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Mathematical models are useful for public health planning and response to infectious disease threats. However,
different models can provide differing results, which can hamper decision making if not synthesized appropri-
ately. To address this challenge, multi-model hubs convene independent modeling groups to generate ensembles,
known to provide more accurate predictions of future outcomes. Yet, these hubs are resource intensive, and how
many models are sufficient in a hub is not known. Here, we compare the benefit of predictions from multiple
models in different contexts: (1) decision settings that depend on predictions of quantitative outcomes (e.g.,
hospital capacity planning), where assessments of the benefits of multi-model ensembles have largely focused;
and (2) decisions settings that require the ranking of alternative epidemic scenarios (e.g., comparing outcomes
under multiple possible interventions and biological uncertainties). We develop a mathematical framework to
mimic a multi-model prediction setting, and use this framework to quantify how frequently predictions from
different models agree. We further explore multi-model agreement using real-world, empirical data from 14
rounds of U.S. COVID-19 Scenario Modeling Hub projections. Our results suggest that the value of multiple
models could be different in different decision contexts, and if only a few models are available, focusing on the
rank of alternative epidemic scenarios could be more robust than focusing on quantitative outcomes. Although
additional exploration of the sufficient number of models for different contexts is still needed, our results indicate
that it may be possible to identify decision contexts where it is robust to rely on fewer models, a finding that can
inform the use of modeling resources during future public health crises.

1. Introduction

Policy makers are increasingly leveraging mathematical models to
support public health planning and outbreak response (Biggerstaff et al.,
2022; Egger et al., 2018). Models can be used to estimate key biological
parameters, predict what will happen in the future, or anticipate the
effectiveness of potential intervention strategies (Biggerstaff et al., 2022;
Metcalf et al., 2020). However, during an infectious disease outbreak,
there are many unknowns (e.g., about pathogen biology or human
behavior), and these unknowns can hamper decision making and public
health response. For example, uncertainties can lead to differing models
that offer conflicting results and contradictory policy recommendations
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(den Boon et al., 2019; Reich et al., 2022).

In the face of uncertainty, approaches that leverage multiple models
can be used to better support decision making (den Boon et al., 2019;
Reich et al., 2022; Shea et al., 2020). In particular, aggregating results
from multiple models into an ensemble has been shown to provide more
robust and reliable estimates of future outcomes across a range of set-
tings (Clemen, 1989; Timmermann, 2006), including for infectious
diseases such as Dengue fever (Johansson et al., 2019), Ebola (Viboud
et al., 2018), influenza (Reich et al., 2019), and SARS-CoV-2 (Cramer
et al., 2022; Howerton et al., 2023a). Ensembles are most useful when
independent model predictions provide different insights about what
could happen in the future, and therefore collectively represent
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uncertainty and estimate future outcomes better than a single model
alone (Pennell and Reichler, 2011).

Multi-model hubs that leverage the power of ensembles are
becoming increasingly common to support the management of infec-
tious diseases (Reich et al., 2022), yet these efforts can be costly to
initiate and maintain. A large part of this cost arises because hubs
require effort from many modeling teams, and existing inequities in
disease modeling mean that in some settings, multiple models may not
even be available. There is likely a balance between convening enough
models to gain the benefits of an ensemble while not wasting effort of
teams that could instead address other important questions. But how do
we find this balance?

Here, we provide perspective on this question by addressing multi-
model agreement (or, conversely, disagreement) in different contexts.
If there are contexts where we expect models are more likely to agree,
we may then be able to proceed with fewer models and reserve multi-
model ensembles for other contexts. Similarly, these may be the con-
texts we choose to support if only a few models are available. We
consider situations that focus on predictions of quantitative epidemio-
logical outcomes such as incident cases or peak timing; these are the
settings in which multi-model ensembles have been repeatedly shown to
be effective. We contrast these cases with settings where the primary
decision depends on the ranking of alternative possible future scenarios.
For example, a decision maker may compare outcomes under potential
intervention scenarios and choose to implement the strategy that best
achieves some objective. For these types of decision contexts, a few
multi-model infectious disease studies have found different models to be
largely consistent in scenario ranking, despite disagreement on the ex-
pected magnitude of the outbreak (Li et al., 2017; Prasad et al., 2023;
Probert et al., 2018; Shea et al., 2023). Similar findings have also
emerged in other ecological settings (Bauer et al., 2019). The generality
of this pattern could have important implications for the allocation of
modeling resources, especially in settings where modeling resources are
limited. Could it be that fewer models are needed to accurately rank the
severity of outcomes across multiple epidemic scenarios, including
possible interventions to control infectious disease outbreaks?

