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Abstract 
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the 

air − oxygen and nitrogen. They are produced in biological systems to mediate fundamental 
aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage 
to biological molecules. Small molecule probes can transmute the specific nature of each reactive 
oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) 
to offer sensitive and selective imaging in living cells and whole animals. This Review focuses 
specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric 
oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background 
information on general photophysical phenomena, common probe designs, mechanisms, and 
imaging modalities will be provided, and then probes for each analyte will be thoroughly 
evaluated. A discussion of the successes of the field will be presented, followed by 
recommendations for improvement and a future outlook of emerging trends. Our objectives are 
to provide an informative, useful, and thorough field guide to small molecule probes for reactive 
oxygen and nitrogen species as well as important context to compare the ecosystem of 
chemistries and molecular scaffolds that has manifested within the field.  
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1. Introduction 
Reactive oxygen and nitrogen species are a family of small reactive molecules that typically 
originate from oxygen (O2) and/or nitric oxide (NO). While O2 can be considered an ROS in its 
own right, it also serves as the originator of a host of other reactive derivatives, including 

superoxide (O2
−), hydrogen peroxide (H2O2), alkyl peroxides (ROOH), hydroxyl radical (HO•), 

hypochlorite (HOCl), hypobromite (HOBr), singlet oxygen (1O2), ozone (O3), high oxidation state 

metal oxo species, and carbonate radical (CO3
−•).1−4 Similarly, nitric oxide (NO) is a ubiquitous 

signaling molecule, but its reactive radical nature also leads to the generation of damaging 
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reactive nitrogen species (RNS).5 Common RNS include peroxynitrite (ONOO−), nitrogen dioxide 

radical (NO2), nitrite (NO2
−), nitrate (NO3

−), nitroxyl (HNO), S-nitroso compounds, N-nitroso 
compounds, and others.6 In addition to these species, there also are a number of reactive sulfur 
species, including hydrogen sulfide, persulfides, polysulfides, S-nitroso compounds, sulfenic 
acids, sulfinic acids, HSNO, and others,7,8 as well as an emerging area of reactive carbon species 
that includes carbon monoxide, formaldehyde, formic acid, and others.9  
 
Over the past several decades, increasing evidence has revealed that living systems can harness 
reactive species for diverse roles in biology, ranging from acting as signaling molecules to 

mediating pathologies associated with disease.1−3,6 For instance, oxygen is the terminal electron 
acceptor of in aerobic organisms.10 However, this reactive molecule can serve as the starting 
material for the library of ROS described above. The generation and decomposition of ROS must 
be carefully regulated to avoid damaging proteins, nucleic acids, lipids, and other cellular 
components.11. Owing to their reactivity, reactive species typically control signaling through direct 
non-enzymatic reaction with protein side chains.12 Because they are small and diffusible, reactive 
species are capable of traversing the crowded intracellular and extracellular environment. Their 
limited lifetimes dictate how far a particular ROS/RNS can diffuse before reacting, enforcing a 
restricted signaling range for each reactive oxygen or nitrogen species. As our understanding of 
reactive oxygen and nitrogen species has increased, it has become clear that each species has 
its own specific chemistry and biology, and the specific roles of each must be independently 
defined in biological systems.13 
 
The unique signaling properties of reactive oxygen and nitrogen species are also what make them 
difficult to study with specificity and sensitivity in biological systems.14 Because they are reactive, 
they are transient and require immediate capture as they are produced or one must rely on indirect 
measurements of either biologically modified substrates or their penultimate decomposition 
products. The latter method is complicated by multiple paths to generating the same 
decomposition products and the loss of significant spatial and temporal resolution in the 
measurement. Reactive oxygen and nitrogen species also tend to have very low steady state 
concentrations (~nM), although higher and lower concentrations can occur under specific 
conditions. Nevertheless, detection methods require good analytical sensitivity.12 Finally, 
selectively detecting a single reactive oxygen or nitrogen species is challenging because of similar 
reactivities and properties, so clever and carefully designed strategies must be developed. A 
recent panel has provided important guidelines and best-practices for measuring reactive oxygen 
species in biological systems.14 
 
Luminescent probes are small molecules, proteins, or nanostructures that display a modulation 
in photon emission upon interaction with an analyte.15 Early work in this area was pioneered by 
Roger Tsien with his development of small molecule fluorescent calcium probes and genetically 
engineered fluorescence proteins.16,17 Luminescent probes are attractive because they can be 
designed to have a very selective and sensitive optical response compatible with live cell 
microscopy and whole animal imaging.15,18,19 For metal ions, an approach where the analyte 
reversibly binds to the probe has been a preferred strategy, allowing for quantification using 
ratiometric imaging.20,21 Although some binding-based strategies have been adopted for 
developing luminescence probes for reactive oxygen and nitrogen species, reaction-based or 
activity-based strategies have dominated.15,19,22 These approaches rely on a chemical reaction 
with the reactive oxygen or nitrogen species and the probe that alters the luminescence properties 
when converting the probe from its starting form to its final form. This framework was adopted in 
early redox probes where a reduced fluorophore could be oxidized by reactive oxygen species to 
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provide a fluorescence turn-on response, and tuning reactions to be ever more selective and 

sensitive is the predominant strategy discussed in the context of this review.23−25 
 

This review article aims to provide a thorough description of the field of luminescent probes for 

reactive oxygen and nitrogen species. While many reviews have been written in this area,19,26−31 
we aim to provide the reader with an unprecedentedly comprehensive evaluation of small 
molecule probes for reactive oxygen and nitrogen species as well as ample background on 
photophysical properties and analytical mechanisms/modalities to provide an invaluable 
reference for established practitioners and entrants into the field. We will begin with an overview 
of the photophysical properties and background information on the modalities and sensing 
strategies often used in the design of small molecule probes. This will be followed by a thorough 
summary of luminescent probes for reactive oxygen and nitrogen species organized by analyte 
and sensing trigger, including a brief biological background and survey of alternative detection 

methods for each analyte. The emerging field of photoacoustic imaging will also be included;32−35 
although not strictly a luminescence mode of detection, photoacoustic techniques are often 
coupled with fluorescence imaging and comprise an important class of small molecule imaging 
probes. The field is vast, so the scope of the review article will be limited to reactive oxygen and 
nitrogen analytes that are generally accepted to have a physiological role. This will include 
superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite. There are many 

luminescence probe designs for nitroxyl,36−43 singlet oxygen, 44−47 triplet oxygen and hypoxia,48−52 

hydroxyl radical,53−55 nitrogen dioxide radical,56,57 and others, but unfortunately these will not be 
able to be covered in detail. We also will not discuss the literature surrounding luminescence 

probes for reactive sulfur species58−64 or reactive carbon species65,66 but note that there are many 
other review articles engulfing targeted aspects of reactive sulfur, oxygen, and nitrogen species 

are available.19,22,27−68 Additionally, we will limit our discussion to small molecule designs and will 
not comprehensively cover protein-based designs, nanostructures, or other non-small molecule 

approaches.69−71 

 
We anticipate this review will provide a valuable reference to explore the diverse ecosystem of 
small molecule probes for reactive oxygen and nitrogen species. Comprehensive tables of probes 
are provided and organized according to analyte within the manuscript. These contain key 
information including absorption and emission wavelengths, applications, references, and other 
important properties. We note that we have adhered to the naming of probes that were used in 
each reference, so there are multiple entries with names like “Probe 1” or “Compound 1”. We 
strongly advise researchers to give probes unique names as it becomes quite confusing when 
comparing probes from different studies if they are simply given a generic label (e.g. 1 or Probe). 
Nonetheless, the tables (sorted by analyte and year) provide key information including analyte, 
trigger, wavelengths, and references that should make each probe easily identifiable. An example 
figure for each major trigger is provided. Red color highlights the parts of each molecule that react 
with the analyte and what functional groups are formed in each product. We also note that the 
reported excitation and emission wavelengths are reported as either the absorbance / emission 
maxima or as the wavelengths used in the imaging experiments to best match how they are 
reported in each reviewed manuscript. In general, this review article focuses on reactivity and 
sensing strategies and tries to bring a cohesive understanding of the different approaches. Finally, 
we will conclude with our impressions of current trends in the field, unsolved challenges, and a 
future outlook. 

 

2. Photophysical mechanisms 
2.1 Jablonski diagram 
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The Jablonksi diagram72−74 is used to understand photophysical processes and will be the 
framework with which we describe the fundamental mechanisms of operation of small molecule 
luminescent probes for reactive oxygen and nitrogen species. Typically, the Jablonski diagram 
will represent the S0, S1, and T1 states as Morse potentials with vibrational states drawn in for 
each electronic state. The energy surface of a molecule is more complex than a simple Morse 
potential for a single bond, but this representation provides an easy-to-follow diagram of how light 
interacts with matter (Figure 1). 
 

 
Figure 1. Jablonski diagram showing common photophysical processes. a. Absorption, b. Vibrational Relaxation, c. 
Internal Conversion, d. Fluorescence, e. Intersystem Crossing, f. Phosphorescence. 

 
2.1.1 Absorption 
Absorption is the first step for most luminescence probes, with the notable exception of 
chemiluminescence and bioluminescence. According to the Stark-Einstein law, if the energy of 
light exactly matches the energy gap between two energy levels of a molecule, the molecule will 
absorb the energy of the photon by exciting an electron from the lower energy state to the higher 
energy state. In most cases, photophysical and photochemical processes occur from the first 
excited electronic state (either S1 or T1). Excitation to higher electronic excited states (S2, S3, etc.) 
is possible, but relaxation to the first excited state S1 is very fast, a phenomenon generally referred 

to as Kasha’s rule. The rate of absorption is very fast (~1014 – 1016 s−1), and specifically faster 
than nuclear motions and most other photophysical processes. Empirically, absorption is 
governed by Beer’s law (Equation 1), which states that the optical density (OD), defined as the 
logarithm of the ratio of the light intensity that enters the sample and the light intensity that exits 

the sample is equal to the extinction coefficient, , a constant for a given molecule at a given 
wavelength, the path length, b, or distance of the solution that the light travels through, and the 
concentration of the sample c: 
 

OD = log[I0/I] = A = bc         (1) 
  

Electronic transitions can be described by the lower energy singly occupied orbital, X, the higher 
energy singly occupied orbital, Y, and whether the molecule is in a singlet state (electrons have 
opposite spins) or a triplet excited state (electrons have the same spin), using a super-script, Z. 

The formal notation is Z(X,Y). For many fluorescent probes the initial absorption provides a 1(n,*) 
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or 1(,*) excited state resulting from excitation of an electron from a non-bonding orbital (lone 

pair) or  orbital to the * antibonding orbital. 
 
2.1.2 Vibrational relaxation and internal conversion 
While absorption usually (but not always) occurs from the ground vibrational state of the ground 
electronic state, it often excites the electron to a range of vibrational states of the excited electronic 
state. In the cases in which excitation advances an electron into an excited vibrational state, there 
is a rapid, non-radiative process of vibrational relaxation down to the ground vibrational state of 

the excited electronic excited state. This process usually occurs with a rate of 1011 – 1012 s−1, a 
timescale that is slower than absorption, but still faster than most other photophysical processes. 
From this ground vibrational state of the electronic excited state, relaxation back to the ground 
electronic state can occur with photon emission (radiative decay) or without (non-radiative decay) 
photon emission. In the case that return to the ground state occurs without photon emission, this 
process is called internal conversion, and the energy is released as heat, a process that is 
harnessed in the development of photoacoustic probes. Internal conversion can have many 
mechanisms, some of which are non-productive photochemical reactions. 
  
2.1.3 Fluorescence 
Fluorescence is the process of relaxation from the singlet excited state (S1) to the ground 
electronic state (S0) with the emission of a photon. This type of radiative decay typically occurs 

with rates from 105 – 108 s−1. The intensity of fluorescence emission is related to the absorption, 

A, of the sample and the quantum yield of fluorescence, fl. In general, quantum yield is the ratio 
of the number of molecules that do a certain photophysical or photochemical process divided by 
the total number of photons absorbed. Fluorescence spectra can be acquired either as an 
excitation spectrum or as an emission spectrum, with both being standard components for 
characterizing fluorescent probes. In an excitation spectrum, one wavelength of light is observed 
(with its bandwidth determined by the slit size), while the excitation wavelengths are scanned to 
provide a spectrum based on the excitation wavelength. In an emission spectrum, emission 
intensity at a single excitation wavelength is measured while scanning through emission 
wavelengths. In many cases, the excitation spectrum matches the absorption spectrum and is a 
mirror image of the emission spectrum, but there are exceptions. Because vibrational relaxation 
to the ground vibrational state of the excited electronic state is faster than fluorescence, emission 
spectra are often red shifted to lower energy wavelengths versus the excitation spectrum and this 
is called a Stokes shift. Large Stokes shifts are advantageous for fluorescence microscopy 
because a better separation between the excitation and emission wavelengths reduces 
background from overlap between the excitation and emission channels. 
 
2.1.4 Intersystem crossing and phosphorescence  
Intersystem crossing refers to the interconversion between two electronic states with different spin 
states. This is the process that converts an S1 singlet state into a T1 triple state. It is a “forbidden” 
process that has a relatively slow rate because the conversion from a singlet to a triplet requires 
a spin flip. In order to increase the rate of intersystem crossing, there must be a coupling between 
the change in the spin quantum number and the orbital quantum number, which is called spin-
orbit coupling. One common strategy to achieve spin-orbit coupling and high rates of intersystem 
crossing includes the heavy atom effect, where atoms in the 3rd or higher numbered rows on the 
periodic table are added to the molecule. Another strategy is to couple a change in spin with a 

change in orbital, converting 1(n,*) to 3(,*), for example. This is a common mechanism in 
carbonyl triplet sensitizers. Phosphorescence is the relaxation from T1 to S0 with the emission of 
a photon. Just like the S1 to T1 conversion, this is a “forbidden” and therefore slow process, with 

rates on the order 102 − 103 s−1 for relaxation from 3(n,*) state and 10−1 to 10 s−1 for relaxation 
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from 3(,*) states. Importantly, the T1 state can be quenched by molecular oxygen, which has a 
triplet ground state. For this reason, molecules that display phosphorescence can be used as 
luminescent probes for oxygen sensing.50,51,75 

 
2.2 Bimolecular/Intramolecular photophysical processes 
2.2.1 Photoinduced electron transfer (PeT)  

Photoinduced electron transfer (PeT or PET) 76−79 involves the transfer of an electron between an 
excited state and a ground state of neighboring molecular structures. In the context of luminescent 
probe design, the two structures are usually covalently tethered together, and the PeT process 
leads to quenching of fluorescence with the generation of a charge-separated radical anion and 
radical cation. Generally, there are two different modes of PeT that are used in probe design, one 
abbreviated a-PeT, which involves electron transfer from the ground state highest occupied 
molecular orbital (HOMO) to the lower energy singly occupied orbital of the excited state of the 
acceptor (Figure 2A), and d-PeT, which involves electron transfer from the higher energy singly 
occupied orbital of the excited state donor to the ground-state lowest unoccupied molecular orbital 
(LUMO) of the acceptor (Figure 2B). Generally, the probe design involves tethering a fluorophore 
to a functional group that will experience a shift in the energy levels of the localized HOMO and 
LUMO upon interacting with an analyte (Figure 2). For a turn-on probe, PeT quenching should be 
efficient before interacting with the analyte, but after reacting with the analyte, the energy levels 
are shifted such that PeT is no longer a competitive process with fluorescence. PeT quenching 
serves as a mechanism for metal cation probes based on binding in a way that reduces PeT 
quenching, often by binding to a lone pair on the chelating group and lowering the energy levels 
of the HOMO and LUMO of an aromatic amine to move it outside of the range for PeT 
quenching.20,21 Another strategy that is common for luminescence probes for reactive oxygen and 
nitrogen species involves a chemical transformation upon reacting with an analyte to alter the 
HOMO/LUMO levels and eliminate PeT.  

 
Figure 2. Photophysical mechanism of photoinduced electron transfer (PeT). (A) In a-PeT, the excited state 
fluorophore acts as an electron acceptor for a nearby donor. (B) In d-PeT, the excited state fluorophore acts as an 
electron donor for a nearby acceptor. 

 
2.2.2 Resonance energy transfer processes 
Energy transfer processes, particularly the Förster Resonance Energy Transfer (FRET) 
mechanism have been exceptionally useful in small molecule luminescence probe design by 
enabling modulation of emission/excitation wavelengths as a mechanism for analyte sensing, and 

to provide a ratiometric response.80−83 FRET involves non-radiative energy transfer from a donor 
group to an acceptor group based on dipolar interactions between fluorophores (Figure 3). 
Generally, efficient FRET depends on (1) the distance between the donor and acceptor (typically 
between 1 and 10 nm in small molecule intramolecular systems), (2) the overlap integral between 
the donor emission and acceptor excitation spectra, (3) the relative orientation of the two 
fluorophores to optimize dipole-dipole coupling. There are several ways that probes can be 
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designed using a FRET technique. One method is to have a chemical group that reacts with an 
analyte to make it a better or worse FRET acceptor, thereby changing the FRET efficiency in the 
presence of an analyte. A second method is to have a linker that cleaves the connection between 
a FRET donor and FRET acceptor, thereby turning off FRET. A third method is to have the distance 
change between the FRET donor and acceptor upon interacting with an analyte. One useful 
property of FRET-based probes is that emission can usually be observed from both the donor and 
acceptor and the ratio of these emission wavelengths will change after reaction with an analyte 
to provide a ratiometric response that can be useful for quantification. Förster Resonance Energy 
Transfer has also been used in the context of chemiluminescence and bioluminescence where 
the excited state is accessed during a chemical reaction. Although these are still Förster 
Resonance Energy Transfer processes, they are sometimes referred to as chemiluminescence 
resonance energy transfer (CRET) and bioluminescence resonance energy transfer (BRET). 
These strategies have been used to develop ratiometric chemiluminescence probes as well as 
dark photodynamic therapy agents via energy transfer to a triplet sensitizer to produce singlet 
oxygen without the need for an excitation source. 50,84,85 Other types of energy transfer include 
through-bond energy transfer (TBET), which has a reduced need for spectral overlap and 
radiative energy transfer, and has been used in some interesting cases of chemiluminescence.86  

 
Figure 3. Förster resonance energy transfer (FRET) occurs when an excited state donor non-radiatively relaxes to 
the ground state while a nearby acceptor with spectral overlap is non-abortively excited to the excited state. 

 
2.3 Intramolecular charge transfer 
Intramolecular or internal charge transfer (ICT) refers to the formation of a charge-transfer species 
following photon absorption, excitation from the ground state to the excited state, and electron 
transfer from a donor group to an acceptor group.87 This phenomenon is most commonly 
observed in “push-pull” conjugated systems where an electron donating group is linked to an 
electron withdrawing group by a series of conjugated atoms.88 Generally, molecules that undergo 
ICT will have different geometries in their ground and excited state and will display 
solvatochromatism due to the differences in polarity between the ground and the excited state. 
Because of the differences in the ground state and excited state geometries, a fluorophore will 
often undergo a bond rotation in the excited state giving rise to what has been called twisted-ICT. 
This is an important consideration in fluorophore design and a strategy of tethering rotatable 
bonds to make them rigid has been used to improve fluorophore properties.89,90 For probe design, 
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chemical reactions with analytes can change the probe’s structure from a structure that  does not 
undergo significant ICT to one that displays high ITC, often by converting a weakly donating donor 
group into a more strongly donating donor group. Many ICT probes display a change in emission 
wavelength after reacting with an analyte, making this a photophysical mechanism useful in the 
development of ratiometric probes. 
 
2.4 Excited state intramolecular proton transfer (ESIPT)  
Excited state intramolecular proton transfer (ESIPT)91 is a process by which a rapid proton transfer 
occurs in the excited state and has been used in the design of numerous luminescent probes. 
The process is thought to proceed via four states (Figure 4). Absorption of a photon occurs in the 
S0 state of an enol, which excites it to the S1 state. This S1 state is usually more acidic due to 
increased polarization of the excited state. The increased acidity combined with geometrical 

preorganization leads to a very fast rate of proton transfer (kESIPT ~ 1012 s−1) that can compete with 

the rate of fluorescence emission (kfluor ~ 109 s−1) and yield the ketone form in the excited S1 state. 
Emission from the ketone S1 state yields the ketone S0 state that can then tautomerize back to 
the ground state enol form. Molecules that undergo ESIPT processes usually have large Stokes 
shifts and probes can readily be designed to toggle between ESIPT “active” and ESIPT “inactive” 
forms that have a shift in the emission wavelength, making this photophysical process useful for 
developing ratiometric probes. Protic solvents can interfere with ESIPT through competitive 
hydrogen bonding, therefore a hydrophobic environment (either by using organic solvents or 
surfactants) is often needed. Common strategies to develop probes that use an ESIPT 
mechanism will include structures where cation binding interferes with the ESIPT process or using 
caged phenols that can be decaged by analytes including reactive oxygen, sulfur, and nitrogen 
species to “turn-on” ESIPT. 
 

 
Figure 4. Excited state intramolecular proton transfer (ESIPT) occurs when a proton transfer is rapid in the excited 
state leading to emission from a tautomeric species that re-isomerizes in the ground state. 

 
2.5 Aggregation-induced emission 
Aggregation-induced emission (AIE)92,93 is a phenomena that some molecules exhibit in which 
luminescence emission is quenched when the molecules are dispersed in solution, but become 
highly emissive when they form aggregates. Often, the mechanism of increased emission is due 
to the restriction of intramolecular motions, including bond rotations and vibrations, upon 
aggregating. Probe designs have been characterized into three types.94 Type 1 probes interact 
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with biomolecules through electrostatic forces, leading to aggregation. 95 For example, a positively 
charged probe can bind to the negative charges of a heparin macromolecule to induce 
aggregation and increase luminescence emission.96 Type 2 probes use targeted host-guest 
interactions to induce aggregation. Type 3 designs use a reaction-based trigger to induce 
aggregation and is the most amenable to developing luminescent probes for reactive oxygen and 
nitrogen species. 
 
2.6 Chemiluminescence 
Chemiluminescence is the emission of light from an excited state formed during a chemical 
reaction without the need for photon absorption.97 This usually occurs when S0 and S1 are close 
in energy, often near the transition state of an exothermic reaction. Crossover can occur either 
into the S1 or T1 state and light emission occurs via fluorescence or phosphorescence. 
Chemiluminescence techniques are advantageous because no external light source is needed. 
This dramatically reduces background by eliminating autofluorescence and attenuating light 
scattering, providing increases in sensitivity for diagnostic protocols, cellular assays, and whole 

animal imaging.12,68,98−100 A wide scope of chemiluminescent reactions have been used for 

developing optical analytical tools including luminol oxidation,101−103 peroxyoxalate 
chemiluminescence,104,105 luciferin analogues,106,107 ozone-based chemiluminescence,108 and 

triggered decomposition of 1,2-dioxetanes.12,68,98−100 In recent years, triggered decomposition of 
sterically stabilized 1,2-dioxetanes has been particularly fruitful by virtue of being able to switch 
on chemiluminescence through conversion of a phenyl ether into a phenolate that can undergo 
electron transfer to an appended 1,2-dioxetane in the first step of a chemically initiated electron 

exchange luminescence (CIEEL) mechanism.98−100 This enables the design of probes for a wide 
swath of analytes by using reactive triggers that release a phenolate.109 When the 
chemiluminescence reaction is mediated by an enzyme, this is referred to as bioluminescence,97 
and the caging of luciferins has become a versatile strategy to generate bioluminescence-based 
probes for reactive oxygen and nitrogen species.110 
 
3. Mechanisms and modalities 
3.1 Mechanisms 
3.1.1 Organelle-targeting 
While most probes can be used for single cell resolution when combined with luminescence 
microscopy techniques, the distinct chemical microenvironments of subcellular organelles enable 
specific targeting and subcellular resolution.111 Directing small molecule probes and other 
chemical tools to different organelles requires molecular designs that target a unique 
physiochemical or biochemical characteristic of the organelle. Over the past several decades, 
small and easily installed motifs have been identified that direct fluorophores (and other molecular 
cargo) to specific subcellular destinations, including mitochondria, endoplasmic reticulum (ER), 
lysosomes, Golgi, nucleus, and plasma membrane. Additionally, several strategies for genetic 
targeting have been developed. Here, we summarize the most used motifs and identify the 
precise molecular features that direct functionality to an organelle.  
 
Mitochondria targeting strategies  
The mitochondria generate adenosine triphosphate (ATP) via a proton motive force, in which 
protons are pumped against a concentration gradient from the matrix to the intermembrane 
space.112,113 As the protons flow back down the concentration gradient into the matrix, their 
movement drives ATP synthase activity. Molecular oxygen is reduced to H2O in this overall 
transformation, and because of the abundance of redox chemistry in the mitochondria, it is a 
major source of ROS/RNS. The actively maintained proton gradient causes the mitochondrial 

matrix to be slightly basic (pH 7.6−8.3) and cationic substrates will accumulate in the matrix. 
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However, to pass through the mitochondrial membrane, the compound must also have a lipophilic 
component. Thus, lipophilic cations are good choices to selectively drive the accumulation of a 
compound into the mitochondria. Several specific targeting motifs have been developed, including 
triphenyl phosphonium salts, pyridinium salts, and indolium groups.114 The installation of 
triphenylphosphonium salts is typically achieved by alkylating a substrate with 
triphenylphosphine, while pyridinium salts are typically synthesized by first installing the pyridine 
and then alkylating it. Notably, fluorescent rhodamine derivatives, which meet both the cationic 
and lipophilicity requirements, tend to accumulate in the mitochondria, making them a useful 
example of a fluorescent scaffold with specific subcellular localization. There are also 
mitochondria penetrating peptides consisting of arginine and/or lysine-rich motifs that can be 
appended to probes to endow them with positive charge for mitochondrial localization.114 
 
Lysosome targeting strategies 

The lysosome is an acidic vacuole (pH 4.5−5.0) that breaks down biological macromolecules 
(e.g., lipids, carbohydrates, proteins, and nucleic acids); repairs cell membranes; and protects 
against invading pathogens.115 Owing to its role in cellular defense, it is an important organelle to 
study in the context of ROS/RNS. Amines with pKa ~8 and other pH-activatable groups are 
common targeting groups because they become protonated and charged in the acidic lysosome, 
preventing their diffusion back into the cytosol.116 Common lysosome targeting functionality thus 
include morpholine, dimethylamino, and semithiocarbazides. These can be easily installed 
through simple alkylation reactions. 
 
Endoplasmic reticulum and Golgi apparatus targeting strategies 
The endoplasmic reticulum (ER) is a complex folded organelle studded with ribosomes and is 
important in protein synthesis.117 Closely associated with the ER is the Golgi apparatus, which 
further processes proteins, including posttranslational modifications and sorting them for 
distribution to different parts of the cell.118 Several chemical functional groups have been found to 
localize probes to the endoplasmic reticulum and Golgi apparatus including phenyl sulfonamides, 
ceramides, and sphingomyelins.119 Specific targeting groups for the ER include sulfonamides, 
especially p-toluenesulfonamide, as well as sulfonylurea-based drugs, such as glibenclamide. 
Installation of p-toluenesulfonamide is synthetically straightforward, as it can be linked to a 
chemical cargo via its sulfonamide nitrogen atom. A few small molecule targeting motifs for the 
Golgi apparatus exist. Cysteine-modified and sulfonamide fluorophores have been shown to 

localize to the Golgi.120−122 Moreover, ceramide-modified fluorophores are metabolically 
incorporated into the Golgi and can also be used to label this organelle.119 Some peptide 
sequences are also known to deliver molecular cargo to the endoplasmic reticulum and Golgi 
apparatus.123 Natural products like rapamycin and brefeldin A can also target the endoplasmic 
reticulum and Golgi apparatus, but since they have intrinsic biological activity, they are not favored 
as a method for targeting probes. DNA-based targeting has been exploited for multiple organelles 
including the trans-Golgi network.124 
 
Nucleus targeting strategies 
It is challenging to deliver molecular cargo to the nucleus because of the nuclear membrane is 
highly restrictive.111 Nevertheless, planar, cationic hydrophobic small molecule fluorophores can 
penetrate the nuclear membrane and bind to DNA by targeting the minor grooves of DNA or using 
DNA intercalators, effectively labeling the nucleus. For instance, DAPI and Hoechst stain bind to 
DNA in the nucleus. These compounds both have a planar, aromatic architecture with a slight 
curvature that fits within the minor groove of DNA. Conjugating these common nuclear stains to 
molecular cargo can be a successful strategy to drive nucleus-specific labeling or delivery of 
chemical probes. Nuclear localization peptide sequences can also be used to deliver cargo to the 
nucleus of cells. 
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Genetic targeting strategies 
A number of genetic techniques involving the use of self-labeling proteins (SLP) are now available 
where a small protein enzyme that catalyzes a self-labeling covalent bond formation with a distinct 
chemical handle can be genetically linked to a protein of interest.125 Synthesizing a probe that has 
this specific chemical handle can then be covalently linked to the protein, allowing versatile control 
of probe localization. Examples include the SNAP-tag,126 CLIP tag,127 and HaloTag.128 The SNAP-
tag uses the enzyme O6-alkylguanine-DNA alkyl transferase (hAGT), which is a human DNA 
repair protein that catalyzes the substitution of one of its cysteine residues with an alkyl group on 
an O6-benzylguanine derivative. The protein hAGT can be fused to a protein of interest, while the 
O6-benzylguanine can be appended to a small molecule tag to provide an effective and selective 
method to label proteins with a wide range of fluorophores and other types of small molecules.126 
An orthogonal self-labeling protein / synthetic handle pair was developed and called a CLIP-tag 
that uses another AGT self-labeling protein optimized to use O2-benzylcytosine as a substrate 
and can be used simultaneously with the SNAP-tag.127 The HaloTag is a haloalkane 
dehalogenase enzyme that catalyzes the self-labeling of a chloroalkane tag that can be appended 
to small molecules.128 Each of these have been shown to be versatile and have been applied for 
the detection of specific reactive oxygen and nitrogen species with organelle-level 

specificity.129−131 

 
Targeting strategies for other organelles 
Several other organelle structures have been targeted. The plasma membrane can be targeted 
by appending a hydrophobic membrane anchoring group such as long alkyl chains that insert and 
anchor small molecules into the hydrophobic membrane.132,133 Hepatocytes and the liver have 

been targeted by appending -galactose units that can carry a molecular cargo into hepatocytes 
via receptor mediated endocytosis.134 Microtubules have been targeted using docetaxel,135,136 and 

a range of chemical strategies have also been used to target lipid droplets,137−139 cell surface 

receptors,140,141 and amyloids/protein aggregates.142−146 

 
3.1.2 Dual-analyte probes 
Reactive oxygen and nitrogen species are often generated co-localized in time and space, making 
simultaneous measurements of multiple species challenging. Using multiple probes that are 
selective for different species is a potential solution that has been implemented,147 but non-
uniform uptake, localization, and retention can complicate interpretation of such experiments. For 
these reasons there has been significant effort aimed at developing dual (or more) analyte 
responsive probes.148,149 When a single molecular probe responds to two or more analytes to give 
one or more optical signals as a response, these can in essence serve as molecular logic gates, 
for example, an “AND” gate requires both analytes to react to give a signal, while an “OR” gate 
requires at least one of two analytes to be present. Many dual responsive probes have been 
developed for reactive nitrogen and oxygen species and other analytes. 
     
3.1.3 Quantification, reversible probes, analyte replacement 
Binding-based fluorescent probes can quantitatively image real-time fluxes of ions due to fast 
reversible binding of the analytes to the probe coupled with a ratiometric response.15,18,19 A prime 
example is using fluorescent calcium probes for imaging neuronal firing.150 Most reaction-based 
probes, however, typically cannot measure fluxes of analytes due to the irreversible nature of the 
reaction-based sensing strategy. There have been some efforts to address this by developing 
probes that have a reversible ratiometric response, with perhaps the most notable example being 

for the quantitative imaging of glutathione using a reversible 1,4-addition reaction.151−153 Other 
efforts have been aimed towards dual-analyte probes where one analyte provides an optical 
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response that is reversed by a second analyte. An example of this are sulfite/hydrogen peroxide 
probes that typically display a shift in emission wavelength upon conjugate addition with sulfite 

and recovery with hydrogen peroxide-mediated elimination of the sulfate group.154−156 
Chemiluminescence and bioluminescence detection methods are inherently reversible since 
photon flux ceases once the analyte has been consumed. Quantification of reactive oxygen and 
nitrogen species with a fast reversible ratiometric probe faces steep challenges by the low 
concentrations of these analytes that require significant time integration to build up an observable 
signal. Recently, a kinetics-based approach has been developed whereby the kinetics of a  
probe’s response is carefully measured and the knowledge of the rate constants is used to back-
calculate the concentration of the analyte to provide real-time quantification of reactive oxygen 
and nitrogen species and enzymes.42,49,157 Another challenge is that the analyte is usually 
consumed by the probe and in some cases this may perturb the inherent biology of the system. 
Analyte replacement strategies have been developed where the analyte is regenerated after 
reacting with the probe by various mechanisms (essentially making the probe response catalytic 
in the analyte).158,159 This can also amplify signal by enabling the analyte to turn-over the probe 
response. In general, precise quantification of reactive oxygen and nitrogen species remains an 
unsolved challenge. 
 
3.2 Cellular measurements and imaging 
3.2.1 Multiwell plate readers and flow cytometry 
Multiwell plate readers have reached an elevated degree of sophistication and are capable of 
high-throughput kinetics and endpoint reads using absorbance, fluorescence, luminescence, and 
other techniques. These simple fluorescence or luminescence measurements are often a 
workhorse for biological laboratories. Additionally, many modern plate readers are capable of 
high-throughput fluorescence microscopy in living cells. Flow cytometry and cell-sorting methods 
operate by sorting cells and acquiring single cell fluorescence measurements. It provides detailed 
cellularly resolved data that can provide important insight into heterogeneous cell populations. 
Much of probe development has focused on using the probes in conjunction with advanced 
imaging techniques, but validation in widely accessible multiwell plate readers and flow 
cytometers could go a long way to encourage adoption of probes amongst biological researchers. 
 
3.2.2 Single-photon microscopy 
Regardless of the sophistication of the optical setup and excitation source, the general principles 
of fluorescence microscopy remain the same.160 A sample is illuminated with an excitation 
wavelength to excite a fluorophore in the sample. This may be a fluorophore introduced into a 
fixed sample (e.g., fluorescent antibody), it may be an analyte-responsive fluorophore in a live 
sample (e.g., H2O2-responsive probe), or it may be a native fluorophore (e.g., flavin adenine 
dinucleotide). Upon relaxation and emission of a photon, the emitted photons are collected 
through appropriate optical filters into a camera to provide an image of the specimen. Several 
different flavors of fluorescence microscopy are commonly used in research laboratories, 
including epifluorescence microscopy, one-photon and two-photon confocal microscopy, laser 
sheet microscopy, and super-resolution microscopy. Below, we briefly describe the utility of each 
type of microscopy, balancing the information provided against logistical challenges of availability, 
simplicity, and cost. 
 
3.2.3 Epifluorescence microscopy  
Epifluorescence microscopy uses a wide-field excitation source, in which the entire sample is 
illuminated with a broad excitation light.161 Common sources of excitation include tungsten-
halogen, mercury and xenon arc, metal halide, and light emitting diodes (LEDs). The broad 
excitation light is passed through a filter cube to leave only the desired excitation wavelength. For 
instance, a filter with the designation 575/50 indicates that 575 nm is the central wavelength that 
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is allowed through with a spectral width of 50 nm. Thus, excitation light of 550−600 nm will pass 
through. The excitation wavelengths illuminate and excite the fluorophores in the sample, which 
emit fluorescence at a longer wavelength owing to the fluorophore Stokes shift. The emitted 
fluorescence is then collected by the objective lens and passed through an emission filter to 
remove any stray excitation light. The fluorescence is then typically directed to a camera detector 
to provide the fluorescence image. A major benefit of this type of microscopy is its relatively low-
cost compared to laser excitation systems. Several turn-key all-in-one systems are now available, 
making these a compelling option for workhorse tissue-culture facility analysis, though higher-
resolution single-cell imaging is possible with more advanced systems. Thick samples, such as 
tissue samples, are challenging to image with epifluorescence microscopy. This is because 
fluorophores from above and below the plane of the sample of interest will be stimulated, and the 
out-of-focus light will blur the image.  

 
3.2.4 Confocal fluorescence microscopy  
Confocal fluorescence microscopy is a technique that uses a focused diffraction-limited point 
source of light and carefully aligned pinholes to reject out-of-plane light, thereby enhancing 
resolution and enabling 3D reconstructions of thick samples.162 In single-photon confocal 
microscopy, the fluorophore is excited upon absorption of a single-photon, whereas two-photon 
excitation sources deliver two lower-energy photons in rapid succession to access the excited 
state. This technique is advantageous because it allows for deeper imaging of thick biological 
samples compared to conventional microscopy techniques. However, because the probability of 
two photons arriving at the same time and location is very low, this process only occurs within a 
small volume, which enables high-resolution imaging in three dimensions. Some drawbacks exist. 
For instance, a laser capable of delivering two longer wavelength photons in rapid succession is 
more expensive than single-photon excitation sources. Additionally, only a subset of fluorophores 
is suitable for two-photon microscopy, as they require a suitable two-photon cross-section—that 
is, the ability to absorb two photons simultaneously to access their excited state— which can limit 
the range of biological questions that can be addressed. Nevertheless, after the fluorophore is 
excited, it relaxes to its ground state with emission of a longer wavelength photon, which is 
detected by a detector, most commonly a photomultiplier tube (PMT).  
 
Several flavors of laser confocal microscopy exist. The most common is laser scanning confocal 
microscopy (LSCM). In LSCM, the sample is irradiated with a focused laser beam and scanned 
across the sample. A pinhole rejects out-of-focus light, and the emitted photons are detected at 
each point, which allows for a three-dimensional image of the sample to be constructed. Though 
LSCM is the most commonly used technique, the image acquisition can be slow, which subjects 
the sample to long periods of illumination, increasing the possibility of photodamage. An 
alternative to LSCM is spinning disc confocal microscopy. In spinning disc confocal microscopy, 
hundreds of pinholes decorate a disc, which rotates at high speeds. As the pinholes scan across 
the sample, the whole sample is imaged, significantly reducing image acquisition time, limiting 
photodamage, and enabling rapid and dynamic processes to be captured.  
 
3.2.5 Light sheet microscopy 
Light sheet microscopy is a relatively new technique that combines the benefits of both confocal 
and epifluorescence microscopy.163 A thin sheet of light is used to illuminate a single plane of the 
sample, while cameras collect tens to thousands of images each second. The low photobleaching 
and low phototoxicity enables long-term imaging of large biological specimens, making this an 
ideal technique for imaging embryo development, 3D cell culture samples, and organoids. This 
technique provides a high-resolution, three-dimensional image with minimal out-of-focus 
fluorescence and background noise and is ideal for thick samples but requires specialized 
equipment and has a correspondingly high entry cost.  
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3.2.6 Super resolution microscopy 
Stimulated emission depletion (STED) microscopy 
Stimulated emission depletion (STED) microscopy is a multi-wavelength optical technique to 

achieve super resolution images (60−80 nm).164 A focused laser beam excites fluorescent 
molecules in a small region of the sample. A second laser beam, which is shaped like a doughnut, 
irradiates the fluorophores with a wavelength in the emission spectrum. With a high enough 
intensity, this second laser source forces the excited fluorophores to relax with emission of a 
photon equal to that of the excitation source in a process called “stimulated emission” leaving only 
active fluorophores in the center of the doughnut. This effectively reduces the illumination region.  
By scanning the doughnut-shaped beam across the sample, high-resolution images can be 
obtained. There are now turnkey STED systems available, which makes this a powerful 
technique, even for novice users. 
 
Structured illumination microscopy (SIM)  
Upon recognizing that the diffraction limit holds only if certain assumptions are made, including 
that the sample is uniformly illuminated, Gustafsson showed that modulating the sample 
illumination improved lateral resolution beyond the classical diffraction limit.165 Calling the 
technique “structured illumination microscopy” (SIM), Gustafsson used a structured pattern from 
a coherent light to illuminate the sample. By analyzing the pattern of the fluorescence emission 
from multiple images of the sample, super-resolution images are obtained. Using this technique, 
a two-fold improvement in resolution can be obtained (~ 120 nm). Typically, samples that are 
appropriate for confocal microscopy are suitable for SIM, and the availability of turnkey systems, 
complete with reconstruction software, makes this one of the most accessible super-resolution 
imaging techniques. 
 
Single molecule localization microscopy (SMLM)  
Single molecule localization microscopy (SMLM) comprises a family of techniques that use 
computationally localized fluorescent molecules from diffraction-limited image sequences to 

generate super-resolution images.166−168 Two of the most often used methods are photoactivated 
localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), 
which uses the stochastic blinking behavior of individual fluorescent molecules to localize their 
positions with high precision. Both approaches require unique fluorophores that have both a ‘dark’ 
state (non-emissive) and ‘bright’ state (emissive). Photoactivatable fluorescent proteins, 
photoactivatable and spontaneous blinking small molecule fluorophores, and quantum dots, with 
intrinsic ‘blinking’ are often used.169 A large series of images are acquired, and because only a 
small subset of fluorophores are emissive at any given time, single emitters can be visualized. If 
the diffraction limited spot is coming from a single molecule, then the point-spread function of the 
light can be analyzed, and the fluorophore can be localized beyond the diffraction limit with 20 nm 
resolutions often achieved.  By analyzing the positions of many individual fluorophores over time, 
a high-resolution image can be reconstructed. Since its development in 2006, significant 
advances have occurred, enabling 3-dimensional imaging, live-cell imaging, and multi-color 
imaging.166,167 

 
3.2.7 Two-photon microscopy 
Two-photon microscopy relies on a two-photon absorption process where the chromophore 
absorbs two long wavelength photons instead of one higher energy (shorter wavelength) 
photon.170 For this process to be effective, the chromophore must have what is referred to as a 
“high two-photon cross section”, an indicator of its efficiency to undergo two-photon absorption. 
Many useful two-photon fluorophores are known and can be adapted to develop two-photon 
fluorescent probes for reactive oxygen and nitrogen species.171 Two-photon microscopy has many 
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benefits including less photodamage, deeper imaging depth for thick samples (e.g., brain slices), 
improved resolution because of low probability of two photons being successfully absorbed. It is 
particularly useful for imaging deeper into tissue and acquiring high resolution and 3D-images. 
One salient application is calcium imaging in behaving mice, a critical tool for understanding 
synaptic neuronal communication.150 Some of the challenges associated with two-photon 
microscopy include limited fluorophore selection and more complex (and expensive) 
instrumentation, including a pulsed laser to deliver two photons at a timescale appropriate for two-
photon absorption. 
 
3.2.8 Time-gated microscopy 
Time-gated microscopy is a fluorescence microscopy technique that uses time-resolved detection 
to separate fluorescence signals from background autofluorescence or scattered excitation 
light.172 This is achieved by delaying the detection of fluorescence emission until after the 
excitation light and any short-lived background fluorescence has decayed. Time-gated 
microscopy has several benefits, including improved contrast, improved resolution, and high 
versatility. The improved contrast and resolution results by removing autofluorescence and 
scattered excitation light, which can improve the signal-to-noise ratio and enable better 
visualization of the target fluorescence signal. By removing background fluorescence, time-gated 
microscopy can improve resolution by reducing the contribution of out-of-focus fluorescence and 
enhancing the localization of fluorescent structures. However, there are also some drawbacks to 
time-gated microscopy, including longer acquisition times, and the need for a long-lived emissive 
state, which typically requires emission from a lanthanide complex (e.g., Tb3+, Eu3+, or Yb3+).  
 
3.3 Whole animal imaging  
While whole animal preclinical and clinical imaging can be accomplished using computed 
tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET)/ 
single-photon emission computerized tomography (SPECT), and ultrasound, these techniques 
typically require specialized instrumentation and expertise that can be challenging to implement 

and reduce throughput for preclinical imaging experiments.173−177 Additionally, techniques to 
measure specific reactive oxygen and nitrogen species are rare using these types of imaging 
technologies. In comparison, optical methods offer the potential for low cost and high throughput 
molecular imaging, but deep tissue whole animal optical imaging must overcome challenges with 
tissue absorption, light scattering, and autofluorescence, as well as navigating tissue 
heterogeneity and non-linear relationships in signal intensity. This section will discuss three 
methods used to overcome these challenges: NIR fluorescence imaging, 
chemiluminescence/bioluminescence imaging, and photoacoustic imaging. 
  
3.3.1 Near-infrared fluorescence imaging 
A significant amount of effort has been made towards developing luminescent probes that have 
emission in the near-infrared (NIR) window with wavelengths between 650 nm and 1700 nm. 178,179 
This NIR window has been further categorized into the NIR I window (650 nm – 900 nm), NIR IIa 
(1300 nm – 1400 nm), and NIR IIb (1400 nm – 1700 nm). Having luminescence probes that emit 
in the NIR region of the electromagnetic spectrum is advantageous versus visible emission 
because there is reduced absorbance, fluorescence, and scattering by biological molecules in 
this region.178,179 This can be readily appreciated by observing the autofluorescence of a vivisected 
mouse using green, red, or NIR filters sets (Figure 5), where autofluorescence is highly attenuated 
and difficult to observe when using the NIR filter set, highlighting the dramatic advantages of 
decreased background autofluorescence in NIR fluorescence imaging. 
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Figure 5. Comparison of autofluorescence images using green, red, or NIR filter sets. This image was published in 
Current Opinion of Chemical Biology, Vol 7, John V. Frangioni, In vivo near-infrared fluorescence imaging, Page 627, 

Copyright Elsevier (2003).178  

  
An early NIR fluorophore that was developed was indocyanine green (ICG), which has been 
approved for clinical use.180 There is now a large set of fluorophores and luminophores available 

that have emission in the NIR I region,181−184 including cyanine dyes, silicon, phosphorous, and 
sulfur rhodamines, hemicyanine dyes, porphyrin complexes, iridium complexes, as well as 
fluorescent proteins, quantum dots, and other structures. There has also been significant work to 
develop chemiluminescent and bioluminescent molecules that emit in the NIR I wavelength, with 
many options existing.32,100 The NIR II region, also referred to as short-wave infrared (SWIR), 
spans from 1000 nm – 1700 nm and while there is slightly more absorption in this region, there is 
exponentially less light scattering and autofluorescence, leading to overall reduced interference 
from the optical properties of biological tissue.185,186 Fluorophores emitting in the NIR I region can 
be characterized using similar instrumentation as typical visible wavelength fluorophores, but 
specialized detectors (InGaAs, for example) are needed for characterizing emitters in the NIR IIa 

and NIR IIb region. These types of detectors and cameras usually need to be cooled to −190 °C 
using liquid nitrogen. There is now a growing family of fluorophores, carbon nanotubes, and 
quantum dots that emit in the NIR II region. Examples of chemiluminescent or bioluminescent 
emission in the NIR II region are rare, but some have been reported.187 

 
3.3.2 Chemiluminescence/Bioluminescence imaging  
As discussed in more detail above, chemiluminescence and bioluminescence arise from the 
emission of light during a chemical reaction/biological process, without the absorption of a 
photon.97 The major benefit for whole animal imaging is that the external light source can be 
completely removed which drastically reduces autofluorescence and light scattering enabling 
imaging deep into tissue in living whole animal imaging experiments. This also has the potential 
advantage of simplified instrumentation as optical filters can also be removed; practically, 
however, the same instruments that are used for chemiluminescence/bioluminescence imaging 
are also used for near-infrared fluorescence imaging. Bioluminescence imaging is commonly 
used to track gene expression and signaling, tracking the growth of tumors, and some caged 
luciferin probes have been developed for molecular imaging of reactive oxygen and nitrogen 
species.188 Bioluminescence typically requires genetic modification to endow organisms with the 
ability to express the luciferase enzyme, although some interesting exceptions have been used 
for endogenous bioluminescence imaging.189 There has been a recent surge in the development 
of non-enzymatic chemiluminescence probes, particularly 1,2-dioxetanes, which offer the 
advantages for low background in vivo imaging without the need for genetic modification and 

additional versatility in probe design.12,68,98−100 
 
3.3.3 Photoacoustic imaging 



18 
 

Photoacoustic or optoacoustic imaging merges the advantages of NIR optical imaging with 

ultrasound imaging.190−192 It works through stimulating a biological sample with repeated non-
ionizing laser pulses that can be absorbed by endogenous or exogenous chromophores. When 
this energy is thermally released by non-radiative mechanisms, it will cause pressure waves in 
the tissue that can be detected using ultrasound imaging techniques.191 This gives the advantages 
NIR illumination, including its biocompatibility and depth penetration as well as the high resolution 
and reduced light scattering granted by ultrasound imaging. Although photoacoustic imaging does 
not strictly depend on luminescence emission, we include photoacoustic probes in this review 
because it is an important imaging modality emerging for detecting ROS/RNS and it is often used 
in combination with luminescence imaging. The instrumentation for photoacoustic imaging 
requires NIR light excitation via a short-pulse laser system and a wideband ultrasonic transducer 
for imaging, with many such systems that are commercially available. Photoacoustic imaging 
requires a chromophore, which can either be from endogenous or exogenous source. Imaging 
endogenous hemoglobin and oxyhemoglobin is a useful technique to image oxygenation in blood 
vessels in vivo, and other endogenous chromophores like DNA/RNA, melanin, lipids, and water 
are capable of being imaged.191 Exogenous agents have also been developed from small 
molecule chromophores and nanoparticles. Generally, exogenous chromophores should have a 
high extinction between 680 nm and 950 nm to maximize light absorption from commercially 
available instrumentation and low fluorescence quantum yields to maximize non-radiative heat 
dissipative processes.192 Due to the advantages of this modality, the development of 
photoacoustic probes for reactive oxygen and nitrogen species is rapidly gaining popularity. 

 
4. Luminescent probes for reactive oxygen species 
4.1 Superoxide 
4.1.1 Superoxide in health and disease 
Oxygen is fundamental to animal life as the key mediator of cellular respiration but is also a source 
of all other reactive oxygen and nitrogen species. Oxygen has a high reduction potential, but due 
to its triplet ground state, displays slow kinetics when reacting with closed-shell molecules. These 
properties make it useful as an energy source for ATP generation in the mitochondrial electron 
transport chain.193 In addition to cellular respiration, oxygen is also important for its interactions 
with numerous proteins and enzymes. Oxygen binds to hemoglobin, which transports it 
throughout the body. Oxygen is an important co-factor in enzymes including oxidases,194 where it 
acts as an electron acceptor, and in oxygenases that catalyze reactions to incorporate oxygen 
into substrates.195 Given its importance and the fine line between its physiological functions and 
the production of reactive oxygen species, oxygen levels must be tightly regulated. Hypoxia 
Inducible Factor (HIF) proteins are critical oxygen sensing proteins that regulate genetic 
transcription to account for variation in oxygen levels.196 Hypoxia response is particularly 
important in cancer where rapidly growing tumors will often have a hypoxic core due to incomplete 
vascularization. This hypoxic condition can cause cells to change their metabolism, become more 
aggressive, and metastasize.197  
 

Superoxide (O2
−) is a diatomic radical anion produced from the one electron reduction of 

molecular oxygen. Its conjugate acid, the peroxyl radical, has a pKa of 4.8, making the anion the 
predominant form under physiological conditions. Superoxide behaves as both an oxidant and 

reductant with redox potentials of +0.93V for the O2
−, 2H+/H2O2 redox couple and −0.35V for the 

O2/O2
− redox couple.198,199 In many cases, superoxide is the first reactive oxygen species 

generated in biological systems and can be produced in the mitochondrial electron transport chain 
(ETC),193 by NADPH oxidase (NOX) enzymes,200 and by other enzymatic and non-enzymatic 
processes. In the mitochondrial ETC, the major source of superoxide production occurs in the 
NADH-ubiquinone oxidoreductase Complex I, particularly in situations where the mitochondria 
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are not generating ATP and/or when there is a high NADH/NAD+ ratio. Mitochondrial superoxide 
production is in many cases detrimental because it leads to the production of more highly reactive 
oxygen species that can indiscriminately damage biological molecules. On the other hand, 
superoxide can be generated purposefully for healthy biological functions by proteins like the 
NADPH oxidase (NOX) family of enzymes – for example, by NOX2 in leukocytes and phagocytic 
cells as a precursor to highly reactive oxygen species to kill invading pathogens.201 Additionally, 
NOX enzymes can generate superoxide to control signaling and cell proliferation,202,202 usually 
through dismutation to hydrogen peroxide, which then signals through the oxidation of thiols to 
disulfides to alter protein structure and function. On the other hand, evidence is beginning to 
emerge that superoxide can react directly with metalloproteins to mediate signaling.203 Other 
enzymes that produce superoxide include xanthine oxidase which is excreted in milk. This 
enzyme catalyzes the oxidation of xanthine or hypoxanthine to uric acid with the conversion of 
oxygen to superoxide. Xanthine oxidase is a useful tool for the controlled enzymatic generation 
of superoxide in model systems.204,205 
 
Superoxide undergoes spontaneous dismutation to form hydrogen peroxide and oxygen, but 
there are a series of superoxide dismutase (SOD) enzymes that catalyze this reaction at rate of 
109 M-1 s-1, highlighting the immense importance of controlling the formation of this initiatory 
reactive oxygen species.206 There are three SOD enzymes. SOD1 is a Cu/Zn SOD that is found 
in the cytoplasm, nucleus, and mitochondria. SOD2 is a MnSOD enzyme located in the 
mitochondrial matrix. SOD3, also called EC-SOD, is an SOD enzyme that is found in the 
extracellular matrix. Generally, these superoxide dismutase enzymes share a similar mechanism 
that consists of an initial reduction of the metal center in the enzyme by superoxide to generate 
molecular oxygen, followed by reaction with a second equivalent of superoxide to reoxidize the 
metal and generate hydrogen peroxide. Superoxide also reacts with other metals found in 
biological systems. Iron-sulfur clusters react with superoxide with rate constants on the order of 

106 M−1 s−1, 207 by oxidizing the iron-sulfur cluster and causing it to break apart, ultimately releasing 
iron and H2O2.207 Superoxide also reacts with enzymes such as e. coli acotinase at a rate of 109 

M−1 s−1,208 as well as cytochrome c, myeloperoxidase, and other iron or copper containing 
proteins. Being a ground state doublet with an unpaired electron, superoxide readily reacts with 
other radical species.209 Superoxide can react with phenoxy radicals derived from tyrosine to 
generate tyrosine hydroperoxides, as well as other biological radicals derived from vitamin E or 
tryptophan. An important radical reaction of superoxide is its reaction with nitric oxide to form 

peroxynitrite, which proceeds with fast kinetics and a rate constant of 1010 M−1 s−1.210,211 As 
discussed below, peroxynitrite has potent two-electron reactivity and will also decompose to highly 
reactive radical species like hydroxyl radical, carbonate radical, and nitrogen dioxide radical.212 
Superoxide has fast rates of reaction with ascorbate,213 but its direct reaction with biological thiols 

and glutathione is relatively slow at rates of 102 − 103 M−1 s−1.214 
 
4.1.2 Classical detection techniques for superoxide 
Given its initiatory role to produce reactive oxygen species, much effort has been spent to develop 
techniques to detect superoxide in biological systems. Other non-luminescent techniques for the 
detection of superoxide include monitoring oxygen consumption by electrochemical or other 
means,215 monitoring a change in the absorbance of cytochrome c when it is reduced by 
superoxide,201 nitroblue tetrazolium and water soluble derivatives,216,217 superoxide selective 
electrodes,218 iron release from acotinase, and electron paramagnetic resonance spectroscopy 
using spin traps to trap and stabilize the superoxide radical.219 It is worthy to note that practical 
development of superoxide detection methods requires reliable and controlled sources of 
superoxide. It can be supplied as a stable salt potassium superoxide (KO2), which can be made 
as saturated solutions in DMSO, the xanthine/xanthine oxidase enzymatic system,204,205 and 
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various donor compounds that can generate superoxide usually via reduction of oxygen and redox 
cycling.220 
 
4.1.3 Superoxide probes by trigger 
Luminescent probes for superoxide have been made that take advantage of superoxide’s natural 

reactivity and include strategies based on oxidative triggers (Table 1, Sections 1−9), nucleophilic 

triggers (Table 1, Sections 10−13), combined oxidative and nucleophilic approaches (Table 1, 
Section 14), and reductive triggers (Table 1, Section 15).  
 
Luminol/L-012 (Table 1, Section 1) 
One of the earliest luminescent probes for superoxide detection was luminol, a phthalic hydrazide 
that undergoes a chemiluminescence reaction upon oxidation. It was first convincingly used for 
detection of cellular superoxide by Allen and Loose in 1976 in a cell suspension of macrophages 
undergoing phagocytosis in which luminol provided a superoxide dismutase inhibitable 
chemiluminescence signal (Figure 6).101 A new derivative of luminol, L-012, was developed by 
Nishinaka in 1993 and displayed better water solubility, enhanced chemiluminescence, less redox 
cycling, and superoxide dismutase-dependent signal from EoL-1 cells.221, However, L-012 has 
since been studied in more detail. Daiber in 2004 demonstrated that L-012 also has a 
chemiluminescence response to peroxynitrite.102,205 In 2013, detailed mechanistic work was 
performed by Zielonka and Kalyanaraman showing that L-012 does not react directly with 
superoxide but instead more highly reactive radical species like hydroxyl radical and nitrogen 
dioxide radical.103 Interestingly, the superoxide dismutase dependence of the signal originated 
from superoxide that was being generated during the reaction as an important reactive 
intermediate. Scavenging of the formed superoxide halts the progress of the chemiluminescence 
mechanism, attenuating response and explaining the superoxide dismutase dependence. These 
observations teach that caution and careful controls should be put in place when using luminol 
and its derivatives for the detection and imaging of superoxide. Table 1, Section 1 summarizes 
these and any other examples of probes using luminol triggers. 
 

 
Figure 6. The chemiluminescent probe luminol as an example of luminol oxidation trigger for O2

− detection.101 

 
Lucigenin and other acridinium salts (Table 1, Section 2) 
Lucigenin (10,10’-dimethyl-9,9’-biacridinium dinitrate) is an acridinium salt that reacts with 
superoxide to produce chemiluminescence emission centered at 503 nm,222 and can be used to 
monitor superoxide production in macrophages.223 The dinitrate salt is not cell-permeable, so it 
works best when monitoring superoxide production after being internalized into phagosomes via 
phagocytosis. However, in 2013, Kobayashi developed the cell permeable derivate MMT where 
the nitrates were replaced by monomethyl terephthalate anions that form a charge transfer 
complex, allowing the probe to be taken up across the cellular membrane.224 The cell permeable 
MMT was used to image superoxide production in PMA-activated and apoptotic neutrophils. 
Another example that used acridinium salts relied on PeT quenching of a porphyrin fluorophore 

by appended acridinium salts in the probe Acr+-H2P-Acr+ (ex = 512 nm, em = 651 nm) developed 
by Crossley and Fukuzumi in 2011.225 Reduction of the acridinium groups by superoxide reduces 
PeT quenching and increases fluorescence, providing potential opportunities for biological 
sensing. Some concerns have been raised about using lucigenin to monitor superoxide because 



21 
 

it can undergo redox cycling;226 however, others have shown that this can be avoided by using 
lower concentrations of lucigenin when monitoring superoxide production.227 Table 1, Section 2 
summarizes these and any other examples of probes containing this trigger. 
 
