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Integrable models are characterized by the existence of stable excitations that can propagate indefinitely

without decaying. This includes multimagnon bound states in the celebrated XXZ spin-chain model and its

integrable Floquet counterpart. A recent Google Quantum AI experiment [A. Morvan et al., Nature 612,

240 (2022)] realizing the Floquet model has demonstrated the persistence of such collective excitations

even when the integrability is broken: this observation is at odds with the expectation of ergodic dynamics

in generic nonintegrable systems. Here, we study the spectrum of the model realized in the experiment

using exact diagonalization and physical arguments. We find that isolated bands corresponding to the

descendants of the exact bound states of the integrable model are clearly observable in the spectrum

for a large range of system sizes. However, our numerical analysis of the localization properties of the

eigenstates suggests that the bound states become unstable in the thermodynamic limit. A perturbative

estimate of the decay rate agrees with the prediction of an eventual instability for large system sizes.

DOI: 10.1103/PRXQuantum.5.010317

I. INTRODUCTION

In recent years, quantum simulators have become a

powerful tool to investigate the nonequilibrium dynam-

ics of quantum many-body systems. Experiments based

on many different platforms now have the capability to

prepare a quantum state with good fidelity and evolve it

almost unitarily, preserving its coherence for sufficiently

long times to observe its interacting dynamics [1–6]. These

advances have sparked a considerable interest in the theo-

retical investigation of the approach to thermal equilibrium

in isolated quantum many-body systems [7–13]. At the

same time, the available quantum simulators have inspired

the search for “unusual” behaviors, where a system does

not reach thermal equilibrium. A paradigmatic example is

the phenomenon known as quantum many-body scarring,

which was first discovered in an experiment with Rydberg-

atom arrays [14]: it was found that certain quantum states

exhibit long-lived nonergodic dynamics, while other states

instead show fast thermalization. Following the initial dis-

covery, numerous theoretical studies have been conducted

to elucidate the conditions under which quantum many-

body scars occur and to develop a theoretical framework
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that can explain and predict such phenomena [15–21].

Other examples of exotic dynamical phenomena that have

been observed in quantum simulators include, e.g., Hilbert-

space fragmentation [22–24], dynamical phase transitions

[25–27], time crystals [28–34], and noise-resilient edge

modes [35–41].

Another puzzle for our understanding of quantum

many-body dynamics has recently been observed in a

Google Quantum AI (GQAI) experiment [42,43] based on

superconducting circuits hosting microwave photons. The

dynamics of the photons, which can hop between neigh-

boring sites of a chain shown in Fig. 1(a) and interact with

each other, is described by an integrable quantum circuit.

The experiment showed the presence of bound states of up

to five photons: these are exact eigenstates of the model

predicted by the Bethe ansatz [44], where the photons are

nearly adjacent and form a single collective excitation. The

bound states observed in the study are enclosed in the con-

tinuous spectrum of multiparticle states, i.e., eigenstates

of (mostly) distant photons that can scatter off each other.

Even in the absence of a gap, the conservation laws of the

integrable model protect the bound states from mixing with

the underlying continuum. The work [42] demonstrated a

remarkable agreement of the experimental results with the

analytical solution.

The integrable circuit was then perturbed by coupling

every other site of the chain with additional sites as shown

in Fig. 1(b), thus breaking the integrability of the model. In

the absence of any conservation laws that protect them, the

exact bound states of the unperturbed model are expected
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FIG. 1. (a) A one-dimensional (1D) chain hosting the inte-

grable Hamiltonian and Floquet systems. (b) A 1D chain with

extra sites forming a comb in the GQAI experiment, with the

comb teeth connected to every other site of the original chain;

a unit cell and the labeling of sites in each cell is shown. (c) A

schematic of distinct two-particle bound states, which become

dimers in the very-strong-binding limit, in a unit cell on the

comb; these give rise to three bands in momentum space. (d)

Distinct three-particle bound states, schematized as trimers, in a

unit cell on the comb, producing four bands in momentum space.

to quickly decay in the continuum of multiparticle states.

Nevertheless, the experiment showed the persistence of the

bound states after many cycles of the circuits, even for

fairly large values of the perturbation.

The origin of this robustness cannot be easily attributed

to any known mechanism for slow relaxation. Thus, we

do not expect the usual quantum many-body scarring

mechanisms to be operative in our systems with O(1) inte-

grability breaking and there is no evidence of even more

dramatic Hilbert-space fragmentation phenomena. Among

other possibilities, the rigorous theory of prethermalization

[37] applies only for perturbing much more special initial

Hamiltonians and does not apply for perturbing generic

integrable systems as in our case (except in the regime with

dominant on-site terms). One could contemplate a recently

discussed mechanism of weak integrability breaking of

integrable models, where special perturbations effectively

break the integrability only at higher order [45–47]. How-

ever, our experience with this mechanism suggests that

it would require more complicated special perturbations

than in the experiment (and it would approximately pre-

serve features in the entire spectrum and not just some

specific states). While we cannot rule out such interesting

and unusual explanations, we are led to consider perhaps

simpler mechanisms having to do with particular quan-

titative properties of the specific system. Thus, an early

example in Ref. [48] of unusual thermalization in a nonin-

tegrable model for some initial states has been explained in

Ref. [49] by the proximity of these states to the boundaries

(ground or ceiling states) of the many-body spectrum; i.e.,

the dynamics were governed by being in a “special corner”

of the many-body Hilbert space away from the eigenstate-

thermalization-hypothesis- (ETH) like physics expected in

the middle of the many-body spectrum.

While for Floquet systems there is no notion of ground

or ceiling states and hence no such proximity can be

invoked, we note that the circuit and setup that mod-

els the experiment in Ref. [42] is not a truly many-body

system. The puzzling robust bound states were observed

for a system with a fixed number of photons (N = 3)

and the Hilbert-space dimension scales only polynomially

with the system size, not exponentially. It is reasonable

to expect that in such few-body models, the decay is not

as fast as for typical eigenstates in the middle of a truly

many-body spectrum. Therefore, in order to understand

and characterize the robustness of the bound states, it is

important to perform a quantitative study for increasing

system sizes and to contrast the persistence of the bound

states against the scaling expected for similar few-body

models.

In this work, we examine the spectral properties of

the perturbed model in this few-body regime using exact

diagonalization and physical arguments. We compare the

spectrum of the circuit with that of the related Hamilto-

nian system under corresponding continuous-time dynam-

ics. First, we find that in the closely related Hamiltonian

case, the N = 3 bound states are in fact protected by a

gap and persist in the thermodynamic limit. This is also

true for O(1) integrability-breaking perturbations for (a

range of) serendipitous choices of parameters, including

the Hamiltonian parameters reasonably related to those in

the experiment. On the other hand, in the case of the Flo-

quet circuit, the bound states are “folded” and overlap with

the multiparticle continuum in the corresponding Floquet

spectrum, but for the values of parameters studied in the

experiment and N = 3, this folding only affects the bound-

aries of the Hamiltonian spectrum. Because of this and for

other quantitative reasons, despite the folding, we clearly

detect isolated bands in the Floquet spectrum that cor-

respond to the unperturbed bound states, even for large

values of the perturbation. Our numerical analysis sug-

gests, however, that these bound states eventually become

unstable in the thermodynamic limit. To argue this, we

study the IPR in the center-of-mass frame, the scaling of

which with the system size can distinguish a bound state

from a “scattering” (i.e., unbound) state. We show that the

IPR of the bound states decreases with the system size,

indicating a decay in the thermodynamic limit. However,

the decay is very slow: we attribute the slowness to the

impossibility in our parameter regime for a three-photon

bound state to resonantly decay into a scattering state of

a two-photon bound state and a single photon; the three-

photon bound state can only decay into a scattering state

of three isolated photons, a process with a very small

(but nonzero) matrix element. Our conclusions are further
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corroborated by a perturbative analysis of the matrix ele-

ments and density of states, which shows a small but finite

decay rate in the thermodynamic limit.

The paper is structured as follows. In Sec. II, we intro-

duce the integrable models (Hamiltonian and Floquet cir-

cuit) and the nonintegrable perturbation. In Sec. III, we

analyze the spectra of the Hamiltonian and the Floquet cir-

cuit in the sectors with N = 1, 2, 3 photons, for different

values of the perturbation strength. In Sec. IV, we study the

properties of the three-particle bound states in the Floquet

circuit for increasing system sizes and show their eventual

instability in the thermodynamic limit. In Sec. V, we study

the matrix elements and density of states in the unper-

turbed model, in order to explain the instability and derive

a perturbative estimate of the decay rate. We conclude in

Sec. VI with suggestions for more experimental tests and

broader prospects.

II. HAMILTONIAN AND FLOQUET MODELS

We will focus on a qubit model that evolves under (i) a

static Hamiltonian or (ii) a Floquet circuit. In both cases,

the dynamics that we consider conserve the total number of

qubits in the state “1” (we will refer to them as “particles”)

and can be expressed in terms of the two-qubit operator

hj ,k(w, u) acting on neighboring sites:

hj ,k(w, u) = −w(|10〉〈01|j ,k + H.c.) − u|11〉〈11|j ,k, (1)

where w is the hopping amplitude between sites j and k

and u is an interaction (attraction energy for u > 0) when

particles occupy these sites.

The Hamiltonian and the Floquet circuit that we will

consider are perturbations of an integrable Hamiltonian

and a Floquet model, respectively. We will first introduce

the integrable models (Secs. II A and II B and then consider

the nonintegrable perturbation (Sec. II C).

A. Hamiltonian: Integrable case

The integrable chain Hamiltonian with periodic bound-

ary conditions (assumed throughout) is simply

H0 =
∑

j

hj ,j +1(w, u). (2)

The Hamiltonian H0 can be equivalently written in terms

of spin-1/2 operators, defined as Sz = (|1〉〈1| − |0〉〈0|)/2,

Sx = (|1〉〈0| + |0〉〈1|)/2, Sy = (−i|1〉〈0| + i|0〉〈1|)/2:

H0 = −
∑

j

[

2w(Sx
j Sx

j +1 + S
y
j S

y

j +1) + uSz
j Sz

j +1

]

+
∑

j

u(Sz
j − 1/4), (3)

which is the XXZ model in the uniform magnetic field.

B. Floquet circuit: Integrable case

An integrable circuit, also known as the Floquet XXZ

model, can be defined using the following two-qubit gates:

exp
[

−ihj ,k(w, u)t
]

= fSim(θ = wt, φ = ut)j ,k, (4)

where fSim is the two-site unitary gate using the same

notation as in the GQAI experiment [42]. The gates are

applied to even-odd and odd-even pairs of sites in a

brick-wall pattern. The unitary operator that describes the

evolution over a single cycle is defined as

U0(θ , φ) = Ueven(θ , φ)Uodd(θ , φ), (5)

Ueven(θ , φ) =
∏

j

fSim(θ , φ)2j ,2j +1, (6)

Uodd(θ , φ) =
∏

j

fSim(θ , φ)2j −1,2j . (7)

The integrability of the model has first been demonstrated

in Ref. [50], and a Bethe-ansatz solution has been obtained

in Ref. [44]. The bound states of the model, that have been

analytically studied in Ref. [44], have then been detected

in the GQAI experiment [42].

