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Ecosystem models need to capture biodiversity, because it is a fundamental

determinant of food web dynamics and consequently of the cycling of energy

and matter in ecosystems. In oceanic food webs, the plankton compartment

encompasses by far most of the biomass and diversity. Therefore, capturing

plankton diversity is paramount for marine ecosystem modelling. In recent

years, many models have been developed, each representing different aspects

of plankton diversity, but a systematic comparison remains lacking. Here we

present established modelling approaches to study plankton ecology and

diversity, discussing the limitations and strengths of each approach. We

emphasize their different spatial and temporal resolutions and consider the

potential of these approaches as tools to address societal challenges. Finally,

we make suggestions as to how better integration of field and experimental

data withmodelling could advance understanding of both plankton biodiversity

specifically and more broadly the response of marine ecosystems to

environmental change, including climate change.
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Introduction

Plankton diversity, in terms of traits and life history

strategies, mediates some of the most important ecological

processes, from local to planetary scales, including the

biological carbon pump (Basu and Mackey, 2018), element

cycling and food web dynamics (Sailley et al., 2015), energy

transfer to higher trophic levels (Havens, 1998; Sommer et al.,

2018) and system productivity (Hammer and Pitchford, 2005).

However, we still do not fully understand how different

dimensions of plankton biodiversity impact ecological

functions and services at various spatial and temporal scales.

These shortcomings limit our ability to project the magnitude or

even direction of their change under future scenarios.

Various mathematical and statistical tools, generically

termed “models”, are used to capture different dimensions of

plankton diversity at various scales (e.g., Banas, 2011; D’Alelio

et al., 2016; Righetti et al., 2019; Henson et al., 2021) and include

particular effects of biodiversity in their projections. The specific

underlying assumptions, strengths, and weaknesses of each

approach may affect our interpretation of how plankton

biodiversity impacts ecosystem functions. Furthermore, the

necessary quantity, quality, and type of data required to

validate each model differ, and in many cases observations are

insufficient or not accessible for model validation (Grigoratou

et al., 2022). Importantly, the diversity of modelling approaches

also hinders the establishment of a dialogue and the transfer of

information between data providers and users.

To address these issues, we provide a concise comparative

assessment of common modelling approaches capturing

plankton biodiversity to inform future choices of modelling

methods and interpretation of results. We present our

perspectives on the main strengths and limitations of these

approaches, as well as their societal applications and data

needs (Everett et al., 2017; Bardon et al., 2021).

Common modelling approaches to
capture plankton biodiversity

Scientists from different fields of study have developed a

wide variety of modelling approaches employed to study

plankton biodiversity patterns, with different purposes, in

some cases not even focused specifically on biodiversity. We

aim to point out the general characteristics and examples of six

commonly used approaches, which we categorize as: Statistical

(STM), Ecological Network Analysis (ENA), Individual-Based

(IBM), Plankton Functional Type (PFT), Acclimation (ACC)

and Adaptive Trait-based (ATM) models. These approaches

cover the common dimensions of biodiversity, including

variability of genotypes, phenotypes, and the composition of

communities and ecosystems (vertical axis on Figure 1). We

further categorise these six modelling approaches along a

“statistical vs. mechanistic” axis (horizontal axis on Figure 1),

to better distinguish those models that require explicit

descriptions of ecological or biological processes (mechanistic)

from those methods that describe mainly empirical relationships

based on field, satellite and laboratory observations (statistical).

Statistical models (STM) – interpreting
natural diversity

These models describe observed patterns of plankton

diversity using a myriad of statistical and machine learning

methods. For the most common proxy of taxonomic

biodiversity, species richness, various statistical and machine

learning methods (Melo-Merino et al., 2020) can be used to

develop species distribution models (SDMs) based on

occurrence observations e.g. from open databases (GBIF1,

OBIS2). Similarly, DNA/RNA sequencing data can be used to

characterize diversity patterns of particular groups (e.g. viruses,

bacteria, and diazotrophs). The recent availability and lower cost

of these data have provided a global scale perspective on the

diversity patterns of marine phytoplankton (Righetti et al.,

2019), zooplankton (Brun et al., 2016), and of various

planktonic groups of organisms (Ibarbalz et al., 2019).

