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Ecosystem models need to capture biodiversity, because it is a fundamental
determinant of food web dynamics and consequently of the cycling of energy
and matter in ecosystems. In oceanic food webs, the plankton compartment
encompasses by far most of the biomass and diversity. Therefore, capturing
plankton diversity is paramount for marine ecosystem modelling. In recent
years, many models have been developed, each representing different aspects
of plankton diversity, but a systematic comparison remains lacking. Here we
present established modelling approaches to study plankton ecology and
diversity, discussing the limitations and strengths of each approach. We
emphasize their different spatial and temporal resolutions and consider the
potential of these approaches as tools to address societal challenges. Finally,
we make suggestions as to how better integration of field and experimental
data with modelling could advance understanding of both plankton biodiversity
specifically and more broadly the response of marine ecosystems to
environmental change, including climate change.
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Introduction

Plankton diversity, in terms of traits and life history
strategies, mediates some of the most important ecological
processes, from local to planetary scales, including the
biological carbon pump (Basu and Mackey, 2018), element
cycling and food web dynamics (Sailley et al.,, 2015), energy
transfer to higher trophic levels (Havens, 1998; Sommer et al.,
2018) and system productivity (Hammer and Pitchford, 2005).
However, we still do not fully understand how different
dimensions of plankton biodiversity impact ecological
functions and services at various spatial and temporal scales.
These shortcomings limit our ability to project the magnitude or
even direction of their change under future scenarios.

Various mathematical and statistical tools, generically
termed “models”, are used to capture different dimensions of
plankton diversity at various scales (e.g., Banas, 2011; D’Alelio
et al., 2016; Righetti et al., 2019; Henson et al., 2021) and include
particular effects of biodiversity in their projections. The specific
underlying assumptions, strengths, and weaknesses of each
approach may affect our interpretation of how plankton
biodiversity impacts ecosystem functions. Furthermore, the
necessary quantity, quality, and type of data required to
validate each model differ, and in many cases observations are
insufficient or not accessible for model validation (Grigoratou
et al,, 2022). Importantly, the diversity of modelling approaches
also hinders the establishment of a dialogue and the transfer of
information between data providers and users.

To address these issues, we provide a concise comparative
assessment of common modelling approaches capturing
plankton biodiversity to inform future choices of modelling
methods and interpretation of results. We present our
perspectives on the main strengths and limitations of these
approaches, as well as their societal applications and data
needs (Everett et al., 2017; Bardon et al., 2021).

Common modelling approaches to
capture plankton biodiversity

Scientists from different fields of study have developed a
wide variety of modelling approaches employed to study
plankton biodiversity patterns, with different purposes, in
some cases not even focused specifically on biodiversity. We
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aim to point out the general characteristics and examples of six
commonly used approaches, which we categorize as: Statistical
(STM), Ecological Network Analysis (ENA), Individual-Based
(IBM), Plankton Functional Type (PFT), Acclimation (ACC)
and Adaptive Trait-based (ATM) models. These approaches
cover the common dimensions of biodiversity, including
variability of genotypes, phenotypes, and the composition of
communities and ecosystems (vertical axis on Figure 1). We
further categorise these six modelling approaches along a
“statistical vs. mechanistic” axis (horizontal axis on Figure 1),
to better distinguish those models that require explicit
descriptions of ecological or biological processes (mechanistic)
from those methods that describe mainly empirical relationships
based on field, satellite and laboratory observations (statistical).

Statistical models (STM) — interpreting
natural diversity

These models describe observed patterns of plankton
diversity using a myriad of statistical and machine learning
methods. For the most common proxy of taxonomic
biodiversity, species richness, various statistical and machine
learning methods (Melo-Merino et al., 2020) can be used to
develop species distribution models (SDMs) based on
occurrence observations e.g. from open databases (GBIF?,
OBIS?). Similarly, DNA/RNA sequencing data can be used to
characterize diversity patterns of particular groups (e.g. viruses,
bacteria, and diazotrophs). The recent availability and lower cost
of these data have provided a global scale perspective on the
diversity patterns of marine phytoplankton (Righetti et al,
2019), zooplankton (Brun et al., 2016), and of various
planktonic groups of organisms (Ibarbalz et al., 2019).
However, statistical approaches such as SDMs still face
challenges associated with their static representation of
dynamic marine ecosystems, where organisms disperse widely
(Melo-Merino et al., 2020). Furthermore, the limited and biased
distribution of observations limits our ability to untangle the
temporal and spatial scale-dependance of species diversity
(McGill et al,, 2015). These methods are potentially useful to

