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ARTICLE INFO ABSTRACT

Keywords: Throughout the COVID-19 pandemic, scenario modeling played a crucial role in shaping the decision-making
Ensemble method process of public health policies. Unlike forecasts, scenario projections rely on specific assumptions about the
Scenario projections future that consider different plausible states-of-the-world that may or may not be realized and that depend

COVID-19 models on policy interventions, unpredictable changes in the epidemic outlook, etc. As a consequence, long-term

scenario projections require different evaluation criteria than the ones used for traditional short-term epidemic
forecasts. Here, we propose a novel ensemble procedure for assessing pandemic scenario projections using
the results of the Scenario Modeling Hub (SMH) for COVID-19 in the United States (US). By defining a
“scenario ensemble” for each model and the ensemble of models, termed “Ensemble?”, we provide a synthesis
of potential epidemic outcomes, which we use to assess projections’ performance, bypassing the identification
of the most plausible scenario. We find that overall the Ensemble? models are well-calibrated and provide
better performance than the scenario ensemble of individual models. The ensemble procedure accounts for the
full range of plausible outcomes and highlights the importance of scenario design and effective communication.
The scenario ensembling approach can be extended to any scenario design strategy, with potential refinements
including weighting scenarios and allowing the ensembling process to evolve over time.

1. Introduction behavior, changing environmental conditions, or the emergence of new
pathogens or variants (Vollmar et al., 2015; Runge et al., 2023) that are

During the COVID-19 pandemic, scenario modeling played a critical generally designed around policy-making questions, and may never be
role in shaping public health policy decision-making by exploring pos- exactly realized in the future—e.g., expectation for vaccine coverage or
sible future trajectories of the pandemic and to better understand the whether or not nonpharmaceutical interventions will be relaxed. This
potential consequences of interventions (Jewell et al., 2020; Borchering fundamental difference makes it difficult to directly evaluate the per-

et al.,, 2021; Biggerstaff et al., 2022; Rosenblum et al., 2022; Reich
et al., 2022; Truelove et al., 2022; Borchering et al., 2023). Different
from forecasts that aim to predict as accurately as possible future
outcomes based on current data and trends, the projections generated
with scenario models depend on specific assumptions about human

formance of typically long-term scenario projections in the same way
as short-term forecasts. In forecasts, the degree to which the predicted
values match the actual outcomes is crucial; in scenario projections,
evaluating the performance requires a different set of criteria that
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consider not only the accuracy of model outputs in matching reality but
also how well the range of scenario assumptions is able to bound the
realized epidemic drivers and capture the range of possible outcomes.
This consideration assumes that the scenarios are designed to achieve
this goal, i.e., that they aim to provide a “bracketing” of the epistemic
uncertainties (Runge et al., 2023).

In this paper, we present a quantitative analysis of a novel ensemble
procedure for assessing epidemic scenario projections. Ensemble meth-
ods are commonly utilized to consolidate predictions from numerous
models. This process has proven to generate more accurate results
and significantly improve the representation of uncertainty (Bates and
Granger, 1969; Krishnamurti et al., 1999; Biggerstaff et al., 2018;
McGowan et al., 2019; Reich et al., 2019a; Cramer et al., 2022a;
Lutz et al., 2019; Reich et al., 2022). Here, we propose an alternative
use of ensembles where we aggregate model outputs across multiple
scenarios using the results generated by the Scenario Modeling Hub
(SMH) in 10 rounds of projections for the trajectory of the COVID-19
pandemic in the United States (US). The SMH framework consistently
defines a matrix of four distinct scenarios and for each model, we
define a scenario ensemble that generates an overall projection. We refer
to the scenario ensemble of the ensemble of models as “Ensemble?”.
Subsequently, the Ensemble? performance is assessed using standard
metrics, such as coverage, mean absolute percentage error (MAPE),
and the weighted interval score (WIS) to provide a comprehensive
evaluation across all projection rounds.

This scenario ensemble procedure includes in the performance as-
sessment: (a) the ability of the defined scenarios assumptions to en-
compass the future trajectory of the epidemic, assessing if both upper
and lower bounds for the plausible range of outcomes are enveloping
the realized epidemic trajectory; and (b) the ability to assess whether
the models are well calibrated simultaneously. This approach also
acknowledges that the future epidemic evolution should be viewed
as a continuum of potential scenarios, with interpolations occurring
between the specific ones identified in each round’s quadrant. This
perspective is crucial when scenarios are designed not to predict spe-
cific trajectories but to explore and bound the uncertainties inherent in
pandemic progression, such as transmission rates of emerging variants
or vaccine uptake. By interpolating between these scenarios, Ensemble?
offers a nuanced view of potential futures, enhancing our understand-
ing of the pandemic’s trajectory within the bounds of defined un-
certainties. Finally, this methodology remains independent from the
a-posteriori identification of the most plausible scenarios (Howerton
et al., 2023b), which may be clouded by specific and non-transparent
additional modeling and parameter assumptions.

