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Abstract

Background

Coronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and
deaths in the United States. Its continued burden and the impact of annually reformulated
vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and
deaths in the United States for the next 2 years under 2 plausible assumptions about
immune escape (20% per year and 50% per year) and 3 possible CDC recommendations
for the use of annually reformulated vaccines (no recommendation, vaccination for those
aged 65 years and over, vaccination for all eligible age groups based on FDA approval).
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Methods and findings

The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization
and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the
intersection of considered levels of immune escape and vaccination. Annually reformulated
vaccines are assumed to be 65% effective against symptomatic infection with strains circu-
lating on June 15 of each year and to become available on September 1. Age- and state-
specific coverage in recommended groups was assumed to match that seen for the first (fall
2021) COVID-19 booster. State and national projections from 8 modeling teams were
ensembled to produce projections for each scenario and expected reductions in disease
outcomes due to vaccination over the projection period.

From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics
peaking November to January. In the most pessimistic scenario (high immune escape, no
vaccination recommendation), we project 2.1 million (90% projection interval (P1)
[1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths,
exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape sce-
narios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (Cl)
[104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer
deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000—
598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths.

Conclusions

COVID-19 is projected to be a significant public health threat over the coming 2 years.
Broad vaccination has the potential to substantially reduce the burden of this disease, sav-
ing tens of thousands of lives each year.

Author summary

Why was this study done?

» While Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is likely to
pose a persistent threat to public health for the foreseeable future, regular revaccination
with reformulated vaccines is considered a prominent mitigation tool.

Questions exist regarding the effectiveness of annual vaccination campaigns and the
optimal target age ranges, given the concentration of severe Coronavirus Disease 2019
(COVID-19) outcomes in older populations.

The US COVID-19 Scenario Modeling Hub (SMH) has provided projections on the
unfolding of the COVID-19 epidemic under various conditions, summarizing the
results of multiple teams working on the same set of scenarios.

Informed decisions on future vaccination policy need to be made with well-grounded
projections of the likely course of COVID-19 epidemics and its impact under different
vaccination scenarios.
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What did the researchers do and find?

o Applying the SMH approach, we projected the potential impact of COVID-19 from
April 2023 to April 2025 and assessed the extent to which vaccination can reduce hospi-
talizations and deaths.

« Under plausible assumptions about viral evolution and waning immunity, COVID-19
will likely cause annual epidemics peaking in November to January over the two-year
projection period.

« Though significant, hospitalizations and deaths are unlikely to reach levels seen in previ-
ous winters.

o The projected health impacts of COVID-19 are reduced by 10% to 20% through moder-
ate use of reformulated vaccines.

What do these findings mean?

» COVID-19 is projected to remain a significant public health threat in the coming years,
exceeding the pre-pandemic mortality of influenza and pneumonia.

o Annual vaccination can reduce morbidity, mortality, and strain on health systems.

» While the projected impact of annual vaccination is significant, it is conditional on sce-
nario assumptions including vaccine coverage and effectiveness.

Introduction

Three and a half years after the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-
CoV-2) virus first emerged in Wuhan, China, it seems the global community has transitioned
from confronting Coronavirus Disease 2019 (COVID-19) as a pandemic emergency to manag-
ing it as an endemic, seasonally recurring virus [1]. While widespread immunity against
SARS-CoV-2 has been achieved globally through vaccination and infections [2], the continued
evolution of the virus causes antigenic changes and raises the potential for recurrent epidemics
[3,4]. Current evidence suggests that both patterns of human contact and environmental fac-
tors contribute to seasonality in the intensity of SARS-CoV-2 transmission [5-7]. Combined,
seasonality and ongoing “antigenic drift (i.e., gradual genetic changes in a virus evading prior
population immunity [8])” of SARS-CoV-2 make it highly likely that the virus will pose a per-
sistent threat to public health for the foreseeable future.