However, statistical approaches such as SDMs still face

challenges associated with their static representation of

dynamic marine ecosystems, where organisms disperse widely

(Melo-Merino et al., 2020). Furthermore, the limited and biased

distribution of observations limits our ability to untangle the

temporal and spatial scale-dependance of species diversity

(McGill et al., 2015). These methods are potentially useful to

1Global Biodiversity Information Facility https://www.gbif.org/

2Ocean Biodiversity Information System https://obis.org/
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describe large-scale patterns with an ever-increasing set of

observations, however, it remains difficult to unravel the

mechanisms underlying diversity patterns and their links to

ecosystem functions and services.

Ecological network analysis (ENA) – tools
for ecosystem management

Models of static ecological networks provide a discrete

representation of ecosystems by depicting energy flows from

prey/resources to predators/consumers, assuming that all nodes

are at steady state, i.e. equal net energy flows into and out of each

trophic group. These networks are often built starting from

biomass and energy budgets for each trophic group, based on

metabolic parameters such as consumption/biomass and

production/biomass ratios. Various studies apply ENA to

model planktonic food web functioning. They employ

information theory indices to assess ecosystem stability (Scotti

et al., 2022), quantify carbon reuse through cycling analysis

(Tecchio et al., 2016), and rely on input-output analysis to

estimate transfer efficiency along a chain of discrete trophic

levels (Saint-Béat et al., 2020). For example, D’Alelio et al. (2016)

studied the structure of energy circulation and found little

difference in trophic efficiency between phytoplankton bloom

and non-bloom periods. ENA indices can also detect the impacts

of anthropogenic stressors on planktonic food webs, and were

used to show that eutrophication disrupts the prevalence of

pathways for energy transfer to fish (Meddeb et al., 2018).

Limitations of this approach include the strong assumption

that each node remains at a steady state, and the amount of

data required to validate models including many different

trophic levels.

Individual-based models (IBM) – close to
real life interactions and evolution

Individual-based models (IBMs, also called agent-based

models) are iterative algorithms that apply a set of rules to,

e.g., individuals of a population, thereby simulating life cycles,

from birth to death (DeAngelis and Mooij, 2005; Grimm et al.,

2005; Hellweger and Bucci, 2009). IBMs allow ecosystem

properties to emerge from traits and interactions of

individuals, including randomness through the process of

replication, where offspring inherit traits from their parent(s),

with mutation between each generation (Melián et al., 2011).

Furthermore, events like random death or encounter may be

modeled, which allows studying the importance of such discrete

events in population dynamics (Picq et al., 2019). IBMs are used

to investigate the effects of molecular and physiological processes

on global plankton biogeography (Hellweger et al., 2014) and

global N:P ratios (Toseland et al., 2013). In combination with

individual-level observations, these models hold great potential

to advance understanding of how individual-level processes

impact multiple levels of ecological organization across spatial

scales (Kreft et al., 2013; Hellweger et al., 2016). The general lack

of any analytical treatment limits the derivation of insights for

correlative analysis, but see Black and McKane (2012). The most

important limitation for IBMs is likely their massive

computational requirements for implementing simulations and

analyzing the output.

Plankton functional type models (PFT)–
modularity and function

Plankton functional type (PFT) models group organisms

based on the similarity of their ecological or biogeochemical

FIGURE 1

Six modelling approaches commonly used to capture various dimensions of plankton biodiversity. We further organize the modelling

approaches along an axis spanning from those models that require explicit descriptions of ecological or biological processes (mechanistic) to

those methods that do not (statistical).
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functionality. PFT models originated from the first, simple