The performance assessment of the SMH projections indicates that
the Ensemble? models are generally outperforming the scenario en-
semble of individual models. The approach is able to identify specific
rounds where the Ensemble’ models are miscalibrated, potentially
indicating that the scenario specifications are not enveloping the fu-
ture trajectories and/or that most of the models are not providing an
adequate representation of the epidemic dynamics, thus highlighting
the importance of the scenario design process. The proposed scenario
ensemble procedure provides a more coherent representation of possi-
ble epidemic outcomes and holds significant importance when it comes
to communication with the public and policymakers.

The performance assessment proposed here is not limited to the
SMH scenario modeling framework and can be potentially extended
to consider any scenario design strategy. Finally, it is possible to en-
vision refinement of this approach in which the scenarios are weighted
according to specific priors, and the Ensemble? can evolve over time.

2. Materials and methods
In the following, we consider COVID-19 scenario projections in the

US at both national and state levels, as coordinated by the SMH. The
SMH has coordinated 16 rounds of projections as of November 2022.
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For our analysis, we look at projection rounds 5-16, with rounds 8 and
10 excluded due to their use as internal training rounds. We exclude
early rounds 1 to 4 that used slightly different approaches in the data
aggregation and reporting. A typical round of scenario projections is
composed of four distinct scenarios. These scenarios are organized
into a 2 x 2 matrix, each representing potential trajectories of the
epidemic, based on different assumptions (see Fig. 1, left panel). Each
round of scenario projections focused on specific epidemic indicators
or drivers of interest varying along each axis of the matrix. Exam-
ples of these drivers included the availability and uptake of vaccines,
the application/relaxation of non-pharmaceutical interventions, and
the uncertainty surrounding the factors contributing to the growth
advantage of emerging variants. The specific drivers considered and
assumptions made about their variability are tailored to each round
of projections. For each round, the modeling teams supply target pro-
jections comprised of 23 quantiles (0.01, 0.025, 0.05, every 5% up to
0.95, 0.975, and 0.99) for each week of the projection period. These
quantiles represent anticipated incident cases, incident hospitalizations,
and incident deaths. To visualize and evaluate probabilistic estimates,
quantile projections are transformed into central prediction intervals
(PIs), which encapsulate a model’s confidence that future observations
will land within a specified range of values; for instance, the 50% PI
is derived from the interquartile range. See the SMH website (Scenario
Modeling Hub, 2023) for further visualizations of scenario projections.

The SMH integrates individual models’ projections into a unified
ensemble projection through three distinct methodologies. The first of
these is a modified version of the Vincent averaging technique (Vincent,
1912; Howerton et al., 2023a). In this approach, each reported quantile
Q; corresponds to the median of the quantiles Q7" over all individual
models m. This composite model is simply known as the Ensemble
model, but we refer to it as the Ensemble vincent model here to dis-
tinguish it from other approaches. The underlying assumption behind
Vincent averaging is that all predictions are flawed approximations of
a single target distribution. However, it posits that the random noise
across these predictions can be averaged out, thereby producing an
appropriate, aggregated distribution (Howerton et al., 2023a). This also
implies that the actual outcome of the epidemic trajectory is expected
to fall in between the different projections. The second method em-
ployed by the SMH is grounded in probability averaging, also known
as the Linear Opinion Pool (Stone, 1961; Howerton et al., 2023a).
Rather than aggregating the quantiles, this technique averages the
cumulative probabilities of the individual models. These probabilities
are reconstructed from the quantile predictions via linear interpolation.
The resulting model is dubbed the Ensemble LOP_untrimmed model. This
technique considers that all predictions are distinct plausible alterna-
tive futures and that the uncertainty should be preserved, resulting in
a higher (or equal) variance compared to the Vincent averaging tech-
nique (Howerton et al., 2023a). Finally, the last method (Ensemble_LOP)
is identical to the second one, but the highest and lowest quantiles at
a given value are excluded beforehand, which reduces the variance of
the resulting ensemble.

