

Transfer RNA and origins of RNA interference

- 1 Andrey Grigoriev^{1*}
- ¹Department of Biology, Center for Computational and Integrative Biology, Rutgers University,
- 3 Camden, New Jersey 08102, USA
- 4 * Correspondence:
- 5 Andrey Grigoriev
- 6 andrey.grigoriev@rutgers.edu
- 7 Keywords: tRNA, tRNA fragments, Argonaute, RNAi, RISC, microRNA

Introduction

8

- 9 Almost 30 years ago the first microRNA (miRNA) was detected (Lee et al., 1993), later put in
- mechanistical context by the discovery of the RNA interference (RNAi) and RNA-induced silencing
- 11 complex (RISC). miRNA is the variable RISC element (guide) that recognizes messenger RNA
- 12 (mRNA) targets in the RNAi process facilitated by Argonaute (Ago) proteins, the fixed key players
- in RISC. Alas, poetically sounding Argonautes were named not after the adventurers from Greek
- mythology but octopus-shaped leaves of an *Arabidopsis thaliana* mutant (Bohmert et al., 1998).
- 15 Production of miRNAs is performed by a sophisticated orchestra of players with even groovier
- names, like Drosha, Pasha or Dicer. While roles of miRNA in post-transcriptional regulation have
- been established, its evolution has been typically described as expansion of new miRNA genes from
- the existing ones, not their first appearance (Berezikov, 2011). The emergence of RNAi has been
- 19 attributed to its defense against pathogens, which involves other participants, e.g., double-stranded
- 20 RNA binding proteins (dsRBPs). But details of such emergence are lacking.
- 21 This is a short opinion piece, not a full review, so I apologetically skip some of these players and
- 22 hundreds of relevant miRNA/RNAi citations (and those for subsections below). The complexity of
- 23 the RISC is bewildering. Intricate steps of miRNA production in the nucleus are followed by unequal
- strand loading to Ago, and finally resulting in cytoplasmic events, sometimes involving "slashing" of
- 25 mRNA. All that (for simplicity, ignoring nuclear events upon Ago transport from cytoplasm) is based
- on weak and imperfect binding of short "seeds" (5'6-8 nucleotides in length in animals) to targets
- 27 and on weak outcomes of slight tuning of target translation. How can such weak binding be a driving
- 28 force for emergence and evolution of this complicated system and its parts, acting in concert in
- 29 different cellular compartments?
- 30 Plant RNAi requires full-length small RNA hybridization, significantly limiting the number of target
- 31 genes, yet the system appears even more complex (four Dicers, seven dsRBPs versus a single
- 32 Dicer/couple of dsRBPs in humans). Further, the miRNA generation machineries are not entirely
- homologous, mature miRNAs are produced and modified in the plant nucleus, but these processes are
- 34 divided between the nucleus and cytoplasm in animals. How would these different processes evolve
- in parallel with creating the elaborate and divergent Ago functionalities (four different Agos in
- humans, ten in A. thaliana, 26 in Caenorhabditis elegans), able to utilize these precisely cut miRNAs
- 37 for mRNA regulation? This scenario would require a small RNA already acting together with some
- 38 Ago prototypic protein. Compatible with this view, the last common ancestor of eukaryotes likely
- 39 appeared after the RNAi functional principles (and some components, except for miRNA) had been
- 40 invented (Cerutti and Casas-Mollano, 2006). And many prokaryotes do not have miRNAs but
- 41 possess Ago protein homologs.

42

Transfer RNAs and their fragments

- 43 Enter transfer RNAs (tRNAs), fundamental elements in mRNA translation. Each tRNA is a link of
- 44 informational (anticodon) and corresponding chemical (aminoacid) units, which jointly provide the
- basis of the central dogma. These are ancient molecules, potentially capable of performing primitive
- replication (Kühnlein et al., 2021) or aiding in it (Maizels and Weiner, 1994). While the genetic code
- 47 requires <64 anticodons for translation, tRNA genes are very numerous, with several hundred copies
- in human genome. From a regulation standpoint, these numbers far exceed potential codon
- 49 adaptation mechanisms. Perhaps fitting to this view, many tRNA genes have been described as
- inactive, raising questions about their actual role (Torres, 2019).