C. Nonintegrable perturbation

In Ref. [42], the integrable model was perturbed by

adding sites as in Fig. 1(b). The additional sites are con-

nected in the shape of “comb teeth” to every other site of

the original chain. To label the sites in the new geome-

try, we use a composite index (R, α), where R labels the

unit cell and α ∈ {1, 2, 1′} labels the three sites of each unit

cell. In this new geometry, we can write perturbed models

for both the Hamiltonian and the Floquet case.

The Hamiltonian is given by

H =
∑

R

[

h(R,1);(R,2)(w, u) + h(R,2);(R+1,1)(w, u)

+ h(R,1);(R,1′)(w
′, u′)

]

. (8)

The Floquet circuit is similarly obtained by applying the

two-qubit gates on the three sets of pairs:

U(θ , φ, θ ′, φ′) = Ueven(θ , φ)Uodd(θ , φ)Uteeth(θ
′, φ′), (9)

Ueven(θ , φ) =
∏

R

fSim(θ , φ)(R,1),(R,2), (10)

Uodd(θ , φ) =
∏

R

fSim(θ , φ)(R,2),(R+1,1), (11)

Uteeth(θ
′, φ′) =

∏

R

fSim(θ ′, φ′)(R,1),(R,1′). (12)

When w′ = 0 (θ ′ = 0 in the Floquet case), the particle

number on the original chain is conserved (denoted by
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FIG. 2. The spectrum of the Hamiltonian model (left side in each two-panel group) and the Floquet circuit (right side) in the

one-particle (N = 1, top panels) and two-particle (N = 2, bottom panels) sectors. The spectra are shown for comparable values of

parameters (w = 1, u = u′ = 4, θ = π/6, and φ = φ′ = 2π/3) and for increasing values of w′/w and θ ′/θ , taken to be the same in each

two-panel group. The Hamiltonian energies E are multiplied by an appropriate time-evolution factor of (−π/6) for an approximate

match to the Floquet-circuit step. These still fit within a 2π period and hence can be compared directly with the Floquet quasienergies ǫ

without requiring any folding. For the unperturbed models with w′/w = 0 and θ ′/θ = 0, the different colors represent states belonging

to different (N1∪2, N1′) sectors, as shown in the legend. For the perturbed models, (N1∪2, N1′) are not good quantum numbers and the

eigenstates can have nonzero components in all the sectors: The color mixing (red and green for N = 1 and red, green, and blue for

N = 2) represents the squares of the norms of the projections of each eigenstate into the sectors [i.e., RGB color (255 × P(1, 0), 255 ×
P(0, 1), 0) for N = 1 and (255 × P(2, 0), 255 × P(1, 1), 255 × P(0, 2)) for N = 2, where P(N1∪2, N1′) is the squared norm of the

projection of the eigenstate in the (N1∪2, N1′) sector]. The system size is Luc = 120 unit cells for N = 1, and Luc = 20 unit cells for

N = 2.

N1∪2) and the particle number on each (R, 1′) site is con-

served. In what follows, we often use more crude grouping

of states labeled by sectors (N1∪2, N1′ ≡ N − N1∪2). In this

case, in the sector with no particles on the 1′ sites, the u′

term does not operate at all and the Hamiltonian (the Flo-

quet circuit) is equivalent to the integrable chain in Eq. (2)

[Eq. (5)] for any u′ (φ′).

III. SPECTRUM COMPARATIVE STUDY OF THE

HAMILTONIAN AND FLOQUET SYSTEMS

In this section, we present the spectra of the Hamiltonian

(8) and of the Floquet circuit (9) for comparable values of

parameters. In particular, for the Floquet circuit, we use the

same parameters as used in the GQAI experiment, namely,

θ = π/6 and φ = φ′ = 2π/3. We expect this model to

resemble the continuous Hamiltonian evolution for a ratio

of parameters u/w = φ/θ = 4 and u′/w = φ′/θ = 4. We

will first discuss the general features of the spectrum in

the system with N = 1, 2, 3 particles. While the spectrum

for N = 3 is rather complicated, we will nevertheless show

some qualitative distinctive features through a comparison

between the Floquet and the Hamiltonian cases. We will

then focus on the N = 3 bound states, by examining a nar-

rower window of the spectrum using some observables that

can specifically signal the presence of bound states.

The spectra as a function of the momentum k are plot-

ted in Fig. 2 in a sector with a fixed number of particles

N = 1, 2: for the Hamiltonian H in Eq. (8), we plot the

spectrum E(k) (rescaled with a factor −π/6 for compari-

son); for the Floquet circuit, we plot the quasienergies ǫ(k),

defined as the complex phases of the eigenvalues of the

Floquet operator in Eq. (9). The spectra are computed for

increasing values of the ratio w′/w = θ ′/θ .

For w′/w = θ ′/θ = 0, the particles on the 1′ sites can-

not hop, so the particle number on the original chain is

conserved and the particle number on each (R, 1′) site is

conserved. In this case, in the sector with no particles on

the 1′ sites, the u′ (φ′) term vanishes (acts trivially) and

the Hamiltonian (the Floquet circuit) is equivalent to the

original integrable chain for any u′ (φ′). The eigenstates in

this sector are represented in red and are analyzed in more

detail in Appendix A for the Floquet case.

For w′/w = θ ′/θ �= 0, the states of the integrable chain

hybridize, with the states having nonzero occupation of

the 1′ sites. As a result, gaps open at k = ±π in the

single-particle spectrum (N = 1). A rearrangement of the
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FIG. 3. The spectrum of the Hamiltonian model (left side in each two-panel group) and the Floquet circuit (right side) in the three-

particle sector (N = 3). The spectra are shown for comparable values of parameters (w = 1, u = u′ = 4, θ = π/6, and φ = φ′ = 2π/3)

and for increasing values of w′/w = θ ′/θ . The Hamiltonian energies are multiplied by the time-evolution factor of (−π/6) and this

gives a window wider than 2π and would require folding to compare with the Floquet quasienergies. For clarity, instead of such

folding of the Hamiltonian spectrum, we show the Floquet-circuit quasienergies repeated with period 2π . The Floquet Brillouin zone

ǫ ∈ [−π , π) is marked with gray dashes on the quasienergy scale. For easier comparison with the Hamiltonian case, copies of the

quasienergy spectrum are shown beyond the first Floquet Brillouin zone. For the unperturbed models with w′/w = 0 and θ ′/θ = 0, the

different colors represent states belonging to different (N1∪2, N1′) sectors, as shown in the legend in the leftmost group. For the perturbed

models, the red, green, and blue color mixing represents the square of the norms of the projections of each eigenstate in the sectors with

(N1∪2, N1′) = (3, 0), (2, 1), (1, 2) respectively; specifically, the color in RGB is (255 × P(3, 0), 255 × P(2, 1), 255 × P(1, 2)). [Note

that when w′/w = θ ′/θ = 0, all states in the sector (0, 3) have zero energy and their color is RGB (0, 0, 0), which is black.] The system

size that we choose is rather small (Luc = 12 unit cells) to avoid overwhelming the plots.

spectrum is observed in the two-particle sector (N = 2):

as the bands in the single-particle spectrum become flat-

ter, some gaps open in the two-particle continuum and

some isolated states appear in the gaps. The bound states

[three isolated bands at the top, corresponding to the three

dimer configurations in Fig. 1(c)] are still observable in

both the Hamiltonian and Floquet cases as w′/w = θ ′/θ is

increased from 0 to 1: while they overlap with the two-

particle continuum for some values of momentum, for

other values they are protected by a gap.

The spectra for N = 1, 2 have very similar features

in the Hamiltonian and Floquet cases. The most notable

difference is the breaking of time-reversal symmetry in

the Floquet case, which makes the quasienergy spectrum

asymmetric for k → −k. When we instead compare the

Hamiltonian and the Floquet spectra in the three-particle

sector (N = 3, Fig. 3), we observe a substantial differ-

ence: since the quasienergies are defined modulo 2π ,

the Floquet spectrum corresponds to a “folded” Hamilto-

nian spectrum. As a consequence, the three-particle bound

states, which are gapped and thus stable in the Hamil-

tonian case, are folded and overlap with the continuum

of the Floquet spectrum and therefore they are not pro-

tected by a gap. The mixing of the bound states with the

continuum in the Floquet case can lead to the decay of

the bound states. Nevertheless, quantitatively, this mix-

ing can be still fairly weak and the bound states may

be visible in the spectrum even for fairly large system

sizes.

These bound states are difficult to identify in Fig. 3 in

the Floquet case, where they overlap with the continuum.

To characterize these states and to discern them from the

continuum, it is useful to consider quantities that are sen-

sitive to the relative configuration of the three particles.

Examples of such observables are shown in Fig. 4: for

each eigenstate |ψi,k〉 with momentum k, we compute the

probabilities of the following configurations for the three

particles in neighboring sites [trimers in Fig. 1(d)]:

, (13)

, (14)
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, (15)

, (16)

where |. . .〉k represents the (normalized) projection of the

“. . .” state in the sector with momentum k, i.e.,

(17)

An equivalent definition for PTI
(and analogously for the

other trimers) is

(18)

In Fig. 4, we plot the probabilities PTI
+ PTII

and PTIII
+

PTIV
for each eigenstate. For w′/w = θ ′/θ = 0, we observe

two (dispersive) bands with large PTI
+ PTII

, which cor-

respond to the exact three-particle bound states of the

integrable chain (see Appendix A). Two (flat) bands have

large PTIII
+ PTIV

: they can be interpreted as bound states

of the two particles on the chain localized in the poten-

tial of the particle on the extra sites (which acts as an

immobile impurity) (for a detailed study in the Hamilto-

nian case, see Appendix B). As we turn on the hopping

along the teeth (w′/w = θ ′/θ �= 0), the bands with large

PTIII
+ PTIV

acquire a rather weak dispersion, signaling a

very low mobility of the trimers with one particle on the

extra sites.

In the cases w′/w = θ ′/θ = 0.1, 0.5, 1.0, the four bound

states are still characterized by large values of both PTI
+

PTII
and PTIII

+ PTIV
: this shows that even in the Flo-

quet circuit, where the bound states are not protected by

a gap, the hybridization is strong among the four bound

states but quite weak between the bound states and the

continuum. Even for the largest value that we consider

(θ ′/θ = 1.0), the hybridization with states in the contin-

uum is clearly visible only for one of the four states (the

one with quasienergy ǫ ∼ 4).

