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Integrable models are characterized by the existence of stable excitations that can propagate indefinitely
without decaying. This includes multimagnon bound states in the celebrated XXZ spin-chain model and its
integrable Floquet counterpart. A recent Google Quantum Al experiment [A. Morvan ef al., Nature 612,
240 (2022)] realizing the Floquet model has demonstrated the persistence of such collective excitations
even when the integrability is broken: this observation is at odds with the expectation of ergodic dynamics
in generic nonintegrable systems. Here, we study the spectrum of the model realized in the experiment
using exact diagonalization and physical arguments. We find that isolated bands corresponding to the
descendants of the exact bound states of the integrable model are clearly observable in the spectrum
for a large range of system sizes. However, our numerical analysis of the localization properties of the
eigenstates suggests that the bound states become unstable in the thermodynamic limit. A perturbative
estimate of the decay rate agrees with the prediction of an eventual instability for large system sizes.
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I. INTRODUCTION

In recent years, quantum simulators have become a
powerful tool to investigate the nonequilibrium dynam-
ics of quantum many-body systems. Experiments based
on many different platforms now have the capability to
prepare a quantum state with good fidelity and evolve it
almost unitarily, preserving its coherence for sufficiently
long times to observe its interacting dynamics [ 1-6]. These
advances have sparked a considerable interest in the theo-
retical investigation of the approach to thermal equilibrium
in isolated quantum many-body systems [7—13]. At the
same time, the available quantum simulators have inspired
the search for “unusual” behaviors, where a system does
not reach thermal equilibrium. A paradigmatic example is
the phenomenon known as quantum many-body scarring,
which was first discovered in an experiment with Rydberg-
atom arrays [14]: it was found that certain quantum states
exhibit long-lived nonergodic dynamics, while other states
instead show fast thermalization. Following the initial dis-
covery, numerous theoretical studies have been conducted
to elucidate the conditions under which quantum many-
body scars occur and to develop a theoretical framework
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that can explain and predict such phenomena [15-21].
Other examples of exotic dynamical phenomena that have
been observed in quantum simulators include, e.g., Hilbert-
space fragmentation [22-24], dynamical phase transitions
[25-27], time crystals [28-34], and noise-resilient edge
modes [35-41].

Another puzzle for our understanding of quantum
many-body dynamics has recently been observed in a
Google Quantum AI (GQAI) experiment [42,43] based on
superconducting circuits hosting microwave photons. The
dynamics of the photons, which can hop between neigh-
boring sites of a chain shown in Fig. 1(a) and interact with
each other, is described by an integrable quantum circuit.
The experiment showed the presence of bound states of up
to five photons: these are exact eigenstates of the model
predicted by the Bethe ansatz [44], where the photons are
nearly adjacent and form a single collective excitation. The
bound states observed in the study are enclosed in the con-
tinuous spectrum of multiparticle states, i.e., eigenstates
of (mostly) distant photons that can scatter off each other.
Even in the absence of a gap, the conservation laws of the
integrable model protect the bound states from mixing with
the underlying continuum. The work [42] demonstrated a
remarkable agreement of the experimental results with the
analytical solution.

The integrable circuit was then perturbed by coupling
every other site of the chain with additional sites as shown
in Fig. 1(b), thus breaking the integrability of the model. In
the absence of any conservation laws that protect them, the
exact bound states of the unperturbed model are expected
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FIG. 1. (a) A one-dimensional (1D) chain hosting the inte-

grable Hamiltonian and Floquet systems. (b) A 1D chain with
extra sites forming a comb in the GQAI experiment, with the
comb teeth connected to every other site of the original chain;
a unit cell and the labeling of sites in each cell is shown. (c) A
schematic of distinct two-particle bound states, which become
dimers in the very-strong-binding limit, in a unit cell on the
comb; these give rise to three bands in momentum space. (d)
Distinct three-particle bound states, schematized as trimers, in a
unit cell on the comb, producing four bands in momentum space.

to quickly decay in the continuum of multiparticle states.
Nevertheless, the experiment showed the persistence of the
bound states after many cycles of the circuits, even for
fairly large values of the perturbation.

The origin of this robustness cannot be easily attributed
to any known mechanism for slow relaxation. Thus, we
do not expect the usual quantum many-body scarring
mechanisms to be operative in our systems with O(1) inte-
grability breaking and there is no evidence of even more
dramatic Hilbert-space fragmentation phenomena. Among
other possibilities, the rigorous theory of prethermalization
[37] applies only for perturbing much more special initial
Hamiltonians and does not apply for perturbing generic
integrable systems as in our case (except in the regime with
dominant on-site terms). One could contemplate a recently
discussed mechanism of weak integrability breaking of
integrable models, where special perturbations effectively
break the integrability only at higher order [45—47]. How-
ever, our experience with this mechanism suggests that
it would require more complicated special perturbations
than in the experiment (and it would approximately pre-
serve features in the entire spectrum and not just some
specific states). While we cannot rule out such interesting
and unusual explanations, we are led to consider perhaps
simpler mechanisms having to do with particular quan-
titative properties of the specific system. Thus, an early
example in Ref. [48] of unusual thermalization in a nonin-
tegrable model for some initial states has been explained in
Ref. [49] by the proximity of these states to the boundaries
(ground or ceiling states) of the many-body spectrum,; i.e.,

the dynamics were governed by being in a “special corner”
of the many-body Hilbert space away from the eigenstate-
thermalization-hypothesis- (ETH) like physics expected in
the middle of the many-body spectrum.

While for Floquet systems there is no notion of ground
or ceiling states and hence no such proximity can be
invoked, we note that the circuit and setup that mod-
els the experiment in Ref. [42] is not a truly many-body
system. The puzzling robust bound states were observed
for a system with a fixed number of photons (N = 3)
and the Hilbert-space dimension scales only polynomially
with the system size, not exponentially. It is reasonable
to expect that in such few-body models, the decay is not
as fast as for typical eigenstates in the middle of a truly
many-body spectrum. Therefore, in order to understand
and characterize the robustness of the bound states, it is
important to perform a quantitative study for increasing
system sizes and to contrast the persistence of the bound
states against the scaling expected for similar few-body
models.

In this work, we examine the spectral properties of
the perturbed model in this few-body regime using exact
diagonalization and physical arguments. We compare the
spectrum of the circuit with that of the related Hamilto-
nian system under corresponding continuous-time dynam-
ics. First, we find that in the closely related Hamiltonian
case, the N = 3 bound states are in fact protected by a
gap and persist in the thermodynamic limit. This is also
true for O(1) integrability-breaking perturbations for (a
range of) serendipitous choices of parameters, including
the Hamiltonian parameters reasonably related to those in
the experiment. On the other hand, in the case of the Flo-
quet circuit, the bound states are “folded” and overlap with
the multiparticle continuum in the corresponding Floquet
spectrum, but for the values of parameters studied in the
experiment and N = 3, this folding only affects the bound-
aries of the Hamiltonian spectrum. Because of this and for
other quantitative reasons, despite the folding, we clearly
detect isolated bands in the Floquet spectrum that cor-
respond to the unperturbed bound states, even for large
values of the perturbation. Our numerical analysis sug-
gests, however, that these bound states eventually become
unstable in the thermodynamic limit. To argue this, we
study the IPR in the center-of-mass frame, the scaling of
which with the system size can distinguish a bound state
from a “scattering” (i.e., unbound) state. We show that the
IPR of the bound states decreases with the system size,
indicating a decay in the thermodynamic limit. However,
the decay is very slow: we attribute the slowness to the
impossibility in our parameter regime for a three-photon
bound state to resonantly decay into a scattering state of
a two-photon bound state and a single photon; the three-
photon bound state can only decay into a scattering state
of three isolated photons, a process with a very small
(but nonzero) matrix element. Our conclusions are further

010317-2



FATE OF BOUND STATES OF INTERACTING PHOTONS

PRX QUANTUM 5, 010317 (2024)

corroborated by a perturbative analysis of the matrix ele-
ments and density of states, which shows a small but finite
decay rate in the thermodynamic limit.

The paper is structured as follows. In Sec. II, we intro-
duce the integrable models (Hamiltonian and Floquet cir-
cuit) and the nonintegrable perturbation. In Sec. III, we
analyze the spectra of the Hamiltonian and the Floquet cir-
cuit in the sectors with N = 1,2, 3 photons, for different
values of the perturbation strength. In Sec. IV, we study the
properties of the three-particle bound states in the Floquet
circuit for increasing system sizes and show their eventual
instability in the thermodynamic limit. In Sec. V, we study
the matrix elements and density of states in the unper-
turbed model, in order to explain the instability and derive
a perturbative estimate of the decay rate. We conclude in
Sec. VI with suggestions for more experimental tests and
broader prospects.

II. HAMILTONIAN AND FLOQUET MODELS

We will focus on a qubit model that evolves under (i) a
static Hamiltonian or (ii) a Floquet circuit. In both cases,
the dynamics that we consider conserve the total number of
qubits in the state “1” (we will refer to them as “particles”)
and can be expressed in terms of the two-qubit operator
h; x(w, u) acting on neighboring sites:

hj x(w,u) = —w([10)(01]; x + H.c.) —u|11)(11]; %, (1)

where w is the hopping amplitude between sites j and &
and u is an interaction (attraction energy for u > 0) when
particles occupy these sites.

The Hamiltonian and the Floquet circuit that we will
consider are perturbations of an integrable Hamiltonian
and a Floquet model, respectively. We will first introduce
the integrable models (Secs. Il A and II B and then consider
the nonintegrable perturbation (Sec. I1 C).

A. Hamiltonian: Integrable case

The integrable chain Hamiltonian with periodic bound-
ary conditions (assumed throughout) is simply

Hy = Zhj,j+l(wa u. (2)
J

The Hamiltonian Hj can be equivalently written in terms
of spin-1/2 operators, defined as S = (|1)(1] — |0)(0])/2,
ST = (I1)(0[ 4+ 10)(11)/2, 8" = (—i[1)(0] + £|0)(1])/2:

Ho = =30 [20(S]S] 0 + 878, + 8]

J

+ ) u(S; - 1/4), 3)
J

which is the XXZ model in the uniform magnetic field.