2.1. Construction of the scenario ensemble

In order to succinctly communicate the performance of scenario
projections, we propose the construction of the scenario ensemble, ag-
gregating the four different scenarios, for each individual model and
the ensemble models, termed “Ensemble?”. More specifically, we re-
fer to the latter as “Ensemble_vincent?”, “Ensemble_LOP_untrimmed?”,
and “Ensemble_LOP?” according to each methodology used for the
construction of the multi-model ensemble. Our approach to scenario
ensembling mirrors the process used by the Scenario Modeling Hub in
creating the Ensemble_vincent model. In this method, we compute the
median of each quantile across all scenarios (with linear interpolation
for ties). This procedure is exemplified in Fig. 1, where we illustrate the
projections of the Ensemble_LOP model for each of the four scenarios in
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Fig. 1. Construction of the Ensemble LOP? scenario ensemble for weekly incident hospitalization projections at the national level in the United States (US) for round 12 of the
Scenario Modeling Hub (SMH). Note this is in 2022 and addresses the Omicron wave. All 23 quantiles of each of the scenario projections A-D of the Ensemble LOP model, an
SMH-reported ensemble over models, (left) are used to construct the scenario ensemble Ensemble LOP?> model (right). The middle panel shows the method of constructing the
scenario ensemble for one date, where we take the median over scenarios A-D for each quantile. Each colored line in the middle panel represents a scenario from the left panel,
with the blue line corresponding to the median, which is used to create the ensemble. In the right panel, black circles represent the observed hospitalizations in the US at this
time, whereas the colored circles correspond to the median of the model prediction. Prediction intervals (PIs) are represented by the shaded regions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

round 12, as well as the projection of the resulting scenario ensemble
model.

Traditional approaches often limit their focus to individual sce-
narios, each exploring specific outcomes under certain assumptions.
However, when scenarios are structured to define the upper and lower
limits of scenario uncertainties, such as the transmission advantage
of a new variant or the vaccine intake in the population, reality is
often a complex interplay between these extremes. The Ensemble? goes
beyond simple probability averaging or selecting plausible scenarios.
It dynamically integrates various projections, providing a synthesized
view that is more informative for understanding the range of potential
pandemic trajectories. Consequently, we make use of an ensembling
approach that effectively interpolates between the scenario projections.
This approach is particularly valuable in acknowledging the inherent
uncertainties in pandemic progression and scenario planning.

In cases where scenarios do not aim to bracket uncertainty,
Ensemble? approaches may not be suited to provide the needed infor-
mation or should be adapted using probability averaging or excluding
certain scenarios to prevent bias in the ensemble. See Figs. S11 and
S12, and Table S3 in the Supplementary Material for an analysis on the
ordering of ensemble steps in the construction of an Ensemble? model.

2.2. Performance metrics

In order to evaluate the efficacy of the scenario ensemble pro-
jections, we employ a range of scoring techniques. These measures
compare the point and probabilistic estimates of a model with the
observed ground truth values. The scores are computed on a weekly
basis throughout the projection period for each specified target, which
include cases, hospitalizations, and deaths. In our analysis, it is impor-
tant to acknowledge that the reported cases, hospitalizations and deaths
used as ‘ground truth’ are imperfect proxies for the true extent of the
pandemic. These data are inherently subject to biases and noise, such as
reporting delays, changes in testing rates, and other factors influencing
case detection and recording. Despite these limitations, they represent
the best available data for retrospective evaluation and are essential for
our long-range scenario modeling.

2.2.1. Prediction interval coverage

The first metric we use is the prediction interval coverage (or the
coverage for short), defined as the percentage of times that the actual
outcome falls within the PI across multiple predictions (Cramer et al.,

2022a). More precisely, for n time points, and a given (1 —a)x100% PI,
the coverage is calculated as follows:

n
Coverage, = ’]—1 Z 1y Sy Suyy)s
i=1

where /,; represents the lower bound of the PI, u,; denotes the upper
bound of the PI, and y; signifies the observed value at each time point
i. Using this expression, we are able to calculate the coverage for each
of the 11 PIs (98%, 95%, 90%, 80%, ...10%) based on the 23 quantiles
submitted by the modeling teams (Bracher et al., 2021; Cramer et al.,
2022a). The coverage is a key measure in assessing the calibration of
a model. Calibration in the context of probabilistic forecasting refers
to the alignment between forecast probabilities and the frequencies
observed in reality. For instance, if a model yields 20%, 50%, and 80%
prediction intervals, we would anticipate that the actual values reside
within these respective intervals 20%, 50%, and 80% of the time.

A well-calibrated model should demonstrate a strong correspon-
dence between the forecast probabilities and the observed frequencies.
If a model lacks proper calibration, we may detect low coverage (fre-
quencies less than the corresponding prediction intervals) or high
coverage (frequencies greater than the corresponding prediction inter-
vals). Low coverage is indicative of an overconfident model, wherein
the actual data points often fall outside the PI. Conversely, high cover-
age suggests an underconfident model, which tends to generate overly
broad PIs.