- 51 The early sequence/structure determination and clearly defined function of tRNAs established their
- 52 place in molecular biology textbooks, hardly revisited until the arrival of tRNA fragments (tRFs).
- 53 Hypotheses of further roles were occasionally entertained, based on additional function observed,
- 54 e.g., in viral replication, etc. (see also a review (Avcilar-Kucukgoze and Kashina, 2020) in this article
- 55 collection for more details on these roles). However, an avalanche of data from small RNA
- 56 sequencing experiments have challenged such perceptions, revealing numerous and ubiquitous tRFs
- 57 in a multitude of sequenced samples. These fragments, detected in datasets produced to study
- 58 miRNA, have been mostly dismissed as noise. It took >10 years to get acceptance even after detailed
- 59 studies (Cole et al., 2009; Lee et al., 2009; Haussecker et al., 2010; Ivanov et al., 2011; Gebetsberger
- 60 et al., 2012), even though tRNA breakage products were detected in urine of cancer patients much
- earlier (Speer et al., 1979). The finding of Ago proteins loaded with tRFs, in addition to their cargo of 61
- 62 miRNAs, have prompted speculations about similar functionality of tRFs and search for their targets
- 63 (Table 1).
- 64 By now, tRFs have been observed across all domains of life. There are multiple databases, containing
- different tRFs ever identified. For example, >28,000 tRFs are listed in MINTbase (Pliatsika et al., 65
- 66 2016), although the exact roles of most tRFs remain largely unknown, and only a dozen have been
- assigned a somewhat specific function. Yet, during the short period since their acceptance as bona 67
- 68 fide cellular products and not sequencing noise, tRFs have provided several evolutionary surprises,
- 69 exemplifying their regulatory effects not only within an organism but across time and space barriers.
- 70 Time: tRFs have been described as leading to metabolic disorders in the progeny of male mice on
- 71 high protein or high fat diet (Chen et al., 2016; Sharma et al., 2016). This is an example of a non-
- 72 Darwinian short-term trait propagation (to avoid the term "inheritance") via incorporating tRFs into
- 73 sperm. A bit like sending into the nearest future an information packet with father's current
- 74 environmental conditions. Did such signaling originate to get progeny better prepared for abundant
- 75 food?

90

- 76 Space: a Pseudomonas aeruginosa vesicle-delivered tRF has been reported to affect the host immune
- 77 response (Koeppen et al., 2016), while Trypanosoma cruzi tRFs – as contributing to susceptibility to
- 78 infection of mammalian cells (Garcia-Silva et al., 2014a). Crossing species and kingdom barriers
- 79 expands the idea of small RNA signals, e.g., the loading of tRFs into extracellular vesicles for likely
- 80 cell-to-cell communication, such as T-cell de/activation (Chiou et al., 2018).
- 81 If regulation based on the weak binding of short RNAs to their targets is an ancient mechanism, we
- should see many more examples of intra- and interorganismal signals, exploiting this common 82
- principle. Notably, similar effects were reported in the classical RNAi papers on C. elegans. Progeny 83
- 84 produced from the eggs of nematodes injected with dsRNAs showed interference phenotypes (Fire et
- al., 1998), while long dsRNA expressed in bacteria induced repression of genes with complementary 85
- sequences in worms fed with such bacteria (Timmons and Fire, 1998). Could these roles originate 86
- from tRFs (which apparently continue performing them, too)? If the tRF-driven regulation had led to 87
- the emergence of Ago functionality followed by the invention of RNAi, then one could imagine how 88
- 89 divergent parts of plant and animal miRNA production arose based on this early mechanism.

Turning a weak interaction into a strong selective force

- 91 The classical role of tRNAs co-exists with that of tRFs. What factors determine the fate of a given
- 92 tRNA? And how does this relate to the origin of miRNA/RNAi?