Another useful quantity to characterize the localiza-

tion properties of the particles in the bound states is the

appropriate inverse participation ratio (IPR). This quan-

tity has been used extensively as a signature of localization

induced by disorder both for single-particle models [51,52]

FIG. 4. Top panels: the probability, PTI
+ PTII

, of having the three particles in consecutive sites along the chain [Eqs. (13) and (14)].

Lower panels: the probability, PTIII
+ PTIV

, of having one particle on an extra site and the other two right next to it on the chain

[Eqs. (15) and (16)]. The system size is Luc = 36 unit cells. The system parameters are the same as in Fig. 3. A narrow window

of quasienergies is shown, focusing on the three-particle bound states, revealing their character of being primarily chain trimers or

chain–extra-site trimers and also where significant mixing is present. In the Hamiltonian system, the three-particle bound states are

isolated from the continuum and persist in the thermodynamic limit even for w′/w = 1, while in the Floquet case, they are inside a

continuum and will decay in the thermodynamic limit but apparently survive to fairly large sizes. The similarity between the bound

states in the Hamiltonian and Floquet systems is notable, allowing us to infer properties of the latter ones as well as of the surrounding

continuum from the more simple Hamiltonian understanding.
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FIG. 5. The IPR (for fixed momentum k). As explained in the text, this is calculated over basis states used in the momentum-resolved

ED, which can be essentially viewed as describing configurations of the particles relative to their center of mass. The system size is

Luc = 36 unit cells. The system parameters and the quasienergy window are the same as in Fig. 4. The IPR detects both types of

three-particle bound states equally well and provides a good measure of the degree of localization of the particles in the bound state. A

detailed study for varying system sizes in the Floquet system at θ ′ = θ (showing the strongest decay of the bound states in this figure)

and k = 0 is performed in Fig. 6.

and for many-body systems [53–55]. Here, instead, we will

use it to probe the localization of particles with respect

to their center of mass: this localization is induced by

interactions and can lead to the presence of bound states.

The idea is to find a quantity that is also sensitive to other

“bound” configurations of the three particles, which are

not captured by the tightest binding configurations defining

PTI
, PTII

, PTIII
, and PTIV

. For example, a bound state can

have large overlaps with some other configurations such

as . However, we still expect it to have sup-

port on a small (compared to the dimension of the sector)

number of such configurations.

To this end, it is useful to define the computational basis

in the sector with momentum k. Similarly to the definition

of Eq. (17), each state in the computational basis is defined

from a classical configuration c (called representative) of

the three particles as

|c〉k ≡ 1√
Mc

Mc−1
∑

R=0

eikR
T

R |c〉 , (19)

where T is the translation operator by one unit cell and

Mc ≥ 0 is the smallest positive integer such that T Mc |c〉 =
|c〉 [56]. The state |c〉k can be also viewed as a normalized

projection of the state |c〉 into the sector with momentum k.

The basis is obtained by taking a single representative c for

each class of configurations that are related by translations.

We define the momentum-resolved IPR for a normalized

eigenstate |ψi,k〉 with momentum k as

Ik =
∑

c

|〈ψi,k| c〉k|4, (20)

where the sum runs over all the representatives (i.e., dis-

tinct classes) that define the basis. This quantity is an

indicator of the localization of the three particles in the

frame of their center of mass [57]. For a bound state,

this quantity converges to a finite value in the large-

Luc limit, while it scales as 1/Luc for scattering states of

a two-particle bound state with a single particle and as

1/L2
uc for scattering states of three unbounded particles.

As shown in Fig. 5, the IPR Ik takes large values for four

distinct bands of bound states: these are the same states

that have been characterized by large values of PTI
+ PTII

and PTIII
+ PTIV

in Fig. 4. Figure 5 shows that while the

value of Ik remains large for the Hamiltonian case even

up to w′/w = 1, the bound states in the Floquet spectrum

exhibit a clear decrease of Ik as θ ′/θ goes from 0.0 to 1.0.

This suggests that perturbing the integrable Floquet circuit

through the inclusion of additional sites tends to unbind the

original bound states of the model.

IV. EVENTUAL INSTABILITY OF THE

THREE-PARTICLE BOUND STATES IN THE

FLOQUET MODEL

The decrease of the IPR as a function of w′ shown in

Sec. III, i.e., Fig. 5 at fixed Luc = 36, suggests that the

localization length in the center-of-mass frame tends to

grow with the perturbation strength. If this localization

length diverges in the thermodynamic limit Luc → ∞, the

three-particle bound state is unstable.

In order to probe the eventual decay of the three-particle

bound state, we examine the scaling of the IPR with the

system size, for θ ′ = θ , where the perturbation is of the

same order as the unperturbed parameters and the bound

states are expected to be least robust of the parameters

θ ′ ≤ θ considered in the previous sections. In Fig. 6(a), we

plot the IPR of the energy eigenstates in the k = 0 sector

(computed as described in Sec. III) for different numbers of

unit cells Luc. Despite the fairly large perturbation strength,

the IPR Ik=0 still shows four clearly visible peaks that cor-

respond to the four bound states of the unperturbed model.
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FIG. 6. (a) The IPR of the Floquet eigenstates with momen-

tum k = 0 for the system with parameters θ = θ ′ = π/6 and

φ = φ′ = 2π/3. The states are organized by the quasienergy on

the horizontal axis and the prominent (approximate) bound states

stand out with their large IPR. Multiple system sizes are shown.

(b) The maximum of Ik=0 in an energy window [ǫ − �, ǫ + �]

(shaded areas in the top panel), with � = 0.05, as a function of

the system size. The result of a linear fit, performed to bring out

the overall decreasing trend, is shown with a dashed line in each

panel.

For large Luc, however, it is possible to notice the effect

of the perturbation, which mixes the bound states with

the underlying continuum and smears out the peaks. To

quantify this effect, in Fig. 6(b) we plot the height of the

peak (defined as the maximum of Ik=0 in an appropriate

energy window) as a function of Luc for the four bound

states. The fluctuations with the system size are still very

large, indicating that the results are still very sensitive to

the finiteness of the level spacings in the spectrum and

to their statistical fluctuations. Nevertheless, all the data

show a decreasing trend with the system size, for all four

bound states. These results suggest that the bound states

will ultimately decay in the thermodynamic limit and that

the decay is very slow, leading to persistent three-particle

bound states for numerically and experimentally accessible

system sizes.

Of the four bound states, we observe that one of them

(the one with quasienergy ǫ ∼ 4.0032) exhibits signifi-

cantly faster decay of Ik=0 with the system size [Fig. 6(b)].

We will now argue, using numerical experiments, that this

faster decay is caused by the proximity in the spectrum

with scattering states of a two-particle bound state with

(a)

(b)

FIG. 7. The spectrum of the perturbed Floquet circuit, focus-

ing on the continuum states near the three-particle bound states:

the 2 + 1 continuum is characterized by a larger probability of

trimer configurations (PTI
+ PTII

and PTIII
+ PTIV

) and larger Ik

than the 1 + 1 + 1 continuum. Note that the quantities are the

same as those plotted in Figs. 4 and 5 but the color scales are sat-

urated to a maximum value of 0.01 to bring out the 2 + 1 states

more. (a) For the choice of parameters considered in the exper-

iment (θ = θ ′ = π/6 and φ = φ′ = 2π/3), the bound states are

separated in the spectrum from the 2 + 1 continuum but one of

them is significantly closer. (b) For a different choice of parame-

ters (θ = θ ′ = π/6 and φ = φ′ = 8π/15), two out of four bound

states lie in the 2 + 1 continuum (for some values of k).

a single particle (which we will refer to as the “2 + 1

continuum” below). Note that, strictly speaking, this label

refers to states present in the integrable model at φ′ = 0

in the sector (N1∪2, N1′) = (3, 0), while the states high-

lighted in Fig. 7 at φ′ = φ are their descendants. As shown

in Fig. 7(a), the 2 + 1 continuum is characterized by a

larger probability of trimer configurations and larger Ik

compared to the scattering states of individual particles

(which we will call the “1 + 1 + 1 continuum”). The edge

of the 2 + 1 continuum is very close to the lowest bound

state, suggesting that these states are responsible for the

larger hybridization. In Fig. 7(b), we also consider a differ-

ent choice of parameters, for which the spectra of the two

lowest bound states are partially enclosed in the 2 + 1 con-

tinuum. In this case, these two states show a fast decay of

Ik=0 with the system size Luc, while the other bound states

are more resilient (Fig. 8).

These results suggest that the decay is fast when

the three-particle bound state can decay in the 2 + 1

continuum but is very slow when it can only decay in the

1 + 1 + 1 continuum. This explains the apparent robust-

ness observed in the experiment [42].
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(a)

(b)

FIG. 8. (a) The IPR of the Floquet eigenstates with momen-

tum k = 0 for the system with parameters θ = θ ′ = π/6 and

φ = φ′ = 8π/15 from Fig. 7(b). For small system size (Luc =
10), four distinct eigenstates stand out with a large value of Ik=0.

(b) The maximum of Ik=0 in an energy window [ǫ − �, ǫ + �]

(shaded areas in the top panel), with � = 0.05, as a function of

the system size. The two leftmost panels (the ones that corre-

spond to the eigenstates overlapping with the 2 + 1 continuum)

show a clear decay of the height of the peak for increasing system

size. The other two show an extremely weak decay with Luc.

V. PERTURBATIVE ANALYSIS OF EVENTUAL

INSTABILITY

To address the question of an eventual instability, it is

useful to study the matrix elements of the perturbation (i.e.,

the hopping along the teeth) in the basis of the unperturbed

eigenstates of the Floquet model with φ′ = φ, θ ′ = 0. The

perturbation of the Floquet circuit is

U
−1
teeth(0, φ′)Uteeth(θ

′, φ′) = exp
(

−iθ ′V
)

≈ 1− iθ ′V, (21)

where θ ′ ≪ 1 is the small perturbative parameter and V is

defined as

V = −
∑

R

(|10〉〈01|(R,1),(R,1′) + H.c.). (22)

It is adequate for our purposes to use intuition from Hermi-

tian perturbation theory, treating the Floquet quasienergies

as the unperturbed energies and θ ′V as the perturbation.