Coverage holds particular significance in the context of scenario
analysis, where we anticipate that the projections should encapsulate
all potential epidemic trajectories should scenario assumptions mate-
rialize as stipulated. In essence, the prediction interval is expected
to encompass the ground truth data, and overconfident projections
could significantly mislead the policy-making process by prematurely
excluding specific outcomes.

2.2.2. Mean absolute percentage error

A second metric we use is the classic mean absolute percentage
error (MAPE), which is a relative measure that assesses the accuracy
of a point prediction and does not account for the probabilistic uncer-
tainty (Makridakis et al., 1982). The MAPE is calculated with observed
values y; and predicted point estimates P; over n time points with

IR
MAPE = ~ Z‘;| .
ni3 Vi

This metric is undefined if the observation is equal to zero, so we
discard these cases from our analysis. The modeling teams provide a
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point prediction for each scenario, but for the ensemble models, we
use the median value of the resulting prediction as the point estimate.

2.2.3. Weighted interval score

The third measure we have considered is the weighted interval
score (WIS) which accounts for the size of the prediction intervals, the
placement of the intervals relative to the true outcome, and the weights
assigned to the intervals. Lower WIS values indicate better forecast
performance. The WIS is calculated for each time point with prediction
P and observed values y as

K
1
WiSey,  (PY) = 2= (w0|y —m|+ Y w IS, (P, y)> :
) k=1

where IS, corresponds to the interval score of the (1 — a)x100% PI,

18,(P3) = (= L)+ 2, = D1 <L)+ 20— 01> )

K is the number of PIs used (in our case, 11), m is the median of P, and
1, (u,) is the lower bound (upper bound) of the PI. The standard weights
are chosen such that w; = ”7" and w, = +. The indicator function 1 in
the interval score is used to penalize observations that lie outside the PI
and the term (u, — /,) penalizes wider intervals (Bracher et al., 2021).

When aggregating WIS scores from all weeks in an SMH round, we
take the mean over the values for each week to get one average WIS
value for a given SMH round, target and location. We define for each
model m, location ¢, target 7, and round r the average WIS

ZM} WIS;"Y r,uw
WIS';,:,r = - N
w
where WIS” is the WIS for a given model, location, target, round,

£.tr.w
and week and N, is the number of weeks in the projection round.

We discard cases where the calculated WIS score is less than zero,
which occurred in a few cases where the prediction intervals reported
by modeling teams included a lower bound that was greater than the
upper bound.

In our analysis, we compare and aggregate the WIS across differ-
ent prediction locations and scenario rounds. The WIS is an absolute
measure and therefore it depends on the magnitude of the observation
and prediction values that changes across locations, rounds, and weeks
within a round. For instance, the various targets (death, hospitalization,
cases) are affected by the size of the population of each state, and so
is the WIS. Similarly, during different rounds, the magnitude of the
targets may change because of the different phases of the epidemic.
Because of this, we either compare pairs of models through a ratio of
their average WIS, or we generate a rescaled weighted interval score
WIS, scalea- TO compute the latter, we calculate the standard deviation
of the WIS across all models reported for the corresponding ¢,1,r, w,
ie.,

2
Zm <WIS?,z,r,w - WISK,I,r,w)

N ,

m

oy St =

where N,, is the number of reported models, WISy —is the WIS
for a given model, location, target, round, and week, and mf’mw is
the average of WIS}~ over all models. To rescale this metric, we
divide the WIS value of a given model by this calculated standard
deviation (Howerton et al., 2023b),

WIS My (P2 ) .

rescaled —
O¢ traw

We aggregate rescaled WIS scores using the same method as discussed
above, whereas we take the average over all weeks in a projection
round to get one rescaled WIS value for a given model, location, target,
and round. This rescaling, adopted in climate prediction (Pennell and
Reichler, 2011), accommodates the specific scale of each week, target,
and round, thereby enabling a fair comparison of the WIS. In the
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Supplementary Material (section 3), we detail the outcomes obtained
from an alternative rescaling method. This alternate approach char-
acterizes a relative WIS, adjusted each week according to the target
magnitude. This revised definition assigns equivalent significance to
identical relative deviations, irrespective of the target’s magnitude.
However, it is worth noting that this adjustment does not significantly
alter the overall performance evaluation of the models.

