
FedCross: Towards Accurate Federated Learning via

Multi-Model Cross-Aggregation

Ming Hu1, Peiheng Zhou2, Zhihao Yue2, Zhiwei Ling2, Yihao Huang1, Anran Li1,

Yang Liu1, Xiang Lian3, Mingsong Chen2

1School of Computer Science and Engineering, Nanyang Technological University, Singapore
2MoE Engineering Research Center of SW/HW Co-Design Tech. and App., East China Normal University, China

3Department of Computer Science, Kent State University, Ohio, USA

Abstract—As a promising distributed machine learning
paradigm, Federated Learning (FL) has attracted increasing
attention to deal with data silo problems without compromising
user privacy. By adopting the classic one-to-multi training scheme
(i.e., FedAvg), where the cloud server dispatches one single global
model to multiple involved clients, conventional FL methods
can achieve collaborative model training without data sharing.
However, since only one global model cannot always accommo-
date all the incompatible convergence directions of local models,
existing FL approaches greatly suffer from inferior classification
accuracy. To address this issue, we present an efficient FL
framework named FedCross, which uses a novel multi-to-multi
FL training scheme based on our proposed multi-model cross-
aggregation approach. Unlike traditional FL methods, in each
round of FL training, FedCross uses multiple middleware models
to conduct weighted fusion individually. Since the middleware
models used by FedCross can quickly converge into the same flat
valley in terms of loss landscapes, the generated global model can
achieve a well-generalization. Experimental results on various
well-known datasets show that, compared with state-of-the-art
FL methods, FedCross can significantly improve FL accuracy
within both IID and non-IID scenarios without causing additional
communication overhead.

Index Terms—Federated learning, gradient divergence, loss
landscape, multi-model cross-aggregation, non-IID

I. INTRODUCTION

Along with the prosperity of Artificial Intelligence (AI)

and Internet of Things (IoT) techniques, more and more

Artificial Intelligence of Things (AIoT) applications [1] (e.g.,

autonomous driving [2], smart transportation [3], medical

monitoring [4]) resort to Deep Neural Network (DNN) models

to enable accurate sensing and intelligent control. Although

such DNN models can deal with various complex tasks, due

to the limited learning capabilities of IoT devices and stringent

requirements for their data privacy, traditional centralized

DNN training methods suffer a lot from the problem of

low classification performance. Alternatively, to facilitate the

design of large-scale AIoT applications, Federated Learning

(FL) [5]–[9] has been used as a promising distributed machine

learning-based infrastructure, which allows knowledge sharing

among AIoT devices without compromising their privacy. Typ-

ically, FL adopts a cloud-client architecture, where the cloud

server periodically updates the global model by aggregating

the received local gradients and dispatching the updated global

model to clients for a new round of training. Since none of the
clients send their raw data to the cloud server, their privacy

can be safely preserved.

Although FL is good at knowledge sharing among clients,

it often fails to withstand low classification performance in

deploying real-world applications, especially when client data

are non-IID (Independent and Identically Distributed) [10]–

[14]. This is mainly because most existing FL methods rely

on the classic aggregation scheme, i.e., Federated Averaging

(FedAvg) [5], where the cloud server only dispatches one sin-

gle global model to selected clients in a one-to-multi manner.

Since the raw data on clients are different, the optimization

directions of local models will gradually become divergent

during the training, resulting in conflicting gradients among

local models. In this case, by simply averaging the collected

gradients from all the selected clients, the knowledge and

efforts of local models accumulated in previous rounds of FL

training are inevitably eclipsed. Due to such notorious phe-

nomenon of gradient divergence [15], [16], the classification

capability of the global model is greatly limited. To alleviate

the gradient divergence problem, various approaches have

been investigated to guide the optimization directions of local

training, striving to derive local models with fewer conflicting

parameters. However, since such methods cannot prevent the

knowledge learned by individual clients from being damaged

by the coarse-grained aggregation strategy (i.e., FedAvg), the

classification capability of the global model is still restricted.

According to [17]–[20], a well-generalized DNN training

solution tends to be located in flat valleys rather than sharp

ravines from the perspective of loss landscapes [17]. Inspired

by this observation, designing an FL method to guide client

model training towards a flatter valley to achieve a more

generalized global model would be wise. As a motivating

example, Figure 1(a) presents the loss landscapes of FedAvg

involving two clients, where blue (solid) and red (dotted)

contours indicate the loss landscapes of client 1 and client

2, respectively. Here, we assume that each client has two

optimal solutions (i.e., the sharp and flat optimal solutions),

where the blue and red shaded areas are for client 1 and

client 2, respectively. Note that from the perspective of loss

landscapes, a larger overlap exists between optimal solution

areas if clients’ data are more similar. Here, we use yellow

circles to denote intermediate aggregated global models along

the FL training process, where the black solid arrow lines form

the optimization route of the global model. We can find that
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the global model converges into the blue sharp solution area.

In this case, the remaining FL training process will inevitably

get stuck in this area due to the one-to-multi style aggregation.

In this case, although the obtained global model works well for

client 1, it is unsuitable for client 2, although the global model

is located near (rather than in) the red-shaded area, resulting

in an inferior global model with bad generalization.
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Fig. 1. A motivating example of FedAvg and FedCross training.

Ideally, we can achieve a better global model for FL if local

models can access the raw data of all the clients. However, this

will violate the privacy-preserving requirement of FL, since

both raw data and their distributions of clients are assumed

to be private. Without such information, existing FedAvg-

based FL methods can only tune the conflicting parameters

by coarse-grained aggregations during the FL training, where

the conflicting parameters of locally trained models are not

properly treated. Apparently, how to break through the limit

of FedAvg to enable the fine-grained training of local models

and wisely resolve the conflicting gradients to generate a well-

generalized global model that performs well in all the clients

with different data distributions is becoming an urgent issue

in FL design.

To address the challenge above, this paper presents a

novel FL framework named FedCross based on our proposed

multi-model cross-aggregation-based training scheme, where

we adopt middleware models to simultaneously respect the

local training of clients and increase the chance of accessing

different clients’ data. Figure 1 illustrates the basic idea of our

FedCross approach, where the training process is gradually

optimized towards the flat solution areas. In this example,

two middleware models are trained by the two clients (i.e.,

green circles for middleware model 1 and purple circles for

middleware model 2). Note that, during FedCross training,

the middleware models are sufficiently trained on different

devices, indicated by interleaved arrow lines with different

colors. This way, the conflicting parameters of these two

middleware models are gradually revised by continuous local

training. Eventually, their optimization directions will con-

verge towards the intersection of flat optimal solution areas.

Unlike one-to-multi style FedAvg, FedCross conducts the

local training in a multi-to-multi manner, which uses multiple

middleware models to resolve the conflicts among local mod-

els on the cloud server. Rather than eliminating the conflicts

immediately through FedAvg-like coarse-grained aggregation,

FedCross effectively solves them by consecutive local training

on different clients. Specifically, in each training round of Fed-

Cross, the cloud server dispatches multiple homogeneous mid-

dleware models to the selected clients for local training. After

receiving all the locally trained models, FedCross applies our

multi-model cross-aggregation strategy, which updates each

middleware model on the cloud server by aggregating it with

its collaborative model trained on some selected client. With

our multi-to-multi training scheme, each middleware model in

FedCross is updated with data from different clients without

privacy leaking. The conflicting weights of each middleware

model can be revised by fine-grained local training rather

than coarse-grained averaging aggregation. Thus, FedCross

can generally achieve better classification performance than

FedAvg-based FL methods. Due to the same set of host clients

and our proposed cross-aggregation strategy that restricts the

weight differences between middleware models, the trained

middleware models will eventually become similar. Note that,

at the end of FL training, FedCross only performs the federated

averaging operation once on all the trained middleware models

so as to form a unified “global” model to benefit all the clients.

This paper makes the following four major contributions:

• We establish a novel multi-to-multi FL framework named

FedCross, which adopts only-for-training middleware

models to generate a well-generalized global model.

• We design a multi-model cross-aggregation scheme,

which supports the fine-grained training of local models

to wisely resolve the conflicts among their parameters.

• We prove the convergence of FedCross and propose two

optimization methods to accelerate the FedCross training.

• We conduct extensive experiments to evaluate the perfor-

mance and pervasiveness of our FedCross approach.

The rest of this paper is organized as follows. Section

II introduces the preliminaries and related works on FL.

Section III presents the details of our proposed FedCross

approach. Section IV empirically studies the performance of

our FedCross approach, compared with state-of-the-art FL

methods. Finally, Section V concludes the paper.

II. PRELIMINARIES AND RELATED WORK

A. Preliminaries

Consider learning a predictive model that maps an input

space X to an output space Y . Assume that there are two

entities involved in an FL system: a cloud server S and N

distributed clients with indices of {1, 2, · · · , N}. Let each

client i possess a local dataset Di = {zi,1, zi,2, · · · , zi,ni
},

where zi,j = (xi,j , yi,j) ∈ X × Y . Under the coordination

of the cloud server, all participant clients collaboratively train

a global model ŵ by sharing their local models trained on

their private datasets. The goal of a standard FL optimization

problem is formulated as follows:

min
w

F (w) =
1

N

N
∑

i=1

fi(w), s.t., fi(w) =
1

ni

ni
∑

j=1

l(zi,j ;w),
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where l and fi denote the loss functions of an individual

sample (e.g., the cross-entropy loss) and all the samples of

client i, respectively. F represents the loss function of the

global model. The traditional one-to-multi FL system solves

this problem based on iterative stochastic optimization, where

each training iteration t involves four major steps: i) model

dispatching, where the cloud server selects a subset of clients

and dispatches the current model wt to them; ii) local updating,

where each selected client i independently trains a local model

based on wi
t+1 = wi

t−η∇F (wt); iii) model uploading, where

each client i uploads the updated local model wi
t+1 to the cloud

server; and iv) model aggregation, where the server aggregates

all the received models and conducts the model aggregation

to obtain a new global model wt+1 by FedAvg [5].