Going forward, one of the main tools for mitigating the impact of annual COVID-19 epi-
demics will be vaccination. As with influenza [9,10], continued antigenic drift of SARS-CoV-2
and intrinsic waning of the protection offered by previous vaccinations and infections (i.e.,
loss of immunity due to waning of immune protection, independent of the evolution of the
virus) means regular revaccination with reformulated SARS-CoV-2 vaccines will be needed to
mitigate the virus’s impact [11]. However, legitimate questions exist about how effective
annual vaccination campaigns can be, given SARS-CoV-2’s rapid evolution, and what age
ranges should be targeted, given the concentration of severe COVID-19 outcomes in older
populations [12]. Hence, well-grounded projections of COVID-19’s impact under different
vaccination scenarios help inform future vaccination policy.
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The US COVID-19 Scenario Modeling Hub (SMH) is a long-standing multi-team model-
ing effort that aims to project how the COVID-19 epidemic is likely to unfold in the mid- to
long-term under various conditions [13,14]. These planning scenarios contrast various inter-
ventional strategies, characteristics of future viral variants, and other epidemiological or
behavioral uncertainties, to provide projections of COVID-19 hospitalizations and deaths
under each set of assumptions. By summarizing the results of multiple teams working on the
same set of scenarios, the SMH takes advantage of the proven increased reliability of ensem-
ble-based predictions over individual models [15]. Ensemble approaches have proven useful in
multiple fields and across pathogens to inform public health policy, situational awareness, and
individual decision-making [13].

Here, we present the results of applying the SMH approach to project the likely course of
the COVID-19 epidemic in the United States over a two-year period (April 15, 2023 to April
15, 2025) under different assumptions about the average speed of antigenic drift and possible
recommendations for the use of reformulated annual COVID-19 vaccines from the Centers
for Disease Control and Prevention (CDC).

Methods

To estimate the potential impact of vaccination on COVID-19 hospitalizations and deaths, we
invited multiple teams in an open call to provide 2 years of projections for 6 scenarios within
the SMH framework [14,15]. Teams had broad discretion in the details of model implementa-
tion within scenario definitions (see below). Individual team projections were combined to
produce ensemble projections for each scenario as well as an ensemble estimate of the expected
impact of vaccination.

Scenario definitions

Six scenarios were created representing the intersection of 2 axes: one representing the average
speed of antigenic drift (i.e., immune escape) over the two-year projection period, and the sec-
ond representing differing assumptions about CDC recommendations for, and uptake of, a
reformulated SARS-CoV-2 vaccine. The antigenic drift axis consisted of (1) a “low immune
escape” scenario, where the SARS-CoV-2 virus evolves away from the immune signature of
circulating variants at a rate of 20% per year (e.g., a vaccine with efficacy against symptomatic
infection of 65% on June 15, 2023, is assumed to have an efficacy of 0.8 x 0.65 = 52% 1 year
later in the absence of immune waning); and (2) a “high immune escape” scenario with an
immune escape rate of 50% per year. The implementation of immune escape in their models
was left at the discretion of teams (e.g., continuously or in stepwise occurrences; S1 Table)
while ensuring that the annual levels align with the scenario definition.

The vaccination axis consisted of 3 levels based on possible COVID-19 vaccine recommen-
dations under consideration by the CDC Advisory Committee on Immunization Practices
(ACIP): (1) no recommendation for annual vaccination with a reformulated vaccine; (2) a rec-
ommendation for those aged 65 and above (65+); and (3) a recommendation for all ages eligi-
ble for vaccination based on the US Food and Drug Administration (FDA) approval [16].
Across all scenarios, the vaccine is assumed to be reformulated to match the predominant vari-
ants circulating as of June 15 each year and to become available to the public on September 1
of the same year. The annual uptake of reformulated vaccines in recommended groups is pro-
jected to follow the age group specific (0-17, 18-64, and 65+) uptake patterns observed for the
first booster dose in each state (i.e., the first additional dose of vaccines after completing the
primary series, authorized in September 2021) [17]. Uptake is assumed to saturate at levels
reached 1 year after the recommendation (full uptake assumptions available on GitHub [18];
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corresponding to 9% coverage in ages 0 to 17, 33% in 18 to 64, and 65% in 65+ nationally).
Reformulated vaccines are presumed to have 65% vaccine effectiveness against symptomatic
disease at the time of reformulation and immediately after receipt, with protection declining
based on waning immunity and antigenic drift. This assumption was derived from a prior
study showing a 60% vaccine effectiveness against emergency department encounters of the
bivalent mRNA vaccine (fall 2022) [19], while considering potential underestimation due to
immune waning and unreported previous SARS-CoV-2 antigen exposures. Vaccine effective-
ness against severe outcomes was at the teams’ discretion based on their best insights

(S1 Table).