We start to approach this question from both theoretical and real-
world, empirical perspectives. First, we propose a simulation frame-
work that mimics a multi-model setting and allows us to consider the
potential factors that could drive various patterns of model agreement.
Using this framework, we span a large universe of possible models and
compare their predictions of epidemic size and corresponding ranks
across alternative intervention scenarios, to assess the probability of
model agreement in situations with varied degrees of biological uncer-
tainty (e.g., an emergent vs. recurring pathogen). This simple framework
can also be extended to address policies (i.e., suites of actions) rather
than single intervention decisions. Second, we explore agreement be-
tween models across 14 rounds of real-time scenario projections from
the U.S. COVID-19 Scenario Modeling Hub (SMH), a multi-model effort
to generate 3- to 12- month ahead projections of cases, hospitalizations,
and deaths throughout the evolving pandemic. SMH projections, which
included four epidemic scenarios per round, were used to inform de-
cisions about pandemic planning (Borchering et al., 2021; Truelove
et al., 2022) and control (Borchering et al., 2023; Rosenblum, 2022).
Across these rounds, an ensemble of SMH models demonstrated marked
improvement in projecting the magnitude of future public health out-
comes compared to the 4-9 component models (Howerton et al., 2023a).
For the same 14 rounds spanning a variety of pandemic phases, we
evaluate the agreement of individual models on scenario ranking. Taken
together, this work further motivates the importance of understanding
the benefits of multiple models in different decision contexts.

2. Methods

First, we propose a controlled epidemiological decision setting in
which to theoretically investigate multi-model agreement. We define
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specific ways that models can differ in their assumptions and control all
the other uncertainties so they do not complicate our results and inter-
pretation. The goal here is to enumerate a large set of plausible models
and assess the characteristics of agreement between models in this set.
We deliberately focus on a decision setting where models are asked to
rank three simple epidemic scenarios, to allow us to develop the
approach, but such an analysis could be replicated for many different
types of questions (e.g., see the case study in Howerton et al. (2023b)).
In the following sections, we describe this simple decision setting and
the proposed mathematical framework, discuss implementation of the
analysis, and explain two potential methods for estimating model
agreement. Second, we describe our application of these methods to
real-world, empirical COVID-19 Scenario Modeling Hub (SMH)
projections.

2.1. Hypothetical decision setting and mathematical framework

We consider the case where a decision maker is choosing between
two possible interventions to control a hypothetical outbreak: (1) non-
pharmaceutical interventions (NPIs), such as masking, or (2) vaccina-
tion, which immunizes individuals and prevents future infections. The
decision maker can implement one, but not both, interventions (owing,
say, to budget constraints or public tolerance for intervention). Multiple
modeling groups generate scenario projections of future disease out-
comes under each intervention and rank the scenarios accordingly to
provide recommendations about which intervention will be most
effective. Here, we set up a mathematical framework to mimic this
multi-model setting.