B. Related Work on FL Optimization

To support efficient FL in the design of AIoT applica-

tions, various framework- and workflow-level optimization

techniques have been extensively studied, including cloud-

client collaboration [7], [21]–[23], resource allocation and task

scheduling [24]–[27], heterogeneity management [28]–[32],

fault tolerance [9], [33]–[35], and personalized service [36].

Although these methods are promising, they can only deal with

specific AIoT scenarios. So far, to improve the classification

performance of general-purpose FL methods, especially for

non-IID scenarios, existing optimization methods for FL can

be mainly classified into the following three categories.

The global control variable-based methods [37], [38] at-

tempt to use a global variable to guide the training direction of

local training, thereby alleviating gradient divergence. For ex-

ample, SCAFFOLD [37] dispatches global control variables to

clients to correct the “client-drift” problem in the local training

process. FedProx [39] regularizes local loss functions with a

proximal term to stabilize the model convergence, where such

a proximal term is the squared distance between local and

global models. The client grouping-based methods [40], [41]

group clients based on the similarity of their data distributions

and select clients to participate in FL training by group. Since

it is hard to directly obtain the data distributions of clients,

most existing methods conduct the client grouping only based

on simple information such as model similarity. For example,

FedCluster [40] groups the clients into multiple clusters that

perform federated learning cyclically in each learning round.

CluSamp [41] uses either the sample size or model similarity

to group clients, which can reduce the variance of client

stochastic aggregation parameters in FL. Unlike the former

two categories, the Knowledge Distillation (KD)-based meth-

ods [42]–[44] adopt a “teacher model” to guide the training of

“student models”. Specifically, the “student models” use soft

labels of the teacher model to perform model training, thus

learning the knowledge of the teacher model. For example,

FedAUX [45] performs data-dependent distillation by using an

auxiliary dataset to initialize the server model. FedGen [46]

performs data-free distillation and leverages a proxy dataset

to address the heterogeneous FL problem using a built-in

generator. FedDF [43] uses ensemble distillation to accelerate

FL by training the global model through unlabeled data on the

outputs of local models.

Although various optimization methods have been proposed

to improve FL performance, due to the usage of the same

global models for local training, most of them suffer from

the problem of getting stuck in sharp ravines during the

exploration of loss landscapes. As an alternative, our Fed-

Cross approach adopts multiple intermediate models for local

training. In this case, intermediate models can quickly escape

from sharp ravines based on our proposed cross-aggregation

mechanism. To the best of our knowledge, FedCross is the first

attempt that uses a novel multi-to-multi training scheme based

on our proposed multi-model cross-aggregation. By using a

more fine-grained FL training strategy, FedCross fully respects

the convergence characteristics of clients during the training,

thus achieving much better classification performance than

state-of-the-art FL methods.

III. OUR FEDCROSS APPROACH

A. Overview of FedCross

The architecture of FedCross consists of a central cloud

server and multiple local devices, which is the same as con-

ventional one-to-multi FL frameworks. The main difference

is that FedCross uses a multi-to-multi training and aggrega-

tion mechanism. Specifically, FedCross uses multiple homo-

geneous middleware models for local training and updates

these middleware models with a cross-aggregation strategy.

FedCross still generates a global model, but this global model

is only for deployment rather than model training.
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Fig. 2. The FedCross Framework.

Figure 2 presents the framework for FedCross, which shows

the two processes above, i.e., model training and global model

generation. Assume that there are a total of N clients. In each

FL round, there are K clients participating in local training,

where K ≤ N . The model training process trains middleware

models, which consists of 4 steps:

• Step 1 (Middleware Model Dispatching): The cloud server

randomly dispatches K middleware models to K local

clients, where each client receives one middleware model.

• Step 2 (Middleware Model Training): Clients train their

received middleware models independently with local data.

• Step 3 (Model Uploading): All the clients upload their

trained middleware models to the cloud server.
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Algorithm 1: The FedCross Algorithm

Input: i) round, # of training rounds; ii) C, the set

of clients; iii) K, # of clients participating in

each FL round.

Output: wg , the global model.

1 FedCross(round,C,K) begin

2 W ← [w1
0, w

2
0, ..., w

K
0 ] // initialize the model list;

3 for r = 0, ..., round− 1 do

4 Lc ← Random select K clients from C;

5 Lc ← Shuffle(Lc);
6 /*parallel for block*/

7 for i = 1, ..., K do

8 vir+1 ←LocalTraining(wi
r, Lc[i]);

9 W [i] ← vir+1;

10 end

11 for i = 1, ..., K do

12 vico ←CoModelSel(vir+1,W );
13 wi

r+1 ←CrossAggr(vir+1, v
i
co);

14 end

15 W ← [w1
r+1, w

2
r+1, ..., w

K
r+1];

16 end

17 wg ←GlobalModelGen(W );
18 return wg;

19 end

• Step 4 (Multi-Model Cross-Aggregation): For each mid-

dleware model mi (1 ≤ i ≤ K), FedCross chooses another

middleware model mj (j �= i) as the collaborative model.

By aggregating each middleware model and its collaborative

model with weights of α and 1 − α, respectively, the

cloud server generates K new middleware models (i.e.,

m′
1, ...,m

′
K) for the next-round training.

The global model generation process aggregates multiple

trained middleware models to generate a global model. Since

in FedCross the global model is only used for the model

deployment, the global model generation does not need to be

performed in every FL round.

B. The FedCross Algorithm

Algorithm 1 presents the pseudo-code of our FedCross

approach. Line 2 initializes a list, W , of K dispatched

models. Lines 3-16 present the model training process. Line 4

randomly selects K clients for each round’s model training,

where Lc is the list of selected clients. Line 5 shuffles the

order of the selected models, with which each dispatched

model is given an equal chance to be trained by the client.

Note that, without shuffling, each middleware model will be

dispatched to the clients encountered in the previous training

rounds with a high probability. Lines 7-10 dispatch models to

the corresponding clients and conduct local training process.

In Line 8, each client trains the received model using local

data and uploads the retrained local model to the cloud server.

In Line 9, the cloud server updates the model list W using the

received trained model. In Line 12, the function CoModelSel

selects a collaborative model for each uploaded model. In

Line 13, the function CrossAggr aggregates each uploaded

model with its collaborative model to generate K models.

Line 15 updates the dispatched model list W using these

generated models. In Line 17, the function GlobalModelGen

generates a global model for the deployment by aggregating all

the models in W . Since the global model does not participate

in the model training, the global model generation can be

performed asynchronously at any time. The following will

detail the key parts of FedCross and analyze its convergence.

1) Collaborative Model Selection (CoModelSel): To facil-

itate knowledge exchange between models, FedCross selects

a collaborative model for each in the uploaded model list for

cross-aggregation. According to model characteristics, we de-

sign three following model selection criteria to accommodate

different purposes: i) adequacy-and-diversity of participation,

ii) minimizing gradient divergence, and iii) maximizing the

knowledge acquisition.

Since each middleware model is trained on a client, the

knowledge acquired by each model is different. To fully

exploit the information in the uploaded models, the adequacy-

and-diversity criterion encourages each model to update other

models as much as possible. This way, each middleware model

can acquire diverse knowledge. Based on this criterion, we

ordinally select a collaborative model from the middleware

model list for the target model.
Since middleware models trained on different clients in-

evitably have differences, the gradient divergence minimiza-

tion criterion encourages each model to find a similar collab-

orative model for the cross-aggregation to minimize gradient

divergence in each cross-aggregation. Based on this criterion,

we present the highest similarity strategy, which selects the

most similar model to the target model.

The knowledge maximization criterion encourages each

model to obtain more knowledge at each training round.

Since models with high similarity have similar knowledge,

contrary to the gradient divergence minimization criteria, the

knowledge maximization criteria prefer to select a model with

low similarity to the target model. Based on this criterion, we

present the lowest similarity strategy, which selects the least

similar model for the target model. The details of the three

model selection strategies (i.e., in-order, highest similarity,

lowest similarity) are as follows:

In-order strategy: For the ith model, the cloud server

selects the ((i + (r%(K − 1) + 1))%K)th model as the

collaborative model in the rth training round. The in-order

strategy is as follows:

CoModelSel(vir,W ) = W [(i+ (r%(K − 1) + 1))%K],

where W is the list of uploaded local model parameters, and

K is the number of uploaded models. With this strategy, all

the upload models are chosen as collaborative models in each

round. Note that, in every (K − 1) rounds of training, each

middleware model collaborates with all the other (K − 1)
models once.

The highest similarity strategy: By calculating the model

similarity between the uploaded models, each middleware

2140

Authorized licensed use limited to: Kent State University Libraries. Downloaded on August 15,2024 at 23:34:34 UTC from IEEE Xplore.  Restrictions apply. 



model aggregates the model with the highest similarity as

follows:

CoModelSel(vir,W ) = argmax
v∈W\{vi

r
}

Similarity(vir, v),

where W is a list of uploaded local model parameters and

Similarity(·) is a function to calculate the model similarity.

Note that a higher Similarity(·) value means a higher similarity

between the two models.

