropriate large interval persists in
space. This theorem and Theorem 3.1 imply that a population with a compact initial distribution with
values above the Allee threshold on an appropriate large interval spreads rightward at the speed ¢*(00)
in a weak sense. The proof of Theorem 3.2 shows that the interval [Z1,Z1 + 27| can be replaced by
[Z2, X2 + 2r,] for any T > Z7.

Theorem 3.3. Assume that Hypotheses 2.1-2.2 are satisfied. Assume in addition that c*(00) > ¢ > 0.
Then there exists a nondecreasing traveling wave w(x—nc) in (1.1) with w(—o0) = 0 and w(oco) = B(o0).

11



Proof. In the proof of Theorem 3.2, (3.11) and (3.12) show that for S(c0) > o > a(oo) and € > 0 with
c*(00) — ¢ — € > 0, there exist positive numbers Z; and r,, and positive integer ng, such that for

uy(x) =0, x € [T1, £1+ 2r,],
the solution wu,(x) of (1.1) has the property that for j =1,2,3, ...,
Ujny(x) > 0, x € [T1 + jnoc, T1+ 21y + jno(c*(c0) —€/2)]. (3.13)

A traveling wave w(z — nc) of (1.1) satisfies
wle) = Slul(e)i= [ Ko +e = gly.wl))dy

That is, w(x) is a fixed point of S. Consider wy,+1(x) = S[wy|(x) with wo(z) = F(c0). It is easy to see
wy(z) < wo(x). Induction shows wy41(x) < wy(x). Clearly wp(x) is nondecreasing in x. If w,(x) is
nondecreasing in z, since g(x,u) is nondecreasing in x and u, for t; > to,

Wnt1(t1) — wni(t2) = Slwn|(t ) S[wn](t2)
= [Z kW)g(ti + c—y,wn(t1 +c—y)) — gta + ¢ —y,w(ta + c — y))]dy > 0,

so that wy41(z) is nondecreasing in z. We therefore conclude that lim,, o wy(z) = w(x) exists and
w(x) is nondecreasing in z. Taking the limit n—o00 in wy4+1(z) = S[wy|(x) and using the dominate
convergence theorem, we find that w(z) = Sw](z) thus w(x — nc) is a traveling wave of (1.1). Taking
r— + oo in w(z) = S[w|(x) we see w(+oo) = g(£oo,u). Hypotheses 2.2 (iv) show that there exists
0 < ry; < 1 such that w(—o00) < rw(—o00), leading to w(—o0) = 0.

Consider Wy,4+1(x) = S[wy,](x) with wo(x) = up(x), Since wo(x) > wo(z), comparison shows
wy (x) > Wy (z). (3.14)
On the other hand, w,(z) = u,(z — nc) so that by (3.13), for any j,
Winy(z) > 0,2 € [Z1, T1 4 2rs + jno(c*(00) — ¢ —€/2)],

and particularly,
Winy(x) > 0,2 € [T1, 21 + 2rg].

This and (3.14) shows w(z) > o on [£1, 1+ 2r,], so that w(oo) = (00). This completes the proof. [

Theorem 3.3 states that if ¢*(c0) > ¢ > 0, (1.1) has a nondecreasing traveling wave connecting 0 to

B(00).
4  Persistence with growth in a bounded habitat

In this section, we study (1.1) under Hypotheses 2.1 and Hypotheses 2.3. In this case, (1.1) becomes
(2.1) where population growth takes place in a bounded habitat which shifts at a speed c¢. We establish
persistence of solutions and existence of a positive traveling wave. A positive traveling wave is a
nontrivial nonnegative traveling wave.
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Let ¢* denote the spreading speed of
wnialz) = [ bl = p)gn(unv))d, (4.1)

and ¢* is the unique speed of nonincreasing traveling waves connecting 0 and By. The sign of ¢* is the
same as that of foﬁo [g0(u) — u]du.