Cypridina luciferin and coelenterazine analogues (Table 1, Section 3) 
In 1980, Goto and Takagi reported a Cypridina luciferin analogue (CLA) that could detect 
superoxide generated in a xanthine/xanthine oxidase superoxide generating system via 
chemiluminescence emission that was inhibited by addition of superoxide dismutase (Figure 7).106 
A number of analogues have been developed including methoxy,228,229 naphthyl,230 and indole 
derivatives.230 Lucas reported in 1992 that the structurally related molecule coelenterazine could 
be used to measure superoxide in neutrophils (Figure 8).231 Alkylated coelenterazine derivatives 
were reported to have improved superoxide dismutase chemiluminescence inhibition properties 
by Shimomure in 1997232 and in more recent years, Pinto da Silva has investigated a number of 
fluorinated derivatives of coelenterazine not only for their chemiluminescent superoxide detection 

properties but also for their photodynamic therapy capabilities.233−236 In an interesting 2016 study, 
Contag showed that coelenterazine could be used for whole animal in vivo imaging of superoxide 
in the pancreas of diabetic mice.189 Covalent attachment of Cypridina luciferin analogues to high 
performing fluorescent scaffolds have been a fruitful strategy to red-shift the chemiluminescence 
emission wavelengths, beginning with Goto’s disclosure of a fluorescein-conjugated derivative 
FCLA in 1991.237 Since then a number of energy transfer constructs have been developed 
including cyclodextrin linked fluorescein and rhodamine conjugates developed by Teranishi,238,239 
a BODIPY-linked coelenterazine with emission at 545 nm developed by Saito,240 and an 
indocyanine conjugate MCLA-800 with near-infrared emission centered at 795 nm developed by 
Teranishi that was used for whole animal in vivo imaging in rat models of inflammation.241,242 Table 
1, Section 3 summarizes these and any other examples of probes containing this trigger. 
 

 
Figure 7. The chemiluminescent probe CLA as an example of Cypridina luciferin trigger for O2

− detection.106 
 

 
Figure 8. The chemiluminescent probe coelenterazine as an example of coelenterazine oxidation trigger for O2

− 

detection.231 

 
Hydroethidine (Table 1, Section 4) 

Hydroethidine is a diaminodihydrophenanthridine with a C−H bond that can be readily oxidized 

by superoxide to form a fluorescent compound (ex = 470 nm, em = 590 nm) and was first 
persuasively demonstrated by Miller in 1996 to be able to measure superoxide in rat hippocampal 
neurons treated with NMDA or FCCP (Figure 9).243 Hydroethidine and a phosphonium-based 
mitochondrial targeted derivative that is commercially available as MitoSOX Red are common 
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reagents for the detection of superoxide.244 It was believed that hydroethidine was selectively 
oxidized to the fluorescence product ethidium; however, in 2003 Kalyanaraman demonstrated 
that the reaction product from hydroethidine and superoxide was actually a product distinct from 
hydroethidine,245 later characterized by HPLC to be 2-hydroxy ethidine.246 The same group 
showed that while it was not a perfectly reliable imaging probe for superoxide using fluorescence 
imaging, it could garner useful information about superoxide production when used in conjunction 
with HPLC separation.247,248 An analogue of hydroethidine was developed by Kalyanaraman that 
incorporated a three carbon spacer and a positively charged ammonium functionality that was 
able to prevent the probe from entering the cell and provide a measure of extracellular 
superoxide.249 A radiolabeled derivative for PET imaging was reported by Mach in 2014,250 and 
another interesting derivative was developed by Murphy and Hartley in 2017 which added an 

oxidizable C−D bond in place of a C−H bond to enhance selectivity for superoxide, a 
triphenylphosphonium unit to target the mitochondria, and neopentyl groups to mitigate DNA 

intercalation.251 This probe was called MitoNeoD (ex = 544 nm, em = 605 nm) and was used to 
measure mitochondrial superoxide production in cells and mouse models in vivo. Table 1, Section 
4 summarizes these and other examples of probes containing this trigger. 
 

 
Figure 9. The fluorescent probe hydroethidine as an example of hydroethidine (HE) oxidation trigger for O2

− 

detection.243 

 
Hydrocyanines and hydrocoumarins (Table 1, Section 5) 
In 2009, Murthy developed a class of fluorescent probes called hydrocyanines for the selective 
detection and imaging of superoxide and hydroxyl radical.252 Cyanine dyes can be synthetically 
reduced with NaBH4 to form non-fluorescent hydrocyanines, which selectively undergo oxidation 

of the C−H bond upon reaction with superoxide or hydroxyl radical to reform the fluorescence 
product. A series of hydrocyanine probes were developed with emissions between 560 nm to 830 

nm. The probe hydro-Cy3 (ex = 535 nm, em = 560 nm) was used to image angiotensin-
stimulated ROS production in rat aortic smooth muscle (RASM) cells and mouse aorta ex vivo in 

mice treated with LPS (Figure 10). The deeper NIR probe hydro-Cy7 (ex = 735 nm, em = 760 
nm) was used in whole animal imaging of the mouse intraperitoneal cavity in vivo upon LPS 

stimulation. Later, Murthy utilized a hydroindocyanine, H-800CW (ex = 774 nm, em = 789 nm), 
for in vivo imaging of retinal oxidative stress.253 A clever strategy used caged hydrocyanines to 
offer an opportunity to generate dual responsive probes in an approach pioneered by Chen 

starting in 2015 with the development of the dual superoxide/polysulfide probe HCy-FN (ex = 775 

nm, em = 794 nm) using a hydrocyanine caged with a polysulfide sensitive trigger.254 HCy-FN 
was used to image superoxide and polysulfides in PMA/LPS stimulated RAW 264.7 macrophages 
and mice. Similar strategies with other polysulfide triggers255,256 or dual probes for mercury using 
appropriately caged-hydrocyanines have also been reported.257 More recently, in 2021, Xing used 
a strategy that linked a hydrocyanine that oxidizes to a fluorescent cyanine form with superoxide 
and another cyanine dye that photoblues upon truncation reaction with peroxynitrite to make a 

dual superoxide/peroxynitrite probe HCy5-Cy7 (ex = 620 nm / 740 nm, em = 660 nm / 800 nm).258 

Another C−H oxidation strategy was developed by Wen and Cui in 2020, but used 

dihydrocoumarin probe 1 or R1 (ex = 371 nm, em = 468 nm) instead of hydrocyanine (Figure 
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11).259 The oxidation was shown to be selective for superoxide and the same group performed a 
very useful and rare comparison to other triggers for superoxide detection.260 Table 1, Section 5 
summarizes these and any other examples of probes containing this trigger. 

 

 
Figure 10. The fluorescent probe Hydro-Cy3 as an example of hydrocyanine oxidation trigger for O2

− detection.252 
 

 
Figure 11. The fluorescent probe R1 as an example of dihydrocoumarin trigger for O2

− detection.259 

 
Benzothiazoline oxidation (Table 1, Section 6) 

In another manifestation of a C−H oxidation-based fluorescent superoxide probe, Tang showed 
in 2004 that the oxidation of a benzothiazoline to the aromatic benzothiazole could be used as a 
superoxide-selective trigger by developing a probe H. Py. Bzt. that forms a fluorescent 2-pyridyl-

thiazole as a fluorescence product (ex = 377 nm, em = 528 nm), and was used with flow injection 
spectrometry to monitor superoxide production (Figure 12).261 Later, in 2007, Tang showed that a 
bis-benzothiazoline probe DBZTC linked through a cyclohexene linker provided red-shifted 

excitation and emission wavelengths (ex = 485 nm, em = 559 nm) capable of live-cell imaging of 
superoxide production in PMA stimulated RAW 264.7 macrophages.262 Tang and others went on 

to report a series of two-photon probes,263−265 some of which could be that could be targeted to 
the mitochondria263 or endoplasmic reticulum.264 Table 1, Section 6 summarizes these and any 
other examples of probes containing this trigger. 
 

 
Figure 12. The fluorescent probe H.Py.Bzt  as an example of benzothiazoline trigger for O2

− detection.261 

 
Catechol oxidation (Table 1, Section 7) 
Tang introduced a new trigger for superoxide detection based on the oxidation of a catechol to a 
benzoquinone by showing that the probe TCA, a bis-caffeic acid derivatized tripolycyanamide 

scaffold, could operate as a fluorescent probe for superoxide imaging (ex = 491 nm, em = 515 
nm) (Figure 13).266 The trigger has useful properties in that it is reversible upon the product 
benzoquinone reacting with glutathione to reform the catechol, as well as being able to be excited 
by two-photon absorption at 800 nm. TCA was successfully used to image superoxide in HL-7702 
cells, HepG2 cells, and in vivo in both zebrafish and mice. In 2018, Sun developed a near-infrared 
probe IR-747-SAPH using catechol oxidation to modulate photoinduced electron transfer 

quenching of an appended cyanine fluorophore (ex = 690 nm, em = 747 nm).267 The catechol 
trigger endows the probe with reversibility upon reaction with glutathione and IR-747-SAPH was 
used for imaging superoxide production during ischemia/reperfusion in an in vivo mouse model. 
The trigger has proven to be translatable to other scaffolds and modalities including ratiometric 

imaging,268 two-photon imaging probes,269−272 NIR probes,273 as well as for the development of 
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probes targeted to the mitochondria,268 endoplasmic reticulum,274 and Golgi apparatus.272 The 

catechol oxidation trigger has also been coupled with pH270 and ONOO−271 sensing moieties to 
generate dual responsive probes. Deeper mechanistic studies could help illuminate the details of 
its reactivity with superoxide. Table 1, Section 7 summarizes these and any other examples of 
probes containing this trigger. 
 

 
Figure 13. The fluorescent probe TCA as an example of catechol oxidation trigger for O2

− detection.266 

 
Sulfide and selenide oxidation (Table 1, Section 8) 
Churchill discovered that certain sulfides could be used as selective fluorescent probes for 
superoxide in 2013.275 A thiofuran with two pyridyl sulfide groups attached to a BODIPY scaffold 
was shown to not only provide a luminescence response upon Hg2+ binding, but also a turn-on 

response upon oxidation with superoxide (ex = 506 nm, em = 524 nm). Although the exact product 
with superoxide was unable to be identified, the sulfoxide and sulfone products were, curiously 
enough, able to be ruled out. In 2014, Churchill continued exploring chalcogens for superoxide 
sensing with the report of a diselenide bis-BODIPY probe that could be oxidized by superoxide to 
form the diselenide dioxide with increased fluorescence emission due to reduced PeT quenching 

(ex = 504 nm, em = 514 nm) (Figure 14).276 The diselenide dioxide could be reduced by 
glutathione, making the probe a reversible superoxide sensor that could be used to image 
superoxide generated in MCF-7 cells treated with PMA. Manjare published a series of selenium-
based superoxide sensors beginning in 2019 with a phenylselenide linked to a BODIPY dimer to 

give a fluorescence response from superoxide (ex = 505 nm, em = 526 nm) and fluorescence 
images in MCF-7 cells.277 These studies were followed by the same group reporting a diselenide 

mono-BODIPY (ex = 506 nm, em = 521 nm),278  a tetraphenyl BODIPY selenide derivative (ex = 

573 nm, em = 608 nm),279  and a pair of coumarin derivatives (ex = 388 nm, em = 469 nm and 

ex = 380 nm, em = 458 nm).280 The coumarin derivatives are of note because the authors provide 
evidence for a selenium dioxide product as confirmed by NMR and mass spectrometry. The rich 
redox chemistry of chalcogens has been used to probe several reactive oxygen and nitrogen 
species and careful consideration of the selectivity for each unique chalcogen-based probe should 
be a prerequisite for any biological study. Table 1, Section 8 summarizes these and any other 
examples of probes containing this trigger. 
 

 
Figure 14. The fluorescent probe compound 2 as an example of diselenide oxidation trigger for O2

− detection.276 

 
Other oxidative triggers (Table 1, Section 9) 
There is an assortment of other oxidative triggers for superoxide detection that have been 
reported but remain relatively unexplored. Ohyashiki reported in 1999 that exposure to superoxide 
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causes quenching of the fluorescence of 1,3-diphenylisobenzofuran DPBF (ex = 410 nm, em = 
477 nm), which was exploited to detect superoxide generation in a phospholipid liposomal 
membrane.281 A study by Gao in 2009 indicated that an ortho-imino phenol could react with 
superoxide via a hydrogen atom abstraction/one-electron oxidation, followed by reaction with 

peroxide to yield a nitroxyl with a fluorescence signal at ex = 294 nm and em = 355 nm (Figure 
15).282 In 2010, Payrastre and Hoffman showed that streptocyanines, arylated derivatives of 
cyanines, are selectively bleached by superoxide, enabling a method for fluorescence 

monitoring.283 In 2013, Li developed an ionic liquid probe ImS-FILA (ex = 373 nm, em = 422 nm) 
in which two imidazolium units were covalently linked to an anthracene (Figure 16). Superoxide 
induced oxidative decomposition of the imidazolium groups with a quenching of fluorescence.284 
In 2019, Ma and Lei presented a study showing that the oxidation of Hantzsch esters (Figure 17) 
and boronates (Figure 18) could be used as triggers for superoxide, developing a series of probes 
with emission wavelengths ranging from 463 nm to 597 nm, and demonstrated that these probes 
could be used for imaging superoxide in live HeLa cells.285 Another example of using boronates 
for imaging superoxide in the mitochondria was reported in 2022;286 however it should be noted 
that in these cases a negative control with superoxide dismutase was not performed, so a 
complete understanding of reactivity with other ROS remains to be elucidated. Table 1, Section 9 
summarizes these and any other examples of probes containing this trigger. 
 

 

Figure 15. The fluorescent probe 2-(2-pyridyliminomethyl) phenol as an example of ortho-imino phenol trigger for 

O2
− detection.282 

 

 
Figure 16. The fluorescent probe Ims-FILA-a as an example of imidazolium oxidation trigger for O2

− detection.284 
 

 
Figure 17. The fluorescent probe TPA-DHP-1 as an example of Hantzsch ester oxidation trigger for O2

− detection.285  
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Figure 18. The fluorescent probe TPA-PPA-3 as an example of boronic acid trigger for O2

− detection.285 

 
Sulfonyl group cleavage (Table 1, Section 10) 
Oxidative mechanisms for the detection of superoxide face inherent challenges regarding 
selectivity versus other reactive oxygen species. A non-redox mechanism based on the 
nucleophilicity of superoxide was proposed by Maeda in 2005 to address this with the 
development of a probe based on fluorescein bis protected with a 2,6-dinitrosulfonyl group (Figure 
19).287 The idea was that using a nucleophilic mechanism as opposed to a redox mechanism 
should garner better selectivity versus other reactive oxygen species by exploiting a different 
mode of reactivity. Various probe structures including the dichloro, difluoro, and unsubstituted 
fluorescein were investigated, and it was found that the protected tetrafluorofluorescein derivative 
gave the best selectivity versus glutathione, a key competitive nucleophile in the cell. The probe 
was used for the spectroscopic detection of superoxide production in neutrophils. Two years later 
in 2007, Maeda reported that using a different protecting group, a 2-nitro-4,5-dimethoxy sulfonyl 
group, increased performance and reduced the glutathione reactivity of the resultant probe 

BESSo and its acetoxymethyl ester derivative BESSo-AM (ex = ~488 nm, em = ~520 nm), 
enabling its use for imaging superoxide in human Jurkat T cells.288  
 
In 2015, Yang realized that a trifluoromethylsulfonyl (triflate) protecting group provided excellent 
selectivity for superoxide and developed a series of probes based on triflate protection of 
fluorescein, HKSOX-1, HKSOX-1r for cellular retention, and HKSOX-1m for mitochondrial 

targeting (ex = 509 nm, em = 534 nm) (Figure 20).289 These probes were used to image 
superoxide in HCT116 colon cancer cells, BV-2 microglial cells, RAW 264.7 macrophages, and 
zebrafish in vivo. Perhaps due to the synthetic accessibility of this trigger and release of a phenol 
moiety that is easy to incorporate into fluorescent scaffolds, it has been widely adopted with many 

examples of two-photon imaging probes,134,290−297 ratiometric fluorescence probes,292−294,298 near-

infrared fluorescence probes120,134,297,299−303 and probes targeted to the endoplasmic reticulum, 
294,304,305 lysosomes,295 hepatocytes,134,306 mitochondria,297 Golgi apparatus,120,121 as well as 
probes applied for bacterial imaging.307 Interestingly, moving from a triflate to a triflimide retains 
the superoxide sensitivity and selectivity as was demonstrated by Yu and Chen in 2018 in their 
design of a triflimide protected cyanine probe Mito-Cy-Tfs (Figure 21).308 This probe is ratiometric, 

near infrared, and mitochondrial targeted (ex = 600 nm / 730 nm, em = 742 nm / 790 nm), and 
was used for imaging superoxide in cells and in in vivo mouse models.  
 
Photoacoustic probes were recently developed in 2022 by Zhao and Liang who targeted 
mitochondria using a triflimide protected cyanine dye called APSA that gave a good photoacoustic 
signal when excited at 690 nm and a fluorescence signal when excited at 745 nm, enabling in 
vivo photoacoustic imaging of superoxide.297 In 2023, Yuan, Gao, and Su reported a hepatocyte 
targeted NIR fluorescence/photoacoustic probe that used a cholic acid targeting group and triflate 
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trigger attached to a hemicyanine dye named hCy-Tf-CA.306 This probes gives a photoacoustic 

signal when excited at 680 nm or 710 nm and can also be used for NIR fluorescence with ex = 

675 nm and em = 760 nm. It was applied for fluorescence imaging in cells as well as in dual mode 
NIR fluorescence/photoacoustic whole animal imaging of superoxide in acute inflammatory liver 
injury and autoimmune hepatitis. An interesting use of the triflate trigger was reported by Zhang 
in 2018 where a bis-triflate fluorescein was radiolabeled with radioactive iodine for dual 
SPECT/fluorescence imaging of superoxide produced during inflammation in an in vivo mouse 
model.309  
 
In 2019, Pu reported the first 1,2-dioxetane based chemiluminescent probes for superoxide MRPD 

that linked a triflate-caged spiroadamantane 1,2-dioxetane with emission at em = 540 nm for 
superoxide detection to a cyanine dye for NIR fluorescence, and a renal clearable cyclodextrin to 
optimize pharmacokinetics.310  Interestingly, no energy transfer from the dioxetane to the cyanine 
was observed, so the NIR fluorescence could be used as a superoxide independent signal for 
tracking the probe. The same year, Pu reported another triflate caged 1,2-dioxetane linked to a 
hemicyanine dye with a caspase cleavable unit named CFR for multimodal imaging of superoxide 
and caspase in cells and animal models.311 Reaction with superoxide increased emission at 540 
nm, again indicating inefficient energy transfer to the hemicyanine dye which allowed for allowing 
multianalyte imaging. The next year in 2020, Pu reported a triflate protected 1,2-dioxetane with a 
dicyanochromone displaying near-infrared chemiluminescence emission at 700 nm named 

NCR1, which was used for NIR fluorescence imaging in cells (ex = 535 nm, em = 700 nm) and 
whole animal chemiluminescence imaging in mouse models.312 Other examples of triflate caged 
1,2-dioxetane probes for superoxide include the acrylic ester 1,2-dioxetane reported by Gao & 
Yuan,313 and a series of nanoparticle-based approaches reported by Huang314 and Sun and 

Jiang.315 In 2018, Lee reported a related bis-sulfinate caged fluorescein SoDA-1 (ex = 480 nm, 

em = 512 nm) for imaging superoxide to visualize avian influenza virus infection (Figure 22).316 
Sulfonyl cleavage, sulfinate cleavage, and triflate/triflimide cleavage, in particular have become a 
widely used triggers for developing luminescence probes for superoxide imaging. Table 1, Section 
10 summarizes these and any other examples of probes containing this trigger. 
 

 

Figure 19. The fluorescent probe Compound 3d as an example of sulfonyl group cleavage trigger for O2
− 

detection.287 
 

 
Figure 20. The fluorescent probe HKSOK-1 as an example of triflate cleavage trigger for O2

− detection.289 
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Figure 21. The fluorescent probe Mito-Cy-Tfs as an example of triflimide cleavage trigger for O2
− detection.308 

 

 

Figure 22. The fluorescent probe SoDA-1 as an example of sulfinate cleavage trigger for O2
− detection.316  

 
Phosphinate cleavage (Table 1, Section 11) 

In 2007, Tang described 3’,6’-bis(diphenylphosphinyl)fluorescein − PF-1 (ex = 490 nm, em = 530 

nm)317 and 4′,9′-bis(diphenylphosphinyl)naphthofluorescein − PNF-1 (ex = 602 nm, em = 662 
nm),318 the first fluorescent probes for superoxide based on cleavage of a phosphinate group 
(Figure 23). These probes displayed good selectivity for superoxide and were able to be used for 
imaging superoxide production in living macrophage cells. Like sulfonyl group cleavage, this 
strategy has also been widely adopted with numerous examples of two-photon,319,320 NIR, 310,318, 

321−323 ratiometric,324−327 and mitochondrial targeted325,326,328−330 probes. A phosphinate-caged 
luciferin was developed in 2018 by Xu and Lu, which was used for bioluminescence detection of 
superoxide in Huh7 cells.331 In 2014, Churchill used a related strategy but with a phosphonate 
ester formed after reaction with and detection of chlorophosphate nerve agents by fluorescence 
quenching, which was reversed with superoxide cleavage of the phosphonate ester (Figure 24).332 
Kim and Yoon reported a probe TPP using a phosphinothioate trigger in 2019 that releases a 5-

(dimethylamino)naphthalene-1-thiol (ex = 345 nm, em = 470 nm) after selective reaction with 
superoxide.333 This probe could be used in two-photon microscopy with excitation at 740 nm to 
enable live cell imaging PMA stimulated superoxide production in RAW 264.7 macrophages. It 
would be interesting to see detailed mechanistic and/or theoretical studies to elucidate why the 
related sulfonyl cleavage and phosphinate cleavage triggers yield such high selectivity for 
superoxide detection versus other nucleophiles and reactive oxygen species. Table 1, Section 11 
summarizes these and any other examples of probes containing this trigger. 
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Figure 23. The fluorescent probe PNF-1 as an example of phosphinate cleavage trigger for O2
− detection.318 

 

 
Figure 24. The fluorescent probe 1 as an example of phosphonate ester cleavage trigger for O2

− detection.332 

 
Nitrophenyl ester and ether cleavage (Table 1, Section 12) 
Nitrophenyl groups are oftentimes sufficiently electrophilic that they can be cleaved by the 
nucleophilicity of superoxide. In 2013, Churchill reported a bis-3,5-dinitrobenzoate derivative of 
fluorescein and showed that it provided a fluorescence turn-on in response to superoxide (Figure 
25).334 While selective versus other ROS, glutathione can also give a signal from this probe 
making it an “OR” molecular logic gate that was used for fluorescence imaging in SH-SY5Y cells. 
In the same year, Churchill studied a para-nitrophenyl ether as a superoxide trigger to release a 

ESIPT fluorophore (ex = 310 nm, em = 460 nm), displaying a 90 nm red-shift from the starting 
probe (Figure 26).335 This study is of interest because a direct comparison was made between 
the phosphinate and para-nitrophenyl ether triggers, showing that the phosphinate was more 
selective. Table 1, Section 12 summarizes these and any other examples of probes containing 
this trigger. 
 

 

Figure 25. The fluorescent Probe 1 as an example of dinitrophenyl ester removal trigger for O2
− detection.334 

 

 
Figure 26. The fluorescent Probe 2 as an example of 4-nitrophenyl ether cleavage trigger for O2

− detection.335 

 
Other nucleophilic triggers (Table 1, Section 13) 
Several other nucleophilic triggers for fluorescence superoxide probes have been reported. 
Abramson reported in 2005 that 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) can react with 
superoxide via nucleophilic aromatic substitution of the chlorine atom to form a fluorescence 

product (ex = 470 nm, em = 550 nm) to monitor enzymatic superoxide production.287 Recently, 
Ma reported that pyridinium cleavage could also be used as a superoxide trigger.336 Finally, an 
interesting strategy  was developed by Banala in 2019 showed that the reversible binding of 
superoxide to metallophorphyrins, porphyrins, and oxoporphyrins could be used for photoacoustic 
superoxide imaging with excitations between 740 nm to 760 nm for different structures as 
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demonstrated in ex vivo chicken muscle tissue (Figure 27).337 Table 1, Section 13 summarizes 
these and any other examples of probes containing this trigger. 
 

 
Figure 27. The fluorescent probe 2 as an example of oxoporphyrin binding trigger for O2

− detection.337 

 
Combined oxidative and nucleophilic triggers (Table 1, Section 14) 
Combining both the oxidative and nucleophilicity reactivities of superoxide can offer improved 
opportunities for selectivity. Au-Yeung reported in 2017 a copper(II) chelated tris(2-picolyl)amine 
ligand substituted with a hydroxylmethyl group that could be attached to several fluorophore 
scaffolds via an ether linkage as a selective superoxide probe that combines its oxidative potential 
and nucleophilicity.338 Mechanistically, superoxide first binds to the copper(II) center, and then the 
bound superoxide oxidatively cleaves the adjacent ether bond to release a fluorophore, a strategy 
inspired by copper oxygenases.339 This trigger was used to develop three probes, SOP-blue using 

a ratiometric coumarin scaffold (ex = 325 nm, em = 385 nm / 485 nm), SOP-cyan using a 

thiazonyl coumarin (ex = 455 nm, em = 488 nm), and SOP-orange using a resorufin scaffold (ex 

= 570 nm, em = 585 nm), with SOP-cyan being successfully used for live cell imaging in HEK293T 
cells. In 2020, Au-Yeung expanded this strategy to a hydroxymethyl fluorescein scaffold SOP-

green (ex = 470 nm, em = 510 nm) (Figure 28), and synthesized a lysosome targeted probe 
Lyso-SOP-green that was used to image LPS-stimulated superoxide production in RAW 264.7 
macrophages.340 Another example of this type of combined approach was reported by Churchill 
in 2018, where it was demonstrated that a hemicyanine dye HemiSe could undergo 1,4-addition 
with superoxide, followed by H-atom abstraction to form the peroxide and provide a blue-shifted 

fluorescence response (ex = 360 nm, em = 439 nm) (Figure 29).341 The probe was used to image 
superoxide in PMA/taxol treated RAW 264.7 macrophages. Interestingly, the probe HemiSe 
contains a phenyl selenide that was not oxidized by superoxide indicating that this reactivity can 
be nuanced and should be carefully considered in probe design. Table 1, Section 14 summarizes 
these and any other examples of probes containing this type of trigger. 
 

 
Figure 28. The fluorescent probe SOP-green as an example of Cu2+ promoted C-O cleavage trigger for O2

− 

detection.338 
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Figure 29. The fluorescent probe HemiSe as an example of 1,4-addition trigger for O2
− detection.341 

 
Reductive Triggers (Table 1, Section 15) 
Although less common, there is a selection of probes that operate at least in part by superoxide’s 
ability to act as a reductant. In 2010, Wang reported a pyrene fluorophore covalently bonded to a 
stable perchlorotrityl radical that could be reduced by superoxide to form a triphenyl methane and 
molecular oxygen.342 This yielded a decrease in the EPR signal with a concomitant increase in 

fluorescence response (ex = 346 nm, em = 397 nm). This approach is related to a fluorescent 
spin trap HO-1889NH designed by Hideg in 2002 (Figure 30).343 The sensing unit is a secondary 
amine flanked by four methyl groups that can react with superoxide or singlet oxygen to quench 

fluorescence (ex = 330 nm, em = 550 nm), and was used to look at ROS produced in spinach 
leaves exposed to UV light. A more recent approach was developed by Wang and Li in 2023, 
where they designed a probe based on the reaction of superoxide with a tetrazine sensing moiety 
(Figure 31).344 The mechanism commenced with initial one-electron reduction of the tetrazole, 
followed by radical recombination with another equivalent of superoxide, cyclization, and loss of 
nitrogen. This strategy was used to make a series of probes Tz1-9 and used to image superoxide 
in myocardial ischemia/reperfusion. Table 1, Section 15 summarizes these and any other 
examples of probes containing reductant-based trigger. 
 

 
Figure 30. The fluorescent probe HO-1889NH as an example of spin trap trigger for O2

− detection.343 

 

 
Figure 31. The fluorescent probe F-Tz1 as an example of tetrazine to oxadiazole trigger for O2

− detection.344 

of tetrazine to oxadiazole trigger for O2
− detection.344 

 
4.1.4 Concluding remarks for superoxide probes 
Superoxide is, in most cases, the initial reactive oxygen species formed that leads to the 
production of other ROS involved in both signaling and stress. Classic chemiluminescence probes 
including luminol/L-012,101,103,205,221,229 CLA,106 and coelenterazine232 are commercially available 
and can be used, but the ROS selectivity and susceptibility to autooxidation can potentially 
complicate experiments. Hydroethidine and the commercially available MitoSOX Red still hold 
an important place for superoxide measurements,243,244 but we note that the reaction products 
should be considered carefully and combination with HPLC can give more reliable results.247,248 
For oxidative probes, hydrocyanines252,253 and catechol oxidations266,267 have garnered the most 



32 
 

interest although hydroxyl radical reactivity should be remembered in the case of hydrocyanines 
and it would be informative to have better mechanistic understanding of catechol oxidation, 
especially given reports of hydrogen peroxide reactivity of this functional group.345,346 Triflate 
deprotection has emerged as a dominate strategy for nucleophilic based probes, 289−293 likely due to 
their synthetic ease, but again it would build confidence to understand why these are selective 
versus other ROS and nucleophiles. Finally, the combined approach that mimics copper 
oxygenase enzymes reported by Au-Yeung is innovative and effective because it takes advantage 
of multiple aspects of superoxide reactivity. 338, 340 
 
4.2 Hydrogen peroxide 
4.2.1 Hydrogen peroxide in health and disease 
Hydrogen peroxide, a reduced form of oxygen with the formal addition of two electrons and two 
protons, plays important roles in healthy physiology and pathological disease states.1,347,348 Its 
chemistry is dominated by two-electron mechanisms.349 With a two-electron redox potential E’

0 of 
1.23V, it is thermodynamically more oxidizing than other reactive oxygen species (ROS) like 
hypochlorous acid or peroxynitrite. However, a high activation barrier generally makes oxidation 
by hydrogen peroxide relatively slow and kinetically controlled with most biological molecules. It 
is also a weak one-electron oxidant with an E’0 of 0.32V, but if it does get reduced by one electron, 
it forms hydroxyl radical, which is an exceptionally strong and fast oxidizing species with an E’0 of 
2.31V. The pKa of hydrogen peroxide is 11.6, so it is predominantly in the neutral form under 
physiological conditions. The polarizability of the oxygen-oxygen bond makes it a good 

electrophile, the -effect of vicinal lone pairs makes it a good nucleophile, and it is prone to 
homolytic cleavage to form hydroxyl radical under certain photolytic or radiolytic conditions. 
Hydrogen peroxide reacts with many biological molecules. Reactions with thiols are relatively 
slow but can be dramatically enhanced in the protein environment such as in proteins like 
peroxiredoxins. The initial product in the reaction with thiols is usually a sulfenic acid, which can 
rapidly form intermolecular and intramolecular disulfide bonds to modulate protein function. 
Sulfenamide, sulfinic acid, and sulfonic acid modifications can also occur.348 Selenocysteine 
residues react rapidly with hydrogen peroxide such as in the protein glutathione reductase. 

Hydrogen peroxide can also react with -ketoacids like pyruvate,349  a strategy which has been 
used to develop hyperpolarized 13C MRI probes.350 Transition metals are important sites for 
hydrogen peroxide reactivity, and can either lead to more highly reactive species or safely 
decompose hydrogen peroxide.349 Fenton chemistry with Fe(III) or Cu(II) is an important pathway 
for the formation of the highly reactive species hydroxyl radical, which can be detrimental 
physiologically, but has also been harnessed for chemodynamic therapy.351 Heme peroxidases 
like myeloperoxidase, eosinophil peroxidase, and lactoperoxidase react with hydrogen peroxide 

with very high rate constants (107 to 108 M−1 s−1) to generate more reactive oxygen species during 
host defense against pathogens by the immune system. Several families of antioxidant proteins, 
including catalase, glutathione reductase, and peroxiredoxins safely decompose hydrogen 
peroxide, eliminating its ability to transform into damaging reactive oxygen species. Models of the 
reactivity and diffusivity of hydrogen peroxide in a cellular context have led to estimates of 
hydrogen peroxide having a lifetime on the millisecond time scale allowing it to diffuse 

approximately 1 m from the site of generation.352 
 
The sources for the production of hydrogen peroxide can vary according to organelle and context. 
1,347 In the mitochondria, the electron transport chain proceeds through a series of protein 

complexes (I−IV) to create a proton gradient for ATP synthesis.353 While tightly regulated, it is 

estimated that 0.1%−2% of the electrons in the ETC are transferred to O2 from some of these 
complexes, believed to predominately be from Complex I and Complex III, to generate 
superoxide, which can spontaneously dismutate or enzymatically be dismutated by superoxide 
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dismutase to form hydrogen peroxide. Hydrogen peroxide can also be formed in the plasma 
membrane by NADPH oxidase (NOX) enzymes, again through initial superoxide generation 
followed by spontaneous or enzymatic dismutation.200,347 These enzymes are responsible for ROS 
production during phagocytosis as well as for generating hydrogen peroxide at the extracellular 
membrane for signaling purposes. In the endoplasmic reticulum, hydrogen peroxide is generated 
as a byproduct of protein folding.1,347 Disulfide formation during protein folding in the endoplasmic 
reticulum is mediated by the protein Ero1, which oxidizes protein disulfide isomerase (PDI) using 
oxygen as the oxidant, producing one equivalent of hydrogen peroxide for each disulfide bond 
that is formed. Hydrogen peroxide has been studied for its role in numerous physiological 
processes including the immune response,354 growth and proliferation,202 wound healing,355 
transcription factor regulation,356 epigenetics,357 and circadian rhythms.348,358 Additionally, 
misregulation of hydrogen peroxide has been implicated in many diseases including type 2 
diabetes and insulin resistance, cancer, ischemia reperfusion injury, neurodegeneration and many 
others.348 
 
4.2.2 Classical detection techniques for hydrogen peroxide  
In addition to colorimetric methods,359 early fluorescent approaches for detecting hydrogen 
peroxide include using reduced dihydroxanthenes that are oxidized into a fluorescent form in a 
process that can be mediated by hydrogen peroxide (Table 2, Section 1). These types of early 
probes comprise dihydrofluorescein, dihydrodichlorofluorescein including bis-acetate derivatives 
(Figure 32), and dihydrorhodamine 123.23,24 A similar strategy has been used with a 
dihydrophenoxazine derivative in the commonly used assay Amplex Red (Figure 33).25 While 
these luminescence strategies have certainly been useful, it is known that the oxidation of these 
probes by hydrogen peroxide depends on the presence of a peroxidase enzyme,360 and cross-
reactivity with other reactive oxygen and nitrogen species can occur.23,361 Luminol and derivatives 
have been used in conjunction with peroxidases for chemiluminescent detection of hydrogen 
peroxide,362 but this system can potentially respond with a variety of reactive oxygen and nitrogen 
species including peroxynitrite.103 Nevertheless, there have been interesting recent reports of 
chemiluminescent probes operating via covalent attachment of luminol to metal complexes363,364 
or incorporation into polymers.365 Acridinium salts have been shown to generate 
chemiluminescence upon reaction with hydrogen peroxide through the decomposition of a 

dioxetanone intermediate,366−370 and this chemistry has been used to detect nucleic acids in 
addition to peroxide.371 Peroxyoxalate chemiluminescence, similar chemistry as used in 
commercial glow sticks, has also been used for hydrogen peroxide detection with high selectivity 
due to the mechanism involving acyl substitution at the vicinal diester of an oxalate.372 This 
chemiluminescent approach has been capitalized for smartphone detection of hydrogen 
peroxide373 and has been used to measure this reactive oxygen species in the exhaled breath 
condensate of asthma patients.105 Furthermore, Murthy showed that with proper formulation, 
peroxyoxalate chemistry could be used to image hydrogen peroxide,374 an approach that has 
been advanced for near-infrared in vivo imaging.375,376 Finally, the genetically encoded probe 
HyPer is a very useful tool for hydrogen peroxide detection and imaging, however, protein-based 
fluorescent probes are beyond the scope of this review.377,378 Table 2, Section 1 summarizes these 
and any other examples of probes using these types of classical detection techniques. 
 

 
Figure 32. The fluorescent probe DCFH-DA as an example of xanthene oxidation trigger for H2O2 detection.23,24 
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Figure 33. The fluorescent probe Amplex Red as an example of resorufin oxidation trigger for H2O2 detection.25 

 

4.2.3 Hydrogen peroxide probes by trigger   
Phosphine oxidation (Table 2, Section 2) 
An early strategy to develop reaction-based fluorescent probes for hydrogen peroxide and 
hydroperoxides relied on the oxidation of phosphines to phosphine oxides. In 1987, Meguro 
reported diphenyl-1-pyrenylphosphine (DPPP, Figure 34) as part of a series of  triaryl phosphine 
derivatives also including 1-naphthyldiphenylphosphine (NDPP), 9-anthryldiphenylphosphine 
(ADPP), and triphenylphosphine (TPP) that were demonstrated to be oxidized by hydroperoxides 
to the respective phosphine oxides with an increase in blue fluorescence emission.379 Noguchi 
showed in 2000 that DPPP reacts with H2O2, but more rapidly with methyl linoleate hydroperoxide 

to give an increase in fluorescence (ex = 351 nm,  em = 380 nm) upon formation of the phosphine 
oxide, likely due to reduced PeT quenching.380  DPPP was used to image lipid peroxidation in 
polymorphonuclear leukocytes treated with methyl linoleate hydroperoxide. In 2005, Onoda 

developed a diphenyl N-acetyl benzofuran phosphine probe (ex = 360 nm, em = 492 nm) that 
responded to cumene hydroperoxide, but its reactivity with hydrogen peroxide was not 
determined.381 In the same year, Imato designed the probe DPPEA-HC, a diphenylphosphine 
linked to a coumarin that did give an increase in fluorescence in response to hydrogen peroxide 

(ex = 396 nm, em = 449 nm) that was selective versus other ROS with some cross reactivity 
observed with nitric oxide.382 Spy-HP, consisting of a triphenylphosphine unit linked to a 
tetracarbonyl bisimide, was a probe created in 2006 by Soh and Imato that displayed a 

fluorescence response when reacting with m-CPBA or cumene hydroperoxide (ex = 524 nm, em 
= 535 nm), but in this case the reactivity with hydrogen peroxide was not tested.383 A mitochondrial 

targeted version of DPPP, MitoDPPP (ex = 350 nm, em = 380 nm) was disclosed by Shioji in 
2010.384 It was shown that MitoDPPP, a diphenylpyrenylphosphine for peroxide detection linked 
to a triphenyl phosphonium for mitochondrial targeting, reacts with H2O2, cumene hydroperoxide, 
tert-butyl hydroperoxide, and methyl linoleate hydroperoxide, and was used to image tert-butyl 
hydroperoxide in HepG2 cells. In 2022, Wang and Chen developed a NIR emissive probe 

consisting of a diphenylphosphine trigger linked to a cyanine dye, CyNOH2 (ex = 605 nm,  em = 
750 nm).385 It was shown to be selective for H2O2, but cross reactivity with NO, superoxide, 
hydroxyl radical, and singlet oxygen was observed. The probe was used to detect increases in 
H2O2 in response to bisphenol A treatment of living LO2 cells, zebrafish, and mice via whole 
animal imaging. As seen from these studies, phosphine triggers are not perfectly selective for 
hydrogen peroxide, but can be useful for imaging hydrogen peroxide and other alkyl peroxides 
when high selectivity is not needed. Table 2, Section 2 summarizes these and any other examples 
of probes containing this trigger. 
 

 
Figure 34. The fluorescent probe DPPP as an example of phosphine oxidation trigger for H2O2 detection.379 
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Boronate oxidation (Table 2, Section 3) 
As opposed to phosphine oxidation, oxidation of an aryl boronate or boronic acid to a phenol is 
selective for hydrogen peroxide versus other types of alkyl hydroperoxides. In 2003, Lo 
demonstrated that a boronate could be used as a reaction-based trigger for the detection of 
hydrogen peroxide by linking a 2,3-butanediol protected aryl boronate to a coumarin fluorophore 

that produced a fluorescence signal (ex = 355 nm,  em = 460 nm) upon reaction with hydrogen 
peroxide.386 In 2004, Chang reported a green-emitting probe PF1 (Figure 35) that consisted of a 
bis(pinacolato)boronate protected fluorescein that was non-fluorescent until reaction with 

hydrogen peroxide induced oxidation of the boronate to form fluorescein (ex = 450 nm,  em = 
~510 nm).387 This study was important because it showed a clear selectivity for hydrogen peroxide 
versus alkyl peroxides like tert-butyl hydroperoxide and was the first study that demonstrated 
imaging of hydrogen peroxide in living cells using a boronate-based fluorescent probe. This was 
shortly after followed by an expanded study by Chang in 2005 that included deeper 

characterization of PF1, as well as the blue-shifted probe PX1 (ex = 350 nm, em = 450 nm), 

based on a boronate-caged xanthone scaffold and the red-shifted probe PR1 (ex = 530 nm, em 
= 580 nm), based on a resorufin scaffold.388 These probes generally showed selectivity for 
hydrogen peroxide with some cross reactivity observed with NO and NO+. They were all validated 
for live cell hydrogen peroxide imaging in HEK cells, and PF1 was also used to image hydrogen 
peroxide in primary hippocampal neurons. Chang reported the first ratiometric boronate-based 

hydrogen peroxide probe in 2006 with RPF1 (ex = 420 nm, em = 517 nm / 464 nm) using a FRET 
approach that linked a diethyl coumarin to a bis-boronate caged fluorescein scaffold reminiscent 
of PF1, and this probe was able to detect hydrogen peroxide in isolated mitochondria.389 In 2008, 
Chang developed the first ratiometric fluorescent boronate-based probe for live cell imaging PL1 

(ex = 410 nm, em = 540 nm / 475 nm) based on a boronate-caged lucifer yellow fluorophore that 
had modulated ICT properties after oxidation of the boronate to the phenol.390 This probe could 
also be excited by two-photon absorption using 800 nm light, enabling ratiometric two-photon 
microscopy imaging of hydrogen peroxide produced in PMA stimulated macrophages. Since this 

time a large number of boronate-based ratiometric fluorescent probes have been reported,391−446 

as well as boronate probes for two-photon imaging.391,392,401,412,415,420,431,433,434,445,447−461 Another 

important advance was made by the Chang group in 2007, with the Tokyo Green-based PG1 (ex 

= 460 nm, em = 510 nm) and resorufin-based PC1 (ex = 480 nm, em = 584 nm) boronate 
probes.462 These probes were shown selective for hydrogen peroxide, with some cross reactivity 
observed for nitric oxide and hypochlorite. Importantly, PG1 was used as a first demonstration of 
live cell imaging of cellularly produced hydrogen peroxide in A431 cells stimulated with EGF, which 
has become a benchmark validation for fluorescent hydrogen peroxide probes.  
 
Chang also pioneered organelle-targeted boronate based fluorescent probes in 2008 with the 
disclosure of MitoPY1, a boronate-caged rhodol with a triphenylphosphonium group to target the 

probe to the mitochondria which was able to achieve fluorescence imaging (ex = 510 nm, em = 
528 nm)  of hydrogen peroxide in the mitochondria of live cells.463 In 2010, Chang also reported 
a SNAP-tag approach as a versatile method to target multiple organelles. Peroxygreen derivatives 
were labeled with two different substrates for the O-alkylguanine-DNA alkyltransferase (AGT) 

protein to generate the SNAP-PG fluorescence probes SPG1 and SPG2 (ex = 465 nm, em = 515 
nm).129 The AGT protein can be fused to a protein of interest and, depending on which protein it 
is fused to, enable organelle-targeted imaging in the endoplasmic reticulum, mitochondria, 
nucleus, and membrane of live HEK293T cells. Many strategies have been developed to generate 
boronate-based fluorescence probes targeted to 

mitochondria,392,400,409,417,425,436,441,446,450,455,457,458,461,464−477 endoplasmic reticulum,465 nucleus,399,478 

lysosome,448,461,479−486 amyloids/protein aggregates,142−146 integrin receptors,140 targeting with 
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biotin,487,459 lipid droplets,137−139 microtubules,136 estrogen beta receptor,141 and the Golgi 
apparatus.122 The first NIR boronate fluorescent probe was reported by Chang in 2008 as a bis-

boronate caged naphthofluorescein NPF1 (ex = 598 nm, em = 660 nm), which was used to 
monitor hydrogen peroxide production using flow cytometry in RAW 264.7 macrophages.488 In 
2011, Shabat reported the first in vivo NIR fluorescence imaging using a boronate-caged Cy7 

fluorophore (ex = 590 nm, em = 715 nm) and used this to image an intramuscular injection of 
hydrogen peroxide in a live mouse.489 A very large number of NIR I boronate probes for hydrogen 
peroxide with peak emissions above 650 nm have since been 

reported.139,141,142,144,402−405,411,416,417,419,422,438,439,442,446,451,455,461,471−473,484,487,489−522 
 
Chang developed the bioluminescent probe PCL-1 in 2010, consisting of a boronate-caged 
luciferin connected by a self-immolative linker.523 PCL-1 was used to measure hydrogen peroxide 
formed in paraquat stimulated LNCaP-luc cells and testosterone-induced hydrogen peroxide 
formation in an in vivo LNCaP-luc tumor xenograft mouse model. ATP is a substrate for the 
luciferin/luciferase which could potentially cause a perturbation of signal when there are significant 
fluxes in ATP. In order to solve this problem, Heffern designed a bioluminescent hydrogen 
peroxide probe bor-DTZ in 2022 that was formed from a boronate-caged diphenylterazine that is 
a substrate for the Nanoluciferase (Nanoluc) enzyme.524 bor-DTZ was used to measure hydrogen 
peroxide in paraquat treated MDA-MB-231 cells expressing this Nanoluc enzyme. Boronate-
caged 1,2-dioxetanes were reported by Turan in 2017, who developed a boronate-caged phenol 
with a self-immolative linker designed to release two chemiluminescent spiroadamantane 1,2-
dioxetanes (Schaap’s dioxetane) per equivalent of hydrogen peroxide to give an emission at 466 
nm in 90% DMSO.525 Also in 2017, Shabat reported 1,2-dioxetanes with simple acrylonitrile, 
acrylate, or acrylamide substitutions with improved chemiluminescence emissions in  aqueous 
systems.526 In this study, a boronate-based probe for hydrogen peroxide was reported with an 
acrylic acid substitution that displayed an emission at 520 nm when treated with hydrogen 
peroxide in aqueous buffer containing 10% DMSO. The same probe was later used by Caliceti in 
2020 for chemiluminescence detection of hydrogen peroxide in Caco-2, HaCaT, and HUVEC 
cells.527 Shabat also showed that appending a dicyanochromone to the 1,2-dioxetane can extend 
chemiluminescence emission into the NIR with a peak at 690 nm, and this probe was used to 
image hydrogen peroxide production in LPS stimulated mice in 2017.496 In 2019, the same 
researcher  expanded a strategy using a boronate-caged 1,2-dioxetane that releases methanol 
after reacting with hydrogen peroxide that could be used to regenerate hydrogen peroxide with 
the addition of an alcohol oxidase for a chain reaction amplification of the chemiluminescence 
signal.528  
 
Recently, imaging in the NIR II spectrum and photoacoustic imaging probes with deeper imaging 
depth, less light scattering, and higher resolution have begun to emerge. In 2021, Lei and Zhang 
designed and studied the NIR II boronate-caged imaging probe PN910 using a boronate-caged 

merocyanine fluorophore named Chrodol-3 (ex = 870 nm, em = 910 nm).529 The probe was 
shown to react with both hydrogen peroxide and peroxynitrite and was used for NIR II 
fluorescence imaging of hydrogen peroxide in LPS-treated mice and in a colitis model. In 2022, 

Xiong reported a boronate-caged polymethine dye with NIR II emission IR-990 (ex = 790 nm, em 
= 990 nm).530 This probe was used for imaging hydrogen peroxide in LPS stimulated HeLa cells, 
APAP treated HepG2 cells, and an in vivo mouse model of liver injury. Zeng and Wu developed 
a boronate-caged benzoindolium heptamethine cyanine probe BHC-Lut for NIR II fluorescence 

(ex = 830 nm, em = 930 nm) and photoacoustic imaging, with co-release of an antioxidant luteolin 
in a mouse liver injury model.531 In 2019, Bohndiek reported a boronate-caged heptamethine 

carbocyanine, JW41, with NIR fluorescence (ex = 790 nm, em = 825 nm) and photoacoustic 
imaging using excitation at 800 nm of MDA-MB-231 tumors in mice.499 In 2021, Chan described 
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the boronate-caged and sulfur substituted hemicyanine fluorophore PA-HD-H2O2, as part of a 

general strategy using this new fluorophore (ex = 745 nm, em = 765 nm).507  This probe was used 
for fluorescence imaging in Neuroscreen-1 cells and photoacoustic imaging with a maximum 
photoacoustic excitation at 735 nm for imaging hydrogen peroxide in an in vivo Alzheimer’s mouse 
model and wild type mice. Clearly, boronates are choice triggers for the design of small molecule 
hydrogen peroxide probes, likely due to their selectivity versus alkyl peroxides and other 
RNS/ROS, ease of synthesis, and large numbers of luminogenic scaffolds that are accessible 
with the release of a phenol from the boronate cage. Cross reactivity has been observed versus 
peroxynitrite, hypochlorite, and some other species, so it is important to use the appropriate 
controls including nitric oxide inhibition in biological experiments. Table 2, Section 3 summarizes 
these and any other examples of probes containing this trigger.  
 

 

Figure 35. The fluorescent probe PF1 as an example of boronate trigger for H2O2 detection.387 

 
Sulfonyl cleavage (Table 2, Section 4) 
Probe triggers that operate through oxidative mechanisms are at inherent risk for cross-reactivity 
versus other reactive oxygen species. In 2004, Maeda aimed to address this by developing the 
deprotection of a sulfonyl group as a non-oxidative mechanism for detecting H2O2 (Figure 36). A 
series of acetylated and non-acetylated fluorescein, dichlorofluorescein, and difluoroflorescein 

derivatives were investigated using the fluorescence emission at ex = 485 nm,  em = 530 nm.532 
These were caged by a pentafluorobenzenesulfonyl protecting group and the rates of 
deprotection of the fluorescein, dichlorofluorescein, and difluorofluorescein derivatives were 

measured as 2.7, 23, and 25 x102
 M−1 s−1, respectively, following expected trends based on the 

strength of the electron withdrawing groups. The deprotection was shown to be selective (with 
some observed cross reactivity with nitric oxide) and these probes were used to image hydrogen 
peroxide production in Chlamydomonas reinhardtii algae stimulated with Cu2+, paraquat, or 
methylene blue in the light and dark. In 2005, Tang reported two other sulfonyl protected 

fluorophores, the bis-toluenesulfonyl protected naphthofluorescein NFDS-1 (ex = 602 nm,  em = 

662 nm) and perfluorooctanesulfonyl naphthofluorescein NFDS-2 (ex = n.r.,  em = 692 nm) with 
NIR emission.533 Although NFDS-2 proved to be unstable, NFDS-1 was shown to be selective 
(although some cross-reactivity with alkyl hydroperoxides and hypochlorite was observed) and 
was used to image hydrogen peroxide in PMA-treated peritoneal macrophages. Tang also 

reported bis-toluenesulfonyl fluorescein FS-1 (ex = 491 nm, em = 515 nm), and the 

dichlorofluorescein derivative FS-2 (ex = 493 nm, em = 520 nm) in 2009.19 FS-1 was shown to 
be capable of imaging hydrogen peroxide in PMA-treated peritoneal macrophages.534 Two 
ratiometric probes were reported in 2019. Xiao described a fluorophore hybrid between coumarin 
and fluorescein fluorophores caged by a pentafluorobenzenesulfonyl group to make the 
ratiometric probe JNY-1, which displayed a shift from a coumarin-like emission to a fluorescein-

like emission upon treatment with hydrogen peroxide (ex = 380 nm, em = 440 nm / 540 nm), and 
was used to image exogenous hydrogen peroxide in HepG2 cells.535 In the same year, Chen and 
Yu reported a near-infrared ratiometric probe using a pentafluorobenzenesulfonyl-caged 

ketocyanine fluorophore Cy-PFS, which showed a ratiometric shift from the near-infrared (ex = 

730 nm, em = 836 nm) to red (ex = 560 nm, em = 635 nm) upon reacting with hydrogen 
peroxide.536  This probe was used to image EGF-stimulated hydrogen peroxide production in 
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A431 and HT22 cells. Finally, there was a more recent report by Wang in 2021 of a 
pentafluorobenzenesulfonyl spirolactam rhodol GW-1, which served as a dual hydrogen 

peroxide/H+ probe (ex = 475 nm, em = 549 nm) based on sulfonyl cleavage and acid-mediated 
spirolactam ring opening.537 These studies show that the desulfonylation trigger can be used as 
a non-oxidative mechanism for hydrogen peroxide detection. Use and development of new probes 
using this trigger should carefully consider selectivity versus hydrolysis and other nucleophilic 
species given their ubiquity in biological systems. Table 2, Section 4 summarizes these and any 
other examples of probes containing this trigger. 
 

 
Figure 36. The fluorescent probe 2b as an example of sulfonyl cleavage trigger for H2O2 detection.532 
 

Benzil/-ketoketone Baeyer-Villager oxidation (Table 2, Section 5)  
In 2011, Nagano discovered that the Baeyer-Villager oxidation of a para-nitro benzil fluorescein 

derivate NBzF (ex = 495 nm, em = 519 nm) and its diacetylated derivative NBzFDA gave a 
selective fluorescence response to hydrogen peroxide based on a modulation of PeT quenching 
when converting from the benzil to the carboxylic acid product.538 Unsubstituted benzil and benzils 
substituted with Br, OMe, CN, and NO2 substituents were investigated, with the CN and NO2 
substituents giving the best response in agreement with their Hammett parameter trends. The 
probe was shown to be selective for hydrogen peroxide, although some cross-reactivity with 
peroxynitrite and tert-butyl hydroperoxide were observed. The diacetylated NBzFDA was capable 
of imaging cellular generated hydrogen peroxide in RAW 264.7 macrophages stimulated with 
PMA and in A431 cells stimulated with EGF. Sumimoto designed a SNAP-tag derivative of NBzF 
in 2014 called NBzF-BG (Figure 37) and the fluorophore-protein conjugate was termed SNAP-

NBzF (ex = 500 nm, em = 525 nm).130  By labeling the fusion protein with AlexaFluor 560, a 
ratiometric signal could be generated and the probe could be targeted to the extracellular 
membrane to image extracellular hydrogen peroxide in HEK cells and phagocytosed beads in 
RAW 264.7 macrophages. A two-photon benzil-based fluorescence probe was reported by Liu 

and Bai in 2015 that consisted of a benzil-modified coumarin (ex = 380 nm, em = 505 nm) and 
could be excited at 760 nm for two-photon microscopy imaging of hydrogen peroxide in SMMC-
7721 liver cells.539 Several BODIPY benzil derivates have been developed. In 2018, Sun reported 

a benzil meta to a BODIPY fluorophore (ex = 498 nm, em = 508 nm) for vapor phase hydrogen 

peroxide detection,540 while Heng reported a benzil para to the BODIPY (ex = 470 nm, em = 510 
nm) for imaging in denuded bovine oocytes in the same year.541 More recently in 2022, Xu, Gong, 

Liu, and Duan reported the probe BPHP (ex = 475 nm, em = 508 nm) containing a benzil BODIPY 
linked to a biotin targeting group that was used to image hydrogen peroxide in biotin receptor 
overexpressing HeLa, A549, and MCF-7 cells, but not in RAW 264.7 that under express the biotin 
receptor. This probe was also used to compare tumor tissue to liver tissue, showing increased 
hydrogen peroxide in the tumor tissue. Table 2, Section 5 summarizes these and any other 
examples of probes containing this trigger. 
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Figure 37. The fluorescent probe NBzF-BG as an example of benzil/-ketoketone trigger for H2O2 detection.130   

 

-Ketoamide oxidation (Table 2, Section 6) 

A trigger related to the benzil trigger is the -ketoamide trigger first reported for hydrogen peroxide 

detection by Wang and Tang in 2016.542 The probe Mito-NIRHP is a para-nitro--ketoamide caged 

hemicyanine dye that gives an increase in NIR fluorescence (ex = 670 nm, em = 704 nm) upon 
reaction with hydrogen peroxide (Figure 38).542 The probe was reported as being selective for 

hydrogen peroxide, although it should be noted that the -ketoamide trigger has also been used 
for the detection of peroxynitrite.543 Mito-NIRHP displays mitochondrial localization and was used 

to image PMA-stimulated hydrogen peroxide production in HepG2 cells. In 2017, Zeng and Wu 

reported a probe based on linking an -ketoamide trigger to an extended naphthalimide scaffold 
NPs-A, which was inserted into a lipid bilayer to make a nanoprobe with a ratiometric response 

(ex = 483 nm, em = 516 nm / 595 nm).544 This probe was used to image hydrogen peroxide in 
L929, RAW 264.7, and in APAP treated zebrafish. Zhang, Jing, and Zhang developed an 

endoplasmic reticulum targeted probe -Naph formed using an -ketoamide protected 

naphthalimide scaffold with a ratiometric response (ex = 395 nm, em = 465 nm / 540 nm) that 
was used to image hydrogen peroxide in PMA and tunicamycin induced ER stress in HeLa 

cells.545 In 2019, Hu designed and synthesized the NIR probe Cy-H2O2 that used an -ketoamide 

linked to a cyanine fluorophore and gave an increase in NIR fluorescence (ex = 730 nm, em = 
790 nm) due to reduced PeT quenching.22 Cy-H2O2 was used to image PMA-stimulated hydrogen 
peroxide production in HeLa cells and APAP-treated zebrafish.546 In 2020, Hu reported RhB-NIR, 

an -ketoamide-caged rhodamine scaffold that showed an increase in large Stokes shift emission 

(ex = 590 nm, em = 730 nm) and was used to image hydrogen peroxide in PMA stimulated cells 
with mitochondrial localization.547 Zeng, Wu, and Zhao developed a NIR II and photoacoustic 

imaging agent for hydrogen peroxide named BTPE-NO2 in 2021.548 They used an -ketoamide 
linked to a benzothiadiazole appended with AIE fluorophores that was formulated in an 

amphiphilic polymer Pluronic F127. The probe displayed an increase in NIR II emission (ex = 808 

nm, em = 938 nm) and photoacoustic signal (ex = 680 nm) in response to hydrogen peroxide and 
was used for NIR II and photoacoustic imaging in mice injected with cyclophosphamide to induce 
cystitis, a trazadone liver injury model, and a liver ischemia-reperfusion injury model. Shen and 

Rao reported the probe Mito-H2O2 (ex = 670 nm, em = 702 nm) in 2022 consisting of an -
ketoamide linked to a hemicyanine fluorophore through a self-immolative linker, displaying an 
increase in NIR fluorescence selective for hydrogen peroxide (but with a hint of peroxynitrite 
reactivity) and was used to image PMA-stimulated HeLa cells and mice injected with hydrogen 

peroxide.549 -Ketoamides and -ketoketones have been investigated for both hydrogen peroxide 
and peroxynitrite imaging so careful study and consideration should be given when using these 
types of probes to discriminate between these species. Table 2, Section 6 summarizes these and 
any other examples of probes containing this trigger. 
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Figure 38. The fluorescent probe Mito-NIRHP as an example of α-ketoamide trigger for H2O2 detection.542 
 
Iron-mediated triggers (Table 2, Section 7) 

In 2011, Hitomi reported the probe MBFh1 (ex = 570 nm, em = 590 nm), which consisted of an 
iron(III) complex linked to a reduced resorufin scaffold through an amide linkage (Figure 39).550 
Hydrogen peroxide reacts with the iron center to form highly reactive species to release oxidized 
resorufin in an intramolecular fashion. The probe design was advanced by the same group in 

2013 in the form of MBFh2 (ex = 530 nm, em = 590 nm), which used a modified ligand and 
connected resorufin through a three carbon chain that eliminates after hydrogen peroxide reacts 
with the iron to cleave the ligand in a similar mechanism as an MAO probe reported by 
Chang.551,552 The probe was shown to be selective for hydrogen peroxide (although hydroxyl 
radical was not evaluated) and it was used to image exogenous hydrogen peroxide added to 
HeLa cells and hydrogen peroxide produced in EGF stimulated A431 cells. Hitomi expanded this 

to a fluorescein scaffold in 2014 with the probe MBFh3 (ex = 450 nm, em = 517 nm), again 
connecting through a 3-carbon linker to release fluorescein for use in imaging hydrogen peroxide 
in HeLa cells and EGF stimulated A431.553 You and Nam studied a bis-iron chelated 
dichlorofluorescein derivative ZP1Fe2 (an iron-chelated derivative of the zinc probe Zinpyr-1) in 
2012 that underwent oxidative N-dealkylation of the ligand causing an increase in fluorescence 

(ex = 507 nm, em = 528 nm).554 The probe was selective for H2O2, but some reactivity with 
hydroxyl radical was observed and some variability with other ROS was seen. The probe 
displayed lysosome localization and was used to image hydrogen peroxide in HeLa cells. Another 
example of using iron to detect hydrogen peroxide was reported by Qu and Liu in 2014 using a 

styryl cyanine chelated to Fe(II) which displayed a quenching in fluorescence (ex = 369 nm, em 
= 540 nm) upon hydrogen peroxide oxidation to Fe(III).555 Table 2, Section 7 summarizes these 
and any other examples of probes containing this trigger. 
 