The lowest similarity strategy: According to the definition

of the highest similarity strategy, the lowest similarity strategy

encourages each model to select the model with the least

similarity as the collaborative model:

CoModelSel(vir,W ) = argmin
v∈W\{vi

r
}

Similarity(vir, v).

In this paper, since the classic cosine similarity can accu-

rately reflect the angles of gradients, we adopt it as the measure

as follows:

Similarity(X,Y ) =

∑n
i=1

Xi × Yi
√

∑n
i=1

X2
i +

√

∑n
i=1

Y 2
i

,

where X and Y are two models, n indicates the number of

parameters, and Xi indicates the ith parameter in X . We

would like to leave interesting topics of using other measures

(e.g., Euclidean Distance) as our future work.

Compared with both in-order and the lowest similarity

strategies, there are obvious flaws in the highest similarity

strategy. Since the goal of FedCross is still to train a high-

performance global model, the collaborative model selection

strategy should guide all middleware models to be optimized

in a similar direction. Although the the highest similarity

strategy makes the lowest gradient divergence in each cross-

aggregation, from a global perspective, such strategy makes

models with high similarity increasingly similar, and it is more

and more difficult for dissimilar models to share knowledge.

At the end of FL training, middleware models are clustered

into several groups, and the optimization directions of such

groups are different. Finally, in the deployment phase, more

serious gradient conflicts than ever will occur in the aggrega-

tion of the global model.

2) Cross-Aggregation (CrossAggr): The cross-aggregation

is a novel multi-to-multi aggregation method, which fuses

each upload model with its collaborative model with the

weight α. Suppose that vir is an uploaded model and vico is

its collaborative model. The cross-aggregation process is as

follows:

CrossAggr(vir, v
i
co) = α× vir + (1− α)× vico,

where α ∈ [0.5, 1.0) is a hyperparameter used to determine the

weight of the aggregation. The adjustment of α is important

and difficult. If α is small, the gradient conflict will become

serious. If α is large, it is difficult for the model to learn

the knowledge of the collaborative model. Thus, we conduct

an ablation study to confirm the reasonable value space of α

by evaluating the performance of FedCross with different α

values in Section IV-E1.

3) Global Model Generation: The global model generation

phase is the same as the traditional FL methods. In FedCross,

the global model does not participate in model training and is

only used for model deployment. Thus, the global model can

be performed asynchronously with model training. The global

model is obtained by the following formula:

wg =
1

K

K
∑

i=1

wi
r

where wi
r is the parameters of the ith model in the dispatched

model list, and r is the number of the current training round.

C. Convergence Analysis

Inspired by the proof of the convergence of traditional one-

to-multi FL approach [37], [47], we prove the convergence of

FedCross as follows.

1) Notations: Assume that all clients adopt Stochastic

Gradient Descent (SGD) as the optimizer. Let t be the number

of rounds of the current SGD iteration on clients, and wi
t be

the parameters of the ith middleware model. After exactly one

SGD iteration, we can get the parameters of some local model,

i.e., vit+1, by using the following model update formula:

vit+1 = wi
t − ηt∇fi(w

i
t, ξ

i
t),

Assuming that each local model is uploaded to the cloud server

in every E iterations and i′ = (i+(t%E)%(N − 1)+1)%N ,

we have

wi
t+1 =

{

vit+1
, if(t+ 1)%E �= 0

αvit+1
+ (1− α)vi

′

t+1
, if(t+ 1)%E = 0

,

Since FedCross generates a global model by aggregating all

the middleware models, we use two variables vt and wt to

represent the aggregated model of all middleware models:

vt =
1

N

N
∑

i=1

vit, wt =
1

N

N
∑

i=1

wi
t.

We define git to denote the gradients of the model in the ith

client after training with a data batch ξit:

git = ∇fi(w
i
t; ξ

i
t).

2) Proofs of Key Lemmas: We analyze the convergence of

FedCross based on three assumptions for the loss function

of each client (i.e., f1, f2, ..., or fN ), including L-smooth

assumption (Assumption 3.1), µ-convex assumption (Assump-

tion 3.2), and variance/mean bound assumption for stochastic

gradients (Assumption 3.3), which have been used in prior

works [47]–[49].

Assumption 3.1: fi is L-smooth satisfying ||∇fi(w) −
∇fi(w

′)|| ≤ L||w − w′||, where i ∈ {1, 2, · · · , N}.

Assumption 3.2: fi is µ-convex satisfying ||∇fi(w) −
∇fi(w

′)|| ≥ µ||w−w′||, where i ∈ {1, 2, · · · , N} and µ ≥ 0.

Assumption 3.3: The variance of stochastic gradients

is upper bounded by σ2 and the expectation of squared

norm of stochastic gradients is upper bounded by G2, i.e.,

E||∇fi(w; ξ)−∇fi(w)||
2 ≤ σ2, E||∇fi(w; ξ)||

2 ≤ G2, where

ξ is a data batch of the ith client in the tth FL round.
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Assume that in FedCross all the N clients are participating

in every FL training round, and we employ the in-order

selection strategy. Let {v1r , v
2
r , .., v

N
r } be the set of uploaded

local model parameters in the (r−1)th round, {w1
r , w

2
r , .., w

N
r }

be the set of cross-aggregated model parameters, and i′ =
(i+ r%(N − 1) + 1)%N be the index of collaborative model

of the ith middleware model. Based on the implementation of

our in-order strategy, we have

wi
r = αvir + (1− α)vi

′

r . (1)

Since in the in-order strategy each uploaded model is selected

as a collaborative model for cross-aggregation, we have

N
∑

i=1

wi
r =

N
∑

i=1

(αvir + (1− α)vi
′

r ) =
N
∑

i=1

vir (2)

According to Equations 1-2, we have Lemma 3.4 as follows.

Lemma 3.4: Let wi
r = αvir + (1 − α)vi

′

r , α ∈ [0, 1], and

wr =
∑N

i=1 w
i
r. We have

||wr − w�||2 ≤
1

N

N
∑

i=1

||wi
r − w�||2 ≤

1

N

N
∑

i=1

||vir − w�||2,

where w� is the optimal parameters for the global loss function

F (·). In other words, ∀w,F � ≤ F (w), where F � denotes

F (w�).
Proof: We can derive the following inequality:

N
∑

i=1

||wi
r − w�||2 =

N
∑

i=1

||αvir + (1− α)vi
′

r − w�||2

=
N
∑

i=1

(||vir − w�||2 − α(1− α)||vir − vi
′

r ||2)

≤
N
∑

i=1

||vir − w�||2.

Since vr = wr = 1
N

∑N
i=1 w

i
r holds, by using the AM–GM

inequality, we can obtain:

||vr − w
�||2 ≤

1

N

N∑

i=1

||wi
r − w

�||2.

. �

To facilitate the convergence analysis of FedCross, we

present Lemmas 3.5-3.6.
Lemma 3.5: (Results of one step SGD). If ηt ≤

1
4L holds,

we have:

E||vt+1 − w�||2 ≤
1

N

N
∑

i=1

(1− µηt)||w
i
t − w�||2

+
1

N

N
∑

i=1

||wi
t − wi

t0
||2 + 10η2tLΓ.

.

Proof: By using the AM–GM inequality, it holds that:

||vt+1 − w�||2 ≤
1

N

N
∑

i=1

||vit+1 − w�||2

=
1

N

N
∑

i=1

(||vit − w�||2 − 2ηt〈v
i
t − w�, git〉+ η2t ||g

i
t||

2).

Let P1 = −2ηt〈w
i
t − w�, git〉 and P2 = η2t

∑N
i=1 ||g

i
t||

2. By

using µ-convex (Assumption 3.2), we have:

P1 ≤ −2ηt(fi(v
i
t)− fi(w

�))− µηt||w
i
t − w�||2. (3)

By using L-smooth (Assumption 3.1), we obtain:

P2 ≤ 2η2tL(fi(w
i
t)− f�

i ). (4)

When (t + 1)%E �= 0 and vit = wi
t hold, according to

Equations 3-4, we have:

||vt+1 − w�||2 ≤
1

N

N
∑

i=1

[(1− µηt)||v
i
t − w�||2 − 2ηt(fi(w

i
t)− fi(w

�))

+ 2η2tL(fi(w
i
t)− f�

i )].

Let P3 = 1
N

∑N
i=1[−2ηt(fi(w

i
t) − fi(w

�)) + 2η2tL(fi(w
i
t) −

f�
i )]. It holds that:

P3 = −
2ηt(1− ηtL)

N

N
∑

i=1

(fi(w
i
t)− F �) +

2η2tL

N

N
∑

i=1

(F � − f�
i ).

Let Γ = F � − 1
N

∑N
i=1 f

�
i and φ = 2ηt(1− Lηt). We have:

P3 = −
φ

N

N
∑

i=1

(fi(w
i
t)− F �) + 2η2tLΓ.

Let P4 = − 1
N

∑N
i=1(fi(w

i
t)−F �), t0%E = 0 and t−t0 ≤ E.

It holds that:

P4 = −
1

N

N
∑

i=1

(fi(w
i
t)− fi(w

i
t0
) + fi(w

i
t0
)− F �).

Based on the Cauchy–Schwarz inequality, we can derive that:

P4 ≤
1

2N

N
∑

i=1

(ηt||∇fi(w
i
t0
)||2 +

1

ηt
||wi

t − wi
t0
||2)

−
1

N

N
∑

i=1

(fi(w
i
t0
)− F �)

≤
1

2N

N
∑

i=1

[

2ηtL(fi(w
i
t0
)− f�

i ) +
1

ηt
||wi

t − wi
t0
||2

]

−
1

N

N
∑

i=1

(fi(w
i
t0
)− F �).