We label the four bound states of the θ ′ = 0 model

in the sector with total momentum k = 0 as |ψn〉 with

n = 0, 1, 2, 3: |ψ0〉 and |ψ2〉 have quasienergies ǫ0 ≈
4.0512 and ǫ2 ≈ 4.3614, respectively, and belong to

the sector with (N1∪2, N1′) = (2, 1); |ψ1〉 and |ψ3〉 have

quasienergies ǫ1 ≈ 4.2657 and ǫ3 ≈ 4.4755, respectively,

and belong to the sector with (N1∪2, N1′) = (3, 0). We

generally expect a bound state |ψn〉 to be unstable to

a perturbation V if the “Fermi’s golden rule rate” Ŵn =
2π(θ ′)2

∑

j | 〈ψn|V| ǫj 〉|2δ(ǫj − En) is finite, where Vnj ≡
〈ψn|V| ǫj 〉 is the matrix element connecting the nth bound

state with the state |ǫj 〉 in the continuum and En is the

energy of the bound state.

From the numerical study, we know that the three-

particle bound states of interest to us do not overlap in

energy with the 2 + 1 states (i.e., the scattering states of

a two-particle bound state and a particle). Then, conserva-

tion of energy and momentum implies that the bound states

can only decay in the 1 + 1 + 1 continuum for k = 0. For

these continuum states, from a simple counting argument

we expect a density of states ∝ L2
uc. The matrix element

Vnj = 〈ψn|V| ǫj 〉 between a state in the 1 + 1 + 1 con-

tinuum and a bound state (i.e., a localized state in the

center-of-mass frame) can similarly be estimated from a

simple argument: the state |ǫj 〉 of the three particles can

be approximated as a (properly symmetrized) product of

three plane waves, while |ψn〉 is a single plane wave (with

k = 0); the matrix element is nonzero only when the three

particles are next to each other; and taking into account the

normalization of the plane waves, we get that the matrix

element scales as |Vnj | ∝ Luc(1/
√

Luc)(1/
√

Luc)
3 = L−1

uc .

We then expect the product between the density of states

and |Vnj |2 to yield an O(1) rate in the thermodynamic limit.

Note that a similar argument for a decay into the 2 +
1 continuum would give a density of states ∝ Luc and

a matrix element |Vnj | ∝ Luc(1/
√

Luc)(1/
√

Luc)
2 = L

−1/2
uc ,

resulting, again, in a finite rate in the thermodynamic limit.

In Figs. 9 and 10, we numerically check our predic-

tion for the scaling of the matrix elements and of the

density of states for the decay into the 1 + 1 + 1 contin-

uum. We plot the matrix elements |Vnj | (including only

the ones that are nonzero) multiplied by Luc. As a mea-

sure of the density of states, we consider pairs ǫj and ǫj +1

of nearby levels in the quasienergy spectrum (including

only the states with nonzero |Vnj |) and we plot the inverse

spacing (�ǫ)−1 = (ǫj +1 − ǫj )
−1 multiplied by L−2

uc as a

function of the average quasienergy ǫ = (ǫj +1 + ǫj )/2. We

find that for all bound states n = 0, 1, 2, 3, both |Vnj |Luc

and (L2
uc�ǫ)−1 show a good data collapse, with no system-

atic dependence on the system size [58], confirming our

predictions that |Vnj | ∝ L−1
uc and (�ǫ)−1 ∝ L2

uc.

The scaling is further analyzed in Fig. 11(a) by plot-

ting the average of |Vnj |2 for each n = 0, 1, 2, 3 over the

energy windows plotted in Figs. 10 and 9, as a function of

the system size. The results of the fits show a dependence

|Vnj |2 ∝ Lα
uc with α in the range from −2.03 to − 1.49, in

rough agreement with the expect scaling |Vnj |2 ∼ L−2
uc for
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(a)

(b)

FIG. 9. (a) The absolute value of the matrix elements Vnj (con-

necting the bound state |ψn〉 with the eigenstate ǫj ) multiplied

by the system size Luc, as a function of the quasienergy ǫj .

The data collapse shows that |Vnj | ∝ L−1
uc , consistent with the

1 + 1 + 1 continuum. (b) The inverse level spacing of neigh-

boring pairs of Floquet eigenstates (�ǫ)−1 multiplied by L−2
uc ,

as a function of the average quasienergy of the pair. Only states

that have nonzero matrix elements with |ψn〉 are considered. The

data collapse shows the predicted scaling for the density of states

(�ǫ)−1 ∝ L2
uc. The vertical gray lines indicate the energy ǫn of

the bound state. The Floquet system parameters are φ = φ′ =
2π/3, θ = π/6, θ ′ = 0, i.e., the “integrable point.” The data are

plotted for the bound states with n = 1 (left) and n = 3 (right),

which belong to the sector with (N1∪2, N1′) = (3, 0).

matrix elements with the 1 + 1 + 1 continuum states. In

Fig. 11(b), we plot the density of states ρn (computed as the

number of states in the same energy windows, divided by

the width of the windows) as a function of Luc: the results

agree with the expected scaling ρn ∝ L2
uc. The rate of decay

is then computed as

Ŵn = (θ ′)22πρn|Vnj |2 ≡ (θ ′)2Ŵ̃n (23)

and Ŵ̃n is plotted in Fig. 11(c). The rate is approximately

constant, with no evident dependence on the system size

(except for a mild increase, which is visibly present only

for small Luc). However, the values of the rates Ŵ̃n for dif-

ferent bound states span many orders of magnitudes. For

n = 1, 2, 3, they are smaller than 10−5, suggesting that the

bound states may persist at finite size for large values of the

perturbation (or, equivalently, for large system size with a

fixed perturbation strength). [The corresponding physical

decay rates Ŵ1,2,3 < 10−5 × (θ ′)2, for smallish θ ′ ≤ π/6,

give lifetimes that can exceed 105 Floquet cycles.] The

n = 0 state has the largest decay rate (Ŵ0 ≈ 4 × 10−3 ×

FIG. 10. An analysis similar to that in Fig. 9 but for the bound

states n = 0 (left) and n = 2 (right), which belong to the sector

with (N1∪2, N1′) = (2, 1). In the case of degeneracies, we con-

sider a single |ǫj 〉, proportional to the projection of V |ψn〉 on

the degenerate subspace. The data collapse shows that both the

matrix elements (top) and the density of states (bottom) obey

the predicted scaling with the system size for the 1 + 1 + 1

continuum.

(θ ′)2, significantly larger than the other three) and hence it

should exhibit a more enhanced decay with system size

for θ ′ �= 0, in agreement with the results of Fig. 6. We

remark, however, that the four bound states studied in Sec.

IV for θ ′ = θ cannot be simply attributed in a one-to-

one correspondence to the unperturbed states |ψn〉, with

n = 0, 1, 2, 3 at θ ′ = 0, because of the strong hybridization

of the bands visible at the studied θ ′ �= 0—in particu-

lar, for n = 1, 2, 3—and hence one should not use such

perturbative estimates literally for all θ ′ of interest.

Nevertheless, it is suggestive of using the estimate of

the decay rates to interpret the decrease of the IPR peaks

of Fig. 6 with increasing Luc. The Wigner-Weisskopf the-

ory for the decay of a state in quantum mechanics relates

the decay rate with the width of the resonance in the fre-

quency domain. At finite system size, this treatment can

break down because the spectrum is discrete: in order to

observe the finite width of a resonance, we need the level

spacing to be much smaller than the width. Extrapolating

our estimates of Ŵn to the value θ ′ = θ = π/6 of Fig. 6

(well beyond the perturbative regime), we find Ŵ0 ≈ 10−3

and Ŵ1,2,3 < 3 × 10−6. From our fits for the density of

states close to the four peaks for θ ′ = θ = π/6, we are

finding that ρn ≈ fnL2
uc with fn ≈ (0.04, 0.04, 0.03, 0.02),

so the average level spacing ρ−1
n becomes of the order

of Ŵn for Luc ≈ (Ŵnfn)
−1/2, which results in Luc ≈ 150 for

n = 0 and Luc > 2700 for n = 1, 2, 3. This estimate con-

firms that larger system sizes are needed in order to clearly

observe the decay for the three rightmost peaks in the IPR

010317-10



FATE OF BOUND STATES OF INTERACTING PHOTONS PRX QUANTUM 5, 010317 (2024)

(a) (c)

(b)

FIG. 11. (a) The average of |Vnj |2 as a function of the sys-

tem size Luc for n = 0, 1, 2, 3 and ǫj belonging to the energy

windows ǫn ± �n of Figs. 10 and 9. The dashed lines show

the results of linear fits (in log-log scale) |Vnj |2 ∼ knLαn
uc , with

αn = −2.03, −1.49, −1.53, −1.91 and kn = 0.04, 4 × 10−6, 1 ×
10−6, 4 × 10−5 for n = 0, 1, 2, 3, respectively. (b) The density of

states ρn estimated as the number of eigenstates in the energy

window ǫn ± �n divided by the total width 2�n, as a function

of the system size. Only states with nonzero matrix elements

are included. The results of the fits ρn ∼ cnL
βn
uc have parameters

βn = 2.02, 2.36, 2.13, 2.22 and cn = 0.015, 0.006, 0.011, 0.013.

(c) The decay rate Ŵ̃n = 2πρn|Vnj |2.

in Fig. 6. If the system size is not sufficiently large, this

measure is sensitive to the fluctuations of the individual

eigenergies, resulting in the noisy dependence observed in

Fig. 6.

VI. CONCLUSIONS

In this work, we have analyzed the robustness of the

bound states observed in the Google Quantum AI exper-

iment [42]. We have compared the Hamiltonian and the

Floquet spectrum, showing that the bound states in the

N = 3 sector, which are protected by a gap in the Hamil-

tonian case, overlap (fold) with the other edge of the

spectrum when trying to connect to the Floquet case.

This is consistent with the direct study in the Floquet

case, where the bound states are surrounded by continuum

states. We have characterized the bound states by studying

their overlaps with the trimer configurations and their IPR

resolved in sectors of total momentum. Our results sug-

gest that many-body spectroscopic techniques similar to

the ones applied to observe the bands of exact bound states

in the integrable circuit can be used to detect the bands of

approximate bound states in the perturbed circuit and to

measure properties such as the maximal band velocity and

their microscopic structure. For example, depending on the

band, the particles in the bound state either reside primar-

ily on the chain, as in the trimers TI and TII in Fig. 1, or

have one particle on the extra sites, as in the trimers TIII

and TIV in the same figure. Such more detailed dynamical

and structural properties of the bound states in fact change

significantly as one varies θ ′ from 0 to θ (without much

effect on their apparent robustness, in part because the

bound states primarily mix among themselves) and could

be probed directly in experiments.

For θ ′ = 0, particles located on the extra sites act as

impurities in an integrable model on the chain. Recently,

exact spatially bound states inside a continuous spectrum

have been proposed in some integrable Hamiltonian mod-

els in the presence of an impurity [59,60]. Interestingly,

one of the three-particle bound states in our modeling of

the experimental system at θ ′ = 0, namely, the n = 2 state

with ǫ ≈ 4.3614 in Sec. V from the sector (N1∪2, N1′) =
(2, 1), appears to correspond to a similar instance in the

Floquet setting (see the discussion in Appendix C, where

this state is referred to as ǫ ≈ −1.92 from the 2π shift).