p lankton communi ty mode ls reso lv ing nutr i ents ,

phytoplankton, zooplankton and detritus (NPZD), and later the

microbial loop (e.g. Fasham et al., 1990). As traditionally PFT

models have been used to study the biogeochemical function of

plankton, they have been criticized for representing poorly the

eco-physiological differences between functional types (Anderson,

2005), and have recently been extended to include such detail by

describing key traits and trade-offs (Follows et al., 2007; Follows

and Dutkiewicz, 2011). PFT models are applied for time scales

from days to millenia, and commonly used in regional, basin-scale

and global applications for understanding and assessing the

ecosystem response to environmental conditions, such as

nutrient loading rates (Lancelot et al., 2007), acidification

(Artioli et al., 2012), intensity of fishing efforts (Petrik et al.,

2019), and climate change (Kwiatkowski et al., 2019). However,

diversity is typically limited to the number of functional groups

modelled, and is typically resolved in detail only for selected

trophic levels, at substantial computational cost. This makes it

challenging to analyse and disentangle diversity effects from other

spatio-temporal dynamics. Furthermore, PFT models that

describe trait-spaces typically assume fixed (non-adaptable) trait

values along multiple trait dimensions, while resolving many

fewer ecotypes than are observed in nature. This limits their

ability to capture the adaptive capacity of ecosystems in response

to environmental changes (Ward et al., 2019).

Acclimation models (ACC) – from
physiology to community dynamics

Acclimation is the ability of organisms to adjust their

physiology and behavior (phenotypes or traits that are not

inherited) to enhance their fitness in a changing environment

(Laws and Bannister, 1980; Smith et al., 2011). Although many

models ignore this important ability, plankton acclimation

models exist (Pahlow et al., 2008; Bonachela et al., 2013;

Pahlow and Oschlies, 2013; Wirtz and Kerimoglu, 2016). It is

challenging to disentangle the relative contributions of

acclimation and evolutionary adaptation to overall ecosystem

response, because in the short term they may have either similar

or very different tendencies (Moreno and Martiny, 2018), which

in the long term are inter-dependent (Edelaar and Bolnick,

2019). Representing physiological flexibilities as an acclimative

response is an effective and efficient way of modelling certain

effects of diversity, which avoids the heavy computational

burden of representing biodiversity explicitly, e.g., by using

multiple PFTs (see above). This approach has been used to

study how physiological flexibilities impact the global and

regional biogeography of elemental ratios and primary

production (Pahlow et al., 2020), energy transfer efficiency to

higher trophic levels (Chakraborty et al., 2020), response to

eutrophication (Kerimoglu et al., 2018) and climate change

(Kwiatkowski et al., 2018), and formation of deep chlorophyll

maxima (Masuda et al., 2021). Acclimation models are often not

standalone, and one of their strengths is that they are readily

incorporated into a variety of models, such as PFTs, IBMs, and

ATMs (see below), to represent plankton diversity (Ross et al.,

2011; Smith et al., 2016; Chen et al., 2019; Cadier et al., 2020).

Arguably the greatest limitation of ACCs is that optimality

solutions can become quite intricate and, because of inter-

dependencies between various cellular functions, any change

in a model formulation may require the re-derivation of

existing solutions.

Adaptive trait-based models (ATM) –
describing trait dynamics of communities
across ecological scales

Adaptive trait-based approaches focus on the dynamics of

functional traits as key outputs, rather than inputs to models

(Klausmeier et al., 2020), and they often overlap with more

widely used modelling approaches such as PFTs and ACCs.

ATMs commonly represent traits in two contrasting ways: as

either a full distribution or an aggregate approximation via the

moment-closure method (Wirtz and Eckhardt, 1996; Norberg

et al., 2001; Merico et al., 2009). In the full distribution approach

traits are “free” to evolve in response to the current selection

pressure (Bruggeman and Kooijman, 2007; Banas, 2011; Gaedke

and Klauschies, 2017). This approach can be computationally

demanding for large-scale applications, which can hinder

mechanistic understanding of biomass-trait feedbacks. In

contrast, the aggregate approach, typically applied to

communities, must assume a specific shape for the trait

distribution, which makes it computationally efficient and

allows direct insights into the mechanisms underlying changes

in aggregate properties, namely total biomass, mean trait, and

trait variance (Chen and Smith, 2018; Klauschies et al., 2018).

The concise nature of the aggregate approach makes it useful for

both applied (e.g. Terseleer et al., 2014; Acevedo-Trejos et al.,

2015) and fundamental (e.g. Coutinho et al., 2016; Guill et al.,

2021) research questions related to plankton diversity, but this

comes at the cost of limited ability to accurately resolve the

fitness landscape and inability to capture certain observed

diversity distributions.

Discussion

The modelling approaches described above have both shared

and contrasting characteristics, which allow them to address

specific societal applications (see section 3.2 below). However,

they all share a common need for improved data inputs (see

Acevedo-Trejos et al. 10.3389/fmars.2022.975414

Frontiers in Marine Science frontiersin.org04



section 3.3 below). We illustrate these differences and similarities

with examples from the literature (Figure 2) and elaborate in the

sections below.