- 93 A look at the evolutionary distant Archaea reveals some unusual but frequent tRNAs, potentially
- 94 very relevant for dissecting the tRF function. These carry one or more introns, with the genomic
- order of tRNA parts occasionally permuted (Soma et al., 2007). Strikingly, units corresponding to
- 96 tRNA exons sometimes also form 2-3 separate genes, as in the hyperthermophilic Archaea
- 97 Nanoarchaeum equitans (Randau et al., 2005) or Caldivirga maquilingensis (Fujishima et al., 2009).
- 98 In protein-coding genes, exon borders are correlated with domain borders (Liu and Grigoriev, 2004),
- 99 indicating how introns separate functional and evolutionarily mobile protein parts (Liu et al., 2005).
- This principle may also exist in tRNAs, although the introns were hypothesized to be mobile there
- 101 (Fujishima et al., 2010). But what about the multi-gene tRNAs above? These unusual tRNAs may
- indicate separate functional roles of their parts, in addition to being involved in forming a whole
- 103 tRNA from pieces. The split genes have been discussed in the context of tRNA origin (Di Giulio,
- 2008; Kanai, 2015). However, they also may represent traces/features of early tRFs. It would be
- interesting to check whether such exon units correspond to functional tRFs in these archaeal species.
- Notably, a map of intron insertion sites (Sugahara et al., 2009) shows they occur nearly everywhere
- between positions 12 and 60 on the canonical cloverleaf structure (encompassing the D- and T-
- loops). The majority of tRFs stored in the databases have ends in these positions does this reflect
- sequencing noise, diversity of tRFs or potential ancient links with tRF production?
- Such arrangements of tRNA exons quite possibly indicate additional functions of these exons,
- especially when they separate so much as to form individual sub-tRNA genes. And not just of the
- exons but of broken/digested tRNA pieces. Or, at least, this may be how all this had started, with
- random fragments present in the right place at the right time.
- Role of tRNAs in translation makes their fragments ideal candidates for regulating this fundamental
- process. Proximity (essentially a macro-term for elevated concentration) is a very significant factor in
- evolution. For example, several ribosomes translating the same mRNA in bacteria produce identical
- proteins. These proteins are always formed close to each other, hence any mutation that carried even
- a small fitness advantage from enhancing their homotypic interactions would likely be selected for
- (compared to proteins separated in space and time). This had possibly led to the formation of
- homodimers and higher-order homo-multimers seen in a very large number of modern proteins
- 121 (Grigoriev, 2001).
- Similarly, a constant presence of fragments of tRNA right next to translated mRNAs could turn any
- fitness advantage from interactions between these molecules into a strong evolutionary force, despite
- interactions themselves being relatively weak. A similar force could then further select RNA-binding
- proteins for Ago-like functionality of enhancing the tRF-mRNA recognition to form a first prototypic
- RISC. The theoretical multitude of possible primordial tRF-target interactions suggests that many of
- them probably had not followed the rules that would later involve Ago. And many still do not:
- LeuCAG tRF seems to unwind the helices of a target mRNA to enable its translation (Kim et al.,
- 129 2017) in Ago-less manner. Is this process catalyzed by another protein? Possibly. The very existence
- of these interactions could give rise to positive selection of other proteins for such catalysts (as with
- 131 Ago, enabling more targeted tRF binding).
- After a rudimentary RISC with this Ago-like functionality on tRFs was invented, a simple change
- would allow it to accept other small RNAs. After all, current Agos are very promiscuous RNA
- binders, "inviting" other short RNAs. While tRNA have constraints imposed on the sequence by their
- structure and essential function, candidate miRNAs may have seemingly any sequence, as long as it
- produces a recognizable hairpin for Drosha, Dicer & Co.

154

137 Ubiquitous small hairpins in the transcribed parts of a genome (from existing introns or appearing de 138 novo), appropriately cut to provide a short RNA, could greatly enrich the repertoire of regulatory 139 guides (and targets they regulate). That would drive the birth to thousands of miRNAs (and notably, 140 some of miRNAs have recently been recognized as tRFs). Given the reports on likely roles of tRFs in regulating some of the more recent inventions in organism capabilities, such as neuronal or 141 142 immunological, tRFs may be outnumbered by relatively unconstrained miRNAs but unlikely to be 143 replaced. 144 Finally, I briefly revisit the emergence of RNAi for anti-pathogen defense. An attractive explanation for the RNAi existence, such defense is unlikely to appear on its own, without a slashing agent, like 145 Ago. How would a short RNA matching an arbitrary pathogen sequence "defend" against it without 146 147 this protein? Perhaps by interfering with pathogen's translation? This would again suggest that tRNA breakage products, abundant near translating ribosomes, might have been potential drivers of such 148 149 interference. Then the defensive functionality of RNAi and its ability to regulate own mRNAs could 150 have emerged almost simultaneously, following the same principles, and there is no need to develop 151 defense as a predecessor of regulation. 152 In summary, while divergent modes of action seem to exist for tRFs, the outlined evolutionary path 153 for an emergence of Argonaute-mediated gene regulation appears plausible.