Theorem 4.1. Assume that Hypotheses 2.1 and Hypotheses 2.3 hold.

1. For ¢* > ¢ > 0, there exists I* > 0 such that

a. if 1 >1*, (2.1) has a positive traveling wave w(z — nc); and
b. if | < I*, there is no positive traveling wave for (2.1) with speed ¢, and every solution wuy,(x)

of (2.1) with 0 < ug(x) < By converges to zero as n — oo.

it. For c¢* < c, there is no positive traveling wave with speed ¢ for (2.1), and in this case every solution
un(x) of (2.1) with 0 < wup(x) < p < Py converges to zero as n — oo.

Proof. We first assume ¢* > ¢ > 0. A traveling wave w(z — nc) of (2.1) satisfies

l

w(e) = Tlul(w) = [ Ko e = p)an(w(n))dy

We consider the operators

l
Ty ] () 1= / ol = pao(u))dy,

and
o1 () = Qeamlon](@) = / b+ ¢ — )0 (vn (4))dy. (4.2)

For large m, the traveling wave speed of (4.2) is ¢}, — ¢ where ¢}, is the traveling wave speed for the
operator

o, ¢]

Qulul(2) = [ ol = y)an(ulw)d

—00
A proof similar to that of Lemma 3.2 (ii) shows lim,,,~ ¢, = ¢*. A proof similar to that of Lemma 3.3
shows that for By > o > g and any given positive € > 0 with ¢* — ¢ — e > 0, there exist r, > 0 and
my such that for vo(z) = o on [—rs, 7] and vo(z) = 0 otherwise, and for m > my, the solution vy, (z)
of (4.2) has the property that there exists ny such that

min Uno () > 0. (4.3)

—ro—ng(c*—c—€)<z<rs+ng(c*—c—e)
Choose ly = 15 +no(c* — ¢ — €) +ng Dy, where D,, is the size of the support of k,,. Then for the given
vo(z), T} lvol(z) = Qemlvo](2), where j = 1,2,...,ng, T}, , is the jth iteration of Ty, mn, and Qzn, is
the jth iteration of Q.. This, the comparison principle, and (4.3) show that

Ung (lo, ) > vo(x), x € [~T0,T0),

13



where uy(lo, ) satisfies un1(lo, ) = Tj, [un](lo, ) and ug(lo, ) = vo(z). Induction shows

Wing (l0, ) > Vjny(x) > vo(x), x € [=T0,T0). (4.4)

Consider wp41(l,x) = Ti{wy](l, z) with wo(x) = Bo. Induction shows w41 (I, z) < wy(l, ), so that
limy, o0 wi (1, ) = w(l, x) exists. It is easy to see that w(l, z) satisfies w(l,xz) = Tj[w(l,-)](xz). On the
other hand, the comparison principle and (4.4) show wjn,(lo, ) > Wjn,(lo, ) > vo(zx) for any j, and
thus w(lp, z) > vo(z). We conclude that w(ly, z) is a positive fixed point for Tj,.

On the other hand, since go(u) € C'[0, Bo], there exists Ag > 0 such that go(u) < Agu for u € [0, Bo].
Let Ko denote the maximum value of k(x). w(l,z) = Tj[w(l,")|(z) shows w(l,z) < 20A¢Kofy. Let
lo = m. w(lo, z) = Tj [w(lo,-)|(x) and induction shows w(ly,z) < (2loAoKo)"Bo = 5—2 for any

positive integer n, so that w(l~0, z)=0.

It is easily seen that w,(l,z) is nondecreasing in . So w(l,z) is nondecreasing in I. w(lp,x) is a

positive fixed point, and w(ly, z) = 0. Therefore
I* =inf{l,w(l,z) # 0}

is well defined and 0 < Iy < I* < Iy, and furthermore w(l,z) is a positive fixed point if | > [*
and w(l,z) = 0 if I < I*. We have shown statement (i) (a). For any solution wu,(l,z) of (2.1) with
up(x) < Bo, un(x — ne) < wy(l, ), which leads to statement (i) (b). We have proven statement (i).