(5)

Note that, since η ≤ 1
4L , ηt ≤ φ ≤ 2ηt and ηtL ≤ 1

4 ,

according to Equation 5, we have:

P3 ≤
φ

2N

N
∑

i=1

[

2ηtL(fi(w
i
t0
)− f�

i ) +
1

ηt
||wi

t − wi
t0
||2

]

−
φ

N

N
∑

i=1

(fi(w
i
t0
)− F �) + η2tLΓ

≤
φ

2ηtN

N
∑

i=1

||wi
t − wi

t0
||2 + (φηtL+ 2η2tL)Γ +

φ

N

N
∑

i=1

(F � − f�
i )

≤
1

N

N
∑

i=1

||wi
t − wi

t0
||2 + 10η2tLΓ.

�

Lemma 3.6: In FedCross, the cross-aggregation occurs every

E iteration. For arbitrary t, there always exists t0 ≤ t while t0
is the nearest cross-aggregation to t. As a result, t−t0 ≤ E−1
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holds. Given the constraint on learning rate from [47], we

know that ηt ≤ ηt0 ≤ 2ηt. It follows that:

1

N

N
∑

i=1

||wi
t − wi

t0
||2 ≤ 4η2t (E − 1)2G2.

Proof: Let t0%E = 0 and t− t0 ≤ E. We have:

1

N

N
∑

i=1

||wi
t − wi

t0
||2 =

1

N

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

t0+E−1
∑

t=t0

ηt∇fa1
(wa1

t ; ξa1

t )

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ (E − 1)

t0+E−1
∑

t=t0

η2tG
2

≤ 4η2t (E − 1)2G2.

�

Based on Lemmas 3.4-3.6, we prove Theorem 1 as follows.

Theorem 1: Let E be the number of SGD iterations con-

ducted within one FL round, and the whole training consists

of r FL rounds. Let t = r × E be the total number of SGD

iterations conducted so far, and ηt = 2
μ(t+λ) be the learning

rate. We have:

E[F (wt)]− F � ≤
L

2µ(t+ λ)

[

4B

µ
+

µ(λ+ 1)

2
∆1

]

, (6)

where B = 10LΓ + 4(E − 1)2G2.

Proof: Let ∆t = ||wt − w�||2 and ∆glb
t = 1

N

∑N
i=1 ||w

i
t −

w�||2. According to Lemma 3.4, 3.5, and 3.6, we have:

∆t+1 ≤ ∆glb
t+1 ≤ (1− µηt)∆

glb
t + η

2
tB.

When the step size becomes smaller, we have ηt = β
t+λ

for

some β > 1
μ

, λ > 0 such that ηt ≤ min
{

1
μ
, 1
4L

}

= 1
4L and

ηt ≤ 2ηt+E .

Let θ = max
{

β2B
μβ−1 , (λ+ 1)∆1

}

. We firstly prove ∆t ≤
θ

t+λ
by induction. When t = 1,

∆1 = ∆glb
1

=
λ+ 1

λ+ 1
∆1 ≤

θ

λ+ 1
. (7)

Assuming that ∆t ≤ ∆glb
t ≤ θ

λ+1 , we have:

∆t+1 ≤ ∆glb
t+1

≤ (1− µηt)∆
glb
t + η2tB

≤
t+ λ− 1

(t+ λ)2
θ +

[

β2B

(t+ λ)2
−

µβ − 1

(t+ λ)2
θ

]

≤
θ

t+ 1 + λ
.

(8)

According to Equations 7-8, we have:

∆t ≤
θ

t+ λ
. (9)

From Assumption 3.1 and Equation 9, we obtain:

E[f(wt)]− F � ≤
L

2
∆t ≤

θL

2(t+ λ)
. (10)

If we set β = 2
μ

and λ = max{ 10L
μ

, E} − 1, we have ηt =
2

μ(t+λ) and ηt ≤ 2ηt+E for t ≥ 1. Then, it holds that:

θ = max

{

β2B

µβ − 1
, (λ+ 1)∆1

}

≤
β2B

µβ − 1
+ (λ+ 1)∆1

≤
4B

µ2
+ (λ+ 1)∆1.

(11)

Based on Equations 10-11, we have:

E[F (wt)]− F � ≤
L

2(t+ λ)

[

4B

µ2
+ (λ+ 1)∆1

]

=
L

2µ(t+ λ)

[

4B

µ
+

µ(λ+ 1)

2
∆1

]

.

�

Theorem 1 indicates that the difference between the current

loss F (wt) and the optimal loss F � is inversely related to t.

From Theorem 1, we observe that as the value of t increases,

the right side of Equation 6 in Theorem 1 will approach 0,

indicating that FedCross will eventually converge. In addition,

we can also find that the convergence rate of FedCross is

similar to that of FedAvg, which has been analyzed in [47].

D. Training Acceleration Methods for FedCross

Although the vanilla FedCross (i.e., FedCross without any

training acceleration) can achieve the best accuracy perfor-

mance compared with traditional aggregation methods (see

Section IV-C1), due to our proposed fine-grained training

strategy, it still suffers from the slow convergence during FL

training. Especially in each FL training round at the early stage

of training, due to significant knowledge differences among

clients, the knowledge learned by each middleware model is

limited, resulting in the low performance of aggregated global

models. However, as the number of training rounds increases,

each middleware model gradually becomes well-trained with

fully exchanged knowledge, leading to a notable increase

in the similarity among middleware models. Meanwhile, the

classification performance of the global model improves sig-

nificantly as well. Note that for the cross-aggregation, the value

of α determines how much new knowledge a model can learn

from its collaborative model. Specifically, a larger α indicates

less knowledge can be learned from its collaborative model,

leading to slow convergence.

Since the fusion weight (i.e., α) of a middleware model

is much higher than that of its collaborative model in each

cross-aggregation process, FedCross needs a large number

of training rounds to unify all the middleware models. To

accelerate the convergence of FedCross, we propose two

optimization methods (i.e., propeller models and dynamic α)

by dividing its training procedure into two stages, where the

first stage allows middleware models to learn from each other

in a coarse-grained manner, while the second stage adopts

a fine-grained heuristic to fine-tune the middleware models.

This way, we can balance the convergence rate and accuracy

performance for a better training procedure. The following

details the two training acceleration methods:

• Propeller models-based acceleration: To fully exploit

the information of uploaded middleware models, we use

propeller models that are selected by the in-order selection

strategy from the middleware model list. For each middle-

ware model, we use multiple propeller models rather than

one collaborative model to provide more knowledge that
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can be learned by middleware models, thus significantly

accelerating the training procedure.

• Dynamic α-based acceleration: To accelerate the overall

training convergence, we encourage middleware models

to learn more knowledge from their collaborative models

in earlier FL training rounds. Along with the process of

FL training, since each middleware model can learn more

knowledge with a smaller value of α, we gradually increase

the value of α from 0.5 to a specific threshold (e.g.,

α = 0.99 used in our experiments).

IV. EXPERIMENTAL RESULTS

To evaluate the performance of FedCross, we conducted

extensive experiments on well-known datasets and underlying

DNN models. The subsequent subsections aim to answer the

following four research questions (RQs).

RQ1: (Validation of Motivation): Compared with FedAvg-

based methods, can FedCross converge into a flatter valley?

RQ2: (Superiority of FedCross): What are FedCross

merits compared with state-of-the-art FedAvg-based methods?

RQ3: (Compatibility of FedCross): What is the perfor-

mance of FedCross with different settings (e.g., client data

distributions, DNN architectures, datasets)?

RQ4: (Benefits of FedCross Components): Can our pro-

posed techniques improve classification performance?

A. Experimental Settings

We implemented FedCross on top of vanilla FedAVg by

modifying its one-to-multi training scheme. Similar to the

work in [5], in the experiments, we assumed that only 10%

of clients are selected to participate in the training. To ensure

comparison fairness, for all the involved FL methods, we set

the local training batch size to 50 and performed five epochs

for each local training round. For each client, we used SGD

as the optimizer with a learning rate of 0.01 and a momentum

of 0.5. For FedCross, we set α = 0.99 and adopted the lowest

similarity criterion to select collaborative models. We did not

use other optimization methods (e.g., data augmentation) in all

the following experiments. All the experimental results were

obtained from an Ubuntu workstation with Intel i9 CPU, 32GB

memory, and NVIDIA RTX 3080 GPU.

(a) β = 0.1 (b) β = 0.5 (c) β = 1.0

Fig. 3. Data distributions of selected clients with different non-IID settings.

1) Dataset Settings: We conducted experiments on five

well-known datasets, i.e., CIFAR-10, CIFAR-100 [50], FEM-

NIST, Shakespeare, and Sent140 [51]. To evaluate the perfor-

mance of FedCross within both IID and non-IID scenarios,

we adopted the Dirichlet distribution [52] denoted by Dir(β)
to control the heterogeneity settings for datasets CIFAR-

10 and CIFAR-100, where a smaller β indicates a higher

data heterogeneity of clients. For these two datasets, we

assumed that there are 100 clients involved in FL. To show

the quantity differences of samples on clients within non-IID

scenarios for the CIFAR-10 experiment, Figure 3 shows the

data distributions of ten clients randomly selected from these

100 clients, where a larger blue dot indicates more samples

on the corresponding device. Unlike CIFAR-10 and CIFAR-

100, the other three datasets (i.e., FEMNIST, Shakespeare, and

Sent140) are naturally non-IID in terms of data heterogeneity

(i.e., number of samples and class imbalance). For FEMNIST,

Shakespeare, and Sent140, we assumed that there are 180, 128,

and 803 clients involved in FL, and each client has more than

100, 5700, and 40 samples, respectively.