Global Biodiversity Information Facility https://www.gbif.org/

2Ocean Biodiversity Information System https://obis.org/
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Six modelling approaches commonly used to capture various dimensions of plankton biodiversity. We further organize the modelling
approaches along an axis spanning from those models that require explicit descriptions of ecological or biological processes (mechanistic) to

those methods that do not (statistical).

describe large-scale patterns with an ever-increasing set of
observations, however, it remains difficult to unravel the
mechanisms underlying diversity patterns and their links to
ecosystem functions and services.

Ecological network analysis (ENA) — tools
for ecosystem management

Models of static ecological networks provide a discrete
representation of ecosystems by depicting energy flows from
prey/resources to predators/consumers, assuming that all nodes
are at steady state, i.e. equal net energy flows into and out of each
trophic group. These networks are often built starting from
biomass and energy budgets for each trophic group, based on
metabolic parameters such as consumption/biomass and
production/biomass ratios. Various studies apply ENA to
model planktonic food web functioning. They employ
information theory indices to assess ecosystem stability (Scotti
et al,, 2022), quantify carbon reuse through cycling analysis
(Tecchio et al, 2016), and rely on input-output analysis to
estimate transfer efficiency along a chain of discrete trophic
levels (Saint-Beat et al., 2020). For example, D’Alelio et al. (2016)
studied the structure of energy circulation and found little
difference in trophic efficiency between phytoplankton bloom
and non-bloom periods. ENA indices can also detect the impacts
of anthropogenic stressors on planktonic food webs, and were
used to show that eutrophication disrupts the prevalence of
pathways for energy transfer to fish (Meddeb et al, 2018).
Limitations of this approach include the strong assumption
that each node remains at a steady state, and the amount of
data required to validate models including many different
trophic levels.
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Individual-based models (IBM) — close to
real life interactions and evolution

Individual-based models (IBMs, also called agent-based
models) are iterative algorithms that apply a set of rules to,
e.g., individuals of a population, thereby simulating life cycles,
from birth to death (DeAngelis and Mooij, 2005; Grimm et al.,
2005; Hellweger and Bucci, 2009). IBMs allow ecosystem
properties to emerge from traits and interactions of
individuals, including randomness through the process of
replication, where offspring inherit traits from their parent(s),
with mutation between each generation (Melian et al., 2011).
Furthermore, events like random death or encounter may be
modeled, which allows studying the importance of such discrete
events in population dynamics (Picq et al., 2019). IBMs are used
to investigate the effects of molecular and physiological processes
on global plankton biogeography (Hellweger et al.,, 2014) and
global N:P ratios (Toseland et al., 2013). In combination with
individual-level observations, these models hold great potential
to advance understanding of how individual-level processes
impact multiple levels of ecological organization across spatial
scales (Kreft et al., 2013; Hellweger et al., 2016). The general lack
of any analytical treatment limits the derivation of insights for
correlative analysis, but see Black and McKane (2012). The most
important limitation for IBMs is likely their massive
computational requirements for implementing simulations and
analyzing the output.

Plankton functional type models (PFT)-
modularity and function

Plankton functional type (PFT) models group organisms
based on the similarity of their ecological or biogeochemical
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functionality. PFT models originated from the first, simple
plankton community models resolving nutrients,
phytoplankton, zooplankton and detritus (NPZD), and later the
microbial loop (e.g. Fasham et al, 1990). As traditionally PFT
models have been used to study the biogeochemical function of
plankton, they have been criticized for representing poorly the
eco-physiological differences between functional types (Anderson,
2005), and have recently been extended to include such detail by
describing key traits and trade-offs (Follows et al., 2007; Follows
and Dutkiewicz, 2011). PFT models are applied for time scales
from days to millenia, and commonly used in regional, basin-scale
and global applications for understanding and assessing the
ecosystem response to environmental conditions, such as
nutrient loading rates (Lancelot et al., 2007), acidification
(Artioli et al,, 2012), intensity of fishing efforts (Petrik et al,
2019), and climate change (Kwiatkowski et al., 2019). However,
diversity is typically limited to the number of functional groups
modelled, and is typically resolved in detail only for selected
trophic levels, at substantial computational cost. This makes it
challenging to analyse and disentangle diversity effects from other
spatio-temporal dynamics. Furthermore, PFT models that
describe trait-spaces typically assume fixed (non-adaptable) trait
values along multiple trait dimensions, while resolving many
fewer ecotypes than are observed in nature. This limits their
ability to capture the adaptive capacity of ecosystems in response
to environmental changes (Ward et al., 2019).