 
Figure 39. The fluorescent probe MBFh1 as an example of iron oxidation trigger for H2O2 detection.550 

 
Chalcogen oxidation (Table 2, Section 8) 
Chalcogens can be oxidized by ROS and have been used in different contexts to probe multiple 
ROS including hydrogen peroxide. In 2007, Chang reported a reversible xanthene oxidation 
coupled to a disulfide/dithiol redox pair by linking a naphthyldisulfide to a xanthene core forming 

the probe RF1 (ex = 495 nm, em = 503 nm) as well as the cell-trappable version RF1-AM.556 The 
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disulfide/dithiol redox couple could be oxidized by reaction with hydrogen peroxide and other 
reactive oxygen species and reductions were demonstrated using TCEP in cuvette studies and 
were mediated by thiols inside the cell to achieve reversible imaging of reactive oxygen species 
in HEK cells. In 2013, Tang reported that linking the antioxidant ebselen to a heptamethine 

scaffold provided the NIR fluorescence probe Cy-O-Eb (ex = 768 nm, em = 794 nm) (Figure 
40).557 Ebselen is a cyclic compound containing an amide nitrogen-selenium bond that in this 
study was proposed to be reduced by glutathione to cleave the Se-N bond and provide the free 
selenol to quench the appended fluorophore. Reoxidation to ebselen selectively by hydrogen 
peroxide restores fluorescence and this probe was used for reversible hydrogen peroxide imaging 
in HepG2 cells and for imaging hydrogen peroxide in the wound margins of zebrafish. The next 
year, Li and Yu reported the probe D-HMSe, which linked ebselen to a benzimidazole fluorophore 

(ex = 330 nm, em = 476 nm).558 The selenium of ebselen was proposed to be oxidized to the 
selenium oxide to provide a selective turn-on response. Recently, in 2023, Zhang reported the 
probe NapEb that appended ebselen to a naphthalimide fluorophore for a glutathione-reversible 

increase in fluorescence upon treatment with hydrogen peroxide (ex = 350 nm, em = 455 nm).559 
Interestingly, the authors proposed and provided mass spectrometry evidence for the ring-opened 
selenic acid as the fluorescent oxidized product. The three ebselen-based probe studies proposed 
three different oxidation mechanisms, suggesting that this chemistry is likely to be complicated 
and nuanced. A recent, mechanistically interesting example of a selenium-based probe was 
reported by Koide in 2020, where an allylic selenide linked to a hydroxymethyl fluorescein 
underwent a hydrogen peroxide-mediated Mislow-Evans rearrangement and ether cleavage with 
an increase in fluorescence (Figure 41).560 Hydrogen peroxide oxidized the selenide to the 
selenium oxide, followed by a [2,3]-sigmatropic rearrangement and cleavage of a hydroxymethyl 
fluorescein. The probe was used to image hydrogen peroxide in ionomycin-treated endothelial 
cells and wound healing in zebrafish. Sulfides have also been used as triggers for hydrogen 
peroxide detection. In 2016, Muthusubramanian developed a boranil linked to an alkyl phenyl 

sulfide to make SB-1 (ex = 370 nm, em = 503 nm), or to a diaryl sulfide to make SB-2 (ex = 370 

nm, em = 510 nm).561 Mass spectrometry evidence supported the formation of a sulfoxide product 
selective for hydrogen peroxide, and the probe was used for imaging hydrogen peroxide added 
to HeLa cells. Griesback studied a series of dialkyl sulfide triggers linked to phthalimide 
fluorophores in 2017 and showed that although these fluorescent probes reacted with hydrogen 
peroxide, they reacted more rapidly and efficiently with singlet oxygen, suggesting that the 
electronic environment (alkyl versus aryl) around the sulfide may play an important role in the 
selectivity of the sulfide trigger.562 In 2018, Xu reported an alkyl phenyl sulfide linked to a 
phenoxazium fluorophore that resulted in reduced PeT quenching upon oxidation of the sulfide to 

the sulfoxide resulting in an increase in near-infrared emission (ex = 590 nm, em = 676 nm).563 
The probe localized in lysosomes and was used to image hydrogen peroxide added to HeLa cells. 
Lastly, a single report of a tellurium-based probe was disclosed by Choi in 2014 that consisted of 
a diketopyrrolopyrrole-tellurophene conjugate that underwent oxidization at the tellurium atom 

with hydrogen peroxide to give a reversible and selective increase in fluorescence emission (ex 

= 500 nm,  em = 579 nm) (Figure 42).564 Chalcogens, with their rich redox chemistry, hold a special 
position for the design of detection strategies for reactive oxygen and nitrogen species. Careful 
studies of their reactivity and selectivity could yield useful insights into advancing their use as 
luminescent probes. Table 2, Section 8 summarizes these and any other examples of probes 
containing this trigger. 
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Figure 40. The fluorescent probe Cy-O-Eb as an example of ebselen trigger for H2O2 detection.557 

 

 
Figure 41. The fluorescent probe 1 as an example of seleno-Mislow-Evans rearrangement trigger for H2O2 detection.560 
 

 

 
Figure 42. The fluorescent probe Compound 3 as an example of tellurophene oxidation trigger for H2O2 detection.564 

 
Sulfate elimination (Table 2, Section 9) 
An interesting approach for a system that can reversibly monitor bisulfite/hydrogen peroxide 
cycles was initially developed by Sun and Wang in 2016 and consisted of an active methylene 
unit linked to a fluorophore (Figure 43).154 This probe HBT-Cy was designed using a 

benzothiazole-functionalized cyanine fluorophore that displayed fluorescence (ex = 390 nm, em 

= 590 nm) that is blue-shifted after conjugate addition of bisulfite (ex = 390 nm, em = 450 nm), 
followed by recovery of the red-shifted emission upon a proposed hydrogen peroxide mediated 
elimination of the formed sulfate. Although the mechanism of the hydrogen peroxide mediated 
elimination is not entirely clear, it was shown that it was partially selective for hydrogen peroxide 
with some cross-reactivity observed for tert-butyl hydroperoxide, hypochlorite, hydroxyl radical, 
and alkoxy radicals. HBT-Cy was used for reversible bisulfite/hydrogen peroxide imaging in MCF-

7 cells. In 2017, Yin reported a naphthopyran-benzothiazolium conjugate (ex = 400 nm, em = 

630 nm) that gave a similar blue-shift upon bisulfite addition (ex = 390 nm, em = 520 nm) that 
was recoverable with hydrogen peroxide.155 In 2019, another active methylene-fluorophore 
scaffold was designed and studied by Yin that was quenched by bisulfite and showed a turn-on 

response (ex = 570 nm, em = 660 nm) to hydrogen peroxide with mitochondrial localization in 
HeLa, HepG2, and in vivo mouse models.156 A similar mitochondrial targeting approach was also 

adopted by Hu in 2021 with the probe NBD (ex = 550 nm, em = 618 nm).565 Qi, in 2019 reported 
a cyclometalated iridium complex that showed reversible bisulfite/hydrogen peroxide sensing in 
a similar fashion.566 Meng, Wang, and Zang developed the probe NI in 2021, consisting of a 
naphthalimide connected to an active methylene unit that goes from a red-shifted fluorescence 
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(ex = 500 nm, em = 580 nm) to a blue-shifted fluorescence (ex = 430 nm, em = 510 nm) upon 
reaction with bisulfite, followed by recovery of the red-shifted fluorescence with hydrogen peroxide 
as shown in HeLa cells and in mice in vivo.567 Wang and Hu observed a slightly different type of 
reactivity in their probe BN-DUAL in 2022, where an initial conjugate addition to a dicyano active 

methylene unit quenches fluorescence (ex = 545 nm, em = 595 nm), and subsequent reaction 

with hydrogen peroxide cleaves the C-C bond to form an aldehyde with a yellow emission (ex = 

430 nm, em = 508 nm), and was used for sequential imaging of bisulfite and hydrogen peroxide 
in SKBR cells and mice.568 In 2023, Sun and Tang reported two probes, TPE-y, an AIE scaffold 
linked to a benzothiazole that showed reversible bisulfite/peroxide sensing in food samples with 

a reversible modulation of fluorescence (ex = 390 nm, em = 614 nm) with bisulfite quenching of 

fluorescence and peroxide recovery,569 and then DCA-Bba (ex = 600 nm, em = 685 nm), a 
benzopyran-barbiturate conjugate that showed quenched fluorescence with bisulfite that was 
restored with hydrogen peroxide and used for detection of bisulfite in food samples and reversible 
imaging in MCF-7 cells.570 The reversible nature of this trigger could be of interest in certain 
systems where the interplay of bisulfite and hydrogen peroxide is important. The mechanism of 
bisulfite elimination should be studied in more detail to elucidate the role that hydrogen peroxide 
plays to further understand the sensing capabilities of this class of triggers. Table 2, Section 9 
summarizes these and any other examples of probes containing this trigger. 

 

 
Figure 43. The fluorescent probe HBT-CyO as an example of sulfate elimination trigger for H2O2 detection.154 
 
Catechol oxidation (Table 2, Section 10) 
In 2012, Han designed and developed the probe DA-Cy using a catechol trigger linked to a 
cyanine fluorophore that, upon reaction with hydrogen peroxide, oxidized the catechol to the 

ortho-quinone with a reduction in PeT quenching fluorescence (ex = 630 nm, em = 755 nm) 
(Figure 44).345 The response was shown to be selective for hydrogen peroxide and hydroxyl 
radical and was reversible with glutathione which can re-reduce the ortho-quinone to the catechol. 
DA-Cy was used for imaging hydrogen peroxide added to HL-7702 and rat hippocampal neurons. 

Kaur and Kumar also reported the probe LyNC (ex = 450 nm, em = 537 nm) in 2017, consisting 
of a catechol linked to a naphthalimide scaffold with a catechol trigger and an appended 
morpholine group for lysosome targeting. Imaging was performed in LPS-treated C6 and BV-2 
cells. The selectivity and response for these probes for hydrogen peroxide versus superoxide is 
striking given the large volume of literature for the catechol trigger being selective for 

superoxide.266,268−272 Table 2, Section 10 summarizes these and any other examples of probes 
containing this trigger. 
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Figure 44. The fluorescent probe DA-Cy as an example of catechol oxidation trigger for H2O2 detection.345 

 

Payne/Dakin reaction (Table 2, Section 11) 
In 2017, Yang from the University of Hong Kong reported the Payne/Dakin reaction that uses 
hydrogen peroxide to convert an ortho-hydroxybenzaldehyde into a catechol as a trigger for 
hydrogen peroxide detection (Figure 45).571 This trigger was linked through a self-immolative 

linker to a rhodamine scaffold to form HKPerox-1 (ex = 520 nm, em = 543 nm) or a rhodol scaffold 

to form HKPerox-2 (ex = 480 nm, em = 527 nm). Operation of probes using the Payne/Dakin 
trigger requires the addition of CCl3CN, which was shown to be non-toxic in mammalian cell 
culture, enabling imaging of hydrogen peroxide in PMA-treated RAW 264.7 macrophages. 
Mechanistically, hydrogen peroxide nucleophilically attacks the nitrile carbon of CCl3CN to form a 
peroxytrichloroacetimidic acid (the Payne reaction), which adds to the aldehyde to induce a 1,2-
aryl shift and eliminate trichloroacetamide, forming the phenol after formate hydrolysis (the Dakin 
reaction). Yang collaborated with Shabat in 2020 to develop a chemiluminescent 1,2-dioxetane 
probe for hydrogen peroxide H2O2-CL-510 with chemiluminescence emission at 510 nm that was 
used to image hydrogen peroxide in As2O3 treated THP-1 cells and ischemia-reperfusion in rat 
brain.572 In 2020, Yang further developed two new Payne/Dakin-based probes, HKPerox-Red 

(ex = 565 nm, em = 602 nm) using a resorufin scaffold that was used to image hydrogen peroxide 
in PMA-treated RAW 264.7 and rotenone treated zebrafish, and the ratiometric probe HK-Ratio 

(ex = 410 nm, em = 475 nm / 540 nm) using a naphthalimide scaffold that was could monitor 
As2O3 triggered peroxide production in leukemia cells and serum starved RAW 264.7 
macrophages.573 In 2021, Yang from Northwest University, Xi’an developed a coumarin-based 

probe Cou-CHO (ex = 391 nm, em = 502 nm) that uses a Payne/Dakin trigger to image PMA-
stimulated hydrogen peroxide production in HepG2 cells.574 While the need for the addition of 
CCl3CN for probe operation is a potential complication, this additive has been shown to be non-
toxic for cell studies and this mechanistically interesting trigger remains relatively unexplored. 
Table 2, Section 11 summarizes these and any other examples of probes containing this trigger. 
 

  
Figure 45. The fluorescent probe HKPerox-1 as an example of Payne/Dakin trigger for H2O2 detection.571  
 
Carbonyl group perhydrolysis (Table 2, Section 12) 
In 2002, Maeda studied a series of ester-protected resorufin probes that showed selective 
hydrogen peroxide-mediated perhydrolysis and provided a fluorescence signal above background 
hydrolysis with water (Figure 46).575 Resorufin probes with the oxygen atom protected as an acetyl 
(AR), tert-butyl (TBAR), isobutyryl (IBR), cyclohexanecarbonyl (CHR), or pivaloyl (PVR) ester 
were all examined with PVR giving the best signal versus background hydrolysis. In 2013, 
Churchill used a bis-thiocarbamate-caged fluorescein that first reacted with Hg2+ to form a 
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carbamate, and then perhydrolyzed with hydrogen peroxide, making an AND logic gate for Hg2+ 

and hydrogen peroxide with a fluorescence increase (ex = 480 nm, em = 527 nm) that was used 
for imaging Hg2+ and hydrogen peroxide added to HeLa cells.576 Zhang reported the probe ACF 

(ex = 490 nm, em = ~520 nm) in 2016 consisting of a 2-(azidomethyl)benzoyl acid protecting 
group on dichlorofluorescein showing selective hydrogen peroxide imaging in HeLa cells.577 Other 

examples include an ester-protected rhodol derivative ACR (ex = 470 nm, em = 560 nm) 

designed by Zhan in 2017 and an ethyl ester coumarin derivative (ex = 390 nm, em = 505 nm) 
reported by Zeng in 2021.578 Wang and Liu developed a duo of coumarin probes connected to a 
1-fluoro-4-nitrobenzene linked to the coumarin through an ester without a carbon spacer FAA-
MC-OH or with a 1-carbon spacer FBA-MC-OH that both showed an increase in emission upon 

reaction with hydrogen peroxide (ex = 309 nm, em = 505 nm).579 The mechanism involved 
nucleophilic aromatic substitution of the fluorine atom with peroxide, followed by intramolecular 
ring closure and ester cleavage. FBA-MC-OH was shown to have a faster response to hydrogen 
peroxide and while it was selective, cross reactivity with hydrogen sulfide and hydrogen persulfide 
was observed. Recently in 2023, Yang developed the probe YQ-2, which is an acetate-protected 
dicyano fluorophore that undergoes a fluorescence increase upon perhydrolysis with hydrogen 
peroxide and was used to image peroxide in HeLa cells.580 Table 2, Section 12 summarizes these 
and any other examples of probes containing this trigger. 
 

 
Figure 46. The fluorescent probe AR as an example of ester perhydrolysis trigger for H2O2 detection.575 

 
Lanthanide binding (Table 2, Section 13) 
There are examples of using a lanthanide complex as a luminophore in combination with other 
peroxide triggers,581,582 but hydrogen peroxide binding to lanthanide centers has also been used 
as a mechanism to modulate luminescence. Wolfbeis initially studied the hydrogen-binding 
complex Eu(tc) in 2002583  with a full account in 2005,584 consisting of an Eu3+-tetracyclin 
compound that forms a peroxide-bound complex upon interaction with hydrogen peroxide, 

modulating lanthanide-based luminescence (ex = 405 nm, em = 616 nm) for measuring glucose 
oxidase enzyme activity. In 2014, Another example of a lanthanide-binding trigger was 
investigated by Zuchner, who reported a terbium phthalate complex that showed quenched 

luminescence (ex = 285 nm, em = 545 nm) upon complexing hydrogen peroxide.585 An advantage 
of lanthanide-based luminescence is that these molecules display long-lived luminescence 
lifetimes due to spin forbidden relaxation processes. If combined with a time-gated delay between 
excitation and emission, autofluorescence can completely decay to enable low background time-
gated detection and imaging of hydrogen peroxide in cellular systems.172,581,582 Table 2, Section 
13 summarizes these and any other examples of probes containing this trigger. 

 
Oxonium oxidation/cleavage (Table 2, Section 14) 

Conversion of an oxonium moiety into a carboxylic acid with C−O and C−C bond cleavage was 
reported as a fluorescence trigger for hydrogen peroxide imaging by Lin in 2016 (Figure 47).586 
The probe BC was formed from a benzopyrylium coumarin that yielded a ratiometric fluorescence 

response (ex = 410 nm, em = 472 nm / 693 nm) upon selective reaction with hydrogen peroxide 
to form a coumarin carboxylate, with some cross reactivity observed with peroxynitrite and 
hypochlorite. The ratiometric emission could also be excited with two-photon excitation at 760 nm 
and was used to image PMA-stimulated macrophages and zebrafish. In 2020, Li and Li developed 
a second example of this trigger in the form of the probe GCP, a coumarin-pyran-based 
fluorophore that reacted with hydrogen peroxide to cleave the oxonium and form a coumarin 
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carboxylate.587 The probe was armed with a galactose group for hepatocyte targeting and 

provided a ratiometric fluorescence response (ex = 410 nm, em = 482 nm / 706 nm)  that was 
used to image PMA and APAP-stimulated HepG2 cells, as well as hydrogen peroxide, PMA, and 
APAP treated zebrafish. Table 2, Section 14 summarizes these and any other examples of probes 
containing this trigger. 
 

 
Figure 47. The fluorescent probe BC as an example of oxonium cleavage trigger for H2O2 detection.586 
 
Aromatic amine oxidation (Table 2, Section 15) 
Oxidation reactions involving aromatic amines/anilines have been used as triggers to monitor 
hydrogen peroxide production. Duerkop and Wolfbeis in 2011 reported the fluorescence sensor 
HP Green consisting of a p-anisidine aromatic amine sensing unit connected to a naphthalimide 
scaffold (Figure 48).588 Oxidation of p-anisdine with hydrogen peroxide resulted in reduced PeT 

quenching of fluorescence (ex = 444 nm, em = 534 nm) in a reaction that was enhanced with 
horseradish peroxidase and used to measure glucose based on glucose oxidase activity. Also in 
2011, Ye and Yuan reported a 3,4-diaminophenyl ether linked to a terbium complex that reacted 
with hydrogen peroxide and horseradish peroxidase to provide an increase in long-lived 

lanthanide luminescence (ex = 315 nm, em = 542 nm) and was used for time-resolved imaging 
of oligosaccharide stimulated hydrogen peroxide production in tobacco leaves.582 In 2021, Meng 
reported TPE-TAF, a bis-phenylene diamine modified AIE fluorophore that responds to hydrogen 

peroxide/horseradish peroxidase with an increase in fluorescence (ex = 320 nm, em = 450 nm) 
with the proposed mechanism being enzyme-catalyzed cross-linking of the diamine units.589 
Lastly, Zhang and You reported a series of dialkyl amines connected to an AIE fluorophore in 
2022, including 2E2F (Figure 49), that undergo hydrogen peroxide mediated oxidation to the N-

oxide with a quench of fluorescence (ex = 360 nm, em = 475 nm),590 and these probes were used 
to image oxidative stress in apple cells and tobacco leaves. Table 2, Section 15 summarizes these 
and any other examples of probes containing this trigger. 
 

 
Figure 48. The fluorescent probe HP Green as an example of p-anisidine oxidation trigger for H2O2 detection.588 
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Figure 49. The fluorescent probe 2E2F as an example of amine oxidation trigger for H2O2 detection.590 
 
Other triggers (Table 2, Section 16) 
There are several other triggers that have been explored for the luminescence detection of 
hydrogen peroxide. Nakahara showed in 2008 that fluorescein hydrazide underwent an oxidation 
reaction with hydrogen peroxide (that was enhanced by Co2+) and induced an increase in 

fluorescence emission (ex = 494 nm, em = 527 nm).591 Kumar developed a  zinc chelated pyridyl 

imine linked to a naphthalimide that yielded a fluorescence response to hydrogen peroxide (ex = 

360 nm, em = 550 nm), as well as responses to Zn2+ and pyrophosphate  enabling the construction 
of a multi-analyte logic gate circuit.592 In 2017, Stains invented an innovative strategy for 
fluorescence detection of hydrogen peroxide by synthesizing pro-xanthene fluorophores where 
the central atom acts as a trigger, consisting of either a central borinic acid (RF620) or a silanediol 
(SiOH2R) (Figure 50), both of which were shown to react with hydrogen peroxide to insert an 
oxygen into the scaffold and form a rhodamine fluorophore.593 These were shown to be selective 

for hydrogen peroxide versus other ROS and provided a ratiometric response for RF620  (ex = 620 

nm / 550 nm, em = 636 nm / 570 nm) and SiOH2R (ex = 663 nm / 550 nm, em = 681 nm / 570 
nm) that was used to image hydrogen peroxide in PMA, EGF, or serum-starvation stimulated 
HeLa cells. Cui and Wang also designed a trigger using the central xanthene atom by caging a 

central phosphinate with a boronate to make the NIR probe PRB2-H2O2 (ex = 672 nm, em = 695 
nm), used for imaging rotenone-treated HepG2 cells and mice.497 Lou and Xia reported an 
oxidative tyrosine crosslinking strategy in 2018 where a bis-tyrosine modified AIE fluorophore TT 
was shown to be crosslinked upon reaction with hydrogen peroxide and myeloperoxidase to 

induce aggregation and turn-on aggregation induced fluorescence (ex = 320 nm, em = ~460 
nm).594 TT was selective for hydrogen peroxide and used to image PMA-treated RAW 264.7 
macrophages and RAW 264.7/HLF cell co-cultures. In 2018, Lin reported an interesting 
click/detect strategy where a tetrazole modified BODIPY first underwent photoclick reaction with 
a fumarate to form a quenched pyrazoline, followed by hydrogen peroxide mediated oxidation to 

the pyrazole with recovery of fluorescence (ex = 480 nm, em = 509 nm).135 The probe was used 
to image hydrogen peroxide in HeLa cells first incubated with a fumarate modified docetaxel to 
target microtubules, followed by addition of hydrogen peroxide. An interesting chemiluminescence 
reaction with hydrogen peroxide was reported by Zhu and Liu in 2022, where they identified and 
studied tetra-bromoquinone (TBBQ) as the bioluminescent substrate of the acorn worm.595 They 
showed that hydrogen peroxide underwent a nucleophilic substitution with two of the bromine 
atoms on the quinone to form a dioxetane intermediate that decomposed with chemiluminescence 
emission at 515 nm (Figure 51). Chen, Raay, and Manderville in 2022 showed the probe ACou-
Ind, a coumarin group attached to an indolenium with an ethylene linker, could undergo conjugate 
addition with hydrogen peroxide. This was followed by epoxide formation to give a ratiometric 

response to hydrogen peroxide (ex = 395 nm, em = 475 nm / 650 nm), and was used to image 
hydrogen peroxide in zebrafish.596 Finally, Li and Zhou reported in 2023 that the probe TBBP-Pro 
consisting of a 4-(1-cyanovinyl)-pyridinium can be cleaved to an aldehyde in an oxidative 
cleavage reaction with an epoxide intermediate to give an increase in fluorescence upon 458 nm 

excitation (ex = 458 nm, em = 617 nm).597 TBBP-Pro was shown to be mitochondrial targeted 
and was used to image PMA-stimulated zebrafish and mice treated with dextran sulfate sodium 
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to induce ulcerative colitis. Table 2, Section 16 summarizes these and any other examples of 
probes with other triggers. 
 

 
Figure 50. The fluorescent probe SiOH2R as an example of silane diol trigger for H2O2 detection.593 

 

 
Figure 51. The fluorescent probe TBBQ as an example of tetrabromoquinone oxidation trigger for H2O2 detection.595 
 
4.2.4 Concluding remarks for hydrogen peroxide probes 
Hydrogen peroxide has perhaps the best standing amongst reactive oxygen species as an 
important signaling molecule due to its temperate rate of reactivity that enables selective reaction-
based signaling. Two general strategies have been used to design luminescent probes for 
hydrogen peroxide that rely on either its oxidative or nucleophilic reactivity. Oxidation-based 
probes generally need careful consideration of selectivity versus other ROS. Probes that operate 
via two-electron oxidation mechanisms should be examined judiciously in comparison to 
peroxynitrite and hypochlorite, while probes that operate by one-electron oxidations may suffer 
cross-reactivity with superoxide, hydroxyl radical, and other free radical species. Boronate-based 
probes have been a very popular choice for luminescent probes that operate by a two-electron 
oxidation mechanism,386−390 and these should be used in combination with careful controls to rule 
out reaction with peroxynitrite, namely inhibiting production or direct scavenging of NO, a 
precursor to peroxynitrite. Hypochlorite can also be generated in many of the same biological 
scenarios as hydrogen peroxide, so cross-reactivity with this species should be examined in any 
given experiment. Other two-electron oxidation luminescent probe mechanisms such as those 

operating in -keto compounds538−541 and the Payne/Dakin-based probes571−574 show promise and 
should also be similarly investigated for their cross-reactivity with peroxynitrite and hypochlorite. 
Luminescence probes that operate via a nucleophilic-displacement mechanism (sulfonyl 
cleavage, perhydrolysis, etc.)532,575 must compete with background hydrolysis and reaction with 
abundant cellular nucleophiles like amines and thiols, which can be even more nucleophilic in a 
protein environment. These factors should be controlled for as best as possible. Classic 
commercially available probes like DCFH and DCFH-DA and Amplex Red are still in use, but as 
discussed above, they do not have ideal selectivity for hydrogen peroxide and/or require 
peroxidase activity to generate signal. Several boronate-based probes are commercially available 
with PY1 and PO1 being good options to use in cellular experiments to monitor hydrogen peroxide 
production when used in combination with the appropriate controls.147 
 
4.3 Hypochlorite 
4.3.1 Hypochlorite in health and disease 

Hypochlorite (−OCl) and hypochlorous acid (HOCl) are two protonation states of the reactive 

oxygen species (ROS) most often associated with the roles it plays as a powerful microbiocidal 
oxidizing agent.598 Hypochlorous acid is generated through enzymatic reactions in living 
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organisms, primarily by myeloperoxidase (MPO) found in white blood cells, which is especially 
abundant in neutrophils.599,600 This heme protein catalyzes the reaction between hydrogen 

peroxide (H2O2) and chloride ions (Cl−), resulting in the formation of HOCl. The primary function 
of MPO-generated HOCl is to eliminate microorganisms, contributing to the body's immune 
response. While HOCl is widely recognized for its biocidal properties during the immune 
response, overproduction of HOCl contributes to the progression of a range of inflammatory 
diseases, such as atherosclerosis, ischemia-reperfusion injury, and cancer.  
 

Owing to its pKa value of 7.5, HOCl exists in roughly equal concentrations with hypochlorite (−OCl) 
at physiological pH. Unlike hydrogen peroxide, which is relatively unreactive with biomolecules in 
the absence of enzymes, hypochlorous acid rapidly reacts with biomolecules, including DNA, 
RNA, proteins, carbohydrates, and lipids.601 Its rapid rate of reaction with biomolecules is one of 
the major reasons why it is such an effective biocidal agent. HOCl exhibits diverse reactivity with 
biomolecules, including with amino side chains, (e.g., lysine and histidine), sulfides (methionine), 
and thiols (cysteine), as well as nucleic acids and lipids. Thiols and sulfides react the most rapidly 

with HOCl (k2 ~ 107 M−1s−1). Thiols, especially cysteine and glutathione, react rapidly with HOCl 
to form the corresponding sulfenyl chloride. This highly reactive intermediate undergoes several 
different fates. Reaction with water gives sulfenic acid, which can be further oxidized to its 
corresponding sulfinic acid. Alternatively, a second thiol can react with the sulfenyl chloride to give 
a disulfide, which can be further oxidized to a thiosulfinate. The reaction of HOCl with sulfides 
gives the corresponding sulfoxide, which can be enzymatically reduced back to methionine. The 
reversible oxidation of methionine is an important signaling motif for the activation of redox-
responsive transcription factors. 
 
The reaction between HOCl and amines yields N-chloramines, which can, in turn, undergo 
secondary reactions, including chlorine transfer reactions. N-chlorination reactions occur quickly 

(k2 ~ 105 M−1s−1), with rate constants second only to thiols and sulfide reactivity. Given the 
abundance of amines in biological systems, N-chlorination is one of the most important routes of 
HOCl reactivity. HOCl commonly reacts with the α-amino group of free amino acids, the γ-amino 
group of lysine side chains and the imidazole side chain of histidine, yielding N-chlorohistidine. 
Other nitrogen atoms are also targeted, including the guanidinium of arginine and backbone 
amides to form the corresponding N-chloramides, though these rate constants are ~100,000 

times slower (k2 ~ 100 M−1s−1) than the reaction of HOCl with primary amines. Recent evidence 
indicates N-chlorination can convert blood plasma proteins to holdases and prevent protein 
aggregation, suggesting the use of N-chlorination as a potential reversible signaling motif in 
biology. Nucleobases, nucleosides, nucleotides, and nucleic acids are also common sites of 
reactivity, with N-chlorination happening faster at heterocyclic amines than exocyclic amines, 
potentially influencing genetic material stability. 
 
4.3.2 Classical detection techniques for hypochlorite 
Since the mid-2000s, HOCl detection has been dominated by luminescent probes as described 
in the sections below. However, prior to the widespread adoption of this technology, other 
methods have been employed, primarily focused on the detection of reaction products between 
HOCl and biological substrates.602 For instance, detection of the oxidation byproducts of HOCl 
provides an indirect method of assay HOCl presence. Because myeloperoxidase is released 
extracellularly from monocytes, elevated levels of oxidized amino acids, including 3,4-
dihydroxyphenylalanine have been isolated from human atherosclerotic lesions compared to 
healthy arterial tissue.603 Though HOCl oxidizes substrates rapidly, it also is able to chlorinate 
substrates, which allows for more rigorous connection between HOCl and biological activity. 
Chloramines form most rapidly; however, they are unstable and are challenging to detect/isolate. 
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Lipid chlorohydrins, in which formal addition of HOCl addition across a double-bond also provides 
insight into past presence of HOCl.604 Chlorinated aromatic rings, such as chlorotyrosine 
derivatives605 and 5-chlorocytosine as well as glutathione sulfonamide, are especially useful 
biomarkers for HOCl because they are stable enough for isolation and quantification. These 
metabolites can be separated by HPLC and detected with electrochemical means or GC/MS.606 
The characteristic fragmentation pattern of chlorine-containing substrates in GC/MS is particularly 
helpful to identify chlorinated biomarkers. An advantage to this approach is that the chlorinated 
substrates can be quantified; however, these techniques provide poor temporal information as to 
when the HOCl was generated. Antibodies for chlorotyrosine are also available, enabling the 
spatial distribution of chlorinated biomarkers to be determined by 
immunohistochemistry/immunofluorescence. Because this analysis must be done on fixed cells, 
this approach provides limited temporal information. 
 
4.3.3 Hypochlorite probes by trigger 
Dearylation (Table 3, Section 1) 
In 2003, Nagano developed the first selective probe for hypochlorous acid, a significant 
achievement in the field of reactive oxygen species (ROS) detection (Figure 52).607 This report 
not only opened the door for hypochlorous acid-specific probes but also laid the groundwork for 
creating other probes targeting reactive oxygen species such as hydrogen peroxide, peroxynitrite, 
and superoxide. An O-dearylation reaction was used to impart selectivity for HOCl over other 
ROS. Previously, the authors had observed that aryloxyphenols undergo O-dearylation by specific 
ROS, including hydroxyl radical, peroxynitrite, and HOCl, while remaining unreactive towards 
others.608 Inspired by this, they incorporated an O-dearylation mechanism into a fluorescent 
scaffold, resulting in a turn-on probe for hypochlorous acid. Out of several tested derivatives, 
aminophenol dearylation offered the highest selectivity. The aminophenol-derived fluorescein, 
known as APF, showed the highest relative reactivity with hypochlorite, although it also displayed 
some reactivity towards hydroxyl radical and peroxynitrite. However, this early probe effectively 
discriminated against singlet oxygen, superoxide, hydrogen peroxide, nitric oxide, and alkoxy 
radical, which previous probes had been unable to do. APF was demonstrated to be effective in 
detecting endogenously produced HOCl in PMA-stimulated neutrophils. Overall, this study not 
only pioneered the development of reactivity-based fluorescent probes but also established a 
comprehensive framework for their design, synthesis, selectivity testing, and biological imaging. 
 
Four years later, the Libby group employed an aminophenyl ether dearylation strategy to develop 

a near-infrared (NIR) analog for the fluorescent detection of −OCl.609 The longer emission 
wavelength enhances its suitability for bioimaging due to reduced tissue absorption. This 
sulfonaphthol fluorescein derivative, named SNAPF, was synthesized with the expectation that 
the aminophenyl ether trigger would provide high selectivity for hypochlorite over other reactive 
oxygen species while exhibiting a longer emission wavelength. Synthesis and characterization of 
SNAPF supported this hypothesis. SNAPF displays an absorption maximum at 614 nm and an 
emission maximum at 676 nm. Compared to the original APF compound, SNAPF's emission is 

red shifted by approximately 150 nm. Like APF, SNAPF exhibits excellent discrimination for −OCl 

over hydroxyl radical, H2O2, NO, ROO•, and O2
−. SNAPF was used to detect HOCl generated 

from stimulated human neutrophils, as well as hypochlorous acid in human atherosclerotic plaque. 
This demonstration showcased the modular nature of the aminophenyl ether dearylation trigger 
and its high selectivity for hypochlorous acid and hypochlorite over other reactive oxygen species.  
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Figure 52. The fluorescent probes HPF and APF as examples of the dearylation trigger for HOCl detection.607 

 
One drawback of fluorescent probes is their short fluorescence lifetime of the excited singlet state, 
which can be problematic in bioimaging. This is because autofluorescence from native cellular 
components may interfere with the fluorescent signal emitted by the probe. To address this issue, 
Yuan and coworkers developed an aminophenyl ether dearylation strategy to prompt emission 
from lanthanide complexes.610 The long-lived luminescence of lanthanides enables the use of 
time-gated measurement techniques to avoid interference from autofluorescence. The emission 
collection occurs after a brief delay, allowing autofluorescence signals to decay while preserving 
the long-lived luminescence for collection. The authors modified the classical aminophenyl ether 
trigger with an ortho-nitro group. Oxidation led to dearylation resulting in an enhanced lanthanide 
complex emission. The biological applicability of this probe was demonstrated in HeLa cells 
treated with hypochlorous acid and in macrophages after incubation with LPS and IFN-γ. 
Importantly, the steady-state luminescence signal was abolished when myeloperoxidase was 
inhibited, lending evidence that the optical signal was specific for HOCl over other ROS/RNS. 
Subsequent work by the same group showcased the versatility of the ortho-nitroaminophenylether 
trigger with the successful inclusion in a ruthenium complex.611 Nabeshima and co-workers also 
showed it could be used to trigger a HOCl-specific increase in luminescence from an iridium 
complex.612This trigger has also been applied in a cyanine-based probe for near-infrared imaging 
of hypoxic stress in zebrafish and mice.613 
 
The sensitivity of HOCl-triggered dearylation trigger to small molecular changes was elegantly 
demonstrated by Zhao and associates.614 The authors examined an N-dearylation from a BODIPY 
scaffold using 4-hydroxyaniline. They found that a minor alteration—changing a hydroxyl group 
to a methoxy group—shifted the selectivity of the probe from peroxynitrite to hypochlorous acid. 
The resulting methoxy derivative, named BMI-NI, exhibited excellent selectivity for hypochlorous 
acid over alkoxy radical, hydrogen peroxide, nitric oxide, superoxide, and hydroxyl radical. It also 
remained unresponsive to various thiol-containing compounds, such as cysteine, homocysteine, 
glutathione, and hydrogen sulfide. Critically, BMI-NI did not react to peroxynitrite. However, when 
the methoxy group was converted back to a hydroxyl group, the probe became selective for 
peroxynitrite over HOCl. Imaging experiments conducted in stimulated RAW 264.7 macrophages 
showcased BMI-NI’s capability to image endogenously produced hypochlorous acid. When 
myeloperoxidase was inhibited using 4-aminobenzoic acid hydrazide (4-ABAH), the fluorescence 
increase was abolished, confirming the probe’s selectivity for HOCl in cellular systems. 
 
Two-photon imaging is a technique that enables the use of long-wavelength excitation to prompt 
shorter-wavelength fluorescence emission. This approach offers a strategy to avoid excitation of 
native cellular chromophores. The incorporation of an aminophenol ether trigger into a 
benzothiazole dearylation probe delivers a two-photon probe for imaging endogenous HOCl.615 
Another probe with the advantages of both two-photon excitation and near-infrared emission was 
developed based on the Nile red scaffold but with an aminophenyl ether trigger to prompt a 
fluorescence turn-on. Known as Nil-ClO, this probe emits at 650 nm and has been successfully 
used to image hypochlorous acid in HeLa cells, RAW 264.7 macrophages, and in tissue imaging 
experiments.616 A separate effort yielded a lysosomal-targeted 2-photon probes for HOCl with a 
13 nM detection limit.617 
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Zhang and co-workers used a naphthalene scaffold to develop a hepatoma specific fluorescent 
probe for hypochlorous acid.618 This probe featured an aminophenol ether trigger and a triazole 
linked galactose moiety as a hepatoma targeting unit. It was used to detect endogenous 
hypochlorous acid in HepG2 cells. Like other aminophenyl ether-based probes, the galactose-
modified naphthalimide shows single analyte reactivity with HOCl. Because of the galactose 
targeting moiety the probe was internalized by HepG2 cells because they overexpress ASPG-R, 
which specifically recognizes galactose. This probe was also tested in MGC 803 cells, A549 cells, 
and SH SY5Y cells but only the HepG2 cells showed a signal from the galactose functionalized 
probe. A control probe without a galactose moiety showed similar uptake across the four cell lines 
confirming that galactose was the key motif necessary for efficient HepG2 uptake. 
 
Organelle directed probes provide a powerful tool to image subcellularly resolved HOCl. A report 
from Yuan and co-workers, building off their previously described luminescent complexes, 
showed that a europium complex could be directed to the mitochondria with a 
triphenylphosphonium group, and dearylation of a p-nitrophenylthioether with HOCl could be used 
to detect mitochondrial HOCl in cells and of exogenously applied HOCl in zebrafish.619 A rhodol-
based probe for hypochlorous acid was reported by the Yang group using a dichlorohydroxy 
phenyl ether trigger that could be directed to the mitochondria and engineered to have increased 
cellular retention.620  These probes were used to image hypochlorous acid in a middle cerebral 
artery occlusion model. A naphthalimide-based probe featuring a methyl sulfonamide group as an 
endoplasmic reticulum targeting group and an aminophenyl ether trigger to confer HOCl 
selectivity can track  image HOCl in the endoplasmic reticulum of HeLa cells.621 Table 3, Section 
1 summarizes these and any other examples of probes containing this trigger. 
 
Thioether oxidation / spirocyclic ring-opening (Table 3, Section 2) 
In 2007, Nagano and coworkers introduced an new strategy to link HOCl to an increase in 
fluorescence (Figure 53).622 This innovative probe, named HySOx, utilizes a thioether group, 
which not only maintains the spirocyclized non-fluorescent form but also acts as the center for the 
redox reaction. In the presence of HOCl, the oxidation of the thiol to a sulfonate triggers a ring-
opening process, converting the non-fluorescent dihydrofuran form of rhodamine to its quinoid 
form. HySOx shows excellent selectivity for hypochlorous acid over a library of other ROS, 

including HO•, ONOO−, NO•, O2
−, and H2O2. HySOx was effectively utilized to visualize 

phagocytosis by porcine neutrophils. A separate study in 2015 revealed that inclusion of a 
triphenylphosphonium on this platform could monitor hypochlorous acid in the mitochondria of 
macrophages during bacterial infection.623 Expanding on their earlier work in 2007, the Nagano 

group developed a long-wavelength analog based on a Si-rhodamine platform. This new analog, 
named MMSiR, emits at 670 nm, which is more than 200 nm red-shifted from the original HySOx 
rhodamine.624 Owing to this advancement, MMSiR was capable of in vivo imaging of HOCl in a 
mouse peritonitis model. The Si-rhodamine platform has also been used to develop a 
photoacoustic probe (PA-MMSiNQ) to track HOCl photoacoustically in a mouse subcutis 
model.625 Another contribution to long-wavelength HOCl imaging tools was made by the McCarroll 
group who reported a Si-fluorescein based analog called Hypo-SiF.626 Utilizing the 
thiospirocyclization trigger, this emits a red fluorescence at 606 nm upon oxidation with HOCl and 
exhibits both colorimetric and fluorescence responses. Interestingly, when exposed to excess 
hypochlorous acid, Hypo-SiF displayed the emergence of a new emission band resulting from 
chlorination of the xanthene ring. Hypo-SiF was used to monitor myeloperoxidase activity. A twist 

on this approach is to couple spirothioether oxidation to a -elimination. Because this mechanism 
relies on a bond-breaking process, the authors merged it into a FRET scaffold, in which oxidation 
liberated a fluorescein donor from its rhodamine acceptor, resulting in a ratiometric 
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chemodosimeter for HOCl.627 Table 3, Section 2 summarizes these and any other examples of 
probes containing this trigger. 
 

 
Figure 53. The fluorescent probe HySOx as an example of a thioether oxidation / spirocyclic ring-opening trigger for 

HOCl detection.622 
 
Dimethylthiocarbamate (DMTC) cleavage (Table 3, Section 3) 
The dimethylthiocarbamate (DMTC) trigger has been rapidly adopted in the generation of novel 
HOCl-specific probes because of its high selectivity and ease of synthetic incorporation. First 
reported in 2016, the Tang group utilized this switch to modify a naphthalimide scaffold, resulting 
in NDMTC (Figure 54).628 In the presence of HOCl, the DMTC undergoes oxidation and 
hydrolysis, releasing a hydroxy naphthalimide, leading to a large increase in fluorescence. The 
DMTC-based probe is highly selective for HOCl over more than 20 common ROS and RNS, metal 
ions, anions, and amino acids. In PMA-activated macrophages, NDMTC was used in one- and 
two-photon fluorescence imaging experiments. Pre-treatment of the macrophages with the MPO 
inhibitor, 4-aminobenzoic acid hydrazide, led to a suppression of the fluorescence increase, 
indicating that the observed fluorescence increase was HOCl-dependent. This trigger has 
subsequently been merged into coumarin platforms629 biscoumarin scaffolds630, rhodol 
scaffolds631, fluorescein631, and BODIPY.632  
 
The small size of the dimethylthiocarbamate group allows it to be merged with many different 
fluorescent scaffolds while also permitting additional subcellular targeting functionality to be 
installed. Mito-Q is a dimethylthiocarbamate-based HOCl probe that localizes to the mitochondria 
because of its positively charged lipophilic cation scaffold.633 When oxidized by HOCl, it 
undergoes a 1,6-elimination to prompt a fluorescence increase at 590 nm. Co-localization studies 
revealed high localization in the mitochondria. Because the positive charge is eliminated upon 
reaction with HOCl, it ensures the probe first localizes to the mitochondria to detect mitochondrial 
HOCl acid rather than reacting with cytosolic HOCl and then localizing to the mitochondria.  
 
HOCl-responsive endoplasmic reticulum targeted probes have also been reported with the 
dimethylthiocarbamate trigger. The same naphthalimide ER-targeted probe was reported by two 
groups:  first by the Lin group in 2019634 and then by the Zhang group in 2020.635 This probe 
features a naphthalimide scaffold with a dimethylthiocarbamate trigger and an ethylsulfonamide 
linked through the imide functionality. Like other dimethylthiocarbamate-based probes, this probe 
features high selectivity for HOCl over other common cellular analytes is capable of imaging HOCl 
in zebrafish and EC1 cells. A recent paper described the use of a phenylsulfonamide-
functionalized naphthalimide probe with a dimethylthiocarbamate trigger to image HOCl 
associated with the Golgi in HeLa cells.636 
 
An especially clear demonstration of the modularity of the dithiocarbamate motif was reported by 

the Guo group.637 A palette of different probes that span the emission range from 454−630 nm 
was synthesized. Remarkably, one derivative (C7) responded with a turn-on response to basal 
nanomolar concentrations of HOCl and a ratiometric response at high concentrations of HOCl. 
The authors proposed a phenol deprotonation that interrupted the ESIPT process was responsible 
for the dual-concentration range response. The probes were used to track HOCl in HepG2 cells, 
C. elegans and whole animal models. The dimethylthiocarbamate motif has also been combined 
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in NIR scaffolds, including dicyanopyran motifs for imaging HeLa cells, a DDAO scaffold for 
imaging cells, zebrafish, and live animals, and a cyanine-based probe has been used for imaging 
a mouse model of acute lung injury (ALI), which revealed an increase in HOCl as the severity of 
ALI increased. The ease of synthetic installation of the DMTC and its high specificity for HOCl 
makes it a popular motif for organelle-targeted,634,638 two-photon,630,639,640 NIR,632,641–643 and 
bioluminescent scaffolds.644 Table 3, Section 3 summarizes these and any other examples of 
probes containing this trigger. 
 

 
Figure 54. The fluorescent probe NDMTC as an example of an N,N-dimethylthiocarbamate removal trigger for HOCl 

detection.628 

 
Chalcogen oxidation (Table 3, Section 4) 
Early studies of S-oxidation by Churchill and co-workers established that thiophene oxidation 
could modulate the photophysical properties of BODIPY complexes.645 However, the first example 
of sulfide oxidation to detect HOCl was reported by Kim and coworkers in 2011 (Figure 55).646 
The authors reasoned that the oxidation of thioethers into sulfoxides could be triggered by 
hypochlorous acid, and this chemical change could be linked to modulating the optical properties 
of fluorescent scaffolds. A BODIPY core modified with methylthioether groups delivered a 
hypochlorous acid-based probe, 2 (Figure 55). In aqueous solution 2 displays an absorption 
maximum at 519 nm and an emission maximum at 650 nanometers. Oxidation of the electron-
rich methyl thioether groups significantly increased the quantum yield (Φ = 0.82) and blue-shifts 
the emission spectrum to 525 nm. 2 has good selectivity for hypochlorite over other common 
ROS. Imaging experiments in RAW 264.7 macrophages demonstrated that 2 could detect 
exogenously added hypochlorite and endogenously produced HOCl triggered with LPS and PMA 
stimulation. Inhibition of myeloperoxidase decreased the fluorescent signal confirming that the 
fluorescence increase was a result of an increase in intracellular hypochlorous acid. The use of 
sulfide oxidation as first described by Kim and coworkers has been extensively employed in the 
development of organelle targeted probes near IR probes and multi analyte probes. For instance, 
a PET-based probe using an acridine orange fluorophore was reported two years later. Sulfide 
oxidation abolishes PET quenching prompting an increase in 540 nm fluorescent submission. Like 
previous authors, this group reported their probe could detect endogenously produced 
hypochlorous acid in RAW 264.7 macrophages with LPS and PMA stimulation.647 A near IR 
cyanine 7 derivative with 789 nm emission has also been described. This probe can detect 
mitochondrial hypochlorous acid as well as quantitatively monitoring myeloperoxidase activity. A 
naphthalimide-based probe with a methyl ethyl ether trigger and a morpholino functionality 
enabled the detection of lysosomal hypochlorous acid.648 PT-1 is another naphthalimide-based 
lysosomal probe that relies on a PET quenching mechanism.649 PT-1 is capable of detecting 
endogenously produced HOCl in LPS and PMA-activated macrophages. To expand the sulfide to 
sulfoxide switch to live animal studies, the Zhang group developed PQI, a phenothiazine-
quinolinium platform that relies on sulfide oxidation to abolish PET quenching. This probe features 
a large Stokes shift. Excitation at 460 nm prompts emission at 588 nm across physiologically a 
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relevant pH range. The authors report excellent selectivity for PQI for HOCl excellent over 
common reactive oxygen species, anions, metal ions, and thiols.650 
 

 
Figure 55. A thioether-modified BODIPY fluorescent probe as an example of a sulfide oxidation trigger for HOCl 

detection.646 

 
The sulfide oxidation trigger integrates well with organelle-targeted hypochlorous acid probes. To 
date, HOCl detection with organelle targeted probes has been reported for mitochondria,651–655 
and lysosomes.656,657 Common directing motifs such as triphenylphosphonium groups have been 
used to deliver mitochondrial specific to track mitochondrial HOCl in HeLa cells and 
macrophages.658 Two sulfonamide-derivative naphthalimides were reported to localize to the 
endoplasmic reticulum and enable monitoring HOCl in the ER. Sulfonamide derivatized probes 
localize to the endoplasmic reticulum and detect hypochlorous acid using the sulfide to sulfoxide 
switch.659 Morpholine derivatized probes preferentially localize to lysosomes enabling the 
detection of lysosomal hypochlorous acid.660 However, both are turn-off probes, which limits their 
utility. Lysosomal targeted probes that rely on a morpholine subcellular directing group have also 
shown utility with the sulfide oxidation switch to detect lysosomal HOCl in macrophages and 
zebrafish.657   
 
The chalcogens sulfur and selenium share similar chemical properties, and this similarity has 
been explored by using a selenide to selenoxide oxidation switch. A PET-based BODIPY probe 
(HCSe) using a diphenylselenide oxidation was report by Liu and coworkers in 2013 (Figure 
56),661 the same year they reported a similar structure that used a sulfide oxidation switch.662 Like 
sulfide oxidation, selenide oxidation is, in some cases, highly selective for HOCl over other 
common ROS and RNS. Notably, the selenoxide could be converted back to the non-fluorescent 
selenide with glutathione, an abundant thiol-based tripeptide in the cytosol, showing that the probe 
can be cycled between its oxidized fluorescent form and reduced non-fluorescent form. 
Fluorescence imaging of RAW 264.7 cells showed that the response to HOCl and glutathione 
persisted in live cells. Endogenous HOCl was also detected in PMA-activated macrophages. Like 
sulfide-based switches, selenide-based probes have also been directed to lysosomes663 and 
mitochondria.664 This design logic has also been extended to tellurium-based probes, with a near 
IR aza-BODIPY-based that emits at 738 nm, and a BODIPY analog, based on the work of Liu and 
Wu, that uses a diphenyltelluride PET switch to modulate BODIPY fluorescence (Figure 57).665 
Selenide oxidation can also be coupled to more complex chemical changes. For instance, 
oxidation followed by elimination of the resulting selenoxide, a twist on the classic α-selenation 
reaction, has been used to trigger production of a highly fluorescent coumarin derivative.666 
Notably, in synthetic conditions, H2O2 and peroxyacids are used to effect the selenoxide 
elimination; however, the selenoxide trigger shows high selectivity for HOCl over other oxidants. 
This approach has also been merged into a two-photon scaffold to visualize HOCl in live cells and 
animals.667  
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Figure 56. The fluorescent probe HCSe as an example of a selenide oxidation trigger for HOCl detection.661 
 

 
Figure 57. The fluorescent probe HCTe as an example of a diphenyl telluride oxidation trigger for HOCl detection.665 
 

The HOCl-mediated deprotection of S,O and S,S ketals is another trigger that affords selective 

detection of HOCl when merged with an appropriate fluorophore. An early demonstration by 

Hwang and coworkers showed that a pyrene-based probe with a 6-membered dithiolane was 

selectively converted to its corresponding aldehyde with selectivity for HOCl over other ROS 

including H2O2, tert-butyl hydrogen peroxide, peracetic acid, and superoxide (Figure 58). The 

probe was also selective against all physiologically relevant alkali, alkali earth cations, anions, 

and common transition and heavy metals. However, these studies were performed in mixed 

organic/aqueous buffer at pH 5, which does not closely approximate common physiological 

conditions.668 

 

Figure 58. Hwang’s probe as an example of dithiolane removal for HOCl detection.668  

 

 

Figure 59. MITO-TP as an example of S,O-ketal removal for HOCl detection.669  

Four years later, a paper by Yuan and co-workers showed that S,O-ketals were selective motifs 
for HOCl imaging (Figure 59).669  In this report, TP-HOCl1 and mitochondrial and lysosomal 
targeted 2-photon probes (MITO-TP and LYSO-TP, respectively) were made with an S,O-ketal 
trigger. Acedan was chosen as the two-photon fluorophore. The authors reasoned that including 
the ketal would alter the push-pull ability of the fluorophore and yield a fluorescence turn-on upon 
HOCl-mediated conversion to the ketone. Selectivity for HOCl was excellent, with no response 
observed for hydrogen peroxide, hydroxyl radical, tert-butyl hydrogen peroxide, tert-butyl hydroxyl 
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radical, nitric oxide, superoxide, and peroxynitrite. The improved sensitivity and selectivity over 
the dithiolane analogs were proposed to be a result of having only a single sulfur atom needed 
for oxidative removal. Co-localization studies confirmed that the triphenyl phosphonium-modified 
probe was directed to the mitochondria while the morpholine-modified probe was directed toward 
the lysosome. Endogenous HOCl imaging was accomplished in RAW 264.7 macrophages with 
PMA stimulation and in tissue samples from LPS-treated mice. This comprehensive report firmly 
established the S,O-ketal as a selective and sensitive motif for HOCl detection, with subsequent 
reports showing that it can be incorporated into an acetyl-benzocoumarin two-photon dye for 
ratiometric HOCl imaging670 and as a way to monitor redox-cycling with HOCl and Cys/HCy in 
SKVO-3 cells.671 S,O-acetals are also effective HOCl-detecting motifs, with Liu and coworkers 
showing that their reported probe HPBD can be used to detect exogenous and endogenous HOCl 
672 and with Mao and co-workers showing that the S,O-acetal can be used to deliver a two-photon 
ratiometric probe QClO that can image HOCl generated during the wound healing process.673 
Table 3, Section 4 summarizes these and any other examples of probes containing chalcogen-
based trigger. 
 

Nitrogen atom oxidation (Table 3, Sections 5, 9, and 11) 
A variety of C=N bonds are used for the detection of hypochlorous acid. These include oxime, 
hydrazone, and imine bonds. HOCl is able to oxidize these moieties, which can be coupled to 
electronic changes in a fluorophore to give rise to a different emission profile. Dibenzoylhydrazine 
is known to undergo hypochlorite-dependent oxidation to dibenzoyl diimide, which further 
decomposes to the corresponding carboxylic acid. This reaction has been used extensively to 
ring open spirocyclized compounds and deliver conjugated fluorescent products. An early 
example of this strategy was reported by Chan and co-workers (Figure 60).674 The authors 
reasoned that this reaction could be coupled to a ring-opening process to give rise to a fluorescent 
rhodamine derivative. Their design was validated experimentally with a rhodamine-based 
dibenzyolhydrazine that responds to HOCl with an increase in fluorescence intensity at 578 nm, 
consistent with the ring opening mechanism.  Though no cell studies were conducted, this initial 
design would serve as the basis for more than a dozen related probes. Lysosomal probes directed 
with morpholine groups,675,676 ER directed probes with sulfonamide groups,677,678 and 
mitochondrial-directed probes.679  
 

 
Figure 60. A rhodamine-based fluorescent probe as an example of a diacylhydrazide oxidation trigger for HOCl 

detection.674   
 
A similar probe with a hydroxamic acid moiety shows improved selectivity for HOCl over other 
ROS (Figure 61).680 This probe was used to image NaOCl in A549 cell and in zebrafish. Because 
this detection motif results in a bond breaking event, it can be used in FRET probes as shown by 
Jia and coworkers. In this approach a dansyl probe was linked to a rhodamine via a diimide bond. 
Upon HOCl oxidation, the dansyl probe cleaves from the rhodamine, abolishing the FRET 
signal.681 Instead of linking the FRET pair through the dynamic bond, Xiao and coworkers used a 
coumarin fluorophore coupled to a rhodamine that was modified with the diimide.682 In the 
absence of oxidation, only emission from the coumarin was observed. Upon oxidation with 
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hypochlorite, energy transfer from the coumarin gave rise to a rhodamine emission.682 Several 
reports have shown that oximes also undergo HOCl-mediated oxidation. When the oxime is 
derived from hydroxylamine, upon oxidation, the oxime is converted to a strongly electron-
withdrawing cyano group, which can substantially change the emission profile. In some cases, 
the product is an aldehyde instead.683 
 

 
Figure 61. A rhodamine fluorescent probe as an example of a hydroxamic acid oxidation trigger for HOCl detection.680 

 
Imine, oxime, and hydrazone-based probes for HOCl have been extensively reported. The 

common molecular feature is a C=N bond, traditionally formed via condensation of an amine-

based nucleophile and a carbonyl group, either an aldehyde or ketone. Varying the specific 

functionality on the amine nucleophile has a strong effect on the stability of the conjugate to 

hydrolysis. As a general rule, oximes have the lowest rate of hydrolysis, followed by hydrazones, 

and imines have the fastest rate of hydrolysis. This is a key consideration when designing 

molecular probes that operate in aqueous conditions, as it is important to distinguish between 

hydrolysis-based mechanisms, often accelerated at lower pH conditions such as those found in 

lysosomes, and a true HOCl-mediated response.  

 

 

 

 

Figure 62. Flu-1 as an example of an oxime to aldehyde conversion for detecting HOCl.684 

An early example coupled the conversion of a fluorescein oxime derived from hydroxylamine to 

HOCl-triggered turn-on of fluorescence. The design of Flu-1 relies on HOCl-mediated removal of 

C=N isomerization in the oxime (Figure 62).684 Traditionally, non-radiative decay occurs through 

this molecular motion, quenching the fluorescence of a compound. Reaction with HOCl liberates 

hydroxylamine and converts the oxime to an aldehyde, which abolishes this route of quenching 

and restores fluorescence. Flu-1 shows good selective for −OCl over other anions, but it was not 

tested against other common ROS/RNS except for H2O2. Nevertheless, this early probe was an 

important example of using loss of C=N isomerization to prompt a fluorescence turn-on, and its 

utility was demonstrated for detecting −OCl in live HeLa cells. The conversion of oximes to 

aldehydes and/or acids has also been reported by a number of other groups, including coumarin 

scaffolds,685,686 hydroxynaphthalene scaffolds687, and NIR variants.688  
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Figure 63. Bodipy-OX as an example of oxime oxidation to a nitrile oxide for detecting HOCl.689  

 

An interesting extension of this work was reported by Emrullahoğlu, in which a BODIPY oxime 

(Bodipy-Ox) was shown to undergo HOCl-mediated oxidation to a nitrile oxide (Figure 63).689 The 

nitrile oxide product was confirmed by isolating and characterizing it, eliminating the possibility 

that the HOCl-produced product was the corresponding aldehyde or acid. This is in contrast with 

an almost contemporaneous report of BOD-OXIME690 and a later report of a lysosomal probe691 

that were proposed to yield an aldehyde product upon HOCl-mediated fluorescence turn-on. 

Other nitrile oxide probes have been reported, including a carbazole-pyridinium push-pull 

system,692 a long-wavelength BODIPY variant for ratiometric mapping,693 benzothiazole based 

systems,694 a rhodamine derivative,695 and multi-oxime scaffolds.696    

 

 
Figure 64. Yuan’s probe as an example of detecting HOCl with a DAMN trigger.697 

 

Diaminomalonitrile (DAMN)-based triggers are a common motif in HOCl probes. An early report 

from Yuan and co-workers drew analogy to dinitrophenylhydrazones and proposed that a C=N 

linked group with strong electron-withdrawing groups may offer selective reaction with HOCl 

(Figure 64).697 Indeed, this was the case, with Yuan’s probe responding rapidly to HOCl with a 

fluorescence turn-on via modulation of internal charge transfer (ICT). Isolation of the fluorescence 

product revealed that it was an aldehyde 7 from which Yuan’s probe was synthesized. This initial 

probe boasts several useful features, including a high selectivity, rapid reaction with HOCl, and a 

ratiometric output that makes it useful for imaging NaOCl in MCF-7 cells. 