All contributing models were directed to incorporate waning immunity, with a require-
ment that the median waning time of protection against infection aligned with the designated
range of 3 to 10 months. Furthermore, the incorporation of SARS-CoV-2 seasonality was
required, though teams had discretion in terms of its implementation without any constraints
on the timing and extent of seasonal forcing (e.g., not restricted to having a single seasonal
peak; S1 Table). Teams were directed not to consider changes in non-pharmaceutical inter-
ventions over the projection period, given their limited implementation in 2023. Full scenario
details are available on GitHub [18].

Ensemble projections

Eight different modeling teams contributed projections of weekly incident and cumulative
COVID-19 hospitalizations and deaths for April 15, 2023 to April 15, 2025 for all states and at
the national level (1 additional team provided projections for only North Carolina based on
their interest). Each team provided up to 100 representative epidemic trajectories for each sce-
nario and outcome. Trajectories were used to generate a probability distribution of incident
outcomes each week. Distributions at each week were combined using the trimmed-linear
opinion pool method (LOP) to create ensemble projections (2 outermost values were trimmed
while assigning equal weight to all remaining values) [15,20-22]. All reported numbers for
incident and cumulative deaths and hospitalizations, and associated projection intervals (PIs),
come from this ensemble.

To estimate the expected impact of vaccination, the mean and variance in cumulative
deaths and hospitalizations were calculated over the period of interest based on submitted tra-
jectories. Within each individual model, the expected impact of vaccination was determined
by calculating the difference, or ratio, of projected deaths and hospitalizations between differ-
ent vaccination scenarios sharing the same rate of immune escape, with variances estimated
using the Delta method [23]. These individual model level estimates were then combined to
produce an ensembled estimate of expected vaccine impact and associated confidence intervals
(CIs) using standard meta-analysis techniques (with a random effects model) as implemented
in the R package “metafor” [24,25]. We note that in estimating vaccine impact we (1) take the
vaccine impacts estimated by each model and then ensemble those (rather than looking at the
impact in ensemble estimates); and (2) use different techniques in combining vaccine impact
estimates aimed at getting expected values and confidence intervals (rather than predictions
intervals). Hence, vaccine impacts estimated from the meta-analysis are not directly reproduc-
ible by comparing ensemble projections for each scenario (which are not mathematically
equivalent).

Results

Based on the ensemble of projections from 8 contributing models under plausible assumptions
about the viral evaluation and annual vaccination recommendations from the CDC, we project
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National ensemble projections for COVID-19 hospitalizations
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Fig 1. Projected weekly COVID-19 hospitalizations in the United States across scenarios, April 2023-April 2025. Ensemble projections from the COVID-
19 SMH of national COVID-19 hospitalization for the period April 2023-April 2025 are shown by scenario. Dots indicate the observed weekly hospitalizations
between December 1, 2022 and December 16, 2023. Shading from lightest to darkest represents 90%, 80%, and 50% projection intervals. Red dashed lines
correspond to the CDC-designated COVID-19 community-level indicators: medium (10-19 weekly hospitalizations per 100,000) and high (>20 weekly
hospitalizations per 100,000) levels. The vertical line on April 15, 2023, marks the start of the projection period. COVID-19, Coronavirus Disease 2019; SMH,
Scenario Modeling Hub.

https://doi.org/10.1371/journal.pmed.1004387.9001

that between April 15, 2023 and April 15, 2025, the United States will experience annual
COVID-19 epidemics peaking between November and January and causing approximately 1
million cumulative hospitalizations and 100,000 cumulative deaths each year (Fig 1 and
Table 1). The extent of COVID-19 impact over this period varies significantly by scenario,
with 1.4 million (90% PI [983,000, 1,947,000]) hospitalizations and 130,000 (90% PI [71,000,
201,000]) deaths over the two-year projection period in the most optimistic scenario (reformu-
lated vaccines recommended for all individuals, 20% immune escape) and 2.1 million (90% PI
[1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths in the
most pessimistic scenario (no recommendation, 50% immune escape) (S1 Fig). While signifi-
cant, even in the most pessimistic scenario, we project deaths and hospitalizations are unlikely
to be as high as the peak weekly hospitalizations seen in the first Omicron wave in early 2022
(150,000 hospitalizations per week). Furthermore, projected weekly hospitalizations are likely
to remain at or below CDC-designated medium community transmission levels (10 to 19
weekly hospitalizations per year) [26] across all scenarios (Fig 1). There is moderate variation
between states in peak timing and size of COVID-19 epidemic waves, although most generally
follow national trends (S2 and S3 Figs).