155	Conflict of Interest
156 157	The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
158	Author Contributions
159	AG was responsible for all aspects of the study.
160	Funding
161	The work in AG's lab is supported by NIH R15CA220059 and NSF MCB-2027611 to AG.
162	
163	

164

165

Animals

(Cole et al., 2009; Haussecker et al., 2010; Burroughs et al., 2011; Li et al., 2012; Maute et al., 2013; Nie et al., 2013; Kumar et al., 2014; Karaiskos et al., 2015; Telonis et al., 2015; Hasler et al., 2016; Kuscu et al., 2018; Guan et al., 2020)

Plants

(Loss-Morais et al., 2013; Cognat et al., 2017; Martinez et al., 2017)

Prokaryotes and unicellular eukaryotes

(Couvillion et al., 2010; Olovnikov et al., 2013; Garcia-Silva et al., 2014b)

166

167

168

Table 1. Representative studies on detection and analysis of Argonaute-loaded tRFs in different organisms.

169

170 References

- 171 Avcilar-Kucukgoze, I., and Kashina, A. (2020). Hijacking tRNAs From Translation: Regulatory
- Functions of tRNAs in Mammalian Cell Physiology. Frontiers in Molecular Biosciences
- 7(388). doi: 10.3389/fmolb.2020.610617.
- Berezikov, E. (2011). Evolution of microRNA diversity and regulation in animals. *Nature Reviews Genetics* 12(12), 846-860.
- Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M., and Benning, C. (1998). AGO1 defines a novel locus of Arabidopsis controlling leaf development. *The EMBO journal* 17(1),
- 178 170-180.
- Burroughs, A.M., Ando, Y., de Hoon, M.J., Tomaru, Y., Suzuki, H., Hayashizaki, Y., et al. (2011).
- Deep-sequencing of human Argonaute-associated small RNAs provides insight into miRNA
- sorting and reveals Argonaute association with RNA fragments of diverse origin. RNA Biol
- 182 8(1), 158-177. doi: 10.4161/rna.8.1.14300.
- 183 Cerutti, H., and Casas-Mollano, J.A. (2006). On the origin and functions of RNA-mediated silencing: 184 from protists to man. *Current genetics* 50(2), 81-99.
- Chen, Q., Yan, M., Cao, Z., Li, X., Zhang, Y., Shi, J., et al. (2016). Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. *Science* 351(6271), 397-400. doi: 10.1126/science.aad7977.
- 188 Chiou, N.-T., Kageyama, R., and Ansel, K.M. (2018). Selective export into extracellular vesicles and function of tRNA fragments during T cell activation. *Cell reports* 25(12), 3356-3370. e3354.
- 190 Cognat, V., Morelle, G., Megel, C., Lalande, S., Molinier, J., Vincent, T., et al. (2017). The nuclear 191 and organellar tRNA-derived RNA fragment population in Arabidopsis thaliana is highly 192 dynamic. *Nucleic acids research* 45(6), 3460-3472.
- 193 Cole, C., Sobala, A., Lu, C., Thatcher, S.R., Bowman, A., Brown, J.W., et al. (2009). Filtering of 194 deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived 195 from tRNAs. *RNA* 15(12), 2147-2160. doi: 10.1261/rna.1738409.
- 196 Couvillion, M.T., Sachidanandam, R., and Collins, K. (2010). A growth-essential Tetrahymena Piwi 197 protein carries tRNA fragment cargo. *Genes & development* 24(24), 2742-2747.
- Di Giulio, M. (2008). Permuted tRNA genes of Cyanidioschyzon merolae, the origin of the tRNA molecule and the root of the Eukarya domain. *Journal of theoretical biology* 253(3), 587-592.
- Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. *nature* 391(6669), 806-811.
- Fujishima, K., Sugahara, J., Kikuta, K., Hirano, R., Sato, A., Tomita, M., et al. (2009). Tri-split tRNA is a transfer RNA made from 3 transcripts that provides insight into the evolution of fragmented tRNAs in archaea. *Proceedings of the National Academy of Sciences* 106(8), 2683-2687.
- Fujishima, K., Sugahara, J., Tomita, M., and Kanai, A. (2010). Large-scale tRNA intron transposition in the archaeal order Thermoproteales represents a novel mechanism of intron gain.