Acclimation models (ACC) — from
physiology to community dynamics

Acclimation is the ability of organisms to adjust their
physiology and behavior (phenotypes or traits that are not
inherited) to enhance their fitness in a changing environment
(Laws and Bannister, 1980; Smith et al., 2011). Although many
models ignore this important ability, plankton acclimation
models exist (Pahlow et al.,, 2008; Bonachela et al., 2013;
Pahlow and Oschlies, 2013; Wirtz and Kerimoglu, 2016). It is
challenging to disentangle the relative contributions of
acclimation and evolutionary adaptation to overall ecosystem
response, because in the short term they may have either similar
or very different tendencies (Moreno and Martiny, 2018), which
in the long term are inter-dependent (Edelaar and Bolnick,
2019). Representing physiological flexibilities as an acclimative
response is an effective and efficient way of modelling certain
effects of diversity, which avoids the heavy computational
burden of representing biodiversity explicitly, e.g., by using
multiple PFTs (see above). This approach has been used to
study how physiological flexibilities impact the global and
regional biogeography of elemental ratios and primary
production (Pahlow et al.,, 2020), energy transfer efficiency to
higher trophic levels (Chakraborty et al, 2020), response to
eutrophication (Kerimoglu et al., 2018) and climate change
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(Kwiatkowski et al., 2018), and formation of deep chlorophyll
maxima (Masuda et al., 2021). Acclimation models are often not
standalone, and one of their strengths is that they are readily
incorporated into a variety of models, such as PFTs, IBMs, and
ATMs (see below), to represent plankton diversity (Ross et al.,
2011; Smith et al., 2016; Chen et al., 2019; Cadier et al., 2020).
Arguably the greatest limitation of ACCs is that optimality
solutions can become quite intricate and, because of inter-
dependencies between various cellular functions, any change
in a model formulation may require the re-derivation of
existing solutions.

Adaptive trait-based models (ATM) —
describing trait dynamics of communities
across ecological scales

Adaptive trait-based approaches focus on the dynamics of
functional traits as key outputs, rather than inputs to models
(Klausmeier et al., 2020), and they often overlap with more
widely used modelling approaches such as PFTs and ACCs.
ATMs commonly represent traits in two contrasting ways: as
either a full distribution or an aggregate approximation via the
moment-closure method (Wirtz and Eckhardt, 1996; Norberg
etal., 2001; Merico et al., 2009). In the full distribution approach
traits are “free” to evolve in response to the current selection
pressure (Bruggeman and Kooijman, 2007; Banas, 2011; Gaedke
and Klauschies, 2017). This approach can be computationally
demanding for large-scale applications, which can hinder
mechanistic understanding of biomass-trait feedbacks. In
contrast, the aggregate approach, typically applied to
communities, must assume a specific shape for the trait
distribution, which makes it computationally efficient and
allows direct insights into the mechanisms underlying changes
in aggregate properties, namely total biomass, mean trait, and
trait variance (Chen and Smith, 2018; Klauschies et al., 2018).
The concise nature of the aggregate approach makes it useful for
both applied (e.g. Terseleer et al, 2014; Acevedo-Trejos et al,
2015) and fundamental (e.g. Coutinho et al., 2016; Guill et al,
2021) research questions related to plankton diversity, but this
comes at the cost of limited ability to accurately resolve the
fitness landscape and inability to capture certain observed
diversity distributions.