3. Results

To illustrate the outcomes achieved through the scenario ensemble
procedure, we begin by detailing the results of a single scenario round.
This step facilitates a comparative analysis between the Ensemble” and
the scenario ensemble drawn from individual models. Following this,
we provide a comprehensive evaluation of the results obtained across
ten different projection rounds. This thorough analysis is aimed at as-
sessing the performance variations under distinct scenario designs and
during different phases of the epidemic. This analysis not only provides
insight into the overall efficacy of the scenario ensembling procedure,
but it also aids in determining its robustness and adaptability under
changing epidemic phases and scenarios. In the following we report
the analysis aggregated over all the targets (deaths, hospitalizations,
and cases), however, we report the results specific to each target in
Figs. S13-S18 of the Supplementary Material.

3.1. Single round analysis

In this section, we delve into the specifics of round 12, which saw
contributions from six modeling teams providing three-month projec-
tions spanning January 15, 2022, to April 2, 2022. The main objective
of this round was to assess the implications of the Omicron wave, by
analyzing four scenarios that varied along two dimensions:

+ The extent of immune evasion by the Omicron variant, which was
assumed to increase the risk of infection among those with prior
immunity to SARS-CoV-2 by 50% to 80%.

+ The severity of the variant in terms of its impact on hospitaliza-
tion and death rates, with the risk speculated to reduce by 30%
to 70% compared to the Delta variant.

More detailed information on the round 12 projections can be found in
the publicly available COVID-19 SMH’s Github repository.

In the left panel of Fig. 2, we show the coverage of the sce-
nario ensembles of all individual and ensemble models, consolidated
across all targets and all states in the US. It is apparent that all
models display overconfidence in their predictions — their PIs are
excessively narrow — with the exception of the Ensemble_LOP? and the
Ensemble_LOP_untrimmed?. In the right panel of Fig. 2, we analyze
the coverage of the Ensemble LOP? for a few selected states and see
that while it occasionally exhibits slight overconfidence and at other
times slight underconfidence, the model is generally well-calibrated
(see Fig. S1 in the Supplementary Material for the coverage in all
states).

In Fig. 3A, we show the distribution of the MAPE across states,
including all targets, of all scenario ensemble models for round 12. The
median of the MAPE suggests that the three Ensemble? models perform
better than the scenario ensemble of the individual models.

In Fig. 3B, we show the distribution of the rescaled WIS across
states, including all targets, for all scenario ensemble models in round
12. The median of the rescaled WIS suggests that the Ensemble? models
outperform the scenario ensembles of the individual models. Similar
results are obtained in the Supplementary Material (Fig. S6-S7) with
another rescaling procedure where we divide the WIS by the obser-
vation. In Table 1, we summarize aggregate results for all measures
performed on round 12. The three distinct projections derived from
the Ensemble? demonstrate superior performance in comparison to the
scenario ensemble of individual models. This confirms the efficacy of
the Ensemble? approach, which offers not only enhanced accuracy, but
also improved estimation of uncertainty than what is typically achieved
with single models.


https://github.com/midas-network/covid19-scenario-modeling-hub
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Table 1

Table showing the median (25%, 75% percentile) averaged and rescaled WIS score and MAPE, and the 50%, and 95% coverage
values over all targets for the scenario ensemble of each model averaged over all locations (US states) for round 12. The
rescaled WIS divides the raw WIS score by the standard deviation across all models at each time point, and is averaged
over all weeks in round 12. The boldface values represent the smallest WIS and MAPE values, which corresponds to the best
prediction of the observed values, and the bold coverage represents the values closest to the associated prediction interval.

Model WIS

0.55 (0.34, 0.98)
0.53 (0.39, 0.86)
0.64 (0.50, 0.84)
0.69 (0.41, 1.16)
1.02 (0.56, 1.51)
1.24 (0.76, 1.85)
2.08 (1.57, 2.54)
1.70 (1.07, 2.16)
1.36 (0.95, 1.91)

Ensemble_vincent?
Ensemble_LOP?
Ensemble_LOP_untrimmed?

mEg 0w >

MAPE 50% coverage 95% coverage
0.57 (0.41, 0.93) 0.36 0.74
0.55 (0.39, 0.83) 0.60 0.94
0.55 (0.40, 0.83) 0.76 0.99
0.66 (0.53, 0.90) 0.43 0.86
0.83 (0.74, 0.89) 0.18 0.46
0.76 (0.55, 2.65) 0.08 0.19
2.53 (1.71, 3.75) 0.12 0.31
1.91 (0.88, 4.74) 0.16 0.44
0.94 (0.87, 1.16) 0.12 0.31

3.2. Overall performance assessment of the Ensemble®

In order to provide a thorough performance assessment of the
scenario ensemble approach we considered the projection results from
rounds 5 to 16, excluding rounds 8 and 10 because they were internal
training rounds, for a total of 10 rounds. We excluded rounds 1 to 4
because the Ensemble_LOP was not reported. To make a fair assessment

of these projections, we excluded dates from the projection period when
a new variant emerged and diverged considerably from the scenarios
and their assumptions (see Howerton et al., 2023b and Table S1 in the
Supplementary Material). See Table S2 in the Supplementary Material
for a list of models included in our analysis for each round.