Strengths and limitations

Strengths of these modelling approaches are that they (1)

facilitate direct links and comparisons to observed diversity patterns

(STMs, IBMs, ATMs), (2) have applications to societal benefits

(STMs, ENAs, PFTs), (3) can capture multilevel ecological

complexity (IBMs and ACCs), and (4) have computational

efficiency and analytical accessibility (ACCs and ATMs). Some of

their respective disadvantages are: (1) heavy computational

requirements that limit applications (mainly IBMs, but also PFTs),

(2) static representation of plankton dynamics (STMs, ENAs), and

(3) lack of ecological or biological complexity (ENAs, PFTs, ATMs,

ACCs). These strengths and limitations demonstrate that each of the

above approaches are particularly suited to specific applications, with

no single approach capturing all aspects of plankton diversity.

Therefore, different approaches may be needed to capture

biodiversity within different trophic levels or functional groups.

Societal applications

Some modelling approaches, such as ENA and PFTs, can

inform managers and policy-makers about the status of

ecosystem integrity and its deterioration, for example, due to

anthropogenic stressors (de la Vega et al., 2018; Fath et al., 2019;

Nogues et al., 2021). Trophic networks studied with ENA often

include all ecosystem components, making them suitable to

assess the balance between trophic guilds as requested by EU

legislation (i.e. see MSFD descriptor D4C23). Moreover, ENA

indices are among the food web indicators proposed in the

framework of OSPAR4 to capture the whole-system properties of

marine food webs (Niquil et al., 2014). Nevertheless, defining the

reference levels or thresholds to quantify deviations from the

Good Environmental Status (GES) remains challenging, as

ecosystems attain different stable configurations over time

FIGURE 2

Key characteristics of six modelling approaches commonly used to capture various dimensions of plankton diversity. The inset of each model

description depicts an idealized model output and where the term "diversity" represents a specific measure of diversity for each dimension, i.e.

Genetical, Organismal, Functional, Taxonomical, or Ecological. A better overview of model outputs is available through the examples mentioned

for each method. In addition, we summarized main data requirements, outputs and common societal applications for each approach. Notice

that some entries can both be data needs and model outputs. The latter is because variables in a modelling approach can be used to

parametrize and/or validate a model but can also be a variable computed or predicted by the model. Code numbers: 1) Kerimoglu et al. (2018)

(ACC), 2) Lancelot et al. (2007) (PFT), 3) Toseland et al. (2013) (IBM), 4) Kwiatkowski et al. (2018) (PFT), 5) Kwiatkowski et al. (2019) (PFT), 6)

Henson et al. (2021) (PFT), 7) de la Vega et al. (2018) (ENA), 8) Meddeb et al. (2018) (ENA), 9) Saint-Béat et al. (2020) (ENA).

3https://mcc.jrc.ec.europa.eu/main/index.py

4The Convention for the Protection of the Marine Environment of the

North-East Atlantic - www.ospar.org
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(Tomczak et al., 2021). PFTs are used as the biogeochemical

cores of Earth System Models (ESMs), thus they play a key role

in future climate simulations. PFTs are also used to model

Harmful Algal Blooms (HABs) and as part of larger models

for predicting the effects of climate and fishing yield on key

populations, which in turn inform stock assessments and policy

decisions. Both ESM and fisheries models typically resolve only

simplistic abstractions of plankton diversity (Kwiatkowski et al.,

2019; Petrik et al., 2020), which is insufficient to capture

functional diversity. This has raised concerns about the ability

of ESMs and fisheries models to project future responses,

especially in terms of community resilience and energy fluxes

to higher trophic levels (Heneghan et al., 2016; Tittensor

et al., 2021).