We now prove statement (ii). Let w(z — nc*) be a nonincreasing traveling wave solution of (4.1)
with w(—o0) = By and w(oo) = 0. Since 0 < wup(x) < p < P, there exists a number h such that
up(x) < w(z — h). We have that for z € [, ],

o0

ui(z — ¢) = Tifuo)(x — ¢)) < Th[wl(z —c = h) < / k(z —h—y)go(w(y))dy = w(x — ¢ = h),
so that u;(z) < w(z — (¢* —¢) — h). Induction shows uy(z) < w(x —n(c* —c) —h). Since ¢* —c < 0 and
w(oo) = 0, as n—o0, w(z — n(c* —¢) — h)—0 for x € [—,I] and thus u,(x)—0 for x € [l + nc,l — nc|
and there is no nonnegative nontrivial equilibrium. The proof is complete. ]

Theorem 4.1 states (i) if ¢ is less than ¢*, the wave speed of the corresponding model on (—o0, 00),
then there is a critical patch size [* such that the population can persist when [ > [* and dies out
eventually if | < [*, and (ii) if ¢ is greater than ¢* then the population dies out eventually.

5 Simulations

All simulations in this section were conducted in Matlab. The source code can be viewed at
https://github.com/glotto01 /shifting-habitat-Journal-of-Mathematical-Biology. The solutions to the
integro-difference equations where computed using a mid-point rule with uniform spatial discretization
with Az = 0.008. This corresponds to the error tolerance (epsilon) being set at 0.0001 in the function
setglobal.m.

We will use the Laplace dispersal kernel, k(x) = , b > 0 in all simulations except the one cor-
responding to Fig. 12 . By scaling, we may assume b = 1 without loss of generality. This corresponds
to a variance of 2.

b o—blx]
€
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Case 1: Shifting habitat conforming to Hypotheses 2.2. For the growth function we will use

2
g(x,u) = 1+(23?711)u2 z <0,
7 myu? x> 0.

1U
1+(mq—1)u?
To satisfy Hypotheses 2.2, it is necessary for m; > 2 and 0 < mg < 2v/mq — 1. The equilibria of
g(o0,u) are 0, ﬁ, and 1. To insure fol [g(c0,u) — u]du > 0 and therefore ¢*(c0) > 0 it is necessary
for my1 > 3.295.

We will simulate the scenario where ¢ < ¢*(00) and where ¢ > ¢*(00). We will also examine the
relation between initial conditions, the habitat shift speed and persistence by finding the critical support
, d*, where the initial condition

1 0<z<d,

0 otherwise,

uo(z) = ugqy(w) :== {
leads to persistence.

For these simulations we choose the parameters mo = 5 and m; = 15. The graphs of g(—oo, u) and
g(00,u) can be seen in Fig. 1. For this choice of parameters ¢*(co) = .9982. A graph of ¢*(c0) vs. my
can be seen in Fig. 2. The speed was determined by iterating the model, and back-shifting the solution
so that the value of u,(0) remains fixed, until a fixed point condition is met. The degree of backshift
is ¢*(00).

uq

1.0 /
0.8F
= Uq1=Ug

0.6 u1=g(—o0,Up)
04l u1=g(o0,Up)
0.2F

L . . . . . u

0.2 0.4 06 0.8 1.0 0

Figure 1: The graphs of g(—oo,u) and g(co,u) with my =5 and m; = 15.
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Figure 2: A graph of ¢*(c0) versus mj.

In Fig. 3 we show how a solution evolves when ¢ < ¢*(oc0) and the initial condition is adequate to
ensure persistence. Here ¢ = 0.8 , and up(x) = ugg) (). We see as time becomes large the trailing edge
of the population tracks closely with z = ¢n and the leading edge tracks closely with x = ¢*(c0) n.
Panel (a) of Fig. 3 show details of the early evolution of the solutions while panel (b) shows the
evolution for later times. In Fig. 4 we show a solution where ¢ > ¢*(c0). The population spread cannot
keep up with good habitat and it goes extinct. This will be true regardless of initial conditions, but
the time till extinction will increase as the support of the initial condition increases.