We focus our analysis on the three Ensemble? models and investi-
gate the performance across rounds and geographic locations. In Fig. 4
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Fig. 4. Coverage versus prediction intervals for the three Ensemble? models for each round of Scenario Modeling Hub projections. The coverage is taken over all targets (cases,
deaths, and hospitalizations) and locations (US states). The Ensemble LOP model started being reported in round 5, and the Ensemble LOP_untrimmed model in round 9.

we observe that the coverage is fairly good for all Ensemble? models.
Overall, the Ensemble_vincent? is slightly overconfident, the Ensem-
ble_LOP_

untrimmed? underconfident, and the Ensemble_LOP? is generally well
calibrated, with the exceptions of rounds 6 and 7. Round 6 was the
first to explicitly account for the spreading of the Delta variant. Round
7 was an update of round 6 taking into consideration updated data
on the Delta variant and the vaccine hesitancy. The Delta variant
was assumed 20% to 60% more transmissible than the Alpha variant
in round 6, and 40% to 60% more transmissible in round 7. How-
ever, for both rounds, even the more pessimistic scenarios, which
consider that the Delta variant has a high increase in transmissibility,
led to an underestimation of the incident cases, hospitalizations, and
deaths for all models (Scenario Modeling Hub, 2023). This explains the
overconfidence of the Ensemble? models for these rounds in Fig. 4.

To assess the overall performance of Ensemble? models, we show in
Fig. 5 the distribution of the MAPE and WIS across different states for
each of the considered projection rounds (here only for the
Ensemble_LOP2). The WIS and MAPE performance show a similar
behavior across rounds with rounds 6 and 7 having the highest median
values, and thus a lower quality for the projections than in the other
rounds. This feature can again be attributed to the underestimation of
the targets following the emergence of the Delta variant. See Figs. S3
and S5 in the Supplementary Material for a similar analysis with the
Ensemble_vincent? model.

Figs. 4 and 5 are good examples of the Ensemble? models being
able to flag anomalies in the round 6 and 7 projections. While the
transmissibility and the vaccine assumptions (round 6 only) seem to
correctly bound reality (Howerton et al., 2023b), the models have un-
derestimated the targets. There are multiple factors that could explain
this: a more rapid waning of vaccine protection, other epidemiological
differences of the Delta variant not taken into account, and changes
in human behavior (Howerton et al., 2023b). While this can be in
part attributed to a miscalibration from the modeling teams, some of
these elements could also fall within the scope of scenario design, even
though they were not the drivers of interest at the time. Altogether, the
discussion among modeling teams and the coordination team in the
light of the Ensemble? results presents a valuable chance to enhance
both the model implementation and scenario design processes.

In order to compare the performance of the Ensemble? models with
the scenario ensemble of single models, we analyzed the distribution of

the standardized rank across all considered projection rounds according
to the WIS. The standardized rank is computed by ranking the models,
then the rank is reported on a 0 to 1 scale, with 1 being attributed to
the best model and 0 to the worst. Remarkably, we see in Fig. 6 that the
Ensemble_vincent? and the Ensemble LOP? are outperforming all other
models in six over ten rounds of projections and one of them ranks
across the top three models in all rounds. This finding corroborates
the results found in several studies: ensemble models are overall better
calibrated and performing than individual models (Bates and Granger,
1969; Krishnamurti et al., 1999; Viboud et al., 2018; McGowan et al.,
2019; Reich et al.,, 2019b,a; Johansson et al., 2019; Cramer et al.,
2022a). See Fig. S4 in the Supplementary Material for a similar analysis
using the MAPE.

The performance analyses conducted thus far are relative, com-
paring across different models and rounds. To have a more absolute
assessment of the projection quality, it is necessary to establish a refer-
ence point for comparison, which can serve as a minimum performance
standard or highlight improvements over a recognized state-of-the-art
approach. In the context of scenario projections, identifying an appro-
priate reference point is a challenging task. Therefore, we opted to
use as reference two well-regarded models in forecasting generated by
the COVID-19 Forecast Hub, a platform that aggregates and visualizes
COVID-19 forecasts from various predictive models (Cramer et al.,
2022b; Forecast Hub, 2023). The first is a naive baseline forecast,
where the median of the prediction mirrors the last observed value
(here we use the four-week-ahead forecast) and the uncertainty is based
on previous changes in the weekly incidence. The second is the four-
week-ahead ensemble forecast that aggregates the predictions of the
modeling teams.