TABLE I
COMPARISON BETWEEN BASELINE METHODS AND FEDCROSS

Method Category Comm. Overhead

FedAvg Classic Low

FedProx Global Control Variable Low

SCAFFOLD Global Control Variable High

FedGen Knowledge Distillation Medium

CluSamp Client Grouping Low

FedCross Multi-Model Guided Low

2) Baseline Methods and Their Settings: We compared

FedCross with five baseline methods, including the classic

FedAvg and four state-of-the-art FL optimization methods

(i.e., FedProx, SCAFFOLD, FedGen, and CluSamp). Table I

compares FedCross with all the baseline methods from the per-

spectives of categories and communication overheads, where

the baselines cover all the three FL optimization categories

introduced in Section II-B. Note that, as a novel multi-model

guided FL method, FedCross does not belong to any of the

three existing categories. The following presents their settings.

• FedAvg [5] is the most classic one-to-multi FL framework,

wherein each FL training round the cloud server dispatches

a global model to selected clients for FL training and

aggregates their trained local models averagely to update

the global model.

• FedProx [39] is a global control variable-based FL frame-

work influenced by the hyper-parameter µ, where µ controls

the weight of its proximal term. We set the best µ values

for CIFAR-10, CIFAR-100, and FEMNIST to 0.01, 0.001,

and 0.1, respectively. All these values are explored from the

set {0.001, 0.01, 0.1, 1.0}.

• SCAFFOLD [37] is a global control variable-based FL

framework, where the cloud server dispatches the variable

with the same size as the model to guide local training in

each training round.

• FedGen [46] is a KD-based method, which includes a built-

in generator for proxy dataset generation. The subsequent

experiments used the same settings as in [46].

• CluSamp [41] is a client grouping-based method. We se-

lect the model gradient similarity as the criteria for client

grouping rather than the sample size. This is because directly

exposing the distribution of data may increase the risk of

privacy exposure. Furthermore, it may not be possible to

directly obtain data distribution in real scenarios.
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TABLE II
TEST ACCURACY COMPARISON FOR BOTH NON-IID AND IID SCENARIOS USING THREE DL MODELS

Model Dataset
Heterogeneity Test Accuracy (%)

Settings FedAvg FedProx SCAFFOLD FedGen CluSamp FedCross

CNN

CIFAR-10

β = 0.1 46.12 ± 2.35 47.17 ± 1.65 49.12 ± 0.91 49.27 ± 0.85 47.09 ± 0.97 55.70 ± 0.74
β = 0.5 52.82 ± 0.91 53.59 ± 0.88 54.50 ± 0.44 51.77 ± 0.73 54.00 ± 0.38 58.74 ± 0.67
β = 1.0 54.78 ± 0.56 54.96 ± 0.60 56.75 ± 0.26 55.38 ± 0.66 55.82 ± 0.73 62.16 ± 0.42
IID 57.64 ± 0.22 58.34 ± 0.15 59.98 ± 0.22 58.71 ± 0.19 57.32 ± 0.21 62.97 ± 0.22

CIFAR-100

β = 0.1 28.37 ± 1.10 28.11 ± 1.03 30.32 ± 1.05 28.18 ± 0.58 28.63 ± 0.63 32.53 ± 0.45
β = 0.5 30.01 ± 0.56 32.16 ± 0.50 33.49 ± 0.73 29.55 ± 0.41 33.04 ± 0.41 36.87 ± 0.24
β = 1.0 32.34 ± 0.65 32.78 ± 0.13 34.95 ± 0.58 31.88 ± 0.65 32.92 ± 0.31 37.65 ± 0.36
IID 32.98 ± 0.20 33.39 ± 0.25 35.11 ± 0.23 32.43 ± 0.20 34.97 ± 0.24 38.42 ± 0.18

FEMNIST − 81.67 ± 0.36 82.10 ± 0.61 81.65 ± 0.21 81.95 ± 0.36 80.80 ± 0.40 83.49 ± 0.18

ResNet-20

CIFAR-10

β = 0.1 45.11 ± 2.13 45.45 ± 3.42 50.46 ± 1.76 42.71 ± 3.48 44.87 ± 1.65 53.79 ± 2.91
β = 0.5 60.56 ± 0.95 59.52 ± 0.74 58.85 ± 0.85 60.29 ± 0.68 59.55 ± 1.00 69.38 ± 0.30
β = 1.0 62.99 ± 0.62 61.47 ± 0.66 61.63 ± 0.78 63.81 ± 0.33 63.32 ± 0.71 71.59 ± 0.31
IID 67.12 ± 0.27 66.06 ± 0.22 65.20 ± 0.27 65.89 ± 0.17 65.62 ± 0.23 75.01 ± 0.09

CIFAR-100

β = 0.1 31.90 ± 1.16 33.00 ± 1.21 35.71 ± 0.62 32.40 ± 1.45 34.34 ± 0.52 39.40 ± 1.43
β = 0.5 42.45 ± 0.53 42.83 ± 0.54 42.33 ± 1.23 42.72 ± 0.32 42.07 ± 0.39 50.39 ± 0.24
β = 1.0 44.22 ± 0.36 44.35 ± 0.36 43.28 ± 0.61 44.75 ± 0.57 43.29 ± 0.41 53.09 ± 0.29
IID 44.42 ± 0.18 45.16 ± 0.24 44.37 ± 0.19 45.21 ± 0.19 43.59 ± 0.24 54.07 ± 0.19

FEMNIST − 78.47 ± 0.40 79.74 ± 0.54 76.14 ± 0.90 79.56 ± 0.34 79.28 ± 0.42 80.93 ± 0.52

VGG-16

CIFAR-10

β = 0.1 63.79 ± 3.90 63.35 ± 4.31 64.18 ± 3.86 66.52 ± 1.46 66.91 ± 1.83 76.07 ± 1.09
β = 0.5 78.14 ± 0.67 77.70 ± 0.45 76.22 ± 1.37 78.9 ± 0.39 78.82 ± 0.40 84.39 ± 0.48
β = 1.0 78.55 ± 0.21 79.10 ± 0.28 76.99 ± 1.01 79.75 ± 0.26 80.00 ± 0.37 85.74 ± 0.21
IID 80.02 ± 0.05 80.77 ± 0.22 78.80 ± 0.07 80.00 ± 0.27 80.96 ± 0.12 87.33 ± 0.11

CIFAR-100

β = 0.1 46.60 ± 1.45 45.88 ± 3.35 45.79 ± 1.77 49.04 ± 0.63 48.04 ± 1.76 54.46 ± 0.70
β = 0.5 55.86 ± 0.64 55.79 ± 0.56 55.30 ± 0.61 56.40 ± 0.37 56.23 ± 0.34 64.01 ± 0.24
β = 1.0 57.55 ± 0.51 57.40 ± 0.32 55.43 ± 0.45 57.15 ± 0.27 57.95 ± 0.35 67.09 ± 0.31
IID 58.30 ± 0.23 58.49 ± 0.11 56.51 ± 0.08 57.62 ± 0.18 58.14 ± 0.20 70.81 ± 0.07

FEMNIST − 84.22 ± 0.46 83.98 ± 0.48 82.65 ± 0.74 84.69 ± 0.28 84.32 ± 0.36 85.75 ± 0.45

LSTM
Shakespeare − 52.08 ± 0.29 52.53 ± 0.23 48.94 ± 0.18 53.87 ± 0.13 49.74 ± 0.74 54.81 ± 0.07

Sent140 − 69.36 ± 0.20 68.63 ± 0.20 59.61 ± 0.06 69.32 ± 0.13 69.19 ± 0.14 71.33 ± 0.12

We implemented all FL methods on top of our own unified

FL framework. For the baselines FedGen and CluSamp, we re-

used the open source code from [53] and [54], respectively. For

the baselines FedProx and SCAFFOLD, we re-implemented

them according to their original papers [37], [39].

3) Model Settings: We investigated three well-known mod-

els, i.e., CNN, ResNet-20 [55], VGG-16 [56]. The CNN model

was obtained from FedAvg [5], consisting of two convolutional

and fully-connected layers. ResNet-20 and VGG-16 models

were obtained from the official library [57].

(a) FedAvg with β = 0.1 (b) FedCross with β = 0.1

(c) FedAvg with IID (d) FedCross with IID

Fig. 4. Comparison between loss landscapes of FedAvg and FedCross.

B. Motivation Validation (RQ1)

To validate whether a global model trained by FedCross

can converge into a flatter valley than FedAvg, we checked

four models for ResNet-20 that are trained using both FedAvg

and FedCross on the CIFAR-10 dataset with β = 0.1 and IID

scenarios, respectively. Since it is hard to draw the landscapes

of all the involved clients together, Figure 4 only shows

the loss landscapes of the obtained global models on top

of their corresponding whole datasets. From this figure, we

can observe that the global models trained by FedAvg are

located in sharper areas than those obtained by FedCross. This

implicitly reflects the fact that all the clients converge into

nearby flat optimal solution areas, which is consistent with our

observation in Figure 1. In other words, from the perspective of

loss landscapes, FedCross can train a more generalized global

model than that trained by FedAvg.

C. Performance Comparison (RQ2)

To show the superiority of FedCross, we compared it with

the five baselines. For datasets CIFAR-10 and CIFAR-100,

we considered one IID and three non-IID scenarios (with β =
0.1, 0.5, 1.0, respectively).