— Uo(X)
us(x)
u10(x)

— U15(x)

— Uz0(X)

— Uas(x)

i, x=25¢  x=25¢*(c0)

0.8

I
I
I
I
0.6 1
|

0.4

0.2

L - = L L L
10 20 30

(a) early evolution of the solution: n =0,5,---,25

x=2'00c x=2090*(m) — up(x)
f i Uso(X)
— U100(X)
— U150(X)

—— Ua00(X)

1.0 —

0.8
0.6
0.4
0.2

5‘0 160 1%0 2(‘)0
(b) later evolution of the solution: n = 0,50, --- ,200
Figure 3: The evolution of the solution for ug(z) = ufy(z) and ¢ = 0.8. The dashed vertical line at

x = 200c in panel b corresponds to the boundary between the good and bad habitat for ugg(z). Here
c*(00) =.9982, mp = 5 and m; = 15. We see the population persists as ¢ < ¢*(00).
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Oc 10c 20c 30c 40c
1.0 —_— | | | — Up(X)
osf | | | I | uro(x)
osf | | | | | uz0(x)
ub e e e : — uott)
ozt | e e e e — ot
00 (I) 1‘0 I 2‘0 3‘0 I 40 I 5‘0

Figure 4: A plot of the solution where ¢ > c*(00). Here ug(z) = ugio1(z) , ¢ = 1.2, ¢*(00) = .9982,
mo = 5 and m; = 15. We see the population goes extinct.

In Fig. 5 we examine how the minimum support for the initial condition ug(r) = uyqy(x) depends
on the speed of the habitat shift. We define this threshold value as d*. To conduct the simulation
we characterized solutions where the total population increased consecutively 50 times in a row as
persisting, and those where the maximum density is less than the Allee threshold as being effectively
extinct. We then used a bisection algorithm until the difference between the upper and lower bound
for d* is less than 0.001. We see that d* increases rapidly as ¢ approaches ¢*(c0). Due to limitations of
numerical accuracy we did not attempt to compute d* for values of ¢ greater than 0.99¢*(c0).

In Fig. 6 we examine the effect of shifting the initial condition, ug(z) = ug4y (), to the left by the
amount Z; for several values of habitat shift speed. The initial condition is thus uo(z) = uq (v — Z1).
We see that as the shift becomes large, the required initial support asymptotically approaches the value
of 0.3359 regardless of the speed of the habitat shift. This is illustrative of Theorem 3.2, which to
paraphrase, states that for a sufficiently large shift (Z;) and an interval of sufficient size above the Allee
threshold ([Z1,Z1 + 2r,]) the population can survive for any value of ¢ less than ¢*(c0).

1 L L L 1 L L L 1 L L L 1

L L L L 1 C
0.2 0.4 0.6 0.8 1.0

Figure 5: A plot of the critical initial support size for ug(x) = uyqy () versus the habitat shift speed c.
Here mg = 5 and m; = 15.
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4%
3,
— ¢=0.99¢*
o c=0.9¢*
¢c=0.75c¢*
1 L
020,35 | e
. — X

Figure 6: A plot of the critical support size for the initial condition versus the left-most position of the
initial support. ug(r) = ugq(z — &1). Here mg =5 and m; = 15.