 Molecular biology and evolution 27(10), 2233-2243.
- Garcia-Silva, M.R., das Neves, R.F.C., Cabrera-Cabrera, F., Sanguinetti, J., Medeiros, L.C., Robello,
 C., et al. (2014a). Extracellular vesicles shed by Trypanosoma cruzi are linked to small RNA

- pathways, life cycle regulation, and susceptibility to infection of mammalian cells.
- 213 *Parasitology research* 113(1), 285-304.
- Garcia-Silva, M.R., Sanguinetti, J., Cabrera-Cabrera, F., Franzén, O., and Cayota, A. (2014b). A
- particular set of small non-coding RNAs is bound to the distinctive Argonaute protein of
- 216 Trypanosoma cruzi: insights from RNA-interference deficient organisms. Gene 538(2), 379-
- 217 384.
- Gebetsberger, J., Zywicki, M., Kunzi, A., and Polacek, N. (2012). tRNA-Derived Fragments Target
- the Ribosome and Function as Regulatory Non-Coding RNA in Haloferax volcanii. Archaea-
- 220 an International Microbiological Journal 2012. doi: Artn 260909
- 221 10.1155/2012/260909.
- 222 Grigoriev, A. (2001). A relationship between gene expression and protein interactions on the
- proteome scale: analysis of the bacteriophage T7 and the yeast Saccharomyces cerevisiae.
- 224 *Nucleic acids research* 29(17), 3513-3519.
- Guan, L., Karaiskos, S., and Grigoriev, A. (2020). Inferring targeting modes of Argonaute-loaded
- tRNA fragments. RNA Biol 17(8), 1070-1080. doi: 10.1080/15476286.2019.1676633.
- Hasler, D., Lehmann, G., Murakawa, Y., Klironomos, F., Jakob, L., Grasser, F.A., et al. (2016). The
- Lupus Autoantigen La Prevents Mis-channeling of tRNA Fragments into the Human
- 229 MicroRNA Pathway. *Mol Cell* 63(1), 110-124. doi: 10.1016/j.molcel.2016.05.026.
- Haussecker, D., Huang, Y., Lau, A., Parameswaran, P., Fire, A.Z., and Kay, M.A. (2010). Human
- 231 tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16(4), 673-695.
- doi: 10.1261/rna.2000810.
- Ivanov, P., Emara, M.M., Villen, J., Gygi, S.P., and Anderson, P. (2011). Angiogenin-induced tRNA
- fragments inhibit translation initiation. *Mol Cell* 43(4), 613-623. doi:
- 235 10.1016/j.molcel.2011.06.022.
- Kanai, A. (2015). Disrupted tRNA Genes and tRNA Fragments: A Perspective on tRNA Gene
- Evolution. *Life (Basel)* 5(1), 321-331. doi: 10.3390/life5010321.
- Karaiskos, S., Naqvi, A.S., Swanson, K.E., and Grigoriev, A. (2015). Age-driven modulation of
- 239 tRNA-derived fragments in Drosophila and their potential targets. *Biology Direct* 10(1), 1.
- 240 doi: ARTN 51
- 241 10.1186/s13062-015-0081-6.
- 242 Kim, H.K., Fuchs, G., Wang, S., Wei, W., Zhang, Y., Park, H., et al. (2017). A transfer-RNA-derived
- small RNA regulates ribosome biogenesis. *Nature* 552(7683), 57-62. doi:
- 244 10.1038/nature25005.
- Koeppen, K., Hampton, T.H., Jarek, M., Scharfe, M., Gerber, S.A., Mielcarz, D.W., et al. (2016). A
- 246 novel mechanism of host-pathogen interaction through sRNA in bacterial outer membrane
- 247 vesicles. *PLoS pathogens* 12(6), e1005672.
- Kühnlein, A., Lanzmich, S.A., and Braun, D. (2021). tRNA sequences can assemble into a replicator.
- 249 Elife 10, e63431.