1) Comparison of Inference Accuracy: Table II presents

the classification accuracy results for FedCross and all the

five baselines on three datasets, where both IID and non-IID

scenarios are all investigated. Note that, in the third column,

we use β to control the heterogeneity settings for datasets

CIFAR-10 and CIFAR-100 based on Diricht distribution Dir.

Note that for all the baselines, we set the numbers of FL

training rounds to 2000, 2000, and 1000 when using the

CNN, ResNet-20, and VGG-16 models, respectively. We set

the number of FL training rounds to 1000 for the ShakeSpeare

dataset and 3000 for the Sent140 dataset. From this table, we

can observe that FedCross achieves the highest accuracy for all

different settings. For example, when using the VGG-16 model

on CIFAR-10, FedCross outperforms the best baseline counter-

parts by 9.16% and 6.37% within IID and non-IID (β = 0.1)

scenarios, respectively. Note that, by merely replacing the

one-to-multi training scheme in the FedAvg framework with
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(a) CNN with β = 0.1
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(b) CNN with β = 0.5
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(c) CNN with β = 1.0
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(d) CNN with IID
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(e) ResNet-20 with β = 0.1
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(f) ResNet-20 with β = 0.5
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(g) ResNet-20 with β = 1.0
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(h) ResNet-20 with IID
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(i) VGG-16 with β = 0.1
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(j) VGG-16 with β = 0.5
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(k) VGG-16 with β = 1.0
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(l) VGG-16 with IID

Fig. 5. Learning curves of different FL methods on CIFAR-10 dataset.

our proposed multi-to-multi training scheme, the classification

performance of FedCross can be improved dramatically. One

may argue that the classification performance improvements

made by FedCross for FEMNIST are not as significant as the

ones obtained for datasets CIFAR-10 and CIFAR-100. This is

mainly because the data samples are simpler than the ones in

datasets CIFAR-10 and CIFAR-100, where even FedAvg can

achieve near-optimal classification performance. Moreover, we

can observe that FedCross achieves the best performance on

the two text datasets, i.e., ShakeSpeare and Sent140.
2) Comparison of Convergence Rate: Figure 5 shows the

convergence trends of all the FL methods (including five

baselines and FedCross) on the CIFAR-10 dataset, where Fig-

ures 5(a)-5(d) use CNN model, Figures 5(e)-5(h) use ResNet-

20 model, and Figures 5(i)-5(l) use VGG-16 model. FedCross

does not generate global models along with the FL training

process. To enable the classification accuracy comparison

between FedCross and the baselines, we additionally generated

one pseudo-global model based on the middleware models in

each round of FL training, and adopted this global model to

derive the test accuracy information.

From Figure 5, we can find that FedCross consistently

achieves the highest accuracy performance of the six FL

methods in both non-IID and IID scenarios. Furthermore,

we can observe that FedCross converges with much smaller

fluctuations for all the investigated models and data settings.

This is mainly because FedCross uses a multi-to-multi training

scheme based on our proposed multi-model cross-aggregation,

leading to the fine-grained training of the global model. Due

to mitigated gradient divergence during local training and the

available access of data across clients, FedCross can achieve

the highest test accuracy results while lowering the risk of
stuck-at-local-training. As shown in Figures 5(i)-5(l), at the be-

ginning of FL training, FedCross lags behind the five baselines.

This phenomenon is mainly because VGG-16 is a connection-

intensive model with more than 130 million parameters, while

ResNet-20 only has about 30 million parameters. Since VGG-

16 is much larger than ResNet-20, it has a smaller performance

acceleration than ResNet-20 at the early phase of FL training.

3) Comparison of Communication Overhead: For FedAvg,

each training round involves the dispatching of K models and

the upload of K models in total, where K is the number of

selected clients. Although FedCross uses multiple models for

FL training, it does not increase communication overhead than

FedAvg. For FedCross, each participant client in local training

receives only one model and uploads its trained version. There-

fore, each training round of FedCross needs a communication

of 2K models, which is the same as FedAvg. For FedProx

and CluSamp, since their communication does not involve

parameters other than models, their communication overhead

is the same as FedAvg. For SCAFFOLD, it needs 2K models

plus 2K global control variables in each FL training round,

since the cloud server dispatches a global control variable to K

clients and each client uploads global control variables to the

cloud server in each round of FL training. For FedGen, since

the cloud server dispatches an additional built-in generator

to K clients in each FL training round, the communication

overhead of FedGen is 2K models plus K generators. Based

on the above analysis, we can find that FedCross requires the

least communication overhead in each FL training round. Note

that, as shown in Figure 5, although FedCross needs more

rounds to achieve its best accuracy, for the highest accuracy

that can be achieved by some FL methods, FedCross uses

much fewer training rounds than the counterpart. This again

shows the communication savings obtained by FedCross.
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(a) K = 5
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(b) K = 10
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(c) K = 20
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(d) K = 50
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(e) K = 100

Fig. 6. Learning curves of different ResNet-20-based FL methods for different number of activated clients on CIFAR-10 dataset with α = 0.1.
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(a) |C| = 50

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 0  200  400  600  800 1000 1200 1400 1600 1800 2000

A
c
c
u
ra

c
y
(%

)

Communication Rounds

FedAvg
FedProx
SCAFFOLD
FedGen
CluSamp
FedCross

(b) |C| = 100
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(c) |C| = 200
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(d) |C| = 500
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(e) |C| = 1000

Fig. 7. Learning curves of different ResNet-20-based FL methods for different number of clients on CIFAR-10 dataset with α = 0.5.

D. Compatibility Analysis (RQ3)

1) Impacts of Client Data Distributions: For the same

dataset, although FedCross can alleviate the performance

degradation caused by various data heterogeneity factors,

compared with their IID counterpart, the non-IID scenarios

still lead to worse classification performance, especially when

β is small. Furthermore, we find that in non-IID scenarios,

FedCross requires more FL training rounds to converge. Note

that all the above phenomena are also applicable to all the

baselines. In other words, the training in non-IID scenarios is

more difficult than the training in IID scenarios. From Table II

and Figure 5, we can find that FedCross achieves the best

performance for both IID and non-IID scenarios.

2) Impacts of Datasets: From Table II, we can observe that

for all the three datasets, FedCross can significantly improve

the classification performance compared with baselines, espe-

cially for complex datasets. As an example shown in Figure 5,

we can observe that FedCross benefits CIFAR-10 and CIFAR-

100 more than FEMNIST.

3) Impacts of Models: From Figure 5, we can observe that

for the same dataset but different underlying DNN models,

FedCross can still achieve the best classification performance.

When adopting a model with a larger volume of parameters,

although the convergence of FedCross may be slower than the

baselines at the beginning of training, we can observe that

FedCross can achieve much better classification accuracy at

the end of training. Meanwhile, to achieve the best possible

classification accuracy, FedCross uses much fewer training

rounds. To accelerate the convergence of FedCross at the

beginning of training, we proposed two training acceleration

methods. Please refer to Section IV-E3 for more details.

4) Impacts of Activated Clients: Figure 6 compares Fed-

Cross with five baselines on the CIFAR-10 dataset using the

ResNet-20 model within a non-IID scenario (β = 0.1), where

the number of activated clients investigated in subfigures are

5, 10, 20, 50, and 100, respectively. From Figure 6, we can

observe that FedCross can achieve the best results for all the

cases. When K < 20, the maximal classification accuracy

increases along with the increasing number of activated clients.

However, when K ≥ 20, the impact of the increasing number

of activated clients is negligible. Moreover, we can find that the

convergence becomes smoother when more activated clients

are involved in the FL training.

5) Impacts of the Total Number of Clients: Figure 7

compares FedCross with five baselines on the CIFAR-10

dataset using the ResNet-20 model within a non-IID scenario

(β = 0.5), where the total number of clients investigated in the

subfigures is 50, 100, 200, 500, and 1,000, respectively. For

each case, we selected 10% of clients to participate in local

training. From Figure 7, we can observe that FedCross can

achieve the best inference accuracy for all the cases. Note that

in this experiment, since the total number of samples is fixed,

the larger the total number of clients, the smaller the amount

of data assigned to each client. As a result, we can find that

when the number of clients increases, all the investigated FL

methods need to use more training rounds for convergence.

TABLE III
TEST ACCURACY COMPARISON WITH DIFFERENT α SETTINGS

α
Selection Criteria

In-Order Highest Similarity Lowest Similarity

0.5 56.42 ± 0.54 56.33 ± 0.23 56.81 ± 0.91
0.8 56.66 ± 0.46 55.83 ± 0.85 57.78 ± 0.65
0.9 58.69 ± 0.46 46.91 ± 0.97 58.61 ± 0.48
0.95 59.12 ± 0.62 49.94 ± 0.94 59.47 ± 0.38
0.99 59.86 ± 0.40 49.70 ± 1.33 62.16 ± 0.42
0.999 40.85 ± 1.82 32.51 ± 3.39 46.83 ± 1.14

E. Ablation Studies (RQ4)

1) Evaluation of Model Selection Strategies: Table III

presents the classification performance using three model

selection strategies on the CIFAR-10 dataset within a non-

IID scenario (β = 1.0). From Table III, we can observe that

the lowest similarity strategy can achieve the best performance

for five out of the given six α settings. Note that the highest

similarity strategy achieves the worst performance for all the

α settings. This is because the the highest similarity strategy

makes middleware models with high similarity gradually get

closer, while the models with low similarities become far away

from each other, resulting in higher aggregation difficulty for

2147

Authorized licensed use limited to: Kent State University Libraries. Downloaded on August 15,2024 at 23:34:34 UTC from IEEE Xplore.  Restrictions apply. 



the global model. On the contrary, the lowest similarity reduces

the distances between models with low similarities in each

round of aggregation, which forces all the models to roughly

optimize their local training towards similar directions. Re-

garding the in-order strategy, since every two models are

aggregated within a finite number of rounds, the similarities

between models will be limited to a certain range. However,

its efficiency will be relatively lower compared with the one

achieved by the highest similarity strategy. In summary, we

recommend using either the lowest similarity strategy or the

in-order strategy to select the collaboration model.
2) Evaluation of Aggregation Rate α: Figure 8 presents

learning curves of both the in-order and lowest similarity

strategies with six different settings of α. In Figure 8, FedCross

performs best when α = 0.99. We can observe that, as the

value of α decreases, the performance of FedCross gradually

decreases. However, when α = 0.999, the performance of

FedCross drops sharply. This is because the value of α is

too large, which leads to less knowledge acquisition from the

collaboration model. In other words, reducing the distance

between models in each round of aggregation cannot offset

the increase in model distance in each round of training.