It would be interesting to investigate the possible exis-

tence and stability of such states more broadly in the

Floquet XXZ model with an impurity, both theoretically

and experimentally.

For θ ′ �= 0, while the bands of bound states are clearly

visible even for fairly large system sizes, our finite-size

scaling analysis shows that the bound states tend to decay

for increasing Luc. The decay is more rapid for one of the

four bound states, due to the proximity to the 2 + 1 con-

tinuum. For other values of the parameters, other bound

states can become similarly more unstable: we anticipate

that such a difference in the robustness of the bound states

can be probed in the same experimental apparatus, by

preparing different initial states [such as the trimer config-

urations TIII and TIV in Fig. 1, which would decay much

faster for modified parameters, as in Figs. 7(b) and 8].

A numerical analysis of the matrix elements and of the

density of states in the unperturbed model confirms the

presence of small but finite decay rates for all the bound

states.

Our explanation for the current experiments on the non-

integrable model is thus a quantitative few-body one and

does not require true many-body unusual thermalization.

An interesting question for future work is the possibility of

so-called weak integrability-breaking perturbations for the

Floquet XXZ model and for Floquet integrable models in

general. These perturbations, which can be systematically

constructed to preserve integrability up to a given order

in the perturbation strength, have been studied in the con-

text of Hamiltonian integrable models. An understanding

of their possible structure in Floquet circuits would allow

for the experimental verification of slow dynamics in dig-

ital quantum devices, such as the one used in the Google

Quantum AI experiment.
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Note added:—A recent work by Hudomal et al. [61]

also studies the bound states and the spectral properties of

the GQAI experiment. Reference [61] focuses on different

properties of the spectrum, studies the time evolution using

time-dependent block decimation (TEBD) simulations and

reaches different conclusions about the robustness of the

bound states in the infinite-time and infinite-system-size

limit, which, however, may be hindered by their available

time scales and sizes compared to potentially very long

decay times.

APPENDIX A: FLOQUET XXZ AND GAP IN THE

CHIRAL SPECTRUM

The unperturbed Floquet circuit in Eq. (5) has a simple

brick-wall structure, and can be conveniently diagonalized

by considering the operator

V0(θ , φ) ≡ Ueven(θ , φ)T , (A1)

where T is the translation operator by one chain site [44].

We can then write the Floquet operator as

U0 = UevenUodd = UevenT UevenT
−1 = V

2
0 T

−2, (A2)

where we have dropped the (θ , φ) dependence for easier

readability. We can diagonalize V0 in a fixed-momentum

sector with respect to the translation of two chain sites

(which corresponds to one lattice unit used throughout the

text), i.e., we find simultaneous eigenvalues and eigenvec-

tors of V0 and T 2:

T
2 |γ , k〉 = eik |γ , k〉 , V0 |γ , k〉 = eiγ |γ , k〉 . (A3)

(Note that the momentum k has exactly the same meaning

as in the main text, since T 2 corresponds to translation by

one unit cell.) Then, the states |γ , k〉 are eigenstates of the

Floquet operator U0 with quasienergies

ǫ = 2γ − k (mod 2π). (A4)

The model has been solved in Ref. [44] using the Bethe

ansatz and the following dispersion relation of the ℓ-

particle bound state has been found for generic ℓ:

cos
(

ǫℓ-string(k) − χ
)

= cos2(α) − sin2(α) cos(k), (A5)

where

χ = ℓφ − 2 arctan

(

tan(φ/2) tanh(η)

tanh(ℓη)

)

, (A6)

cos2(α) = cos2(θ) sinh2(ℓη)

cos2(θ) sinh2(ℓη) + sin2(θ) sinh2(η)
, (A7)

sinh2 (η) = cos2(θ) − cos2(φ/2)

sin2(θ)
. (A8)

Our numerical study below of the spectra of U0 and the

bound states is consistent with these predictions.

In Figs. 12 and 13, we plot the spectrum of the operators

V0 and U0 for the sectors with N = 2 and N = 3 particles.

For N = 2 (Fig. 12), we see that the band of bound states

is gapped in the spectrum of V0, while one branch of the

band in the spectrum of U0 is not gapped for k ≈ 0: the

“folding” procedure that gives the spectrum of U0 from the

one of V0 brings part of the bound state band into the con-

tinuum of 1 + 1 states. However, the presence of a gap in

V0 implies that the bound states are robust to sufficiently

small (but finite) perturbations of the Floquet operator that

preserve the “brick-wall” structure and the total number of

particles (i.e., to the perturbations of U0 that correspond

to perturbations of the V0 operator). This protection of

the bound states is not manifest when one only considers

the momentum-resolved spectrum of U0 in the presence of

the overlap with the continuum because such a view does

not take into account the nontrivial conserved quantity V0,

namely, [U0,V0] = 0; this additional “symmetry” is fully

taken into account when one considers V0 together with

T 2.

Similar arguments hold for N = 3: as we see in Fig. 13,

part of the bound state band is gapped around k = 0 in

the spectrum of V0. This part of the band is robust against

any (small) perturbation of V0, despite the absence of a

gap in the spectrum of U0. Note, however, that the comb-

teeth perturbation considered in the main text following the

GQAI experiments does not preserve the brick-wall struc-

ture that is crucial for the reduction of the full problem to

V0 and the above protection does not operate in this case.
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FIG. 12. The spectrum of the operators V0 (left) and U0 (right)

in the N = 2 sector. The color map indicates the momentum-

resolved IPR Ik (the scale is saturated to a maximum value of

0.10 to give a clearer view). The bands of two-particle bound

states have large Ik (dark blue), while the 1 + 1 continuum states

have small Ik (light green).

APPENDIX B: DETAILED UNDERSTANDING OF

FEATURES IN THE SPECTRUM AND THE

ROBUST BOUND STATES IN THE

HAMILTONIAN SYSTEM

In this appendix, we discuss in detail the spectrum of

the Hamiltonian system, focusing in particular on the two-

and three-particle bound states for the parameters of inter-

est. As already mentioned in the main text, except for a

small part of the k space in the former case, these are sep-

arated from the rest of the spectrum by finite gaps and are

FIG. 13. The spectrum of the operators V0 (left) and U0 (right)

in the N = 3 sector. The color map indicates the momentum-

resolved IPR Ik (the scale is saturated to a maximum value of

0.15). The bands of three-particle bound states have the largest Ik

(dark blue), followed by the 2 + 1 continuum (light blue), while

the 1 + 1 + 1 continuum states have small Ik (light green).

FIG. 14. The single-particle (N = 1) spectrum of H for w = 1

and u = u′ = 4. The color mixing represents the weights on the

different sectors of the unperturbed model w′ = 0, as described

in the caption of Fig. 2.

hence robust (sharply defined) bound states in the thermo-

dynamic limit. This allows fully controlled treatment of

the bound states and an essentially complete understand-

ing of their character. While the three-particle bound states

cease to be sharp in the Floquet system of interest, for rea-

sons discussed in the main text, the Hamiltonian system

with modest folding in the quasienergy space still pro-

vides reasonable approximations, allowing much of the

intuition about the spectral properties and bound states of

the Hamiltonian case to be transferred to the Floquet case.

The Hamiltonian spectra shown in this appendix in

Fig. 14 and the top panels of Figs. 15 and 16 are the same

as in the corresponding Hamiltonian panels in Figs. 2 and

3, except that they are not multiplied by (−π/6) and are

instead presented here in the Hamiltonian energy units.

At the expense of some repetition, this significantly sim-

plifies referencing features in the spectrum and also puts

the bound states at the bottom of the spectrum, allowing

us to readily use intuition from familiar perturbation the-

ory and effective Hamiltonian tools near the ground states.

In the quantitative demonstrations below, we use the same

parameters w = 1 and u = u′ = 4w, with varying w′, as in

the main text.

For easy reference, we first list the exact dispersions of

the two-particle (N = 2 sector) and three-particle (N = 3

sector) bound states in the unperturbed Hamiltonian H0

[see Eq. (2)], translated from the known results for the XXZ

chain [62–66]:

ǫ2-string(kchain) = −u − 2w2

u
− 2w2

u
cos(kchain), (B1)

ǫ3-string(kchain) = −2u − 2uw2

u2 − w2
− 2w3

u2 − w2
cos(kchain),

(B2)

where kchain refers to the natural momentum on the chain

with translation symmetry by one site [67]. For u = 4w,

the 2-string and 3-string bound states are separated from

continuum states by finite gaps at each kchain; the top of the

2-string bound state band at kchain = π happens to coincide

with the bottom of the 1 + 1 continuum at k = 0, while the
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FIG. 15. (a)–(d) The two-particle (N = 2) spectrum of H for

w = 1, u = u′ = 4, and Luc = 20. The color mixing represents

the weights on the different sectors of the unperturbed model

w′ = 0, as described in the caption of Fig. 2. (e)–(h) Enlarge-

ments of the region containing the two-particle bound states. The

semitransparent lines show the two-particle bound states (and

nearby other states) in the spectrum of H for the same param-

eters as in (a)–(d) but with larger Luc = 36 used for smoothness.

The solid lines show the spectrum of the effective Hamiltonian

[Eq. (B9)] derived for w, w′ ≪ u, u′. The exact spectrum and the

results of the effective model have almost perfect overlap for all

the three bands of bound states.

top of the 3-string bound state band lies significantly below

the bottom of the corresponding 2 + 1 continuum (which

lies below the 1 + 1 + 1 continuum).

Turning to the perturbed problem with the additional

sites (the comb lattice in Fig. 1), we start with some gen-

eral remarks. The conserved total number of particles in

the system is denoted by N . When w′ = 0, the particle

number on the original chain is separately conserved and

is denoted by N1∪2; furthermore, the particle number on

each (R, 1′) site is conserved (we often use a more crude

conserved number N1′ = N − N1∪2 to group states). In this

case, in the sector with N1′ = 0, the u′ term does not oper-

ate at all and the Hamiltonian is equivalent to the original

integrable chain for any u′. Thus, in this sector, the u′ part

by itself does not break the integrability and we sometimes

refer to the model with w′ = 0 as integrable. On the other

hand, still keeping w′ = 0, in sectors with N1′ > 0, the

occupations of the 1′ sites do not fluctuate but create static

potentials (−u) < 0 for the chain particles on the 1 sites

connected to the occupied 1′ sites. The model for the par-

ticles on the chain is nonintegrable because of these static

“impurity potentials,” although for small N1′ it is possi-

ble to use some intuition and/or results from the integrable

model away from the impurities.