B. Floquet circuit: Integrable case

An integrable circuit, also known as the Floquet XXZ
model, can be defined using the following two-qubit gates:

exp[—ihj x(w,u)t] = fSIm( = wt,p = ut); 1,  (4)

where fSim is the two-site unitary gate using the same
notation as in the GQAI experiment [42]. The gates are
applied to even-odd and odd-even pairs of sites in a
brick-wall pattern. The unitary operator that describes the
evolution over a single cycle is defined as

Z/{O (93 ¢) = Z/[even(gz» ¢)Z/[0dd (93 ¢)s (5)

Ueven(0,0) = [ | £Sim (0, $)7 211, (6)
J

Uoaa(0,¢) = [ | fSim(6, $)zy 127 ()
J

The integrability of the model has first been demonstrated
in Ref. [50], and a Bethe-ansatz solution has been obtained
in Ref. [44]. The bound states of the model, that have been
analytically studied in Ref. [44], have then been detected
in the GQAI experiment [42].

C. Nonintegrable perturbation

In Ref. [42], the integrable model was perturbed by
adding sites as in Fig. 1(b). The additional sites are con-
nected in the shape of “comb teeth” to every other site of
the original chain. To label the sites in the new geome-
try, we use a composite index (R, «), where R labels the
unit cell and o € {1,2, 1’} labels the three sites of each unit
cell. In this new geometry, we can write perturbed models
for both the Hamiltonian and the Floquet case.

The Hamiltonian is given by

H = Z [Aw1y:m2) (W, 1) + hir2yRe1,1) (W, 1)
R

+ he i W, u)] (8)

The Floquet circuit is similarly obtained by applying the
two-qubit gates on the three sets of pairs:

u(ea ¢5 G/a ¢/) = Z/{even (Ga ¢)u0dd (99 ¢)uteeth (9/5 ¢/)’ (9)

Ueven(0,0) = [ | £Sim(6, $) w122+ (10)
R

Uoaa(0,¢) = [ ] 1Sim(0. §) r2).r+1.1)- (11)
R

Useen(0',¢') = [ [ £Sim(0", ¢") 1), w11)- (12)
R

When w =0 (6’ =0 in the Floquet case), the particle
number on the original chain is conserved (denoted by
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FIG. 2. The spectrum of the Hamiltonian model (left side in each two-panel group) and the Floquet circuit (right side) in the
one-particle (N = 1, top panels) and two-particle (N = 2, bottom panels) sectors. The spectra are shown for comparable values of
parameters (W = l,u = u' = 4,0 = /6,and ¢ = ¢’ = 27/3) and for increasing values of w'/w and 6’/0, taken to be the same in each
two-panel group. The Hamiltonian energies £ are multiplied by an appropriate time-evolution factor of (—m/6) for an approximate
match to the Floquet-circuit step. These still fit within a 27 period and hence can be compared directly with the Floquet quasienergies €
without requiring any folding. For the unperturbed models with w'/w = 0 and 6’/6 = 0, the different colors represent states belonging
to different (N, Ny/) sectors, as shown in the legend. For the perturbed models, (Nu;, Ny7) are not good quantum numbers and the
eigenstates can have nonzero components in all the sectors: The color mixing (red and green for N = 1 and red, green, and blue for
N = 2) represents the squares of the norms of the projections of each eigenstate into the sectors [i.e., RGB color (255 x P(1,0),255 x
P(0,1),0) for N =1 and (255 x P(2,0),255 x P(1,1),255 x P(0,2)) for N = 2, where P(N,uy, Ny’) is the squared norm of the
projection of the eigenstate in the (N, Ny/) sector]. The system size is Ly, = 120 unit cells for N = 1, and L, = 20 unit cells for

N =2.

N1u2) and the particle number on each (R, 1) site is con-
served. In what follows, we often use more crude grouping
of states labeled by sectors (N2, Ny = N — Nyp). In this
case, in the sector with no particles on the 1’ sites, the
term does not operate at all and the Hamiltonian (the Flo-
quet circuit) is equivalent to the integrable chain in Eq. (2)

[Eq. (5)] for any u’ (¢').

III. SPECTRUM COMPARATIVE STUDY OF THE
HAMILTONIAN AND FLOQUET SYSTEMS

In this section, we present the spectra of the Hamiltonian
(8) and of the Floquet circuit (9) for comparable values of
parameters. In particular, for the Floquet circuit, we use the
same parameters as used in the GQAI experiment, namely,
0 =m/6 and ¢ = ¢’ = 27/3. We expect this model to
resemble the continuous Hamiltonian evolution for a ratio
of parameters u/w = ¢/0 =4 and u'/w = ¢'/0 = 4. We
will first discuss the general features of the spectrum in
the system with N = 1,2, 3 particles. While the spectrum
for N = 3 is rather complicated, we will nevertheless show
some qualitative distinctive features through a comparison
between the Floquet and the Hamiltonian cases. We will

then focus on the N = 3 bound states, by examining a nar-
rower window of the spectrum using some observables that
can specifically signal the presence of bound states.

The spectra as a function of the momentum £ are plot-
ted in Fig. 2 in a sector with a fixed number of particles
N = 1,2: for the Hamiltonian H in Eq. (8), we plot the
spectrum E (k) (rescaled with a factor —m /6 for compari-
son); for the Floquet circuit, we plot the quasienergies € (k),
defined as the complex phases of the eigenvalues of the
Floquet operator in Eq. (9). The spectra are computed for
increasing values of the ratio w'/w = 6'/6.

For w'/w = 6"/6 = 0, the particles on the 1’ sites can-
not hop, so the particle number on the original chain is
conserved and the particle number on each (R, 1’) site is
conserved. In this case, in the sector with no particles on
the 1’ sites, the u’ (¢') term vanishes (acts trivially) and
the Hamiltonian (the Floquet circuit) is equivalent to the
original integrable chain for any u’ (¢’). The eigenstates in
this sector are represented in red and are analyzed in more
detail in Appendix A for the Floquet case.

For w'/w = 60'/6 # 0, the states of the integrable chain
hybridize, with the states having nonzero occupation of
the 1’ sites. As a result, gaps open at £ = +x in the
single-particle spectrum (N = 1). A rearrangement of the
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FIG. 3. The spectrum of the Hamiltonian model (left side in each two-panel group) and the Floquet circuit (right side) in the three-
particle sector (N = 3). The spectra are shown for comparable values of parameters (w = l,u = ' = 4,0 = w/6,and ¢ = ¢' = 27/3)
and for increasing values of w'/w = 6’/6. The Hamiltonian energies are multiplied by the time-evolution factor of (—m/6) and this
gives a window wider than 27 and would require folding to compare with the Floquet quasienergies. For clarity, instead of such
folding of the Hamiltonian spectrum, we show the Floquet-circuit quasienergies repeated with period 2. The Floquet Brillouin zone
€ € [—m, ) is marked with gray dashes on the quasienergy scale. For easier comparison with the Hamiltonian case, copies of the
quasienergy spectrum are shown beyond the first Floquet Brillouin zone. For the unperturbed models with w'/w = 0 and '/6 = 0, the
different colors represent states belonging to different (N, Ny/) sectors, as shown in the legend in the leftmost group. For the perturbed
models, the red, green, and blue color mixing represents the square of the norms of the projections of each eigenstate in the sectors with
(N2, Nr) = (3,0), (2, 1), (1,2) respectively; specifically, the color in RGB is (255 x P(3,0),255 x P(2,1),255 x P(1,2)). [Note
that when w'/w = 6’/6 = 0, all states in the sector (0, 3) have zero energy and their color is RGB (0, 0, 0), which is black.] The system

size that we choose is rather small (L, = 12 unit cells) to avoid overwhelming the plots.

spectrum is observed in the two-particle sector (N = 2):
as the bands in the single-particle spectrum become flat-
ter, some gaps open in the two-particle continuum and
some isolated states appear in the gaps. The bound states
[three isolated bands at the top, corresponding to the three
dimer configurations in Fig. 1(c)] are still observable in
both the Hamiltonian and Floquet cases as w'/w = 6'/0 is
increased from 0 to 1: while they overlap with the two-
particle continuum for some values of momentum, for
other values they are protected by a gap.

The spectra for N = 1,2 have very similar features
in the Hamiltonian and Floquet cases. The most notable
difference is the breaking of time-reversal symmetry in
the Floquet case, which makes the quasienergy spectrum
asymmetric for £ — —k. When we instead compare the
Hamiltonian and the Floquet spectra in the three-particle
sector (N = 3, Fig. 3), we observe a substantial differ-
ence: since the quasienergies are defined modulo 27,
the Floquet spectrum corresponds to a “folded” Hamilto-
nian spectrum. As a consequence, the three-particle bound
states, which are gapped and thus stable in the Hamil-
tonian case, are folded and overlap with the continuum

of the Floquet spectrum and therefore they are not pro-
tected by a gap. The mixing of the bound states with the
continuum in the Floquet case can lead to the decay of
the bound states. Nevertheless, quantitatively, this mix-
ing can be still fairly weak and the bound states may
be visible in the spectrum even for fairly large system
sizes.

These bound states are difficult to identify in Fig. 3 in
the Floquet case, where they overlap with the continuum.
To characterize these states and to discern them from the
continuum, it is useful to consider quantities that are sen-
sitive to the relative configuration of the three particles.
Examples of such observables are shown in Fig. 4: for
each eigenstate |, ;) with momentum &, we compute the
probabilities of the following configurations for the three
particles in neighboring sites [trimers in Fig. 1(d)]:

Pri = W”f’ B " (13)

$edo

Pr, = ‘<¢i,k

>k‘2’, (14)
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PTm :’<1/)z7k‘g-0-:+>

2
k’ ’, (15)

Pr, :szi,k %MQ

, (16)

where |...); represents the (normalized) projection of the
“...” state in the sector with momentum £, i.e.,

3ed0. ) = LS n .
| )= v 2o TR -

An equivalent definition for Pr (and analogously for the
other trimers) is

P = (vl $oBo) = S ltvnatrcmn”
(18)

In Fig. 4, we plot the probabilities Pr; + Py, and Py, +
Pr;, for each eigenstate. For w'/w = 6'/6 = 0, we observe
two (dispersive) bands with large Pr, + Pr,, which cor-
respond to the exact three-particle bound states of the
integrable chain (see Appendix A). Two (flat) bands have

large P, + Pryy,: they can be interpreted as bound states
of the two particles on the chain localized in the poten-
tial of the particle on the extra sites (which acts as an
immobile impurity) (for a detailed study in the Hamilto-
nian case, see Appendix B). As we turn on the hopping
along the teeth (W'/w = 0’/6 # 0), the bands with large
P, + Pry acquire a rather weak dispersion, signaling a
very low mobility of the trimers with one particle on the
extra sites.