  

The DAMN imine trigger has been rapidly adopted owing to its good performance and ease of 

synthesis. A double-DAMN carbazole scaffold was also identified to give the corresponding 

dialdehyde as a product.698 Like other C=N condensation-based probes, DAMN-based probes 

have been constructed from coumarin,699 though this probe was proposed to cyclize to a 

substituted imidazole upon reaction with HOCl; a biphenyl scaffold;700 an anthracene scaffold with 

~3 nM detection limit;701 and a BODIPY-based probe reminiscent of several oxime-based probes 

mentioned earlier.702 Table 3, Sections 5, 9, and 11 summarize these and any other examples of 

probes using nitrogen atom oxidation triggers. 

 

Thiosemicarbazide oxidation (Table 3, Section 6) 
Thiosemicarbazide oxidation offers high selectivity for HOCl over other ROS but results in a cyclic 
oxadiazole product instead of a bond breaking event. This trigger has been used extensively in 
the development of ratiometric, organelle targeted, and near IR probes. First reported by Yuan 
and co-workers, the cyclization of thiosemicarbazide to an oxadiazole was selective for HOCl over 
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H2O2, O2
−, CH3COOOH, and various metal ions, anions, and biomolecules (Figure 65).703 Their 

initial report included a ratiometric analog, featuring a coumarin and rhodamine cassette, and its 
utility was demonstrated by imaging exogenously added NaOCl in Bel 7702 cells and 
endogenously produced HOCl in stimulated RAW macrophages. A single-wavelength turn-on 
probe was reported soon after by Zuo and co-workers, which has also been used to image 
endogenously produced HOCl in macrophages.704 Because the cyclization product is an aromatic 
heterocycle, its production can be used to extend the conjugation of a fluorophore system and 
afford a through-bond energy transfer cassette. Zhang and co-workers used this strategy to 
deliver a ratiometric probe. Successful production of the oxadiazole extended the conjugation, 
yielding a ratiometric probe that could be used to image HOCl in activated macrophages.705 Table 
3, Section 6 summarizes these and any other examples of probes containing this trigger. 
 

 
Figure 65. A rhodamine-based fluorescent probe as an example of an oxadiazole formation trigger for HOCl 

detection.703 

 
Hydrazone oxidation (Table 3, Section 7) 
Hydrazone oxidation has also been reported to couple HOCl oxidation to an optical change. This 
reaction can lead to a difference in emission wavelength because of a loss of conjugation or a 
fluorescence turn on because of energy loss through the hydrazone C=N bond. In some cases, 
an aldehyde is the reported product. However, it is always important to distinguish between 
hydrolysis and HOCl-mediated transformations in triggers with potentially labile C=N bonds. This 
is especially important in acidic locales, such as lysosomes, where the acidic environment can 
promote hydrolysis. Nevertheless this mechanism has been used for HOCl detection in a number 
probes, including conversion of a BODIPY dihydrazone into its corresponding aldehyde (Figure 
66).706 Other probes, including some that trigger release of a conjugate moiety, have also been 
reported. For instance, Ding and co-workers reported a ratiometric variant to image HOCl in 
bacteria, eukaryotic cells, and zebrafish by employing a thiophene hydrazone trigger707 while 
merging a benzothiazole hydrazone to a coumarin scaffold enabled HOCl visualization in mung 
beans and live cells.708 The hydrazone functionality is versatile and easily installed through a 
condensation with formyl-functionalized fluorophore. For instance, a condensation between p-
sulfonylhydrazide and a formyl-derivatized coumarin delivers a sulfonylhydrazone probe in a 
simple two-step preparation that reacts selectively with HOCl over other ROS.709 An alternative to 
this approach, reported the Guo group, is to use a motif that extends the conjugation upon reaction 
with HOCl. In this case, an oxidative cyclization between a hydrazone pyridine results in a 
triazolopyridine product to yield bright fluorophores with good discrimination among common 
cellular ROS and metal ions (Figure 67).710 This trigger has also been converted into a 
mitochondrial directed probe by the same group.711 Table 3, Section 7 summarizes these and any 
other examples of probes containing this trigger. 
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Figure 66. A BODIPY-based fluorescent probe as an example of a hydrazone oxidation trigger for HOCl detection.706 

 

 
Figure 67. The rhodol-based fluorescent probe 1 as an example of a triazolopyridine formation trigger for HOCl 

detection.710  
 
C=C oxidation (Table 3, Section 8) 
Oxidative cleavage of alkenes is a commonly used detection motif in HOCl-probes, with more 

than 70 distinct HOCl-probes using this approach. Generally, these probes employ an electron-

deficient alkene, such as a dicyano alkene, which undergoes oxidative cleavage to the 

corresponding carbonyl compound in a reaction analogous to ozonolysis. In some cases, the 

epoxide product is proposed to form; however, in living cells, this compound likely undergoes 

reaction with endogenous nucleophiles. An early report used an alkene-linked ferrocene to 

quench the fluorescence of anthracene. Upon HOCl-mediated cleavage, the quenching was 

relieved, and the anthracene fluorescence was restored.712  

 

Figure 68. Probe CY-FPA as an example of alkene epoxidation for the detecting of HOCl.713 

The extended conjugation of cyanine dyes makes them a natural fit for HOCl-detection using 

alkene reactivity. Indeed, a cyanine scaffold initially functionalized with a chloride was unreactive 

to HOCl; however, modifying it with an amine gave CY-FPA, which had an appropriate electron-

richness to unlock its reactivity to HOCl (Figure 68).713 The reaction with HOCl was proposed to 

proceed through an epoxide intermediate that ultimately decomposes into other products. 

Because the reaction cleaves off a dimethylindole portion of the parent probe, the absorption 

wavelength changes from 710 nm to 520 nm with a concomitant decrease in its emission intensity.   
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Figure 69. AI as an example of alkene oxidative cleavage for HOCl detection.714 

 

Because C=C oxidation strategies effectively shorten conjugation and result in a shift in optical 

properties, it is an ideal approach to develop ratiometric probes. Lou and co-workers showed that 

a Cy7 scaffold (Cy7-NR) oxidizes to an epoxide with a concomitant shift in fluorescence emission, 

enabling ratiometric imaging.715 The indole functionality of cyanine dyes offers another position to 

tune the behavior of the probe. Zhang reported ClO1, which enabled HOCl imaging in A549 cells 

and in ex vivo samples from LPS-treated mice. Unlike CY-FPA, ClO1 shows a ratiometric 

response, rather than a fluorescence turn-off, upon the proposed epoxidation of the cyanine 

scaffold.716 Xiao and co-workers showed that a phenothiazine scaffold with a 

triphenylphosphonium mitochondrial targeting group and a dicyano alkene (PMN-TPP) 

undergoes HOCl-mediated cleavage to the corresponding aldehyde, resulting in a shift of its 

emission wavelength from 644 nm to 522 nm in 99.5% aqueous solution and 1% v/v Triton 

surfactant. Co-localization studies confirmed its mitochondrial localization and live-cell imaging 

showed it could detect HOCl from PMA-stimulated macrophages and in live animals.717 Other 

ratiometric fluorophores have also been reported, including ones based on AIE718 and on the 

oxidative cleavage of an anisaldehyde/dicyanoisophorone probe to enable selective ratiometric 

imaging of HOCl in live HeLa cells (Figure 69).714 Owing to the oxidative cleavage, dual-

fluorophore cassettes work well when linked through an alkene. Kang and co-workers used this 

strategy to link a coumarin and BODIPY through an alkene that is cleaved by HOCl via a purported 

epoxide intermediate. With excitation at 450 nm, the fluorescence intensity at 660 nm decreased 

with an increase in fluorescence at 510 nm, corresponding to the effectively cleaved product. This 

probe was used to image exogenous HOCl in HeLa cells and endogenous HOCl in a mouse 

model of arthritis.719 Park and co-workers used a similar strategy with a BODIPY conjugated to a 

2-dicyanomethylene-3-cyano-2,5-dihydrofuran (DCDHF) group.720   

Subcellular probes that utilize an alkene cleavage motif have also been reported. Indolium groups 

are effective at targeting probes to the mitochondrial.721 For instance, a mitochondrial-directed 

probe using a cationic indolium group linked to an HPQ fluorophore delivers a ratiometric 

response upon HOCl-mediated cleavage.722 A similar design, using an indolium linked to a 

coumarin also shows a strong ratiometric response to HOCl in the NIR region.723 N-alkylated 

pyridiniums are also effective targeting groups.724 To target probes to the lysosome, protonatable 

groups are effective. A diethylaniline directs BDHA to the lysosome while also reporting viscosity 

and serving as a turn-off probe for HOCl.725 Table 3, Section 8 summarizes these and any other 

examples of probes containing this trigger. 

4.3.3 Concluding remarks for hypochlorite probes 
Hypochlorite is well-known as a key ROS in the immune response, responsible for destroying 
invading pathogens. Its broad oxidative reactivity with endogenous amino acids and thiol-
containing biomolecules makes it challenging to detect with kinetically competitive fluorescent 
probes. Nevertheless, a variety of different probes can be modularly incorporated into different 
fluorescent, luminescent, two-photon, NIR, and organelle-targeted probes. Though boronic acid-
based probes have been reported for HOCl (Table 3, Section 10),726 their reaction with more 

abundant H2O2 and faster reaction with ONOO− is a persistent cause of concern about their 
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chemoselectivity. Hydrazone-706 and oxime-based probes727 have been reported to give several 
different reaction products with HOCl; however, both have been reported to deliver aldehyde 
products. As noted above, it is prudent to be wary of oxidative triggers that form identical products 
upon simple hydrolysis, especially when endogenous ligands may catalyze transimination 
reactions. Dimethylthiocarbamate moieties are especially selective and give a clear and 
consistent product upon reaction with HOCl.628 The cyclization of thiosemicarbazides gives 
similarly unique oxadiazole cyclization products with the added benefit of extending conjugation 
to yield ratiometric analogs.703 These existing probes provide a broad foundation on which to 
design next-generation probes, with color-coded outputs for multiple ROS built into a single probe. 
       
5. Luminescent probes for reactive nitrogen species 
5.1 Nitric oxide 
5.1.1 Nitric oxide in health and disease  
Nitric oxide is a diatomic radical species that was long known as a toxic gas728 but surprised the 
scientific community when it was discovered to be the long-sought endothelial derived relaxation 
factor (EDRF), the discovery of which was awarded the Nobel prize in 1998.729 Nitric oxide is a 
reactive free radical species that undergoes autooxidation with triplet oxygen to form nitrogen 

dioxide radical (NO2
•) with a large rate constant, but in a termolecular process that requires two 

equivalents of nitric oxide, making the rate steeply dependent on concentration.5 Combination of 

NO with NO2
• yields dinitrogen trioxide (N2O3), a potent electrophilic nitrosating agent that can 

react with thiol groups to form S-nitroso compounds. NO also reacts rapidly with superoxide (O2
−) 

to form peroxynitrite (ONOO−) that can directly mediate two-electron oxidations and induce 

tyrosine nitration via its radical decomposition products including NO2
•. Nitric oxide has high 

binding affinity to the iron in heme, and this chemistry mediates what is referred to as its canonical 
signaling pathway with soluble guanylyl cyclase.  
 
Nitric oxide is produced enzymatically from nitric oxide synthases, with three main isoforms in 
mammalian systems: neuronal nitric oxide synthase (NOS-1 or nNOS), inducible nitric oxide 
synthase (NOS-2 or iNOS), and endothelial nitric oxide synthase (NOS-3 or eNOS). It can also 
be generated from nitrate ingested in the diet via reduction to nitrite by the microbiome, followed 
by enzymatic reduction of nitrite to form nitric oxide.730 The canonical signaling pathway for nitric 
oxide in the vasculature refers to its production in endothelial cells by eNOS, where it can diffuse 
to the smooth muscle cell layer to induce relaxation. Nitric oxide binds to the heme in soluble 
guanylyl cyclase to activate cyclic guanosine monophosphate (cGMP) production that ultimately 
leads to smooth muscle relaxation.731 This molecule can also signal via formation S-
nitrosocysteine residues and other types of S-nitroso compounds to alter protein function,732 
formation of nitrate and nitrite,733 and through downstream reactive nitrogen species like 
peroxynitrite and nitrogen dioxide radical.734 Nitric oxide plays ubiquitous and important roles in 
human physiology, especially in the cardiovascular system, as it regulates blood pressure, 
mediates angiogenesis, and other effects.735 Nitric oxide is a key molecule in the phagocytic 
immune response, where it can combine with reactive oxygen species to form an arsenal of 
oxidative and nitrosative species to kill invading pathogens, as well as modulate the immune 
response through other signaling mechanisms.736 It can act as a neuronal messenger in the brain, 
mediating crucial functions in neuropathic pain and migraine headaches.737 Furthermore, it has 
an important role in cancer,738 the gastrointestinal tract,739 and is even involved in the relationship 
between psychosocial stress and respiratory infection.740 
 
5.1.2 Classical detection techniques for nitric oxide 
There are several non-luminescent probe strategies for detecting nitric oxide including nitrite 
detection using the Griess assay, ozone-based chemiluminescence, electron paramagnetic 
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resonance spectroscopy (EPR), and electrochemical techniques. The Griess assay741 
colorimetrically detects nitrite as an end-product of nitric oxide decomposition. The chemistry of 
the technique relies on the acidification of nitrite to form a nitrosating species that can convert 
sulfanilamide into a diazonium salt. The diazonium salt in turn reacts with N-naphthyl-
ethylenediamine to form a highly colored azo dye with an increase in absorbance at 540 nm. The 
Griess assay can be extended to include nitrate, another potential product of nitric oxide 
decomposition by first reducing nitrate to nitrite using a nitrate reductase enzyme. The advantages 
of the Griess assay are that it is well validated, reliable, and not as dependent on the timing of the 
measurement because it is measuring a stable decomposition product. Some of its disadvantages 
are that it is indirect and is incompatible with live-cell imaging, an important premise for the 
development of luminescent probes. Another well-established method is ozone-based 

chemiluminescence.108 Ozone reacts with NO to form nitrogen dioxide radical (NO2
•) in the excited 

state, which emits light in a chemiluminescent reaction. Commercial instrumentation has been 
developed to use this technique for detecting NO in a range of biological samples. This method 
is advantageous because it provides a more direct measurement of NO, has high sensitivity, and 
can be adapted to measure S-nitroso compounds and other nitric oxide stores. Its disadvantages 
include the required generation of toxic ozone gas, special instrumentation, the necessity to 
release NO from internal stores, and its incompatibility with live cell imaging. Electron spin 
paramagnetic resonance (EPR) spectroscopy742 measures free radical species based on the 
electronic spin state. While in principle it can detect nitric oxide without a label, NO has low 
abundance and a broad signal in the liquid state of biological systems, so it practically requires a 
spin trap. These spin traps are small molecules that react with nitric oxide to form a stable radical 
and include nitronyl nitroxides, iron dithiocarbamates, hemoglobin, and other types of probes. As 
discussed below, some spin traps have been adapted to provide a modulation in luminescent 
properties to act as luminescent probes for nitric oxide. EPR has several advantages. It is only 
sensitive to paramagnetic species, allowing better selectivity and signal to background. It also 
reports on the nitrogen isotope so can be used in labeling experiments to track down sources of 
nitric oxide generation. Lastly, it can detect other NO-derived paramagnetic biomolecules. The 
disadvantages include expensive instrumentation and the need for specialized technical 
expertise. Finally, nitric oxide can be measured using electrochemical techniques.743 
Electrochemical methods detect NO based on its oxidation or reduction potentials, which have 
the advantages of being direct, real-time, and label-free with disadvantages including biofouling 
and interferences from other reducible or oxidizable biological molecules. 
   
5.1.3 Nitric oxide probes by trigger 
Nitrosation triggers 
Nitrosation of amines by nitrosating species generated from NO and O2 (most likely N2O3) are a 
leading strategy for developing small molecule nitric oxide probes and we classify these into four 
types of N-nitrosation triggers as summarized in Scheme 1. N-Nitrosation type 1 triggers use an 
ortho-phenylenediamine starting material that is converted into a triazole product, type 2 triggers 
convert a 3-dimethylaminophenyl group into a fluorescent azo dye, type 3 triggers react with 
primary aromatic amines to form deamination or phenol products, and type 4 triggers convert 
secondary amines into stable N-nitroso compounds. These triggers and probes that use them are 
described in more detail in the sections below. 
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Scheme 1. N-Nitrosation trigger types. 

 
N-Nitrosation type 1 (Table 4, Section 1) 

2,3-diaminonaphthalene (DAN) (ex = 365 nm, em = 415 nm) was used as a fluorometric reagent 
in the 1970’s for detecting nitrite744 and nitrate745 based on N-nitrosation of one of the amines of 
a phenylenediamine motif followed by triazole formation, a process which we herein term as an 
N-nitrosation Type 1 detection mechanism. This ortho-phenylenediamine motif of DAN was later 
shown by Miles and Wink in 1996 to be useful for measuring nitric oxide based on the oxygen-
dependent formation of the nitrosating species dinitrogen trioxide (N2O3) from nitric oxide, which 
can perform the N-nitrosation type 1 chemistry.746 In 1997, Nagano developed a derivative of DAN 
that was more cell permeable DAN 1-EE and used it as an early example of imaging nitric oxide 
in living rat aortic smooth muscle cells.747 Shortly after, the same research group developed the 

widely used diaminofluorescein derivatives DAF, DAF-2, DAF-2 DA, and DAF-2 FM (ex = 495 

nm, em = 515 nm) that relied on the modulation of photoinduced electron transfer (PeT) 
quenching upon conversion of the ortho-phenylenediamine group into a triazole (Figure 70). DAF-

2 DA was used to image nitric oxide production in rat aortic smooth muscle cells.748−750 This probe 

has since been extensively used for different applications751−753 and is commercially available from 
a number of sources. The same N-nitrosation type 1 trigger was extended to diaminorhodamine 

DAR probes (ex = 560 nm, em = 575 nm) by Nagano in 2001, and the cell permeable probe DAR 
4M AM was utilized to image nitric oxide in bovine aortic endothelial cells using fluorescence 
microscopy.754  
 

 
Figure 70. The fluorescent probe DAF-2 as an example of N-nitrosation type 1 trigger for NO detection.

748
  

 

  
Figure 71. The fluorescent probe TMDABODIPY as an example of an N-nitrosation type 1 trigger for NO detection.

755
 

 

A diamino BODIPY scaffold TMDABODIPY (ex = 500 nm, em = 510 nm) with an ortho-
phenylenediamine N-nitrosation type 1 trigger was reported in 2003 by Zhang (Figure 71),755 with 

a number of BODIPY derivatives reported by Nagano and Zhang between 2003 and 2007,756−764 
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as well as a far-red BODIPY derivative reported by Zhang in 2013,765 a water soluble BODIPY 

reported by Liu in 2013,766 and many others.767−776 Nagano developed the first NIR nitric oxide 
probe in 2005 by appending an ortho-phenylenediamine N-nitrosation type 1 trigger to a cyanine 

scaffold DAC-S, which underwent reduced PeT quenching to increase fluorescence (ex = 750 

nm, em = 785 nm) after reacting with nitric oxide, and was used to image NO generated by a 
NOC-13 nitric oxide donor in an ex vivo rat kidney model.777 Many examples of NIR nitric oxide 

probes using this trigger have since been developed.778−783 In 2008, Zeng and Xu described a 
modified application of the N-nitrosation type 1 trigger that couples triazole formation with the 
spirocyclic ring opening of a spirolactam rhodamine (Figure 72) to provide a turn-on fluorescence 

response (ex = 554 nm, em = 574 nm).784  
 

 
Figure 72. The fluorescent probe Compound 1 as an example of a spirolactam ring opening modification of the N-

nitrosation type 1 trigger for NO detection.
784

 

 

Lin reported Cou-Rho-NO (ex = 410 nm, em = 473 nm / 583 nm), the first N-nitrosation type 1 
ratiometric probe for nitric oxide in 2011, which used a FRET approach by linking a coumarin to a 
spirolactam rhodamine that could undergo the spiro ring opening mechanism upon triazole  

formation.785 This probe was used to image nitric oxide generated in LPS/IFN- stimulated RAW 
264.7 macrophages. Jin and Dai used a similar FRET-based approach in 2013 with a spirolactam 
rhodamine, but linking to a BODIPY fluorophore as part of the FRET pair instead of a coumarin 

(ex = 488 nm, em = 510 nm / 590 nm).786 Many other ratiometric N-nitrosation type 1 probes are 

now available in the literature.124,776,781,786−793 Kim and Cho developed the two-photon nitric oxide 
probe ANO-1 in 2012 that used a high two-photon cross section fluorophore 2-acetyl-6-
dialkylaminonaphthalene (acedan) linked to an ortho-phenylenediamine N-nitrosation type 1 
trigger that underwent reduced PeT quenching upon triazole formation causing an increase in 

fluorescence emission (ex = 370 nm, em = 502 nm).794 ANO-1 could be employed for two-photon 

microscopy imaging (750 nm excitation) in LPS/IFN- treated RAW 264.7 and NMDA treated rat 
hippocampal slices. There is now a wide scope of other two-photon probes for nitric oxide using 

the N-nitrosation type 1 trigger.795−802  
 
Many organelle-targeted probes have been developed using the N-nitrosation type 1 trigger. In 

2012, Xiao and Jin developed a lysosome-targeted probe LYSO-NINO (ex = 440 nm, em = 530 
nm) by appending a morpholine targeting group to a naphthalimide scaffold with the N-nitrosation 
type 1 trigger, and used it to image nitric oxide in stimulated RAW 264.7 macrophages.795 In 2013, 
Jin reported a triphenylphosphonium-appended mitochondrial targeted probe Mito-Rho-NO using 

an N-nitrosation trigger (ex = 559 nm, em = 585 nm) and this probe was used to image nitric 
oxide in the mitochondria of RAW 264.7 and MCF-7 cells.803 Hu and Yang developed a HaloTag 
approach to organelle targeting in 2015, where they designed and synthesized the alkyl halide 

modified DAF, HTDAF-2DA (ex = 488 nm, ex = 512 nm), and showed that by appropriate 
expression of the HaloTag fusion protein, localization to the cytosol, nucleus, plasma membrane, 
and mitochondria could be accomplished in HeLa, MCF-7, or RAW 264.7 macrophages.131 A 
similar approach using a SNAP tag has also been reported.804 In 2020, Krishnan harnessed DNA 

for nitric oxide detection and developed targeted probes by linking a diaminorhodamine  (ex = 

550 nm, ex = 575 nm) to DNA sequences that target the plasma membrane NOckoutPM (with an 
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Alexa 488 fluorophore as a reference signal for ratiometric imaging) or trans-Golgi network 
NOckoutTGN (using Alexa 647 as a reference fluorophore for ratiometric imaging). This probe 
series was used to image nitric oxide simultaneously in multiple organelles in T-47D cells,124 and 
additional NOckout constructs were later used to image NO in live brains.805 Zhang and Xiao 
reported an interesting click chemistry approach for organelle targeting in 2022 by linking a 

spirolactam rhodamine diamine to a tetrazine unit to make the probe TMR-Tz-NO (ex = 555 nm, 

ex = 585 nm).806 The probe could be modified via a tetrazine/cyclooctyne click reaction with 
chemical handles to target the mitochondria (triphenylphosphonium), lysosomes (morpholine), 
and the plasma membrane (tetra-acetylated d-mannosamine), and this strategy was used to 
image LPS treated RAW 264.7, HeLa cells, and zebrafish.806 Many other probes have been 

developed to target the mitochondria,807,798 lysosomes,808−810 endoplasmic reticulum,799 
hepatocytes,811 plasma membrane,133 nucleus,791 and Golgi apparatus.812  
 
Urano reported the bioluminescent nitric oxide probe DAL in 2015 using a bioluminescent 
enzyme-induced electron transfer (BioLeT) strategy by linking an ortho-phenylenediamine-
modified luciferin that remained a substrate for luciferase but was quenched by the appended 
ortho-phenylenediamine.813 An increase in bioluminescence emission at 600 nm could be 
obtained upon NO-mediated conversion to the triazole in an N-nitrosation type 1 mechanism. This 
probe was used for in vivo imaging in a luc-Tg rat treated with NOC7. In 2022, Chan described 
another bioluminescence probe shifted into the NIR regime BL660-NO using the luciferin analogue 
AkaLumine with a modified ortho-phenylenediamine linked via an amide linkage.814 In an 
interesting modification of the N-nitrosation type 1 mechanism designed to release a carboxylic 
acid, NO-induced triazole formation followed by hydrolysis (Figure 73) yielded the free luciferin 
with 660 nm NIR emission and was used to image NO generated in A549-Luc2 lung tumors in 
vivo.  
 

 
Figure 73. The fluorescent probe BL660-NO as an example of a triazole hydrolysis N-nitrosation type 1 trigger for NO 

detection.
814

 

 
Several photoacoustic nitric oxide probes have been reported. Yuan and Zhang disclosed the 
photoacoustic probe PS in 2018 consisting of a thiadiazole with an ortho-phenylenediamine N-
nitrosation type 1 trigger that induces a red-shift after triazole formation with the optimal 
photoacoustic excitation shifting from 368 nm to 568 nm. PS was used for photoacoustic imaging 
of nitric oxide in LPS-treated mice.815 In 2023, Chen, He, and Liu developed a blood-brain barrier 
permeable photoacoustic N-nitrosation type 1 BODIPY probe that shifts the photoacoustic 
excitation maximum from 790 nm to 690 nm upon nitric oxide mediated triazole formation and the 
probe was used for ratiometric photoacoustic imaging in a Parkinson’s disease mouse brain.776 
Chan and Scott developed another photoacoustic probe in 2023 based on a short-wave infrared 
(SWIR) xanthene fluorophore appended with amino thiofuran groups to extend conjugation and 
red-shift emission.816 This probe SCR-NO undergoes spirocylic ring opening and hydrolysis upon 
NO-mediated triazole formation to provide a turn-off photoacoustic response at 895 nm. SCR-NO 
was formulated into nanoparticles with IR-1061 for ratiometric imaging of nitric oxide in a mouse 
model of drug induced liver injury. The N-nitrosation type 1 strategy has been used in many other 

fluorogenic designs, including acridine,817,818 naphthalimide,808−821 luminescent ruthenium, 
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768,822−824 iridium,825,801 europium,826,827 and terbium809 complexes, spirobifluorene,828 

dibenzoxanthenium,829 silicon rhodamine,780−782 and thiadiazole, 783,810,815,830 among others. It has 

also been used in several multi-analyte probe approaches.831−834 While this N-nitrosation type 1 
trigger for nitric oxide detection was among the earliest developed triggers, it still remains among 
the most popular approaches for imaging nitric oxide in living cells. Table 4, Section 1 summarizes 
these and any other examples of probes containing this trigger. 
 
N-Nitrosation type 2 (Table 4, Section 2) 
While the N-nitrosation type 1 conversion of an ortho-phenylenediamine motif into an aryl triazole 
has been extensively utilized, there is documented cross-reactivity with biomolecules like 
dehydroascorbic acid that must be carefully considered when using probes that rely on ortho-
phenylenediamine nitrosation.835,836 In order to address this short coming, Anslyn and Shear 
developed a trigger based on N-nitrosation of an aniline unit followed by electrophilic aromatic 
substitution of a 3-dimethylaminophenyl group to form a fluorescent azo fluorophore, which we 
here refer to as an N-nitrosation type 2 trigger,837 and is also generally referred to as a covalent 

assembly approach. The probe NO550 (ex = 470 nm, em = 550 nm) was the first to use this N-
nitrosation type 2 trigger (Figure 74) and overcomes dehydroascorbic acid cross-reactivity by 

having just one amine. It was used for imaging neonatal spinal astrocytes treated with IFN- and 
IL-1β, and was later validated in primary vascular endothelial cells, fibroblasts, and stem cell-
derived endothelial cells.214 A scalable synthesis of NO550 has been reported.215  In 2014, Guo 
showed how this 2-amino-3’-dimethylaminobiphenyl N-nitrosation type 2 trigger could be 
generalized by appending the trigger to a BODIPY fluorophore and showing that PeT quenching 

could be effectively modulated to increase fluorescence emission (ex = 480 nm, em = 518 nm) 
after reacting with nitric oxide.838 The probe was used to image nitric oxide in DEA NONOate 
treated HL-7702 cells. Zhang showed in 2017 that this approach could be extended to ratiometric, 
two-photon, and mitochondrial-targeted imaging by synthesizing the probe Mito-N, an amino 
naphthalimide with an appended 2-amino-3’-dimethylaminobiphenyl N-nitrosation type 2 trigger 

that resulted in a shift in the fluorescence emission maximum (ex = 500 nm, em = 540 nm / 595 
nm) for ratiometric imaging.788 Mito-N was used to image nitric oxide in RAW 264.7 cells 

supplemented with L-arginine and treated with IFN- and LPS, as well as for in vivo imaging in 

LPS treated mice. Zhou and Song developed the probe NO-QA5 (ex = 432 nm, em = 540 nm) in 
2017, based on appending a 3-dimethylaminophenyl group to a 5-aminoquinoline. This probe has 
a high two-photon cross section with excitation at 760 nm and was used to image nitric oxide in 
stimulated RAW 264.7 macrophages and in mouse liver slices treated with the nitric oxide donor 
SNP.839 In 2020, Song designed a similar quinoline scaffold bit with the amine at the 6-position of 
the quinoline and the 3-dimethylaminophenyl group at the 5-position, which granted the probe 

RatioTr a ratiometric response when reacting with nitric oxide (ex = 345 nm / 428 nm, em = 440 
nm / 538 nm) with a single excitation at 370 nm used for ratiometric spectroscopy and imaging 

(ex = 370 nm, em = 424 nm / 530 nm) in stimulated RAW 264.7 macrophages.840 In 2020, Shear, 

Anslyn, and Yang reported derivatives of NO550, NO530 (ex = 445 nm, em = 530 nm) with one of 

the amines tied back in a six-membered ring, and NO562 (ex = 470 nm, em = 562 nm) with both 
amines tied back into six-membered rings.841 These probes were all validated in stimulated RAW 

264.7 macrophages. In 2022, Luo and Yang developed the probe NOP3 (ex = 450 nm, em = 530 
nm) which combines the N-nitrosation type 1 and type 2 triggers and they showed that the type 2 
trigger displayed faster kinetics.842 NOP3 exhibited lysosome localization and was used to image 

nitric oxide in LPS-treated RAW 264.7. Recently in 2023, Zheng reported the probe MTNO (ex = 

344 nm, em = 457 nm) which used a naphthalimide scaffold and triphenylphosphonium group to 
image mitochondrial localized nitric oxide in stimulated RAW 264.7 and in two-photon microscopy 
imaging of liver slices treated with sodium nitroprusside using 760 nm two-photon excitation.843 
Although the selectivity versus dehydroascorbic acid should be a clear advantage, the number of 
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probes being developed that use the N-nitrosation type 2 trigger is smaller than those being 
developed with the type 1 trigger. We believe this is likely due to the type 2 trigger being more 
synthetically difficult as well as design challenges to develop probes that will be able to modulate 
luminescence output based on this N-nitrosation type 2 trigger. Table 4, Section 2 summarizes 
these and any other examples of probes containing this trigger. 
 

 
Figure 74. The fluorescent probe NO550 as an example of N-nitrosation type 2 trigger for NO detection.

837,844,845 

 
N-Nitrosation type 3 (Table 4, Section 3) 
Another class of N-nitrosation triggers aimed at eliminating interference from dehydroascorbic 
acid involves the nitrosation of a single primary amine followed by deamination (Figure 75) or 
hydrolysis (Figures 76). In 2012, Wang showed that the probe FA-OMe consisting of the methyl 
ester of 5-aminofluorescein underwent deamination upon reaction with nitric oxide with a 
concomitant increase in fluorescence emission (Figure 75).846 The proposed mechanism 
proceeded first by nitrosation of an aromatic amine with N2O3 (formed from NO and O2), followed 

by nucleophilic substitution of nitrite to release NO−, a second N2O3-mediated N-nitrosation step, 
rearrangement, and finally decomposition to N2, NO3 radical, and an aryl radical that abstracts a 

hydrogen from solvent. FA-OMe displayed a selective fluorescence increase (ex = 460 nm, em 
= 524 nm) upon reaction with nitric oxide and was used to image nitric oxide production in LPS-
stimulated macrophages. In 2014, Ramaih also reported using a monoamine trigger (Figure 
76).847  However this group showed that reaction with nitric oxide yielded a phenol product 
proposed to form as the result of hydrolysis of a diazonium salt generated from reaction of the 
monoamine with N2O3. The probe itself was a bis-azido-BODIPY that first reacts with hydrogen 
sulfide to form the bis-aromatic amines, followed by the N-Nitrosation type 3 hydrolysis reaction 

with nitric oxide to form the bis-phenol with an increase in fluorescence (ex = 740 nm, em = 815 
nm).  
 

 
Figure 75. The fluorescent probe FA-OMe as an example of N-nitrosation Type 3 deamination trigger for NO 

detection.
846
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Figure 76. The fluorescent probe 2c as an example of N-nitrosation type 3 hydrolysis trigger for NO detection.

847
   

 
Hu and Liu reported a second example of a subsequent hydrogen sulfide/NO probe in 2018 that 
employed an azide to monoamine hydrogen sulfide trigger followed by reaction of the monoamine 
with NO through a proposed N-nitrosation type 3 deamination mechanism.848 They showed that 
5-azido fluorescein first reacted with hydrogen sulfide to turn off fluorescence followed by reaction 
to nitric oxide to give the N-nitrosation type 3 deamination product with an increase in fluorescence 

(ex = 465 nm, em = 526 nm). The probe was validated for cellular microscopy imaging in PC12 
cells sequentially treated with NaSH and SNP. Luis and Galindo developed an ortho-
hydroxyaminobenzene trigger in 2014, which they linked to a triaryl pyrylium scaffold and 
identified the deamination product with excess nitric oxide as confirmed by single crystal x-ray 

crystallography.849 Reaction with nitric oxide gave an increase in fluorescence (ex = 470 nm, em 
= 550 nm), and the probe was used to image nitric oxide in RAW 264.7 macrophages using L-
NMMA inhibition as a negative control. In 2021, Galindo reported an improved structure mtNOpy 

(ex = 480 nm, em = 585 nm), using an ortho-methoxyamine trigger and demonstrated that the 
pyrylium scaffold granted mitochondrial localization for imaging LPS-treated RAW 264.7, as well 
as capability for monitoring NO production in leukocytes and neutrophils using flow cytometry.850 

Guo designed and synthesized a series of monoamine probes in 2017, including MA (ex = 475 

nm, em = 519 nm) based on a BODIPY scaffold and NIR-MA (ex = 750 nm, em = 794 nm) based 
on a cyanine scaffold.1730 They provided mass spectrometry confirmation of the deamination 
product and proposed a mechanism in which the NO-mediated formation of a diazonium salt 
reacts with another equivalent of nitric oxide to form the aryl radical and NO+. Both probes were 
used to image NO in LPS-treated macrophages and NIR-MA was used for whole animal in vivo 
imaging in NOC-9 treated mice. A short time later, Cheng, Li, and Liu reported the probe ENNH2 

which operates via deamination of a naphthalimide scaffold providing a ratiometric response (ex 

= 460 nm, em = 530 nm / 605 nm) and was used for imaging nitric oxide in LPS treated RAW 
264.7 macrophages and zebrafish.792 Lastly, Guo developed the para-methoxyphenylamine 

trigger/BODIPY scaffold probe BDP3 (ex = 648 nm, em = 668 nm) in 2023.851 This probe was 

validated by measuring nitric oxide production in IL-4 or LPS/IFN- treated macrophages and 
characterization of RAW 264.7 macrophages polarized into M1 or M2 phenotypes. Additionally, 
BDP3 was used to investigate reprogramming of tumor associated macrophages by 
immunotherapeutic drugs in vivo. While the N-nitrosation Type 3 trigger has found application with 
several scaffolds, there are differing reports which make it difficult to predict which product 
(deamination versus hydrolysis) will be preferentially formed. Table 4, Section 3 summarizes 
these and any other examples of probes containing this trigger. 
 
N-Nitrosation type 4 (Table 4, Section 4) 
As opposed to primary amines, secondary amines undergo N-nitrosation to form a stable N-
nitroso product. In 2016, Guo first showed that the stable N-nitrosation of a secondary amine 
could be used as a NO-detection trigger by linking a benzylphenyl amine to a BODIPY scaffold 

which underwent reduced PeT quenching and an increase in fluorescence (ex = 490 nm, em = 
518 nm) upon NO-mediated formation of the N-nitroso compound (Figure 77).852 The probe was 
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shown to be selective for nitric oxide versus dehydroascorbic acid and other species, with a slight 
increase in signal observed upon reaction with peroxynitrite. The stable N-nitroso product was 
observed by mass spectrometry. The probe could be attached to a triphenylphosphonium unit for 
mitochondrial targeting and was used to image nitric oxide production in L-arginine supplemented, 

LPS/IFN- treated RAW 264.7, as well as in an oxygen-glucose deprivation (OGD) ischemic 
model in EA.hy926 cells. In 2017, Liu used a secondary methylaniline trigger linked to a silicon 

rhodamine scaffold to make the two-photon (ex = 820 nm) and near-infrared fluorescence probe 

SIRNO (ex = 653 nm, em = 670 nm) that operated via reduced PeT quenching upon formation 
of the N-nitroso product.853 SIRNO was used to image nitric oxide in L-arginine supplemented, 

LPS/IFN- treated RAW 264.7 tumor xenograft slices from mice using c-PTIO as a negative 
control. Ali reported a series of probe that use this N-nitrosation type 4 trigger starting in 2018 with 

the ratiometric probe PyDA-NP (ex = 390 nm, em = 445 nm / 523 nm) using a pyrene scaffold 
and secondary amine,854 followed by the probe PQPY with emission at 505 nm that interestingly 

used N-nitrosation of an imidazole unit as a trigger,855 and finally the probe HqEN480 (ex = 390 

nm, em = 480 nm) which demonstrated that N-nitrosation of a secondary amide on a quinoline 
fluorophore could also be used as a trigger for imaging nitric oxide in HepG2 cells.856 A study by 
Chan in 2018 aimed at developing a photoacoustic probe for nitric oxide imaging was particularly 
informative because it directly compared N-nitrosation type 1, type 3, and type 4 triggers and 
demonstrated that the type 4 trigger was optimal because it resulted in faster kinetics, a simplified 
reaction mechanism, and was synthetically more accessible.790 The probe APNO-5 that used this 
trigger with an ortho-methoxy aniline on an extended BODIPY scaffold showed an absorption 
blue-shift from 764 nm to 673 nm upon reaction with nitric oxide and was used for ratiometric 
photoacoustic imaging with 680 nm and 770 nm excitation. It was selective for nitric oxide 
although some cross-reactivity with peroxynitrite was observed. The probe APNO-5 was also 
utilized for photoacoustic imaging of nitric oxide in LPS stimulated mice. Chan later optimized this 
scaffold to develop the probe SR-APNO-3 in 2020.857 In 2019, Guo synthesized a para-methoxy 

secondary amine linked to a BODIPY scaffold and observed a robust response (ex = 485 nm, em 
= 518 nm) for nitric oxide via N-nitrosation, but response was also observed for peroxynitrite.858 
The product from reaction with peroxynitrite was identified as an ortho-iminoquinone, providing a 
plausible explanation for some of the peroxynitrite cross reactivity seen with some of the other 
reported probes. The probe contained a triphenylphosphonium moiety for mitochondrial targeting 
and was used to study NO communication in co-cultures of macrophages and SKOV-3 cancer 

cells. Zeng and Wu reported the NIRII/photoacoustic probe QY-N (ex = 808 nm, em = 935 nm) 
in 2021 consisting of a secondary amine N-nitrosation type 4 trigger on a fluorophore comprised 
of a bis-methoxyphenyl-amine-dihydroxanthene donor and quinolinium acceptor.859 
Photoacoustic imaging with excitation at 780 nm was performed for imaging NO in liver injury 
induced by herbal medicine. Chan developed a NIR-II excitable photoacoustic probe APNO-1080, 
which could be used for photoacoustic imaging in in vivo breast and liver cancer models using 
1080 nm excitation.860 There are other examples of NIR,861,862,863 two-photon,862 ratiometric, 793,864 

lipid droplet targeted,862,865 lysosome targeted,866,867 and dual-analyte probes793,868−870 using this 
N-nitrosation type 4 trigger. This trigger is gaining increasing attention due to its simplified reaction 
mechanism and synthetic ease, but the cross-reactivity with peroxynitrite should be investigated 
more deeply. Table 4, Section 4 summarizes these and any other examples of probes containing 
this trigger. 
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Figure 77. The fluorescent probes 1 and 2 as examples of N-nitrosation type 4 triggers for NO detection.

852
 

 
Other nitrosation-based triggers (Table 4, Section 5) 
Other types of triggers have been developed that rely on the nitrosative abilities of nitric oxide in 
the presence of oxygen. In 1998, Sasamoto investigated the use of rhodamine hydrazide for 
detecting nitrite and nitric oxide by showing that acidic nitrite or NOC-7 react with rhodium 

hydrazide to form a fluorescent product (ex = 561 nm, em = 581 nm).871 The proposed 
mechanism involved N-nitrosation of the terminal hydrazide nitrogen, followed by a Curtius 
rearrangement, presumably from an acyl azide. The amine product was detected by mass 
spectrometry. In 2011, Wang proposed a different mechanism for nitric oxide detection with 
rhodium hydrazide involving the hydrolysis of an acyl azide intermediate.872 A related approach 
was reported by Song in 2019 using a BODIPY with a hydrazine appended to the meso position, 
8-HB, that was converted to a diazonium salt upon reaction with nitric oxide (Figure 78).873 
Nitrogen evolution and hydride abstraction provided the unsubstituted fluorescent BODIPY 

product (ex = 505 nm, em = 512 nm), which was used to image L-arginine supplemented, 

LPS/IFN- stimulated RAW 264.7. 
 

 
Figure 78. The fluorescent probe 8-HB as an example of hydrazine removal trigger for NO detection.

873
 

 
In 2021, Zang and Lin reported a reversible S-nitrosation based probe consisting of a diethylamino 

coumarin (ex = 418 nm, em = 477 nm) or julolidine coumarin (ex = 447 nm, em = 490 nm) linked 
to a cysteine methyl ester (Figure 79).874 S-nitrosation results in a quenching of the fluorescence, 
which can be restored by glutathione mediated reduction of the S-nitroso to the thiol. These 

probes were used to image nitric oxide in L-arginine, LPS/IFN- stimulated RAW 264.7 
macrophages and HUVEC cells treated with the eNOS activator A23187.  
 

 
Figure 79. The fluorescent probe 1a-SAc as an example of S-nitrosation, reversible trigger for NO detection.

874
 

 
In 2023, Gandhi and Swamy evaluated a strategy using spirolactam ring opening of an ortho-
amino sulfide upon N-nitrosation or S-nitrosation followed by benzothiadiazine formation and 
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hydrolysis, giving an increase in fluorescence (ex = 560 nm, em = 580 nm) that was used to 
image nitric oxide in DEA NONOate treated lung epithelial cells (Figure 80).875  
 

 
Figure 80. The fluorescent probe Compound 1 as an example of ortho-aminosulfide to benzothiadiazine trigger for 

NO detection.
875

 

 
In the same year, Guo reported an ortho-amino phenylimine with the imine carbon being at the 
meso position of a xanthene fluorophore (Figure 81).876 Triazole formation upon reaction with nitric 
oxide converts the structure from a bent to a planar form, resulting in an increase in fluorescence. 

This design was installed onto a NIRII silicon rhodamine scaffold to make the probe SiRhd-7 (ex 

= 800 nm, em = 1050 nm), which could also be used for photoacoustic imaging with 800 nm 
excitation and showed a photothermal effect with 808 nm excitation. The probe was formulated 
into liposomes and used for NIRII imaging of nitric oxide in LPS treated RAW 264.7 macrophages 
and mice as well as in the brains of Alzheimer’s disease model mice.  
 

 
Figure 81. The fluorescent probe B-SiRhd-7 as an example of ortho-aminoimine to triazole trigger for NO detection.

876 

 
As can be seen, the nitrosative potential of nitric oxide has been harnessed in numerous creative 
designs to generate a large library of nitrosative probes. One drawback, however, is that oxygen 
is required to generate the putative nitrosative species N2O3 so in reality these probes are likely 
N2O3 probes or probes for other nitrosative species and do not directly react with nitric oxide. 
Table 4, Section 5 summarizes these and any other examples of probes containing nitrosation 
triggers. 
 
Metal-based nitric oxide detection (Table 4, Section 6) 
The reaction of nitric oxide with transition metal centers has been used as a strategy to circumvent 
the oxygen dependence of nitrosation-based probes for the direct detection of nitric oxide. In 
1998, Katayama reported an early transition metal-based approach for nitric oxide detection using 

a biomimetic iron(II) quinoline complex that showed quenching of the quinoline florescence (ex = 

366 nm, em = 460 nm) upon reacting with nitric oxide.877 Katayama continued along this vein in 
2001 and developed a dithiocarboxysarcosine iron(II) complex bound to a acridine-linked TEMPO 
ligand (Figure 82).878 Binding of nitric oxide to the iron center releases the acridine and the 

uncaged nitroxide radical quenches fluorescence (ex = 361 nm, em = 438 nm).  
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Figure 82. The fluorescent probe Acridine-TEMPO / DTCS-Fe(II) as an example of Fe porphyrin nitroxide 

displacement trigger for NO detection.
878

 

 
In 2002, Soh used a nitroxide PROXYL ligand linked to fluorescamine fluorophore and an iron (II) 
complexed to a cyclam-coumarin ligand.879 Upon binding to nitric oxide, the nitroxide ligand is 
released with a ratiometric change in the fluorescence output that increased at 410 nm and 

decreased at 470 nm (ex = 360 nm, em = 410 nm / 470 nm). Between 2000 and 2004, Lippard 
reported a series of cobalt, rhodium, ruthenium, iron, and copper complexes with fluorescent 
ligands that responded to NO through NO binding to the metal center to displace the ligand and 

provide an increase in fluorescence.880−884 However, a breakthrough came in 2005 when Lippard 
demonstrated a new strategy based on NO-mediated metal reduction using a bis-
dansylaminomethyl pyridine ligand bound to copper(II) with quenched fluorescence that was 

increased upon reaction with nitric oxide to reduce copper(II) to copper (I) (ex = 342 nm, em = 
~560 nm),885 with a similar approach being explored across a range of dansyl and anthracene 
based ligands.886 Importantly, this approach does not depend on the presence of oxygen to form 
the nitrosating N2O3 species, allowing direct detection of nitric oxide. In 2006, Lippard reported 
the fluorescein-based probe CuFL series containing aminoquinoline ligands that provided a 

fluorescence increase (ex = 503 nm, em = 520 nm) upon treatment with NO to reduce copper(II) 
to copper (I) in aqueous pH 7 buffer (Figure 83).887 The mechanism was studied in detail and 
revealed that nitric oxide reacted with a deprotonated nitrogen atom on the ligand with electron 
transfer from the ligand to the metal to form the N-nitrosated ligand and reduced copper (I).163 The 
derivative CuFL1 was used to image estradiol induced nitric oxide formation in SK-N-SH cells.888,889  
 

 
Figure 83. The fluorescent probe CuII(FL5) as an example of copper trigger for NO detection.887−889  

 
In 2010, Lippard reported cell-trappable derivatives of CuFL, including the derivatives CuFL1E 
and CuFLDex containing a single ester and a cyclodextrin, respectively.890 Both were used to image 

nitric oxide production in LPS/IFN- treated RAW 264.7. While selective for nitric oxide, some 
cross-reactivity with nitrite was observed. In a separate 2010 study, Lippard developed another 
cell trappable probe Cu2(FL2E) containing two aminoquinoline ligands with two esters for 
enhanced trappability.891 The probe was selective for nitric oxide, but cross-reactivity with 
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hydrogen peroxide and peroxynitrite was observed. Cu2(FL2E) was used to image nitric oxide in 
SK-N-SH cells and mouse olfactory bulb slices892 and in explanted murine carotid arteries using 
two-photon imaging.893 In 2008, Zhang reported a napthylimidazole copper(II) complex called 

MNIP-Cu (ex = 360 nm, em = 492 nm) which was used to image nitric oxide in LPS activated 
RAW 264.7 macrophages and liver slices of mice who had experienced liver injury.894 In another 
example of a copper-based probe, Duan developed the probe CuRBT in 2011, which consisted 
of a rhodamine fluorophore with a tripodal amine ligand that underwent amide nitrosation, 
reduction of copper (II) to copper (I), and spirolactam ring opening to provide an increase in 

fluorescence (ex = 510 nm, em = 580 nm) that was used to image NO treated MCF-7 cells.895 
The same researcher also reported the rhodamine spirolactam ring opening copper(II) probes 

RB-Py (ex = 550 nm, em = 580 nm) and RB-TP (ex = 540 nm, em = 580 nm) in 2013 that formed 
N-nitroso hydrazide products (Figure 84).896 A similar copper(II)-assisted spirolactam ring opening 
was reported using a sulfonamide ligand by Patra in 2019.897 
 

 
Figure 84. The fluorescent probe RB-TP-Cu+2 as an example of a copper-dependent hydrazide nitrosation trigger for 

NO detection.
896 

 
Lippard expanded the use of copper reduction to the far-red with a series of seminaphthofluor 

scaffolds appended with aminoquinoline ligands, CuSNFL1 (ex = 527 nm, em = 548 nm), 

CuSNFL1Br (ex = 540 nm, em = 615 nm), CuSNFL1E (ex = 527 nm, em = 549 nm), CuSNFL1EBr 

(ex = 536 nm, em = 615 nm).898 While cross-reactivity with nitrite was again observed, these 

probes were successfully used to image LPS/IFN- treated RAW 264.7. A series of copper-based 

probes were also reported in 2013, CuBRNO1-3 (ex = 563 nm  or 570 nm, em = 623 nm or 625 
nm) based on a benzoresorufin fluorophore and aminoquinoline or aminopyridine ligands.899 
These probes reacted with both NO and HNO and were used to image HeLa and RAW 264.7 
cells treated with the HNO donor Angeli’s salt.  A similar cross reactivity between NO and HNO 
using a copper based trigger was observed by Ali in 2019 during testing of the probe 

[(PIP)Cu(II)(Cl)] (ex = 407 nm, em = 560 nm), which could be used to image DEA NONOate or 

Angeli’s salt in A549 cells as well as nitric oxide production in LPS/IFN- treated RAW 264.7.900 A 
FRET-based ratiometric strategy was developed by Lippard in 2017 using the probe Cu(FL3A-

Ppz-CC) (ex = 400 nm, em = 450 nm / 519 nm) consisting of a coumarin linked to a copper(II)-
bound fluorescein-aminoquinoline, which was used to image DEA NONOate in A549 cells.901 
Copper(II) reduction for nitric oxide detection has been further investigated in the context of a 
wide variety of ligands and fluorophores. Duan and Qian investigated using naphthalimide 
scaffolds for copper-based NO detection;902,903 Mondal, Chellapa, and Ali investigated the a range 

of ligand and small fluorophore combinations including the dansyl fluorophore,904−907 Chellapa 
reported a rhodamine 6G scaffold,908 Costero has disclosed a BODIPY scaffold,909 Woscholski 
and Vilar used a nitrobenzoxadiazole fluorophore,910 and Schiesser reported using coumarin 
scaffolds.911,912 This trigger has also been used in non-mammalian organisms including plants913 
and the bacterial Pseudomonas aeruginosa biofilms.911 Finally, in 2020, Costero developed an 
interesting metal-based strategy that relies on the nitric oxide mediated reduction of copper (II) to 
copper (I) and then using the copper (I) to catalyze a click reaction to induce aggregation in an 

alkyne-containing AIE fluorophore for an increase in fluorescence emission (ex = 330 nm, em = 
~500 nm) (Figure 85).914  
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Figure 85.  The fluorescent probe Compound 1 as an example of NO mediated copper click rx trigger for NO 

detection.
914 

 
Metal-based approaches offer a potential strategy for direct nitric oxide detection and have been 
successfully used with a number of fluorophores and ligand strategies. However, cross-reactivity 
with other species like nitrite and HNO has been observed so these types of potential interferents 
should be carefully considered when adopting metal-based strategies for NO detection. Table 4, 
Section 6 summarizes these and any other examples of probes containing this trigger. 
 
Fluorescent cheletropic traps and spin traps (Table 4, Section 7) 
Spin traps that react with and stabilize free radical species have been an important tool for 
studying nitric oxide using EPR spectroscopy.742 Spin trapping agents that have a modulation in 
their luminescence response after reacting with nitric oxide can also provide a means for optical 
detection. In 1997, Korth and Sustmann developed a cheletropic trap for nitric oxide based on the 
cheletropic addition of nitric oxide to a cyclic ortho-quinodimethane derivative to form a nitroxide, 

which subsequently reacted to form fluorescent non-radical products (ex = 315 nm, em = 380 
nm).915 Sustmann continued this work and reported cell-trappable derivatives containing 

acetoxymethyl esters showing increases in emission upon reaction with nitric oxide  at ex = 320 

nm, em = 380 nm (Figure 86)916 and at ex = 380 nm, em = 460 nm,917 as well as using a pyrene-

based fluorophore (ex = 350 nm, em = 380 nm),918 all of which could be used to measure nitric 
oxide production in LPS-stimulated rat alveolar macrophages.  
 

 
Figure 86. The fluorescent probe FNOCT 8a as an example of cheletropic trap trigger for NO detection.

916  

 
In 2011, He and Duan reported an interesting spin-trap based approach where the spin trap PTIO 
was encapsulated in a metal-organic tetrahedron cage with fluorescent triarylamine ligands and 
cerium metal coordination sites.919 PTIO quenched the fluorescence of the triarylamine ligands, 

but fluorescence was recovered (ex = 350 nm, ex = 470 nm) upon PTIO reacting with nitric oxide 
and this creative design was used to image nitric oxide donated by sodium nitroprusside in living 
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MCF-7 cells. Table 4, Section 7 summarizes these and any other examples of probes containing 
this trigger. 
 
Other Triggers (Table 4, Section 8) 
Several other triggers have been developed and used for luminescent nitric oxide probes. 
Although also used for detecting other ROS and RNS, the selenolactone trigger was shown by 
Ma in 2011 to be able to detect nitric oxide by selenium atom nitrosation coupled with 
selenolactone ring opening to give rhodamine B after hydrolysis or the diselenide as the final 

fluorescent product (ex = 560 nm, em = 580 nm) and was used to image nitric oxide in NOC-5 
treated HeLa cells (Figure 87).920 In 2023, Jiao used a selenolactone trigger installed on a near-

infrared Changsha fluorophore CS-Se (ex = 680 nm, em = 780 nm) to image nitric oxide in NOC 
5 treated Cal-27 cells.921  
 

 
Figure 87. The fluorescent probe RBSe as an example of seleno lactone trigger for NO detection.920 

 
Dihydropyridine oxidation has been used for detecting nitric oxide, as well as other ROS, including 
superoxide. In 2014, Li, He, and Gong developed a dihydropyridine trigger linked to a coumarin 

scaffold that showed reduced PeT quenching (ex = 334 nm, em = 450 nm) upon NO-mediated 
oxidation of the dihydropyridine to a pyridine and was used to image nitric oxide in LPS-treated 
RAW 264.7.922 A water-soluble coumarin derivative was reported in 2016,923 and a derivative with 
the dihydropyridine at an isomeric position on the coumarin was reported in 2020.924 In 2016, 
Mahapatra used a dihydropyridine trigger on a pyrene fluorophore to make the ratiometric probe 

Py-NO (ex = 346 nm, ex = 393 nm / 439 nm) and on a triaryl amine fluorophore to make the 

ratiometric probe TPA-NO (ex = 308 nm, ex = 416 nm / 520 nm), which were used to image NO 
in Vero 76 cells (Figure 88).925 In this study, they proposed a mechanism involving H-atom 
abstraction by nitric oxide, followed by N-nitrosation, and elimination of HNO to form the pyridine. 
In 2017, Li and Zhang used a fluorescein linked to a quenching group via a dihydropyridine linker 
in their probe DHFPQ.926 NO-mediated oxidation to the dihydropyridine to the pyridine induced 

cleavage of the linker and quencher likely via a 1,6-elimination to increase fluorescence (ex = 

490 nm, em = 525 nm) and the probe was used to image LPS-treated RAW 264.7 and nitric oxide 
in the hind leg of a mouse injected with Freund’s adjuvant to induce inflammation. Lin and He 

reported the probe Mito-DHP (ex = 470 nm, em = 525 nm) in 2018 which consisted of a 
dihydropyridine trigger and triphenylphosphonium mitochondrial targeting group on a BODIPY 
scaffold that was used to image NO-treated HepG2 cells.927  
 

 
Figure 88. The fluorescent probe PyNO as an example of dihydropyridine oxidation trigger for NO detection.925 
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Ali developed a thiosemicarbazide trigger in 2017 that is converted to an oxadiazole via S-
nitrosation followed by elimination of HSNO (Figure 89).928 This trigger was mounted onto a 

quinoline fluorophore to make the fluorescence probe QT490 (ex = 380 nm, em = 490 nm) capable 

of imaging nitric oxide in LPS/IFN- treated RAW 264.7. This thiosemicarbazide trigger has also 
been installed on coumarin929 and naphthalimide930 scaffolds for nitric oxide imaging.  
 

 
Figure 89. The fluorescent probe QT490 as an example of thiosemicarbazide trigger for NO detection.928 

 
Ali also reported a series of probes using the conversion of an acyl hydrazine to a 1,3,4-

oxatriazole on a quinoline (ex = 380 nm, em = 490 nm) (Figure 90)931 or benzocoumarin (ex = 

410 nm, em = 470 nm)932 fluorophore for imaging LPS/IFN- treated RAW 264.7 macrophages.  
 

 
Figure 90. The fluorescent probe QAH as an example of oxatriazole formation trigger for NO detection.931 

 
In 2022, Jenni, Renault, and Romieu described a covalent assembly approach for nitric oxide 
detection based on the NO-mediated conversion of a diaryl ether to form a phenoxazine with an 

increase in fluorescence emission (ex = 685 nm, em = 730 nm) (Figure 91).933 Finally in 2023, 
Wu developed an alkene nitration of a dicyanostyryl pyran as a strategy for nitric oxide detection 

in the lysosome localizing probe LysoNO-DCM (ex = 450 nm, em = 633 nm) used to image nitric 
oxide in LPS treated RAW264.7 and zebrafish (Figure 92).934 Table 4, Section 8 summarizes these 
and any other triggers for nitric oxide probes. 
 

 
Figure 91. The fluorescent probe DAEA-Si 6 as an example of phenoxazine covalent assembly trigger for NO 
detection.933 
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Figure 92. The fluorescent probe LysoNO-DCM as an example of alkene nitration trigger for NO detection.934 

 
5.1.4 Concluding remarks for nitric oxide probes 
Nitric oxide holds a venerable position in the family of reactive oxygen, nitrogen, and sulfur 
species as it was the first molecule to convince a skeptical scientific community that such toxic 
and reactive species could be critical to healthy physiological function. While Griess assays and 
ozone-based chemiluminescence are traditional core techniques for its measurement in biological 
systems, optical probes open opportunities to study nitric oxide in living cells and animals. 
Nitrosation of amines is by far the most common optical probe strategy, with N-nitrosation type 1 
(ortho-phenylenediamine to triazole triggers)750 dominating and N-nitrosation type 4 (forming 
stable N-nitroso adducts from secondary amines)852 receiving increasing attention. Probes that 
operate via N-nitrosation strategies are commercially available from several companies, 
especially DAF and DAR derivatives, making them an easy option when looking for an NO probe 
to use in a biological experiment. However, the oxygen dependence and dehydroascorbate cross-
reactivity of these N-nitrosation probes needs to be considered carefully, and a user should 
understand that they are really looking at nitrosation, likely by the NO product N2O3. Probes that 
yield an optical response directly from reaction with nitric oxide, like metal-based probes and spin 
traps, can overcome some of these challenges, although there are more limited commercially 
available options. The copper-based probes derived from Lippard’s CuFL are the most used 
probes in this class.887,890 Cross reactions between nitrite, HNO, and thiols should be kept in mind 
when using metal-based probes and using multiple probes that operate by disparate mechanisms 
can lead to increased confidence in the reliability of a measurement. Interesting designs for 
bioluminescence, photoacoustic, and SWIR are emerging, and it is expected that in the future 
well-validated luminescence probe tools will be available for measuring and imaging nitric oxide 
in a wide variety of biological contexts. 
 