FIG. 16. (a)–(d) The three-particle (N = 3) spectrum of H for

w = 1, u = u′ = 4, and Luc = 12. The color mixing represents

the weights on the different sectors of the unperturbed model

w′ = 0, as described in the caption of Fig. 3. (e)–(h) Enlarge-

ments of the region containing the three-particle bound states.

The semitransparent lines show the bands of the three-particle

bound states for the same parameters as in (a)–(d) but larger

Luc = 36. The solid lines show the (flat) bands of the three-

particle bound states from solving the second-order effective

Hamiltonian given in Eqs. (B12)–(B14). In (e), the lowest flat

band of the effective Hamiltonian (E = −2u − 2w2/u = −8.5)

is threefold degenerate: one band belongs to the (N1∪2, N1′) =
(2, 1) sector and the others are in the (N1∪2, N1′) = (3, 0) sector

(only the first one is visible, in green).

1. One particle

In the case of a total of one particle in the system,

the u and u′ terms do not operate at all and the problem

reduces to a single-particle problem with hopping ampli-

tude w along the chain and w′ on the 1-1′ links connecting

to the extra sites. This problem is easily solved and has
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three bands,

ǫ±(k) = ±

√

(

2w cos
k

2

)2

+ (w′)2, ǫ0(k) = 0, (B3)

which are shown in Fig. 14. The symmetry E ↔ −E

around the zero energy as well as the origin of the entire

E = 0 band are due to the bipartite hopping nature of this

single-particle problem: There are no on-site potentials and

the hoppings connect only sites on different sublattices A ≡
{(R, 2), (R, 1′)} and B ≡ {(R, 1)}. Since there are twice as

many A sites as there are B sites, MA = 2Luc, MB = Luc, we

expect at least MA − MB = Luc zero-energy states residing

entirely on the A sublattice.

2. Two particles

Figures 15(a)–15(d) shows the momentum-resolved

exact-diagonalization (ED) results in the Hamiltonian

units, with fixed u = u′ = 4w, where we vary w′ from

w′ = 0 to w′ = w; we set w = 1. We do not have an exact

solution for general w′ in this case but we can understand

rough features and, in particular, the two-particle bound

states by developing from certain controlled limits, which

we now describe.

a. w
′
= 0, general w

The eigenstates can be divided into three main groups

(sectors) defined by specifying the (conserved) number of

particles on the chain, denoted by N1∪2, and on the extra

sites, denoted by N1′ :

We first consider the case (N1∪2, N1′) = (2, 0). There

are Luc(2Luc − 1) such states and they are marked red in

Fig. 15(a). This sector is equivalent to the unperturbed

integrable model on the original chain. The corresponding

states in Fig. 15(a) represent simply folding of the origi-

nal chain spectrum to the new Brillouin zone. We clearly

see the two-particle continuum spanning energy window

(−4w, 4w) in the thermodynamic limit. We are mainly

interested in the lowest-energy states forming two bands of

the 2-string bound states. In the original chain, the Hamil-

tonian is invariant under translation by a single site and the

bound states form a single band in the corresponding Bril-

louin zone, with dispersion given by Eq. (B1). Here, this

band is folded to the new Brillouin zone, resulting in two

distinct bands.

We now consider the case (N1∪2, N1′) = (1, 1). There are

2L2
uc such states and they are marked green in Fig. 15(a).

These can be further subdivided into subgroups labeled by

a location (R0, 1′) of the one particle on the 1′ sites, which

remains completely localized since w′ = 0. The spectra

are identical for different R0; each energy level is hence

repeated Luc times in the full spectrum and gives a flat band

in the energy versus momentum plot in Fig. 15(a).

For a fixed R0, we have a problem of one particle hop-

ping on the original chain of 2Luc sites with the hopping

amplitude w and a single attractive “impurity potential”

(−u′) < 0 felt by the particle when it is on the site (R0, 1).

In this hopping problem, we expect one localized state near

the impurity potential and 2Luc − 1 delocalized states. The

delocalized states span an energy window of (−2w, 2w) in

the thermodynamic limit.

One can easily solve for the localized state ψlocalized(j ) =
Ce−κ|j −j0| in the thermodynamic limit, where j labels sites

as in the original chain and j0 is the corresponding label of

the site (R0, 1). The localized state energy and the rate of

the wave-function decay per lattice site are

ǫlocalized = −
√

(u′)2 + 4w2, (B4)

e−κ =
√

(u′)2 + 4w2 − u′

2w
. (B5)

In the full system, this can be viewed as a two-particle

bound state with one of the particles immobile on the

(R0, 1′) site and the other residing on the chain sites

but dynamically bound to the immobile particle. For

our numerical parameters u′ = 4w, we obtain ǫlocalized =
−2

√
5w ≈ −4.472 and e−κ =

√
5 − 2 ≈ 0.236; thus, the

localization length is 0.693 of the original chain lattice

spacing, which means that we have a fairly compact bound

state, and the above expression for ǫlocalized is very accurate

even for relatively small sizes.

As mentioned earlier, this analysis gives identical spec-

tra for each of the Luc possible locations R0, which results

in Luc-fold degeneracy for each found eigenvalue. Each

such eigenvalue gives rise to a completely flat band when

the full spectrum is resolved in momentum. Looking at

the green states in Fig. 15(a) marking the present sec-

tor, we see the corresponding dense set of flat bands in

the energy window (−2w, 2w) for the delocalized states

and the flat band near ǫlocalized for the two-particle bound

states. It is a numerical accident for the specific param-

eters that this energy is very close to where the two

red two-particle bound state bands meet, which happens

at ǫ2-string(kchain = π/2) = −u − 2w2/u = −4.5 [using Eq.

(B1)]. Note that in our case where the dominant inter-

action binding energies are taken to be the same, u′ = u

(motivated by the GQAI experiments), we expect all two-

particle bound states (i.e., chain-chain and chain–extra

site) to be roughly in the same ballpark, while the precise

band locations depend on further dynamical details from

the hopping energy.

We finally consider the case (N1∪2, N1′) = (0, 2). There

are Luc(Luc − 1)/2 such states where both particles are on

the 1′ sites. These states all have energy 0 and are marked

blue in Fig. 15(a). They are not important in our consider-

ations below, which focus on the bottom of the spectrum

near where the 2-string bound states reside.
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b. Small w
′, general w: Qualitative considerations

We now add nonzero but small w′. The w′ term does not

act within the above sectors but connects the (N1∪2, N1′) =
(2, 0) and (1, 1) sectors [and also the (1, 1) and (0, 2)

sectors]. This roughly explains why in Figs. 15(a)–15(d),

outside of the (−2w, 2w) energy window the (2, 0) sec-

tor states are not strongly affected for w′ = 0.1 and w′ =
0.5 (even all the way to w′ = 1), except close to the

boundary of this window and to the bound states from

the (N1∪2, N1′) = (1, 1) sector. The latter bound states

(which we refer to as chain–extra-site bound states) couple

with the bound states from the (N1∪2, N1′) = (2, 0) sec-

tor (chain-chain bound states) and with the bottom of the

two-particle continuum from the (N1∪2, N1′) = (2, 0) sec-

tor. There are some additional features in the middle of the

spectrum that arise with increasing w′ but these are not of

direct interest to us and are not studied further.

From now on, we focus on the 2-string bound states. One

of the effects of adding w′ on the chain-chain bound states

is that they can lower their energy by virtual processes

where one of the particles hops off the chain onto a 1′ site

and back. This lowering of the energy is roughly w′2/u and

is visible in Figs. 15(b)–15(d) for the red 2-string bound

state bands. On the other hand, the chain–extra-site bound

states, in the limit of very compact bound states, do not

have this mechanism and to this order their energy would

remain unchanged; such a tendency is visible in Figs.

15(b)–15(d) for the green 2-string bound states. However,

the chain–extra-site bound states can hybridize with the

chain-chain bound states with amplitude O(ww′/u), partic-

ularly when their energies are close, which happens near

the wave vector π at w′ = 0 and moves to smaller wave

vectors as w′ increases and the chain-chain bound states

move to lower energies. This hybridization with the mov-

ing central location is visible in the progression in Figs.

15(a)–15(d) as we increase w′, while for w′ = 1 the descen-

dants of the chain–extra-site bound states no longer over-

lap with the descendants of the chain-chain bound states.

From the figure, we see that the predominantly green

2-string bound states survive for momentum sufficiently

away from zero even for w′ = 1, while they are in the con-

tinuum of states for momentum close to zero and will not

survive in the thermodynamic limit. For the predominantly

red 2-string bound states, only states in the upper band with

momentum close to zero enter the continuum spectrum

and will not survive in the thermodynamic limit (although

their decay rate is likely very small), while the rest of this

upper band and all of the lower band 2-string bound states

clearly survive in the thermodynamic limit protected from

the continuum by gaps at the corresponding momentum.

c. Perturbative treatment for w, w
′
≪ u, u

′

Some of the above qualitative arguments can be made

more precise by taking the limit w, w′ ≪ u, u′, which we

discuss here for completeness. In the absence of the hop-

pings, the lowest-energy states are the following dimer

states specified by the particle locations on the full system

(chain plus extra sites), and depicted in Fig. 1(c):

DI(R) = [(R, 1), (R, 2)], (B6)

DII(R) = [(R, 1), (R − 1, 2)], ǫI,II = −u; (B7)

DIII(R) = [(R, 1′), (R, 1)], ǫIII = −u′. (B8)

In the second-order perturbation theory, first we have diag-

onal corrections, which for later convenience we write in

the ket-bra notation for the dimer states associated with

location R as defined above:

ĥeff
diag(R) = −2w2 + w′2

u

∑

ℓ=I,II

|Dℓ(R)〉〈Dℓ(R)|

− 2w2

u′ |DIII(R).〉〈DIII(R).|

Here, we explicitly see the claimed lowering of the ener-

gies of the chain-chain dimers DI, DII via virtual fluctua-

tions involving w′ hops, while no such lowering is present

for the chain–extra-site dimers DIII.

Next, in the same order, the chain-chain dimers can hop

along the chain with amplitude w2/u. Explicitly, in the

above notation,

Ĥ eff
hop = −w2

u

∑

R

[|DII(R)〉〈DI(R)| + H.c.

+ |DI(R)〉〈DII(R + 1)| + H.c.] .

Note that the chain–extra-site dimers cannot hop by them-

selves at this order [for u �= u′, such hopping can appear

only at O(w′2w4/u′5)].

Finally, for u′ = u, which we assume from now on,

where we need to do degenerate perturbation theory

involving all DI(R), DII(R), and DIII(R), the DIII(R) can

convert to DI(R) or DII(R) and vice versa:

ĥeff
I,II--III(R) = −ww′

u
[|DI(R)〉〈DIII(R)| + H.c.

+ |DII(R)〉〈DIII(R)| + H.c.] .