In the cases w'/w = 6'/6 = 0.1, 0.5, 1.0, the four bound
states are still characterized by large values of both Pr, +
Pr, and Pry + Pr,: this shows that even in the Flo-
quet circuit, where the bound states are not protected by
a gap, the hybridization is strong among the four bound
states but quite weak between the bound states and the
continuum. Even for the largest value that we consider
(6'/60 = 1.0), the hybridization with states in the contin-
uum is clearly visible only for one of the four states (the
one with quasienergy € ~ 4).

Another useful quantity to characterize the localiza-
tion properties of the particles in the bound states is the
appropriate inverse participation ratio (IPR). This quan-
tity has been used extensively as a signature of localization
induced by disorder both for single-particle models [51,52]

w' /w = 0.0 0'/0 = 0.0 w'/w=0.1 0'/0 =0.1 w'/w = 0.5 0'/0 =05 w'/w = 1.0 0'/60 = 1.0
gl =00 0/ 4.8 g fw=01 _@/6=01_,. . W/ Ble=05_;; L L e B 1.0
I
16} 1 16 46} 146 4.(;/\\\ s 146 46F~a - 7 - jac Q08
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FIG. 4. Top panels: the probability, Pr; + Pr,, of having the three particles in consecutive sites along the chain [Egs. (13) and (14)].
Lower panels: the probability, Py, + Pr,,, of having one particle on an extra site and the other two right next to it on the chain
[Egs. (15) and (16)]. The system size is Ly, = 36 unit cells. The system parameters are the same as in Fig. 3. A narrow window
of quasienergies is shown, focusing on the three-particle bound states, revealing their character of being primarily chain trimers or
chain—extra-site trimers and also where significant mixing is present. In the Hamiltonian system, the three-particle bound states are
isolated from the continuum and persist in the thermodynamic limit even for w'/w = 1, while in the Floquet case, they are inside a
continuum and will decay in the thermodynamic limit but apparently survive to fairly large sizes. The similarity between the bound
states in the Hamiltonian and Floquet systems is notable, allowing us to infer properties of the latter ones as well as of the surrounding

continuum from the more simple Hamiltonian understanding.
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FIG. 5. TheIPR (for fixed momentum k). As explained in the text, this is calculated over basis states used in the momentum-resolved

ED, which can be essentially viewed as describing configurations of the particles relative to their center of mass. The system size is
Ly = 36 unit cells. The system parameters and the quasienergy window are the same as in Fig. 4. The IPR detects both types of
three-particle bound states equally well and provides a good measure of the degree of localization of the particles in the bound state. A
detailed study for varying system sizes in the Floquet system at 8’ = 6 (showing the strongest decay of the bound states in this figure)

and £ = 0 is performed in Fig. 6.

and for many-body systems [53—55]. Here, instead, we will
use it to probe the localization of particles with respect
to their center of mass: this localization is induced by
interactions and can lead to the presence of bound states.
The idea is to find a quantity that is also sensitive to other
“bound” configurations of the three particles, which are
not captured by the tightest binding configurations defining
Pr,, Pr,, Pr,,, and Pr,,. For example, a bound state can
have large overlaps with some other configurations such

as |- dede. )y However, we still expect it to have sup-
port on a small (compared to the dimension of the sector)
number of such configurations.

To this end, it is useful to define the computational basis
in the sector with momentum k. Similarly to the definition
of Eq. (17), each state in the computational basis is defined
from a classical configuration ¢ (called representative) of
the three particles as

1 Me—1

|c)k = W Z eikRTR |C> )
¢ R

=0

(19)

where 7 is the translation operator by one unit cell and
M, > 0 s the smallest positive integer such that 7" |c) =
|c) [56]. The state |c); can be also viewed as a normalized
projection of the state |c) into the sector with momentum £.
The basis is obtained by taking a single representative ¢ for
each class of configurations that are related by translations.

We define the momentum-resolved IPR for a normalized
eigenstate |, ;) with momentum k as

Ti =Y (Wil el (20)

where the sum runs over all the representatives (i.e., dis-
tinct classes) that define the basis. This quantity is an
indicator of the localization of the three particles in the

frame of their center of mass [57]. For a bound state,
this quantity converges to a finite value in the large-
Ly limit, while it scales as 1/L,. for scattering states of
a two-particle bound state with a single particle and as
1/L2, for scattering states of three unbounded particles.
As shown in Fig. 5, the IPR Z; takes large values for four
distinct bands of bound states: these are the same states
that have been characterized by large values of Pr, + P,
and Pr,, + Pr,, in Fig. 4. Figure 5 shows that while the
value of Z; remains large for the Hamiltonian case even
up to w'/w = 1, the bound states in the Floquet spectrum
exhibit a clear decrease of Z; as 6’/6 goes from 0.0 to 1.0.
This suggests that perturbing the integrable Floquet circuit
through the inclusion of additional sites tends to unbind the
original bound states of the model.

IV. EVENTUAL INSTABILITY OF THE
THREE-PARTICLE BOUND STATES IN THE
FLOQUET MODEL

The decrease of the IPR as a function of w' shown in
Sec. 111, i.e., Fig. 5 at fixed L, = 36, suggests that the
localization length in the center-of-mass frame tends to
grow with the perturbation strength. If this localization
length diverges in the thermodynamic limit L, — oo, the
three-particle bound state is unstable.

In order to probe the eventual decay of the three-particle
bound state, we examine the scaling of the IPR with the
system size, for 8’ = 6, where the perturbation is of the
same order as the unperturbed parameters and the bound
states are expected to be least robust of the parameters
0’ < 0 considered in the previous sections. In Fig. 6(a), we
plot the IPR of the energy eigenstates in the £ = 0 sector
(computed as described in Sec. I1I) for different numbers of
unit cells L. Despite the fairly large perturbation strength,
the IPR Z;_, still shows four clearly visible peaks that cor-
respond to the four bound states of the unperturbed model.
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FIG. 6. (a) The IPR of the Floquet eigenstates with momen-

tum k = 0 for the system with parameters § =6’ = 7 /6 and
¢ = ¢’ = 2m/3. The states are organized by the quasienergy on
the horizontal axis and the prominent (approximate) bound states
stand out with their large IPR. Multiple system sizes are shown.
(b) The maximum of Z;—¢ in an energy window [€ — A, € + A]
(shaded areas in the top panel), with A = 0.05, as a function of
the system size. The result of a linear fit, performed to bring out
the overall decreasing trend, is shown with a dashed line in each
panel.

For large L., however, it is possible to notice the effect
of the perturbation, which mixes the bound states with
the underlying continuum and smears out the peaks. To
quantify this effect, in Fig. 6(b) we plot the height of the
peak (defined as the maximum of Z;_ in an appropriate
energy window) as a function of L. for the four bound
states. The fluctuations with the system size are still very
large, indicating that the results are still very sensitive to
the finiteness of the level spacings in the spectrum and
to their statistical fluctuations. Nevertheless, all the data
show a decreasing trend with the system size, for all four
bound states. These results suggest that the bound states
will ultimately decay in the thermodynamic limit and that
the decay is very slow, leading to persistent three-particle
bound states for numerically and experimentally accessible
system sizes.

Of the four bound states, we observe that one of them
(the one with quasienergy € ~ 4.0032) exhibits signifi-
cantly faster decay of Z;— with the system size [Fig. 6(b)].
We will now argue, using numerical experiments, that this
faster decay is caused by the proximity in the spectrum
with scattering states of a two-particle bound state with

(a) Pri+ Pry, Pryy, + Pryy 7
; g "140.010 " ] "140.010 4 ; “140.010
B e
L5 e 4.5 45 P
0.008 0.008 0.008
o —
s 0.006 e 0.006 0.006
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35 0.002 ({0002 35F 4| {0.002
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T
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=25 0.

k
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FIG. 7. The spectrum of the perturbed Floquet circuit, focus-
ing on the continuum states near the three-particle bound states:
the 2 4+ 1 continuum is characterized by a larger probability of
trimer configurations (Pr; + P, and Pry, + Pr,,) and larger 7
than the 1 4+ 1 4 1 continuum. Note that the quantities are the
same as those plotted in Figs. 4 and 5 but the color scales are sat-
urated to a maximum value of 0.01 to bring out the 2 + 1 states
more. (a) For the choice of parameters considered in the exper-
iment (6 =6’ = /6 and ¢ = ¢’ = 27r/3), the bound states are
separated in the spectrum from the 2 + 1 continuum but one of
them is significantly closer. (b) For a different choice of parame-
ters (f =0’ = /6 and ¢ = ¢’ = 87 /15), two out of four bound
states lie in the 2 4+ 1 continuum (for some values of k).

a single particle (which we will refer to as the “2 41
continuum” below). Note that, strictly speaking, this label
refers to states present in the integrable model at ¢’ = 0
in the sector (N2, Ni/) = (3,0), while the states high-
lighted in Fig. 7 at ¢’ = ¢ are their descendants. As shown
in Fig. 7(a), the 2 + 1 continuum is characterized by a
larger probability of trimer configurations and larger Z;
compared to the scattering states of individual particles
(which we will call the “1 4+ 1 4 1 continuum”). The edge
of the 2 + 1 continuum is very close to the lowest bound
state, suggesting that these states are responsible for the
larger hybridization. In Fig. 7(b), we also consider a differ-
ent choice of parameters, for which the spectra of the two
lowest bound states are partially enclosed in the 2 + 1 con-
tinuum. In this case, these two states show a fast decay of
T—o with the system size L., while the other bound states
are more resilient (Fig. 8).

These results suggest that the decay is fast when
the three-particle bound state can decay in the 2 41
continuum but is very slow when it can only decay in the
1 + 1+ 1 continuum. This explains the apparent robust-
ness observed in the experiment [42].
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FIG. 8. (a) The IPR of the Floquet eigenstates with momen-
tum k = 0 for the system with parameters 6§ = 6’ = 7 /6 and
¢ = ¢’ = 8 /15 from Fig. 7(b). For small system size (L, =
10), four distinct eigenstates stand out with a large value of Z;—.
(b) The maximum of Z;—¢ in an energy window [€ — A,€ + A]
(shaded areas in the top panel), with A = 0.05, as a function of
the system size. The two leftmost panels (the ones that corre-
spond to the eigenstates overlapping with the 2 4+ 1 continuum)
show a clear decay of the height of the peak for increasing system
size. The other two show an extremely weak decay with L.