5.2 Peroxynitrite 
5.2.1 Peroxynitrite in health and disease 
It was not until nitric oxide (NO) was identified as the endothelium-derived relaxing factor (EDRF) 

that peroxynitrite (ONOO−) and its conjugate acid, peroxynitrous acid (ONOOH), were recognized 

as potential biological oxidants. In 1990, Beckman showed that ONOO− formation occurs in 
biological systems through a diffusion-limited combination reaction between NO and superoxide, 

with a rate constant of 109 M−1 s−1.935 Once formed, ONOO− has a biological half-life of 5−20 ms, 

during which time it can diffuse 1−2 cell lengths from its formation site before degradation.936 

Despite its short lifespan, ONOO− has significant implications as both an oxidant and a 

nucleophile in vivo. As an oxidant, the redox potentials for the ONOO−/NO2
• and ONOO−/NO2

− 

pairs have been measured at 1.4 and 1.2 V, respectively, at pH 7.937 This suggests ONOO− is a 
strong one- and two-electron oxidant in vivo, with direct implications in mammalian metabolism. 

For example, in the citric acid cycle, ONOO− is implicated in the disassembly of [4Fe-4S] cluster-
containing enzymes. The release of iron into the mitochondrial matrix can cause additional 

oxidative damage. Moreover, ONOO− can react with Complexes I and II of the electron transport 
chain and ATPase. Reaction with these components irreversibly knocks out protein function, 
disrupting cell homeostasis. Unable to function, the cell undergoes apoptosis, generating reactive 

species such as superoxide, which can produce more ONOO−.938,939  



80 
 

 

While ONOO− production can adversely affect health, its production is essential to immune system 
function, acting as a cytotoxic effector of invading pathogens.938 More concerning is the 

overproduction of ONOO− associated with specific disease states such as atherosclerosis, 
chronic arthritis, inflammatory bowel disease, cancer, and neurodegenerative diseases such as 

Alzheimer’s. Determining the relative abundance of ONOO− in vivo may offer insight into disease 

progression. Thus, for the past three decades, the development of detection methods for ONOO− 
has been of great interest to scientists, though it has been difficult due to the species’ short 
lifespan and high reactivity. 
 
6.2.2 Classical detection techniques for peroxynitrite 

As a nucleophile, a prominent biological reaction is between ONOO− and carbon dioxide (CO2) to 

form nitrosoperoxocarboxylate (ONOOCO2
−). ONOOCO2

− quickly undergoes homolysis to form 

carbonate radical (CO3
•−) and nitrogen dioxide radical (NO2

•). Another mechanism by which 

ONOO− degrades into secondary oxidants is through the reaction with transition metals of 

metalloproteins, to generate NO2
•. Additionally, ONOOH can directly undergo homolytic cleavage 

to generate hydroxyl radical (•OH) and NO2
•, though this is considered a minor pathway.938 The 

indirect generation of secondary radicals by ONOO− and ONOOH underpins tyrosine nitration, a 

biomarker long used as an indicator of ONOO− generation in vivo. Since 1998, various methods 
have been developed to detect 3-nitrotyrosine including EPR spectroscopy, immunohistochemical 
assays, and LC-MS-MS.940–943 Nitration of tyrosine residues has the potential to knockout enzyme 
function. An example of this, with significant implications, is the nitration of Tyr34 of the enzyme 
Mn-superoxide dismutase (Mn-SOD). Knockout of Mn-SOD function can directly promote further 

generation ONOO− in vivo, potentially creating a feedback loop.939 
 
6.2.2 Peroxynitrite probes by trigger 
Early probes (Table 5, Section 1) 

The earliest use of a fluorescent probe for ONOO− was reported in 1994. The group demonstrated 
that dihydrorhodamine was oxidized to rhodamine 123, with low micromolar concentrations of 

ONOO−.944 The reaction is not inhibited by hydroxyl radical scavengers such as mannitol and 
dimethyl sulfoxide, nor by SOD. Only thiol-based scavengers and urate competitively inhibited the 

reaction.944 Over the next decade, only two other probes were used for ONOO− detection. In 2002, 
Roychowdhury et al. showed that 4,5-diaminofluorescein diacetate (DAF-2), a probe initially used 

to detect nitric oxide, could react faster with ONOO− under the same cellular conditions. The group 
conceded, however, that 2,7-dihydrodichlorofluorescein diacetate (DCFH-DA) was slightly more 

sensitive in vivo and gave a more robust response to ONOO−, making it a better option for imaging 
studies.945 The DCF scaffold is widely used today in numerous fluorescent probes. Complexity in 
these early probes was minimal, consisting of pro-fluorophore scaffolds that undergo oxidization 
to re-establish conjugation and turn-on fluorescence. In 2006, Ueno et al. developed a series of 

probes called NiSPY. These BODIPY-based probes exploited the nitrosative potential of ONOO− 
that had been observed in tyrosine nitration. In the NiSPY series, fluorescence was quenched via 

an a-PET process, which could be disrupted upon radical nitrosation by ONOO− of a benzene 
moiety attached to the BODIPY scaffold. Since NO seldom performs aromatic nitrosation, this 

probe proved selective for high-energy ONOO−.946 While this study represents a seminal advance 
for peroxynitrite fluorescent probes, this nitration trigger has not been widely adopted likely 

because, under physiological conditions, the radical mechanism of ONOO− nitration is complex 
and, in some cases, leads to low chemical yields. Table 5, Section 1 summarizes these and other 
early probes for peroxynitrite. 
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Trifluoromethyl ketones (TFMK) (Table 5, Section 2) 

In 2006, Yang et al. reported HKGreen-1, a probe that exploits the nucleophilic nature of ONOO−. 
The group employed a DCFH scaffold substituted with an anisole-derived trifluoromethyl ketone 

(TFMK) trigger (Figure 93). In a manner analogous to Oxone™ (KHSO5), ONOO− reacts with the 
strongly activated ketone to form a dioxirane intermediate. This reactive intermediate then 
oxidizes the anisole unit, initiating hydrolytic O-dearylation and opening the spirocycle to give the 
fluorescent DCF product. In its activated form, HKGreen-1 exhibited a 7- to 8-fold fluorescent 

enhancement at 521 nm when treated with 15 equivalents of ONOO−, with a quantum yield of 
0.46. Additionally, selectivity studies showed only a 3-fold enhancement with hydroxyl radical, a 
1-fold enhancement by H2O2, and no reaction with HOCl over 1 hour.947 In subsequent work, Yang 
and colleagues developed HKGreen-2 and HKGreen-3 utilizing this same trigger, which focused 
on improving its dynamic range and sensitivity.948,949 
 

 
Figure 93. The fluorescent probe HKGreen-1 as an example of trifluoromethyl ketone trigger for ONOO− detection.947 

 
In an exciting application, Zhang et al. used a hemicyanine scaffold elaborated with a TFMK 
trigger.950 In addition, a sulfonic acid group was included to aid in solubility. Upon reaction with 

ONOO−, the probe emits at 712 nm with a 59-fold turn-on in fluorescence intensity. In addition, 
the hemicyanine fluorophore allowed the authors to perform photoacoustic (PA) imaging. This 
type of imaging is beneficial for animal studies because it offers a higher depth of tissue 
penetration, up to 5 cm. They utilized PA for imaging tumors in mice, where they could detect a 
PA signal around 680 nm when excited by a laser at the same wavelength. In addition to this, the 

authors determined a LOD of 53 nM for the probe and a rate constant of 1.49 x 103 M−1s−1 with 

ONOO−. However, the authors did not provide a rate constant for reaction with other analytes. 
Instead, they performed a separate selectivity study, measuring the response to different analytes 
over 3 minutes. Another instance of the TFMK trigger in the literature was when Huang et al. built 
it onto a cyanine scaffold.951 Overall, the studies described here have shown that the TFMK trigger 
has a low detection limit and can be applied to several different fluorescent scaffolds. Importantly, 

this trigger served as an inspiration for developing more complex carbonyl-based ONOO− probes. 
Table 5, Section 2 summarizes these and any other examples of probes containing this trigger. 
 

Isatins and -ketoamides (Table 5, Section 3) 

Other carbonyl-based reactive motifs have shown selectivity for ONOO− over other ROS and 

RNS. In 2014, Lippert discovered that isatin, a small -ketolactam, reacted rapidly and selectively 
with peroxynitrite to form a fluorescent anthranilic acid product.952 The rate constant of the reaction 
of isatin with peroxynitrite was measured using a competition kinetics assay and later confirmed 

by stopped-flow fluorescence157 to react with a second order rate constant of ~3 x 104 M−1 s−1. In 
comparison, hydrogen peroxide reacts approximately 10,000,000 times slower with a rate 

constant of 3 x 10−3 M−1 s−1, clearly demonstrating the selectivity of the trigger for hydrogen 
peroxide. In this study, a 5-fluoroisatin was used as an 19F NMR probe to detect peroxynitrite 
produced in LPS stimulated A549 cells. In 2018, the same grouped used isatin as a reaction-
based trigger for the chemiluminescent probe PNCL (Figure 94).953 This was accomplished by 

tethering isatin via an ether linkage to a 1,2-dioxetane scaffold, yielding the probe PNCL. ONOO− 
mediates rapid ring opening of the 𝛼-ketolactam in PNCL to form an anthranilic acid intermediate 
that is followed by a slower 1,6-elimination to provide a rapidly responding and convenient 
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chemiluminescence signal with long-lived glow kinetics and green emission at 525 nm. PNCL 

boasts a detection limit of 6 nM towards ONOO− with a chemiluminescent output that was used 

to monitor ONOO− production in RAW 264.7 macrophages stimulated with LPS/IFN- as 
confirmed by MnTMPyP peroxynitrite scavenging and inhibition of nitric oxide synthase. PNCL 
was later used by Haimovitz-Friedman in 2019 to investigate the production of peroxynitrite in 
prostate cancer cells undergoing radiation therapy and showed that sildenafil could protect cells 
exposed to radiation by reducing peroxynitrite production.954 In 2022, Lippert developed a kinetics-
based approach as an innovative method for the real-time quantification of peroxynitrite fluxes 
using a deep understanding of reaction kinetics and the fluorescence response from isatin.157 
Rate constants between isatin and peroxynitrite were measured using stopped-flow fluorescence 
and an equation was derived using the kinetics information to convert the fluorescence response 
in arbitrary units into precise concentrations of peroxynitrite being generated from donor 
compounds like SIN-1 and Angeli’s salt in a rare example of quantification of peroxynitrite using 
optical techniques. After the report of PNCL, isatin has been used as a trigger in several other 
small molecule probes throughout the years.955–959  
 

 
Figure 94. The chemiluminescent probe PNCL as an example of an isatin trigger for ONOO− detection.953 
 
Acyclic α-ketoamides have also been used for peroxynitrite detection. Cheng et al. utilized a para-

nitrophenyl α-ketoamides trigger in Rhod-ONOO− (Figure 95), a probe designed to investigate the 

drug-induced hepatotoxicity pathway. Rhod-ONOO− has a low detection limit of 43 nM and can 
operate in a two-photon imaging mode with two-photon excitation at 800 nm with emission at 558 

nm.543 Applying this probe to HepG2 cells, the group demonstrated that cells treated with 0−500 

𝜇M of acetaminophen (APAP) produced ONOO− in a concentration-dependent matter, consistent 
with previous reports in the literature. It should be noted that this α-ketoamide trigger has well-
documented reactivity with hydrogen peroxide and there have been many examples of fluorescent 

probes for hydrogen peroxide that use the same trigger.542−549 Detailed kinetic studies as have 
been performed for the isatin trigger could help shed light on the precise reactivity of acyclic α-
ketoamides. Nonetheless, α-ketoamides have been used to investigate several diseases such as 
(DILI),960–962 ischemic stroke,956 sepsis-induced acute lung injury,963 and Parkinson’s disease.964 
 

 
Figure 95. The fluorescent probe Rhod-ONOO− as an example of an -ketoamide trigger for ONOO− detection.543 

 
In general probes using the isatin and 𝛼-ketoamide trigger have low background fluorescence in 

cell imaging, owing to the combined effects of ICT and d-PeT imparted by 𝛼-ketoamides.965 

Mechanistically, ONOO− is believed to initiate an oxidative decarbonylation of the 𝛼-ketoamide, 
ultimately leading to the formation of a carboxylic acid and an aromatic amine. While the precise 
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mechanism has not been elucidated, similar chemistry has been studied in reactions between 
peroxynitrite and carbon dioxide as well as other carbonyl species.966,967 These studies suggest a 
single electron decomposition of the initial adduct formed from nucleophilic addition of 
peroxynitrite with the carbonyl species. On the other hand, free radical scavengers had no effect 
in some cases,953 suggesting that other mechanisms may be at play. Table 5, Section 3 
summarizes these and any other examples of probes containing these triggers. 
 
C=C bridge cleavage (Table 5, Section 4) 

The nucleophilicity of ONOO− can also be exploited to cleave electron-deficient C=C double 
bonds and alter the conjugation of a system. Thus, these probes typically act through ICT and 
FRET mechanisms. The product distribution for these probes can vary depending on the overall 
assembly. In 2014, Hou et al. reported C-Py-1, a probe built off a coumarin scaffold conjugated 
to pyridinium, which disrupts the ICT process (Figure 96). The primary product of the reaction 

forms when ONOO− attacks the methine bridge connecting the coumarin and pyridinium. After 

this, NO2
− is released, and an epoxide intermediate is formed, which continues to react and 

ultimately leaves a formyl group on both probe components. With ICT reestablished, the probe 
exhibits a colorimetric change from pink to yellow and a fluorescent response at 493 nm when 

excited at 365 nm. The intensity increase was 25-fold with ONOO− and 2−3-fold when exposed 

to S2− and cysteine. More importantly, there was minimal response to H2O2 and HOCl, and low 
cytotoxicity was observed.968 
 

 
Figure 96. The fluorescent probe C-Py-1 as an example of an C=C cleavage trigger for ONOO− detection.968 

 
Zhou and colleagues employed a coumarin-indolium-derived scaffold to create CHCN, a probe 

that displays a sizeable ratiometric shift upon ONOO− reaction. This reaction is initiated when 

ONOO− attacks the C=N 𝜋* of the indolium moiety. From here, rearrangement and hydrolysis of 
the methine bridge releases oxindole and formylated coumarin as the major products. This 
cleavage of this extended 𝜋-system resulted in a shift from 635 nm to 515 nm with 475 nm 
excitation. Moreover, they noted a 474-fold enhancement in fluorescent intensity ratio towards 

ONOO− compared to the less than 10-fold enhancement observed for other analytes under the 
same conditions. Their cell studies on RAW 264.7 cells also gave comparable results, with a blue 
shift only noticeable in cells undergoing a phagocytotic immune response.969 These two studies 

demonstrate the ability to tune the selectivity of the C=C trigger to be more selective for ONOO−. 
In addition, the trigger has proven versatile in various applications, such as subcellular 

localization. In 2018, Guo et al. made a lysosome targeting probe that could detect ONOO− and 
changes in lysosomal viscosity due to the TICT process in the unreacted probe.970 Zhan et al. and 
Wang et al. created probes that could target mitochondria and the endoplasmic reticulum, 
respectively, to study idiopathic pulmonary fibrosis (IPF). In addition to the targeting functionality, 
these probes were both two-photon excitable, essential when working with dense lung 
tissues.971,972 Finally, Feng et al. made a Golgi apparatus targeting probe to study DILI.973 Table 
5, Section 4 summarizes these and any other examples of probes containing these types of 
triggers. 
 
Benzopyrylium ring opening (Table 5, Section 5) 
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The benzopyrylium-trigger, like the C=C bridge, relies on an electron-deficient 𝜋-bond as a 

recognition site for ONOO−, and this trigger mechanism is the basis of two important ratiometric 
probes. Cheng and colleagues sought to design a FRET-based two-photon probe for imaging 

intracellular ONOO− with high sensitivity and selectivity. The group evaluated 19 different 
structures for their reactivity and fluorescent properties to do this. They identified two primary 
fluorophores—benzopyrylium and coumarin—as the primary scaffold and linked them through a 
piperazine unit. This resulted in the development of a mitochondria-targeted probe, MITO-CC 
(Figure 97). MITO-CC has a detection limit of 11.30 nM, giving a 5.8-fold enhancement in 
fluorescence ratio (F478/F654) with excitation at 420 nm in HepG2 and RAW 264.7 cells. It is 
important to note that HOCl gave a roughly 1.5-2-fold enhancement in these same studies. The 
group also demonstrated the probe’s two-photon imaging ability by imaging inflamed hepatic 
tissue in mice.974 
 

 
Figure 97. The fluorescent probe MITO-CC as an example of a benzopyrylium ring opening trigger for ONOO− 

detection.974 
 

Inspired by the work of Cheng, Jiang et al. designed a probe that improved on the desirable 
features already present in MITO-CC by utilizing a similar scaffold. In Gal-NIR, the coumarin and 
benzopyrylium units are directly bound to each other, eliminating the piperazine spacer. Instead, 
the benzoic acid unit of the benzopyrylium was functionalized with galactose to incorporate 
hepatocyte-specific targeting. As a result of these modifications, the group showcased a probe 
with impressive fluorescent properties. Gal-NIR demonstrated a blue shift from 720 nm to 500 nm 
in cells treated with APAP with a 72-fold fluorescent enhancement. This huge fluorescence shift 

enhanced the signal-to-background ratio, increasing sensitivity in detecting ONOO−. Similar APAP 
studies were performed in mice, showing that the probe was almost entirely localized in the liver, 
making this probe a valuable tool for understanding drug-induced hepatotoxicity better.975 The 
benzopyrylium trigger has also been used to investigate DILI,976–978 rheumatoid arthritis (RA),979,980 

and to monitor ONOO− and GSH redox cycles. However, the trigger is not exceptionally selective 

for ONOO− over other analytes. Table 5, Section 5 summarizes these and any other examples of 
probes containing this trigger. 
 
Arylboronate oxidation (Table 5, Section 6) 
Arylboronate triggers are the most widely used motif applied in the detection of H2O2, HOCl, and 

ONOO−. Studies by Sikora et al. established that some arylboronates can react with ONOO− with 

a rate constant of 106 M−1s−1, which is 200 times faster than the reaction with HOCl, and 1 million 

times faster than with H2O2.981 Later work by Zielonka et al. also confirmed that ONOO− did not 

generate 100% phenolic product like HOCl and H2O2 did. Instead, 15−20% of the products formed 
were radical-derived, which is advantageous in confirming the detected species.982 Zielonka et al. 
created coumarin-7-boronic acid (CBA) and coumarin-7-pinacol boronate (CBE), the first 

arylboronate-based probes used to react with ONOO− (Figure 98). The group also demonstrated 
that even under conditions where HOCl and H2O2 are present, arylboronates preferentially 

respond with ONOO−.983 CBA is an important demonstration of employing arylboronate triggers 
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for sensing ONOO− and benefits from detailed kinetic studies to gain deep understanding of the 
probe’s selectivity.  
 

 
Figure 98. The fluorescent probe CBE as an example of a boronic acid trigger for ONOO− detection.983 

 
Building off work from Zielonka, Shu et al. designed MBTBE, a probe consisting of a 
benzothiazolium fluorophore and phenylboronic ester trigger, with a detection limit of 16 nM 

ONOO−. Upon oxidation of the boronate ester to the phenolate, the probe exhibits a yellow 
fluorescence at 569 nm. MBTBE was used to image HeLa cells. In these studies, the group 

showed that the probe localizes mitochondria and that H2S is an effective scavenger of ONOO−. 
This corroborates previous findings showing that patients with Alzheimer’s disease exhibit lower 

levels of H2S in the brain and elevated levels of ONOO−.984   
 
Arylboronates are frequently employed as a trigger to initiate reaction cascades as well. An 
example of this is DDAO-PN, designed by Wang et al. This probe features an acridine scaffold 
functionalized with an arylboronate ester trigger. The probe was built to avoid non-specific 

oxidation by ONOO−, which could destroy fluorescence while maintaining a high selectivity for the 
analyte and a robust fluorescent response. The cascade starts with the oxidative conversion of 
the boronate moiety to phenolate. Following this, a 1,6-elimination ensues, cleaving the aryl ether 
bond between the trigger and fluorophore, triggering a fluorescent response at 657 nm. The probe 
shows an 84-fold fluorescence enhancement after 30 seconds in vitro. For comparison, the probe 
only showed a 7.5-fold fluorescence enhancement over 30 minutes when exposed to H2O2 under 
the same conditions. In cell studies, a 68-fold enhancement was observed upon exposure to LPS, 
as well as a 4- to 8-fold fluorescence enhancement in an inflamed mouse model.985 
 
A handful of probes have incorporated an additional reaction into this cascade by including an 
acrylonitrile or malonitrile group ortho to where the 1,6-elimination terminates. Following the 
termination to phenolate, a further reaction occurs with the nitrile group, causing an 
iminocoumarin to form.986–989 Most recently, Sang et al. reported CNN2-B, a “dual-lock” probe 
explicitly designed for imaging atherosclerotic plaques. The probe boasts a low LOD towards 

ONOO− of 1.33 nM, with a fluorescent response at 486 nm. Moreover, CNN2-B changes its 

distribution before and after oxidation. Before reaction with ONOO−, CNN2-B localizes in the 

mitochondria of A549 and RAW 264.7 cells. Upon reaction of the probe with ONOO− to generate 
CNN2, not only was there a fluorescent enhancement factor (F/F0) of 365, but CNN2 relocated 
into lipid droplets. In addition, selectivity studies performed over 250 minutes demonstrated that 

the probe had a 3-fold lower response to H2O2 and HOCl than ONOO−.989 With a strong 
fluorescent response, high selectivity, sensitivity, and ability to specifically detect atherosclerotic 
plaques, CNN2-B is a valuable tool for studying atherosclerotic-related diseases. The tunability 
and versatility of arylboronates have made them a prevalent choice of trigger for fluorescent 

ONOO− probes. Researchers have exploited this trigger in a variety of ways, such as in AND-logic 

gates,990,991 ONOO−-mediated drug release,992 in the study of a plethora of other disease 
states,993–1006 and some emerging probes have tried to push the selectivity further.1007 Table 5, 
Section 6 summarizes these and any other examples of probes containing this trigger. 
 
Diphenyl phosphinate (Table 5, Section 7) 
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Diphenyl phosphinates (DPP) are a relatively new trigger mechanism applied to sensing ONOO− 
in biological systems. Mulay et al. were the first to utilize this trigger on a chromene scaffold 

(Figure 99).1008 The response mechanism of the trigger to ONOO− was first corroborated by Huihui 

et al. in 2021 and has been employed in probes in ways analogous to arylboronates. ONOO− 
attacks at 𝜋* of the P=O bond, and subsequent electron rearrangement causes the release of the 
phosphinate moiety, forming a phenolate on the scaffold.1009 The formation of phenolate can be 
the end product or coupled to a 1,6-elimination to form iminocoumarins, much like with the 
arylboronate trigger.1009,1010 

 

 
Figure 99. The fluorescent probe DCPO-DP as an example of a diphenyl phosphinate trigger for ONOO− detection.1008 

 
In 2018, Yongquan Wu and colleagues were the first to use the diphenyl phosphinate moiety in 
an ICT-based probe. Their probe, NOF2, consisted of a xanthene scaffold functionalized with the 
diphenyl phosphinate moiety through a benzene spacer. Their primary motivation behind the 
probe was to reduce background autofluorescence by moving the operational wavelengths of the 
probe further into the infrared region. NIR operation is a desirable feature for probes because it 
helps boost the signal-to-noise ratio (SNR) in vivo, and the lower energy light helps avoid cell 

damage. Before its reaction with ONOO− reaction, NOF2 exhibits a strong absorbance band 
centered at 556 nm. Following the reaction, this absorption band redshifts to 670 nm, and 
fluorescent is enhanced 10-fold at 742 nm, well into the NIR region. In RAW 264.7 cell studies, 
this response remained strong with a 6-fold enhancement at 742 nm. However, no measurable 
response was observed in cells treated with HOCl and H2O2 over 30 and 10 minutes, respectively. 
To further demonstrate the probe’s utility in vivo, they performed a study on inflamed mice, 
showing the increased SNR and improved sensitivity of 400 nM. Since NOF2, many 
improvements have been made to the sensitivity of the DPP moiety, making it a popular 
trigger.1010–1017 Moreover, the trigger has also been used in the design of colorimetric 

probes,1011,1012 dual-analyte sensors,1018–1020 and to study the pathology of ONOO− in 
disease.1001,1016,1021,1022 One avenue that has not been investigated is the kinetics of the reaction 
of various analytes with this trigger moiety. Such studies would give significant credence to its use 

as an ONOO− detection strategy, especially given that this trigger has also been extensively used 

for the detection of superoxide.317−331 Table 5, Section 7 summarizes these and any other 
examples of probes containing this trigger. 
 
The triggers discussed thus far have relied on the nucleophilicity or “pro-oxidant” behavior of 

ONOO−. These comprise the bulk of the trigger mechanism employed for ONOO− detection in 
luminescent probes. Currently, three additional trigger moieties are believed to rely on the direct 

oxidative potential of ONOO− and ONOOH. These include aryl chalcogenides, hydrazide 
spirocycles, and p-aminophenols.  
 
Aryl chalcogenides (Table 5, Section 8) 
As soft bases with high-lying HOMOs, late chalcogens are excellent fluorescence quenchers via 
a PET process. It is speculated the high-lying HOMO may also underpin the response mechanism 

of chalcogenides towards ONOO−.1023 The high energy lone-pair of the chalcogen reacts with the 

𝜎* of the O—O bond on ONOO/ONOOH, removing O or OH and releasing NO2
−. Next, a simple 
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electron rearrangement transforms the chalcogenide into a chalcogenoxide, lowering the energy 
and blocking the PET process. In 2011, Yu and Li et al. built an aryl selenide trigger onto a cyanine 
scaffold (Figure 100). This scaffold benefited significantly from a NIR excitation and emission 
wavelength of 758 nm and 775 nm, respectively. Thus, it could avoid autofluorescence problems 
typically arising from probes operating in the lower wavelength region. Upon conversion of 

selenide to selenoxide by 10 𝜇M ONOO−, a 23.3-fold fluorescent increase was observed over 60 
minutes under physiological conditions. The group also employed other analytes to gauge the 
reactivity of the probe. Of these analytes, a treatment with 100 𝜇M nitric oxide, 200 𝜇M H2O2, and 
200 𝜇M hydroxyl radical were the only ones to give a fluorescent response. While there was a 

response during this time, it was 10-fold lower than what was observed with ONOO− at a much 
lower concentration. Using RAW 264.7 cells, the group was also able to monitor the redox cycle 

of the probe with oxidation by ONOO− and selenoxide reduction with GSH through several 
cycles.1024 The group expanded on this work using tellurium in 2013 with Cy-NTe, and the same 
concept has been employed with sulfur; however, it is essential to note that sulfides are much 
more prone to HOCl oxidation.1025–1028 Overall, the selenide motif is the primary variant used.1029–

1031 
 

 
Figure 100. The fluorescent probe BzSe-Cy as an example of a arylchalcogenide trigger for ONOO− detection.1024 
 
The primary advantage seen with the chalcogenide trigger is the lower background fluorescence 

observed in the various probes. While these triggers may react preferentially with ONOO− over 
other ROS and RNS, they can still act as strong nucleophiles and ligands. In a much more 
complex biological environment, these triggers could readily coordinate with metal centers and 
facilitate the oxidation of various biomolecules. Table 5, Section 8 summarizes these and any 
other examples of probes containing these types of triggers. 
 
p-Phenols and p-aminophenols (Table 5, Section 9) 
The p-aminophenol moiety was derived from previous work by the Nagano group, incorporating 
a p-hydroxy anisole moiety onto a xanthene scaffold. The two probes, APF and HPF, came out 

of this study as tools for the detection of HOCl, ONOO−, and hydroxyl radical and are commercially 
available today, although they must be used with the understanding that they do not perfectly 
discriminate between these three species.1032–1034 The Yang group was the first to improve on this 
trigger with HKGreen-4 (Figure 102), which incorporated a p-hydroxyaniline trigger onto a 

rhodamine scaffold, showing enhanced selectivity for ONOO−.1035 The mechanism by which this 

trigger responds to ONOO− remains somewhat elusive, with a consensus of a “two-electron” 

oxidation facilitated by ONOO−.  
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Figure 101. The fluorescent probe HKGreen-4 as an example of a p-aminophenol trigger for ONOO− detection.1035 
 

Li and Tao et al. sought to design a probe for utilization in imaging brain vasculature with high 
temporal and spatial resolution. Their probe, NP3, is built on a benzothiazole scaffold linked to a 
hydroxyphenyl group. This scaffold expresses intense fluorescence at 470 nm, owing to the 
ESIPT process between the hydroxyl and nitrogen of thiazole. This process was interrupted by 
installing N-methyl-p-hydroxyaniline at the hydroxyl group, quenching the fluorescence of the 
probe. The probe also benefited from being two-photon excitable, which, as mentioned previously, 
minimizes cell damage during imaging. Preliminary characterization demonstrated that NP3 is 

highly sensitive towards ONOO− (LOD = 5 nM) while retaining significant selectivity in a 30-minute 
selectivity study over HOCl, H2O2, and hydroxyl radical. Even when applied to a much more 
complex environment in cells and animals, NP3 demonstrated additional valuable characteristics. 
For one, it was virtually non-cytotoxic towards endothelial cells up to 100 𝜇M, which is a much 
higher concentration than what would be used in practice. Moreover, NP3 was introduced to mice 
intravenously through the tail. Following a brief incubation period, a neurovascular brain injury 
was simulated using both Rose bengal to induce an occlusion and laser irradiation to induce 

microvessel rupture. A fluorescent response was detected in both cases in 10−30 seconds. Other 

than showing the ability of NP3 to selectively detect ONOO− in a brain injury model, these 
experiments also showed NP3’s ability to cross the blood-brain barrier.1036 NP3 was only the 

second ONOO− probe to utilize the p-aminophenol moiety and yet demonstrated profound efficacy 
in neurovascular imaging. Subsequent publications have also applied this trigger to monitor drug-
induced liver injury and Parkinson’s disease progression utilizing different fluorescent 
scaffolds.1037–1039 Additionally, subcellular targeting functionality has been incorporated into 
several probes using this trigger.1040–1045 Table 5, Section 9 summarizes these and any other 
examples of probes containing these types of triggers. 
 
Hydrazide spirocycles (Table 5, Section 10) 
Ambikapathi and colleagues were the first to employ the hydrazide trigger in 2013 in their 
Rhodamine B phenyl hydrazide (RBPH) design (Figure 102). Their early experiments arrived at 
a detection limit of 1.4 nM and showed minimal reaction with other common analytes.1046 The 
mechanism of detection of hydrazide consists of two components: oxidation of the hydrazide 
followed by hydrolysis to form a carboxylic acid and reestablish aromaticity in the primary 
scaffold.1023 This trigger moiety benefits from fluorescence not just being quenched but completely 
turned off due to lack of 𝜋-conjugation, eliminating background fluorescence.  
 

 
Figure 102. The fluorescent probe Rhodamine B phenyl hydrazide as an example of a hydrazide spirocycle trigger 

for ONOO− detection.1046 

 
Chen et al. sought to design a ratiometric probe for quantitative analysis of arginine metabolism 
in macrophages. Specifically, they wanted to look at M1 and M2 macrophages, which are 
implicated in the progression and regression of atherosclerosis, respectively. By studying these 
macrophages in atherosclerotic mice, they hoped to draw a link between the prevalence of 

ONOO− and arginase 1 activity. They built their probe, P2, on a Rhodamine B hydrazide scaffold 
as the energy acceptor and tethered this to a quinoline derivative as the energy donor. Before 



89 
 

ONOO− exposure, the probe can be excited at both 405 nm and 800 nm and emit at 474 nm. After 

reaction with 10 𝜇M ONOO−, the aromaticity of the rhodamine scaffold was re-established, 
allowing energy transfer from the quinoline and shifting emission to 575 nm, with a fluorescent 
enhancement ratio of 0.23 to 63. Other analytes gave a minuscule fluorescent increase, which 
was deemed negligible during the time frame of the experiment. Applying this probe to living cells 

and mice, they were able to draw an inverse relationship between ONOO− production and 
arginase 1. During the progression of atherosclerosis, they noted the accumulation of M1 

macrophage, which primarily expresses iNOS, and an increase in ONOO− production as well as 
down-regulation of arginase 1. Conversely, during regression, the M2 macrophage phenotype 

emerged, which expresses arginase 1 more than iNOS, which caused a decrease in ONOO− 
production. The rationale for this observation is that arginase 1 competes with iNOS for L-arginine. 
Thus, when it is upregulated, more arginine can convert into L-ornithine instead of nitric oxide. 

This provides substantial evidence to the idea that arginase is a significant regulator of ONOO− 
in vivo. P2 is an impressive deployment of the hydrazide moiety and may be a powerful tool in 
the investigation of inflammatory diseases.1047 This is among the most impressive applications of 
the hydrazide spirocycle trigger, though it has also been used to target specific organelles and 
track various diseases, including mitophagy specifically.1048–1054 This probe offers a best-case 
scenario for imaging experiments because fluorescence is almost entirely off until a reaction 
occurs. Table 5, Section 10 summarizes these and any other examples of probes containing this 
trigger. 
 
N-oxidation (Table 5, Section 11) 
This next trigger has taken on a range of different forms, but ultimately exploits the oxidative 

power of ONOO− against electron rich amino groups. Regardless of probe, the N-oxidation 
mechanism begins with oxidative addition to an amino group. For example, the probe SiRTA 
(Figure 103) created by Miao and colleagues in 2018 uses this approach. SiRTA was built using 
an Si-rhodamine scaffold functionalized with methoxyaniline. In the probe methoxyaniline both 
quenches fluorescence through a PeT mechanism and acts as the trigger. The response 
mechanism is proposed to consist of three parts: oxidation of aniline, hydrolysis, and electrophilic 
nitrosation. Upon nitrosation, the PeT process is disrupted triggering a fluorescent response at 
680 nm under 650 nm excitation. SiRTA boasts an exceptional detection limit of 3.0 nM with peak 

intensity being reached within 20 seconds of ONOO− exposure. SiRTA was used by the group to 
study ischemia-reperfusion in EA.hy926 endothelial cells as well as diabetic nephropathy in the 
pancreatic 𝛽-cells of diabetic rats.1055 Owing to the NIR spectral properties of SiRTA the probe 

proved effective in live cell imaging and showed reasonable selectivity for ONOO−. The authors 
cite their previous work utilizing an identical trigger applied to a BODIPY scaffold, in which the 
only product obtained was an N-oxide product.1041 Other author’s also report N-oxide as the major 
product of oxidative addition in their probes.1056–1058 SiRTA is thus unique in its major product 
distribution. The authors associate this alternative product with improved activation energy owing 
to the Si-rhodamine scaffold.1055 While for these probes N-nitroso or N-oxide are the final 
products, for others, this may just be the first step in a larger cascade.  
 

 
Figure 103. The fluorescent probe SiRTA as an example of N-oxidation for ONOO− detection.1055  
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A “𝜋-extending” cascade to “turn-on” or change fluorescence is another strategy to detect 

ONOO−.944,1059 Of these probes PN600 (Figure 104), developed by Quanjuan Zhang and 
colleagues, is worth highlighting for its peculiarity. PN600 is built using a coumarin scaffold, 
substituted with a primary amine such that resorufin is obtained following an N-oxidation-initiated 

cascade. Upon initial exposure to ONOO− PN600 is cyclized to intermediate, 1. This causes a 
bathochromic shift in both excitation and emission wavelength from 355 to 475 and 525 to 585, 

respectively. With continued exposure to ONOO−, 1 is then oxidized again to 2, a resorufin 
derivative. In this final form excitation wavelength is shifted to 576 nm and emission to 595 nm. 
Mechanistically PN600 is impressive, but what is more is its ability to differentiate between HOCl 

and ONOO−. The authors found that 1 could be obtained by reaction with both species. However, 

further oxidation to 2 could only be accomplished by ONOO− even upon addition of 30 equivalents 
of HOCl. Furthermore, PN600 showed minimal response towards other competing analytes and 
was successfully applied to the imaging of human glioma cells.1060 Other applications of this N-
oxidation and aromatization scheme are much simpler, involving the oxidation of dihydro- 
rhodamines or Si-rhodamines. Currently it is proposed that an amino group is activated to an N-

hydroxyl by ONOO− which acts as a leaving group for subsequent elimination, which reestablishes 
fluorescence. 1054,1056–1059 Table 5, Section 11 summarizes these and any other examples of probes 
containing these types of triggers. 
 

 
Figure 104. The fluorescent probe PN600 as an example of N-oxidation for ONOO− detection.1060 
 
C=N bond cleavage (Table 5, Section 12) 
The C=N trigger moiety is not as often used in the field of reactive species probes but is worth 
mentioning for its unique quenching mechanism. Under aqueous conditions, the C=N 
isomerization promotes nonradiative decay excited states, consequently blocking fluorescence. 
Prior to its adoption as a reactive species probe, it was most frequently used to detect metal ions 
through a complex mechanism which blocks isomerization.1065 In 2018, Shen et al. adopted the 

trigger to detect peroxynitrite in their probe BTP (Figure 105). Beyond ONOO− acting as a 
nucleophile, the exact mechanism of reaction with the C=N trigger has not been confirmed. In the 
case of BTP, the C=N bond of a hydrazonylpyridine moiety is hydrolyzed to an aldehyde, which 

in turn re-establishes fluorescence. BTP responded to ONOO− in 60 seconds producing a 40-fold 
increase in fluorescence at 524 nm under 433 nm excitation. In addition, BTP had a detection 
limit of 58 nM, minimal response towards competing analytes, and was successfully used in HeLa 

cells.1066 The C=N trigger has only been used in a handful of other ONOO− probes. Work by Wang 
et al., and Wang et al., demonstrated the AIE mechanism resulting from the C=N bond, which can 
be exploited for the dual detection of viscosity much like the C=C trigger.1067,1068 Meanwhile, Liu 
et al. designed the probe L-1 which displayed innate mitochondria targeting ability.1069 All of these 
probes benefit from a simple design applicable to any fluorescent scaffold, as well as nanomolar 

detection limits for ONOO−. With that said, the trigger has likely not been widely adopted because 
of their interaction with metal ions in vivo which could result in false positives. Moreover, the typical 
response time is around a minute for these probes, which is much slower than probes utilizing 
other triggers. Table 5, Section 12 summarizes these and any other examples of probes 
containing these types of triggers. 
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Figure 105. The fluorescent probe BTP as an example of C=N cleavage for ONOO− detection.1066 

 
Other triggers (Table 5, Section 13) 
There are a handful of other triggers which have been employed over the years. In 2019, Xie et 
al reported a series of probes called FPP-Blue, Green, Yellow, and Red by applying an aryl 
formamide trigger onto a range of commercially available fluorescent scaffolds. In response to 

ONOO−, these probes undergo deformylation to liberate CO2 and a primary amine, which activates 
fluorescence. This work demonstrated a facile, versatile, and efficient method of achieving a 

ONOO− probes with good selectivity.1070 Mechanistically similar probes also used aryl formates 
and triflates,312 aryl amides,1071 and aryl esters.1072–1074  
 
There are a few other probes that exploit the reactivity of carbonyl species. For example, Yang et 
al. and Sun et al. designed two diketone probes that are reminiscent of 𝛼-ketoamides, and exploit 

the nucleophilicity of ONOO−.1075,1076 In 2021 and 2022, Xie et al. designed two probes BTNPO 
and NATP, which used an oxindole trigger for detection through a joint decarbonylation and 
decarboxylation mechanism. The group used these probes to image amyloid-𝛽 plaques using 

two-photon imaging. With these probes, they were able to show that ONOO− production and A𝛽 
aggregation mutually exacerbate one another.1077,1078 
 
Deprotonation is an obscure mechanism that has been used in a few probes to primarily sense 

changes in ONOO− concentration.1079 This mechanism has also been combined with silyl-ether 
bond cleavage for two probes by Lu et al. and Zhuo et al.. These groups combined these triggers 
to design concentration dependent ratiometric probes, which operated through a combined effort 
of ESIPT, TBET, and ICT mechanisms.1080,1081 This deprotonation method can also be seen in the 

iridium based probe by Wu and Liao et al., which used a hydroquinone trigger to monitor ONOO− 
and GSH redox cycles.1082 Another less common trigger is 1,4-oxazepine that was used by Zhang 
and Xu et al.in their probe ON-RB.1083 Table 5, Section 13 summarizes these and examples of 
probes that operate by other types of triggers not covered in the other sections. 
 
6.2.4 Concluding remarks for peroxynitrite probes 
Several trigger mechanisms have been employed in the design of reaction-based probes for 

peroxynitrite (ONOO−). Many of the same moieties used for selective ONOO− detection are 

similarly employed for hydrogen peroxide (H2O2), hypochlorous acid (HOCl), and superoxide (O2
−) 

detection. This includes boronate esters,1084 electron deficient C=C bonds,969,1085 phosphinate 
esters, and late chalcogen-based triggers.1024–1026,1086,1087 This can be problematic because of the 
comparable and higher abundance of HOCl and H2O2, respectively, in biological systems 
compared to peroxynitrite.1088–1090 Thus, it should be best practice to include kinetic data when 

reporting ONOO− probes. This allows one to compare reaction rates of different analytes which 

gives a sense of the timeframe in which a fluorescent response indicates the presence of ONOO− 

specifically. With that said, kinetic experiments involving ONOO− are challenging to perform 
because of their short lifetime under physiological conditions, which necessitates specialized 
equipment, such as stopped-flow spectrometers, for accurate measurements. Due to this barrier, 

most probes reported in the literature lack kinetic data on the reaction with ONOO− versus other 
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analytes. We do note here, however, that competition kinetics studies can be performed using the 
known reaction rate with glutathione,952 and these have been benchmarked versus stopped-flow 
experiments to show they give similar results.953 This does not diminish the efforts put towards 

the design of ONOO− probes over the years, but rather, this means claims of selectivity should be 
caveated. Most probes we will discuss will employ simple selectivity studies where a probe’s 
response to different analytes over a given time frame is measured. These experiments are run 
anywhere from five minutes to sixty minutes. In general, it is best practice to let these experiments 
run for as long as possible, and preferably to determine rate constants, to give more support to 
claims of selectivity.  
 
7. Discussion 
In the previous sections, we have given a thorough overview of the strategies used to develop 
small molecule probes for reactive oxygen and nitrogen species, including trigger types, molecular 
scaffolds, imaging modalities, and biological experiments/questions that can be addressed using 
these tools. In this section, the authors will provide their insights as to what the field is doing well 
and what could be improved.  
 
What is the field doing well? First, the field of luminescent probes for reactive oxygen and nitrogen 
species provides an excellent training ground for young scientists. Successful probe development 
requires a wide range and depth of technical skills including multi-step organic synthesis, 
advanced spectroscopic characterization techniques, analytical expertise, cell biology, 
biochemistry, and kinetics. In some cases, students will learn to operate advanced imaging 
instrumentation and learn to work safely and ethically with live animal models. Second, the field 
has generated a sea of new knowledge around luminophore design. An enormous library of 
molecular structures has been investigated with characterization of emission/excitation 
wavelengths and quantum yields. Interesting photophysical processes, including FRET, ICT, PeT, 
ESIPT, and others can now be masterfully harnessed to design molecular systems with 
predictable and tunable photophysical properties. Additionally, these luminescent molecules have 
been characterized in cellular and animal models and extensive information regarding their 
toxicity, uptake, subcellular localization, and pharmacokinetics are now known in the literature. 
Chemical studies of luminescent probes for reactive oxygen and nitrogen species have revealed 
new understanding on the reactivity of these species with a wide range of functional groups that 
can be used not only as reaction-based triggers, but in other types of chemical processes. The 
selectivity of the probes provides useful data and the information gained from probes that have 
less than perfect selectivity is often more useful than probes that are presented as 100% selective. 
The probes’ operation in cellular systems also gives information on the biorthogonality of these 
functional groups. Lastly, the field has generated new knowledge on the roles of reactive oxygen 
and nitrogen species in biological systems, and while there are significant caveats concerning 
selectivity and sensitivity, there are certain model systems that have been reproduced in 
numerous labs with different probes that give a high degree of confidence in the production of 
reactive oxygen and nitrogen species in these model systems. More broadly, the knowledge 
gained in luminescent probe design can be extended to many other fields, including 3D printing, 
2D and 3D optical displays, photoactivatable materials, photothermal agents, and light harvesting 

for energy applications.1091−1095 

  
What can be improved? As has been outlined in previous reviews,1096 the field would be well-
served by more rigorous and standardized analytical practices. First and foremost, detailed 
methods for all experiments should be included in a publication, including in vitro characterization 
of response and selectivity, details for cellular imaging experiments, and protocols for animal 

imaging. Limits of detection should be determined using the 3/k method, where the standard 
deviation of a blank/vehicle control sample is rigorously determined with at least 3 completely 
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independent experiments. The calibration curve should be constructed within the range of the 
limit of detection, and it should be determined as 3 times the standard deviation of the blank 
divided by the slope of this linear curve. In general, each measurement should be the average of 
3 independent experiments, and this is particularly important for cellular and animal studies where 
there can often be large variability between experiments. The number and type of replicates 
should be clearly indicated in the figure caption and methods section. Methods for quantification 
of images in cellular experiments should be clearly described to ensure reproducibility. 
Additionally, reporting on the stability of a given probe when stored as aliquots or in an organic 
solvent/buffer aids in reproducibility. The core design principle of most luminescent probes is the 
reaction-based trigger. Determining rate constants and showing full kinetic traces in selectivity 
studies would drastically improve our understanding of how each probe reacts and what is being 
measured in each biological experiment. Physical organic mechanistic studies are very rarely 
performed during probe design, but these could shine considerable light on the function of a given 
probe. We believe that following these recommendations will lead to more robust probe designs 
for better interlab reproducibility and adoption by non-experts. 
 
8. Conclusions and future directions 
The field of small molecule probes for reactive oxygen and nitrogen species is vast, even when 
limiting the scope of analytes. In most cases, the best results in using a newly developed probe 
are obtained when they are used in the same hands as those who developed them. Use by non-
chemist biologists is still relatively limited for several reasons. Many of the advanced luminescent 
probes for reactive oxygen and nitrogen species are synthetically challenging to obtain and not 
commercially available. Additionally, the stability of the probes can be uncertain (and are rarely 
measured, as discussed above) and proper use may require advanced instrumentation and 
protocols. Hence, biological investigations with these probes usually occur in the lab of the 
developers or require active collaborations to be established to navigate these issues. Following 
some of the recommendations above may render some of the probes more commercially viable 
for non-expert use. Another critical need in the field is the ability to quantify reactive oxygen and 
nitrogen species using luminescence probes. Most methods to date provide relative 
measurements to show that more or less of the reactive oxygen or nitrogen species is present in 
each biological environment compared to another. Specific quantification of reactive oxygen or 
nitrogen species concentrations could provide critical insight into their roles. For reversible 
probes, ratiometric approaches could be calibrated to give a good quantitative estimate and this 
has been achieved for a protein-based probe HyPer,1097 but designing probes that provide a high 
enough signal when the reaction is reversible is a considerable challenge. End-point dosimetry is 
possible, although this loses much of the spatial and temporal resolution that luminescent probes 
boast as an advantage. Recent kinetics-based approaches have been shown to be capable of 
real-time quantification of fluxes of reactive nitrogen and oxygen species,42,49,157 but only semi-
quantitative methods have been achieved in vivo.42,49 Developing these types of methods require 
very careful, robust, and reproducible methods – researchers need to be very transparent, with 
all assumptions clearly stated as these are being developed.  
 
Where is the field going? Thorough review of the literature has revealed several emerging trends 
in the field of luminescent probes for reactive oxygen and nitrogen species. First, new imaging 
modalities are emerging that are well suited for the types of luminescent probe design discussed 
in this review. Chemiluminescence and bioluminescence offer exciting opportunities for low 
background imaging and the demonstrations that sterically stabilized 1,2-dioxetanes could be 

used for in vivo imaging of reactive species  has led to an explosion of interest in this area.98−100 
Related to this is an emerging area of “afterglow” imaging, where a 1,2-dioxetane is generated in 
situ from photochemical generation of singlet oxygen, which reacts with an alkene precursor to 
generate a short-lived chemiluminescence emission that can be imaged after all other 
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luminescence background has decayed.1098 Photoacoustic imaging boasts considerable gains in 
imaging depth and resolution and many new probes for use with this modality are appearing,192 
as well as designs for pure ultrasound imaging.1099 Imaging in the NIR-II region of the spectrum 
reduces light scattering and the development of molecules with emission in this region have 
significant fundamental and practical applications.185 The field of sensing multiple analytes with a 
single probe as a sort of logic gate is gaining significant traction148 and even the beginnings of 
complex circuitry are appearing where a single or multiple probes perform rudimentary 
computations based on the analytes that are present. Finally, although the scope of this review 
was limited to small molecules, there are wide areas of active research into supramolecular and 
nanoparticle approaches that are being explored to generate different types of molecular device 
architectures.1100 

  
As can be seen from the volume of this review, the field of small molecule probes for reactive 
oxygen and nitrogen species is thriving across the world, illuminating and revealing how the air 
we breathe is transmuted and harnessed by the miraculous powers of the cell.  
 
Table 1. Small molecule probes for superoxide 

Probe Typea ex
b em

b Application Trigger/Comments Ref  Year 

 

Section 1 - Luminol/L-012 

luminol CL - 424 phagocytes luminol oxidation 101 1976 

luminol CL - 424 sea urchin eggs  luminol oxidation 229 1989 

L-012 CL - 450 
EoL-1, leukocytes, aortic 

rings, hyperlipidemic rabbits 
luminol oxidation 

103,221, 

205,1101 ,1102 1993 

 

Section 2 - Lucinogen and other acridinium salts 

lucigenin CL - 503 neutrophil leukocytes acridinium 222 1986 

ACR+-H2P-ACR+ F 512 651 buffer acridinium 216 2011 

MMT FCL n.r. 
430/ 

500 
neutrophils, NIH 3T3 

acridinium,  

mitochondria 
224 2013 

 

Section 3 - Cypridina luciferin and coelenterazine analogues 

CLA CL - 400  buffer Cypridina luciferin 106 1980 

ICLA CL - n.r. organic Cypridina luciferin  230 1992 
NCLA CL - n.r. organic Cypridina luciferin  230 1992 

Compound 4 CL - 521 buffer Cypridina luciferin  238 2004 

Compound 5 CL - 521 buffer Cypridina luciferin  238 2004 
Compound 6 CL - 521 buffer Cypridina luciferin  238 2004 

Compound 7 CL - 460 buffer Cypridina luciferin 238 2004 

Compound 3 CL - 610 buffer Cypridina luciferin  239 2006 
Compound 4 CL - 610 buffer Cypridina luciferin  239 2006 

Compound 1 CL - 545 buffer Cypridina luciferin  240 2010 

TPE-CLA CLF 350 500 
RAW 264.7, HL7702, 
mouse in vivo 

Cypridina luciferin  1103 2017 

MCLA-800 CL - 800 
neutrophils, rat in vivo/ ex 

vivo 
Cypridina luciferin 241,242 2021 

MCLA CL - 460  buffer, sea urchin eggs Cypridina luciferin 6,228,229,237 1988 

Compound 3 

 
CL - 462 buffer coelenterazine 232 1997 

Compound 9 

 
CL - 462 buffer coelenterazine 232 1997 

Compound16 CL - 
462 
 

buffer coelenterazine 232 1997 

Br-Cla CL - 480 buffer coelenterazine 233 2019 

Br2-Cla CL - 445 buffer coelenterazine 235 2022 
MeOBrCla CL - 450 buffer coelenterazine 234 2022 

FBr-Cla CL - 425 buffer coelenterazine 236 2023 

coelentrazine FCL 430 520 mouse in vivo coelentrazine  189 2016 
 

Section 4 - Hydroethidine 

HEt F 470 590 
hippocampal neurons, rat ex 
vivo 

hydroethidine  243 1996 
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MitoNeoD F 544 605 
C2C12, HEK293T, mouse 
ex vivo 

hydroethidinium, mitochondria 251 2017 

MitoSox Red F 470 579 oligodendrocytes hydroethidium 244 2006 

[18F]12 F 480 595 EMT6, mouse in vivo hydroethidium, PET tracer 250 2014 
 

Section 5 - Hydrocyanines and hydrocoumarins 

Hydro-Cy3 F 535 560 RASM, mouse ex vivo hydrocyanine oxidation 252 2009 
Hydro-Cy5 F 635 660 buffer hydrocyanine oxidation 252 2009 

Hydro-Cy7 F 735 760 mouse in vivo hydrocyanine oxidation 252 2009 

Hydro-ICG F 750 830 buffer hydrocyanine oxidation 252 2009 
Hydro-IR-676 F 675 693 buffer hydrocyanine oxidation 252 2009 

Hydro-IR-783 F 765 800 buffer hydrocyanine oxidation 252 2009 

H-800CW F 774 789 mouse in vivo, rat in vivo  hydrocyanine oxidation 253 2015 

HCy−SeH F 755 800 
HEK 293, mouse in vivo/ex 

vivo 

hydrocyanine oxidation,  

dual with Hg2+ 
257 2018 

HCy-ONO F 765 785 SH-SY5Y 
hydrocyanine oxidation,  
dual with polysulfides 

256 2019 

HCy5-Cy7 F 
620/

740 

660/ 

800 
RAW 264.7, mouse in vivo 

hydrocyanine oxidation, dual with 

ONOO− and ClO− 
258 2021 

HCy-FN F 775 794 RAW 264.7, mouse in vivo 
hydrocyanine oxidation, dual with 

persulfides, mitochondria 
254 2015 

Hcy-Biot F 730 780 HeLa, mouse in vivo 
hydrocyanine oxidation, dual with 
polysulfides, biotin-targeted 

255 2016 

Hcy-Mito F 730 780 
RAW 264.7, HUVEC, 

mouse in vivo 

hydrocyanine oxidation, dual with 

polysulfides, mitochondria 
255 2016 

MitoHCy5 F 620 645 BPAEC 
hydrocyanine oxidation, 

mitochondria 
1104 2023 

Ra F 330 476 buffer dihydrochromone oxidation 260 2021 
Rb F 330 450 buffer dihydrochromone oxidation 260 2021 

Rc F 348 482 buffer dihydrochromone oxidation 260 2021 

Probe 1 F 371 468 buffer dihydrocoumarin oxidation 259 2020 
Probe 3 F 371 468 buffer dihydrocoumarin oxidation 259 2020 

R1 F 330 450 buffer dihydrocoumarin oxidation  260 2021 

R2 F 346 446 buffer dihydrocoumarin oxidation 260 2021 
R3 F 390 476 buffer dihydrocoumarin oxidation 260 2021 

 

Section 6 - Benzothiazoline oxidation 

H. Py. Bzt F 377 528 buffer benzothiazoline 261 2004 

DBZTC F 485 559 RAW 264.7 benzothiazoline 262 2007 

HQ F2P 
430/ 
820 

548 
RAW 264.7, zebrafish, 
mouse in vivo 

benzothiazoline 1105 2017 

NS-O FR2P 
400/ 

800 
531 

HeLa, mouse ex vivo, 

zebrafish 
benzothiazoline 265 2018 

ER-BZT F2P 
360/ 

700 
450 HepG2, mouse ex vivo 

benzothiazoline, endoplasmic 

reticulum 
264 2017 

MF-DBZH F2P 
483/ 
800 

512 
HepG2, HeLa, mouse ex 
vivo 

benzothiazoline, mitochondria 263 2013 

 

Section 7 - Catechol oxidation 

PY-CA F2P 
400/ 
800 

520 
4T1, C. elegans, mouse in 
vivo 

catechol oxidation 1106 2015 

IR-747-SAPH F 690 747 HepG2, mouse in vivo catechol oxidation 267 2018 

Myricetin FR 407 545 HeLa, mouse in vivo catechol oxidation 1107 2019 

DPC F 370 480 
HL-7702, mouse in vivo/ex 

vivo 
catechol oxidation 1108 2023 

Per qdOH F 700 750 
B16, RAW 264.7, T. 

pallidum, mouse in vivo 
catechol oxidation 273 2023 

TCA F2P 
491/ 
800 

515 
HL-7702, HepG2, zebrafish, 
mouse in vivo 

catechol oxidation,  
reversible with GSH 

266 2013 

ER-NAPC FR 400 545 H9c2, mouse ex vivo 
catechol oxidation,  

endoplasmic reticulum 
274 2018 

CCA F2P 
370/ 

800 
490 hepatocytes, mouse ex vivo 

catechol oxidation,  

Golgi apparatus 
272 2019 

CST FR2P 
400/ 
800 

450/ 
590 

HL7702, mouse in vivo 
catechol oxidation,  
mitochondria 

268 2019 

CyCA F2P 
380/ 
800 

470 hepatocytes, mouse ex vivo 
catechol oxidation,  

dual with ONOO− 
271 2019 

CFT F2P 
400/ 

800 
450 4T1 catechol oxidation, dual with pH 270 2017 
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NpRbH F2P 
400/
780 

596 RAW 264.7, rat ex vivo 
catechol oxidation, reversible with 
GSH 

269 2016 

 

Section 8 - Sulfide and selenide oxidation 

TBT F 333 387 buffer sulfhydryl oxidation  1109 2010 

Probe 3 F 506 524 buffer sulfide oxidation 275 2013 

Probe 4 F 506 524 buffer sulfide oxidation 275 2013 

Compound 2 F 504 514 MCF-7, ADR 
diselenide oxidation, reversible 

with thiols 
276 2014 

HCy-SH FR 634 777  HEK 293, mouse in vivo/ex 
vivo 

thiol oxidation,  
dual with Hg2+ 

1110 2019 

Probe 4 F 505 526 MCF-7 selenide oxidation 277 2019 

Probe 3 F 506 521 MCF-7 cyclic diselenide 278 2020 
Probe 3 F 573 608 buffer selenide oxidation 279 2022 

Probe 4 F 388 469 buffer 
selenide oxidation, reversible with 

thiols 
280 2022 

Probe 5 F 380 458 buffer 
selenide oxidation, reversible with 

thiols 
280 2022 

Probe F 352 511 A549, MCF-7 diselenide oxidation 1111 2023 

 

Section 9 - Other oxidative triggers 

DPBF F 410 477 buffer benzofuran quenching 281 1999 

2-(2-

pyridyliminomet

hyl)phenol 

F 294 355 buffer ortho-imino phenol 282 2009 

9Cl(NEt2)2 F 728 -  buffer streptocyanine bleaching 283 2010 

ImS-FILA F 373 422 buffer imidazolium oxidation 284 2013 

TPA-DHP-1 F 313 463 HeLa Hantzsch ester oxidation 285 2019 
TPA-DHP-2 F 346 470 buffer Hantzsch ester oxidation 285 2019 

TPA-DHP-3 F 357 560 buffer Hantzsch ester oxidation 285 2019 

N1 F 340 480 buffer boronate 260 2021 
N2 F 340 468 buffer boronate 260 2021 

TPA-PPA-1 F 432 546 buffer boronic acid 285 2019 

TPA-PPA-2 F 437 598 buffer boronic acid 285 2019 
TPA-PPA-3 F 451 597  HeLa boronic acid 285 2019 

Mito-YX F 494 565 
MCF-7, RAW 264.7, mouse 

ex vivo 
boronic acid 286 2022 

 

Section 10 - Sulfonyl group cleavage 

Compound 3d F 485 515 neutrophils sulfonyl cleavage 1112 2005 

BESSo-AM F ~488 ~520 neutrophils, Jurkat T  sulfonyl cleavage 288 2007 
Probe 1 F 494 520 RAW 264.7 sulfonyl cleavage 1113 2015 