Putting everything together, we have an effective Hamilto-

nian:

H eff = Ĥ eff
hop +

∑

R

[

ĥeff
diag(R) + ĥeff

I,II--III(R)

]

. (B9)

By going to momentum space, we obtain a 3 × 3 matrix

that is easy to diagonalize numerically and we explore the

evolution of the three bands, e.g., as one varies w′ rela-

tive to w. The results are shown in Figs. 15(e)–15(h) and
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capture roughly the behavior seen for the full problem and

discussed qualitatively earlier: As w′/w increases from 0

to 1, the chain-chain dimer bands move to lower ener-

gies, while at the same time the higher-energy one of them,

in particular, hybridizes significantly with the chain–extra-

site dimer band, as seen in the mixing of the colors of these

bands in Fig. 15. This model does not capture all of the

detailed features seen in the figure, e.g., the apparent very

small gaps between the two lowest bands at k = ±π , pre-

sumably because of an inaccurate treatment of the sizable

w used in the figure; however, interestingly, at w′ = w it

gives a completely flat topmost band capturing the nearly

flat uppermost 2-string bound state band in the figure. We

do not consider further details here since, in any case,

this model does not include the eventual (small) overlaps

with the two-particle continuum, where we have to use the

full-problem ED results.

3. Three particles

a. w
′
= 0, general w

The eigenstates can be divided into four main groups,

defined by specifying the number of particles on the chain

N1∪2 and on the extra sites N1′ :

We first consider the case (N1∪2, N1′) = (3, 0). There

are Luc(2Luc − 1)(2Luc − 2)/3 such states and they are

marked red in Fig. 16(a). This sector is equivalent to the

unperturbed integrable model on the original chain. The

corresponding states in Fig. 16(a) represent simple folding

of the earlier chain spectrum to the new Brillouin zone. We

are primarily interested in the lowest-energy states form-

ing two bands of the 3-string bound states representing the

single band of these in the original chain, with dispersion

given by Eq. (B2), folded to the new Brillouin zone.

We now consider the case (N1∪2, N1′) = (2, 1). There

are L2
uc(2Luc − 1) such states and they are marked green

in Fig. 16(a). These can be further subdivided into sub-

groups labeled by a location (R0, 1′) of the one particle

on the 1′ sites, which remains completely localized under

such Hamiltonian. The spectra are identical for different

R0; each energy is hence repeated Luc times in the full spec-

trum and gives a flat band in the energy versus momentum

plot in Fig. 16(a).

For a fixed R0, we obtain a problem with two parti-

cles on the original chain but with an attractive “impu-

rity potential” (−u′) < 0 on one site j0 corresponding to

(R0, 1). Away from the impurity, we have the two-particle

continuum (covering energy window of [−4w, 4w] =
[−4, 4] for w = 1) as well as the band of 2-string bound

states (energy window of [−u − 4w2/u, −u] = [−4, −5]

for u = 4w used here). The attractive impurity will

lead to the appearance of some localized states out of

these.

We are mainly interested in the effect of the impurity on

the 2-string bound states. We can roughly model these as

dimers [covering sites (j , j + 1)] hopping on the original

chain [hops (j , j + 1) ↔ (j + 1, j + 2)] with amplitude

wdimer and background energy ǭdimer, which we can esti-

mate by fitting the exact dispersion of the 2-string bound

states in the integrable model, Eq. (B1), as

ǫ2-string(kchain) = ǭdimer − 2wdimer cos(kchain), (B10)

ǭdimer = −u − 2w2

u
, wdimer = w2

u
. (B11)

The dimer feels the attractive impurity at j0 for two of

its positions, (j0 − 1, j0) and (j0, j0 + 1), and the problem

is mathematically equivalent to a point particle hopping

on a lattice with potential (−u′) on two neighboring sites.

On an infinite lattice and in this model of a rigid dimer,

we can solve analytically for exponentially localized states

and obtain energies

ǫloc.dimer, sym. = ǭdimer − u′ − wdimer − w2
dimer

u′ + wdimer

,

ǫloc.dimer, anti-sym. = ǭdimer − u′ + wdimer −
w2

dimer

u′ − wdimer

.

The first localized state is always present and is symmet-

ric around j0, while the second localized state is present

if u′ > 2wdimer (which is satisfied in our problem) and is

antisymmetric around j0. These localized dimer states can

be viewed as three-particle bound states where one of the

particles resides on the extra sites; we will often refer to

these also as 3-string bound states. The two lowest green

flat bands in Fig. 16(a) [close to the red weakly dispersive

bands of the 3-string bound states from the (N1∪2, N1′) =
(3, 0) sector] correspond to these states viewed as bands

once we include all the different R0. Estimating wdimer =
0.25 from the 2-string dispersion, we can estimate the split-

ting of about 2wdimer ≈ 0.5, which is somewhat larger than

the actual splitting of ≈0.25 between the corresponding

green bands in the figure; the inaccuracy is likely due to

crude modeling of the 2-string bound state by the above

dimer picture.

We will not consider any other localized states in this

group, which will be below the delocalized continuum

of states but significantly above the three-particle bound

states of interest. Of interest for connecting with the Flo-

quet case are the highest-energy states in this group, which

are near the energy of approximately 4. If we take the

Hamiltonian spectrum and multiply it by “time” π/6 as

a rough estimate to connect with the GQAI Floquet exper-

iment as done in the main text, the 3-string bound states

from the sector (N1∪2, N1′) = (3, 0), upon “folding” mod-

ulo 2π in the Floquet quasienergy space, would land

among the states that are in the window of approximately

[3, 4] in the Hamiltonian spectrum in this figure. The nature

of these states from the (N1∪2, N1′) = (2, 1) sector is as fol-

lows: there is one particle on 1′ and two particles on the
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chain in scattering states staying away from the 1′ particle

and from each other. We expect that matrix elements of the

w′ perturbation between these and the 3-string bound states

from the (N1∪2, N1′) = (3, 0) sector are very small, since

the w′ term would break such a 3-string state into a parti-

cle on a 1′ site and a nearby dimer, and both the proximity

to the “impurity” and the proximity of the two particles

on the chain has low probability in the described scatter-

ing states. In Sec. V, we use such characters of the states

involved to obtain scaling of these matrix elements with

Luc. These matrix elements are not relevant at all in the

Hamiltonian problem, where the 3-string bound states and

these states are separated by a large energy difference, but

they are important for understanding the robustness of the

3-string bound states in the Floquet problem. As discussed

further in Sec. V, the density of states is also an impor-

tant factor in estimating the decay rate of the bound states,

requiring a quantitative study as presented in the main

text.

We now consider the case (N1∪2, N1′) = (1, 2). There

are L2
uc(Luc − 1) such states and they are marked blue

in Fig. 16(a). Here, two particles are immobile on some

1′ sites—say, (R0, 1′) and (R̃0, 1′)—while the remaining

particle is moving on the chain and sees the immobile

particles as impurity potentials (−u′) at j0 and j̃0 cor-

responding to (R0, 1) and (R̃0, 1). Away from the impu-

rities, we have free propagation with the band cover-

ing energy window [−2w, 2w], while the impurities will

localize some states out of this band. Since u′ is suf-

ficiently large, we expect that the two impurities will

lead to two localized states out of the band, the ener-

gies of which will depend somewhat on specific relative

position of the impurities but will be independent of the

overall shift of R0 and R̃0, leading to flat bands. These

localized-state energies are visible in the spectrum around

energy approximately −4.5. Neither of the blue states are

important for understanding the 3-string bound states in the

Hamiltonian and the Floquet cases.

We finally consider the case (N1∪2, N1′) = (0, 3). There

are Luc(Luc − 1)(Luc − 2)/6 such states and they are

marked black in Fig. 16(a). These have zero energy and

are not of much interest for the study of the 3-string bound

states.

b. Small w
′, general w: Qualitative considerations

We now focus solely on the 3-string bound states. One of

the important effects of adding w′ seen in Fig. 16 is that the

energies of the 3-string states the particles of which reside

on the chain go down with increasing w′, while the ener-

gies of the 3-string states that have one particle on the extra

sites remain essentially unchanged. We can understand this

simply as follows. For the former 3-string states, which we

will refer to as chain 3-string states [see also the pictures

for TI and TII in Fig. 1(d) in the tight-trimer limit], the

nonzero w′ allows virtual fluctuations involving hopping

of one of the particles off the chain onto a nearby extra site

and back, leading to lowering of the energy. On the other

hand, for the latter 3-string states, which we will refer to

as dimer-1′ 3-string bound states [see also the pictures for

TIII and TIV in Fig. 1(d)], such virtual fluctuations are not

available when the dimer is tightly bound to the particle on

the 1′ site. The antisymmetric dimer-1′ 3-string bound state

[schematically, an antisymmetric combination of TIII and

TIV; see Sec. B 3 c for more details] is separated from the

chain 3-string bound states already at w′ = 0 and the sep-

aration only increases with adding w′. From the evolution

in Figs. 16(a)–16(d) and the essentially unchanged bright

green color of the corresponding band even at w′ = w, we

conclude that the character of this state remains essentially

unchanged. On the other hand, the symmetric dimer-1′

3-string bound state energy at w′ = 0 is close to the low-

est energy of the upper chain 3-string band near k = ±π

and as the latter moves down upon increasing w′, the two

bands overlap and mix, particularly near momentum where

their energies are close. By the time w′ reaches a value

of 0.5, the two bands are already separated and stay sepa-

rated afterward, also pushing a bit away from each other by

level repulsion. We can then conclude that the darker-green

band is roughly the symmetric dimer-1′ 3-string bound

state with a small admixture of fluctuations to the chain

3-string bound state. Both green bands remain essentially

flat, since moving such a dimer-1′ 3-string bound state

requires at least four w-hops and two w′-hops, i.e., high-

order perturbation theory in the hoppings relative to the

interactions.

Finally, when the chain 3-string bound states are well

separated from the dimer-1′ 3-string bound states, we can

understand the effect of w′ on the former in more detail

as follows. We start with the picture of a trimer hopping

on the chain. In the presence of the extra sites, the trimer

has two inequivalent positions: one where both ends of the

trimer are over extra sites and the other where the middle

of the trimer is over an extra site. In the former case, vir-

tual fluctuations lower the energy of the trimer by 2w′2/u,

while in the latter case they lower the energy by only w′2/u.