Most multi-model efforts rely on independent modeling groups to
make predictions (e.g., about future outcomes, intervention effective-
ness), and each of these models will represent disease transmission
processes differently because of uncertainties about pathogen biology,
human behavior, etc. These uncertainties could lead to different model
parameters (e.g., transmission rate), different model structure (e.g.,
including asymptomatic transmission), or different modeling ap-
proaches (e.g., agent-based vs. compartmental). In real-world multi-
model settings, all these factors are present to some degree. However,
this complicated set of differences can be hard to enumerate and un-
tangle in model results, so here we intentionally simplify the sources of
uncertainty driving differences between models. We assume the primary
source of uncertainty is about biological model parameters, and let the
structure and approach be consistent across models. Importantly, we
also let assumptions about the effectiveness of interventions be shared
across all models; in practice these assumptions would be based on
literature estimates or expert opinion and would be uncertain to some
degree. A similar approach, where well-defined alternative in-
terventions make up different modeling scenarios and biological un-
certainties are left to be handled by different models, has been used by
multi-model scenario projection efforts to evaluate the impact of new
interventions for a range of diseases (Borchering et al., 2023, 2021;
Flasche et al., 2016; Prasad et al., 2023). We also assume that models
generate projection point estimates rather than probabilistic distribu-
tions, although the same logic would apply to studying between-model
agreement in different quantiles.

We represent different “modeling teams” with different combina-
tions of parameters in a Susceptible-Infected-Recovered (SIR) model
(Keeling and Rohani, 2008). The SIR model assumes that all individuals
in the population can be classified as susceptible (S, can be infected),
infected (I, currently infected), or recovered (R, immune to future in-
fections). In the SIR model, susceptible individuals are infected through
contact with infected individuals at some transmission rate, . Infected
individuals recover at rate, y. We let all modeling teams assume the NPI
intervention reduces transmission by some amount, d, and vaccines are
distributed to susceptible individuals at some rate, v. The total popula-
tion size is assumed to be N. Then, the SIR model can be represented as a
system of ordinary differential equations:
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2.2. Implementation of multi-model mathematical framework

We assume NPIs will reduce the transmission rate by 30% (i.e., d =
0.3) and the attainable vaccination rate (of fully immunizing susceptible
individuals) is 0.01 (i.e., v = 0.01), approximating 1% of the susceptible
population per day (Bjgrnstad, 2018). In other words, the decision
maker asks teams to model and rank scenarios where (1) NPIs reduce
transmission by 30% or where (2) approximately 1% of the susceptible
population is vaccinated per day. We assume we have a perfectly
effective vaccine with sterilizing immunity. If either intervention is not
implemented, then the respective parameter (d or v) is set to zero. In-
terventions will be implemented for 50 days, which is sufficient time
under these parameters to deplete the susceptible population and for the
epidemic to fade out (Fig. S1). Then, we consider outcomes under each
potential intervention from modeling teams with a range of assumptions
about transmission and recovery rates in the absence of intervention.
Specifically, we test models with all combinations of  between 0.75 and
1.25 and y between 0.1 and 0.5, both in increments of 0.01. These ranges
were chosen to span a wide range of plausible disease characteristics and

basic reproduction numbers (here, Ry :’;’ values are between 1.5 and

12.5). These combinations yielded a total of 2091 possible models. Note,
y = 0.1 can be interpreted as an average recovery time of 10 days.

We assume the decision maker is interested in the intervention that
minimizes cumulative infections (defined as the number of new in-
fections that occur over the 50-day period). So, each model estimates the
number of cumulative infections for three scenarios in total: under each
of the two interventions, and a case without any intervention (i.e.,d = 0,
v = 0). Then, ranks are determined based on these projections, where
the best ranked scenario is the one with the lowest projected cumulative
infections. All models assume the outbreak occurs in a closed population
of 1000 individuals, where 995 individuals are susceptible and 5 are
infected at the start of the simulation. We implement each model
numerically using 1soda integrator from the deSolve package in R
version 4.2.0 (R Core Team, 2018; Soetaert et al., 2010).

We also assess the sensitivity of our results to the choice of objective
(Probert et al., 2016) and the assumed effectiveness of each interven-
tion. First, we perform a sensitivity analysis assuming the objective is to
minimize the peak number of infected individuals (defined as the
maximum number of individuals infected in a single day over the 50-day
period). Second, we assess how results are affected by different levels of
NPIs and vaccination (all combinations of d € {0.1,0.2,0.3,0.4} and
v € {0.005,0.01,0.015,0.02}). For these additional analyses on inter-
vention effectiveness, we use fewer models for computational efficiency
(i.e., a step size for # and y of 0.1).