Ensemble projections indicate that annual vaccination has the potential to substantially reduce
both hospitalizations and deaths from COVID-19 (Fig 2). In high immune escape scenarios, if
vaccination is confined to 65+, and uptake patterns mirror what was seen for the first booster
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Table 1. Projected national peak timing and peak size of hospitalizations across scenarios.

Scenario

High immune escape

No booster
recommendation

Booster recommended
for 65+

Booster recommended
for all

Low immune escape

No booster
recommendation

Booster recommended
for 65+

Booster recommended
for all

Peak timing
Dec 10 (Oct
15-Apr 14)

Dec 10 (Oct
15-Feb 7)

Dec 10 (Oct
8-Feb 18)
Dec 13 (Aug

13-Apr 14)

Dec 10 (Aug
13-Feb 18)

Dec 3 (Apr
30-Mar 3)

April 15, 2023-April 14, 2024

April 15, 2024-April 15, 2025

Peak size Total Total deaths | Peak timing Peak size Total Total deaths
hospitalizations hospitalizations
42,000 1,017,000 (767,000— 100,000 Dec 15 (Oct 45,000 1,093,000 (670,000— 108,000
(18,000- 2,058,000) (68,000- 13-Apr 13) (17,000- 2,211,000) (71,000-
105,000) 217,000) 90,000) 244,000)
39,000 943,000 (689,000— 94,000 Dec 15 (Oct 41,000 1,049,000 (584,000— 99,000
(17,000~ 1,859,000) (55,000~ 13-Feb 23) (16,000~ 1,959,000) (67,000~
91,000) 178,000) 77,000) 189,000)
35,000 836,000 (595,000— 82,000 Dec 8 (Jun 32,000 949,000 (606,000— 89,000
(15,000~ 1,723,000) (53,000~ 9-Feb 19) (14,000~ 1,741,000) (64,000~
91,000) 173,000) 77,000) 182,000)
36,000 825,000 (676,000 79,000 Dec 29 (Oct 35,000 956,000 (578,000~ 85,000
(16,000~ 1,169,000) (57,000~ 27-Apr 13) (14,000~ 1,304,000) (49,000~
81,000) 124,000) 76,000) 166,000)
34,000 767,000 (620,000~ 70,000 Dec 22 (Oct 32,000 857,000 (485,000~ 80,000
(15,000~ 1,020,000) (45,000~ 27-Mar 9) (13,000~ 1,128,000) (34,000—
68,000) 111,000) 65,000) 109,000)
26,000 670,000 (487,000 63,000 Dec 15 (Jun 28,000 717,000 (496,000~ 67,000
(13,000- 920,000) (38,000- 12-Mar 9) (12,000- 1,027,000) (33,000-
57,000) 101,000) 51,000) 100,000)

Each value represents the median projection with 90% PI below.

PI, projection interval.

https://doi.org/10.1371/journal.pmed.1004387.t001

dose, we would expect a reduction in hospitalizations of 8% (95% CI [5, 12]) compared to the no
vaccination scenario and a reduction in deaths of 13% (95% CI [7, 18]). This corresponds to abso-
lute reductions of 230,000 (95% CI [104,000, 355,000]) hospitalizations and 33,000 (95% CI
[12,000, 54,000] deaths across the entire United States over the two-year projection period.

Expanding vaccination recommendations to all individuals would lead to substantial addi-
tional reductions in deaths and hospitalizations (Fig 2). Under the assumption that coverage
equivalent to the first booster dose is attained, vaccination of all individuals reduces hospitali-
zations by 9% (95% CI [5, 13], N = 198,000, 95% CI [120,000, 276,000]) and deaths by 8%
(95% CI [3, 14], N = 16,000, 95% CI [11,000, 22,000]) compared to vaccination of 65+ alone in
high immune escape scenarios. This corresponds to a total reduction of 17% (95% CI [12, 22],
N = 431,000, 95% CI [264,000, 598,000]) in hospitalizations and 20% (95% CI [12, 28],

N =49,000, 95% CI [29,000, 69,000]) in deaths compared to the no vaccination scenario.
Results are similar in low immune escape scenarios.