Discussion

The modelling approaches described above have both shared
and contrasting characteristics, which allow them to address
specific societal applications (see section 3.2 below). However,
they all share a common need for improved data inputs (see
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FIGURE 2

Model
output
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Eutrophication
1,2
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3,4,5,6

Resource
management

Key characteristics of six modelling approaches commonly used to capture various dimensions of plankton diversity. The inset of each model
description depicts an idealized model output and where the term "diversity” represents a specific measure of diversity for each dimension, i.e.
Genetical, Organismal, Functional, Taxonomical, or Ecological. A better overview of model outputs is available through the examples mentioned
for each method. In addition, we summarized main data requirements, outputs and commmon societal applications for each approach. Notice
that some entries can both be data needs and model outputs. The latter is because variables in a modelling approach can be used to
parametrize and/or validate a model but can also be a variable computed or predicted by the model. Code numbers: 1) Kerimoglu et al. (2018)
(ACC), 2) Lancelot et al. (2007) (PFT), 3) Toseland et al. (2013) (IBM), 4) Kwiatkowski et al. (2018) (PFT), 5) Kwiatkowski et al. (2019) (PFT), 6)
Henson et al. (2021) (PFT), 7) de la Vega et al. (2018) (ENA), 8) Meddeb et al. (2018) (ENA), 9) Saint-Béat et al. (2020) (ENA).

section 3.3 below). We illustrate these differences and similarities
with examples from the literature (Figure 2) and elaborate in the
sections below.

Strengths and limitations

Strengths of these modelling approaches are that they (1)
facilitate direct links and comparisons to observed diversity patterns
(STMs, IBMs, ATMs), (2) have applications to societal benefits
(STMs, ENAs, PFTs), (3) can capture multilevel ecological
complexity (IBMs and ACCs), and (4) have computational
efficiency and analytical accessibility (ACCs and ATMs). Some of
their respective disadvantages are: (1) heavy computational
requirements that limit applications (mainly IBMs, but also PFTs),
(2) static representation of plankton dynamics (STMs, ENAs), and
(3) lack of ecological or biological complexity (ENAs, PFTs, ATMs,
ACCs). These strengths and limitations demonstrate that each of the
above approaches are particularly suited to specific applications, with
no single approach capturing all aspects of plankton diversity.
Therefore, different approaches may be needed to capture
biodiversity within different trophic levels or functional groups.
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Societal applications

Some modelling approaches, such as ENA and PFTs, can
inform managers and policy-makers about the status of
ecosystem integrity and its deterioration, for example, due to
anthropogenic stressors (de la Vega et al., 2018; Fath et al., 2019;
Nogues et al., 2021). Trophic networks studied with ENA often
include all ecosystem components, making them suitable to
assess the balance between trophic guilds as requested by EU
legislation (i.e. see MSFD descriptor D4C2%). Moreover, ENA
indices are among the food web indicators proposed in the
framework of OSPAR* to capture the whole-system properties of
marine food webs (Niquil et al., 2014). Nevertheless, defining the
reference levels or thresholds to quantify deviations from the
Good Environmental Status (GES) remains challenging, as
ecosystems attain different stable configurations over time

3https://mcc.jrc.ec.europa.eu/main/index.py

4The Convention for the Protection of the Marine Environment of the

North-East Atlantic - www.ospar.org
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(Tomczak et al., 2021). PFTs are used as the biogeochemical
cores of Earth System Models (ESMs), thus they play a key role
in future climate simulations. PFTs are also used to model
Harmful Algal Blooms (HABs) and as part of larger models
for predicting the effects of climate and fishing yield on key
populations, which in turn inform stock assessments and policy
decisions. Both ESM and fisheries models typically resolve only
simplistic abstractions of plankton diversity (Kwiatkowski et al.,
2019; Petrik et al., 2020), which is insufficient to capture
functional diversity. This has raised concerns about the ability
of ESMs and fisheries models to project future responses,
especially in terms of community resilience and energy fluxes
to higher trophic levels (Heneghan et al., 2016; Tittensor
et al., 2021).