V. PERTURBATIVE ANALYSIS OF EVENTUAL
INSTABILITY

To address the question of an eventual instability, it is
useful to study the matrix elements of the perturbation (i.e.,
the hopping along the teeth) in the basis of the unperturbed
eigenstates of the Floquet model with ¢’ = ¢, ' = 0. The
perturbation of the Floquet circuit is

U (0, Ureetn (0, ¢)) = exp(—i0'V) ~ 1 — i0'V, (21)

where 6’ < 1 is the small perturbative parameter and V is
defined as

V=— Z(| 10)(01]r,1y,z,11) + H.c.). (22)
R

It is adequate for our purposes to use intuition from Hermi-
tian perturbation theory, treating the Floquet quasienergies
as the unperturbed energies and 6’V as the perturbation.
We label the four bound states of the 6’ = 0 model
in the sector with total momentum k£ = 0 as [y,) with

n=0,1,2,3: |v¥) and |¥,) have quasienergies ¢y ~
4.0512 and €, ~ 4.3614, respectively, and belong to
the sector with (Ny, Nyv) = (2,1); |¥) and |yr3) have
quasienergies €] &~ 4.2657 and €3 &~ 4.4755, respectively,
and belong to the sector with (Nyuy, Ny) = (3,0). We
generally expect a bound state |y,) to be unstable to
a perturbation V if the “Fermi’s golden rule rate” I'), =
270 3, | (WulV1€)178(¢; — E,) is finite, where V,; =
(¥nV] €;) is the matrix element connecting the nth bound
state with the state |¢;) in the continuum and E, is the
energy of the bound state.

From the numerical study, we know that the three-
particle bound states of interest to us do not overlap in
energy with the 2 + 1 states (i.e., the scattering states of
a two-particle bound state and a particle). Then, conserva-
tion of energy and momentum implies that the bound states
can only decay in the 1 4+ 1 4 1 continuum for £ = 0. For
these continuum states, from a simple counting argument
we expect a density of states o L2.. The matrix element
Vi = (¥nlV]€;) between a state in the 1 4+ 1+ 1 con-
tinuum and a bound state (i.e., a localized state in the
center-of-mass frame) can similarly be estimated from a
simple argument: the state |¢;) of the three particles can
be approximated as a (properly symmetrized) product of
three plane waves, while |,,) is a single plane wave (with
k = 0); the matrix element is nonzero only when the three
particles are next to each other; and taking into account the
normalization of the plane waves, we get that the matrix
element scales as |V | o Lyc(1/v/Luc)(1/+/Lue)® = L.
We then expect the product between the density of states
and |V ? to yield an O(1) rate in the thermodynamic limit.

Note that a similar argument for a decay into the 2 +
1 continuum would give a density of states o L, and
a matrix element |V, | & Lyc(1/+/Lue) (1/8/Lyc)? = L%,
resulting, again, in a finite rate in the thermodynamic limit.

In Figs. 9 and 10, we numerically check our predic-
tion for the scaling of the matrix elements and of the
density of states for the decay into the 1 + 1 + 1 contin-
uum. We plot the matrix elements |V,;| (including only
the ones that are nonzero) multiplied by L,.. As a mea-
sure of the density of states, we consider pairs €; and €;
of nearby levels in the quasienergy spectrum (including
only the states with nonzero |V, |) and we plot the inverse
spacing (A€)™! = (¢j41 —€;)~! multiplied by L, as a
function of the average quasienergy € = (¢, 41 +¢;)/2. We
find that for all bound states n = 0,1,2,3, both |V, |Lyc
and (L2, A€)~! show a good data collapse, with no system-
atic dependence on the system size [58], confirming our
predictions that |V;| o« L' and (Ae)™" o L2,

The scaling is further analyzed in Fig. 11(a) by plot-
ting the average of |V, |> for each n = 0,1,2,3 over the
energy windows plotted in Figs. 10 and 9, as a function of
the system size. The results of the fits show a dependence
|Vyi1? oc L2, with o in the range from —2.03 to — 1.49, in
rough agreement with the expect scaling |V, |2 ~ L;CZ for
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FIG. 9. (a) The absolute value of the matrix elements V,; (con-
necting the bound state |v,) with the eigenstate ¢;) multiplied
by the system size Ly, as a function of the quasienergy ;.
The data collapse shows that [V,;| o L;CI, consistent with the
14141 continuum. (b) The inverse level spacing of neigh-
boring pairs of Floquet eigenstates (Ae)~! multiplied by L2,
as a function of the average quasienergy of the pair. Only states
that have nonzero matrix elements with |,) are considered. The
data collapse shows the predicted scaling for the density of states
(A€)~! oc L2,. The vertical gray lines indicate the energy €, of
the bound state. The Floquet system parameters are ¢ = ¢’ =
27 /3,0 = /6,60 =0, i.e., the “integrable point.” The data are
plotted for the bound states with » = 1 (left) and n = 3 (right),
which belong to the sector with (N, N1i/) = (3,0).

matrix elements with the 1 4+ 1 4 1 continuum states. In
Fig. 11(b), we plot the density of states p,, (computed as the
number of states in the same energy windows, divided by
the width of the windows) as a function of L,.: the results
agree with the expected scaling p, o< L2_. The rate of decay
is then computed as

Iy = (9/)22npn|an |2 = (Ql)zfn (23)

and T, is plotted in Fig. 11(c). The rate is approximately
constant, with no evident dependence on the system size
(except for a mild increase, which is visibly present only
for small Z,.). However, the values of the rates T, for dif-
ferent bound states span many orders of magnitudes. For
n = 1,2,3, they are smaller than 107>, suggesting that the
bound states may persist at finite size for large values of the
perturbation (or, equivalently, for large system size with a
fixed perturbation strength). [The corresponding physical
decay rates "1 53 < 107> x (6")2, for smallish 8’ < /6,
give lifetimes that can exceed 10° Floquet cycles.] The
n = 0 state has the largest decay rate (I'g ~ 4 x 1073 x

n=0,¢,=4.0512 n=2,¢, =43614
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FIG. 10. An analysis similar to that in Fig. 9 but for the bound
states n = 0 (left) and n = 2 (right), which belong to the sector
with (N2, Ni) = (2, 1). In the case of degeneracies, we con-
sider a single |¢;), proportional to the projection of V|,) on
the degenerate subspace. The data collapse shows that both the
matrix elements (top) and the density of states (bottom) obey
the predicted scaling with the system size for the 1+ 141
continuum.

(0)?, significantly larger than the other three) and hence it
should exhibit a more enhanced decay with system size
for 6’ # 0, in agreement with the results of Fig. 6. We
remark, however, that the four bound states studied in Sec.
IV for 6’ = 6 cannot be simply attributed in a one-to-
one correspondence to the unperturbed states |v,), with
n=20,1,2,3at0 = 0, because of the strong hybridization
of the bands visible at the studied 6’ £ 0—in particu-
lar, for n = 1,2,3—and hence one should not use such
perturbative estimates literally for all 6’ of interest.
Nevertheless, it is suggestive of using the estimate of
the decay rates to interpret the decrease of the IPR peaks
of Fig. 6 with increasing L,.. The Wigner-Weisskopf the-
ory for the decay of a state in quantum mechanics relates
the decay rate with the width of the resonance in the fre-
quency domain. At finite system size, this treatment can
break down because the spectrum is discrete: in order to
observe the finite width of a resonance, we need the level
spacing to be much smaller than the width. Extrapolating
our estimates of I, to the value 6’ = 6 = 7 /6 of Fig. 6
(well beyond the perturbative regime), we find 'y &~ 1073
and T3 <3 x 1075, From our fits for the density of
states close to the four peaks for 8’ =0 = 7 /6, we are
finding that p, ’»\Bf,,LﬁC with £, ~ (0.04,0.04,0.03,0.02),
so the average level spacing p, ! becomes of the order
of ', for Ly, &~ (I'yf,)~'/2, which results in Ly, ~ 150 for
n =0 and Ly, > 2700 for n = 1,2,3. This estimate con-
firms that larger system sizes are needed in order to clearly
observe the decay for the three rightmost peaks in the IPR
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FIG. 11. (a) The average of |V,;|* as a function of the sys-

tem size Ly for n =0,1,2,3 and ¢; belonging to the energy
windows €, = A, of Figs. 10 and 9. The dashed lines show
the results of linear fits (in log-log scale) |V, |2 ~ kLS, with
o, = —2.03,—1.49, —1.53,—1.91 and k, = 0.04,4 x 107%,1 x
107%,4 x 107> forn = 0, 1,2, 3, respectively. (b) The density of
states p, estimated as the number of eigenstates in the energy
window €, + A, divided by the total width 2A,,, as a function
of the system size. Only states with nonzero matrix elements
are included. The results of the fits p, ~ c,,LfS have parameters
Bn, =2.02,2.36,2.13,2.22 and ¢, = 0.015,0.006,0.011,0.013.

(c) The decay rate f‘,, =271 pu| Vs 2.

in Fig. 6. If the system size is not sufficiently large, this
measure is sensitive to the fluctuations of the individual
eigenergies, resulting in the noisy dependence observed in
Fig. 6.

VI. CONCLUSIONS

In this work, we have analyzed the robustness of the
bound states observed in the Google Quantum Al exper-
iment [42]. We have compared the Hamiltonian and the
Floquet spectrum, showing that the bound states in the
N = 3 sector, which are protected by a gap in the Hamil-
tonian case, overlap (fold) with the other edge of the
spectrum when trying to connect to the Floquet case.
This is consistent with the direct study in the Floquet
case, where the bound states are surrounded by continuum
states. We have characterized the bound states by studying
their overlaps with the trimer configurations and their IPR
resolved in sectors of total momentum. Our results sug-
gest that many-body spectroscopic techniques similar to
the ones applied to observe the bands of exact bound states
in the integrable circuit can be used to detect the bands of
approximate bound states in the perturbed circuit and to
measure properties such as the maximal band velocity and
their microscopic structure. For example, depending on the

band, the particles in the bound state either reside primar-
ily on the chain, as in the trimers 71 and 7y in Fig. 1, or
have one particle on the extra sites, as in the trimers 7y
and Ty in the same figure. Such more detailed dynamical
and structural properties of the bound states in fact change
significantly as one varies 6’ from 0 to 6 (without much
effect on their apparent robustness, in part because the
bound states primarily mix among themselves) and could
be probed directly in experiments.

For 6’ = 0, particles located on the extra sites act as
impurities in an integrable model on the chain. Recently,
exact spatially bound states inside a continuous spectrum
have been proposed in some integrable Hamiltonian mod-
els in the presence of an impurity [59,60]. Interestingly,
one of the three-particle bound states in our modeling of
the experimental system at 8’ = 0, namely, the n = 2 state
with € ~ 4.3614 in Sec. V from the sector (N, Ny/) =
(2,1), appears to correspond to a similar instance in the
Floquet setting (see the discussion in Appendix C, where
this state is referred to as € &~ —1.92 from the 27 shift).
It would be interesting to investigate the possible exis-
tence and stability of such states more broadly in the
Floquet XXZ model with an impurity, both theoretically
and experimentally.