A significant factor contributing to state-level variation in the projected impact of vaccine
recommendations is the assumed uptake level of reformulated vaccines (Figs 3, $4, and S5).
States with higher coverage among 65+ are anticipated to experience substantial reductions in
hospitalizations, exceeding 150 per 100,000 in high immune escape scenarios, if the reformu-
lated vaccines are recommended to all. In contrast, the state with the lowest coverage in 65+,
North Carolina, is expected to witness reductions of less than 75 per 100,000.

Discussion

Based on the ensemble of projections from 8 modeling teams for the next 2 years (April 2023
to April 2025), it is expected that COVID-19 will remain a persistent public health threat in the
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Fig 2. Percent and total prevented COVID-19 hospitalizations and deaths by annual vaccination recommendation with reformulated vaccines. Relative
and absolute differences in cumulative hospitalizations and deaths over the next 2 years (April 2023-April 2025) between different vaccination
recommendations. Red and blue dots and error bars represent the median and 95% CI of percent prevented outcomes in high and low immune escape
scenarios (50% per year and 20% per year), respectively. CI, confidence interval; COVID-19, Coronavirus Disease 2019.

https://doi.org/10.1371/journal.pmed.1004387.9002

United States for the foreseeable future. Nevertheless, our projections highlight that annual

vaccination with reformulated vaccines can substantially mitigate this burden if coverage
reaches levels observed for the first (i.e., fall 2021) COVID-19 booster.

Across all scenarios, our projections indicate that COVID-19 hospitalizations and deaths
would be substantially less than what was seen in the early stages of the pandemic (e.g.,

between April 2021 and April 2023, there were 4.2 million hospitalizations and 570,000 deaths
[27]). Nonetheless, COVID-19 is projected to remain one of the leading causes of death in the
United States [28]. For context, in our most pessimistic scenario (no CDC vaccine recommen-
dation, high immune escape), annual COVID-19 mortality is expected to be similar to pre-
pandemic mortality from Alzheimer’s disease (Fig 4), while in the most optimistic scenario
(vaccines recommended for all, low immune escape) mortality would be similar to that seen
from diabetes in the pre-pandemic period. In all cases, COVID-19 mortality is projected to
exceed that of influenza and pneumonia.
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While the projected impact of annual vaccination on disease burden is significant, it is
highly dependent on assumed vaccine uptake. This gives us reason for both caution and hope.
Previous CDC booster recommendations, including that for the 2022 reformulated vaccine
(i.e., bivalent vaccines authorized in August 2022), have not achieved the coverage observed
for the first booster [29]. Reduced coverage would substantially blunt the impact of any vaccine
recommendations. However, it is worth noting that many states where we assume low vaccina-
tion coverage, such as North Carolina and Pennsylvania, have not historically been ranked
among the states with the lowest vaccine coverage for annual influenza vaccines [30], suggest-
ing potential for increasing vaccine uptake in these regions.

Among 6 considered scenarios, the one with high immune escape (50% per year) and CDC
vaccine recommendation for all age groups aligns most closely with real-world practices. The
CDC advised vaccinating all individuals aged over 6 months on September 12, 2023 [31], and
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https://doi.org/10.1371/journal.pmed.1004387.g004

the predominant variant in December 2023 (Omicron EG.5.1) was suggested to have around
17% immune escape compared to the preexisting variant in June 2023 (Omicron XBB.1.5).
This is equivalent to an immune escape of around 40% per year, assuming the same transmis-
sibility between 2 variants [32]. Our ensemble projections in this scenario appear to align well
with the empirically observed national-level hospitalizations, yet some discrepancy was noted
in September to October 2023, primarily attributed to faster resurgences in southern states
[14]. In the discrepancy period, assumptions of vaccine coverage matched well with realized
uptake, suggesting that factors other than vaccine assumptions drove the difference between
observed and projected disease dynamics. We note that later in the fall of 2023, the observed
reformulated vaccine uptake saturated at a lower level than our all-age scenario (although vac-
cine coverage observations are well bracketed by our set of scenarios; S6 Fig). However, state-
level uptake patterns were comparable with the range of scenario assumptions in some states
(S7 Fig) [33], particularly among 65+, who are likely to have significant contributions to
reducing severe outcomes. Of note, our study primarily focuses on projecting the potential

PLOS Medicine | https://doi.org/10.1371/journal.pmed. 1004387  April 17, 2024 10/16


https://doi.org/10.1371/journal.pmed.1004387.g004
https://doi.org/10.1371/journal.pmed.1004387