MLS-1 F 494 520 RAW 264.7 sulfonyl cleavage, mitochondria 1113 2015 

SoDA-1 F 480 512 MDCK sulfinate cleavage 316 2018 

Probe 1 F 492 513 HepG2, zebrafish 
sulfonyl cleavage,  

mitochondria, lysosome 
1114 2018 

BSR6 F 535 580 HeLa, Bv2, mouse in vivo sulfonyl cleavage 1115 2021 
N3 F 330 450 buffer sulfonyl cleavage 260 2021 

N4 F 348 450 buffer sulfonyl cleavage 260 2021 

NAP-SCM F 390 454 RAW 264.7, zebrafish sulfonyl cleavage 1116 2021 

MC-O-TBS F2P 
538/ 

800 
557 HepG2, mouse ex vivo sulfonyl cleavage 1117 2023 

HKSOX-1 F 509 534 RAW 264.7, THP-1 triflate cleavage  289 2015 

Probe 1 F2P 
365/ 

720 
500 RAW 264.7, mouse ex vivo triflate cleavage 290 2017 

NIR-O2
.- F 

660/ 

800 
719 

HK-2, mouse in vivo/ex 

vivo, HepG2 
triflate cleavage 291 2018 

HMBT-LW F 310 
378/ 
483 

buffer triflate cleavage 298 2019 

MRPD CL - 540 mouse in vivo/ex vivo triflate cleavage 310 2019 

TFR-O FR2P 
370/ 
740 

425/ 
550 

RAW 264.7, mouse ex vivo triflate cleavage 292 2019 

NCR1 FCL 535 700 HK2, mouse in vivo/ex vivo triflate cleavage 312 2020 

TP-Tfs FR2P 
400/ 
470 

520/ 
580 

A549, SH-SY5Y, mouse in 
vivo 

triflate cleavage 293 2020 

DLS4 F 600 660 HeLa, RAW 264.7, H9c2 triflate cleavage 300 2021 

IFP-O2 F 500 645 Cal-27 triflate cleavage 299 2021 

LW-OTf  FR 675 710 
HL-7702, mouse in vivo/ex 

vivo 
triflate cleavage 301 2021 
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CLO CL - 540 
HepG2, RAW 264.7, mouse 
in vivo 

triflate cleavage 313 2022 

TCF-OTf F 560 606 
P. aeruginosa, S. aureus, E. 

coli, E. faecalis 
triflate cleavage 307 2022 

ADN1 CL - 620 mouse in vivo triflate cleavage 314 2023 

ADN2 CL - 800 mouse in vivo triflate cleavage 314 2023 

BZT F 460 541 HeLa triflate cleavage 1118 2023 
CT-CF3 F 500 665 PC12, BV-2, mouse in vivo triflate cleavage 303 2023 

NIR-FP F 490 650 
PC-12, mouse in vivo/ex 

vivo 
triflate cleavage 302 2023 

Peptide-CL CL - 510 
neutrophils, HEK 293, 

mouse in vivo 
triflate cleavage 315 2023 

125/131I-PISO F 495 515 buffer, SPECT/CT in vivo 
triflate cleavage,  
radioiodinated for SPECT/CT 

309 2018 

Naph-O2
.- F2P 

450/ 

800 
554 mouse ex vivo, HepG2 

triflate cleavage,  

mitochondria 
291 2018 

ER-NFTTA-

Eu3+/Tb3+ 
L 330 610 

HepG2, mouse in vivo/ex 

vivo 

triflate cleavage,  

endoplasmic reticulum 
304 2019 

HKSOX-1r F 509 534 
HCT116, BV-2, RAW 

264.7, THP-1, zebrafish 
triflate cleavage, cell-trappable 289 2015 

CFR CL - 540 AML-12, mouse in vivo 
triflate cleavage, dual with 

caspase-3 
311 2019 

ADR CL - 520 mouse in vivo 
triflate cleavage, dual with N-

acetyl-beta-D-glucosaminidase 
1119 2019 

ER-NFTTA-Tb3+ L 330 540 
HepG2, mouse in vivo/ex 
vivo 

triflate cleavage, endoplasmic 
reticulum 

304 2019 

TPER-O2•− F2P 450 554 HepG2, mouse ex vivo 
triflate cleavage, endoplasmic 
reticulum 

294 2020 

ER-Rs F2P 
500/ 

800 
558 

HeLa, RAW 264.7, 

zebrafish, mouse ex vivo 

triflate cleavage, endoplasmic 

reticulum 
296 2021 

ER-Tf FR 405 462 HeLa 
triflate cleavage, endoplasmic 

reticulum 
305 2023 

GolROS F 719  740 HL-7702, mouse in vivo triflate cleavage, golgi 120 2022 

Gol-Cou-O2
•− F 356 460 HepG2, H9c2, zebrafish triflate cleavage, Golgi apparatus 121 2023 

AP FPAR 
745/ 

815 
850 

L02, HEK 293, mouse in 

vivo 
triflate cleavage, hepatocytes 134 2022 

hCy-Tf-CA FPA 710 740 HepG2, mouse in vivo triflate cleavage, hepatocytes  306 2023 

Lyso-MHC F2P 
450/ 

730 
556 

HeLa, zebrafish, mouse ex 

vivo 
triflate cleavage, lysosome 295 2021 

HKSOX-1m F 509 534 RAW 264.7, THP-1 triflate cleavage, mitochondria 289 2015 

Mito-Cy-Tfs FR 
600/ 

730  

742/ 

790 
RH-35, mouse in vivo triflimide cleavage, mitochondria 308 2018 

APSA FPA 
690/ 

845 
748 HL-7702, mouse in vivo triflimide cleavage, mitochondria 297 2022 

 

Section 11 - Phosphinate cleavage 

PF1  F 490 530 macrophages phosphinate cleavage 317 2007 

PNF-1 F 602 662 RAW 264.7 phosphinate cleavage 318 2007 

Probe 1 FR 310 
370/ 
460   

buffer phosphinate cleavage 335 2013 

Probe 1 FR 390 
525/ 

615 
HepG2 phosphinate cleavage 324 2017 

BDP FR 500 716 HepG2 phosphinate cleavage 321 2018 

phosphinate‐

luciferin 
BL -  530 Huh7 phosphinate cleavage 331 2018 

MRP1 F 675 760 mouse in vivo/ex vivo phosphinate cleavage 310 2019 

RDX F2P 
580/ 
800 

638 
HeLa, RAW 264.7, mouse 
in vivo/ex vivo 

phosphinate cleavage 319 2021 

BODIPY-T F 480 530 RAW 264.7 phosphinate cleavage 1120 2022 

NR1 F 590 650 4T1, HeLa phosphinate cleavage 322 2022 
MB-SO F 635 690 HT-22, mouse in vivo phosphinate cleavage 323 2023 

NA-T FR 415 
475/ 

540 
HepG2, Daphnia magna 

phosphinate cleavage,  

mitochondria 
325 2018 

DPP-S FR 490 
545/ 

652 

MCF-7, RAW 264.7, mouse 

in vivo 

phosphinate cleavage,  

mitochondria 
327 2019 

PBD-B FR 410 
475/ 
540 

HepG2, mouse in vivo 
phosphinate cleavage,  
mitochondria 

326 2019 

PF-MitoSOX 

Green 
F 488 515 H9C2, C. elegans 

phosphinate cleavage,  

mitochondria 
328 2019 
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V-OS F2P  
377/ 
890 

530 HepG2, mouse in vivo 
phosphinate cleavage, dual with 
viscosity 

320 2023 

DMPS-O F 418 635 MCF-7, HepG2 
phosphinate cleavage, 

mitochondria 
329 2021 

DTPB FR 405 587 MCF-7 
phosphinate cleavage, 

mitochondria, dual with viscosity 
330 2023 

TPP F2P 
345/
740 

470 RAW 264.7, rat ex vivo phosphinothioate cleavage 333 2019 

Probe 1 F 490 511 buffer 
phosphite cleavage,  

reversible with nerve agents 
332 2014 

CyR F 675 704 
HepG2, zebrafish, mouse in 

vivo 
phospinate cleavage 1121 2016 

 

Section 12 - Nitrophenyl and ether cleavage 

Probe 1 F 490 522 SH-SY5Y dinitrophenyl ester removal 334 2013 

Probe 2 FR 310 
370/ 
460  

buffer 4-nitrophenyl ether cleavage 335 2013 

 

Section 13 - Other nucleophilic triggers 

NBD-Cl F 470 550 buffer nucleophilic aromatic substitution 287 2005 
TPA-Pyr-

Thiourea 
F 430 

525/ 

580 
HeLa 

pyridinium cleavage,  

mitochondria 
336 2020 

Probe 2 PA 750 PA chicken ex vivo oxoporphyrin binding 337 2019 
2-SAP F 295 360 buffer Schiff base 1122 2011 

 

Section 14 - Combined oxidative and nucleophilic triggers 

SOP-blue FR 325 
385/ 

485 
buffer Cu2+ promoted C-O cleavage 338 2017 

SOP-cyan F 455 488 HEK293T, HeLa, A431 Cu2+ promoted C-O cleavage 338 2017 
SOP-orange F 570 585 buffer Cu2+ promoted C-O cleavage 338 2017 

SOP-green F 470 510 HeLa, HEK293T Cu2+ promoted C-O cleavage 340 2020 

Lyso-SOP-green F 470 510 RAW 264.7 
Cu2+ promoted C-O cleavage, 
lysosome 

340 2020 

HemiSe F 360 439 RAW 264.7 1,4-addition/1-electron oxidation 341 2018 

        
Section 15 - Reductive triggers 

HO-1889NH F 330 550 spinach leaves spin trap 343 2002 

Compound 15 F 
330/ 
346 

377/ 
397 

buffer trityl radical, dual EPR 342 2010 

Compound 7 F 
330/ 

346 

377/ 

397 
buffer trityl radical, dual EPR 342 2010 

Compound 8 F 
330/ 

346 

377/ 

397 
buffer trityl radical, dual EPR 342 2010 

F-Tz1 F 323 470 HepG2 tetrazine to oxadiazole 344 2023 
F-Tz2 F 334 460 HepG2 tetrazine to oxadiazole 344 2023 

F-Tz3 F 350 530 HepG2 tetrazine to oxadiazole 344 2023 

F-Tz4 F 385 510 
HepG2, H9C2, mouse ex 
vivo 

tetrazine to oxadiazole 344 2023 

F-Tz5 F 346 445 HepG2 tetrazine to oxadiazole 344 2023 

F-Tz6 F 450 505 HepG2 tetrazine to oxadiazole 344 2023 
F-Tz7 F 445 540 HepG2 tetrazine to oxadiazole 344 2023 

F-Tz8 F 566 585 HepG2 tetrazine to oxadiazole 344 2023 

F-Tz9 F 474 600 HepG2 tetrazine to oxadiazole 344 2023 
a F = fluorescence, R = ratiometric, 2P = two-photon, L= luminescence, CL = chemiluminescence, BL = bioluminescence, PA = 

photoacoustic. b Wavelengths given in nanometers. 

 
Table 2. Small molecule probes for hydrogen peroxide 

Probe Typea ex
b em

b Application Trigger/Comments Ref Year 
        

Section 1 – Classical detection methods (xanthene oxidation, luminol, and peroxyoxalate)  

DCFH-DA F 504 523 leukocytes, HUVEC xanthene oxidation 24  1965 

Amplex Red F 563 587 neutrophils resorufin oxidation 25 1997 
[Ru(bpy)2(lumino

l-bpy)](PF6)2 
LCL 450 645 buffer luminol 363 2015 

P-HP F2P 
478/ 
850 

645 mouse liver ex vivo luminol 364 2017 

PO-Tz1 CL - 480 organic peroxyoxalate 1123 2019 

PO-Tz2 CL - 525 organic peroxyoxalate 1123 2019 
NIR-II CLS CL - 935 mouse in vivo peroxyoxalate  376 2020 
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m-carboxy 

luminol 
CL - 424  buffer luminol oxidation 1124 2021 

NIR-Cl-NP CL - 755 mouse in vivo peroxyoxalate 375 2022 

        
Section 2 - Phosphine oxidation 

DPPP F 351 380 PMN phosphine oxidation 
379, 

380 
1987 

Probe 2 F 458 520 organic phosphine oxidation 1125 2003 

Probe 1 F 360 492 organic phosphine oxidation 381 2005 

DPPEA-HC F 396 449 buffer phosphine oxidation 382 2005 
Spy-HP F 524 535 buffer phosphine oxidation 383 2006 

DPPEA-BODIPY F 502 515 buffer phosphine oxidation 1126 2009 

MitoDPPP F 350 380 HepG2 phosphine, mitochondria 384 2010 
Cy-NOH2 FR 605 750 L02, zebrafish, mouse in vivo phosphine oxidation 385 2022 

        

Section 3 - Boronate oxidation 

Probe 1b F 355 460 buffer boronate 386 2003 

PF1 F 450 ~510 HEK, rat hippocampal neurons boronate 
387, 
388 

2004 

PR1 F 530 580 HEK boronate 388 2005 
PX1 F 350 450 HEK boronate 388 2005 

RPF1 FR 420 
517/ 

464 
mitochondria boronate 389 2006 

PG1 F 460 510 HEK 293, A431 boronate 462 2007 

PC1 F 480 584 HEK 293 boronate 462 2007 

PL1 FR2P 
410/ 

800 

540/ 

475 
RAW 264.7 boronate 390 2008 

MitoPY1 F 510 528 HeLa boronate, mitochondria 463 2008 
NPF1 F 598 660 RAW 264.7 boronate 488 2008 

Probe 1 F 332 454 buffer boronate 1127 2008 

SNAP-PG1 F 465 515 HEK 293T boronate, SNAP tag 129 2010 
SNAP-PG2 F 465 515 HEK 293T boronate, SNAP tag 129 2010 

PF2 F 475 511 A431, RAW 264.7 boronate 147 2010 

PF3 F 492 515 A431, RAW 264.7 boronate 147 2010 
PE1 F 491 514 A431, RAW 264.7 boronate 147 2010 

PY1 F 519 548 A431, RAW 264.7 boronate 147 2010 

PO1 F 540 565 A431, RAW 264.7 boronate 147 2010 

PCL-1 BL - 530 LNCaP-luc, mouse in vivo boronate 523 2010 

TPR1 L 280 545 buffer boronate, time gated 581 2010 

TPR2 L 280 545 RAW 264.7 boronic acid, time-gated 581 2010 
RS-BE F 550 580 SH-SY5Y boronate, with Fe2+ and Cu2+ 1128 2010 

Probe 1 F 400 475 buffer boronate 1129 2010 

Probe 4 F 370  450 buffer boronic acid 1130 2010 
PY1-ME F 515 540 HEK 293, HT29 boronate 1131 2010 

PN1 F2PR 

370/ 

358/ 
750 

450/ 

500 

RAW 264.7, rat hippocampal ex 

vivo 
boronate 391 2011 

NucPE1 F 505 530 HEK 293, HeLa, C. elegans boronate, nucleus 478 2011 

probe 4  

 
F 590 720 mouse in vivo  boronate 489 2011 

p-NPBA F 294 405 buffer boronic acid 1132 2011 

SHP-Mito F2PR 383 
470/ 
545 

RAW 264.7, rat hippocampal ex 
vivo 

boronate, mitochondria 392 2012 

probe 3 FR 400 
484/ 

566 
PC3 boronate 393 2012 

DQHP FR 405 
480/ 

542 
buffer boronate 394 2012 

FP-H2O2-NO F 400 460 HeLa, RAW 264.7 boronate, dual with NO 831 2012 
FloB-SI F 495 520 HeLa boronate, dual with Fe3+ and Cu2+ 1133 2012 

Probe 1 FR 380 
410/ 

542 
RAW 264.7 boronate 395 2013 

Probe 1A FR 375 
420/ 

510 
buffer boronate 396 2013 

Probe 1C FR 375 
480/ 
570 

buffer boronate 396 2013 

SHP-Mito F2P 
342/ 

740 
470 HeLa, rat hippocampal ex vivo boronate 447 2013 

D-BBO F 341 
405/ 

510 
buffer, surfactant boronate 1134 2013 

2a F 450 560 buffer boronate 1135 2013 
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2b F 450 560 buffer boronate 1135 2013 
3a F 450 560 buffer boronic acid 1135 2013 

3b F 450 560 buffer boronic acid 1135 2013 

Probe 1 F 290 410 buffer 
boronate,  
dual with fructose  

1136 2013 

Probe 2 F 370 410 buffer 
boronate,  

dual with fructose  
1136 2013 

C6NIB F 450 ~550 buffer, vapor boronate 1137 2013 

FBBBE F 494 521 
RAW 264.7, mouse brain ex 

vivo 
boronate 1138 2013 

1a FR 361 
415/ 

527 
buffer boronic acid 397 2014 

1b FR 379 
408/ 
600 

buffer boronic acid 397 2014 

1c FR 366 
415/ 

527 
HeLa, Jurkat boronic acid 397 2014 

1d FR 361 
408/ 

600 
buffer boronic acid 397 2014 

Probe 1 FR 
372/ 

453 

446/ 

546 
RAW 264.7 boronate 398 2014 

NP1 FR 
354/ 

446 

403/ 

555 

HeLa, RAW 264.7, A431, rat 

hippocampal ex vivo 
boronate 399 2014 

pep-NP1 FR 353 
403/ 

551 
HeLa boronic acid, nuclear 399 2014 

Compound 1 F 365 510 buffer boronate 1139 2014 
Probe 4 F 480 520 HepG2, LO2, angelfish boronate 1140 2014 

Probe 3 BL - 525 ES-2-luc, mouse in vivo boronic acid 1141 2014 
Compound 1 F 503 485 buffer boronate 1142 2014 

BCQ F 350 454 buffer boronate, prochelator 1143 2014 

pep3-NP1 F 455 
555/ 
646 

HeLa boronic acid, mitochondria 400 2015 

Probe 1 F 405 528 HeLa, RAW 264.7 boronate, lysosome 479 2015 

Probe 1 F 560 670 HeLa boronic acid 491 2015 
DCM-B1 F 560 700 buffer boronate 492 2015 

DCM-B2 F 560 700 MCF-7, mouse in vivo boronate 492 2015 

Compound 2 F 445 556 buffer boronate 1144 2015 
Probe 1 F 400 460 HEK293 boronate 1145 2015 

EEPF1 F 450 520 spermatozoa boronate 1146 2015 

P1 F 360 515 buffer, milk boronic acid 1147 2015 
TPE-BO F 400 500 RAW 264.7 boronate 1148 2015 

 CRANAD-88 F 630 730 
brain homogenate, mouse in 

vivo 
boronate, Aβ-responsive 142 2016 

NPP F2PR 

430/ 

740/ 

810 

460/ 
540 

RAW 264.7 boronic acid 401 2016 

azaBDPBA F 655 
682/ 

724 
HeLa boronic acid 402 2016 

CSBOH FR 
560/ 
670 

650/ 
720 

HeLa, RAW 264.7, mouse in 
vivo 

boronate, alkaline conditions 403 2016 

BNBI FR 
480/ 

555 

590/ 

690 
buffer boronate 404 2016 

Cy-B FR 
554/ 

685 
709 MCF-7, mouse in vivo boronate 405 2016 

Lyso-HP F2P 
474/ 
780 

550 
HeLa, RAW 264.7, rat liver ex 
vivo 

boronate, lysosome 448 2016 

 B(OH)2-QPD F2P 
365/ 

730 
525 HeLa, RAW 264.7 boronic acid 449 2016 

CBZ-H2O2 F2P 
350/ 

720 
430 HeLa, rat ex vivo boronate, mitochondria 450 2016 

M-H2O2 F 530 558 HepG2, macrophages, zebrafish boronate, mitochondria 464 2016 

ER-H2O2 F 400 
458/ 

558 
HepG2, 4T1 boronate, endoplasmic reticulum 465 2016 

MI-H2O2 F 525 555 HepG2, 4T1 boronic acid, mitochondria 465 2016 
Mito-H2O2 F 376 527 HeLa boronate, mitochondria 466 2016 

HP-L1  F 520 584 HeLa 
boronate, lysosome, pH-

switchable 
480 2016 

QCy-BA F 400 680 HeLa, MRC5 boronic acid 493 2016 

DH-1 F 560 700 MCF-7, mouse in vivo boronate 494 2016 

OTB F 366 466 vapor boronate 1149 2016 
OTBPA F 365 445 vapor boronate 1149 2016 
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FLB2SSCou F 408 525 HeLa boronate, dual with thiols 1150 2016 
TPE-HPro F 373 540 buffer boronate 1151 2016 

NBCD F 530 590 HeLa boronate 1152 2016 

TPE-TLE FR 380 
435/ 
550 

RAW 264.7, HepG2 boronate 406 2017 

CNP FR 420 
485/ 

558 
HeLa boronate 407 2017 

TPNR-H2O2 F2P 
560/ 

860 
699 MCF-7, RAW 264.7 boronate 451 2017 

Probe 1 F2P 
360/ 
740 

505 HeLa boronate 452 2017 

HPQ-H. F2P 
405/ 

720 
~480 HeLa, mouse muscle ex vivo boronate, ESIPT 453 2017 

CAI F 405 575 RAW 264.7 boronate, mitochondria 467 2017 

Lyso-B-L1 F 570 606 HeLa 
boronate, lysosome, pH 

activatable 
481 2017 

ztl-4 F ~420 ~490 SH-SY5Y boronate, lysosome 482 2017 

pep4-NP1 F 450 663 HeLa, RAW 264.7 boronic acid, dual with caspase 3 495 2017 

Probe 2a CL - 690 mouse in vivo boronate 496 2017 

Probe 1 CL - ~460 buffer boronate 525 2017 

Probe 7 CL - 540  buffer boronate 526 2017 

PAM-BN-PB F 410 480 HeLa, mouse in vivo boronate 1153 2017 
HPQB F 333 495 C666-1 boronate 1154 2017 

Mito-VH F 400 510 HeLa, RAW 264.7 boronate, dual with viscosity 1155 2017 

AVPM F 448 596 organic boronate 1156 2017 

P1 FR 343 
408/ 

546 
buffer boronate 1157 2017 

P2 F 329 512 buffer boronate 1157 2017 

FD-1 F 480 615 buffer boronate 1158 2017 

FD-2 F 480 615 U87, mouse ex vivo boronate 1158 2017 
Py-Boe F 385 485 RAW 264.7 boronate 1159 2017 

RF620 FR 
550/ 

620 

570/ 

636 
HeLa borinate  

593,11

60 
2017 

PEP-Npb1-Cy3 F 425 567 SKOV-3 
boronic acid, integrin receptor 

targeted 
140 2018 

Mito-HP FR 391 543 HeLa boronate, mitochondria 408 2018 

Compound 1 FR 500 
535/ 

640 
HeLa, NRK boronate, mitochondria 409 2018 

Probe 3 FR 365 
450/ 
543 

HeLa boronate 410 2018 

AB-1 FR 535 
620/ 

660 
HeLa, mouse in vivo boronate 411 2018 

FB F2PR 
405/ 

800 

485/ 

585 
VSMC, zebrafish boronate, releases CO 412 2018 

CNBE FR 410 
480/ 
551 

HeLa, zebrafish boronate 413 2018 

HCyHP FR 524 599 HeLa boronate 414 2018 

SHP-Cyto FR2P 
371/ 
750 

455/ 
528 

HeLa, rat ex vivo boronate 415 2018 

HBTPB FR 373 
539/ 

669 
A549 boronate 416 2018 

HKB FR 440 
594/ 

666 
HeLa boronate, mitochondria 417 2018 

TX-HP F2P 
450/ 
800 

512 
HeLa, RAW 264.7, mouse liver 
ex vivo 

boronate 454 2018 

Probe 1a F 550 604 HeLa, Ges-1 boronate, mitochondria 468 2018 

PRB2-H2O2 F 672 695 HepG2, mouse in vivo boronate  497 2018 
PB1 F 470 510 bovine oocytes boronate 541 2018 

TCF-PB F 560 605 A549 boronate 1161 2018 

Probe 1 F 368 580 4T1 boronate 1162 2018 

RhoB FR 580 638 
HeLa, mouse live ex vivo, 

mouse in vivo 
boronate 1163 2018 

FE-H2O2 F 365 512 RAW 264.7 boronate, electrochemical 1164 2018 
BNBD F 465 535 A549 boronic acid 1165 2018 

BQA-GGFF FR 406 490 
HeLa, HepG2, MCF-7, PANC-

1, HUVEC 
boronic acid  1166 2018 

Probe 1 F 480 619 HeLa boronate 1167 2018 

Peroxymycin-1 F 488 496 

A431, MDA-MB-231, MDA-

MB-468, MCF-7, MCF-10A, 
HS 578T, HS578Bst 

boronate, puromycin staining 
1168, 
1169 

2018 
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NIR-HP1 FR 395 
500/ 
650 

HeLa, zebrafish, Drosophila boronate 418 2019 

Cy-ArB FR 
605/ 

780 

758/ 

806 
HepG2, mouse in vivo boronate 419 2019 

FH2O2 FR2P 
324/ 

358 

484/ 

562 
BV-2, rat brain ex vivo boronate 420 2019 

probe 1 FR 
375/ 
430 

535/ 
640 

HeLa boronate 421 2019 

Probe FR 450 
550/ 

672 

RAW 264.7, MCF7, MDA-MB-

231 
boronic acid, dual with MMP2 422 2019 

TP-NIR-H2O2 F2P 
585/ 

800 
665 HeLa, mouse liver ex vivo boronic acid, mitochondria 455 2019 

AzuFluor 483-

Bpin 
F2P 

350/ 
800 

483 
RAW 264.7, rat hippocampal ex 
vivo 

boronate 456 2019 

Mito-NP F 463 553 HeLa, A549 boronate, mitochondria 469 2019 

BP5-NB-OB FR 
650/ 
695 

700/ 
720 

A549, mouse in vivo boronate, biotin targeted 487 2019 

NDCM-HP F 550 676 Hela, MCF-7 boronate 498 2019 

JW41 FPA 
730/ 

790 
825 

MDA-MB-231, MCF-7, mouse 

in vivo 
boronate 499 2019 

NRBE FR 585 670 BEL-7402 boronate 500 2019 

Probe 1 FR 670 708 HepG2, mouse in vivo boronate 501 2019 
Probe 1 CL - 499  buffer boronate 528 2019 

Probe 2 CL - 499 buffer boronate 528 2019 

Mito-FBN F 470 528 KB boronate 1170 2019 
DCM-B F 557 688 HepG2 boronate 1171 2019 

PB1 FR 540 640 HepG2, Drosophila ex vivo boronate 1172 2019 
TPYS FR 420 590 HeLa boronate 1173 2019 

PHS1 FR 390 460 HT-29, HeLa, zebrafish boronate, dual with H2S 1174 2019 

BBD F 401 512 HeLa boronate 1175 2019 
TPECNPB F 450 625 MCF-7 boronic acid, lipid droplet, PDT 137 2020 

probe 1a FR 365 
458/ 

510 
HeLa boronic acid 423 2020 

JNH-1 FR 380 
455/ 

540 
HGC-27 boronate 424 2020 

Mito-HT FR 395 
493/ 
562 

CHO-K1 boronate, mitochondria 425 2020 

Py-VPB FR 380 
480/ 

600 
HeLa, RAW 264.7 boronate 426 2020 

Ir-BE F 365 
490/ 

550 
buffer, river water boronate 427 2020 

HDP-1  FR 420 
485/ 
618 

HDP-1 boronate  428 2020 

CSU1 FR 
376/ 

440 

409/ 

640 
MCF-7 boronate, dual with HOCl 429 2020 

TCAB FR 325 
413/ 

486 
HeLa, zebrafish boronate, dual with H2S 430 2020 

TFP FR2P 
380/ 
710 

470 neurons, zebrafish boronate, mitochondria 457 2020 

Pyp-B F2P 
437/ 

800 
625 A549, zebrafish boronate, mitochondria 458 2020 

QVD-B FR 405 580 HepG2 
boronate, mitochondria, super 

resolution 
470 2020 

Mito-NIRHV FR 440 700 HeLa, mouse in vivo 
boronate, mitochondria, dual with 
viscosity 

471 2020 

HCy-BOH FPA 679 706 
HeLa, RAW 264.7, mouse in 

vivo 
boronic acid 472 2020 

TPP-HCy-BOH FPA 690 716 
HeLa, RAW 264.7, mouse in 

vivo 
boronic acid, mitochondria 472 2020 

PRB F 450 550 HeLa boronate, dual with thiols 483 2020 
PMB F 450 565 HeLa boronate, lysosome 483 2020 

DCP-BA FR 546 680 HeLa boronic acid 502 2020 

PCN-BP FR 470 680 RAW 264.7 boronate 503 2020 
NIR-pH-H2O2 F 560 680 MCF-7, mouse in vivo boronic acid, dual with pH 504 2020 

Compound 1 CL - 540 Cco-2, HaCat, HUVEC boronate 527 2020 

DCX-B F 590 748 HCT116, HepG2, mouse in vivo boronate 1176 2020 
CBH F 488 530 HeLa, zebrafish, C. elegans boronate 1177 2020 

PT1 F 595 610 buffer boronate 1178 2020 

BPN-TOB FR 365 471 
MGC-803, RAW 264.7, 
zebrafish 

boronate 1179 2020 
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RAH225 F 330 452 buffer boronate 1180 2020 
RAH2115 F 560 585 HeLa boronate 1180 2020 

HF-6 FR 451 526 SH-SY5Y boronate, dual with formaldehyde 1181 2020 

HP FR 396 566 HepG2 boronate 1182 2020 
Geisha-1 F 450 550 HeLa, mouse liver ex vivo boronate, dual with HOCl 1183 2020 

MT-PY1 F 488 540 HeLa, A431 boronate, microtubule targeting 136 2021 

CyBP-600 F 355 530 GL261 
boronate, dual with protein 
aggregates 

143 2021 

BtBC-H2O2 FR2P 

380/ 

480/ 
850 

520/ 

610 

HeLa, HT29, A549, HepG2, 

mouse ex vivo 
boronate 431 2021 

TPP-Tba FR 405 
460/ 

614 
HeLa, 3T3, mouse ex vivo boronate, dual with viscosity 432 2021 

PyBC590 FR2P 

427/ 

519 

/880 

593/ 
642 

HeLa, mouse ex vivo boronate 433 2021 

NAB-BE FR2P 
340/ 

745 
512 RAW 264.7 boronate 434 2021 

NAB-BA FR2P 
340/ 

745 
512 RAW 264.7 boronic acid 434 2021 

QVB-B FR 405 
464/ 

580 
HepG2 boronate 435 2021 

HQPQ-B FR 450 
575/ 

670 
HeLa boronate, mitochondria 436 2021 

NPDIN FR 
380/ 
405 

398/ 
554 

A549, LoVo, HT29, Caco-2 boronate 437 2021 

BT-HP F2P 
450/ 
780 

550 HeLa, tumor ex vivo boronate, biotin tagged 459 2021 

Mito-Bor F 700 730 
A549, PC9, IMR90, MRC-5, 

mouse in vivo 
boronate, mitochondria 473 2021 

Py-SiRh-HP F 655 680  HeLa, mouse in vivo boronic acid, lysosome 484 2021 

NPT-H2O2 FR 
375/ 

450 

425/ 

550 
HeLa, mouse ex vivo boronic acid, lysosome 485 2021 

ADM F2P 450 667 H9C2 
boronate, dual with viscosity, 

COS release 
505 2021 

MTR-HH F 701 724 
HeLa, RAW 264.7, mouse in 
vivo 

boronate 506 2021 

PA-HD-H2O2 FPA 745 765 NeuroScreen-1, mouse in vivo boronate 507 2021 

CX-B-DF FR 550 695 HCT116, mouse in vivo boronate, drug release 508 2021 
BOD-H2O2 F 695 725 HeLa boronate 509 2021 

 QX-B  FR 725 772 
HeLa, HCT116, AT1, zebrafish, 

mouse in vivo 
boronate 510 2021 

FP-BDP4 F 615 720 RAW 264.7, mouse in vivo boronic acid 511 2021 

DX-B-DA FR 670 705 mouse in vivo boronate, drug release 512 2021 

PN910 FR 870 910 mouse in vivo boronate  529 2021 
Hcy-OB F 400 550 HeLa, mouse in vivo boronate, dual with SO2 

1184 2021 

Probe 19 F 454 511 HeLa boronate 1185 2021 

XH-2 F 570 638 HepG2 boronate 1186 2021 
BC-OB F 475 495 RAW264.7 boronate 1187 2021 

PG1-FM F 488 525  
HeLa, A431, RAW 264.7, 

microglia-neuron coculture 
boronate, tandem activity based 1188 2021 

Cy-Hy BL - 489  MDA-MB-231 boronate 1189 2021 

BTFMB FR 380 542 HepG2 boronate 1190 2021 

CMB FR 405 450 MCF-7, zebrafish boronate 1191 2021 
BCO F 440 547 A549, mouse ex vivo boronate 1192 2021 

N-Py-BO F 480 650 RAW 264.7 boronate 1193 2021 

Probe 4 F 405 450 COS7 borinic acid  1194 2021 

NATPA FR 365 550 HepG2, L-02 
boronate, dual with polarity, lipid 

droplet 
138 2022 

R-MA-SLM FR 490 
574/ 
661 

N2a, N2aSW, mouse in vivo/ex 
vivo 

boronate, AB targeted 144 2022 

CBD F 514 635 SH-SY5Y, mouse ex vivo 
boronate, dual with AB fibrils and 

viscosity, mitochondria 
145 2022 

NCR FR 
410/ 

590 

522/ 

670 
HeLa boronic acid 438 2022 

HBQ-B FR 422 
538/ 
656 

MCF-7, HeLa, RAW 264.7, 
zebrafish 

boronate 439 2022 

THMP FR 500 
540/ 

610 
HepG2, mouse in vivo boronate 440 2022 

HBQ-L FR 405 508/ A549, zebrafish, mouse in vivo boronate, mitochondria 441 2022 
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642 

QM-R FR 
460/ 

620 

555/ 

720 
HepG2 boronate 442 2022 

Probe 1 FR 360 
450/ 
605 

HepG2, zebrafish, mouse ex 
vivo 

boronate, dual with HOCl 443 2022 

CI-Bz-B F2P 
330/ 

735 
481 RAW 264.7 boronic acid, responds to ONOO− 460 2022 

LY-H2O2 F2P 
370/ 

800 
445 PC12, mouse in vivo boronate, lysosome 461 2022 

MI-H2O2 F 610 670 PC12, mouse in vivo boronate, mitochondria 461 2022 
JQ-1 F 524 572 HeLa, zebrafish boronate, mitochondria 474 2022 

TMN-H2O2 F 480 660 
HepG2, zebrafish, mouse in 

vivo 
boronate 513 2022 

DCM-HNU F 453 658 HeLa, zebrafish boronate 514 2022 

HD-BPin FR 660 704 A549 boronate, dual with ONOO− 515 2022 

DBIS FR 670 708 mouse in vivo boronate 516 2022 

MB-m-borate F 665 684 
A375, PIG1, HepG2, LO2, 

mouse in vivo 
boronate, dual with tyrosinase 517 2022 

BC-B F 550 672 HeLa boronate 518 2022 

bor-DTZ BL - 500 MDA-MB-231 boronate 524 2022 

IR-990 FR 790 990 HeLa, HepG2, mouse in vivo boronate 530 2022 

BHC-Lut FPA 830 930 mouse in vivo boronate, drug-release 531 2022 

NH-MT F 460 550 
HepG2, RAW 264.7, HUVEC, 

MGC803, zebrafish 
boronic acid 1195 2022 

CDM-C FR 430 617 HUVEC, HeLa, zebrafish boronate 1196 2022 
QM-RSH FR 460 700 HepG2, zebrafish boronate, dual with H2S 1197 2022 

BHA-B FR 370 595 HeLa, zebrafish boronate, acetyl assisted 1198 2022 
TZ-BO F 350 545 HeLa boronate 1199 2022 

BBS F 394 464 MCF-7 boronate 1200 2022 

Probe-1 FR 365 
405/ 
550  

MCF-7 boronate 1201 2022 

HP-H2O2 FR 800 937 mouse in vivo boronic acid 1202 2022 

Probe 1 F 400 483 HeLa, HepG boronate 1203 2022 
Probe 2 FR 500 650 HeLa boronate 1204 2022 

QX9A-H2O2 F 450 540 HeLa boronate 1205 2022 

8-quinoline 

boronic acid 
F 370 515 buffer boronic acid, Al assisted 1206 2022 

Golnap-H2O2 F 405 520 HeLa, zebrafish boronate, H2S release, Golgi 122 2023 

DPP-BPYS F 504 684 
MCF-7, ZJU0430, HeLa, mouse 
in vivo 

boronate, singlet oxygen 
generation, lipid droplet targeted 

139 2023 

P1 F 410 653 DU-145 
boronate, estrogen receptor-beta 

targeted 
141 2023 

P2 F 413 655 DU-145, mouse in vivo 
boronate, estrogen receptor-beta 

targeted 
141 2023 

VBD F 522 590 PC12, mouse ex vivo 
boronate, dual with AB 
aggregates 

146 2023 

Probe 1 FR 405 
468/ 

542 
MCF-7 boronic acid 444 2023 

GT-H2O2 FR2P 
360/ 

760 

420/ 

505 
HeLa, HU-EVC, zebrafish boronate 445 2023 

DFB-1 FR 
470/ 
590 

560/ 
680 

A549, HepG2 boronate, mitochondria 446 2023 

HTQ-R F 400 620 HeLa, mouse in vivo boronate, mitochondria 475 2023 

HCyB F 525 556 
RAW 264.7, WS1, MDA-MB-
231, THP-1 

boronate, mitochondria 476 2023 

TP/TPP-NB F 402 530 HeLa 
boronate, clickable mitochondria 

localization 
477 2023 

Probe 1 F 340 473 A549 boronate, lysosome 486 2023 

AAE-COU-TCF FR 590 675 HeLa, mouse in vivo boronate, dual with SO2 
519 2023 

BOD-BH-OS F 640 745 HeLa, HEK293 boronate, dual with H2S 520 2023 
LTA F 550 645 HeLa, zebrafish boronate 521 2023 

LTQ F 550 670 buffer boronate 521 2023 

YFE-1 F 474 655 HeLa, rice roots boronic acid 522 2023 
Probe 1 F 372 451 RAW 264.7, SW480 boronate 1207 2023 

YSXH F 415 455 A549 boronic acid 1208 2023 

BI F 333 470 HeLa, zebrafish boronate, dual with SO2 
1209 2023 

BBI F 333 470 HeLa, zebrafish boronate, dual with SO2 
1209 2023 

BZT-TPA F 350 575 HeLa boronate 1210 2023 

FDOCL-N-Na F 460 548 
COS-1, HUVEC, HeLa, Huh-7, 
QBC939, A549, ID8, C. elegans 

boronate, dual with HOCl 1211 2023 
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Section 4 – Sulfonyl cleavage 

2a  F 485 530 Chlamydomonas reinhardtii sulfonate cleavage 532 2004 

2b F 485 530 Chlamydomonas reinhardtii sulfonate cleavage 532 2004 
2c F 485 530 Chlamydomonas reinhardtii sulfonate cleavage 532 2004 

NFDS-1 F 602 662 peritoneal macrophages sulfonate cleavage 533 2005 

NFDS-2 F n.r. 692 buffer sulfonate cleavage 533 2005 
FS-1 F 491 515 peritoneal macrophages sulfonate cleavage 534 2009 

FS-2 F 493 520 peritoneal macrophages sulfonate cleavage 534 2009 

JNY-1 FR 380 
440/ 
540 

HepG2 perfluorosulfate ester 535 2019 

Cy-PFS FR 
560/ 

730 

635/ 

836  

HL7702, A431, HT22, mouse in 

vivo 
perfluorosulfate ester 536 2019 

GW-1 F 475 549 buffer 
aryl sulfonate cleavage,  

dual with pH 
537 2021 

        

Section 5 -Benzil/-ketoketone Baeyer-Villager oxidation 

Compound 4 F 493 518 buffer benzil 538 2011 

NBzFDA F 495 519 RAW 264.7, A431 benzil 538 2011 

NBzF-BG F 505 525 HEK 293T, RAW 264.7 benzil, SNAP tag 130 2014 

Probe 1 F2P 
380/ 

760 
505 MKN-45, SMMC-7721 benzil 539 2015 

p-NBBD F 498 508 buffer benzil 540 2018 
m-NBBD F 498 508 HeLa benzil 540 2018 

NbzB F 470 510  bovine oocytes benzil 541 2018 

BBHP F 475 508 
HeLa, MCF-7, RAW 264.7, 
mouse ex vivo 

benzil, biotin targeted 1212 2022 

        

Section 6 - -Ketoamide oxidation 

Mito-NIRHP FR 670 704  HepG2, mouse in vivo/ex vivo 
-ketoamide 

 
542 2016 

NPs-A FR 483 
516/ 
595 

L929, RAW 264.7, zebrafish -ketoamide 544 2017 

α-Naph FR 395 
465/ 

540 
HeLa 

-ketoamide, endoplasmic 

reticulum 
545 2017 

Cy-H2O2 F 730 790 HeLa, zebrafish -ketoamide 546 2019 

DCHP F 487 653 

A549, SMMC-7721, HeLa, 

MCF-7, 4T1, HL-7702, Hi-5, C. 
elegans, zebrafish 

-ketoamide 1213 2019 

RhB-NIR F 590 730 HeLa -ketoamide, mitochondria 547 2020 

BTPE-

NO2@F127 
FRPA 808 938 RAW 264.7, mouse in vivo -ketoamide 548 2021 

Mito-H2O2 F 670 702 HeLa, mouse in vivo -ketoamide, mitochondria 549 2022 

        
Section 7 – Iron-mediated triggers 

MBFh1 F 570 590 buffer iron  550 2011 

ZP1Fe2 F 507 528 HeLa iron, lysosome 554 2012 
MBFh2 F 530 590 HeLa, A431 iron  551 2013 

MBFh3 F 450 517 
HeLa, 

A431 
iron 553 2014 

Probe 1 / Fe2+ F 369 540  
zebrafish, 

DU145 
iron 555 2015 

        
Section 8 – Chalcogen oxidation 

RF1 F 495 503 HEK xanthene oxidation, reversible 556 2007 

Compound 2 F 543 592 neuroblastoma cells sulfide oxidation 1214 2012 

Cy-O-Eb F 768 794 HepG2, zebrafish 
ebselen, reversible with GSH, 
mitochondria 

557 2013 

D-HMSe F 330 476 buffer selenium oxidation 558 2014 

Compound 3 F 500 579 buffer tellurophene oxidation 564 2014 
SB-1 F 370 503 HeLa sulfide oxidation 561 2016 

SB-2 F 370 510 HeLa sulfide oxidation 561 2016 

Probe 1a F 340 502 buffer sulfide oxidation 562 2017 
Probe 2 F 338 425 buffer sulfide oxidation 562 2017 

Probe 2 F 590 676 HeLa sulfide oxidation, lysosome 563 2018 
BODIPY–Se FR 460 504 MCF-7, HepG2, zebrafish selenide oxidation, lysosome 1215 2019 

Probe 1 F 490 ~515  HeLa, zebrafish 
seleno-Mislow-Evans 

rearrangement 
560 2020 
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Pyrimidine-Se F 390 469 buffer 
selenide oxidation, reversible with 
GSH 

1216 
 

2022 

MNG FR 398 533 MCF7 
selenide oxidation, reversible with 

GSH 
1217 2022 

NapEb F 350 455 MCF-7 
selenium-nitrogen, reversible with 

GSH 
559 2023 

        
Section 9 – Sulfate elimination 

HBT-Cy F 390 
450/ 

590 
MCF-7 

sulfate elimination, reversible 

with bisulfite 
154 2016 

Probe 1 F 400 
520/ 

630 
MCF-7, zebrafish 

sulfate elimination, reversible 

with bisulfite 
155 2017 

Probe 1 F 570 660 HeLa, HepG2, mouse in vivo 
sulfate elimination, reversible 
with bisulfite 

156 2019 

Probe 1 L 350 595 HeLa 
sulfate elimination, reversible 

with bisulfite 
566 2019 

NBD FR 550 618 HepG2 
sulfate elimination, reversible 

with SO2, mitochondria 
565 2021 

NI FR 
430/ 

500 

510/ 

580 
HeLa, zebrafish, mouse in vivo 

sulfate elimination, reversible 

with bisulfite 
567 2021 

BN-DUAL F 430 508 SKBR-3, mouse in vivo 
sulfate elimination, reversible 

with SO2 
568 2022 

TPE-y F 390 614 MCF-7 
sulfate elimination, reversible 

with bisulfite 
569 2023 

DCA-Bba FR 600 685 MCF-7 
sulfate elimination, reversible 
with SO2 

570 2023 

        

Section 10 – Catechol oxidation 

DA–Cy F 630 755 
HL-7702, rat hippocampal ex 

vivo 
catechol oxidation 345 2012 

LyNC F 450 537 
C6, BV-2, rat hippocampal ex 
vivo 

catechol oxidation, lysosome 346 2017 

        

Section 11 – Payne/Dakin reaction 

HKPerox-1 F 520 543 RAW 264.7 Payne/Dakin 571 2018 
HKPerox-2 F 480 527 RAW 264.7 Payne/Dakin 571 2018 

H2O2-CL-510 CL - 510 THP-1, mouse in vivo Payne/Dakin 572 2020 

HKPerox-Red F 565 602 RAW 264.7, zebrafish Payne/Dakin 573 2020 

HKPerox-Ratio FR 410 
475/ 

540 
RAW 264.7 Payne/Dakin 573 2020 

Cou-CHO F 391 502 HepG2 Payne/Dakin  574 2021 
        

Section 12 – Carbonyl group perhydrolysis 

AR F 572 589 buffer ester perhydrolysis 575 2002 
PVR F 572 589 buffer ester perhydrolysis 575 2002 

IVR F 572 589 buffer ester perhydrolysis 575 2002 

TBAR F 572 589 buffer ester perhydrolysis 575 2002 
IBR F 572 589 buffer ester perhydrolysis 575 2002 

CHR F 572 589 buffer ester perhydrolysis 575 2002 

ADR F 572 589 buffer ester perhydrolysis 575 2002 
BR F 572 589 buffer ester perhydrolysis 575 2002 

MOBR F 572 589 buffer ester perhydrolysis 575 2002 

FUR F 572 589 buffer ester perhydrolysis 575 2002 
Compound 1 F 490 ~520 SH-SY5Y carbamate removal, Hg2+ assisted 576 2013 

ACF F 450 527 HeLa perhydrolysis 577 2016 

ACR F 470 560 HeLa ester removal 1218 2017 
DCM-AC F 560 704 HepG2, mouse in vivo/ex vivo acetate removal 1219 2019 

HAA FR 550 700 HepG2 acetate hydrolysis 1220 2020 

Probe 1 F 309 505 RAW 264.7, zebrafish ester removal 578 2021 
YQ-2 F 550 678 HeLa acetate removal 1221 2022 

FAA-MC-OH FR 325 440 buffer 
nucleophilic aromatic 

substitution/acyl substitution 
579 2021 

Rhodol-OAc F 500 560 A549 acetate removal, mitochondria 1222 2022 

YQ-2 F 550 678 HeLa acetate removal 580 2023 

Compound 3a F 430 617 milk, HepG2, zebrafish acetate removal 1223 2023 
Compound 3c F 590 657 milk acetate removal 1223 2023 

        

Section 13 – Lanthanide binding 

Eu(tc) L 405 616 buffer europium binding 583 2002 

Eu3Tc L 400 616 buffer europium binding 584 2005 
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Tb3+/PA L 285 545 buffer terbium binding 585 2014 
        

Section 14 – Oxonium oxidation/cleavage 

BC FR2P 
410/ 
760 

472/ 
693 

RAW 264.7, zebrafish oxonium cleavage 586 2016 

GCP FR 410 
482/ 

706 

HepG2, HCT116, HeLa, MCF-

7, zebrafish 
oxonium cleavage, hepatocyte 587 2020 

        

Section 15 – Aromatic amine oxidation 

HP Green F 444 534 buffer p-anisidine oxidation/cleavage 588 2011 

BMTA-Tb3+ L 315 542 tobacco leaf epidermal tissues diamino phenyl ether cleavage 582 2011 

TPE-TAF FR 320 450 buffer 
ortho-phenylenediamine 

oxidation 
589 2021 

2E2F F 360 475 apple cells, tobacco leaf 
amine oxidation, reversible with 
reductase 

590 2022 

        

Section 16 – Other triggers 

DTMC CL - 448 alkaline buffer triazine oxidation 1224 2001 

FH F 494 527 buffer hydrazide oxidation 591 2008 

KBI CL - 545 HL-60 luciferin oxidation 1225 2009 

3-Zn2+ FR 360 
510/ 

550 
PC3 

zinc complex, 

dual with Zn and PPi 
592 2013 

SiOH2R FR 
550/ 
663 

570/ 
681 

HeLa silane diol  593 2017 

DPBF F 410 450  aqueous oxanthrone 1226 2017 

2-pyr F 480 509 HeLa 
pyrazoline oxidation, photoclick 
reaction activation 

135 2018 

TT FR 320 ~460 RAW 264.7 tyrosine crosslinking 594 2018 

GC-2 F 370 485 HepG2, mouse ex vivo enamine removal 1227 2018 
RH-1 FR 342 425 U251 chromone oxidation  1228 2019 

CA/Co(II) CL - 550 buffer dioxetane formation 1229 2020 

BODIPY 2 FR 480 
506/ 
540 

RAW 264.7 malononitrile oxidation 1230 2021 

TBBQ CL - 425 buffer tetrabromoquinone oxidations 595 2022 

ACou-Ind FR 395 
475/ 
650 

zebrafish alkene epoxidation 596 2022 

TBBP-Pro F 458 617 HepG2 
oxidative cleavage of alkene, 

mitochondria 
597 2023 

LC-1250 NP FR 808 
1150/

1250 
Hepa1-6, mouse in vivo/ex vivo spirocyclization 1231 2023 

a F = fluorescence, R = ratiometric, 2P = two-photon, L= luminescence, CL = chemiluminescence, BL = bioluminescence, PA = 

photoacoustic. b Wavelengths given in nanometers. 

 
Table 3. Small molecule probes for hypochlorite 
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Probe Typea ex 
b em

b Application Trigger/Comments Ref Year 

        

Section 1 - Dearylation 

APF F 490 515 PMA activated neutrophils O-dearylation 607 2003 

SNAPF F 614 676 
atherosclerosis associated 

macrophages 
O-dearylation 609 2007 

ANMTTA-Eu3+ L 330 610  HeLa, RAW 264.7 O-dearylation 610 2012 
ANMTTA-Tb3+ L 330 540 HeLa, RAW 264.7 O-dearylation 610 2012 

[Ru(bpy)2(AN-

bpy)]2+ 
F 456 612 HeLa O-dearylation 611 2014 

Ir-ANMM F 400 620 HeLa  O-dearylation 612 2014 

3 F 410 465 HeLa  O-dearylation 1232 2015 

BMAni F 488 528 RAW 264.7 N-dearylation 614 2016 
Np-ClO F 372  508 HeLa cells O-dearylation 615 2016 

HKOCl-3 F 490 527 
RAW 264.7, BV-2 mouse 

microglia, THP-1, zebrafish 
O-dearylation 1233 2016 

Gal-NPA F 455 558 
HepG2, MGC803, A549, SHSY5Y, 

hepatoma targeting 
O-dearylation 618 2018 

1 F 458 515 RAW 264.7 O-dearylation, spirolactam 1234 2018 
Cy-HOCl F 543 625 LO2, zebrafish, mouse O-dearylation 613 2019 

PAPE-HA F 468 557 RAW 264.7, zebrafish O-dearylation 1235 2019 

HCA-Green F2P 
450/ 
810 

556 HeLa N-dearylation 1236 2019 

Nil-ClO F2P 
560/ 

800  
650 

HeLa, RAW 264.7, rat liver tissue; 

mouse 
O-dearylation 616 2020 

HKOCl-4 F 530 557 RAW 264.7, rat brain, stroke model O-dearylation, mitochondria  620 2020 

ER-NPA F2P 
450/ 
800  

550 HeLa, zebrafish,  
O-dearylation, endoplasmic 
reticulum 

621 2020 

Ru-AN-Gd P 450 610 RAW 264.7, mouse, MRI O-dearylation, lysosomal 1237 2020 

NB4OH F 468 540 RAW 264.7, HeLa 
p-hydroxyaniline, endoplasmic 
reticulum 

1238 2020 

HNPE F 460 550 RAW 264.7, zebrafish N-dearylation 1239  2020 

Lyso-PHE F 468 560 RAW 264.7, HeLa O-dearylation, lysosomal 1240 2021 
BTH F 468 553 HeLa O-dearylation 1241  2022 

        

Section 2 - Sulfur oxidation / spirocyclic ring opening 

HySOx F 550 569 Neutrophils spirothioether ring opening 622 2007 

CMTH FR 400 
518/

430 

Human neutrophils; kidney 

sections from mice 
thiospirolactam opening 1242 2010 

MMSiR F 652 670 Neutrophils; mice thiospirolactone  624 2011 

R19-S F 515 550 
Human PMNs, Drosophila 

melanogaster 
spirocyclic ring opening 1243 2011 

thiocoumarin 

probe 3 
F 414 465 CH3CN and acetate buffer thione to lactone  1244 2012 

Hypo-SiF FR 570 
586/

475 
buffer spirothioether ring opening 626 2013 

3 F 650 753 RAW 264.7, mice spirothiolactone ring opening 1245 2013 

RSTPP F 553 580 RAW 264.7 thiolactone ring opening 623 2015 

RGNH 

 
F 500 550 RAW 264.7  

spirocyclic ring opening, 
hydrazide 

1246 2015 

NIR-1 FR 650 
707/

486 
HeLa, RAW 264.7 thiolactone to carboxylic acid 1247 2015 

R19S F 515 545 
Mouse neutrophils, 

Drosophila 
thiolactone ring opening 1248 2016 

BRT FR 525 
540/
580 

RAW 264.7 
spirocyclic ring opening, 
thioacyl hydrazide 

1249 2016 

STBR FR 370 
514/

595 
E. coli  

spirocyclic ring opening, dual 

with Hg 
1250 2016 

CR-ClO F 510 578 HeLa 
thiolactone oxidation; ring 

opening 
1251 2017 

R19-S F 515 550 
Neutrophils, reactive halogen 
species 

spirothioether ring opening 1252 2018 

RPC-1 F2P 
545/ 

750 
580  

RAW 264.7, mouse liver cells, 

DILI 

spirothioester ring opening, dual 

with H2S 

1253 2018 

PA-MMSiNQ PA 671 PA Mouse in vivo cyclic sulfide to SO3 
625 2019 

HN2-TP F2P 
590/ 

800 
630 HeLa thiospirolactam opening 1254 2019 

Lyso-SiR-2S F 616 677 
HK-2, HeLa, RAW 264.7, mouse  

 

spirodithiolactone ring opening, 

lysosomal 
1255 2019 
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CR-HA FR2P 
563/ 
800 

580/
471 

HeLa, RAW 264.7 zebrafish spironolamide ring opening 1256 2019 

DQF-S F 580 650 MCF-7, HeLa, RAW 264.7 spirothiolactone ring opening   1257 2020 

SRh F 525 582 HK2 thione to dihydrothioazole 1258 2020 

MMBR FR 530 
575/

646 
RAW 264.7, MCF-7, zebrafish spirothioether ring opening  1259 2021 

Fcoum-S FR 435 
526/
602 

HeLa thiolacone to lactone 1260 2022 

        

Section 3 – Dimethylthiocarbamate (DMTC) removal 

NDMTC F 410 547 RAW 264.7, MCF-10, HepG2 DMTC cleavage, mitochondrial 628 2016 

BCTP F2P 
460/ 

800 
540 RAW 264.7 DMTC cleavage 630 2018 

BODIPY-DMTC F 498 516 MCF-7, RAW 264.7, zebrafish DMTC cleavage 638 2018 
TP-HA F2P 780 515 RAW 264.7, HeLa DMTC cleavage  640 2018 

Probe 1 BL - 560 ES-2, mice DMTC cleavage 644 2018 

DAME F 370 453 PC12, homemade test papers DMTC cleavage  1261 2018 
QYMTC F 580  700 RAW 264.7 DMTC cleavage 1262 2018 

QEMTC F 630 720 RAW 264.7 DMTC cleavage 1262 2018 

TCHC F 370 455 RAW 264.7 DMTC cleavage 1263 2018 
TCRH F 480 550 RAW 264.7 DMTC cleavage, lysosomal 1264 2018 

TCBT-OME F 310 472 HeLa DMTC cleavage 1265 2018 

TCFL F 470 515 RAW 264.7 DMTC cleavage 631 2019 

ER-NTE F 460 555 HepG2, zebrafish 
DMTC cleavage, endoplasmic 

reticulum 
634 2019 

TPFR F2P 
550/ 
800 

603 
RAW 264.7, MGC803, A549, 
HepG2, MCF-7 

DMTC cleavage 639 2019 

DCPO-DMTC F 545 685 RAW 264.7 DMTC cleavage  641 2019 

LSS-HA F 400 505 RAW264.7, zebrafish DMTC cleavage 1266 2019 

C7 FR 460 
468/

630 
HepG2, C. elegans, mouse DMTC cleavage 1267 2019 

RHSNO F 405 590 MCF-7 
DMTC cleavage, 
diacylhydrazide spirolactam 

opening 

1268 2019 

RF1 F 550 586 HeLa, RAW 264.7 DMTC cleavage 1269 2019 
DCM-OCl F 560 652 HeLa DMTC cleavage 1270 2019 

R1 F 450 550 EC1 
DMTC cleavage, endoplasmic 
reticulum 

635  2020 

DDAO-ClO F 605 658 HeLa, MCF-7, zebrafish DMTC cleavage 1271 2020 

BCy-HOCl F 500 630 A549, mouse, acute lung injury DMTC cleavage 1272 2020 
NDS F 420 525 HeLa DMTC cleavage, lysosomal 1273 2020 

DM-BDP-OCl F 465 614 RAW 264.7, HeLa DMTC cleavage 1274  2020 

CS F 345 451 HeLa DMTC cleavage, lysosomal 1275 2020 

DCOH-FR-OCl  FR 479 
522/

637 
RAW 264.7 DMTC cleavage 1276 2020 

Geisha-1 F 400 452 HeLa, mouse liver tissue 
DMTC cleavage, boronic acid 
for H2O2 

1277 2020 

CDCl-HClO F 510 700 HeLa, zebrafish, mouse DMTC cleavage 643  2021 

CDCI-HClO F 510 700 HeLa, zebrafish, mouse DMTC cleavage 643  2021 
CyClOP F 685 725 RAW 264.7, mouse DMTC cleavage 1278 2021 

CX-MTC FR 390 
525/

665 
PC12, zebrafish, mouse 

DMTC cleavage 

 
1279  2021 

BM-HA F 440 490 HeLa, zebrafish DMTC cleavage 1280  2021 

BM-HA  F 440 490 HeLa, zebrafish DMTC cleavage 1280 2021 

HDI-HClO F 440 520 HeLa, RAW 264.7 DMTC cleavage 1281  2021 
NFL-S F 708 732 RAW 264.7, mouse DMTC cleavage 1282  2021 

RESClO F 580 590 RAW 264.7, mouse DMTC cleavage 1283  2021 

KSQT F 467 589 HepG2, zebrafish DMTC cleavage 1284  2021 
QM-ClO  F 430 620 MCF-7 DMTC cleavage 1285  2021 

BBD F 567 623 HeLa, zebrafish, mouse DMTC cleavage, mitochondrial 1286  2021 

HCy-HClO F 475 585 HeLa, RAW 264.7 DMTC cleavage, mitochondrial 1287  2021 
BDP-R-ClO F 560 661 RAW 264.7, HepG2, mouse DMTC cleavage 632 2022 