Case 2: Shifting habitat conforming to Hypotheses 2.3.  We will use the growth function

2
vy = § Fonem IS L 5.1
9l ) {0 otherwise (5.1)

As in Case 1, fol [go(u) — u]du > 0 so by Theorem 4.1(i) we would expect a persistent solution for
sufficiently large [. In these simulations we will examine how the habitat shift speed (¢) and patch size
(1) affect the persistence of solutions and the resulting stable traveling wave solutions. We will also
present a graph showing the relation between ¢ and [*. The initial condition used in these simulations
is
1 |zl <l
uo(@) i (@): {O otherwise

In Fig. 7 we show the evolution of a solution where the habitat shift speed is less than ¢*(c0), and
the habitat size is larger than the critical size, [*. In subfigure-a we use a moving reference frame in the
four snapshots to better show detail. We see that the population persists and a stable traveling wave
solution develops. In Fig. 8 we show the evolution of a case where the habitat moves at speed greater
than ¢*(00). We see that the population can not keep up with the favorable habitat and goes extinct.
In Fig. 9 we show a solution where the habitat size falls below the critical value {*. The losses due to
dispersal and habitat shift are too great, and the population goes extinct.
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(a) early evolution of the solution: n =0,1,2,3
24c 30c

Oc
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— u12(x)
— Uu1g(X)

— U24(X)

20

25

(b) later evolution of the solution: n = 0,6, --,30

30 — U3o(x)

Figure 7: The evolution of a solution where ¢ < ¢*(00) and [ > I*. Here I = 1.76, 1 = 2, ug(z) = u2) ()
, ¢*(00) =.9982, ¢ = 0.8 and m = 15. The region between dashed vertical lines on panel (b) represents
the habitat favorable to growth for usg(x).

Figure 8: The evolution of a solution with ¢ > ¢*(oc0).
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Figure 9: The evolution of a solution with [ < [*. Here I* = 1.76, | = 1.5, ug(z) = ugy(v) ,
c*(00) = .9982, ¢ = 1.2 and m = 15. The region between dashed vertical lines represents the habitat
favorable to growth for ug(x).

In Fig. 10 we show the stable traveling wave solution for different values of ¢ and [. To compute
the stable travelling wave we iterated the solution with ug(z) = ugy () until max_j<,<; |g(@, un(z +
nc)) — g(x, up—1(x + (n — 1)c)| meets a fixed point tolerance. We can see that when [ is much larger
than [* then density has a broad plateau approaching the carrying capacity. As [ approaches [* we
see the peak density decreases and the plateau becomes less pronounced. As the habitat shift speed
approaches ¢*(0o0) we see the location of the peak becomes more biased to the left.

Fig. 11 shows how the total population of the stable travelling wave solution varies with the habitat
shift speed. This is obtained by numerically integrating the solution over the spatial coordinate. The
habitat size in this figure is fixed at I = 2 and m = 15. We see for low speeds population weakly
decreases, however as ¢ approaches 0.85 the population rapidly falls to zero. As can be seen from Fig.
12, [* = 2 corresponds to ¢ = 0.85. Due to limitations of the accuracy of the numerical methods, there
is some amount of jitter in the plot, plot markers are thus used to indicate the actual sample points.
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1.0 X=nc-/ X=nc+/

0.2 | :
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Figure 10: The stable traveling wave solutions for different habitat shift speeds and sizes. It should be
noted the z-coordinates are labelled such that 0 corresponds to cn. ¢*(c0) = .9982 and m = 15 for all
subfigures.

population

1 1 1 1 L C
0.2 0.4 0.6 0.8 1.0

Figure 11: The total population of the stable travelling wave solution versus the habitat shift speed.
The habitat size is [ = 2 and m = 15.

In Fig. 12 we see how the critical patch size depends on habitat shift speed for three different
dispersal kernels. The kernels used are the Laplace, Gaussian, and Uniform distributions, all with
mean zero and variance 2. These are members of the generalized Gaussian distribution with exponents
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1 for Laplace, 2 for Gaussian, and the Uniform is the limiting case as the exponent approaches infinity.
The kurtosis decreases as the exponent increases, thus the Laplace has more individuals dispersing
extreme distances. See Otto et al. [40] for a more detailed discussion on this family of kernels.