In Fig. 7 we compare the overall performance of the Ensemble?
models with the four-week-ahead baseline and ensemble forecast for
the predicted incident deaths. For each round and location, we calcu-
late the ratio of the raw WIS score for a given Ensemble? model divided
by the raw WIS score obtained by the reference model. A ratio smaller
than 1 indicates that the Ensemble? model provided better predictions.
We see that generally, the Ensemble? models perform better than the
naive baseline with a median ratio between 0.87 and 0.94. However,
the four-week-ahead ensemble forecast is generally better than the
Ensemble? models, with a median ratio between 1.36 and 1.42. See Fig.
S2 in the Supplementary Material for a comparison of the coverage with
these reference models and Figs. S8-S10 for a comparison of the WIS by
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Fig. 5. (A) Distribution of MAPE values for the Ensemble LOP?> model for each round, over all targets and locations. (B) Distribution of averaged, rescaled WIS values for the
Ensemble_LOP?> model for each round, for all targets and locations. For the sake of visualization, we do not show outliers above the 98% quantile.

round. It is crucial to recognize that neither the naive baseline forecast
nor the four-week-ahead ensemble should be regarded as the minimum
performance benchmark for scenario projections. Scenario projections
are typically formulated for a timeframe of three to six months, whereas
both the baseline and the Forecast Hub ensemble are updated on a
weekly basis, incorporating ongoing information about the trajectory
of the epidemic.

In Fig. 8, we compare the performance of the Ensemble_LOP? model
against the Ensemble LOP of individual scenarios for all targets and
locations for each projection round. A value less than 1 indicates that
the Ensemble? model gives better predictions, and a value greater
than 1 suggests that the projection for the individual scenario provides
better predictions than the scenario ensemble. We observe that, overall,
the Ensemble’ model consistently performs better than the poorest
performing scenario in each round and is competitive against the best,
as indicated by the median WIS ratio falling between 0.76 and 1.25
for individual scenarios in each SMH round. When compared to only
the individual scenarios with the highest WIS ratio (best-performing
scenarios) in each projection round, the WIS ratio falls between 0.98 to
1.25. It is also worth noting that in three rounds, the Ensemble? model
performs better than all other scenarios (median WIS ratio smaller than
one), illustrating the ability of the Ensemble? models to interpolate
between scenarios, potentially providing a better fit to reality.

This analysis highlights the effectiveness of the Ensemble? approach
in generating reliable projections prior to utilizing ground truth data
to evaluate the plausibility of scenarios. Essentially, the Ensemble?
approach captures both the inherent uncertainty in model design and
the uncertainty inherent in scenario design, prior to any posterior
considerations.

4. Discussion

The task of outlining an appropriate framework for the performance
assessment of epidemic scenario projections carries substantial impli-
cations for policy-making, long-term planning, and the evaluation of
scenario designs. Our analysis underscores the merits of a scenario
ensemble procedure in evaluating the performance of scenario model-
ing. The coverage of the scenario ensemble quantifies to which extent
the defined scenarios as a whole encompass the future trajectory of
the epidemic, conditional on the appropriate models’ calibration. This