Mito-QL F 387 590 RAW 264.7, HepG2 
DMTC cleavage, quinoline 

release, mitochondrial 
633  2022 

TCF-ClO F 475 635 HeLa DMTC cleavage 

642 

 2022 

TPAQ-ClO F 450 560 HeLa DMTC cleavage, mitochondrial 1288 2022 

Compound 1 FR 397 
480/
550 

HeLa DMTC cleavage 
12898
/15/

2022 
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2024 
4:18

:00 

PM 

DFSN F 432 535 
RAW 264.7, HeLa, HepG2, 

zebrafish 
DMTC cleavage 

1290 

 2022 

MEBTA-Cl F 440 548 A549, HepG2, MCF-7, zebrafish DMTC cleavage 

1291 

 2022 

DCM-DMTC F 540 699 HeLa, lung tissue, asthmatic mice DMTC cleavage 1292  2022 

D-HBT F 520 700 MCF-7 DMTC cleavage 1293 2022 

HDCX-HClO F 590 750 RAW 264.7, zebrafish DMTC cleavage 1294  2022 
HCTP-NTC F 520 615 RAW 264.7 DMTC cleavage 1295  2022 

BNA-HClO F 384 510 HeLa DMTC cleavage 1296  2022 

HTCP F 
391/ 
502 

615 RAW 264.7 DMTC cleavage 1297  2022 

Bp-S F 495 508 RAW 264.7, HeLa DMTC cleavage 1298  2022 

1 F 302 502 PC-12 DMTC cleavage 1299 2022 
HD-Br-1 F 650 710 MCF-7, tissue, superresolution DMTC cleavage 1300 2022 

THPIC  F2P 
370/ 

720 
501 H9C2 DMTC, lysosomal 1301 2022 

Section 4 - Chalcogen oxidation 

methylthio-

BODIPY 2 
F 519  525 RAW 264.7 sulfide oxidation 646 2011 

HCS F 505 516 RAW 264.7 sulfide oxidation 1302 2013 

3 F 542 560  SH-SY5Y sulfide oxidation 1303 2013 

[Ru(bpy)3
2+]PTZ F 450 610 mouse in vivo sulfide oxidation 1304 2014 

PTZ-Cy2 F 450 605 mouse in vivo 
sulfide oxidation, reversible with 

H2S 
1304 2014 

Ptz-AO F 475 540 INS-1 β-islet cells sulfide oxidation 647 2016 
Cy7-NphS F 750 789 HL-60 sulfide oxidation, mitochondrial 1305 2016 

Cy7-NphS F 752 789 HL-60  sulfide oxidation 1305 2016 

HES-BODIPY FR 480 
562/
532 

RAW 264.7 sulfide oxidation 1306 2016 

L1 (Lyso) F2P 
405/ 

800 
505 MCF-7, 4T1 sulfide oxidation 1307 2017 

PT-1 (Lyso) F 460 540 L929 cells sulfide oxidation 1308 2017 

PQI F 460 588 MCF-7, mice, zebrafish sulfide oxidation 650 2018 

PTZ-TDPP

  
FR 365 

420/
615 

RAW 264.7 sulfide oxidation, mitochondrial 658 2018 

PZ-HA F 450 605 HeLa, Zebrafish sulfide oxidation 1309 2018 

L F 600 672 L929 sulfide oxidation, mitochondrial 1310 2018 
EtS-DMAB F 440 610 RAW 264.7 sulfide oxidation 1311 2018 

PT1 FR 423  
446/

622 
RAW 264.7, zebrafish sulfide oxidation 1312 2018 

PT2 FR 468 
516/

665 
RAW 264.7, zebrafish sulfide oxidation 1312 2018 

Dcp-EPtz  F 475 617 RAW 264.7, L929 sulfide oxidation 1313 2018 
HCP F 590 610 RAW 264.7 sulfide oxidation 1314 2018 

PTZ-BT F 484 642 HepG2 sulfide oxidation 1315 2018 

NHS-ER F2P 
405/ 
800 

502 RAW 264.7, HeLa 
sulfide oxidation, endoplasmic 
reticulum targeted 

659 2019 

S-BODIPY FR 540 
587/

619 
HeLa, zebrafish, mouse sulfide oxidation 1316 2019 

FPT FR 380 
524/

586 
HeLa, Zebrafish sulfide oxidation 1317 2019 

Probe 1 F 400 520 HeLa 
sulfide oxidation, GSH & HOCl 
redox cycle 

1318 2019 

Probe 1 F 480 561 HeLa sulfide oxidation 1319 2019 

TJ2 FR 
500/ 
600 

594/
730 

L929, RAW 264.7 sulfide oxidation, lysosomal 1320 2019 

PI F 486  620 RAW 264.7, zebrafish sulfide oxidation 1321 2019 

NS-ClO F2P 
360/ 
800 

450 RAW 264.7, HeLa, zebrafish sulfide oxidation 1322 2019 

NPG-1 F 488 510 HepG2, A549, HeLa, SGC7901 
sulfide oxidation, hepatocyte 

targeting 
1323 2019 

NPG-2 F 488 510 HepG2, A549, HeLa, SGC7901 
sulfide oxidation, hepatocyte 

targeting 
1323 2019 

BSi-1 FD 405 500 RAW 264.7, HeLa, zebrafish 
sulfide oxidation, GSH & HOCl 
redox cycle 

1324 2019 
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TPA-ClO FR2P 
365/ 
720 

497/
437 

HeLa sulfide oxidation 1325 2019 

TpyZnS  F 380 525 HeLa sulfide oxidation 1326 2019 

FSQTZ F 345 513 PC12 sulfide oxidation 1327 2019 
Avyl-BODIPY-

PTZ 
F 370 

599/

660 
HepG2 sulfide oxidation 1328 2019 

MXS F 530 654 HeLa sulfide oxidation, mitochondrial 655 2020 

JX-1 F2P 
365/ 

800 
509 HeLa, zebrafish 

sulfide oxidation, endoplasmic 

reticulum targeted 
660 2020 

PTZ-Et FR 396 
534/
626 

RAW 264.7 sulfide oxidation 1329 2020 

BSP F 530 579 RAW 264.7 sulfide oxidation 1330 2020 

CSU1 FR 376 
409/
520 

MCF-7 
sulfide oxidation,  
dual with H2O2  

1331 2020 

PDC F 400 503 RAW 264.7, mouse, osteoarthritis sulfide oxidation 1332 2020 

Lyso-PTB FR 320 
418/
520 

HUVEC, zebrafish sulfide oxidation, lysosomal 1332 2020 

BTMSP FR 365 
450/

580 
HepG2 sulfide oxidation 1333 2020 

Han-HClO-H2S FR 440 
520/

640 
MCF-7 sulfide oxidation, dual with H2S 1334 2020 

Pl-Py F 500 515 HeLa sulfide oxidation, mitochondrial 1335 2020 
Hy-2 F 436 526 HepG2, RAW 264.7, rat sulfide oxidation and elimination 1336 2020 

PTZ-HClO  FR 460 
535/

670 
HeLa, zebrafish sulfide oxidation 1337 2020 

PBC F 385 520 MCF-7 sulfide oxidation 1338 2020 

PTC F 520 627 HeLa, RAW 264.7, zebrafish sulfide oxidation, mitochondrial 652 2021 
AS-ClO F 383 520 A549, MOVAS, RAW 264.7 sulfide oxidation, mitochondrial 653  2021 

Cou-Lyso FR 440 
535/

610 
RAW 264.7, zebrafish sulfide oxidation 656  2021 

NUU-1 F 365 503 
SH-SY5Y, mouse PD model, 

Drosophila 
sulfide oxidation, C-C cleavage 1339  2021 

1 FR 380 
630/
500 

RAW 264.7 sulfide oxidation 1340  2021 

CVS F 596 638 HepG2 sulfide oxidation, mitochondrial 1341  2021 

TPRS-HOCl FR2P 
350/ 
800 

490/
595 

RAW 264.7, A549; mouse sulfide oxidation, lysosomal 1342  2021 

PTZ-TPP  F 380 610 INS-1 b-islet 
sulfide oxidation and C=C 

cleavage 
1343 2021 

PHPQ FR 405 
437/

535 
RAW 264.7, zebrafish sulfide oxidation 1344   2021 

PTMQ F 460 577 HeLa 
sulfide oxidation, also detects 
N2H4 

1345  2021 

FP F 330 376 HeLa sulfide oxidation 1346  2021 

PTZ-2Cy FR 325 
600/
488 

L929 sulfide oxidation, C=C cleavage 1347  2021 

PBC1 F 380 485 HeLa, zebrafish 
sulfide oxidation, also detects 

SO2 
1348 2021 

PPS F 430 580 HeLa, RAW 264.7, mouse in vivo sulfide oxidation 1349 2022 

PM-S F 375 490 HepG2 sulfide oxidation, mitochondrial 651 2022 

PTZ-H FR 400  
640/
520 

RAW 264.7, zebrafish sulfide oxidation 1350 2022 

BPPy F 420 562 Diabetic HLE sulfide oxidation 1351  2022 

NAP-RS FR 405 
638/
452 

HeLa sulfide oxidation, lysosomal 1352 2022 

PTBI F 465 590 HeLa, HepG2 
sulfide oxidation, also detects 

SO2, mitochondrial 
1353 2022 

DP F 480 608 HeLa, mice 
sulfide oxidation, also detects 

SO2 
1354 2022 

PBN-1 FR 390 
495/
550 

HepG2, zebrafish sulfide oxidation 1355  2022 

HBA F 420 456 HeLa sulfide oxidation 1356 2022 

BPQO F 420 610 HepG2 sulfide oxidation 1357 2022 

iSHERLOCK FR 561 
600/

670 
RAW 264.7 

sulfide oxidation in lipid 

droplets 
1358 2022 

TMDC  F 396 717 H2O:DMF sulfide oxidation 1359 2022 

Probe 1 FR 440 
500/

605 

HepG2, zebrafish, alcoholic liver 

injury in mice 

sulfide oxidation, also detects 

H2O2 via boronate oxidation 
1360 2022 

PNIS F2P 
325/ 
700 

447 HeLa, RAW 264.7  sulfone removal, mitochondrial 1361 2016 

https://www.sciencedirect.com/science/article/pii/S092540052201111X
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B-Ts F 470 508 HeLa, RAW 264.7 sulfonyl hydrazone to aldehyde 1362 2017 
Probe 1 F 355 444 SW480 sulfonyl hydrazone 709 2020 

1 FR 412 
542/

488 
U-373MG sulfonyl-semicarbazide 1363  2020 

QBH F 395 520 RAMOS sulfonyl hydrazone  1364 2020 

Ir-Ts L 360 574 HeLa sulfonyl hydrazone 1365 2020 

NH FR 434 
643/
517 

HUVEC, A549 
sulfide oxidation, also detects 
NQO1 

1366 2022 

ClO-1  F 450 635 RAW 264.7, MCF-7 sulphur oxidation to sulfoxide 1367  2022 

HCTe F 480 531 RAW 264.7  telluride to telluroxide 665 2015 
5 F 498 515 RAW 264.7 tellenide oxidation 1368 2019 

Probe 1 F 340 457 buffer S,S acetal 668 2011 

TP-HOCl F2P 
375/ 
800 

500  HeLa, macrophages S,O ketal deprotection 669 2015 

HPBD F 455 585 HeLa, RAW 264.7  S,O ketal removal 672 2016 

rTP-HOCl 1 FR2P 
460/ 
900 

598/
633 

HeLa S,O ketal to ketone 1369 2017 

OPV-MEP F2P 
400/ 

740 
534 BV-2 Cells S,O acetal 1370 2017 

Probe 1 FR 368 
464/

546 
HeLa S,S acetal to CHO 1371 2017 

CMOS FD 405 480 SKVO-3 S,O ketal to ketone 671 2018 

QClO FR2P 
414/ 

820  

562/

492 
HeLa, mouse, wound healing S,O-acetal 673 2018 

LH F 440 520 MACF7 S,S acetal deprotection 1372 2018 

TQC-HClO FR2P 
476/ 

800 

650/

583 
HeLa, zebrafish S,O ketal 1373 2020 

LG-1 F 395 520 RAW 264.7  S,O-acetal 1374 2020 

LG-3 F 395 520 RAW 264.7  S,O-acetal, dual with ONOO−  1374 2020 

DQ-HOCl F 395 533 W138, B16F10, RAW 264.7 S,O acetal 1375 2020 

MCL FR 358 
525/

465 
HeLa S,O acetal 1376 2020 

Cou-HOCl F 410 510 HeLa, A549, HepG2, S,O ketal 1377  2021 

P-Hc FR 346 
550/

461 
serum S,O acetal to aldehyde 1378 2022 

YT FR 400 
590/
640 

SMMC-7721, zebrafish S,S acetal 1379 2022 

CM1 F 405 480 NIH-3T3, HL-60, RAW 264.7 selenoxide elimination 666 2013 

CM2 F 405 468 buffer selenoxide elimination 666 2013 
HCSe F 510 526 RAW 264.7 selenide oxidation 1380 2013 

MPhSe-BOD F 500 510 RAW 264.7 
selenide oxidation, reversible 

with H2S 
1381 2013 

SeCy7 F 690 786 mouse selenide to selenoxide 1382 2014 

Lyso-NI-Se F 430 530 RAW 264.7  
selenide to selenoxide, 

lysosomal 
663 2015 

FO-PSe F2P 
415/ 

800 
520 RAW 264.7, zebrafish, mice 

selenide oxidation, reversible 

with GSH 
1383 2015 

1 F 492 507 RAW 264.7 selenide to selenoxide 1384 2016 
2 F 511 526 RAW 264.7 selenide to selenoxide 1384 2016 

Nap-Se FD 410  540 RAW 264.7 
selenide oxidation, HOCl & 

GSH redox cycle, mitochondrial 
664 2018 

Coum-Se FR2P 
475/ 

800 

618/

495 
RAW 264.7, mouse selenide, coumarin formation 667 2018 

BSez-Et F 532 548 buffer 
selenide oxidation, 
mitochondrial 

1385 2019 

BSe-Bz F 530 545 RAW 264.7 
selenide oxidation, 

mitochondrial 
1385 2019 

BSe-Ph F 532 550 Buffer 
selenide oxidation, 

mitochondrial 
1385 2019 

Fl-Se F ~490 517 HL-60 
selenide oxidation, reversible 
with GSH 

1386 2020 

BOPHY-SePh F 452 482 MCF-7 selenide oxidation 1387 2021 

Fluo-Se F 494 528 L929 selenide oxidation 1388  2021 

PzSe F 500 600 HeLa, PC-12, RAW 264.7 
selenide oxidation, reversible 

with H2S 
1389 2021 

Boppy-SePh  F 413 437 HeLa selenide oxidation 1390 2022 
TRA F 520 562 E. coli  thioamide opening 1391 2014 

CM2 F 417 485 SHSY5Y, Mouse thioamide to amide 1392 2019 

MBTC F 620 690 RAW 264.7 thiocarbamate cleavage 1393 2018 
1 F 435 552 HeLa, RAW 264.7 thioester to ester 1394 2018 
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CARSH FR 350 
580/
490 

RAW 264.7 thiohydrazide 1395 2016 

Fcoum-S FR 435 
526/

602 
RAW 264.7, zebrafish thiophene acylhydrazone 707  2021 

TF F 495 520 HeLa thiophene hydrazone to CHO 1396 2016 

PCTP F 415 
638/

514 
HEK293; zebrafish thiophene oxidation 1397 2020 

NTPC F 453 
536/

622 
HeLa thiophene oxidation 1398 2020 

TCS F 380 435 MCF-7 thiophene oxidation 1399  2021 
CZCN-O F 405 486 HeLa desulfurization 1400 2020 

PDI-S  F 493 564 A549, RAW 264.7 desulfurization 1401 2022 

PZ-Py F 400 562 HeLa, RAW 264.7, mouse sulfide oxidation, mitochondria  1402 2015 
6 F 630 738 RAW 264.7 diphenyltelluride oxidation 1403  2021 

AETU-HOCl FR 380 
533/

473 
RAW 264.7 thiourea cyclization 1404 2016 

FDOCl-20 F 620 686 HepG2, RAW 264.7, mouse thiourea 1405 2020 

BR-1 F 610 669 RAW 264.7, HL-60 thiourea 1406 2020 

5 F 363 488 
PC-12 

 

thiourea cyclization, 

mitochondrial 
1407 2021 

ASiP_HOCl FR 504 
717/

642 
RAW264.7, mouse,  thiourea cyclization 1408 2021 

Probe 1 FR 380 
484/

533 
PC-12 

thiourea cyclization, 

endoplasmic reticulum targeted 
1409  2020 

Probe 1 FR 380 
476/
533 

HepG2 thiourea cyclization, lysosomal 1410 2019 

PIPT FR 365 
505/
430 

Human lung adenocarcinoma  thiourea to C-H  1411 2014 

TPFP F2P 
430/ 

800 
538 HeLa thiourea to urea, lysosomal 1412 2018 

SPF-S FD2P 
370/ 

800 
429 A549 thiourea to urea 1413 2018 

TPE-M F 350 492 HeLa thiourea to urea, AIE 1414 2022 
        

Section 5 - Nitrogen atom oxidation 

        

DNS-RBPH F 370 501 HeLa cells hydrazide oxidation 681 2011 

Rhodamine B 

hydrazide 
F 500 550 A549 hydrazide spirolactam 1415 2011 

Probe 1 F 500 550 A549, RAW 264.7 hydrazide spirolactam 1415 2011 
Probe 2 F 500 550 buffer hydrazide spirolactam 1415 2011 

RGPH F 500 550 A549 cells hydrazide oxidation 1416 2016 

LR1 F 560 582 RAW 264.7 
hydrazide spirolactam, 
lysosomal 

1417 2018 

RIM FR 370 
585/

465 
RAW 264.7 

hydrazide spirolactam, 

lysosomal 
1418 2018 

FHP F 325 518 buffer acylhydrazone spirolactam 1419 2012 

RG6H F 505 548 water acylhydrazide spirolactam 1420 2012 

NMICl F 318 397 HepG2 acylhydrazide-imide to nitroso 1421 2015 
RBT F 550 575 RAW 264.7 acylhydrazide to COOH 1422 2015 

FHZ F 490 520 HeLa, RAW 264.7, zebrafish 
acylhydrazide ring opening, dual 
with hydroxyl radical 

1423 2016 

PIPH  F 330 415 HeLa acylhydrazide to acid 1424 2017 

TPAD F 375 523 A549 acylhydrazone cleavage to CHO 1425 2018 

N1-N6 F 505 563 HepG2, zebrafish 
acylhydrazone pyridine to 

triazolopyridine 
710 2020 

CMSH FR 365 
470/
532 

E. coli, MRC-5, zebrafish acylhydrazone  1426 2020 

PTC F 385 450 A549, HeLa acylhydrazone  1427 2020 

LH-1 

 
F 415 488 HeLa, RAW 264.7, zebrafish acylhydrazide  1428 2020 

FCZ F 470 530 RAW 264.7, zebrafish acylhydrazone  1429 2020 

Ir-Iso L 344 592 4T1 acylhydrazone, mitochondrial  1288 2020 
FCJD F 506 530 RAW 264.7, HeLa, zebrafish, mice acylhydrazone spirolactam 1430  2021 

Probe 3 F 440 500 HepG2 acylhydrazone 1431  2021 

TPB-NO2 F 330 469 mouse, LM-3 
acyl hydrazone spirolactam,dual 

with ONOO− 
1432 2021 

6 F 515 556 HepG2, zebrafish acylhydrazone spirolactam 1433  2022 

Lyso-NIR-HClO F 620 680 HeLa, RAW 264.7, zebrafish 4-nitrobenzenesulfonylhydrazide 1434  2022 
CoPh-ClO F2P 420/ 505 HeLa, RAW 264.7, zebrafish 4-nitrobenzenesulfonylhydrazide 1434  2022 
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740 
Ir-1 F 370 615 buffer aldoxime  727 2009 

1 F 339 458 buffer oxime oxidation; turn-off 1435 2010 

Flu-1 F 365 530 HeLa aldoxime 684 2011 

MitoClO F 488 529 MCF-7 
aldoxime oxidation, 

mitochondrial 
1436 2013 

Bodipy-OX F 470 529 MCF10A aldoxime to nitrile oxide 689 2013 
BOD-OXIME F   RAW 264.7 aldoxime oxidation 690 2013 

NACl F 370 510 RAW 264.7 aldoxime to CHO 1437 2016 

HCH F2P 
422/ 
860 

546 CHO 
aldoxime to nitrile oxide, 
mitochondrial 

692 2016 

1 F 350 540 HeLa aldoxime to nitrile oxide 694 2018 

Probe 1 F 358 460 RAW 264.7 aldoxime to CHO 685 2018 

BTN  FR2P 
366/ 

588  

660/

440 
A549 aldoxime to nitrile oxide 696 2018 

D1 F 415 575 HeLa and zebrafish aldoxime to CHO 687 2019 

MN-BODIPY FR 420  
530/

558 
MCF-7 aldoxime to CHO, lysosomal 691 2019 

Aza-BODIPY-

CNOH 
F 631 667 RAW 264.7 aldoxime oxidation 1438 2019 

1 F 397 
465/

506 
A549, MCF-7 aldoxime oxidation 686 2019 

Ir-CLFLPLIM 

 
CFP 730 

564/

570 
LM-3, mouse aldoxime to acid 1439 2020 

Ir1 F 271 562 buffer aldoxime to acid 1440 2020 
Ir2 F 292 578 RAW 264.7, A549 aldoxime to acid 1440 2020 

OFN  FR 340 
515/
575 

RAW 264.7 oxime to aldehyde 1441 2020 

HE F 473 610 HepG2 oxime 1442 2020 

PyOX F 633 680 
RAW 264.7, A549, COS-7, HepG2, 
T98G, BEAS-2B, HUCEC, mouse 

aldoxime oxidation 695  2021 

SWJT-1 F 520 676 HeLa; mouse aldoxime  688  2021 

BD-NOH FR 600 
670/
645 

HeLa aldoxime to nitrile oxide 693  2022 

ATHO F 365 453 HeLa, zebrafish oxime 1443 2022 

DV26 F 520 625 HepG2  
amino oxidation, azo compound 
formation 

1444 2014 

probe F 325 518 HepG2 aniline oxidation 1445 2014 

BRClO FR 480 
585/
505 

MCF-7 pyrrole NH oxidation 1446 2015 

Ir-dmn F2P 
402/ 

750 
590 HeLa, RAW 264.7 imine to COOH, mitochondrial 1447 2015 

2 F 430 526 HepG2 NH2 to nitroso 1448 2016 

DMD FR 485 
635/

521 
A549, colorimetric NH2 to nitroso 1449 2018 

QBN F 365 464 HeLa, RAW 264.7 NH2 to nitroso 1450  2021 

FN-2 F 490 529 HeLa aminonaphthalene removal 1451 2017 

Dye 1 F 360 425 HeLa, make-shift test papers indole N-H to N-O 1452 2018 

LV-2(H) FD 560 650 HeLa 
amino to imine, NAD(P)H & 

HOCl redox cycle 
1453 2018 

NBD-NH2 F 465 549 HeLa amine to nitroso 1454 2018 
Probe 1 F 479 553 HeLa amine to imine 1455 2018 

NB-OCl F 600 672 HeLa NH2 to nitroso 1456 2018 

1 F 580 630 PC12 amine to nitroso 1457 2019 
DN F 365 435 HeLa, RAW 264.7 imine oxidation 1458 2019 

BK F 350 455 zebrafish imine cleavage 1459 2020 

Lyso-NA F2P 
432/ 
860 

540 RAW 264.7, mouse aminophenol, lysosomal 617 2020 

XS-1 F 580 626 HepG2 aniline oxidation to nitroso 1460 2020 

CVA F 580 627 Eca 109 aniline oxidation to nitroso 1461 2020 

HCA-Green F2P 
450/ 

810 
556 HEK293T imidazole hydrazone 1462 2022 

Probe F 447 550 
water samples, RAW 264.7, 
zebrafish 

aminonaphthalimide oxidation 1463 2022 

Luminol CL  - 425 
neutrophils, Crassoostrea virginica, 

PMN leukocytes 
luminol oxidation 

1464 
1465 
1466 

1995 

1 F 520 578 buffer diacylhydrazide ring opening 674 2008 

Probe 1 F 515 580 buffer diacylhydrazine spirolactam 1467 2011 
RHQ F 530 580 PBMCs diacylhydrazide spirolactam 1468 2014 
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Probe 1 FR 410 
470/
580 

RAW 264.7 
diacylhydrazide cleavage, ring 
opening 

682 2014 

Rh-TPP F 540 577 HeLa, mouse in vivo diacylhydrazide, mitochondria 1469 2014 

Rh-Py F 540 575 HeLa, mouse in vivo diacylhydrazide, mitochondria 1469 2014 

RHHP F 520 580 HeLa diacylhydrazide spirolactam 1470 2014 

Lyso-HA FR 365 
450/

585 
HeLa, A549, RAW 264.7 

diacylhydrazide cleavage, ring 

opening, lysosomal 
1471  2016 

RHQ F 520 580 
leukocytes monocytes, neutrophils 
from diabetic subjects 

diacylhydrazide spirolactam 1472 2016 

Ir-Fc F 450 600 Mouse liver diacylhydrazide ferrocene 1473 2016 

RBP F 540 
583 
 

L929, mice diacylhydrazide to COOH 1474 2016 

FL-HA FR 
380/ 

530 

455/

584 
HeLa, RAW 264.7 diacylhydrazide  1475 2017 

Ir-Fc L2P 850 600 HepG2, zebrafish, mouse diacylhydrazide to COOH 1476 2017 

1 F 480 542 HeLa diacylhydrazide spirolactam  1477 2017 

BiTClO  F 560 575 HEK293, RAW 264.7, HeLa diacylhydrazide, mitochondria 1478 2017 

IRP (mito) FR 370 
467/

575 
RAW 264.7 diacylhydrazide to acid 1479 2017 

RIL FR 360 
588/
463 

RAW 264.7 
diacylhydrazide spirolactam 
opening, lysosomal 

1480 2018 

RPM FR 400 
587/

462 
RAW 264.7 

diacylhydrazide spirolactam 

opening 
1481 2018 

L F 565 576 HeLa 
diacylhydrazide spirolactam 

opening 
1482 2018 

Cou-dhz-Ph-NO2 F 430 478 
MDA-MB-231, RAW 264.7, 
neutrophils, liver  

diacylhydrazide 1483 2018 

FLNC  FR 517 
535/

474 
buffer 

diacylhydrazide spirolactam 

opening 
1484 2018 

Rh-ClO F 556 578 HeLa 
diacylhydrazide spirolactam 

opening, mitochondrial 
1485 2018 

Lyso-HA-HS FD 
550 

 

580 

 
HeLa 

diacylhydrazide spirolactam 
opening, dual with H2S, 

lysosomal 

676 2019 

TR-OCl FR 326 
589/
477 

RAW 264.7, B16F10 and WI38 
diacylhydrazide spirolactam 
opening 

1486 2019 

RC FR 420 
590/

480 
HeLa, tap water 

diacylhydrazide spirolactam 

opening 
1487 2019 

RL1 F 568 592 HeLa 
diacylhydrazide spirolactam 

opening, lysosomal 
1488 2019 

IRh-Ly FR 370 
589/

462 
RAW 264.7 

diacylhydrazide spirolactam 

opening, lysosomal 
1267 2019 

Mito-TP-ClO F2P 
605/ 
820 

650 HeLa, RAW 264.7, mouse  
diacylhydrazide spirolactam 
opening 

1458 2019 

FD-301 F 620 686 HL-60, mouse diacylhydrazine  1489 2020 

Mito-P-OCl FR2P 
573/ 
800 

595/
453 

BV-2, HepG2, hypoxic ischaemia, 
mouse brain 

diacylhydrazine, mitochondrial 1427 2020 

ZED F 543 580 MCF-7 
diacylhydrazine, mitochondrial, 

dual with Cys/HCy 
1490 2020 

Rd1 F 530 585 
A549, mouse liver tissue, RAW 

264.7, zebrafish 
diacylhydrazine, mitochondrial 1491 2020 

Fl-Mito F 580 637 RAW 264.7, mouse diacylhydrazine, mitochondrial 1492  2021 

RHE FR 560 
515/

585 
HepG2 

diacylhydrazone spirolactam, 

endoplasmic reticulum 
678 2022 

RIC F 543 580 MCF-7 
diacylhydrazide to acid, 

mitochondrial 
679 2022 

WD-HOCl F 597 682 BV-2 
diacylhydrazide pyridinium, 

mitochondria 
1493  2022 

TJM F 585 730 HeLa, zebrafish, mice diacylhydrazide 1494  2022 

RSHClO FR 405  
558/

464 
B16 

diacylhydrazide, dual with 

biothiols 
1495  2022 

RhNp-ClO-

ONOO 
F 420 574 RAW 264.7, rat, muscle tissue 

diacylhydrazide oxidation, dual 

with ONOO− 
1496 2022 

1b FR 
540/ 
464 

505/
585 

A549 cells; zebrafish hydroxamic acid ring opening 680 2008 

RMClO-1 FR 405 
570/

481 
buffer 

diacylhydrazide to COOH, 

mitochondrial 
1497 2015 

RMClO-2 FR 405 
570/

476 
A549, HeLa, HEK293, RAW 264.7 

diacylhydrazide to COOH, 

mitochondrial 
1497 2015 
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PL-HA F 480 525 RAW 264.7, HeLa 
photolysis at 365 nm, 
diacylhydrazide spirolactam 

opening, lysosomal 

675 2018 

HOCMem F 460 520 HepG2, near-membrane tracking 
photolysis at 365 nm, 
diacylhydrazide spirolactam  

1498 2018 

NM1 F 505 580 HepG2, zebrafish 
pyridine hydrazone to 

triazaolopyridine, mitochondrial 
711 2020 

DV26 F 520 625 HepG2  azo formation 1444 2014 

HBP F 480 508 RAW 264.7  triazole formation 661 2015 

Ruazo F 465 600 Mouse in vivo 
triazole formation from ortho 
amino azo 

1499 2016 

Probe 1 F 480 537 HeLa cells TEMPO oxidation 1500 2016 

NAP-OH F 475 530 HeLa, RAW 264.7 TEMPO oxidation 1501  2021 

RHN F 500 550 HeLa 
phenylazo cleavage, 

mitochondrial; turn off 
1502  2022 

CAN FR 380 
510/
440 

A549, RAW 264.7 diamine oxidation  1503 2020 

HSiO3 F 700 760 RAW 264.7, mouse Si-oxazine oxidation 1504  2020 

TPP F 400 544 MG63, MC3T3 pyridinium oxidation 1505  2021 

        

Section 6 – Thiosemicarbazide 

2 FR 414 
473/
594 

Bel 7702, RAW 264.7  thiosemicarbazide 703 2012 

Probe 1b 

 
FR 

414 

 

594/

473 
Bel 7702, RAW 264.7 thiosemicarbazide 703 2012 

Probe 2 F 569 590 buffer thiosemicarbazide  703 2012 

1 F 365 556 RAW 264.7  thiosemicarbazide 704 2012 

Naph-Rh FR 350 
440/
585 

RAW 264.7  thiosemicarbazide 705 2015 

NR FR 405 
532/

582 
RAW 264.7 thiosemicarbazide 1506 2017 

NCS-BOD-OCH3 FR2P 
530/ 

656 

595/

665 
A357 thiosemicarbazide to oxadiazole 1507 2017 

DICX(Lyso) FR 410 
480/
580 

RAW 264.7 thiosemicarbazide to oxadiazole 1508 2017 

RHSDN FR2P 
406/ 

800 

530/

590 
A549, MCF-7 Cells 

thiosemicarbazide to oxadiazole, 

ring opening 
1509 2017 

RHClO-1 FR 410  
575/

473  
RAW 264.7 

thiosemicarbazide spirolactam 

opening 
1510 2018 

RHClO-2  FR 325 
585/
460 

RAW264.7 
thiosemicarbazide spirolactam 
opening 

1510 2018 

2 FR 475  
612/

570 
HeLa 

thiosemicarbazide spirolactam 

opening  
1511 2018 

1 F 370 457 RAW 264.7 thiosemicarbazide cleavage 1512 2018 

Lyso-NIR-HClO F 620 680 HeLa, mouse 
acylthiosemicarbazide 

spirolactam opening, lysosomal 
1513 2019 

CR-Ly FR 420 
582/

479 
RAW 264.7 

acylthiosemicarbazide 

spirolactam opening, lysosomal 
1514 2019 

ACO and CETC F 380 478 HepG2 
thiosemicarbazide and coumarin 
cleavage 

1515 2019 

PR-HOCl F 710 730 RAW 264.7, mouse 
acylthiosemicarbazide to 
oxadiazole 

1516 2020 

TPE-RNS FR 405 
590/

480 
RAW 264.7, HeLa, MCF-7 

acylthiosemicarbazide to 

oxadiazole 
1517 2020 

M1 FR 420 
580/

534 
EC109 

acylthiosemicarbazide to 

oxadiazole 
1518 2020 

Lyso-TP-HClO F2P 
622/ 
820 

655 RAW 264.7, mouse 
acylthiosemicarbazide to 
oxadiazole, lysosomal 

1519  2021 

TB F 400 500 onion cells, zebrafish 
thiosemicarbazide, also detects 

Hg(II) 
1520 2021 

Lyso-R-HClO F 568 590 
HeLa, RAW 264.7, bacteria 

infected macrophage 
thiosemicarbazide 1521  2022 

Probe 1 F 414 523 HeLa thiosemicarbazide 1522 2022 

        

Section 7 - Hydrazone Oxidation 

1b F 510 542 Rhodobacter ferroxidans hydrazone spirolactam 1523  2013 

1 F 490 524 MG-63 
hydrazone dimer to fluorescein 
release 

1524 2014 
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2 F 490 528 MG-63 
hydrazone dimer to fluorescein 
release 

1524 2014 

1 F 517 533 MG-63 hydrazone to fluorescein release 1524 2014 

BODH F 480 508 RAW 264.7  dihydrazone 706 2015 
Probe 1 F 494 521 MCF-7 hydrazone to aldehyde 1525 2015 

1 F 355 383 HeLa hydrazone oxidation 1526 2015 

INCN F 375 480 RAW 264.7 hydrazone to acid 1527 2016 
YDN F 485 516 HeLa, mice hydrazone oxidation 1528 2016 

Probe 1 F 490 535 L929 Cells, MG-63 
hydrazone oxidation/ring 

opening 
1529 2017 

Lyso-1 F 500 563 L929 cells 
hydrazone oxidation/ring 

opening 
1530 2017 

NPPTA-Eu3+ L 330 610 RAW 264.7, Daphnia magna 
dinitrophenylhydrazone 
oxidation 

1531 2017 

HBM F 420 528 RAMOS hydrazone to CHO  2018 

HBI-Cl F 328 455 HeLa, MCF-7 hydrazone cleavage 1532 2018 

F-BH F 323  523 HeLa, naked eye detection 
hydrazone cleavage and 

spirolactam opening 
1533 2018 

NNH FR2P 
445/ 
800 

440/
525 

RAW264.7, mouse, DILI hydrazone to nitrile 1534 2018 

DNPH-NA  F 430 518 HeLa, J774A.1, zebrafish hydrazone oxidation 1535 2018 

Probe 1 F 470 515 HepG2 hydrazone to CHO 1536 2018 
6G-ClO F 533 556 HUVEC cyclic hydrazone to CHO 1537 2019 

L1 F 350 550 HeLa hydrazone cleavage 1538 2019 

L2 FR 350 
430/
540 

HeLaC hydrazone cleavage 1538 2019 

HBT-HBZ FR 400 
470/

572 
HeLa 

benzothiazole hydrazone 

cyclization 
1539 2020 

R F 354 463 RAW 264.7 
toluenesulfonylhydrazone, dual 

wih Co(II) 
1540 2020 

CM-hbt FR 395 
478/
528 

RAW 264.7, mung beans  benzothiazole hydrazone  708 2021 

HClO-ER F2P 
500/ 

800 
556 HeLa, RAW 264.7, mouse,  

hydrazone spirolactam, 

endoplasmic reticulum targeted 
1541  2021 

TPB-NO2 F 330 469 HeLa, zebrafish hydrazone  1542  2021 

Probe 1 F 550 705 HepG2 
hydrazone carbamate, dual with 

Zn 
1543  2022 

BTN-Fu F 360 465 zebrafish bis-acylhydrazone 1544  2021 

LL3 F 430 490 HeLa hydrazone cleavage 1545 2022 

NQ FR 320 
551/
479 

HeLa FRET hydrazone cleavage 1546  2022 

Probe 1 F 400 475 HeLa hydrazone cleavage, ER targeted 1547 2022 

        

Section 8 - C=C bond oxidation 

9-AEF F 360 441 HeLa cells C=C oxidation 712 2010 

1 FR 465 
629/

520 
RAW 264.7 C=C cleavage 720 2013 

Cy7-NR FR 540 
566/

780 
HeLa cells C=C epoxidation 715 2013 

CY-FPA F 710  774 A549 C=C epoxidation 713 2014 

CMCY FR 460 
480/

631 
HeLa C=C cleavage 1548 2014 

PMN-TPP FR 410 
640/
522 

RAW 264.7  C=C oxidation 717 2015 

Probe 1 F 373 468 HepG2 C=C epoxidation 1549 2015 

CYDEA F 685 771 MCF-7  C=C epoxidation 1550 2016 

Compound 1  FR 430 
620/

515 
HepG2  C=C cleavage 1551 2016 

Compound 2 FR 430 
630/
515 

buffer C=C cleavage 1551 2016 

WCN F 530 560 HeLa, mouse in vivo C=C oxidation 1552 2016 

HPQ-Cy2 FR 365 
575/
435 

A375 C=C cleavage, mitochondrial 722 2016 

BDP-CY F 505 510 MCF-7 
C=C oxidation, dual with 
viscosity 

1553 2016 

CMBI  FR 390 
475/

658 
HeLa C=C oxidation, mitochondrial 723 2016 

CYDEA F 685 771 MCF-7  C=C epoxidation 1550 2016 
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BFClO FR 
480/ 
635 

713/
511 

MCF-7 C=C cleavage 1554 2017 

DFP FD 360 490 HeLa C=C cleavage, SO2 addition 1555 2017 

Probe 1 FR 398 
615/
460 

HeLa C=C cleavage, mitochondria 1556 2017 

CPBT (mito) FR 405 
480/

580 
RAW 264.7 C=C oxidation 1557 2017 

MPIBA FR 380 
500/

625 
HeLa C=C oxidation 1558 2017 

DNB FR2P 
460/ 
420 

600/
525 

HeLa, RAW 264.7 
C=C oxidation, SO2 detection, 
mitochondrial 

1559 2017 

P FR 488 
480/

612  
HeLa, zebrafish C=C cleavage 1560 2018 

BIP FR 380 
455/

632 
HeLa C=C cleavage, mitochondrial 721 2018 

Probe 1 FR 450 
510/
660 

HeLa, mouse, RA  C=C cleavage 719 2018 

XWJ FR 370 
550/

670 
RAW 264.7 C=C cleavage 1561 2018 

ClO1 FR 
650− 

550 

600/
750 

A549, mouse lung C=C epoxidation 716 2018 

Zcp-Me FR 420 
486/
609 

RAW 264.7 C=C epoxidation 1562 2018 

FL F 490 530 HeLa C=C cleavage 1563 2018 

ZBM-H  FR 405 
512/
653 

RAW 264.7 C=C cleavage 1564  2018 

NPA-CN FR2P 
400/ 

760 

449/

583 
HepG2, zebrafish 

C=C cleavage, logic gate of 

ClO−, OH− and H2O 
1565 2018 

TPP-TCF F 488 660 HeLa, mouse C=C cleavage 1566 2018 

CBP R 410 
456/
662 

HeLa C=C cleavage 1567 2018 

FL-CyN FR2P 
460/ 

800 

630/

754 
zebrafish, MCF-7 C=C cleavage 1568 2018 

PI F 440 551 HeLa, zebrafish, mouse C=C cleavage 1569 2019 

ICC FR 530 
486/

685 
HepG2 C=C cleavage 1570 2019 

BODIPY-P FR 500 
567/

629 
L929 C=C cleavage 1571 2019 

ZBM-H F 555 653 A549 
C=C cleavage, endoplasmic 
reticulum targeted 

1572 2019 

NClO FR 450 
520/

615 
HeLa, zebrafish C=C cleavage 1573 2019 

MTPA-Cy F2P 

365/ 

538/ 

730 

514 HeLa C=C cleavage, mitochondrial 1574 2019 

DMI F 395 622 A549 C=C cleavage, mitochondrial 1575 2019 

XHZ FR 410 
470/

672 
RAW 264.7 

C=C cleavage; neutral lipid 

droplet 
1576 2019 

CMM F 360 459 MDA-MB-231 C=C cleavage 1577 2019 

SB2 FR 573 
590/

657 
RAW 264.7 C=C oxidation to epoxide 1578 2019 

1 F 530 567 Eca109 C=C cleavage 1579 2019 

ZOC FR 420 
478/

610 
RAW 264.7 C=C cleavage 1458 2019 

PPC F 420 
462/

629 
RAW 264.7 C=C cleavage 1580 2019 

Py-Pd F 373 469 HeLa, zebrafish C=C cleavage 1581 2019 

Probe 1 FR 561 
608/

735 
HepG2 C=C oxidation 1582 2019 

COTN  

HOTN 

F 
F 

405 
405 

520 
535 

RAW 264.7, mouse C=C cleavage 1583 2020 

NSSN FR 450 
670/

540 
HeLa, mouse, dual mode C=C oxidation, mitochondrial 1584 2020 

Ql  F 390 520 HeLa, mouse in vivo C=C cleavage 1585 2020 

1 F 420 490 HepG2, Arabidopsis thaliana C=C oxidation 1586 2020 

DL FR 410 
496/
713 

HeLa C=C to halohydrin 1587  2020 

AI FR 370 
495/

570 
HeLa, mouse C=C oxidation to ketone 714 2020 
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S-ClO F 360 475 
RAW 264.7, mouse, patient 
samples 

C=C oxidation 1588 2020 

1 F 465 520 HeLa C=C oxidation, lysosomal 1589 2020 

Cy7-Nil FR 
580/ 
700/ 

520 

650/
780/

560 

HeLa 

 
C=C oxidation 1590 2020 

DCC FR 488 
420/
570 

HeLa, zebrafish, Arabidopsis 
thaliana 

C=C cleavage 1591 2020 

NEC-TBA 

 

F 

 
480 648 HeLa, zebrafish C=C cleavage 1592 2020 

TPE-TBA F 455 678 HeLa, zebrafish C=C cleavage  1592 2020 

HN-ClO F 430 560 HepG2, zebrafish, mouse C=C cleavage 1593  2021 

JBD F 400 607 HeLa C=C oxidation 1594  2021 
TBDP F 400 599 HeLa, RAW 264.7 C=C oxidation  1595  2021 

TBDT F 466 617 HeLa, RAW 264.7 C=C oxidation  1595  2021 

RSS-HClO F 410 490 KYSE-30; MCF-7 
C=C oxidation, also responds to 
Cys/Hcy 

1596 2021 

1 FR 365 
482/

567 
HepG2 C=C oxidation 718 2021 

SE F 510 522 HeLa, RAW 264.7, zebrafish C=C oxidation 1597  2021 

Probe C F ~335 493  RAW 264.7 C=C oxidation 1598  2021 

Probe D F ~364 530 RAW 264.7 C=C oxidation 1598  2021 
Probe 2 F 375 520 HeLa, zebrafish C=C oxidation 1599  2021 

DBTM F 469 650 L929 C=C cleavage 1600  2021 

NIR-ClO F 680 740 RAW 264.7, mouse, OA C=C cleavage, mitochondrial 1601 2022 

BL F 375 450 
RAW 264.7 

 
C=C oxidation to ketone 1602  2022 

Probe 1 F 450 640 HeLa, zebrafish C=C chlorination, lysosomal 1603 2022 

ADP-TCF F 643 670 RAW 264.7 C=C cleavage 1604  2022 

3 F 700 643 RAW 264.7 C=C oxidation 1604 2022 

BIDID FR 400 
501/

641 
HeLa C=C oxidation 1605  2022 

BACN F 400 606 HeLa C=C oxidation 1606 2022 
Probe F 450 540  RAW 264.7, zebrafish C=C oxidation 1607 2022 

MYQ FR 410 
580/

480 
HeLa C=C oxidation 1608 2022 

DTC F 375 452 buffer C=C oxidation 1609 2022 

BDHA F 442 626 HeLa; zebrafish C=C oxidation 725 2022 

SFQ FR 469 
489/
613 

HepG2 C=C oxidation 1610 2022 

C3H FR 330 
480/

750 
HepG2; mice C=C oxidation, mitochondrial 1611 2022 

T F 
335 

504 

430 

715 
HeLa C=C oxidation 1612 2022 

Probe 1 F 400 525 HeLa C=C oxidation 1613 2022 

NRH-O FR 442 
500/

710 
L01, 293T C=C cleavage, mitochondrial 1614 2022 

        

Section 9 - C=N bond cleavage 

HS1  F 344 454 RAW264.7 C=N-OH oxidation to cyano 1615 2014 

TAM FR 430 
485/

630  
PBMCs  

C=N cyano oxidation to 

aldehyde 
1616 2015 

Bodipy-Hy F 465 510 PC12  C=N hydrazone cleavage 1617 2015 

BDP-OX FR 488 
589/

538 
A549 C=NOH oxidation 1618 2017 

1 F 340 410 HeLa  
C=N cyano oxidation to 
aldehyde 

1619 2017 

HQMN FR 370 
468/

572 
monocytes, diabetes C=N cleavage 1620 2018 

AB F 490 648 RAW 264.7 C=N cleavage 1621 2018 

C-DAN  F 452 475 A549, zebrafish C=N cleavage to aldehyde 1622 2020 

Ir-CHO F 430 625 Water samples C=N to aldehyde 1623 2022 

        

Section 10 - Boronates 

FBS F 498 523 intestinal epithelia of Drosophila boronate, spirothioether opening 726 2013 

Z2 F 484 600 buffer boronic acid 1624 2013 
TCF-OCl F 560 610 RAW 264.7 boronate  1625 2015 

BTCBA F 450 515 HeLa boronic acid 1626 2016 
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2  F 495 515 HepG2 boronic acid, mitochondrial 1627 2017 

NIAD-4 FR 482 
640/

565 

mouse brain homogenate, phantom 

imaging  

boronate 

 
1628 2018 

TPM FR 416 
468/
600 

RAW 264.7, HeLa boronic acid, mitochondrial 1629 2019 

DPH-BP F 374 
452/

536 
HeLa boronate  1630 2019 

Probe 1 FR 490 
652/

582 
RAW264.7, HepG2, zebrafish boronic acid 1631 2020 

BEDB F 540 575 
RAW 264.7, MCF-7, zebrafish; 
liver tissue 

boronic acid, also detects SO3
2- 1632 2022 

DAB  F 495 660 A549, Zebrafish boronic acid 1633 2022 

            

Section 11- 2,3-Diaminomaleonitrile (DAMN) imine 

1b FR 
540/ 

464 

505/

585 
MCF-7 DAMN imine 697 2011 

CDH FR 316 
376/
456 

buffer DAMN imine 698 2013 

Probe 1 FR2P 
360/ 

740 

435/

440 
RAW 264, exo or endo DAMN imine 1634 2018 

ADT-MAM F 420 500 HeLa, A549, colorimetric DAMN imine to CHO 1635 2018 

Probe 1 FR 415 
515/

640 
HepG2 DAMN imine to CHO 1636 2018 

RO610 F 535 577 A549, mouse, DAMN imine to CHO 1637 2018 

HCCN F 436 541 HepG2 DAMN imine to CHO 1638 2018 

Probe 1 F 365 495 A549 DAMN imine cyclization 699 2018 
PDAM-Me and 

PDAM-Lyso 
FR 410 

470/

620 
RAW264.7, zebrafish 

DAMN imine to COOH, 

lysosomal 
1639 2019 

1 FR 325 
500/
607 

RAMOS DAMN imine cleavage 700 2019 

Probe 1 F 365 432 HeLa, RAW 264.7 DAMN imine to NO2 
701 2019 

Probe 1 F 380 
462/
582 

HeLa DAMN imine to CHO 1640 2019 

M-TPEP-CN F 370 534 PC12 DAMN imine 1641 2020 

A-DM FR2P 
425/ 
720 

525/
625 

RAW 264.7 DAMN imine 1642 2020 

NIB-M F 365 440 RAW 264.7 DAMN imine 1643 2020 

probe P F 361 480 DLD-1 DAMN imine, also detects −CN 1644 2020 

BTD-1 F 396 448 HeLa, macrophage, zebrafish DAMN imine, mitochondrial 1645 2020 

2TD F 350 423 HeLa DAMN cleavage to aldehyde 1646 2020 

Mul-NIRIr F2P 
380/ 

800 
663 RAW264.7, LM-3, mouse DAMN imine, mitochondrial 1647  2021 

TPB-CN F 350 440 HeLa, mouse DAMN imine 1648  2021 

Lyso-VH FD 475 580 A549, ALI 
DAMN imine, viscosity, 

lysosomal 
1649 2022 

BODIPY-DAMN F 490 511 B16-F10, SH-Sy5Y, zebrafish DAMN imine  1676 2022 

        

Section 12 -Phenol oxidation 

HKOCl-1 F 520 541 RAW 264.7 phenol oxidation 702 2008 

PMOPP F 320 388 buffer phenol oxidation 1651 2011 
FCN1 F 415 485 buffer phenol oxidation 1652 2012 

FCN2 F 415 485 NIH 3T3; zebrafish phenol oxidation 1652 2012 

FCN3 F 415 485 buffer phenol oxidation 1652 2012 
Probe 1 F 496 517 RAW 264.7 catechol oxidation, ring opening 1653 2014 

HKOCl-2a F 523 545 buffer phenol oxidation 1654 2014 

HKOCl-2b F 523 545 RAW 264.7, THP-1 phenol oxidation 1654 2014 
HKOCl-2c F 523 545 buffer phenol oxidation 1654 2014 

1 F 420 544 HepG2 phenol oxidation 1655 2014 

NBD-DOP F 470 540 HeLa Cells dopamine oxidation 1656 2017 

SF-1 F 550 586 macrophage 
catechol oxidation, lysosomal, 

Golgi 
1657 2018 

BHC F 394 510 HeLa phenol oxidation  1658 2019 
2a 

 
FR 

339 

 

489/

413 
HeLa phenol oxidation 1659 2019 

2b FR 316 
537/
406 

HeLa phenol oxidation 1659 2019 

2c FR 323 
435/

387 
HeLa phenol oxidation 1659 2019 

L1 F 395 483 RAW 264.7 phenol oxidation 1660 2019 
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MB-DOPA F 620 683 HeLa 
catechol oxidation 
decarboxylation 

1661 2019 

Probe 1 F 420 525 HepG2 phenol oxidation 1662 2020 

HBTC FR 406 
620/
506 

MDA-MB-231 phenol oxidation, viscosity 1663 2020 

HQ F 450 550 zebrafish, mouse phenol oxidation 1664  2021 

RFP-Ptz F 460 610 SGC-7901 
phenol oxidation, O-Cl 
formation 

1665  2021 

HOCl-CL-510 CL - 500 
RAW 264.7, mice (LPS) and 

arthritic model 
phenol oxidation/dearylation 1666 2022 

HE F 473 610 rat macrophages aromatization 1667 1995 

2,7-DCHF-DA F 501 521 rat macrophages; neutrophils aromatization  1153 1995 

DHR 123 F 501 528 rat macrophages; neutrophils aromatization 1153 1995 
HE F 473 610 rat macrophages; neutrophils aromatization 1153 1995 

RB-thiazole F 560 590 L929 cells benzothiazole ring opening 1670 2013 

SA-thiazole F 402 462 L929 cells benzothiazole, mitochondrial 1670 2013 

DPNO FR 305 
354/

430  
buffer diaminonapthalene oxidation 1671 2013 

AC-ClO F 480 576 RAW 264.7  diaminonapthalene oxidation 1672 2015 

Ru-1  F 365 587 HEK293T C-H hydroxylation 1673 2019 

ZPAC FR  410 
472/

600 
RAW 264.7 methylene oxidation 1674 2019 

TPP-AN FR 370 
414/

620 
HeLa 

N-benzylpyridinium cleavage, 

mitochondrial; viscosity 
1675 2022 

 

Section 13 – Other triggers 

Pholasin CL  - 480 Pholas dactylus luciferin based 1676 2000 

1 F 488 525 MCF-7 alcohol oxidation 1302 2013 
Probe 1 F 414 523 A549 cells alcohol oxidation 1677 2017 

CB F 430 590 PMN neutrophils glycol oxidation 1678  2022 

[Ru(bpy)2(DNCA

-bpy)] 
F 470 626 RAW 264.7 dinitroamide lysis 1679 2013 

[Ru(bpy)2(DNPS

-bpy)] 
F 456 626 HeLa, RAW 264.7 dinitrothioether lysis 1680 2013 

Mito-NPSTTA-

Eu3+ 
L 488 610 HepG2, RAW264.7, zebrafish nitrophenol lysis 1681 2017 

MB-Rs F 620 685 RAW 264.7, PC-12, mice amide lysis 1682 2022 

REClO-6 F 568 590 
HeLa, zebrafish, mouse arthritis, 

solid tumor 
amide lysis 1683 2022 

7 F 323 463 HepG2 coumarin ring opening 1684 2016 
4 F 287 377 buffer coumarin ring opening 1684 2016 

1b FR 380 
460/

523 
HEK293T coumarin ring opening 1685 2019 

BCO F 
257/ 

383   
430 HepG2 coumarin ring opening 1538 2019 

BETC F 
270/ 
373 

438 HepG2 coumarin ring opening 1538 2019 

CCO F 410 530 HEK293T coumarin ring opening 1686 2019 

EDPC F 380 475 HEK293T coumarin ring-opening 1687 2019 
BAC F 412 480 HEK293T, HeLa coumarin ring opening 1688  2020 

TCAB F 418 480 HEK293T, HeLa 
coumarin ring opening, 
mitochondrial 

1688  2020 

Ir-1 F 370 615 HepG2 acrylate ester hydrolysis 1580 2019 

Lyso-BHHBCB-

Eu3+ 
L 

328  

 
607 HepG2, RAW 264.7 

-diketonate oxidation, Eu3+ 

ejection, lysosomal 
1689  2017 

Mito-BHHBCB-

Eu3+  
L 333 607 HepG2, RAW 264.7 

-diketonate oxidation, Eu3+ 

ejection, lysosomal 
1689  2017 

Eu(Lyso-

CDHH)3(DPBT) 
L 400 610 RAW 264.7 

-diketonate oxidation, Eu3+ 

ejection, lysosomal 
1690 2020 

Eu(L)3(DPBT) L 400 607 RAW 264.7, HeLa, mouse 
-diketonate oxidation, Eu3+ 

ejection, mitochondrial 
1691 2020 

4 FR2P 
326/ 

720 

450/

361 
RAW 264.7, rat, ERT NHC borane 1692 2018 

1·BH3 F2P 
350/ 

710 

374/

477 
RAW 264.7 NHC Borane 1693 2018 

FDOCl-1 F 664 686 RAW 264.7, mouse, arthritis model deformylation 1694 2018 

FH-HA F 555 580 
RAW 264.7, HeLa, A549, HepG2, 

zebrafish 
deformylation 1695 2019 

FDOCl F 488 535 HL-60 deformylation & deamidation 1696 2019 
G1 and G2 F 610 669 HL-60, HeLa, mouse, psoriasis deformylation 1697 2022 



122 
 

a F = fluorescence, R = ratiometric, 2P = two-photon, L= luminescence, CL = chemiluminescence, BL = bioluminescence, PA = 

photoacoustic. b Wavelengths given in nanometers. 