Unmet needs for data and collaboration

There is a growing need and recurrent call to contrast model
estimates and predictions with empirical observations (Kremer
etal,, 2017). However, relevant traits across trophic levels remain
scarcely measured, rarely consistently reported (different units,
lack of adequate metadata including details on data quality and
methods) and rarely shared in public data repositories (if so,
typically with poor data latency). With only 7% of the ocean so
far actively covered by long-term biological observations
(Satterthwaite et al., 2021), current access to even the most
basic biogeographic data on plankton biomass and abundance
remains very limited (and virtually non-existent for microbes/
protists) and often hampered by its spread over various
platforms and institutions. This is despite the recognition of
phytoplankton, zooplankton and microbial biomass and
abundance as Essential Ocean Variables (EOV), Essential
Biodiversity Variables (EBV) (Miloslavich et al., 2018) and
even Essential Climate Variables (GCOS, 2021). Development
and validation of all presented modelling approaches would
benefit in particular from data on stoichiometric composition
(C, N, P, Chl-a), traits (e.g. cell/body size and shape) and
biomass measured across a full spectrum of environmental
conditions (temperature, light, nutrients), with photosynthetic
rates, nutrient uptake and respiration rates also critically needed.
In addition, comparisons of modelling approaches with
molecular data remain scarce, despite the recent availability of
a considerable amount of data, which hold great potential as
shown with individual-based comparisons (Hellweger, 2020).
Obtaining quantitative individual-level data is crucial, yet
remains a particular challenge because widely available genetic
data cannot be converted accurately into biomass or cell
abundance (Kelly et al., 2019; Piwosz et al., 2020; Milivojevic
et al., 2021).

We call for free, open access to plankton EOV and EBV data,
and their enhanced and sustained observations, which would
enable further integration of field observations, remote sensing
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products, and experimental studies with modelling approaches.
Therefore, we advocate to follow the FAIR principles, i.e.
Findability, Accessibility, Interoperability and Reusability
(Wilkinson et al., 2016) for the sustainable management of
plankton data. Adherence to these principles would ensure
exploitation of the potential that the various approaches hold
and foster building a new generation of models and decision-
support tools for effective management of ecosystem services
linked to plankton diversity.

More meaningful collaborations are also needed between the
scientists who plan and conduct laboratory experiments, oceanic
observations, and modelling studies. Proposals are rarely
planned with a holistic view for combining experiments,
observations and modelling. Hence, the scientists who develop
and apply models are often not aware of the quantity and quality
of available data relevant to their applications, while the
scientists who plan and conduct laboratory experiments and
oceanic observations are often not aware of the limitations of
relevant modelling approaches and their results (e.g., Everett
et al,, 2017). The comparative assessment provided here aims to
raise awareness and stimulate discussions in the planning phase
of collaborative studies seeking to combine observations and
modelling, which is the best and perhaps only hope for
understanding any complex system (Bar-Yam, 2016).

Challenges and future directions

Approaches differ in their diversity-sustaining mechanisms,
which relate to the positive effect of species diversity on
productivity (Loreau, 2004). However, a higher diversity of
coexisting species does not necessarily imply higher
productivity. For example, although species can coexist via the
competition-colonisation trade-off (i.e., species that are better at
exploring unutilized spaces have poorer competitive
capabilities), this coexistence does not lead to transgressive
overyielding (Loreau, 2004). This may be particularly relevant
in spatially explicit ocean models, where mixing can sustain
plankton diversity (Chen et al., 2019; Dutkiewicz et al., 2020;
Masuda et al., 2021). Another potentially relevant determinant
of individual-level fitness (Edelaar and Bolnick, 2019), and
therefore coexistence and diversity maintenance, is acclimative
flexibility, which is being actively studied within the framework
of Modern Coexistence Theory (Chesson, 2000; Barabas et al.,
2018). One promising target for further research would be to
examine how acclimation affects equalizing and stabilizing
effects (Adler et al., 2007; Lankau, 2011). Since rapid evolution
may promote species coexistence in diverse predator and prey
communities by altering interspecific niche and fitness
differences (Klauschies et al., 2016), we may also expect a
positive impact of acclimation on species coexistence.

For understanding the response of plankton biodiversity in
particular, and aquatic ecosystems more broadly, to global and
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other environmental changes, it is essential to develop better
representations of the adaptive capacity of life in large scale
simulations, e.g., in ESMs used to model climate change. Hence,
there is a pressing need to validate ACC and ATM approaches in
such spatially explicit applications. These approaches could
potentially capture important feedback responses between
ecology, evolution, and environmental conditions in ESMs
(Bonan and Doney, 2018; Ward et al., 2019).
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