The values of I* were determined by using a bisection method similar to that for d*. To determine
persistence, solutions where iterated until a fixed point condition was met or the maximum density fell
below the Allee threshold. The dashed vertical lines represent ¢*(oo) for the respective distributions.
As was the case for d*, we see there is a rapid increase as ¢ approached ¢*(c0). Due to limits of
numerical accuracy we did not attempt to compute [* beyond 0.99¢*(c0). It is interesting to note the
curves become flatter as the kurtosis decreases, indicating species with leptokurtic dispersal may be
more sensitive to patch size in a shifting habitat. The cause of this may have to do with the fact that
extreme dispersal may cause more individuals to fall in sparsely populated regions where the population
is below the Allee threshold.
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Figure 12: A plot of the critical habitat size (I*) versus the habitat shift speed (c) for different dispersal
kernels with mean 0 and variance 2. m = 15.

Finally, in Fig. 13 we show how [* depends on the Allee threshold for the growth function given by
(5.1) for a habitat shift speed fixed at ¢ = 0.5. It should be noted that the Allee threshold («y) is related
to the parameter m by oy = ﬁ As the Allee threshold approaches zero and thus m approaches infinity
we see the critical habitat size approaches zero. The vertical asymptote at ag = 0.182 corresponds to
m = 6.495, which as can be seen on Fig. 2 corresponds to ¢*(co0) = 0.5.
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Figure 13: A plot of [* versus the Allee threshold. The habitat shift speed is ¢ = 0.5. It should be
noted the Allee threshold is related to m by ag = —.

m—1

6 Discussion

In this paper, we studied the population dynamics for (1.1) with a strong Allee effect in a shifting
habitat in response to climate change. We investigated the case of a shifting semi-infinite bad habitat,
where the species declines, connected to a semi-infinite good habitat, where the species grows. We
found that the habitat shift speed ¢ and the asymptotic spreading speed ¢*(o0) in the good habitat
determine species persistence. Particularly, we showed that if ¢*(co) > ¢ > 0 then a species with an
initial distribution having values above the Allee threshold in an appropriately large interval will persist,
and if ¢*(c0) < ¢ then extinction will take place. In the former case, a nondecreasing traveling wave with
speed ¢ connecting 0 and the equilibrium above the Allee threshold exists. We also examined the case
of a shifting bounded habitat on which the species grows. We demonstrated that species persistence
depends on the habitat size, shift speed ¢, and asymptotic spreading speed c¢* for the corresponding
model with the same growth function in the habitat (—oo,00). Particularly we showed (i) if ¢* > ¢,
there is a critical patch size [* which is the minimal habitat size for species persistence, and (ii) if ¢* < ¢
then species dies out eventually.

These results are in line with those for (1.1) with a shifting habitat and no Allee effect given
in [28, 29, 53|. Similar results were obtained for reaction-diffusion equations without Allee effect [2,
3, 19, 27]. However, there are important differences between results of these papers and those in the
present paper. Firstly, linearization about zero was used to study persistence of solutions for models
without Allee effect, while a new approach is taken in this paper to study the case of strong Allee effect.
Specifically, in this paper, with the presence of a strong Allee effect, long term behavior of solutions of
homogeneous systems was used to study persistence for an unbounded habitat, and a limit process was
employed to determine the critical habitat size for a bounded habitat. In contrast, without Allee effect,
a lower solution with appropriate speed based on a linearized system plays a key role for establishing
persistence in a shifting unbounded habitat [19, 27, 28], and the principal eigenvalue of a linearized
system determines persistence in a shifting bounded habitat [2, 53]. The principal eigenvalue depends
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on the derivative of the growth function at zero, the shift speed ¢, patch size, and the dispersal kernel.
The principal eigenvalue is set to 1 to find the critical patch size in terms of other components. In the
presence of a strong Allee effect, linearizion is no longer valid to discuss the critical patch size. One
has to consider the growth function on the entire domain from zero to the carrying capacity. This is
seen from our definition of [* where integrals of the growth function with appropriate density functions
are involved. The methodology in this paper works for (1.1) in the case of weak Allee effect as well,
and it also provides an alternative way to investigate the situation without Allee effect. Secondly, the
persistence results for (1.1) with a strong Allee effect are more restrictive. When a strong Allee effect