For 6’ # 0, while the bands of bound states are clearly
visible even for fairly large system sizes, our finite-size
scaling analysis shows that the bound states tend to decay
for increasing L,.. The decay is more rapid for one of the
four bound states, due to the proximity to the 2 4+ 1 con-
tinuum. For other values of the parameters, other bound
states can become similarly more unstable: we anticipate
that such a difference in the robustness of the bound states
can be probed in the same experimental apparatus, by
preparing different initial states [such as the trimer config-
urations 7y and Ty in Fig. 1, which would decay much
faster for modified parameters, as in Figs. 7(b) and 8].
A numerical analysis of the matrix elements and of the
density of states in the unperturbed model confirms the
presence of small but finite decay rates for all the bound
states.

Our explanation for the current experiments on the non-
integrable model is thus a quantitative few-body one and
does not require true many-body unusual thermalization.
An interesting question for future work is the possibility of
so-called weak integrability-breaking perturbations for the
Floquet XXZ model and for Floquet integrable models in
general. These perturbations, which can be systematically
constructed to preserve integrability up to a given order
in the perturbation strength, have been studied in the con-
text of Hamiltonian integrable models. An understanding
of their possible structure in Floquet circuits would allow
for the experimental verification of slow dynamics in dig-
ital quantum devices, such as the one used in the Google
Quantum Al experiment.
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Note added:—A recent work by Hudomal et al. [61]
also studies the bound states and the spectral properties of
the GQAI experiment. Reference [61] focuses on different
properties of the spectrum, studies the time evolution using
time-dependent block decimation (TEBD) simulations and
reaches different conclusions about the robustness of the
bound states in the infinite-time and infinite-system-size
limit, which, however, may be hindered by their available
time scales and sizes compared to potentially very long
decay times.

APPENDIX A: FLOQUET XXZ AND GAP IN THE
CHIRAL SPECTRUM

The unperturbed Floquet circuit in Eq. (5) has a simple
brick-wall structure, and can be conveniently diagonalized
by considering the operator

Vo(0,0) = Ueyen(0,) T, (Al)
where 7 is the translation operator by one chain site [44].
We can then write the Floquet operator as

Z/{O = Z/{evenZ/{odd = Z/{evenlz—Z/{even,]-i1 = Vé 7-72’ (Az)
where we have dropped the (0, ¢) dependence for easier
readability. We can diagonalize V) in a fixed-momentum
sector with respect to the translation of two chain sites
(which corresponds to one lattice unit used throughout the
text), i.e., we find simultaneous eigenvalues and eigenvec-
tors of V, and 72:
Ty =€ y.k),  Voly.khh=e"ly.k). (A3)
(Note that the momentum k has exactly the same meaning

as in the main text, since 72 corresponds to translation by
one unit cell.) Then, the states |y, k) are eigenstates of the

Floquet operator U, with quasienergies

€ =2y — k (mod 27). (A4)
The model has been solved in Ref. [44] using the Bethe
ansatz and the following dispersion relation of the ¢-
particle bound state has been found for generic ¢:

cos (q-string(k) - X) = cos?(a) — sin®(«) cos(k), (AS)

where

_ tan(¢/2) tanh(z)
X = £¢ — 2 arctan (—tanh(ﬂn) ) , (A6)
cos(@) — cos?(#) sinh®(£n) (A7)
cos2(6) sinh?(£n) + sin’(#) sinh? ()’
200Y _ and?
sinh? () = cos“(f) — cos (¢/2). (AS)

sin®(9)

Our numerical study below of the spectra of {4, and the
bound states is consistent with these predictions.

In Figs. 12 and 13, we plot the spectrum of the operators
Vo and U, for the sectors with N = 2 and N = 3 particles.
For N =2 (Fig. 12), we see that the band of bound states
is gapped in the spectrum of V), while one branch of the
band in the spectrum of {4, is not gapped for k£ ~ 0: the
“folding” procedure that gives the spectrum of U, from the
one of V), brings part of the bound state band into the con-
tinuum of 1 + 1 states. However, the presence of a gap in
V), implies that the bound states are robust to sufficiently
small (but finite) perturbations of the Floquet operator that
preserve the “brick-wall” structure and the total number of
particles (i.e., to the perturbations of U, that correspond
to perturbations of the 1, operator). This protection of
the bound states is not manifest when one only considers
the momentum-resolved spectrum of U in the presence of
the overlap with the continuum because such a view does
not take into account the nontrivial conserved quantity 1,
namely, [Uy, Vo] = 0; this additional “symmetry” is fully
taken into account when one considers V), together with
72,

Similar arguments hold for N = 3: as we see in Fig. 13,
part of the bound state band is gapped around £ = 0 in
the spectrum of V. This part of the band is robust against
any (small) perturbation of V), despite the absence of a
gap in the spectrum of Uf. Note, however, that the comb-
teeth perturbation considered in the main text following the
GQALI experiments does not preserve the brick-wall struc-
ture that is crucial for the reduction of the full problem to
Vo and the above protection does not operate in this case.
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0.00

FIG. 12. The spectrum of the operators V, (left) and U (right)
in the N = 2 sector. The color map indicates the momentum-
resolved IPR Z; (the scale is saturated to a maximum value of
0.10 to give a clearer view). The bands of two-particle bound
states have large Z; (dark blue), while the 1 + 1 continuum states
have small Z; (light green).

APPENDIX B: DETAILED UNDERSTANDING OF
FEATURES IN THE SPECTRUM AND THE
ROBUST BOUND STATES IN THE
HAMILTONIAN SYSTEM

In this appendix, we discuss in detail the spectrum of
the Hamiltonian system, focusing in particular on the two-
and three-particle bound states for the parameters of inter-
est. As already mentioned in the main text, except for a
small part of the & space in the former case, these are sep-
arated from the rest of the spectrum by finite gaps and are

0.014

0.012

0.010

0.008 .,
8
0.006

0.004

0

0.002

0.000

|
o

= okl
N

FIG. 13. The spectrum of the operators V, (left) and U (right)
in the N = 3 sector. The color map indicates the momentum-
resolved IPR Z; (the scale is saturated to a maximum value of
0.15). The bands of three-particle bound states have the largest Zj
(dark blue), followed by the 2 + 1 continuum (light blue), while
the 1 + 1 + 1 continuum states have small Z; (light green).

w'/w = 0.0

w'/w=0.1 w'/w = 0.5 W' fw =10

N ZN %

25 -25 0.0 2.5

-25 0.0 25 —-25 0.0 25 =25 00
¢ k

k k k

FIG. 14. The single-particle (N = 1) spectrum of H forw = 1
and u = v’ = 4. The color mixing represents the weights on the
different sectors of the unperturbed model w' = 0, as described
in the caption of Fig. 2.

hence robust (sharply defined) bound states in the thermo-
dynamic limit. This allows fully controlled treatment of
the bound states and an essentially complete understand-
ing of their character. While the three-particle bound states
cease to be sharp in the Floquet system of interest, for rea-
sons discussed in the main text, the Hamiltonian system
with modest folding in the quasienergy space still pro-
vides reasonable approximations, allowing much of the
intuition about the spectral properties and bound states of
the Hamiltonian case to be transferred to the Floquet case.

The Hamiltonian spectra shown in this appendix in
Fig. 14 and the top panels of Figs. 15 and 16 are the same
as in the corresponding Hamiltonian panels in Figs. 2 and
3, except that they are not multiplied by (—m/6) and are
instead presented here in the Hamiltonian energy units.
At the expense of some repetition, this significantly sim-
plifies referencing features in the spectrum and also puts
the bound states at the bottom of the spectrum, allowing
us to readily use intuition from familiar perturbation the-
ory and effective Hamiltonian tools near the ground states.
In the quantitative demonstrations below, we use the same
parameters w = 1 and u = «’ = 4w, with varying w’, as in
the main text.

For easy reference, we first list the exact dispersions of
the two-particle (N = 2 sector) and three-particle (N = 3
sector) bound states in the unperturbed Hamiltonian H
[see Eq. (2)], translated from the known results for the XXZ
chain [62—66]:

2n?
62-string(kchain) = —u-—- 7 - 7 08 (kchain), (B1)
2uw? 2w’
63-string(kchain) = —2u — 2 — w2 - 2 — w2 oS (kchain),
(B2)

where k.pqin refers to the natural momentum on the chain
with translation symmetry by one site [67]. For u = 4w,
the 2-string and 3-string bound states are separated from
continuum states by finite gaps at each kcpain; the top of the
2-string bound state band at k.p,in = 7 happens to coincide
with the bottom of the 1 + 1 continuum at £ = 0, while the
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FIG. 15. (a)«d) The two-particle (N = 2) spectrum of H for

w=1,u=u =4, and L,. = 20. The color mixing represents
the weights on the different sectors of the unperturbed model
w' =0, as described in the caption of Fig. 2. (e)}~(h) Enlarge-
ments of the region containing the two-particle bound states. The
semitransparent lines show the two-particle bound states (and
nearby other states) in the spectrum of H for the same param-
eters as in (a)~«d) but with larger L,. = 36 used for smoothness.
The solid lines show the spectrum of the effective Hamiltonian
[Eq. (B9)] derived for w, w' < u,u’. The exact spectrum and the
results of the effective model have almost perfect overlap for all
the three bands of bound states.

top of the 3-string bound state band lies significantly below
the bottom of the corresponding 2 + 1 continuum (which
lies below the 1 4+ 1 + 1 continuum).

Turning to the perturbed problem with the additional
sites (the comb lattice in Fig. 1), we start with some gen-
eral remarks. The conserved total number of particles in
the system is denoted by N. When w' = 0, the particle
number on the original chain is separately conserved and
is denoted by Nj,; furthermore, the particle number on
each (R, 1) site is conserved (we often use a more crude
conserved number Niy = N — Ny to group states). In this
case, in the sector with Ny, = 0, the ' term does not oper-
ate at all and the Hamiltonian is equivalent to the original
integrable chain for any «’. Thus, in this sector, the « part
by itself does not break the integrability and we sometimes
refer to the model with w' = 0 as integrable. On the other
hand, still keeping w' = 0, in sectors with Ny > 0, the
occupations of the 1’ sites do not fluctuate but create static
potentials (—u) < 0 for the chain particles on the 1 sites
connected to the occupied 1’ sites. The model for the par-
ticles on the chain is nonintegrable because of these static
“impurity potentials,” although for small Ny it is possi-
ble to use some intuition and/or results from the integrable
model away from the impurities.