aspect is particularly pertinent in assessing the quality of scenario
projections in relation to policy-making, which necessitates accurate
estimation of both upper and lower bounds of plausible outcomes.
Through the examination of 10 rounds of SMH scenario projections,
we found that the scenario ensemble typically yields well-calibrated
projections capable of enveloping epidemic trajectories, even when
individual models or scenarios fall short. Furthermore, the inability
of a scenario ensemble to offer sufficient coverage can serve as an
effective indicator of issues with scenario specifications and/or model
definitions. This deficiency implies that the range of scenarios un-
der consideration does not comprehensively encompass the possible
epidemic trajectories, suggesting that other epidemiological aspects
warrant revision by the coordination and modeling teams. In other
words, the performance of a scenario ensemble can provide valuable
feedback to both the scenario design team and the modeling teams. It
can guide adjustments to the scenario specifications, leading to a more
comprehensive representation of potential epidemic paths. Simultane-
ously, it can prompt a critical reevaluation of the models’ underlying
assumptions, helping to refine and improve their predictive power.
The scenario ensemble approach also fully acknowledges that future
epidemic developments should be viewed as a continuum of potential
scenarios, with interpolations occurring between the specific ones.
Every individual scenario is intended to explore plausible future out-
comes under different assumptions that may never fully materialize.
The information provided by each scenario is valuable to the policy-
making process, but their comparison with ground truth data as if
they would be forecasts does not adequately capture their true value.
While this issue may be assuaged with the a-posteriori identification
of the most plausible scenario to compare with the ground truth data,
the scenario ensemble organically considers the ability of multiple
scenarios to span a wide range of plausible outcomes. This approach
has also the advantage of not relying on the a-posteriori identification
of the most plausible scenarios that are generally dependent on the
geographical scale, the time window, and may be clouded by additional
modeling and parameter assumptions. Furthermore, the quantity of
scenarios significantly influences the degree of alignment between the
most plausible scenario and reality. It is crucial to identify the optimal
number of scenarios required for optimum results. Also, considering the
interdependencies among them, the effective number of scenarios em-
ployed warrants careful evaluation. The scenario ensembling approach
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Fig. 6. Distribution of standardized rank values for the raw WIS value averaged over all weeks of the corresponding projection round of each of the scenario ensemble models
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Fig. 7. Average WIS value of Ensemble? models divided by the average WIS value of a reference model for the prediction of incident deaths for all projection rounds and locations.
A ratio greater (smaller) than 1 indicates that the reference model (Ensemble® model) performs better. Each data point represents the WIS ratio for a round of the Scenario Modeling
Hub at a particular US state. Rounds with WIS < O are discarded. (A) The reference is the COVID-19 Forecast Hub naive baseline model (four-week-ahead prediction). (B) The
reference is the COVID-19 Forecast Hub ensemble model (four-week-ahead prediction).

scenarios. Additionally, mechanisms can be devised to detect when
the scenario ensemble ceases to bracket reality (Runge et al., 2016),
regularly checking the goodness-of-fit of the weighted ensemble to
determine when the scenario design process — potentially beyond the
drivers initially identified — needs revisiting.

Nevertheless, it is important to acknowledge the inherent limita-
tions of any quantitative performance assessment of scenario projec-
tions. The utility of scenario projections for decision-making should
be a primary criterion for their evaluation. The question should be:
do they assist policy-makers in comprehending the potential range
of outcomes and the impacts of varying interventions? Furthermore,
the long-term nature of the scenario projections implies that their
performance assessment is not solely about appraising the accuracy
of the models employed. It also involves assessing the performance of

represents progress towards the creation of a framework that can also
help to refine our scenario generation and selection processes, ensuring
we capture a truly representative spectrum of potential outcomes.

Our findings indicate that even in its simplest implementation,
the scenario ensemble approach demonstrates comparable or superior
performance to four-week-ahead forecast models from the COVID-19
Forecast Hub (ensemble and baseline models) in terms of fundamental
metrics such as MAPE and WIS. Moreover, the scenario ensemble
methodology paves the way for more sophisticated strategies that
dynamically adjust scenario weights over time, enabling the ensemble
to evolve (Raftery et al., 2005; Ray and Reich, 2018). This evolution
could be guided either by empirical evidence derived from fits to
historical data (Johnson et al., 2015) when the scenarios are designed
or by initiating a process of expert elicitation for differently formed
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the scenario design itself—i.e., the assumptions and conditions under
which the models function. While comparisons with ground truth data
form part of performance assessment, they are not the sole or even the
primary metric for evaluating the performance of scenario projections.
For instance, contrasting scenario projections (e.g., percentage of cases
or deaths averted) under different assumptions is a metric that remains
useful for policy decisions even for projections that do not follow
accurately the epidemic trajectory. A more comprehensive, nuanced
approach is essential to thoroughly understand and appreciate the value
of these tools in epidemic modeling and public health decision-making.

Let us also stress that while in this work we focused on scenario
projections aimed at bounding the realized epidemic drivers, such
collaborative efforts might have other goals (Runge et al., 2023). For
instance, some scenario designs might include counterfactuals that are
not expected to happen but serve to compare and contrast the results
of different policy-making decisions. These counterfactual scenarios
should be excluded from the ensembling procedure presented here, or
appropriately weighted prior to their inclusion.

To summarize, we suggest that the scenario ensemble procedure
offers a synthesis of potential epidemic outcomes, compensating for
the uncertainties and limitations inherent in individual scenarios. This
approach could be especially useful for planning purposes (e.g., de-
termining how many beds or treatment courses are needed over the
coming months), so policymakers do not need to analyze and in-
terpret multiple distinct scenario projections. In turn, this approach
contributes to a more efficient yet transparent communication of sce-
nario projections to the public, along with more informed and effective
decision-making in the face of epidemics.
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