2.3. Two potential methods to estimate model agreement

Quantifying and comparing agreement in rank and magnitude is not
a straightforward task, and we are not aware of any existing methods in
the modeling literature that do so. This difficulty arises in part because
definitions of “agreement” will vary based on the decision context. For
example, what degree of difference among projection magnitudes is
tolerable for the decision at hand? Here, we propose two potential
methods as a starting point for thinking about this problem. The first
method compares ranks and magnitudes for projections under a single
scenario, and the second attempts to quantify agreement of rank and
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magnitude both across and within scenarios. We outline each method
below.

2.3.1. Single scenario agreement: the “tolerance” method

The “tolerance” method focuses on model projections for a single
scenario and compares the number of models that agree about (1) the
ranking of that scenario projection (relative to the other scenarios)
versus (2) the magnitude of that scenario projection. Here, we suppose
models agree on scenario rank when their assigned rank matches
exactly. In other words, for a single scenario, we count the number of
models that have returned each rank, and we report the largest of these
values. For example, a set of 10 models may have 4 models that rank
intervention A as best, and 6 models that rank intervention A as second
best; we always take the largest number of agreeing models (so 6 in this
example).

For agreement on projection magnitude, we presume a decision
maker has some tolerance, 7, within which projections of varying
magnitudes are largely equivalent. So, for a given scenario projection p,
we define a window of width 7, and again count the number of model
projections that fall within this window. Practically, we calculate this by
defining two windows for each projection, p: [p,p +7] and [p —7,p].We
calculate the number of projections across the set that fall within these
windows, and again choose the window that contains the most pro-
jections. We test various window sizes, 7. In the supplement, we also
report results with a window size relative to the projection magnitude, i.
e., window size v = rp, for some relative change r, but other definitions
of “agreement” for rank and magnitude could also be used.

2.3.2. Agreement across scenarios: Inter-rater reliability method

The first method compares agreement of outbreak rank and magni-
tude in only a single epidemic scenario. However, our goal may also be
to assess the consistency of projections across multiple epidemic sce-
narios. This problem is similar to evaluating the reliability of different
measurements, and therefore we propose to use multiple statistics from
the inter-rater reliability literature (Field, 2005; Liljequist et al., 2019)
as a first attempt at quantifying rank and magnitude agreement across
scenarios.

First, Kendall’s Coefficient of Concordance, or Kendall’s W could be
used to measure rank agreement. This statistic compares the sum of
squared error (SSE) of the observed rank totals to the SSE of the expected
rank totals (Field, 2005). Kendall’s W is bounded between 0, denoting
no concordance in ranks, and 1, denoting perfect concordance in ranks.
In other words, larger Kendall’s W implies more agreement among
models on the rank of different epidemic scenarios.

To illustrate this calculation, consider the following example pre-
sented in Table 1, where we have 4 models that rank 4 scenarios (so the
mean of rank totals, X, is 10). First, we calculate SSE of the observed rank
totals, where

SSEGh:crvrd = Z:l:l(xi - -)?)2
= (8 = 10)> + (7 — 10)* + (15 — 10)* + (10 — 10)* = 38

Then, for m models and n scenarios, the Kendall’s W statistic is
calculated using the following formula (Field, 2005):

Table 1

Example of 4 scenarios ranked across 4 models. The “Rank Total” column is the
sum for a given scenario across model ranks, or x; (for scenario i). The mean of
rank totals, X, is 10.

Model 1 Model 2 Model 3 Model 4 Rank Total
Scenario A 2 1 2 3 8
Scenario B 1 2 3 1 7
Scenario C 4 3 4 4 15
Scenario D 3 4 1 2 10
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We also correct for the relatively rare case of ties between ranks, by

calculating a correction factor T; = " (£ —t;) for each model j that
includes k; distinct tied ranks across scenarios, each containing t; sce-

narios tied for that rank. Then, we calculate Kendall’s W statisticas W =
12+SSEobserved

e Finally, we can estimate the probability that the
observed agreement occurred by random chance using a p-value. To
estimate the p-value, we use a chi-square test with y> = m(n—1)W and
n—1 degrees of freedom. In this example, with four models and four
scenarios, the p-value is 0.127. For other settings with four scenarios, a
Kendall’s W value of 0.65 is required for a p-value of less than or equal to
0.05 if there are four models, 0.43 if there are six models, and 0.33 if
there are eight models.