exists, the condition foﬁ (o) [g(00, u) —u]du > 0 is necessary for persistence in a habitat. In an unbounded
habitat, without Allee effect, persistence holds when the initial data has positive values in any small
interval where growth is nonzero [28]; with a strong Allee effect, in order for persistence to take place,
the initial data must have values above the Allee threshold in a large interval and the location of initial
data matters in general. It should be also pointed out that the spreading speed established in this
paper is in a weaker sense. Specifically (3.9) holds for a large fixed integer ng, while ny = 1 is only
needed in the absence of Allee effect [28].

We established the existence of traveling waves for both unbounded habitats and bounded habitats.
The traveling waves are forced by the shifting habitats and their speeds are the same as the habitat
shift speeds. Our analysis showed that traveling waves attracts solutions with initial data above them.
Consequently for the bounded habitat case there exists a large class of initial distributions for which
the solutions persist in space. Li and Wu [29] showed that for (1.1) with a shifting semi-infinite bad
habitat and no Allee effect, besides existence of a monotone traveling wave, there are infinitely many
pulse traveling waves. It is an open question if pulse traveling waves exist in the presence of a strong
Allee effect for unbounded habitats. We conjecture that there is a second traveling wave for the case
of bounded habitat and strong Allee effect. This was shown to be true for a corresponding reaction-
diffusion model [31].

The numerical simulations provided in Section 5 supported the theoretical results obtained in Section
3 and Section 4. The Case 1 simulations corresponded to a semi-infinite high quality habitat. In Fig. 3
we showed the density curves of a solution persisting when ¢ < ¢*(c0). In Fig. 4 we showed a solution
reaching extinction when ¢ > ¢*(c0). Fig. 5 and 6 explore the dependance of persistence on initial
conditions. In Fig. 5 we observed that the minimum support for the initial condition with values
above the Allee threshold depends on the speed of the habitat shift. It may be worth investigating the
monotonicity of this relation analytically. Theorem 3.2 is supported by Fig. 6 which shows that for a
sufficient left shift there is an initial domain size that leads to persistence regardless of c.

The Case 2 simulations corresponded to a finite interval of high quality habitat. In Fig. 7 we showed
persistence when ¢ < ¢*(oo0) and [ > [*. In Fig. 8 we showed non-persistence when ¢ > ¢*(c0). In Fig.
9 we showed non-persistence when [ < [*. Fig. 10 shows how the shape of the stable travelling wave
depends on ¢ and [. Fig. 11 shows how the total population depends on ¢, showing a very rapid decline
as ¢ approaches ¢*(c0). In Fig. 12 we showed how [* depends on ¢ for 3 different dispersal kernels of
the same variance. The monotone relation between ¢ and population size, and ¢ and [* suggested by
Fig. 11 and 12 warrants further analytical investigation. The relation between persistence and shape
of dispersal also would be of interest for future investigations. Finally, in Fig. 13 we showed the critical
patch size depends on the Allee threshold for the form of growth function we chose and a fixed c.

Papers [28] and [29] also considered the scenario where two semi-infinite habitats with different
levels of good quality are connected. We plan to study this scenario when there is a strong Allee
effect. This paper assumes that the growth function is monotone in species density. It is possible
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that a growth function is non-monotone in density, i.e., there exists overcompensation in population
growth. It is known that a combination of strong Allee effect and overcompensation in a homogeneous
integro-difference equation with the habitat (—oo, c0) can produce oscillations in spreading speed (see
Sullivan et al. [48] and Nestor and Li [38]), and oscillating nonspreading solutions (see Otto et al. [40]).
It would be of great interest to investigate a system in the form of (1.1) with both strong Allee effect
and overcompensation. We leave the problem for future investigations.
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