 
Table 4. Small molecule probes for nitric oxide 

Probe Typea ex
b em

b Application Trigger/Comments Ref Year 
        

Section 1 – N-Nitrosation type 1 triggers 

DAN F 365 415 rat neutrophils N-nitrosation type 1 746  1996 
DAN-1 F 360 447 buffer N-nitrosation type 1 747 1997 

DAF-2 F 490 515 buffer N-nitrosation type 1 748 1998 

DAF-2 DA F 490 515 rat aortic smooth muscle cell N-nitrosation type 1 748 1998 

DAA F 488 580  
rat eyes, hippocampal neurons, 
RAW 264.7 

N-nitrosation type 1  
1714− 

1718
 

1998 

DAF-FM F 490 515 rat bladder smooth muscle cells N-nitrosation type 1 750 2000 
DAR-4M AM F 560 575 bovine aortic endothelial cells N-nitrosation type 1 754 2001 

12 F 360 450 buffer N-nitrosation type 1 1719 2001 

TMDABODIPY F 500 510 buffer N-nitrosation type 1 755 2003 

DAMBO F 496 505 buffer N-nitrosation type 1 
755, 

756 
2004 

DAMBO-PH F 519  535 buffer N-nitrosation type 1 
756, 

757 
2004 

DABODIPY F 500 510 buffer N-nitrosation type 1 758 2004 

TMAPABODIPY F 500 510 buffer N-nitrosation type 1 759 2005 
DAC-S F 750 785 rat kidney ex vivo N-nitrosation type 1 777 2005 

TMDABODIPY F 498 507 human serum, rat tissue N-nitrosation type 1 
760, 

761 
2006 

DAMBOO F 497 510 buffer N-nitrosation type 1 
762, 

763 
2006 

DAMBO -CO2Et F 500 510 PC12 N-nitrosation type 1 764 2006 
Compound 1 F 554 574 buffer N-nitrosation type 1 784 2008 

VDABA F 354 479 RAW 264.7 N-nitrosation type 1 817 2008 

[Ru(bpy)2(dabpy)]2

+ 
L 455 616 

mouse macrophage, gardenia, 
rabbit blood 

N-nitrosation type 1 
822, 

823 
2010 

EDADO F 339 443 organic N-nitrosation type 1 828 2011 

Cou-Rho-NO FR 410 
473/ 

583 
RAW 264.7 N-nitrosation type 1 785 2011 

ANO1 F2P 
370/
750 

502 
RAW 264.7, rat hippocampal ex 
vivo 

N-nitrosation type 1 794 2012 

[Ru(MAA-

phen)3]2+ 
L 468 598 buffer N-nitrosation type 1 824 2013 

DAN F 370 454 HT-29 N-nitrosation type 1 819 2013 

BRP-NO FR 488 
510/ 

590 
MCF-7 N-nitrosation type 1 786 2013 

DANPBO-H F 621 631 
ECV-304, RAW 264.7, mouse ex 

vivo, rice (HPLC) 
N-nitrosation type 1 765 2013 

A F 539 570 RAW 264.7, ARPE-19 N-nitrosation type 1 766 2013 

1 F 289 484 RAW 264.7 aldehyde oxidation 1698 2018 
2 F 418 512 RAW 264.7 aldehyde oxidation 1698 2018 

L1 and L2 F 300 400 MCF-7 aldehyde oxidation 1699 2020 

MTRN F 561 616 
Cos-7, HL-7702, RWPE-1, HeLa, 
MCF-7, and HepG2 

pyrrole oxidation 1700 2018 

RT-1 F 550 587 RAW 264.7, HeLa carbonodithioate 1701 2019 

Cy-HR F 635 706 RAW 264.7, zebrafish O-Cl formation 1702 2019 
PBAS F 400 570 A549 O-Cl formation 1703 2019 

RFP-Ptz F 460 610 HeLa, RAW 264.7, mouse O-Cl formation 1704  2021 

BP F 546 564 RAW 264.7 phosphine oxidation 1705  2021 
BR-O F 610 670 RAW 264.7, HL-60 urea 1706 2020 

MB-NAP-N3 F 620 686 HeLa, RAW 264.7, zebrafish urea, also detects H2S 1707  2021 

NHF F 664 700 
HepG2, HeLa, A549, GES-1; 
zebrafish, mouse 

urea, hepatocyte targeting 1708 2021 

MB-N-NAP F 620 690 HepG2, Hep3B, Huh7 urea, also detects H2S 1709  2021 

MCB F 620 
464/
700 

MCF-7, RAW 264.7, zebrafish 
urea cleavage & aminophenol 
oxidation 

1710  2022 

T F 460 561 MCF-7, Arabidopsis thaliana nitrone oxidation 1711 2021 

3 F 475 512 RAW 264.7 triazolopyridine 1712  2022 

2 F 475 512 RAW 264.7 triazolopyridine 1712  2022 

CB2-H FD 631 468 HeLa, zebrafish 
o-chlorination for HOCl, dual 

with ONOO− 
1713  2022 
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BOPB  F 622 643 RAW 264.7, onion N-nitrosation type 1 767 2013 
o-MOPB  F 552 590 RAW 264.7  N-nitrosation type 1 1720 2013 

p-MOPB F 582 620 RAW 264.7  N-nitrosation type 1 1720 2013 

DAP-LT1 F 720 790 buffer N-nitrosation type 1 778 2013 
DABPA F 279 361 PC12 N-nitrosation type 1 818 2014 

ADNO F2P 
405/

820 
546 NIH 3T3 

N-nitrosation type 1 796 2014 

DANPBO-H  F 621 631 ECV304, mouse ex vivo, rice N-nitrosation type 1 769 2014 

DANPBO-M F 609 619 ECV304, mouse ex vivo, rice N-nitrosation type 1 769 2014 

QNO F2P 
408/ 
810 

535 RAW 264.7, rat brain ex vivo 
N-nitrosation type 1 797 2014 

NPA F 400 490 buffer N-nitrosation type 1 820 2015 

TMDSDAB F 500 512 RAW 264.7 N-nitrosation type 1 770 2015 
DAL BL - 600 HEK293, mouse in vivo N-nitrosation type 1 813 2015 

1a F 612 681 HeLa N-nitrosation type 1 829 2015 

1b F 683 750 HeLa N-nitrosation type 1 1721 2015 

Ir-Mito-NO L2P 
335/

730 
576 HeLa 

N-nitrosation type 1, 

 mitochondria 
798 2015 

NRNO F2P 
585/

820 
650 

HeLa, RAW 264.7, mouse ex 

vivo 

N-nitrosation type 1 779 2016 

SiRB-NO F 667 680 HepG2 N-nitrosation type 1 780 2016 

TMR-NO-BG F 535 566  COS-7 N-nitrosation type 1 804 2016 
OPD-FF F 275 367 HepG2 (spectroscopy) N-nitrosation type 1 1722 2016 

deOxy-DALSiR  F 645 680 
HeLa, RAW 264.7, pancreatic B-

cells, EA.hy926, mouse in vivo 

N-nitrosation type 1 782 2017 

p-MOPB 

DSDMHDAB 
F 

582/

515 

620/ 

529 

Plasma membrane in RAW 

264.7, ECV-304 

N-nitrosation type 1 132 2017 

Probe 1 F 470 532 HepG2 N-nitrosation type 1 773 2018 

APNO-1 PAR 
731/

676 
PA buffer 

N-nitrosation type 1 790 2018 

ROPD  F 505 581 L929, HeLa, RAW 264.7 N-nitrosation type 1 1723 2018 

PS FPA 
532/

405 
550 RAW 264.7, mouse in vivo 

N-nitrosation type 1 815 2018 

Iridium (III) probe 

1 
L 355 608 HeLa 

N-nitrosation type 1 825 2018 

Compound 1 F 505 528 RAW 264.7 N-nitrosation type 1 774 2019 

BTNH F 525 620 
HEPG2, SH-SY5Y, Drosophilia 

brain ex vivo 

N-nitrosation type 1 830 2019 

Ir-BPDA L2P 
405/
730 

587 RAW 264.7, zebrafish 
N-nitrosation type 1 801 2019 

TTNO F2P 
590/

840 
658 HeLa, mouse liver ex vivo 

N-nitrosation type 1 802 2019 

LS-NO  F 650 
760/ 

804  

RAW 264.7, HCC1299, mouse 

vivo and ex vivo 

N-nitrosation type 1 783 2021 

ZJL-3 F 600 637 RAW 264.7, C. elegans N-nitrosation type 1 1724 2021 
13 F 447 564 Jurkat N-nitrosation type 1 1725 2021 

Compound 1 F 354 464 buffer N-nitrosation type 1 1726 2022 

Compound 2 F 354 456 RAW 264.7 N-nitrosation type 1 1726 2022 
Compound 3 F 354 464 RAW 264.7 N-nitrosation type 1 1726 2022 

Compound 4 F 354 456 buffer N-nitrosation type 1 1726 2022 

BL660-NO BL - 660 A549-Luc2, mouse in vivo N-nitrosation type 1 814 2022 

PANO 1 PAR 
628/

725  
PA  mouse in vivo 

N-nitrosation type 1 776  2023 

PANO 2 PAR 
705/
785 

PA  mouse in vivo 
N-nitrosation type 1 776  2023 

PANO 3 PAR 
705/

785 
PA  mouse in vivo 

N-nitrosation type 1 776  2023 

SCR-NO FPA 895 PA mouse in vivo/ex vivo N-nitrosation type 1 816 2023 

NOP3 F 450 540 HeLa, RAW 264.7 N-nitrosation type 1 and 2 842 2022 

DAN-1 EE F 365 440 rat aortic smooth muscle cells 
N-nitrosation type 1,  
cell-permeable 

747 1997 

DATTA-Eu3+ L 326 612 onion 
N-nitrosation type 1,  

time-gated 
826 2011 

MATTA-Eu3+ L 321 610 PC-12 
N-nitrosation type 1,  

time-gated 
827 2012 

LYSO-NINO F2P 
440/
840 

530 MCF-7, RAW 64.7 
N-nitrosation type 1, 
lysosome 

795 2012 

FP-NO F 550 580 HeLa, RAW 264.7 
N-nitrosation type 1,  

dual with H2O2  
831 2012 
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[Ru(bpy)2(DA-

Phen)]2+ 
F 448 613 tobacco, onion 

N-nitrosation type 1, 
electrochemiluminescence 

768 2013 

Mito-Rh-NO F 559 585 MCF-7, RAW 264.7 
N-nitrosation type 1, 

mitochondria 
803 2013 

probe 1 F 570 616 B16 
N-nitrosation type 1, 

mitochondria 
807 2014 

LysoNO-Naph F 368 454 CHO 
N-nitrosation type 1, 
lysosome 

808 2016 

Lyso-SiRB-NO F 667 680 HepG2, LO2 
N-nitrosation type 1, 

lysosome 
780 2016 

TMR-NO-SNAP F 535 564 COS-7 
N-nitrosation type 1,  

SNAP Tag 
804 2016 

DSDMHDAB F 515 529 RAW 264.7 
N-nitrosation type 1, 
membrane  

771 2016 

LyNPNO F 450 541 C6, rat hippocampal ex vivo 
N-nitrosation type 1, 

lysosome 
821 2016 

SiRD  R 680 710 HeLa, MT 
N-nitrosation type 1, 

mitochondria 
781 2017 

TRP-NO L 330 580 HepG2, D. magna 
N-nitrosation type 1, 

lysosome 
809 2017 

ER-Nap-NO  F2P 
440/

820 
538 HeLa, mouse ex vivo 

N-nitrosation type 1,  

ER targeted 
799 2018 

MBTD  R 
421/

488 

550/ 

625 
RAW 264.7, mouse ex vivo 

N-nitrosation type 1, 

lysosome 
810 2018 

Gal-RhB  F 550 580 
HepG2, HeLa, L929, A2780, 
zebrafish 

N-nitrosation type 1, 
hepatocyte 

811 2018 

Mem-NO  F2P 810 538 
HUVEC, PC12, mouse brain ex 
vivo 

N-nitrosation type 1, 
membrane targeted  

133 2018 

S1/Int-1 F 510 527 A549 
N-nitrosation type 1, SERS 

imaging 
772 2018 

Mito-1 F 485 518 HeLa, RAW 264.7, SKOV-3 
N-nitrosation type 1, 

mitochondria 
858 2019 

NOckoutPM FR 
488/
550 

520/ 
575 

T-47D 
N-nitrosation type 1,  
DNA-based 

124 2020 

NOckoutTGN FR 
550/

650 

575/ 

665 
T-47D 

N-nitrosation type 1,  

DNA-based 
124 2020 

NOckoutfn FR 
550/

650 

575/ 

665 

primary microglia, alveolar 

macrophages, zebrafish 

N-nitrosation type 1,  

DNA based 
805 2020 

PYSNO F 402 581 
SH-SY5Y, RAW 264.7, mouse 
heart ex vivo, mouse in vivo 

N-nitrosation type 1, 
lysosome  

1727 2020 

Lyso-TP-NO F2P 
435/

840 
539 BV2, mouse ex vivo 

N-nitrosation type 1, 

lysosome 
866 2020 

Compound 1 F 532 565 HUVEC, zebrafish 
N-nitrosation type 1,  

dual with GSH 
833 2021 

HNB F 530 555 HeLa, HepG2, A549 
N-nitrosation type 1, 
hepatocyte/lipid droplets 

865 2021 

Hoe–Rh-NO FR 405 
463/ 

603 
HeLa, macrophages, zebrafish 

N-nitrosation type 1, 

nucleus  
791 2022 

Golgi-NO F 560 589 SH-SY5Y, HEPG2 
N-nitrosation type 1, 

Golgi  
812 2022 

1 F  660 685 H9C2, mouse in vivo, ex vivo 
N-nitrosation type 1,  
dual with GSH  

834 2022 

BQ F  405 565 RAW 264.7 
N-nitrosation type 1,  

dual with Cu2+ 
863 2023 

BDP FR 590 
625/ 

715 
HeLa, mouse in vivo/ex vivo 

N-nitrosation type 1,  

dual with viscosity 
793  2023 

Probe 5 F 510 516  HeLa 
N-nitrosation type 1,  
lipid droplet  

775  2023 

TMR-Tz-NO F 555 585 HeLa, RAW 264.7, zebrafish 
N-nitrosation type 1, click rx for 

organelle targeting  
806 2022 

Naph–RhB F 550 570 L929 N-nitrosation type 1, dual with H2S 832 2015 

1 FR 420 

470/ 

560  
 

HeLa N-nitrosation type 1, ESIPT 789 2018 

HTDAF-2DA F 488 512 HeLa, RAW 264.7 N-nitrosation type 1, Halo tag 131 2015 

A6 F 355 492 HeLa 
N-nitrosation type 1, hypoxia 
activated, photolytic drug release  

1728 2018 

1-NO  FR 420 
505/ 

580 
HeLa, RAW 264.7 N-nitrosation type 1, TBET 787 2018 
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Section 2 – N-Nitrosation type 2 

NO550 F 470 550 

neonatal spinal astrocytes, PC-

12, human microvascular 

endothelial cells  
 

N-nitrosation type 2 837 2010 

probe 1 F 480 518 HL-7702 N-nitrosation type 2 838 2014 

NO-QA5  F2P 
432/
760 

540 RAW 264.7, mouse liver ex vivo N-nitrosation type 2 839 2017 

Mito-N FR2P 
500/

900 

540/ 

595 
RAW 264.7, mouse in vivo 

N-nitrosation type 2, 

mitochondrial 
788 2017 

RatioTr FR 370 
424/ 

530 
RAW 264.7 

N-nitrosation type 2 840 2020 

NO530 F 445 530 NIH3T3, RAW 264.7 N-nitrosation type 2 841 2020 
NO562 F 470 562 NIH3T3, RAW 264.7 N-nitrosation type 2 841 2020 

MTNO F  350 457  
HeLa, RAW 264.7, mouse ex 

vivo  

N-nitrosation type 2, 

mitochondria 
843 2023 

        

Section 3 - N-Nitrosation type 3 

Reduced 

fluoresceinamine 
F 450 522 buffer 

N-nitrosation type 3, xanthene 

oxidation 
1729 2010 

FA-OMe F 460 524 RAW 264.7 N-nitrosation type 3 846 2012 

2c F 470 550 RAW 264.7 N-nitrosation type 3 849 2014 

3b F 740 815 1M HCl 
N-nitrosation type 3,  
H2S activated  

847 2014 

MA F 475 519 HeLa, RAW 264.7 N-nitrosation type 3 1730 2017 

NIR-MA F 750 794 
HeLa, RAW 264.7, mouse in 

vivo  
N-nitrosation type 3 1730 2017 

1-H2S F 465 526 PC12 N-nitrosation type 3, H2S activated 848 2018 

APNO-2 PAR 
735/

676 
PA buffer N-nitrosation type 3 790 2018 

APNO-3 PAR 
679/
678 

PA buffer N-nitrosation type 3 790 2018 

mtNOpy F 480 585 HT29, RAW 264.7, whole blood 
N-nitrosation type 3, 

mitochondria-targeted  
850 2021 

ENNH2 FR 460 
530/ 

605 
RAW 264.7, zebrafish N-nitrosation type 3 792 2022 

BDP-3 F 648 668 4T1, RAW 264.7, mouse in vivo N-nitrosation type 3 851 2023 

        

Section 4 – N-Nitrosation type 4 

Probe 1 F 490 518 HeLa, RAW 264.7, EA.hy926 N-nitrosation type 4 852 2016 

SiRNO F2P 
645/
820 

672 
HeLa, RAW 264.7, mouse ex 
vivo 

N-nitrosation type 4 853 2017 

L3 F 510 587 HepG2, zebrafish N-nitrosation type 4 1731 2018 

PyDA-NP  FR 390 
445/ 
523 

organic 
N-nitrosation type 4 854 2018 

PQPY  F 400 505 HepG2 cells N-nitrosation type 4 855 2018 

APNO-4 PAR 
764/
678 

PA buffer 
N-nitrosation type 4 790 2018 

APNO-5  PAR 
764/

673 
 PA mouse in vivo 

N-nitrosation type 4 790 2018 

HqEN480 F 390 480 HepG2 N-nitrosation type 4 856 2019 

Cy7-MA F 760 800 HeLa, mouse in vivo N-nitrosation type 4 861 2019 
1 F 485 518 HeLa, RAW 264.7, SKOV-3 N-nitrosation type 4 858 2019 

TAN F2P 
488/ 

790 
638 HeLa, mouse ex vivo 

N-nitrosation type 4 862 2020 

SR-APNO-3 PA 
790/

704 
PA RAW 264.7, 4T1, mouse in vivo 

N-nitrosation type 4 857 2020 

RBA F 530 585 HeLa, RAW 264.7 N-nitrosation type 4 1732 2020 
Rh-NO-1 F 530 600 HeLa N-nitrosation type 4 1733 2020 

QY-N FPA 808 935 mouse in vivo N-nitrosation type 4 859 2021 

AC-SA  FR 475 
525/ 
625 

RAW 264.7, zebrafish 
N-nitrosation type 4 864 2021 

APNO-1080 PA 1080 PA mouse in vivo N-nitrosation type 4 860 2021 

QY-NO FPA 780 935 mouse in vivo N-nitrosation type 4 859 2021 

Probe 2 F 490 518 HeLa, RAW 264.7, EA.hy926 
N-nitrosation type 4, 

mitochondria 
852 2016 

LJ–Zn2+ F 295 365 buffer 
N-nitrosation type 4,  
dual with Zn 

868 2021 

QBN F 365 512 HeLa, RAW 264.7 
N-nitrosation type 4, 

dual with HOCl 
869 2021 
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BOD-NH-SC F 570 645 HEPG2, colonic smooth muscle 
N-nitrosation type 4,  
dual with H2S 

870 2022 

BML F 530 590 
HeLa, PC-3, MCF-7, HepG2, 

zebrafish 

N-nitrosation type 4, 

lysosome  
867 2023 

        

Section 5 - Other nitrosation triggers 

RBH F 561 581 RAW 264.7 hydrazide nitrosation 
871, 

872 
1998 

8-HB F 505 512 HEPG2, RAW 264.7 hydrazine removal 873 2019 

1a-SAc F 418 477 HeLa, HUVEC, Raw 264.7 S-nitrosation, reversible 874 2021 
2a-SAc F 447 490 HeLa, HUVEC, Raw 264.7 S-nitrosation, reversible 874 2021 

Compound 1 F 560 580  lung epithelial cells o-aminosulfide  875 2023 

B-SiRhd-7 FPA 808 1050 mouse in vivo o-aminoimine 876 2023 
        

        

Section 6 - Metal-based nitric oxide triggers 

compound (1) F 366 460 buffer iron 877 1998 
Compound 1 F 350 505 organic cobalt  880 2000 

Compound 12 F 350 505 organic cobalt 881 2000 

Acridine-TEMPO/ 

DTCS-Fe(II) 
F 361 438 buffer Fe-nitroxide displacement 878 2001 

Mmc-cyclam  FR 360 
410/ 

470 
buffer Fe-nitroxide displacement 879 2002 

Compound 4 and 1 F 365 ~560 organic Dirhodium binding 882 2004 

Compound 2 F 350 ~505 organic cobalt 883 2004 
Compound 1 F 350 ~505 organic iron 883 2004 

Ru(TPP)(CO)(Ds-

im) 
F 368 550 organic ruthenium 884 2004 

[Cu(Ds-AMP)2 F 342 ~560 buffer copper 885 2005 

Complex 7 F 342 550 buffer copper 886 2006 

Complex 8 F 342 550 buffer copper 886 2006 
Complex 10 F 342 550 buffer copper 886 2006 

CuFL F 503 520 SK-N-SH, RAW 264.7 copper 887 2006 

MNIP–Cu F 360 492 RAW 264.7, mouse liver ex vivo copper 894 2008 

Cu2FL2E F2P 
 496

/800 
 526 

RAW 264.7, SK-N-SH, mouse 

ex vivo  
copper 

891− 

892, 

893 

2010 

CuFL15 F 499 520 buffer copper 890 2010 

CuFL1A F 499 520 buffer copper 890 2010 

CuFL1E F 500 520 RAW 264.7 copper  890 2010 
CuFLDex F 500 520 RAW 264.7 copper 890 2010 

Cu2FL2 F 494 526 buffer copper 891 2010 

Cu2FL2A F 496 526 buffer copper 891 2010 
CuRBT F 510 580 MCF-7 copper 895 2011 

CuSNFL1 F 527 548 RAW 264.7  copper  898 2011 

CuSNFLE F 527  549 RAW 264.7 copper 898 2011 
CuSNFL1Br F 540 615 RAW 264.7 copper 898 2011 

CuSNFL1EBr F 536 615 RAW 264.7 copper 898 2011 

Complex 1 F 342 560 buffer copper 904 2011 
Complex 4 F 350 ~540 organic copper 905 2011 

CuQNE F 466 530 MCF-7 copper 902 2012 

Cu2+[FS] F 350  430 buffer copper 903 2012 
complex 1 F 340 ~525 buffer copper 906 2012 

RB-TP  F 540  580 HeLa copper 896 2013 

RB-Py F 550  580 HeLa copper 896 2013 

CuBRNO1 F  570 623 HeLa, RAW 264.7 copper, dual with HNO 899 2013 

CuBRNO2 F 570 623 buffer copper, dual with HNO 899 2013 

CuBRNO3 F 563 625 HeLa, RAW 264.7 copper, dual with HNO 899 2013 
Complex 3 F 342 ~530 buffer copper 907 2013 

RDN–Cu F 480 548 MCF-7, RAW 264.7 copper 908 2014 

Cu(bpq)(OAc)(H2

O) 
F 400 515 organic copper 1734 2014 

Cu (NSQ)2 F 370 500 organic copper 1686 2014 

FI-Cu2+ F 465 518 RAW 264.7 copper 1735 2014 

QHYN•Cu(II) FR 325 434 organic copper 1736 2014 

[CuII(L2)Cl]+ F 345 532 HeLa copper 1737 2014 

1-CuII F 501 521 RAW 264.7 copper 909 2015 
Cu(II) complex 7 F 440 580 MCF-7 copper 910 2016 

16a F 405 445 P. aeruginosa  copper 
911, 

912 
2016 
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MNIP-Cu F 
330- 
385 

420- 
500 

plants copper  913 2016 

Cu(FL3A-Ppz-CC) FR 400 
450/ 

519 
A549 copper 901 2017 

RPD-Cu2+ F 560 580 HeLa copper 897 2019 

PIP(CuII)Cl F 407 560 A549, RAW 264.7 copper 900 2019 

Compound 1 F 330 ~500 buffer NO mediated copper click reaction 914 2020 

Ru-NO L 450 615 

THP1 monocytes, 

macrophages, mouse in vivo/ex 

vivo, plasma, human plasma  

ruthenium 1738 2022 

        

Section 7 - Fluorescent cheletropic traps and spin traps 

1a F 315 380 buffer cheletropic trap 915 1997 
4d F 380 460 rat alveolar macrophages cheletropic trap 917 1999 

15 F 320 380 rat alveolar macrophages cheletropic trap 916 2006 

FNOCT 8a F 350 380 rat alveolar macrophages  cheletropic trap  918 2010 
Compound 1  F 350 470 MCF-7 c-PTIO spin trap in cage 919 2011 

        

Section 8 - Other triggers 

RBSe F 560 580 HeLa selenolactone 920 2011 
Probe 1 F 334 450 RAW 264.7 dihydropyridine 922 2014 

DHPS F 324 400 RAW 264.7 dihydropyridine 923 2016 

PyNO FR 346 
393/ 
439 

Vero 76 dihydropyridine 925 2016 

TPANO FR 308 
416/ 
502 

Vero 76 dihydropyridine  925 2016 

DHP-1 F 323 392 RAW264.7 dihydropyridine 1739 2016 

DHPFQ F 490 525 RAW 264.7, mouse in vivo dihydropyridine 926 2017 
QT490 F 380 490 Raw 264.7 thiosemicarbazide 928 2017 

XNO1  F2P 
405/ 

820 
590 BSH-SY5Y, zebrafish imine hydrolysis 800 2018 

Mito-DHP FR 470 525 HepG2, RAW 264.7 dihydropyridine, mitochondria 927 2018 

QAH  F 380 490 A549, RAW 264.7 oxatriazole formation 931 2018 

FP-NO F 436 475 MCF-7, J774A.1, zebrafish thiosemicarbazide 929 2019 
DHP-4 F 365 423 RAW264.7 dihydropyridine 924 2020 

BCM F 410 470 A375, RAW 264.7 oxatriazole formation 932 2020 

1 F  450 550 HeLa 
thiosemicarbazide,  

dual with viscosity 
930 2021 

Mi-NO FR 
410/

510 

581/ 

594 
HeLa, zebrafish 

pyrazole formation, 

mitochondria  
1740 2021 

4 F 685 730 buffer phenoxazine formation 933 2022 

DPAC-(peg)4-

memantine 
F 360 480 BV2, HT22 

phenazine formation,  

AD theranostic 
1741 2022 

CS-Se F 680 780 Cal-27, saliva selenolactone 921 2023 

LysoNO-DCM F 450 633 RAW 264.7, zebrafish alkene nitration, lysosome  934  2023 
a F = fluorescence, R = ratiometric, 2P = two-photon, L= luminescence, CL = chemiluminescence, BL = bioluminescence, PA = 

photoacoustic. b Wavelengths given in nanometers. 

 
Table 5. Small molecule probes for peroxynitrite 

Probe Typea ex
b em

b Application Trigger/Comments Ref Year 

        

Section 1 - Early probes 

DCFH-DA F 504 523 leukocytes, HUVEC xanthene oxidation 24  1965 

Luminol CL - 425 buffer luminol oxidation 
1742–

1744 
1999−

2000 
DHR 123 F 500 536 buffer xanthene oxidation 944 1994 

DAF-2 F 488 515 mouse glial cultures ortho-phenylenediamine 

24,945,

1745–

1748 
2002 

NiSPY-1,2,3 F 505 525 HeLa aromatic nitrosation 946 2006 

        
Section 2 - Trifluoromethyl ketones (TFMK) 

HKGreen-1 F 490 521 neuronal cells trifluoromethylketone 947 2006 

HKGreen-2 F 520 539 J774.1 macrophage trifluoromethylketone 948 2009 

HKGreen-3 F 520 535 RAW 264.7 
trifluoromethylketone, N-

dearylation 
949 2010 

CySO3CF3 FPA 
675/ 
680 

712 RAW264.7, mouse trifluoromethylketone 950 2018 
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Mito-NA FR 390 
450/
550 

HeLa, RAW264.7 
trifluoromethyl cinnamic acid, 
mitochondrial 

1749 2021 

Cy-CF3 F 
500/ 

800 
630 

L02, zebrafish, mouse, kinetic, 

hypoxia 
trifluoromethylketone 951 2022 

        

Section 3 - Isatins and -ketoamides 

Isatin F 312 405 buffer isatin 
157, 
952 

2014 

Rhod-ONOO  F 500 558 HepG2, DILI 𝛼-ketoamide, mitochondrial 543 2017 

Naph-ONOO F 459 546 HepG2, DILI 𝛼-ketoamide 543 2017 

TP-KA F2P 430 560 HepG2, mouse, DILI 𝛼-ketoamide 960 2017 

PNCL CL - 525 RAW264.7 isatin 953 2018 

TPNIR-FP F2P 
570/

800 
630 H9c2, mouse 𝛼-ketoamide, mitochondrial 1750 2018 

BP-PN BL - 
500-
700 

MDA-MB-231, mouse 𝛼-ketoamide 1751 2018 

NIR-ONOO- F 660 703 HepG2, mouse, DILI 𝛼-ketoamide 1752 2019 

DCM-KA F 480 630 J774A.1 α-ketoamide 1753 2019 

Rd-PN2 F2P 
500/
820 

557 
RAW264.7, zebrafish, mouse, 
stroke imaging 

isatin 956 2020 

LSDQ-ONOO F 580 660 HepG2, mouse, DILI α-ketoamide 962 2020 

DHQ-Rd-PN F2P 
560/
820 

653 HeLa, zebrafish, mouse α-ketoamide 1754 2020 

DCI-NPG-

ONOO 
F 460 660 

HeLa, RAW264.7, zebrafish, 

mouse 
α-ketoamide 1755 2020 

TCFISA F 525 606 RAW264.7 𝛼-ketoamide 1756 2020 

IC-ONOO F 400 560 MCF-7, mouse 𝛼-ketoamide 1757 2020 

RF-IT-OC F 525 590 HepG2, mouse isatin 957 2022 

FC-ONOO F 405 490 
A549, mouse, sepsis induced lung 

injury 
𝛼-ketoamide 963 2022 

CMONOO1 F 380 488 RAW264.7, mouse 𝛼-ketoamide 1758 2022 

CMONOO2 F 400 510 RAW264.7, mouse 𝛼-ketoamide 1758 2022 

RFAc F 525 590 HepG2, RAW264.7, mouse, DFT 𝛼-ketoamide 1759 2022 

BDP-PN F 465 613 HepG2, mouse isatin 1887 2022 

HJ-ONOO-P3 F 582 719 PC12, BV-2, mouse isatin 958 2023 
Rd700-PN F 570 702 4T1, mouse isatin 959 2023 

DFlu F2P 
350/

760 
490 SH-SY5Y, zebrafish, PD 𝛼-ketoamide 964 2023 

        

Section 4 - C=C bond cleavage 

C11-BODIPY FR 488 
595/

520 
rat-1 fibroblasts C=C bond cleavage 1763 2002 

C-Py-1,2 F 365 493 RAW264.7 C=C bond cleavage 968  2014 

CHCN FR 475 
635/

515 
WI38 VA13, RAW264.7 C=C bond cleavage 969 2015 

PNCy3Cy5 FR 530 
660/

560 
RAW264.7 

C=C bond cleavage, 

mitochondrial 
1764 2016 

HMBT-Py FR 400 
645/
545 

A549, HeLa C=C bond cleavage 1765 2016 

F482 R 480 
606/
510 

RAW264.7, THP-1, mouse C=C bond cleavage 1766 2017 

Cy7-PEI-UCNP F 980 800 HeLa, mouse C=C bond cleavage 1767 2017 

Lyso-NA F 440 510 RAW264.7 C=C bond cleavage, lysosomal 970 2018 
N-CBT F 405 518 HeLa C=C bond cleavage 1768 2018 

Cy-Net2 FR 
710/ 

360 

742/

487 
HepG2, mouse 

C=C bond cleavage, 

mitochondrial 
1769 2018 

TP-1Bz FR2P 880 650 HepG2, RAW264.7 
C=C bond cleavage, dual with 

viscosity, mitochondrial 
1770 2018 

NP560 F 375 
583/
475 

EA.hy926 C=C bond cleavage 1771 2018 

rTPONOO-1 FR2P 
375/ 

800 

718/

535 

A549, RAW264.7, mouse, 

pulmonary fibrosis 

C=C bond cleavage, 

mitochondrial 
971 2019 

Mito-WQPhOH FR 540 
645/

575 
RAW264.7 

C=C bond cleavage, 

mitochondrial 
1045 2019 

Cy-SN F 630 650 RAW264.7  C=C bond cleavage 1772 2019 

Cy-NH2 FR 
680/ 

360 

708/

460 
HepG2, RAW264.7 

C=C bond cleavage, 

mitochondrial 
1773 2019 

TPE-COU F2P 
390/
780 

525 H9C2, estrogen protection C=C bond cleavage 1774 2019 
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BPVI FR 635 
702/
522 

A549 C=C bond cleavage 1775 2019 

CyCA 
FR2P 

 

640/

800 

660/

470 
HL-7702, mouse C=C bond cleavage 1776 2019 

SiRho-HD FRPA 635 
750/

680 
HK-2, mouse, AKI 

C=C bond cleavage, 

mitochondrial 
1777 2020 

Ratio-A FR 
480/
600  

700/
564  

RAW264.7, mouse, RA C=C bond cleavage 1778 2020 

Ratio-B FR 
680/

414 

808/

564 
buffer C=C bond cleavage 1778 2020 

DCCM FR 390 
535/

390 
HeLa  C=C bond cleavage 1779 2020 

LW-OTf F2P 720 466 HL7702, mouse, DILI C=C bond cleavage, dual with O2
− 301 2021 

BMP F2P 427 515 HeLa C=C bond cleavage, lysosomal 1780 2021 

BC-PN-2 FR 450 
630/

520 
HepG2, MCF-7 

C=C bond cleavage, 

mitochondrial 

1825, 

1826 
2021 

RN-NA F 420 
710/

525 
HepG2, zebrafish C=C bond cleavage, lysosomal 1783 2021 

NRF/Cy-O FR 365 
720/

462 
HepG2, mouse, DFT C=C bond cleavage 1784 2021 

DMANI FR 
346/

529 

444/

692 
HepG2 

C=C bond cleavage, 

mitochondrial 
1785 2021 

HD-BPin F 360 460 A549 
C=C bond cleavage, dual with 

H2O2 
515 2022 

TPER-ONOO F2P 
360/ 
800 

460 HL-7702 
C=C, endoplasmic reticulum 
targeted 

972 2022 

MG-ONOO FR 410 
650/
477 

HeLa, mouse, DILI C=C bond cleavage 973 2022 

TPPT F 488 670 RAW264.7, zebrafish, mouse 
C=C bond cleavage, 

mitochondrial 
1786 2022 

CQ F 590 505 HeLa, RAW264.7, mouse 
C=C bond cleavage, dual with 

viscosity 
1787 2022 

WND-1 FR 420 
634/
527 

HeLa, zebrafish 
C=C bond cleavage, endoplasmic 
reticulum targeted 

1788 2022 

NTG F 450 530 MCF-10A. HL-60, RAW264.7 C=C bond cleavage, logic gate 1789 2022 

MCSA F 488 635 
HeLa, RAW264.7, PC12, 

zebrafish 

C=C bond cleavage, 
Mitochondrial, endoplasmic 

reticulum targeted 

1790 2022 

MXMP FR 435 
530/
660 

HeLa 
C=C bond cleavage, 
mitochondrial 

1791 2022 

SX-1 F 360 456 HeLa  C=C bond cleavage 1792 2022 

COU-Mito F 450 500 HepG2 
C=C bond cleavage, dual with 
SO2 

1793 2022 

Mito-ONOO FR2P 
416/

810 

495/

621 
BV-2 C=C bond cleavage 1794 2022 

Lyso-Cy F 390 505 RAW264.7, mouse C=C bond cleavage 1795 2022 

SQDC F 630 685 HepG2 
C=C bond cleavage, 

mitochondrial 
1796 2023 

MITO-HC-TZ F 560 
620/

760 
HepG2 

C=C bond cleavage, 

mitochondrial 
1797 2023 

Mito-VO F 370 470 HeLa, HL-7702, mouse, DILI C=C bond cleavage 1798 2023 

B-Ch FR 
545/ 

425 

480/

580  
HeLa  C=C bond cleavage 1799 2023 

COUS FR 400 
723/
484 

HepG2 
C=C bond cleavage, 
mitochondrial 

1800 2023 

TR-ONOO F 390 490 HeLa C=C bond cleavage 1801 2023 

FLSP F 480 535 HepG2, zebrafish, mouse C=C bond cleavage, spiropyran 1802 2023 
HPDQ F 380 445 A549, mouse C=C bond cleavage 1803 2023 

ZQNQ F 425 548  
U87MG, A549, HeLa, HepG2, 

MCF-7, mouse 
C=C bond cleavage 1804 2023 

NFP-ONOO F 488 654 HK-2, mouse C=C bond cleavage 1805 2023 

DCO-POT F 500 670 SH-SY4Y C=C bond cleavage 1806 2023 

DCVP-NO2 FR 510 
538/
640  

HepG2 C=C bond cleavage 1807 2023 

Ru-Mit F 332 610 HepG2 C=C cleavage, Ruthenium 1808 2023 

        
Section 5 - Benzopyrylium ring opening 

MITO-CC R2P 
420/ 

800 

651/

473 
HepG2, RAW264.7, mouse 

benzopyrylium, 

mitochondrial 
974 2017 



130 
 

Gal-NIR FR 440 
720/
500 

HepG2, mouse, DILI benzopyrylium 975 2019 

BCB & BCN F 400 520 PC-12, HepG2, mouse C-C cleavage 1809 2019 

RTFP FR 405 
703/
469 

HepG2, L02, mouse, DILI benzopyrylium 977 2020 

AHMC FR 405 
626/

462 
RAW264.7, L02, DILI benzopyrylium mitochondrial 976 2021 

MULTI-ONOO FR 410 

468/

526/

706 

RAW264.7, rat, arthritis benzopyrylium  979 2022 

CSU-FT F 405 

468/

573/

706 

RAW264.7, mouse, arthritis benzopyrylium 980 2022 

Mito-CM-CD FR 410 
480/

640 
HepG2 

benzopyrylium, dual with GSH, 

mitochondrial 
1810 2022 

NIR-GYf F 489 577 HepG2, A375 benzopyrylium 1811 2022 
TPE-ONOO F 400 500 MCF-7 benzopyrylium 1812 2022 

5 F 
560-

584 

575-

628 
HepG2, mouse, DILI benzopyrylium, mitochondrial 978 2023 

        

Section 6 - Aryl boronate oxidation  

CBE/CBA F 332 470 buffer 
boronic acid oxidation, boronate 
oxidation  

983 2010 

P2 FR 440 
580/

480 
RAW264.7 

boronate oxidation, 

aminocoumarin formation 
986 2014 

1 F 430 540 J774A.1 boronate oxidation 1813 2014 

1 F 436 486 RAW264.7 
boronate oxidation, 

aminocoumarin formation 
988 2015 

1 F 472 522 RAW264.7, Eq.hy926 
boronate oxidation, 

aminocoumarin formation 
987  2016 

Fl-B F 492 515 J774A.1 boronate oxidation 1814 2016 
3 F 400 460 HeLa, RAW264.7 boronate oxidation 1815 2016 

FBBE F 495 518 EAhy.926 boronate oxidation 1816 2016 

4-MBH F 322 450 RAW264.7, zebrafish boronate oxidation 1817 2017 
TCFB1 F 560 606 RAW264.7, HepG2, A549, HeLa boronate oxidation, mitochondrial 1818 2017 

        

TCFB2 F 560 606 RAW264.7, HepG2, A549, HeLa boronate oxidation, mitochondrial 1818 2017 

KB7 F 480 610 HepG2 boronic acid oxidation 1819 2017 

GSH-PF3 F 488 
530-

590 
RAW264.7 boronate oxidation  991 2018 

ABT FR 317 
405/

483 
buffer boronate oxidation 1820 2018 

3-HF-OMe FR 365 
425/
530 

transgenic mice studies boronate oxidation 1821 2018 

Py-PhB FR 354 
430/

598  
MCF-7, DFT boronate oxidation 1822 2018 

1 F2P 
450/

500  
550 

SH-SY5Y, NMDA receptors 

neuronal cells 
boronic acid oxidation  1823 2018 

PR1 F 550 590 J774.2 boronate oxidation 1824 2018 
Probe N F 405 452 HeLa  boronate oxidation 1825 2018 

ABAH-LW FR 370 
405/
481 

HeLa 
boronate oxidation, endoplasmic 
reticulum  

1826–

1828 
2018 

RFR-PN FR 480 
590/

630 
RAW264.7  boronate oxidation 1829 2018 

CC-RNS  F 345 460 HeLa boronate oxidation, drug release 992 2019 

CI-RNS F 345 460 HeLa boronate oxidation, drug release 992 2019 

IRBTP-B F 808 950 CaOV3, mouse, DILI boronate oxidation 993 2019 

BTPB FR 296 
372/

462 
HepG2, DILI boronic acid oxidation  994 2019 

ONP F 665 692 SH-SY5Y, mouse, epilepsy boronate oxidation 995 2019 
KC-ONOO F 460 530 HepG2, mouse, DILI boronate oxidation 996 2019 

AzuFLuor 483-

Bpin 
F2P 800 483 RAW264.7 boronate oxidation 1830 2019 

RTP-PN FR2P 
415/ 

800 

450/

543 
RAW264.7   boronate oxidation 1831 2019 

DCM-Bpin F 560 667 HeLa  boronate oxidation 1832 2019 

CPD-ratio FR 450 
565/

500 
RAW264.7  boronate oxidation 1833 2019 

NIR-PN F 510 660 RAW264.7, zebrafish boronate oxidation 1834 2019 
CyBA PA 700 PA RAW264.7 boronate oxidation 1835 2019 
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MBTBE F 520 569 HeLa boronate oxidation, mitochondrial 984 2020 
VO F 420 635  HeLa, zebrafish, mouse, DILI boronic acid oxidation  997 2020 

FAM F 587 625 RAW264.7 boronate oxidation, mitochondrial 1836 2020 

LG-3 F 395 520 RAW264.7, AND-logic gate boronate oxidation 1837 2020 

BHBT F 380 494 HepG2 
boronate oxidation, endoplasmic 

reticulum  
1838 2020 

ACDM-BE F 540 604 CHO-K1, zebrafish boronate oxidation 1839 2020 

CM, CL, CE FR 340 
400/
450 

RAW264.7 

boronate oxidation oxidation, 

mitochondrial, lysosomal, 

endoplasmic reticulum  

1840 2020 

BTCBE F 450 522 HeLa boronate oxidation 1841 2020 

QPP1 F 560 625 RAW264.7  boronate oxidation 1842 2020 

QM-ONOO F 430 620 EC1 boronate oxidation 1843 2020 

Eu.1 L 321 
550-

720 
HeLa boronic acid oxidation  1844 2020 

mitoProbe-PN F 520 660 
RAW264.7, HeLa, MCF-7, 
HepG2 

boronate oxidation, mitochondrial 1845 2020 

BN-PN F2P 750 508 HeLa, RAW264.7, mouse, DILI boronate oxidation 998 2021 

DPP-DH-P FR 465 
645/

538 
HepG2, mouse, DILI boronate oxidation 999 2021 

DPP-DEG-P FR 465 
645/

538 
buffer boronate oxidation 999 2021 

DDM-R F 580 770 HepG2, mouse, DILI boronate oxidation 1000 2021 

ADB F 362 
440/

520 
RAW264.7 boronate oxidation 1846 2021 

ANB F 362 
440/

520 
buffer boronate oxidation 1846 2021 

L F 421 500 HepG2, HL772 boronate oxidation 1847 2021 

DDAO-PN F 600 657 RAW264.7, mouse boronate oxidation 1848 2021 

NAB-BE F2P 
340/
745 

512 RAW264.7  boronate oxidation 1849 2021 

PN-1 F 440 540 
A549, HeLa, HepG2, RAW264.7, 

HEK293 
boronate oxidation 1850 2021 

TPE-BOH FR 400 
625/

510 
HeLa, RAW264.7 

boronic acid oxidation, 

mitochondrial 
1851 2021 

NIR-dCl F 470 680 RAW264.7  boronate oxidation 1852 2021 
BHID-Bpin F2P 750 515 HeLa, rat boronate oxidation 1853 2021 

BC-BE F 442 488 HT29 boronate oxidation 1854 2021 

PE-XY F 478 580 HeLa, C. elegans boronate oxidation 1855 2021 
TPE-DMAB F 365 530 RAW264.7, mouse boronic acid oxidation  1856 2021 

DPTS-ONOO F 436 505 RAW264.7 boronate oxidation 1857 2021 

CBRV F 460 710 HeLa 
boronate oxidation, dual with 
viscosity 

1858 2021 

TCF-BA F 587 607 Buffer boronate oxidation 1859 2017 

TCF-BA-2 F 629 650 Buffer boronate oxidation 1859 2017 

CI-Bz-BE F2P 
355/

735 
520 RAW264.7 boronate oxidation 460 2022 

DPPO-PN F 490 632 HeLa, mouse, arthritis boronate oxidation 1001 2022 

K-ONOO FR 302 
570/

678 
HeLa, zebrafish boronate oxidation 1002 2022 

BS2 F 405 430 buffer boronate oxidation 1003 2022 

JQ-2 FR 461 
569/

657 
HeLa, HepG2, zebrafish, DILI boronate oxidation 1004 2022 

JQ-2 FR 461 
569/
657 

HeLa, RAW264.7, HepG2, 
zebrafish 

boronate oxidation 1004 2022 

PTZ-H FR 400 
640/

450 
RAW264.7, zebrafish boronate oxidation 1350 2022 

Gol-ONOO- F 420 600 HeLa, GT boronate oxidation 1860 2022 

p-Borate F 
470- 

572 
590 HepG2, RAW264.7, mouse boronate oxidation 1861 2022 

HND-ONOO F 450 590 HeLa, RAW264.7  boronate oxidation 1862 2022 

HDBT-ONOO F2P 
450/ 

880 
558 

HeLa, HepG2, RAW264.7, 

zebrafish 
boronate oxidation, mitochondrial 1863 2022 

BTMO-PN F 365 477 HeLa, mouse boronate oxidation 1864 2022 

NAB FR2P 
450/ 

820 

458/

558 
HeLa, HepG2, mouse 

boronate oxidation endoplasmic 

reticulum 
1865 2022 

DCI-OV F 580 690 Beas-2B, A549, HepG2, 
boronate oxidation, dual with 

viscosity 
1866 2022 

YXP F 397 535 BEAS, mouse boronate oxidation 1867 2022 
YV F 460 533 HeLa, zebrafish boronate oxidation 1868 2022 
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Rhod-CN-B F 500 573 HL-7702, mouse boronate oxidation 1869 2022 

PV F 447  507 HeLa, RAW264.7 
boronic acid oxidation, 

mitochondrial 
1870 2022 

ATP-LW F 488  568 HL-7702 boronate oxidation, dual with ATP 1871 2022 
BDP-Py+ F 465 613 HepG2, mouse boronate oxidation 1885 2022 

MC-V-P F 633 
670-

800 
HepG2 boronate oxidation 1872 2022 

Coumn-pHP-

ONOO- 
F 506 650 HeLa boronate oxidation 1873 2022 

RhNp-ClO-

ONOO 
F 483 518 RAW264.7, mouse 

boronic acid oxidation, dual with 
HOCl 

1874 2022 

ATV-PPB F 488 
600-

700 
HepG2 boronate oxidation 1875 2022 

BICBzBF F 549 576 HeLa, RAW264.7, zebrafish boronate oxidation, mitochondrial 1876 2022 

RHOD-DCM-B FR 480 
670/

570 

HepG2, mouse, DILI, design 

strategy 

boronate oxidation oxidation, 

spirolactam 
1005 2022 

CNN2-B F 440 517 RAW264.7, A549, mouse 
boronate oxidation, 

aminocoumarin, mitochondrial 
989 2023 

MBDP-Py+ F 
540-
580 

590-
670 

HepG2, mouse, DILI boronate oxidation 1006 2023 

TL F 
550-

630 
667 HeLa, HUVEC boronate oxidation 1877 2023 

Lyso-ONOO F 450 555 L02, LX-2, mouse boronate oxidation, lysosomal 1878 2023 

Cy-OH-ONOO F 640 710 RAW264.7, zebrafish, mouse boronate oxidation 1879 2023 

HDM-Cl-PN FR 455 
590/
676 

HeLa, RAW264.7, mouse boronate oxidation 1880 2023 

3a, 3b F 365 510 HepG2 boronate oxidation 1881 2023 

TCM-1-2 F 560 625 HeLa, RAW264.7 boronate oxidation 1882 2023 

BTNB FR 442 
530/

605 
RAW264.7, zebrafish boronate oxidation, mitochondrial 1883 2023 

NAF-BN F 600 695 HL-7702, Drosophila boronate oxidation 1884 2023 
BDP-ENE-S-Py+ F 630 694 HepG2, mouse boronate oxidation 1885 2023 

NOSTracker F 645 696 U251, U87-MG, HT22 boronate oxidation 1886 2023 

GYP FR 345 
655/
538 

PC12, mouse boronate oxidation 1887 2023 

NN1 F 475 658 RAW264.7, mouse boronic acid oxidation  1888 2023 

W-2a FR 
426/
564 

 

563/
684 

 

EMT6, mouse boronate oxidation, dual with Hg 1889 2023 

DPB F 570 658 HeLa, MPC5, RAW264.7 
boronate oxidation, 
mitochondrial, dual with polarity 

and viscosity 

1890 2023 

P-1 F 670 570 HeLa, SMMC-7721, zebrafish 
boronate oxidation, dual with 
viscosity 

1891 2023 

TPPB F 365 655 HeLa boronate oxidation 1892 2023 

B-PD CL - 
500-
570 

RAW264.7, mouse boronate oxidation  1893 2023 

        

Section 7 - Diphenylphosphinate 

DCPO-DP F 556 690 HeLa diphenylphosphinate  1008 2016 

NOF2 F 670 742 RAW264.7, mouse diphenylphosphinate  1017 2018 

DCIPP F 527 665 HeLa, zebrafish diphenylphosphinate  1011 2019 
HPP F 403 520 HeLa  diphenylphosphinate  1894 2019 

AN-DP F 514 670 HepG2, colorimetric diphenylphosphinate  1012 2020 

CPC FR 503 
643/
538 

HepG2 
diphenylphosphinate, 
mitochondrial 

1013 2020 

NR-ONOO F 560 678 HeLa  diphenylphosphinate  1014 2020 

NIR-HO F 550 680 MCF-7, mouse 
diphenylphosphinate, dual with 
Hg 

1018 2020 

RFP F 525 590 RAW264.7, mouse diphenylphosphinate  1009 2021 

BTCV-PN FR 440 
632/
525 

HeLa, mouse 
diphenylphosphinate, 
aminocoumarin 

1010 2021 

ANI-DP FR 426 
535/

628 
HeLa, zebrafish 

diphenylphosphinate, 

mitochondrial 
1015 2021 

DCM-ONOO F2P 
520/

820 
685 HT22, RAW264.7, mouse diphenylphosphinate  1895 2021 

BDPP F 465 613 HepG2, mouse diphenylphosphinate 1761 2022 
BS1 F 405 430 HepG2, DILI diphenylphosphinate 1003 2022 

JQ-3 F 488 557 HeLa, HepG2, zebrafish, DILI diphenylphosphinate  1016 2022 
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GXY-ADP-2 FR 560 
739/
484/

583 

HepG2  diphenylphosphinate oxidation 1896 2022 

MQA-P F 405 645  HeLa, mouse 
diphenylphosphinate, 
mitochondrial 

1019 2023 

XND-1 F 
370 

 

589 

 
HeLa, zebrafish 

diphenylphosphinate, dual with 

viscosity, mitochondrial 
1020 2023 

QCy7-DP F 580 710 HepG2, mouse, DILI diphenylphosphinate  1021 2023 

NOP F 560 656 HepG2, mouse, DILI diphenylphosphinate  1022 2023 

XPC F 550 750 HeLa diphenylphosphinate  1897 2023 
        

Section 8 - Aryl chalcogenides 

Cy-PSe F 758 775 RAW 264.7 
selenide oxidation, reversible with 
GSH 

1024 2011 

BzSe-Cy F 770 800 RAW 264.7 selenide oxidation, redox cycles 1029  2011 

BOD-Se FR 594 
567/
680  

RAW264.7 diarylselenide oxidation 1030 2013 

Cy-NTe F 793 820 RAW264.7, mice organotellurium oxidation 1898 2013 

BDP-NGM F 502 512 HeLa, RAW264.7 selenide oxidation 1026 2017 

TP-Se F2P 
430/ 

865 
565 HeLa selenide oxidation, mitochondrial 1031 2017 

NMOF FR 365 595  HeLa  sulfide oxidation 1899 2018 

3a FR 370 
630/

480 
MCF-7, EC1 sulfide oxidation 1027 2020 

CDMS FR 500 
662/
548 

RAW264.7, mouse sulfide oxidation 1028 2021 

NA-ONOO F 365 
500-

570 
HeLa, zebrafish thiocarbonate oxidation 1900 2021 

        

        

Section 9 - p-Phenols and p-aminophenols 

APF F 490 515 neutrophils O-dearylation 607 2003 

HPF F 490 515 neutrophils O-dearylation 607 2003 

Ds-DAB F 350 505 RAW264.7 aminophenol oxidation 1901  2013 

HKGreen-4 F2P 
517/ 

730 
535 RAW264.7 N-dearylation, p-phenol 1035 2014 

NP3 FP 

375/ 

760-

820 

470 EA.hy926  N-dearylation, p-phenol 1036 2015 

1 F 440 545 RAW264.7 
N-dearylation, p-aminophenol, 
mitochondrial 

1040 2015 

HKYellow F 545 570 SH-SY5Y, mouse liver N-dearylation, p-phenol 1902  2016 

BHAni F 519 530 RAW264.7 N-dearylation, p-phenol 1903 2016 

probe F2P 
405/ 

750 
501 RAW264.7 N-dearylation, p-phenol 1904  2017 

NP F 445 545 RAW264.7 
N-dearylation, p-phenol, 
mitochondrial 

1905 2017 

ASiR-P F2P 
460/ 

750 
610 HepG2. mouse 

N-dearylation, p-phenol, 

lysosomal 
1042 2018 

3 F 526 538 RAW264.7 
N-dearylation, p-phenol, 

endoplasmic reticulum 
1043 2018 

TPHQ F2P 
450/
800 

550 RAW 264.7 O-dearylation, p-phenol,  1906 2018 

PX-1 F2P 
405/ 

800 
553 SMMC-7721, mouse, DILI O-dearylation, p-phenol 1039 2019 

Gal-NHP F 473 555 HepG2, hepatoma-specific O-dearylation, p-phenol 1044 2019 

DCM-OH F 498 650 HepG2, mouse N-dearylation, p-phenol 1907 2019 

SiNH F 470 595 HeLa N-dearylation, p-phenol 1908 2019 

FNO2 F 500 660 MCF-7, mouse 
N-dearylation, time-resolved 

photoluminescence 
1909 2019 

Mito-PN F 456 530 MCF-7 
N-dearylation, dual with 
mitophagy, mitochondrial 

1052 2021 

NIR-PN2 F 
510 

 
670 PC12, drosophila, mouse, PD N-dearylation 1038 2020 

HCA-OH F 460 548 HepG2, C. elegans, DFT N-dearylation 1910 2020 

HCA-OH F 460 548 HepG2, C. elegans N-dearylation, p-phenol 1910 2020 

Ir-NIR F 405 702 RAW264.7, HepG2, L02, mouse N-dearylation, lysosomal 1911 2020 
PS3 F 480 525 THP-1, J774A.1 N-dearylation, p-phenol 1912 2020 

B545a,b F 475 545 EA.hy926, mouse N-dearylation, p-phenol 1913 2020 

NNP F 405 560 MX-2, mouse, DILI N-dearylation 1037 2021 
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ER-PN F2P 450 540 PC12, C. elegans 
N-dearylation, endoplasmic 
reticulum 

1914 2021 

PDBE-PN F 434 550 RAW264.7, zebrafish O-dearylation 1915 2021 

KNP-1 F 625 679 HK-2, RAW264.7, mouse N-dearylation 1916 2021 

NC-NP FR 405 
460/

530 
HepG2, HeLa  N-dearylation 1917 2022 

Rd-DPA3 F 564 698 PC12, mouse, AD N-dearylation 1918 2022 
PMFP F 435 553 HepG2, zebrafish O-dearylation, mitochondrial 1919 2022 

ER-ONOO F2P 488 557 H1299, HUVEC 
N-dearylation, endoplasmic 

reticulum 
1920 2023 

        

Section 10 - Hydrazide spirocycles 

RBPH F 560 580 MCF-7 hydrazide spirolactam 1046 2013 

RPTPP F 530 578 RAW264.7 
hydrazide spirolactam, 

mitochondrial 
1048 2017 

Probe 1 F 600 638 HeLa, RAW264.7 hydrazide spirolactam 1921 2017 

Mito-PN F 520 630 HeLa 
hydrazide spirolactam, 

mitochondrial 
1049 2018 

CC-ONOO F 640 698 RAW264.7 hydrazide spirolactam 1922 2018 

CS-ONOO FR 
400/ 

640 

515/

700 
HeLa, RAW264.7, mouse hydrazide spirolactam 1923 2019 

RDMH-PN F 520 585 RAW264.7, zebrafish  hydrazide spirolactam 1924 2019 
RHHP-PN F 570 585 RAW264.7, zebrafish hydrazide spirolactam 1925 2019 

Lyso-ONOO F 590 650 HeLa, RAW264.7, mouse hydrazide spirolactam 1926 2019 

Red-PN F 563 585 RAW 264.7, zebrafish hydrazide spirolactam 1053 2019 

NpRh-ONOO FR2P 
400/ 

780 

505/

578 
HeLa, zebrafish, rat hydrazide spirolactam, lysosomal 1927 2020 

KzRhONOO FR2P 
500/ 
760 

535/
585 

HeLa, zebrafish hydrazide spirolactam 1928 2020 

RHPN F 540 581 HepG2, RAW264.7  hydrazide spirolactam 1929 2020 

RH-PN FR 360 
454/
581 

RAW264.7, zebrafish hydrazide spirolactam 1930 2020 

P2 F2PR 
405/ 

800 

474/

574 
RAW264.7, mouse hydrazide spirolactam 1047 2021 

NIR-ONOO F2P 820 650 HeLa, RAW264.7, mouse, DILI hydrazide spirolactam 1050 2021 

ONOO-LysopH F 595 678 HeLa hydrazide spirolactam, lysosomal 1051 2021 

Probe-OH F 480 525 LM-3, mouse 
hydrazide spirolactam, dual with 

HOCl 
1432 2021 

RB-PN F 550 575 HESC-2, Cal-27, MC-3, HUVEC hydrazide spirolactam 1931 2021 

SZ F 540 570 HUEVC hydrazide spirolactam 1932 2021 

Ru-FL-ONOO FR 490 
635/

512 
HeLa, RAW264.7 hydrazide spirolactam, lysosomal 1054 2022 

CB2-H F 631 669 HeLa, zebrafish, DFT 
hydrazide spirolactam, dual with 
HOCl 

1713 2022 

F3ONOO F 660 785 HeLa, mouse hydrazide spirolactam 1933 2023 

PN F 680 732 buffer hydrazide spirolactam 1934 2023 
SPN F 680 732 HepG2, zebrafish, mouse hydrazide spirolactam 1934 2023 

        

Section 11 - N-oxidation 

PN600 FR 

355/ 

475/ 

576 

525/

585/

595 

SIN-1 
N-oxidation, aromatization, dual 
with HOCl 

1935 2012 

Mito-A2 F 485 517 HeLa, RAW264.7, EA.hy926 
N-oxidation/N-nitrosation, 

mitochondrial 
1041 2016 

Lyso-A2 F 485 517 HeLa, RAW264.7, EA.hy926 
N-oxidation/N-nitrosation, 

lysosomal 
1041 2016 

2H F 356 496 RAW264.7 dihydrorhodamine oxidation 1061 2017 

        
SiRTA F 650 680 EA.hy926, mouse N-oxidation 1055 2018 

HBTP F 590 600 RAW264.7, mouse 
N-oxidation, aromatization, dual 

with viscosity, lysosomal 
1062 2019 

ML-NAP-

DPPEA 
F 445 532 HeLa N-oxidation, lysosomal 1056 2019 

HSiO1-3 F 700 760 RAW264.7, mouse N-oxidation, aromatization 1063 2020 
L F 477 599 SMMC-7721 N-oxidation 1057 2020 

PR1/2-ONOO F 708 730 
RAW264.7, 293T, COS-7, A549, 

HeLa 

N-oxidation, aromatization, 

lysosomal 
1059 2022 

HSiBM3 F 680 702 HeLa, RAW264.7, mouse 
N-oxidation, aromatization, 

lysosomal 
1064 2023 
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Probe FR 380 
545/
435 

RAW264.7, zebrafish N-oxidation 1058 2023 

1 FR 360 
545/

485 
HeLa, zebrafish N-oxidation 1936 2023 

        

Section 12 - C=N bond cleavage 

BTP F 433 524 HeLa C=N bond cleavage 1066 2018 
1 F 440 480 RAW264.7  C=N bond cleavage 1937 2019 

Probe 1 F 405 504 HeLa, zebrafish C=N bond cleavage 1938 2021 

L-1 F 360 525 HeLa  
C=N bond cleavage, 
mitochondrial 

1069 2021 

RN F 488 571 HeLa  C=N bond cleavage 1939 2022 

DMX F 405 510 HeLa, zebrafish C=N bond cleavage 1940 2022 
BQ F 450 550 HeLa C=N bond cleavage 1068 2022 

        

Section 13 - Other triggers 

Folic acid F 380 460 HeLa not reported 1941 2007 
ROS/RNS Sensor F 620 655 mouse neutrophils arylamide cleavage 1071 2009 

ARS-NBA F 460 550 buffer de-dimerization 1942 2015 

[Eu(HDPH)3(DP

BT)] 
L 

335/ 

400 
610 HepG2 

-diketonate oxidation, Eu3+ 

release 
1943 2017 

Eu(hdph)3(tpy) L 337 607 HepG2  
-diketonate oxidation, Eu3+ 

release 
1944 2018 

FPP-Blue F 375 447 HepG2 arylformamide 1070 2019 
FPP-Green F 385 506 HepG2 arylformamide 1070 2019 

FPP-Yellow F 435 560 HepG2, A549, mouse ex vivo arylformamide 1070 2019 

FPP-Red F 530 620 HepG2 arylformamide 1070 2019 

HOPy-PhOSi FR 381 
415/

594 
RAW264.7 silyl-ether bond cleavage 1945 2019 

SiONNOH FR 365 
520/
595/ 

540 

MCF-7 
deprotonation, silyl deprotection, 

multicolor 
1081 2020 

Ac-BODIPY F 499 504 HeLa arylester cleavage 1072 2020 

GCR1 FCL 535 700 HK2, mouse 
aryltriflate and arylformate 

cleavage, dual with superoxide 
312 2020 

GCR2 FCL 535 700 HK2, mouse 
aryltriflate and arylformate 

cleavage, dual with superoxide 
312 2020 

Probe 1 F 405 490 RAW264.7, design strategy diketone 1075 2021 

BTNPO F2P 340 427 PC12, AD oxindole oxidation 1077 2021 
LAP F 561 628 SMMC-7721, RAW264.7, DFT nitration 1946 2021 

Si-B1 FR 
360- 

460 

450/

525 
HeLa, RAW264.7, zebrafish siloxane 1947 2021 

Cy717 FR 550 
815/

650 
RAW264.7, mouse arylester cleavage 1073 2021 

Ir-diol F 405 704 HepG2, RAW264.7, mouse 
hydroquinone oxidation, Iridium, 

dual with GSH 
1948 2021 

NATP F2P 445 565 PC12, mouse, AD oxindole oxidation 1078 2022 
ON-RB F 405 672 RAW264.7, atherosclerosis  1,4-oxazepine 1083 2022 

BCN F 405 490 
HepG2, RAW264.7, zebrafish, 

mouse 
diketone 1076 2022 

PCPA F 445 645 HeLa phosphorothionate, mitochondrial 1949 2023 

TPA-F-NO2 F 454 640 RAW264.7 arylester 1074 2023 

HOPyNa-2-OH F 372 652 buffer deprotonation 1079 2023 
HOPyNa-6-OH F 372 652 MCF-7, RAW264.7 deprotonation 1079 2023 

a F = fluorescence, R = ratiometric, 2P = two-photon, L= luminescence, CL = chemiluminescence, BL = bioluminescence, PA = 

photoacoustic. b Wavelengths given in nanometers. 
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