Therefore, the distances between models will gradually in-

crease, resulting in a sharp decline in the performance of the

global model. From this figure, we can find that a large α

will improve the performance of FedCross since it supports

the model aggregation in a more fine-grained way. Note

that a large α may cause a sharp performance drop for

the global model. In our experiments, FedCross achieves the

best performance when α = 0.99. We recommend using a

α = 0.99 in FedCross.
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Fig. 8. Learning curves of CNN-based FedCross with different α settings
within a non-IID scenario (β = 1.0).

3) Evaluation of Training Acceleration Methods: We eval-

uated the performance of two training acceleration methods

on the CIFAR-10 dataset using the VGG-16 model. Here,

we considered three variants for FedCross. The first variant

“FedCross w/ PM” uses propeller models to speed up training

in the first 100 FL rounds. The second variant “FedCross

w/ DA” uses dynamic α to speed up training for the first

100 FL rounds. The third variant “FedCross w/ PM-DA”

uses propeller models for the first 50 rounds and dynamic α

for the following 50 rounds to speed up training. Figure 9

presents the learning curves of FedCross in both non-IID

(β = 0.1) and IID scenarios. From Figure 9, we can find

that all the variants can significantly accelerate the training,

but will slightly reduce the models’ accuracy. In the non-IID

scenario, the performance of the three variants is similar. In

the IID scenario, the performance of “FedCross w/ PM-DA”

is higher than the other two variants.
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Fig. 9. Learning curves of VGG-16-based FedCross with different training
acceleration methods on CIFAR-10 dataset.

F. Discussion

1) Privacy Preserving: Similar to traditional one-to-multi

FL methods, for FL training FedCross does not need any data

distribution information for each local client. FedCross does

not attempt to restore the user data by analyzing the model

for each upload model. For each dispatched model, since it

is aggregated with a collaborative model, and the model is

dispatched randomly, clients cannot restore client data through

the model and do not know the sources of received models.

In addition, since the model dispatching, local training, and

model update processes of FedCross are the same as the ones

of FedAvg, FedCross can easily integrate existing privacy-

preserving techniques [58]–[60] that are suitable for FedAvg

to avoid privacy leaks.

2) Limitations: Although FedCross can achieve better per-

formance than the baselines, its slow convergence on complex

models is still a severe limitation that is worthy of further

study. Although our proposed acceleration method can par-

tially alleviate this problem, it may lead to slight performance

degradation. Therefore, we need a more powerful acceler-

ation method that does not affect the overall classification

performance. Furthermore, at present, we only considered

heterogeneous data for FedCross, where FedCross cannot deal

with the training of heterogeneous models. These will be an

interesting topic for our future work.

V. CONCLUSIONS

Due to the classic FedAvg-based local model aggregation

scheme, traditional Federated Learning (FL) methods greatly

suffer from the problems of slow convergence as well as low

classification accuracy, especially for non-IID scenarios. To

address this problem, this paper presents a novel FL framework

named FedCross, which adopts our proposed multiple-to-

multiple training scheme, i.e., multi-model cross aggregation.

During the FL training, FedCross maintains a small set of

intermediate models on the cloud server for the purpose

of weighted fusion of similar local models. Since Fedcross

fully respects the convergence characteristics of individual

clients rather than simply averaging their local models, the

local models can quickly converge to their local optimum

counterparts. Comprehensive experimental results on well-

known datasets show that FedCross outperforms state-of-the-

art FL methods significantly in both IID and non-IID scenarios

without causing extra communication overhead.

2148

Authorized licensed use limited to: Kent State University Libraries. Downloaded on August 15,2024 at 23:34:34 UTC from IEEE Xplore.  Restrictions apply. 



ACKNOWLEDGMENTS

This research/project is supported by the National Research

Foundation Singapore and DSO National Laboratories under

the AI Singapore Programme (AISG Award No: AISG2-

RP-2020-019), the Natural Science Foundation of China

(62272170), the National Research Foundation, Singapore,

and the Cyber Security Agency under its National Cyber-

security R&D Programme (NCRP25-P04-TAICeN), “Digital

Silk Road” Shanghai International Joint Lab of Trustwor-

thy Intelligent Software (22510750100), and Natural Science

Foundation (NSF CCF-2217104). Any opinions, findings, con-

clusions, or recommendations expressed in this material are

those of the author(s) and do not reflect the views of National

Research Foundation, Singapore, and Cyber Security Agency

of Singapore. Mingsong Chen is the corresponding author

(mschen@sei.ecnu.edu.cn).

REFERENCES

[1] G. Wang, H. Guo, A. Li, X. Liu, and Q. Yan, “Federated iot interaction
vulnerability analysis,” in 2023 IEEE 39th International Conference on

Data Engineering (ICDE). IEEE, 2023, pp. 1517–1530.
[2] S. Liu, H. Su, Y. Zhao, K. Zeng, and K. Zheng, “Lane change scheduling

for autonomous vehicle: A prediction-and-search framework,” in Proc.

of ACM SIGKDD Conference on Knowledge Discovery & Data Mining

(KDD), 2021, pp. 3343–3353.
[3] Z. Qin, J. Tang, and J. Ye, “Deep reinforcement learning with ap-

plications in transportation,” in Proc. of ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining (KDD), 2021, pp.
3201–3202.

[4] Z. Jia, Z. Wang, F. Hong, L. Ping, Y. Shi, and J. Hu, “Personalized deep
learning for ventricular arrhythmias detection on medical lot systems,” in
Proc. of International Conference on Computer-Aided Design (ICCAD),
no. 38, 2020, pp. 1–9.

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. of International Conference on Artificial Intelligence and

Statistics (AISTATS), 2017, pp. 1273–1282.
[6] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:

Concept and applications,” ACM Transactions on Intelligent Systems and

Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.
[7] X. Zhang, M. Hu, J. Xia, T. Wei, M. Chen, and S. Hu, “Efficient

federated learning for cloud-based aiot applications,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 40, no. 11, pp. 2211–2223, 2020.

[8] M. Hu, E. Cao, H. Huang, M. Zhang, X. Chen, and M. Chen, “Aiotml:
A unified modeling language for aiot-based cyber-physical systems,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems (TCAD), vol. 42, no. 11, pp. 3545–3558, 2023.
[9] A. Li, L. Zhang, J. Wang, J. Tan, F. Han, Y. Qin, N. M. Freris, and

X.-Y. Li, “Efficient federated-learning model debugging,” in Proc. of

International Conf. on Data Engineering (ICDE), 2021, pp. 372–383.
[10] H. Wang, Z. Kaplan, D. Niu, and B. Li, “Optimizing federated learning

on non-iid data with reinforcement learning,” in Proc. of Conference on

Computer Communications (INFOCOM), 2020, pp. 1698–1707.
[11] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid data

silos: An experimental study,” in Proc. of International Conference on

Data Engineering (ICDE), 2022, pp. 965–978.
[12] M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng, “No fear of

heterogeneity: Classifier calibration for federated learning with non-iid
data,” Proc. of Annual Conference on Neural Information Processing

Systems (NeurIPS), pp. 5972–5984, 2021.
[13] X.-C. Li and D.-C. Zhan, “Fedrs: Federated learning with restricted

softmax for label distribution non-iid data,” in Proc. of ACM SIGKDD

Conference on Knowledge Discovery & Data Mining (KDD), 2021, pp.
995–1005.

[14] A. Li, L. Zhang, J. Tan, Y. Qin, J. Wang, and X.-Y. Li, “Sample-level
data selection for federated learning,” in IEEE INFOCOM 2021-IEEE

Conference on Computer Communications. IEEE, 2021, pp. 1–10.