=
25 00 25 -25 00 25 -25 00 25 -25 00 25
k k k k
4o w'/w = 0.0 w'/w=0.1 w'/w = 0.5 w' /w=1.0
—8.4f
86
S§]
788 L
9.0} 1t 1t ]
(e) ) 10 ) e ) )
25 00 25 -25 00 25 -25 00 25-25 00 25
k k k k
FIG. 16. (a)~«(d) The three-particle (N = 3) spectrum of H for

w=1,u=u =4, and L,. = 12. The color mixing represents
the weights on the different sectors of the unperturbed model
w' =0, as described in the caption of Fig. 3. (e)—+(h) Enlarge-
ments of the region containing the three-particle bound states.
The semitransparent lines show the bands of the three-particle
bound states for the same parameters as in (a)~(d) but larger
Ly = 36. The solid lines show the (flat) bands of the three-
particle bound states from solving the second-order effective
Hamiltonian given in Eqs. (B12)«(B14). In (e), the lowest flat
band of the effective Hamiltonian (E = —2u — 2w?/u = —8.5)
is threefold degenerate: one band belongs to the (Nju,, Ny) =
(2, 1) sector and the others are in the (N, Ni/) = (3,0) sector
(only the first one is visible, in green).

1. One particle

In the case of a total of one particle in the system,
the u and u’' terms do not operate at all and the problem
reduces to a single-particle problem with hopping ampli-
tude w along the chain and w' on the 1-1’ links connecting
to the extra sites. This problem is easily solved and has
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three bands,

2
er(k) = :t\/(2w cos IEC) + W2 k) =0, (B3)

which are shown in Fig. 14. The symmetry E < —F
around the zero energy as well as the origin of the entire
E = 0 band are due to the bipartite hopping nature of this
single-particle problem: There are no on-site potentials and
the hoppings connect only sites on different sublattices 4 =
{(R,2),(R,1)} and B = {(R, 1)}. Since there are twice as
many A sites as there are B sites, My = 2Ly, Mp = L., we
expect at least M, — Mp = L, zero-energy states residing
entirely on the 4 sublattice.

2. Two particles

Figures 15(a)-15(d) shows the momentum-resolved
exact-diagonalization (ED) results in the Hamiltonian
units, with fixed u = v’ = 4w, where we vary w' from
w = 0tow = w; we set w= 1. We do not have an exact
solution for general w' in this case but we can understand
rough features and, in particular, the two-particle bound
states by developing from certain controlled limits, which
we now describe.

a.w =0, general w

The eigenstates can be divided into three main groups
(sectors) defined by specifying the (conserved) number of
particles on the chain, denoted by Nj;, and on the extra
sites, denoted by Ny:

We first consider the case (Ny2,Ny) = (2,0). There
are Ly.(2Ly — 1) such states and they are marked red in
Fig. 15(a). This sector is equivalent to the unperturbed
integrable model on the original chain. The corresponding
states in Fig. 15(a) represent simply folding of the origi-
nal chain spectrum to the new Brillouin zone. We clearly
see the two-particle continuum spanning energy window
(—4w,4w) in the thermodynamic limit. We are mainly
interested in the lowest-energy states forming two bands of
the 2-string bound states. In the original chain, the Hamil-
tonian is invariant under translation by a single site and the
bound states form a single band in the corresponding Bril-
louin zone, with dispersion given by Eq. (B1). Here, this
band is folded to the new Brillouin zone, resulting in two
distinct bands.

We now consider the case (N, N1/) = (1, 1). There are
22, such states and they are marked green in Fig. 15(a).
These can be further subdivided into subgroups labeled by
a location (R, 1’) of the one particle on the 1’ sites, which
remains completely localized since w' = 0. The spectra
are identical for different R; each energy level is hence
repeated L, times in the full spectrum and gives a flat band
in the energy versus momentum plot in Fig. 15(a).

For a fixed Ry, we have a problem of one particle hop-
ping on the original chain of 2L, sites with the hopping
amplitude w and a single attractive “impurity potential”
(—u') < 0 felt by the particle when it is on the site (R, 1).
In this hopping problem, we expect one localized state near
the impurity potential and 2L, — 1 delocalized states. The
delocalized states span an energy window of (—2w, 2w) in
the thermodynamic limit.

One can easily solve for the localized state Viocatized ) =
Ce U=/l in the thermodynamic limit, where j labels sites
as in the original chain and jj is the corresponding label of
the site (R, 1). The localized state energy and the rate of
the wave-function decay per lattice site are

€localized = —V (u/)Z + 4W2’ (B4)
"2 aw? —
o — VW) + 4w —u ' (B5)

2w

In the full system, this can be viewed as a two-particle
bound state with one of the particles immobile on the
(Ro,1") site and the other residing on the chain sites
but dynamically bound to the immobile particle. For
our numerical parameters #' = 4w, we obtain €jcalized =
—24/5w A —4.472 and e = /5 — 2 ~ 0.236; thus, the
localization length is 0.693 of the original chain lattice
spacing, which means that we have a fairly compact bound
state, and the above expression for €jocalized 1S VEry accurate
even for relatively small sizes.

As mentioned earlier, this analysis gives identical spec-
tra for each of the L,. possible locations Ry, which results
in Ly.-fold degeneracy for each found eigenvalue. Each
such eigenvalue gives rise to a completely flat band when
the full spectrum is resolved in momentum. Looking at
the green states in Fig. 15(a) marking the present sec-
tor, we see the corresponding dense set of flat bands in
the energy window (—2w,2w) for the delocalized states
and the flat band near €,cq1izeq for the two-particle bound
states. It is a numerical accident for the specific param-
eters that this energy is very close to where the two
red two-particle bound state bands meet, which happens
at €2 giring (Kchain = 7/2) = —u — 2w? /u = —4.5 [using Eq.
(B1)]. Note that in our case where the dominant inter-
action binding energies are taken to be the same, v’ = u
(motivated by the GQAI experiments), we expect all two-
particle bound states (i.e., chain-chain and chain—extra
site) to be roughly in the same ballpark, while the precise
band locations depend on further dynamical details from
the hopping energy.

We finally consider the case (Nyuy, Ni7) = (0,2). There
are Ly.(Ly. — 1)/2 such states where both particles are on
the 1’ sites. These states all have energy 0 and are marked
blue in Fig. 15(a). They are not important in our consider-
ations below, which focus on the bottom of the spectrum
near where the 2-string bound states reside.
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b. Small w', general w: Qualitative considerations

We now add nonzero but small w'. The w’ term does not
act within the above sectors but connects the (Nyuy, Ni/) =
(2,0) and (1,1) sectors [and also the (1,1) and (0,2)
sectors]. This roughly explains why in Figs. 15(a)-15(d),
outside of the (—2w,2w) energy window the (2,0) sec-
tor states are not strongly affected for w' = 0.1 and w' =
0.5 (even all the way to w' = 1), except close to the
boundary of this window and to the bound states from
the (Niu2,Ny) = (1,1) sector. The latter bound states
(which we refer to as chain—extra-site bound states) couple
with the bound states from the (Nyu, Vi) = (2,0) sec-
tor (chain-chain bound states) and with the bottom of the
two-particle continuum from the (N, Vi) = (2,0) sec-
tor. There are some additional features in the middle of the
spectrum that arise with increasing w’ but these are not of
direct interest to us and are not studied further.

From now on, we focus on the 2-string bound states. One
of the effects of adding w’ on the chain-chain bound states
is that they can lower their energy by virtual processes
where one of the particles hops off the chain onto a 1’ site
and back. This lowering of the energy is roughly w'? /u and
is visible in Figs. 15(b)—15(d) for the red 2-string bound
state bands. On the other hand, the chain—extra-site bound
states, in the limit of very compact bound states, do not
have this mechanism and to this order their energy would
remain unchanged; such a tendency is visible in Figs.
15(b)-15(d) for the green 2-string bound states. However,
the chain—extra-site bound states can hybridize with the
chain-chain bound states with amplitude O(ww’ /u), partic-
ularly when their energies are close, which happens near
the wave vector 7 at w = 0 and moves to smaller wave
vectors as w' increases and the chain-chain bound states
move to lower energies. This hybridization with the mov-
ing central location is visible in the progression in Figs.
15(a)-15(d) as we increase w', while for w' = 1 the descen-
dants of the chain—extra-site bound states no longer over-
lap with the descendants of the chain-chain bound states.

From the figure, we see that the predominantly green
2-string bound states survive for momentum sufficiently
away from zero even for w' = 1, while they are in the con-
tinuum of states for momentum close to zero and will not
survive in the thermodynamic limit. For the predominantly
red 2-string bound states, only states in the upper band with
momentum close to zero enter the continuum spectrum
and will not survive in the thermodynamic limit (although
their decay rate is likely very small), while the rest of this
upper band and all of the lower band 2-string bound states
clearly survive in the thermodynamic limit protected from
the continuum by gaps at the corresponding momentum.

c¢. Perturbative treatment for w,w' < u,u’

Some of the above qualitative arguments can be made
more precise by taking the limit w, w' < u,u/, which we

discuss here for completeness. In the absence of the hop-
pings, the lowest-energy states are the following dimer
states specified by the particle locations on the full system
(chain plus extra sites), and depicted in Fig. 1(c):

Dp(R) =[(R, 1), (R—1,2)], en=—u (B7)
Du(R) =[(R,1), R, 1)], em=—u. (B3)

In the second-order perturbation theory, first we have diag-
onal corrections, which for later convenience we write in
the ket-bra notation for the dimer states associated with
location R as defined above:

2 2 + /2
L = -2 ST Dy R DB
£=LII

2

2w
— 7 |Dm (R)) (DHI (R)|

Here, we explicitly see the claimed lowering of the ener-
gies of the chain-chain dimers Dy, Dy via virtual fluctua-
tions involving w’ hops, while no such lowering is present
for the chain—extra-site dimers Dyyy.

Next, in the same order, the chain-chain dimers can hop
along the chain with amplitude w?/u. Explicitly, in the
above notation,

2
Hhop = _W; Z [1Du(R)){(Di(R)| + H.c.
R

+ |Di(R)Y{Dp(R+ 1)| +H.el].

Note that the chain—extra-site dimers cannot hop by them-
selves at this order [for u # ', such hopping can appear
only at O(ww* /u")].

Finally, for «' = u, which we assume from now on,
where we need to do degenerate perturbation theory
involving all Dy(R), Dy(R), and Dyp(R), the Dyp(R) can
convert to Dy(R) or Dyj(R) and vice versa:

/

BT ®) = =22 [1Dy(R) (D (R)| + Hc.