PLOS MEDICINE

Potential impact of annual vaccination with reformulated COVID-19 vaccines in the U.S.

advantages of annual vaccination (predicting the likely course of the epidemic given the sce-
nario, rather than forecasting) to inform public health authorizations before the actual vacci-
nation campaign begins; hence, our assumed uptake patterns in any individual scenario may
not necessarily mirror the observed ones. Nevertheless, caution should be exercised when
interpreting our projected hospitalizations and deaths averted by annual vaccination, as these
outcomes are likely somewhat overestimated due to such discrepancies in vaccine uptake pat-
terns. Additionally, in scenarios with vaccination recommendations to all individuals, the
ensemble outperforms individual models, wherein most show either over- or underconfidence
relative to the ensemble (S8 Fig). Such improvement of the ensemble over individual models
aligns with our earlier findings based on prior rounds of SMH projections [15].

Our ensemble projections have potential implications for countries beyond the United
States, where regular revaccination serves as a key strategy against COVID-19. In light of this
global relevance, our projections provide insight into the benefits of annual vaccination in mit-
igating the disease burden, along with related work conducted in the European context [34].
However, it is essential to note that the magnitude of impacts may vary across countries due to
differing epidemiological and demographic factors. In particular, variations in age distribu-
tion, circulating variables, transmission dynamics, and time-varying immunity within each
age group can substantially influence the impact of annual vaccination efforts.

As with any attempt to project into the future, our projections come with major caveats and
limitations. First and foremost, scenario projections are conditional on often strict scenario
assumptions. Both vaccine coverage and effectiveness might deviate considerably from scenario
assumptions, although historical trends of influenza vaccination suggest that achieving higher
coverage is unlikely, especially in older populations [30]. Additionally, for simplicity, most teams
assumed equivalent vaccine effectiveness against infection and symptomatic disease, potentially
underestimating the vaccine impacts by neglecting protection against asymptomatic infections
[35]. Furthermore, our scenarios did not consider interactions with other infectious diseases, but
they may impact our projections if there are significant changes in risk perception or healthcare
burden during the co-circulation of respiratory infectious diseases (e.g., tripledemic in the 2022
to 2023 season [36]). Nevertheless, projections of the combined impact of multiple pathogens for
the 2023 to 2024 season suggest a probable lower impact on the healthcare system compared to
the prior season [37]. Second, the potential impact resulting from variations in the details of the
modeling approach (e.g., seasonality) and parameter values, determined at the teams’ discretion,
were not quantified due to the multi-team and real-time operational nature of the SMH frame-
work. A hub structure is particularly useful when there is valid scientific uncertainty about the
role of specific drivers of disease dynamics, including seasonality. Third, to accommodate diverse
modeling approaches, we focused on aggregated projections of hospitalizations and deaths across
all age groups for each scenario, while the scenarios were designed with different age-specific vac-
cine recommendations. Lastly, if future variants differ in intrinsic transmissibility or disease
severity from that of the current Omicron lineages, the projected disease burden may alter
accordingly. Furthermore, all scenarios were built on the assumption of continuous immune
escape with a constant rate. However, the emergence of new SARS-CoV-2 variants showing a sig-
nificant level of antigenic change within a very short span (e.g., Omicron [38,39]) could increase
the disease burden far beyond these projections.

Despite its limitations, ensembling scenario-based projections from multiple teams has
proven to be useful for estimating COVID-19’s future burden and the potential benefits of vac-
cination, providing valuable information for public health planning [13,15]. Our results show
that COVID-19 will likely remain a major threat to human health in the United States in the
coming years. In the face of this threat, broad vaccination against SARS-CoV-2 has the poten-
tial to save tens of thousands of lives each year.

PLOS Medicine | https://doi.org/10.1371/journal.pmed. 1004387  April 17, 2024 11/16


https://doi.org/10.1371/journal.pmed.1004387

PLOS MEDICINE

Potential impact of annual vaccination with reformulated COVID-19 vaccines in the U.S.

Supporting information

S1 Fig. Projected cumulative COVID-19 hospitalizations and deaths in the United States
by scenario, April 2023-April 2025. Ensemble projections for cumulative COVID-19 hospi-
talization and deaths in the United States for the next 2 years (April 2023-April 2025) are
shown by scenario. Solid lines indicate the median of projected outcomes, and dash lines and
shades indicate their 90% projection intervals. Each color represents different annual vaccina-
tion recommendations (no recommendation, reformulated vaccines recommended for those
aged 65 and above, and recommended for all age groups). Dots indicate the observed cumula-
tive hospitalizations and deaths from April 15, 2023 and December 16, 2023.