- Kumar, P., Anaya, J., Mudunuri, S.B., and Dutta, A. (2014). Meta-analysis of tRNA derived RNA
- fragments reveals that they are evolutionarily conserved and associate with AGO proteins to
- recognize specific RNA targets. *Bmc Biology* 12(1), 78. doi: ARTN 78
- 253 10.1186/s12915-014-0078-0.
- Kuscu, C., Kumar, P., Kiran, M., Su, Z., Malik, A., and Dutta, A. (2018). tRNA fragments (tRFs)
- guide Ago to regulate gene expression post-transcriptionally in a Dicer-independent manner.
- 256 RNA 24(8), 1093-1105. doi: 10.1261/rna.066126.118.
- Lee, R.C., Feinbaum, R.L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes
- small RNAs with antisense complementarity to lin-14. *Cell* 75(5), 843-854. doi:
- 259 10.1016/0092-8674(93)90529-y.
- Lee, Y.S., Shibata, Y., Malhotra, A., and Dutta, A. (2009). A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). *Genes Dev* 23(22), 2639-2649. doi: 10.1101/gad.1837609.
- Li, Z., Ender, C., Meister, G., Moore, P.S., Chang, Y., and John, B. (2012). Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. *Nucleic acids research* 40(14), 6787-6799.
- Liu, M., and Grigoriev, A. (2004). Protein domains correlate strongly with exons in multiple eukaryotic genomes—evidence of exon shuffling? *Trends in Genetics* 20(9), 399-403.
- Liu, M., Walch, H., Wu, S., and Grigoriev, A. (2005). Significant expansion of exon-bordering protein domains during animal proteome evolution. *Nucleic acids research* 33(1), 95-105.
- Loss-Morais, G., Waterhouse, P.M., and Margis, R. (2013). Description of plant tRNA-derived RNA fragments (tRFs) associated with argonaute and identification of their putative targets. *Biology direct* 8(1), 1-5.
- Maizels, N., and Weiner, A.M. (1994). Phylogeny from function: evidence from the molecular fossil record that tRNA originated in replication, not translation. *Proceedings of the National Academy of Sciences* 91(15), 6729-6734.
- Martinez, G., Choudury, S.G., and Slotkin, R.K. (2017). tRNA-derived small RNAs target transposable element transcripts. *Nucleic acids research* 45(9), 5142-5152.
- Maute, R.L., Schneider, C., Sumazin, P., Holmes, A., Califano, A., Basso, K., et al. (2013). tRNAderived microRNA modulates proliferation and the DNA damage response and is downregulated in B cell lymphoma. *Proceedings of the National Academy of Sciences of the*
- 280 *United States of America* 110(4), 1404-1409. doi: 10.1073/pnas.1206761110.
- Nie, Z., Zhou, F., Li, D., Lv, Z., Chen, J., Liu, Y., et al. (2013). RIP-seq of BmAgo2-associated small RNAs reveal various types of small non-coding RNAs in the silkworm, Bombyx mori. *BMC* genomics 14(1), 1-15.
- Olovnikov, I., Chan, K., Sachidanandam, R., Newman, D.K., and Aravin, A.A. (2013). Bacterial argonaute samples the transcriptome to identify foreign DNA. *Mol Cell* 51(5), 594-605. doi: 10.1016/j.molcel.2013.08.014.
- Pliatsika, V., Loher, P., Telonis, A.G., and Rigoutsos, I. (2016). MINTbase: a framework for the interactive exploration of mitochondrial and nuclear tRNA fragments. *Bioinformatics* 32(16),
- 289 2481-2489. doi: 10.1093/bioinformatics/btw194.

311

- Randau, L., Munch, R., Hohn, M.J., Jahn, D., and Soll, D. (2005). Nanoarchaeum equitans creates functional tRNAs from separate genes for their 5 '- and 3 '-halves. *Nature* 433(7025), 537-541. doi: 10.1038/nature03233.
- Sharma, U., Conine, C.C., Shea, J.M., Boskovic, A., Derr, A.G., Bing, X.Y., et al. (2016). Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals.

 Science 351(6271), 391-396. doi: 10.1126/science.aad6780.
- Soma, A., Onodera, A., Sugahara, J., Kanai, A., Yachie, N., Tomita, M., et al. (2007). Permuted tRNA genes expressed via a circular RNA intermediate in Cyanidioschyzon merolae. *Science* 318(5849), 450-453.
- Speer, J., Gehrke, C.W., Kuo, K.C., Waalkes, T.P., and Borek, E. (1979). tRNA breakdown products as markers for cancer. *Cancer* 44(6), 2120-2123.
- Sugahara, J., Fujishima, K., Morita, K., Tomita, M., and Kanai, A. (2009). Disrupted tRNA gene diversity and possible evolutionary scenarios. *Journal of molecular evolution* 69(5), 497-504.
- Telonis, A.G., Loher, P., Honda, S., Jing, Y., Palazzo, J., Kirino, Y., et al. (2015). Dissecting tRNAderived fragment complexities using personalized transcriptomes reveals novel fragment classes and unexpected dependencies. *Oncotarget* 6(28), 24797-24822. doi: 10.18632/oncotarget.4695.
- Timmons, L., and Fire, A. (1998). Specific interference by ingested dsRNA. *Nature* 395(6705), 854-308 854.
- Torres, A.G. (2019). Enjoy the silence: nearly half of human tRNA genes are silent. *Bioinformatics* and biology insights 13, 1177932219868454.