Unmet needs for data and collaboration

There is a growing need and recurrent call to contrast model

estimates and predictions with empirical observations (Kremer

et al., 2017). However, relevant traits across trophic levels remain

scarcely measured, rarely consistently reported (different units,

lack of adequate metadata including details on data quality and

methods) and rarely shared in public data repositories (if so,

typically with poor data latency). With only 7% of the ocean so

far actively covered by long-term biological observations

(Satterthwaite et al., 2021), current access to even the most

basic biogeographic data on plankton biomass and abundance

remains very limited (and virtually non-existent for microbes/

protists) and often hampered by its spread over various

platforms and institutions. This is despite the recognition of

phytoplankton, zooplankton and microbial biomass and

abundance as Essential Ocean Variables (EOV), Essential

Biodiversity Variables (EBV) (Miloslavich et al., 2018) and

even Essential Climate Variables (GCOS, 2021). Development

and validation of all presented modelling approaches would

benefit in particular from data on stoichiometric composition

(C, N, P, Chl-a), traits (e.g. cell/body size and shape) and

biomass measured across a full spectrum of environmental

conditions (temperature, light, nutrients), with photosynthetic

rates, nutrient uptake and respiration rates also critically needed.

In addition, comparisons of modelling approaches with

molecular data remain scarce, despite the recent availability of

a considerable amount of data, which hold great potential as

shown with individual-based comparisons (Hellweger, 2020).

Obtaining quantitative individual-level data is crucial, yet

remains a particular challenge because widely available genetic

data cannot be converted accurately into biomass or cell

abundance (Kelly et al., 2019; Piwosz et al., 2020; Milivojević

et al., 2021).

We call for free, open access to plankton EOV and EBV data,

and their enhanced and sustained observations, which would

enable further integration of field observations, remote sensing

products, and experimental studies with modelling approaches.

Therefore, we advocate to follow the FAIR principles, i.e.

Findability, Accessibility, Interoperability and Reusability

(Wilkinson et al., 2016) for the sustainable management of

plankton data. Adherence to these principles would ensure

exploitation of the potential that the various approaches hold

and foster building a new generation of models and decision-

support tools for effective management of ecosystem services

linked to plankton diversity.

More meaningful collaborations are also needed between the

scientists who plan and conduct laboratory experiments, oceanic

observations, and modelling studies. Proposals are rarely

planned with a holistic view for combining experiments,

observations and modelling. Hence, the scientists who develop

and apply models are often not aware of the quantity and quality

of available data relevant to their applications, while the

scientists who plan and conduct laboratory experiments and

oceanic observations are often not aware of the limitations of

relevant modelling approaches and their results (e.g., Everett

et al., 2017). The comparative assessment provided here aims to

raise awareness and stimulate discussions in the planning phase

of collaborative studies seeking to combine observations and

modelling, which is the best and perhaps only hope for

understanding any complex system (Bar-Yam, 2016).

Challenges and future directions

Approaches differ in their diversity-sustaining mechanisms,

which relate to the positive effect of species diversity on

productivity (Loreau, 2004). However, a higher diversity of

coexisting species does not necessarily imply higher

productivity. For example, although species can coexist via the

competition-colonisation trade-off (i.e., species that are better at

exploring unutilized spaces have poorer competitive

capabilities), this coexistence does not lead to transgressive

overyielding (Loreau, 2004). This may be particularly relevant

in spatially explicit ocean models, where mixing can sustain

plankton diversity (Chen et al., 2019; Dutkiewicz et al., 2020;

Masuda et al., 2021). Another potentially relevant determinant

of individual-level fitness (Edelaar and Bolnick, 2019), and

therefore coexistence and diversity maintenance, is acclimative

flexibility, which is being actively studied within the framework

of Modern Coexistence Theory (Chesson, 2000; Barabás et al.,

2018). One promising target for further research would be to

examine how acclimation affects equalizing and stabilizing

effects (Adler et al., 2007; Lankau, 2011). Since rapid evolution

may promote species coexistence in diverse predator and prey

communities by altering interspecific niche and fitness

differences (Klauschies et al., 2016), we may also expect a

positive impact of acclimation on species coexistence.

For understanding the response of plankton biodiversity in

particular, and aquatic ecosystems more broadly, to global and
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other environmental changes, it is essential to develop better

representations of the adaptive capacity of life in large scale

simulations, e.g., in ESMs used to model climate change. Hence,

there is a pressing need to validate ACC and ATM approaches in

such spatially explicit applications. These approaches could

potentially capture important feedback responses between

ecology, evolution, and environmental conditions in ESMs

(Bonan and Doney, 2018; Ward et al., 2019).
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