+ [Dn(R)) (Dm(R)| + H.c.].

Putting everything together, we have an effective Hamilto-
nian:

"=l ) e +ishu®]. (B9)

By going to momentum space, we obtain a 3 x 3 matrix
that is easy to diagonalize numerically and we explore the
evolution of the three bands, e.g., as one varies w' rela-
tive to w. The results are shown in Figs. 15(e)—15(h) and
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capture roughly the behavior seen for the full problem and
discussed qualitatively earlier: As w'/w increases from 0
to 1, the chain-chain dimer bands move to lower ener-
gies, while at the same time the higher-energy one of them,
in particular, hybridizes significantly with the chain—extra-
site dimer band, as seen in the mixing of the colors of these
bands in Fig. 15. This model does not capture all of the
detailed features seen in the figure, e.g., the apparent very
small gaps between the two lowest bands at £ = £, pre-
sumably because of an inaccurate treatment of the sizable
w used in the figure; however, interestingly, at w' = w it
gives a completely flat topmost band capturing the nearly
flat uppermost 2-string bound state band in the figure. We
do not consider further details here since, in any case,
this model does not include the eventual (small) overlaps
with the two-particle continuum, where we have to use the
full-problem ED results.

3. Three particles
a.w =0, general w

The eigenstates can be divided into four main groups,
defined by specifying the number of particles on the chain
Nz and on the extra sites Ny/:

We first consider the case (Ny2,Ny) = (3,0). There
are Lyc(2Ly. — 1)(2Lyc — 2)/3 such states and they are
marked red in Fig. 16(a). This sector is equivalent to the
unperturbed integrable model on the original chain. The
corresponding states in Fig. 16(a) represent simple folding
of the earlier chain spectrum to the new Brillouin zone. We
are primarily interested in the lowest-energy states form-
ing two bands of the 3-string bound states representing the
single band of these in the original chain, with dispersion
given by Eq. (B2), folded to the new Brillouin zone.

We now consider the case (Nyup,Niv) = (2,1). There
are Lﬁc (2Ly. — 1) such states and they are marked green
in Fig. 16(a). These can be further subdivided into sub-
groups labeled by a location (R, 1") of the one particle
on the 1’ sites, which remains completely localized under
such Hamiltonian. The spectra are identical for different
Ry; each energy is hence repeated L, times in the full spec-
trum and gives a flat band in the energy versus momentum
plot in Fig. 16(a).

For a fixed Ry, we obtain a problem with two parti-
cles on the original chain but with an attractive “impu-
rity potential” (—u’) < 0 on one site jy corresponding to
(Ro, 1). Away from the impurity, we have the two-particle
continuum (covering energy window of [—4w,4w] =
[—4,4] for w = 1) as well as the band of 2-string bound
states (energy window of [—u — 4w?/u, —u] = [—4, —5]
for u=4w used here). The attractive impurity will
lead to the appearance of some localized states out of
these.

We are mainly interested in the effect of the impurity on
the 2-string bound states. We can roughly model these as

dimers [covering sites (j,j + 1)] hopping on the original
chain [hops (j,j +1) <+ (G + 1,j +2)] with amplitude
Wdimer and background energy €gimer, Which we can esti-
mate by fitting the exact dispersion of the 2-string bound
states in the integrable model, Eq. (B1), as

€2.string (kchain) = Edimer - 2Wdimer Cos(kchain)’ (B 1 0)

2 2
€dimer = —U — zla Wdimer = W_ (B11D)
The dimer feels the attractive impurity at j, for two of
its positions, (jo — 1,jo) and (jo,jo + 1), and the problem
is mathematically equivalent to a point particle hopping
on a lattice with potential (—u) on two neighboring sites.
On an infinite lattice and in this model of a rigid dimer,
we can solve analytically for exponentially localized states
and obtain energies

dimer

- /
€loc.dimer, sym. = €dimer — ¥ — Wdimer — ——— >
U+ Wdimer

2
Wiimer

- ’
€loc.dimer, anti-sym. = €dimer — U + Wdimer — ; .
U — Wdimer

The first localized state is always present and is symmet-
ric around jy, while the second localized state is present
if 4’ > 2Wgimer (Which is satisfied in our problem) and is
antisymmetric around jy. These localized dimer states can
be viewed as three-particle bound states where one of the
particles resides on the extra sites; we will often refer to
these also as 3-string bound states. The two lowest green
flat bands in Fig. 16(a) [close to the red weakly dispersive
bands of the 3-string bound states from the (N, Ny/) =
(3,0) sector] correspond to these states viewed as bands
once we include all the different Ry. Estimating wyimer =
0.25 from the 2-string dispersion, we can estimate the split-
ting of about 2wgimer & 0.5, which is somewhat larger than
the actual splitting of ~0.25 between the corresponding
green bands in the figure; the inaccuracy is likely due to
crude modeling of the 2-string bound state by the above
dimer picture.

We will not consider any other localized states in this
group, which will be below the delocalized continuum
of states but significantly above the three-particle bound
states of interest. Of interest for connecting with the Flo-
quet case are the highest-energy states in this group, which
are near the energy of approximately 4. If we take the
Hamiltonian spectrum and multiply it by “time” 7 /6 as
a rough estimate to connect with the GQAI Floquet exper-
iment as done in the main text, the 3-string bound states
from the sector (Nuz, Ny7) = (3,0), upon “folding” mod-
ulo 27 in the Floquet quasienergy space, would land
among the states that are in the window of approximately
[3,4] in the Hamiltonian spectrum in this figure. The nature
of these states from the (N, Ni/) = (2, 1) sector is as fol-
lows: there is one particle on 1’ and two particles on the
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chain in scattering states staying away from the 1’ particle
and from each other. We expect that matrix elements of the
w’ perturbation between these and the 3-string bound states
from the (N2, Ni7) = (3,0) sector are very small, since
the w’ term would break such a 3-string state into a parti-
cle on a 1’ site and a nearby dimer, and both the proximity
to the “impurity” and the proximity of the two particles
on the chain has low probability in the described scatter-
ing states. In Sec. V, we use such characters of the states
involved to obtain scaling of these matrix elements with
L. These matrix elements are not relevant at all in the
Hamiltonian problem, where the 3-string bound states and
these states are separated by a large energy difference, but
they are important for understanding the robustness of the
3-string bound states in the Floquet problem. As discussed
further in Sec. V, the density of states is also an impor-
tant factor in estimating the decay rate of the bound states,
requiring a quantitative study as presented in the main
text.

We now consider the case (Nyup,Ni/) = (1,2). There
are lelc(Luc — 1) such states and they are marked blue
in Fig. 16(a). Here, two particles are immobile on some
1’ sites—say, (Ry,1") and (R, 1’)—while the remaining
particle is moving on the chain and sees the immobile
particles as impurity potentials (—u’) at jo and j, cor-
responding to (Rp, 1) and (f?o, 1). Away from the impu-
rities, we have free propagation with the band cover-
ing energy window [—2w, 2w], while the impurities will
localize some states out of this band. Since u’ is suf-
ficiently large, we expect that the two impurities will
lead to two localized states out of the band, the ener-
gies of which will depend somewhat on specific relative
position of the impurities but will be independent of the
overall shift of Ry, and Ry, leading to flat bands. These
localized-state energies are visible in the spectrum around
energy approximately —4.5. Neither of the blue states are
important for understanding the 3-string bound states in the
Hamiltonian and the Floquet cases.

We finally consider the case (N, Ni7) = (0, 3). There
are Ly.(Lyc — 1)(Lyc —2)/6 such states and they are
marked black in Fig. 16(a). These have zero energy and
are not of much interest for the study of the 3-string bound
states.

b. Small w', general w: Qualitative considerations

We now focus solely on the 3-string bound states. One of
the important effects of adding w’ seen in Fig. 16 is that the
energies of the 3-string states the particles of which reside
on the chain go down with increasing w’, while the ener-
gies of the 3-string states that have one particle on the extra
sites remain essentially unchanged. We can understand this
simply as follows. For the former 3-string states, which we
will refer to as chain 3-string states [see also the pictures
for 71 and Ty in Fig. 1(d) in the tight-trimer limit], the

nonzero w allows virtual fluctuations involving hopping
of one of the particles off the chain onto a nearby extra site
and back, leading to lowering of the energy. On the other
hand, for the latter 3-string states, which we will refer to
as dimer-1’ 3-string bound states [see also the pictures for
T and Ty in Fig. 1(d)], such virtual fluctuations are not
available when the dimer is tightly bound to the particle on
the 1’ site. The antisymmetric dimer-1’ 3-string bound state
[schematically, an antisymmetric combination of 7y and
Trv; see Sec. B 3 ¢ for more details] is separated from the
chain 3-string bound states already at w' = 0 and the sep-
aration only increases with adding w'. From the evolution
in Figs. 16(a)-16(d) and the essentially unchanged bright
green color of the corresponding band even at w' = w, we
conclude that the character of this state remains essentially
unchanged. On the other hand, the symmetric dimer-1’
3-string bound state energy at w' = 0 is close to the low-
est energy of the upper chain 3-string band near £ = +x
and as the latter moves down upon increasing w/, the two
bands overlap and mix, particularly near momentum where
their energies are close. By the time w' reaches a value
of 0.5, the two bands are already separated and stay sepa-
rated afterward, also pushing a bit away from each other by
level repulsion. We can then conclude that the darker-green
band is roughly the symmetric dimer-1" 3-string bound
state with a small admixture of fluctuations to the chain
3-string bound state. Both green bands remain essentially
flat, since moving such a dimer-1" 3-string bound state
requires at least four w-hops and two w'-hops, i.e., high-
order perturbation theory in the hoppings relative to the
interactions.

Finally, when the chain 3-string bound states are well
separated from the dimer-1’ 3-string bound states, we can
understand the effect of w on the former in more detail
as follows. We start with the picture of a trimer hopping
on the chain. In the presence of the extra sites, the trimer
has two inequivalent positions: one where both ends of the
trimer are over extra sites and the other where the middle
of the trimer is over an extra site. In the former case, vir-
tual fluctuations lower the energy of the trimer by 2w’ /u,
while in the latter case they lower the energy by only w'? /u.
Thus, we can model the effect of small w' on the trimer
as a potential —3w’?/(2u) 4+ (—1Y w?/(2u). This has both
a uniform part shifting everything down in energy and a
staggered part that will open a gap of roughly w?/u at
+7/2 in the original chain Brillouin zone. Folded to the
new Brillouin zone, we have a picture roughly similar
to the two red bands with the gap near the correspond-
ing Brillouin-zone boundaries. The above picture gives an
estimate of the gap between the bands as w?/u = 0.25
at w =w =1, u=4, which is somewhat larger but is
still fairly close to the observed gap in Fig. 16(d). The
inaccuracy is likely due to approximations when model-
ing the 3-string states by rigid trimers and also due to
a larger admixture of the dimer-1’ in the upper band, as
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seen in the difference of the colors between the upper and
lower red bands, which is not treated in the above trimer
model.