[15] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and

Trends® in Machine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.
[16] W. Zhuang, Y. Wen, X. Zhang, X. Gan, D. Yin, D. Zhou, S. Zhang, and

S. Yi, “Performance optimization of federated person re-identification
via benchmark analysis,” in Proc. of ACM International Conference on

Multimedia (MM), 2020, pp. 955–963.
[17] S. Hochreiter and J. Schmidhuber, “Flat minima,” Neural computation,

vol. 9, no. 1, pp. 1–42, 1997.
[18] M. Hardt, B. Recht, and Y. Singer, “Train faster, generalize better:

Stability of stochastic gradient descent,” in International conference on

machine learning. PMLR, 2016, pp. 1225–1234.
[19] Y. Tsuzuku, I. Sato, and M. Sugiyama, “Normalized flat minima:

Exploring scale invariant definition of flat minima for neural networks
using pac-bayesian analysis,” in International Conference on Machine

Learning. PMLR, 2020, pp. 9636–9647.
[20] J. Cha, S. Chun, K. Lee, H.-C. Cho, S. Park, Y. Lee, and S. Park, “Swad:

Domain generalization by seeking flat minima,” Advances in Neural

Information Processing Systems, vol. 34, pp. 22 405–22 418, 2021.
[21] M. P. Uddin, Y. Xiang, X. Lu, J. Yearwood, and L. Gao, “Mutual

information driven federated learning,” IEEE Transactions on Parallel

and Distributed Systems (TPDS), vol. 32, no. 7, pp. 1526–1538, 2020.
[22] J. Zhang, Y. Wu, and R. Pan, “Incentive mechanism for horizontal

federated learning based on reputation and reverse auction,” in Proc.

of The Web Conference (WWW), 2021, pp. 947–956.
[23] M. Hu, Z. Xia, D. Yan, Z. Yue, J. Xia, Y. Huang, Y. Liu, and

M. Chen, “Gitfl: Uncertainty-aware real-time asynchronous federated
learning using version control,” in IEEE Real-Time Systems Symposium

(RTSS). IEEE, 2023, pp. 145–157.
[24] B. Luo, X. Li, S. Wang, J. Huang, and L. Tassiulas, “Cost-effective

federated learning in mobile edge networks,” IEEE Journal on Selected

Areas in Communications (JSAC), vol. 39, no. 12, pp. 3606–3621, 2021.
[25] W. Y. B. Lim, J. S. Ng, Z. Xiong, J. Jin, Y. Zhang, D. Niyato, C. Leung,

and C. Miao, “Decentralized edge intelligence: A dynamic resource
allocation framework for hierarchical federated learning,” IEEE Trans.

on Parallel and Distr. Sys. (TPDS), vol. 33, no. 3, pp. 536–550, 2021.
[26] Y. Cui, K. Cao, G. Cao, M. Qiu, and T. Wei, “Client scheduling and

resource management for efficient training in heterogeneous iot-edge
federated learning,” IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), vol. 41, no. 8, pp. 2407–2420,
2022.

[27] D. Yan, M. Hu, Z. Xia, Y. Yang, J. Xia, X. Xie, and M. Chen, “Have
your cake and eat it too: Toward efficient and accurate split federated
learning,” arXiv preprint arXiv:2311.13163, 2023.

[28] J. Liu, Y. Xu, H. Xu, Y. Liao, Z. Wang, and H. Huang, “Enhancing fed-
erated learning with intelligent model migration in heterogeneous edge
computing,” in Proc. of International Conference on Data Engineering

(ICDE), 2022, pp. 1586–1597.
[29] C. Yang, Q. Wang, M. Xu, Z. Chen, K. Bian, Y. Liu, and X. Liu,

“Characterizing impacts of heterogeneity in federated learning upon
large-scale smartphone data,” in Proc. of The Web Conference (WWW),
2021, pp. 935–946.

[30] A. Li, J. Sun, P. Li, Y. Pu, H. Li, and Y. Chen, “Hermes: an efficient
federated learning framework for heterogeneous mobile clients,” in Proc.

of Int. Conf. on Mobile Computing and Networking (MobiCom), 2021,
pp. 420–437.

[31] R. Liu, M. Hu, Z. Xia, J. Xia, P. Zhang, Y. Huang, Y. Liu,
and M. Chen, “Adapterfl: Adaptive heterogeneous federated learning
for resource-constrained mobile computing systems,” arXiv preprint

arXiv:2311.14037, 2023.
[32] C. Jia, M. Hu, Z. Chen, Y. Yang, X. Xie, Y. Liu, and M. Chen,

“Adaptivefl: Adaptive heterogeneous federated learning for resource-
constrained aiot systems,” arXiv preprint arXiv:2311.13166, 2023.

[33] V. Rey, P. M. S. Sánchez, A. H. Celdrán, and G. Bovet, “Federated
learning for malware detection in iot devices,” Computer Networks, vol.
204, p. 108693, 2022.

[34] A. Li, Y. Cao, J. Guo, H. Peng, Q. Guo, and H. Yu, “Fedcss: Joint
client-and-sample selection for hard sample-aware noise-robust feder-
ated learning,” Proceedings of the ACM on Management of Data, vol. 1,
no. 3, pp. 1–24, 2023.

[35] A. Li, L. Zhang, J. Wang, F. Han, and X.-Y. Li, “Privacy-preserving
efficient federated-learning model debugging,” IEEE Transactions on

Parallel and Distributed Systems, vol. 33, no. 10, pp. 2291–2303, 2021.

2149

Authorized licensed use limited to: Kent State University Libraries. Downloaded on August 15,2024 at 23:34:34 UTC from IEEE Xplore.  Restrictions apply. 



[36] J. Wu, Q. Liu, Z. Huang, Y. Ning, H. Wang, E. Chen, J. Yi, and B. Zhou,
“Hierarchical personalized federated learning for user modeling,” in
Proc. of The Web Conference (WWW), 2021, pp. 957–968.

[37] S. P. Karimireddy, S. Kale, M. Mohri, S. Reddi, S. Stich, and A. T.
Suresh, “Scaffold: Stochastic controlled averaging for federated learn-
ing,” in Proc. of International Conference on Machine Learning (ICML),
2020, pp. 5132–5143.

[38] Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei, and Y. Zhang,
“Personalized cross-silo federated learning on non-iid data.” in Proc. of

the AAAI Conference on Artificial Intelligence (AAAI), 2021, pp. 7865–
7873.

[39] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of

Machine Learning and Systems (MLSys), pp. 429–450, 2020.
[40] C. Chen, Z. Chen, Y. Zhou, and B. Kailkhura, “Fedcluster: Boosting

the convergence of federated learning via cluster-cycling,” in Proc. of

International Conference on Big Data (Big Data), 2020, pp. 5017–5026.
[41] Y. Fraboni, R. Vidal, L. Kameni, and M. Lorenzi, “Clustered sampling:

Low-variance and improved representativity for clients selection in
federated learning,” in Proc. of International Conference on Machine

Learning (ICML), 2021, pp. 3407–3416.
[42] L. Zhang, L. Shen, L. Ding, D. Tao, and L.-Y. Duan, “Fine-tuning

global model via data-free knowledge distillation for non-iid federated
learning,” in Proc. of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2022, pp. 10 174–10 183.
[43] T. Lin, L. Kong, S. U. Stich, and M. Jaggi, “Ensemble distillation for

robust model fusion in federated learning,” Proc. of Annual Conference

on Neural Information Processing Systems (NeurIPS), pp. 2351–2363,
2020.

[44] K. Ozkara, N. Singh, D. Data, and S. Diggavi, “Quped: Quantized
personalization via distillation with applications to federated learning,”
Proc. of Annual Conference on Neural Information Processing Systems

(NeurIPS), pp. 3622–3634, 2021.
[45] F. Sattler, T. Korjakow, R. Rischke, and W. Samek, “Fedaux: Leveraging

unlabeled auxiliary data in federated learning,” IEEE Transactions on

Neural Networks and Learning Systems (TNNLS), 2021.
[46] Z. Zhu, J. Hong, and J. Zhou, “Data-free knowledge distillation for

heterogeneous federated learning,” in Proc. of International Conference

on Machine Learning (ICML), 2021, pp. 12 878–12 889.
[47] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence

of fedavg on non-iid data,” in Proc. of International Conference on

Learning Representations (ICLR), 2020.
[48] Y. Zhang, M. J. Wainwright, and J. C. Duchi, “Communication-efficient

algorithms for statistical optimization,” Proc. of Annual Conference on

Neural Information Processing Systems (NIPS), pp. 1511–1519, 2012.
[49] S. U. Stich, “Local sgd converges fast and communicates little,” arXiv

preprint arXiv:1805.09767, 2018.
[50] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features

from tiny images,” 2009.
[51] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan,

V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated settings,”
arXiv preprint arXiv:1812.01097, 2018.

[52] T.-M. H. Hsu, H. Qi, and M. Brown, “Measuring the effects of non-
identical data distribution for federated visual classification,” arXiv

preprint arXiv:1909.06335, 2019.
[53] https://github.com/zhuangdizhu/FedGen.
[54] https://github.com/Accenture//Labs-Federated-Learning/tree/clustered\

_sampling.
[55] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. of IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2016, pp. 770–778.
[56] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.
[57] Pytorch, “Models and pre-trained weight,” https://pytorch.org/vision/

stable/models.html, 2022.
[58] A. Triastcyn and B. Faltings, “Federated learning with bayesian differ-

ential privacy,” in Proc. of Int. Conf. on Big Data (Big Data), 2019, pp.
2587–2596.

[59] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi, S. Jin, T. Q. Quek,
and H. V. Poor, “Federated learning with differential privacy: Algorithms
and performance analysis,” IEEE Transactions on Information Forensics

and Security (TIFS), vol. 15, pp. 3454–3469, 2020.
[60] L. Sun, J. Qian, and X. Chen, “Ldp-fl: Practical private aggregation

in federated learning with local differential privacy,” in Proc. of Inter-
national Joint Conference on Artificial Intelligence (IJCAI), 2021, pp.
1571–1578.

2150

Authorized licensed use limited to: Kent State University Libraries. Downloaded on August 15,2024 at 23:34:34 UTC from IEEE Xplore.  Restrictions apply. 