Thus, we can model the effect of small w′ on the trimer

as a potential −3w′2/(2u) + (−1)j w′2/(2u). This has both

a uniform part shifting everything down in energy and a

staggered part that will open a gap of roughly w′2/u at

±π/2 in the original chain Brillouin zone. Folded to the

new Brillouin zone, we have a picture roughly similar

to the two red bands with the gap near the correspond-

ing Brillouin-zone boundaries. The above picture gives an

estimate of the gap between the bands as w′2/u = 0.25

at w′ = w = 1, u = 4, which is somewhat larger but is

still fairly close to the observed gap in Fig. 16(d). The

inaccuracy is likely due to approximations when model-

ing the 3-string states by rigid trimers and also due to

a larger admixture of the dimer-1′ in the upper band, as
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seen in the difference of the colors between the upper and

lower red bands, which is not treated in the above trimer

model.

To summarize, in this Hamiltonian system, besides the

exact numerical results showing stable 3-string bound

states well separated from the continuum, we also have

a fairly complete qualitative picture of the 3-string bound

states. Note that even though we expect no decay of the

3-string bound states at w′ = 1 similar to the integrable

w′ = 0 case, there are still significant quantitative differ-

ences in the 3-string propagation properties. For example,

the maximal band velocity that determines the propagation

wave front is significantly smaller in the perturbed case.

We expect similar quantitative effects also for (approxi-

mate) three-particle bound states in the Floquet system,

which could be tested in experiments.

c. Perturbative treatment for w, w
′
≪ u, u

′

Some of the intuition including w′ has perturbatively

relied on the pictures of tightly bound dimers or trimers.

This is formally valid in the regime of small w ≪ u, and

for w, w′ ≪ u, u′ we can perform the corresponding cal-

culations systematically, which we do here for complete-

ness. In the absence of the hoppings, the lowest-energy

states are the following trimer states specified by the par-

ticle locations on the chain-plus-extra-sites system [see

Fig. 1(d)]:

TI = [(R, 1), (R, 2), (R + 1, 1)],

TII = [(R − 1, 2), (R, 1), (R, 2)], ǫ
(0)
I,II = −2u;

TIII = [(R, 1′), (R, 1), (R, 2)],

TIV = [(R − 1, 2), (R, 1), (R, 1′)], ǫ
(0)
III,IV = −u − u′.

The states TI and TII form a degenerate manifold and so do

TIII and TIV. The corresponding two manifolds are sepa-

rated in energy if u′ �= u and would be treated separately in

this case. On the other hand, they are degenerate if u′ = u

and should be treated together in this case.

Adding small w and w′, the first perturbative corrections

appear in quadratic order. First, there are diagonal correc-

tions appearing from virtual processes where one of the

particles hops away from the other two and then comes

back, obtained by simply examining available such virtual

moves:

heff
I,I = −2w2

u
− 2w′2

u
, heff

II,II = −2w2

u
− w′2

2u
,

heff
III,III = heff

IV,IV = −w2

u
− w2

u + u′ .

Next, at this order, the above TIII and TIV at the same R0

get connected with matrix elements

heff
III,IV = heff

IV,III = − w2

u + u′ .

The TIII-TIV block is diagonalized by considering symmet-

ric and antisymmetric combinations, obtaining

heff
s,s = −w2

u
− 2

w2

u + u′ , heff
a,a = −w2

u
.

Finally, when u′ = u, which we assume from now on, we

also need to consider connections between TII and TIII and

TIV, which appear at this order:

heff
II,III = heff

III,II = heff
II,IV = heff

IV,II = −ww′

2u

=⇒ heff
II,s = heff

s,II = − ww′
√

2u
, heff

II,a = heff
a,II = 0.

We see that at this order, TI is not coupled with the rest of

the states and has the energy

ǫI = −2u − 2w2

u
− 2w′2

u
. (B12)

Next, the antisymmetric combination of TIII and TIV also

decouples and has the energy

ǫa = −2u − w2

u
. (B13)

Finally, the states TII and the symmetric combination of

TIII and TIV hybridize, producing energies

ǫII-s,± = −2u − 2w2

u
− w′2

4u
±

√

(

w′2

4u

)2

+
(

ww′
√

2u

)2

.

(B14)

The relative location of the energies of these states is in

agreement with the preceding qualitative treatment utiliz-

ing the integrable model results, modeling 2- and 3-string

bound states as dimers and trimers and the relevant u′ inter-

actions as impurity potentials and adding w′ perturbatively.

On the other hand, the results in this subsection are com-

pletely systematic for small w and w′ and the character of

the states becomes particularly simple in this regime.

At this order, the trimer states are immobile and the

corresponding energies ǫI, ǫa, and ǫII-s,± are shown as flat

bands in Figs. 16(e)–16(h) for varying w′, capturing rather

well the overall locations of the exact three-particle bound

states from ED. At the next order (cubic in w, w′), the

trimer states residing entirely on the chain start hopping
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with amplitude w3/u2 [compare with Eq. (B2) expanded

to this order], making the corresponding bands disper-

sive. On the other hand, the trimers with a particle on the

extra sites are not mobile by themselves at this order but

other processes become available, and we will not con-

cern ourselves with deriving the full effective Hamiltonian

for the bound states and treating the dynamics that arise

systematically.

APPENDIX C: OVERVIEW OF THE FLOQUET

SPECTRUM AT θ
′
= 0

In Fig. 17, we plot the inverse participation Ik=0 in the

k = 0 sector of the Floquet eigenstates of the model with

φ = φ′ = 2π/3, θ = π/6, θ ′ = 0. This gives us a finer

characterization (and for larger sizes) of the k = 0 states

such as in the θ ′/θ = 0 panel in Fig. 2 and a wider and

more quantitative view of the continuum states than in

Fig. 5, which is useful for the discussion of the perturbation

theory around this point in the main text.

Plotting Ik=0, Ik=0Luc, and Ik=0L2
uc for two different val-

ues of the system size, we can easily recognize the different

characters of the Floquet eigenstates: (i) three-particle

bound states, which have the same Ik=0 irrespective of Luc;

(ii) bands of 2 + 1 continuum states, having Ik=0 ∝ L−1
uc ;

and (iii) bands of 1+1+1 continuum states, with Ik=0 ∝
L−2

uc .

1. Bound states

In Fig. 17 we see four bound states with quasiener-

gies ǫ ≈ −2.23, −2.02, −1.92, −1.81. Note that these are

the same bound states studied in Sec. V and labeled n =
0, 1, 2, 3 there (the values of the quasienergies reported

there differ from these by an overall 2π shift). Two of

them (in red) belong to the sector with (N1∪2, N1′) = (3, 0)

and are protected by the integrability. The other two (in

green) are in the sector with (N1∪2, N1′) = (2, 1): In this

case, since the particle on the 1′ site cannot hop, it acts

as an impurity. These two states then correspond to two-

particle bound states on the chain localized in the potential

of the impurity, thus effectively giving three-particle bound

states. We remark that the model is not integrable in this

sector because of the impurity, so the bound states are not

protected by simply appealing to the integrability [59,60].

While the bound state with ǫ ≈ −2.23 is protected by a

gap (with respect to states in the same sector), the one

with ǫ ≈ −1.92 lies inside of the 1 + 1 + 1 continuum.

Its stability cannot be attributed to any simple mechanisms

but similar studies of integrable models with an impurity

have shown the existence of bound states in the contin-

uum, even if the impurity breaks the integrability. We

leave the question of the stability of this bound state for

future work. We note, however, that the IPR computed for

different system sizes shows much larger fluctuations for

this state than for the other bound states (see the inset in

FIG. 17. The IPR in the k = 0 sector for Floquet eigenstates

with quasienergy ǫ ∈ [−π , π), with parameters φ = φ′ = 2π/3,

θ = π/6, and θ ′ = 0. The three panels show the same data multi-

plied with different powers of Luc. The red, green, and blue colors

are used for the sectors (N1∪2, N1′) = (3, 0), (2, 1), and (1, 2),

respectively. The light and dark colors are for the different sys-

tem sizes Luc = 30 and Luc = 60, respectively. The inset shows

Ik=0 of the bound state with ǫ ≈ −1.92 as a function of the sys-

tem size Luc. The values for the other bound states have much

smaller fluctuations with Luc.

Fig. 17). These fluctuations may be attributed to a weak

hybridization with states in the continuum. The same fluc-

tuations can be observed in the matrix elements Vnj studied

in Sec. V.

For completeness, we note that some states in the

(N1∪2, N1′) = (1, 2) sector (in blue), with a quasienergy

around ǫ ≈ 2.2, also exhibit size-independent Ik=0, even

though they are not three-particle bound states in the same

sense as above. In this sector, two of the particles are

completely localized on the extra sites and then serve as

impurity potentials for the third particle that resides on the

chain. This particle can be either in an extended state on

the chain, giving Ik=0 ∼ L−1
uc (these states show collapse

in the Ik=0Luc panel in Fig. 17), or it can be localized on

one of the impurities giving size-independent Ik=0; it is the

latter states, the details of which also depend on the relative

location of the two impurities, that show up near ǫ ≈ 2.2.
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2. Continuum states

In Fig. 17, we observe three types of 2 + 1 continuum

states that show collapse in the Ik=0Luc panel. First, we

find a set of states in the (N1∪2, N1′) = (3, 0) sector (red)

with quasienergies from 0.8 to −2.6 + 2π . Another set

of states is in the (N1∪2, N1′) = (2, 1) sector (green), with

quasienergies from 1.9 to −3 + 2π : these can be of two

subtypes, one where the two-particle bound state has one

particle localized on an extra site (the third particle roams

on the chain), and the other where the two-particle bound

state roams on the chain (the third particle is localized

on an extra site); we do not try to distinguish these here.

Finally, most of the states in the (N1∪2, N1′) = (1, 2) sector

(blue) with quasienergies from −1 to 1 show collapse in

the Ik=0Luc panel: more precisely, these states are not 2 + 1

states but instead have two particles completely localized

on the extra sites and the third particle extended around the

chain, which we have already mentioned in the previous

subsection.

Turning to the states that show collapse in the Ik=0L2
uc

panel, we see the 1 + 1 + 1 continuum, which spans the

full quasienergy range in the (N1∪2, N1′) = (3, 0) sector

(red), and a range of quasienergies from −2.1 to 2.1

in the (N1∪2, N1′) = (2, 1) sector (green) (strictly speak-

ing, the latter are not 1 + 1 + 1 continuum but are from

flat bands obtained by constructing momentum eigen-

states from degenerate states where one of the particles is

completely localized on an extra site, while the other two

are in extended states on the chain).

Note that in the quasienergy range from 1.2 to 2, we find

many eigenstates in the (N1∪2, N1′) = (2, 1) sector with

values of Ik=0 that are intermediate between the 2 + 1 and

1 + 1 + 1 continuum: since this sector is not integrable, the

states in the 2 + 1 continuum can decay in the 1 + 1 + 1

continuum (if they have the same quasienergy), so the

scattering states will be a mixture of 2 + 1 and 1 + 1 + 1

states. We have not tried to understand these states in any

detail, since they are far from the three-particle bound

states of main interest to us.
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