To summarize, in this Hamiltonian system, besides the
exact numerical results showing stable 3-string bound
states well separated from the continuum, we also have
a fairly complete qualitative picture of the 3-string bound
states. Note that even though we expect no decay of the
3-string bound states at w' = 1 similar to the integrable
w' = 0 case, there are still significant quantitative differ-
ences in the 3-string propagation properties. For example,
the maximal band velocity that determines the propagation
wave front is significantly smaller in the perturbed case.
We expect similar quantitative effects also for (approxi-
mate) three-particle bound states in the Floquet system,
which could be tested in experiments.

c. Perturbative treatment for w,w < u,u’

Some of the intuition including w' has perturbatively
relied on the pictures of tightly bound dimers or trimers.
This is formally valid in the regime of small w < u, and
for w,w' <« u,u’ we can perform the corresponding cal-
culations systematically, which we do here for complete-
ness. In the absence of the hoppings, the lowest-energy
states are the following trimer states specified by the par-
ticle locations on the chain-plus-extra-sites system [see

Fig. 1(d)]:

TT=[R,1),(R,2),R+1,1)],
TH = [(R - 1’2)9 (Ra 1)9 (R72)]a
TIH = [(Ra ll)a (Ra 1)> (Ra 2)]7

o) _ .
€11 = —2u;

Tv=[R—-1,2),RD, R, 1], ey =—u—u.

The states 71 and 77 form a degenerate manifold and so do
T and Tiy. The corresponding two manifolds are sepa-
rated in energy if u’ # u and would be treated separately in
this case. On the other hand, they are degenerate if ' = u
and should be treated together in this case.

Adding small w and w/, the first perturbative corrections
appear in quadratic order. First, there are diagonal correc-
tions appearing from virtual processes where one of the
particles hops away from the other two and then comes
back, obtained by simply examining available such virtual
moves:

off 2w? 2w? off 20?2 w?
hII:____’ hIIII: - T 5.
’ u u ’ u 2u
2
heff — heﬁ — _W_ _ W2
1ILIIT V,IV y Ut

Next, at this order, the above Ty;; and Tiy at the same R
get connected with matrix elements

W2

heff heff )
u+u

uLv — frvin = —

The Ti-Tiv block is diagonalized by considering symmet-
ric and antisymmetric combinations, obtaining

2 2 2
o W W e W
s,s - .

u u+u u

Finally, when ' = u, which we assume from now on, we
also need to consider connections between Ty and 7T and
Tiv, which appear at this order:

/

eﬂ‘_eﬂ‘_eﬂ‘_eﬂ“_ww
hn,m = hm,n = hH,IV = hIV,II = __2 y
/
ww
eff __ geff _ eff _ geff __
= hs=hgy=——"7%> h=h;=0.
«/Eu

We see that at this order, 77 is not coupled with the rest of
the states and has the energy

2w? 2w?
€6 =—-2u———
u u

(B12)

Next, the antisymmetric combination of Ty and Ty also
decouples and has the energy

W2

€= —2u— —. (B13)
u

Finally, the states 71y and the symmetric combination of
T and Ty hybridize, producing energies

) 2w w? n w2\? 4 ww’ \ 2

€77 = — _——_— _— _— .

T 7 T AW
(B14)

The relative location of the energies of these states is in
agreement with the preceding qualitative treatment utiliz-
ing the integrable model results, modeling 2- and 3-string
bound states as dimers and trimers and the relevant «’ inter-
actions as impurity potentials and adding w’ perturbatively.
On the other hand, the results in this subsection are com-
pletely systematic for small w and w’ and the character of
the states becomes particularly simple in this regime.

At this order, the trimer states are immobile and the
corresponding energies €j, €,, and €y + are shown as flat
bands in Figs. 16(e)-16(h) for varying w’, capturing rather
well the overall locations of the exact three-particle bound
states from ED. At the next order (cubic in w,w’), the
trimer states residing entirely on the chain start hopping
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with amplitude w?/u?> [compare with Eq. (B2) expanded
to this order], making the corresponding bands disper-
sive. On the other hand, the trimers with a particle on the
extra sites are not mobile by themselves at this order but
other processes become available, and we will not con-
cern ourselves with deriving the full effective Hamiltonian
for the bound states and treating the dynamics that arise
systematically.

APPENDIX C: OVERVIEW OF THE FLOQUET
SPECTRUM AT ¢’ =0

In Fig. 17, we plot the inverse participation Z;— in the
k = 0 sector of the Floquet eigenstates of the model with
¢=¢' =2n/3, 0 =m/6, 0’ =0. This gives us a finer
characterization (and for larger sizes) of the k£ = 0 states
such as in the /6 = 0 panel in Fig. 2 and a wider and
more quantitative view of the continuum states than in
Fig. 5, which is useful for the discussion of the perturbation
theory around this point in the main text.

Plotting Zj—o, Zi=0Luc, and Zj—oL?_ for two different val-
ues of the system size, we can easily recognize the different
characters of the Floquet eigenstates: (i) three-particle
bound states, which have the same Z;_ irrespective of L;
(ii) bands of 2 + 1 continuum states, having Z;_¢ L;C';
and (iii) bands of 1+1+1 continuum states, with Z;_y
L2

1. Bound states

In Fig. 17 we see four bound states with quasiener-
gies € ~ —2.23,-2.02,—1.92, —1.81. Note that these are
the same bound states studied in Sec. V and labeled n =
0,1,2,3 there (the values of the quasienergies reported
there differ from these by an overall 27 shift). Two of
them (in red) belong to the sector with (N, Ny/) = (3,0)
and are protected by the integrability. The other two (in
green) are in the sector with (N2, Nir) = (2,1): In this
case, since the particle on the 1’ site cannot hop, it acts
as an impurity. These two states then correspond to two-
particle bound states on the chain localized in the potential
of the impurity, thus effectively giving three-particle bound
states. We remark that the model is not integrable in this
sector because of the impurity, so the bound states are not
protected by simply appealing to the integrability [59,60].
While the bound state with € &~ —2.23 is protected by a
gap (with respect to states in the same sector), the one
with € &~ —1.92 lies inside of the 1+ 1 4+ 1 continuum.
Its stability cannot be attributed to any simple mechanisms
but similar studies of integrable models with an impurity
have shown the existence of bound states in the contin-
uum, even if the impurity breaks the integrability. We
leave the question of the stability of this bound state for
future work. We note, however, that the IPR computed for
different system sizes shows much larger fluctuations for
this state than for the other bound states (see the inset in

wx x_wnx 10305

O304

10t ¢

0" Lur'

100 ¢

a
07U E ey, Sl
108 L
25102}
i
S
:'.’If"»“.'! PR
100 L . .
=3 -2 - : " 2 ,
€
FIG. 17. The IPR in the £ = 0 sector for Floquet eigenstates

with quasienergy € € [—m, ), with parameters ¢ = ¢’ = 27/3,
6 = 7/6,and 6’ = 0. The three panels show the same data multi-
plied with different powers of L,.. The red, green, and blue colors
are used for the sectors (NVy, Ni/) = (3,0), (2,1), and (1,2),
respectively. The light and dark colors are for the different sys-
tem sizes L, = 30 and L, = 60, respectively. The inset shows
T—o of the bound state with € ~ —1.92 as a function of the sys-
tem size Ly.. The values for the other bound states have much
smaller fluctuations with L.

Fig. 17). These fluctuations may be attributed to a weak
hybridization with states in the continuum. The same fluc-
tuations can be observed in the matrix elements V,; studied
in Sec. V.

For completeness, we note that some states in the
(N1, Ny) = (1,2) sector (in blue), with a quasienergy
around € ~ 2.2, also exhibit size-independent Z;_¢, even
though they are not three-particle bound states in the same
sense as above. In this sector, two of the particles are
completely localized on the extra sites and then serve as
impurity potentials for the third particle that resides on the
chain. This particle can be either in an extended state on
the chain, giving Zy— ~ L_.! (these states show collapse
in the Z;—¢L, panel in Fig. 17), or it can be localized on
one of the impurities giving size-independent Z;_; it is the
latter states, the details of which also depend on the relative
location of the two impurities, that show up near € ~ 2.2.
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2. Continuum states

In Fig. 17, we observe three types of 2 4 1 continuum
states that show collapse in the Z;_¢L,. panel. First, we
find a set of states in the (Ny, Ni/) = (3,0) sector (red)
with quasienergies from 0.8 to —2.6 + 2m. Another set
of states is in the (Nyup, Ny7) = (2, 1) sector (green), with
quasienergies from 1.9 to —3 + 2x: these can be of two
subtypes, one where the two-particle bound state has one
particle localized on an extra site (the third particle roams
on the chain), and the other where the two-particle bound
state roams on the chain (the third particle is localized
on an extra site); we do not try to distinguish these here.
Finally, most of the states in the (N, Ny/) = (1,2) sector
(blue) with quasienergies from —1 to 1 show collapse in
the Zy—o Ly panel: more precisely, these states are not 2 + 1
states but instead have two particles completely localized
on the extra sites and the third particle extended around the
chain, which we have already mentioned in the previous
subsection.

Turning to the states that show collapse in the Zy—oL?,
panel, we see the 1 4+ 1+ 1 continuum, which spans the
full quasienergy range in the (Nuy, Ny) = (3,0) sector
(red), and a range of quasienergies from —2.1 to 2.1
in the (Ny, Ni) = (2,1) sector (green) (strictly speak-
ing, the latter are not 1 + 1 + 1 continuum but are from
flat bands obtained by constructing momentum eigen-
states from degenerate states where one of the particles is
completely localized on an extra site, while the other two
are in extended states on the chain).

Note that in the quasienergy range from 1.2 to 2, we find
many eigenstates in the (Njuz, Niv) = (2,1) sector with
values of Z;_o that are intermediate between the 2 + 1 and
1 + 1 4 1 continuum: since this sector is not integrable, the
states in the 2 4+ 1 continuum can decay in the 1 + 1+ 1
continuum (if they have the same quasienergy), so the
scattering states will be a mixture of 2+ 1l and 1 + 141
states. We have not tried to understand these states in any
detail, since they are far from the three-particle bound
states of main interest to us.
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