(TIF)

S2 Fig. State-level peak COVID-19 hospitalizations in high immune escape scenarios by
season and vaccination scenario. The peak hospitalizations per 100,000 over the next 2 years
(April 2023-April 2025) under high immune escape assumption are shown by US state and by
vaccination scenario (no recommendation, reformulated vaccines recommended for those
aged 65 and above, and recommended for all age groups). The color variation denotes the
order of US states in the peak hospitalizations by scenario and season. Shades of yellow indi-
cate states with lower values and shades of blue indicate states with higher values. For visualiza-
tions, square root scaling was applied in x-axes.

(TIF)

S3 Fig. State-level peak timing of COVID-19 hospitalizations in high immune escape sce-
narios by season and vaccination scenario. The peak timing of hospitalizations under high
immune escape assumption is shown by US state and by vaccination scenario (no recommen-
dation, reformulated vaccines recommended for those aged 65 and above, and recommended
for all age groups). The color variation denotes the order of US states in the peak timing of
COVID-19 hospitalizations by scenario and season. Shades of blue indicate states with an ear-
lier peak and shades of yellow indicate states with a later peak.

(TIF)

S4 Fig. State-level percent prevented COVID-19 hospitalizations between the annual vacci-
nation scenarios from April 2023 to April 2025 by scenario. Relative differences in cumula-
tive COVID-19 hospitalizations over the next 2 years (April 2023-April 2025) between
different vaccination scenarios are shown by immune escape level and by US state. The color
variation denotes the order of US states in the percent prevented hospitalizations by scenario.
Shades of yellow indicate states with lower values and shades of blue indicate states with higher
values.

(TIF)

S5 Fig. State-level percent prevented COVID-19 deaths between the annual vaccination
scenarios from April 2023 to April 2025 by scenario. Relative differences in cumulative
COVID-19 deaths over the next 2 years (April 2023-April 2025) between different vaccination
scenarios are shown by immune escape level and by US state. The color variation denotes the
order of US states in the percent prevented deaths by scenario. Shades of yellow indicate states
with lower values and shades of blue indicate states with higher values.

(TIF)

S6 Fig. Comparison between the assumed and observed annual uptake of COVID-19 refor-
mulated vaccines at the national level in the United States. (A) Solid lines represent the
assumed national-level annual uptake of reformulated vaccines by age group, projected to fol-
low the uptake patterns for the first booster dose (authorized in September 2021). Dashed lines
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indicate the empirically observed uptake as of February 24, 2024, sourced from the CDC web-
site, covering Puerto Rico and the Virgin Islands which are not accounted for in the assumed
national-level uptake. Each age group is represented by a different color. (B) Observed and
assumed annual uptake of reformulated vaccines among individuals aged 18 and over at the
national level. Each color represents a different vaccine coverage data.

(TIF)

S7 Fig. Comparison between the assumed and observed annual uptake of COVID-19 refor-
mulated vaccines by US state. Solid lines represent the assumed state-level annual uptake of
reformulated vaccines by age group, projected to follow the uptake patterns for the first
booster dose (authorized in September 2021). Dots indicate the monthly observed uptake as of
February 24, 2024, sourced from the CDC website. Each age group is represented by a different
color.

(TIF)

S8 Fig. Quantile-quantile (QQ) plot for assessing the performance of models regarding
cumulative COVID-19 hospitalizations and deaths in the United States. The actual cover-
age of each model, regarding cumulative hospitalizations and deaths as of December 16, 2023,
is plotted against its expected coverage. Coverage measures the percentage of observations that
fall within a given prediction interval (e.g., for a 90% prediction interval, expected coverage is
90%). Coverage was calculated across all locations and projection weeks. The dashed lines rep-
resent the expected relationship (expected coverage is equal to actual coverage), where a line
below indicates models are overconfident (actual coverage is less than expected coverage), and
above the line means models are underconfident (actual coverage is more than expected cover-
age). The black solid lines depict the ensemble model, while each colored line represents con-
tributing individual models. Following the CDC recommendation for reformulated vaccines
(published on September 12, 2023), only scenarios with vaccination recommendations to all
individuals were included.

(TIF)

S1 Table. Detailed description of individual models.
(DOCX)
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