Next, the intraclass correlation coefficient (ICC) could be used to
measure agreement across models in projection magnitude. This metric
compares the variance of projections between scenarios to the total
variance across projections from all models and scenarios (Liljequist
etal., 2019). There are multiple versions of the ICC calculation, and here
we use the “two-sided” model for measuring agreement. Following Lil-
jequist et al. (2019), this model assumes a projection, p; from model j in
scenario i can be decomposed into p; = y + r; + ¢; + v, where y is the
mean value across models and scenarios, r; is random variance across
scenarios, ¢; is random variance across models, and v; is additional error.
Then, the ICC calculation measures the proportion of variance explained
by differences between scenarios (as measured by 6,2), compared to the

total variance (¢, + oc? + 6,%), or ICC = %

To estimate this value from a set of projections, we use various mean
square relationships. Again let m be the number of models and n the
number of scenarios; X;; is a projection for scenario i from model j, X is
the mean of projections across all models and scenarios, s; is the mean of

projections in scenario i, and m; is the mean of projections from model j.
Then, the total sum of squares is SST = Y7, 7', (x; — X)?, the mean
squared errors between scenarios is MSBS = > (57 — %)?, the mean

squared errors between models is MSBM = j"il(ﬁj —%)2, and the

SST—(n—1)MSBS—(m—1)MSBM

mean squared error is MSE = D)

. Using these
quantities, we can estimate ICC as

7 MSBS — MSE
" MSBS + (k — 1)MSE + (£)(MSBM — MSE)’

n

Icc

See Liljequist et al. (2019) for derivations.

Overall ICC values are generally limited to the range of 0-1, where
higher values again imply higher agreement. When models agree about
the magnitude of projections within each scenario, we expect the vari-
ance between models to be low and thus the variance between scenarios
to compose the majority of the observed variance (i.e., ICC is close to
one, and thus high ICC implies that projections between models within a
single scenario are largely consistent). However, there can be cases
where both variance between models and variance between scenarios
are low (say, for example, because the scenarios themselves are not
inherently different); in these cases, ICC can be estimated to be low, or
even negative, even though variance between models is small. In the
rare cases where ICC was estimated to be negative, we set it to zero
following Bartko (1976).

Directly comparing these metrics assumes that they can be inter-
preted in similar ways (i.e., 0.5 has a similar meaning for both metrics),
but this may not be the case. So, we also propose the comparison of
Kendall’s W and ICC metrics to a “null” model (discussed in 2.5) to
understand the joint behavior of the two metrics under controlled as-
sumptions and to quantify the significance of results relative to this joint
behavior. We implement Kendall’s W and ICC calculations using func-
tions from the irr package (Gamer et al., 2019) in the R statistical
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software version 4.2.0 (R Core Team, 2018).
2.4. Application to projections from the theoretical multi-model setting

The theoretical simulation results span a large set of possible models,
and from this set, we can estimate the probability that any subset of
those models will agree using the methods defined in 2.3. However, with
2091 models from which to choose, it is not computationally feasible to
explicitly enumerate all possible combinations and calculate the prob-
ability of agreement exactly. So instead, we approximate this probability
by randomly drawing sets of models and calculating agreement for each
set. We then summarize how many within the drawn set agree on the
ranking of scenarios or the size of the uncontrolled outbreak (i.e., cu-
mulative infections without intervention). Our algorithm to randomly
select a set of models is based on our idea of how a multi-model set is
generated in practice.

Typically, teams build their models and calibrate parameters based
on available information, however limited that information may be. This
available information, then, will inform where models are more likely to
fall within the uncertainty space. Within our mathematical framework,
we introduce this idea using the concept of a “neighborhood”, or a
subset of the uncertainty space from which a set of models is drawn. The
center of the neighborhood is determined by available information and
the size of the neighborhood is driven by how strong that information is.
In our case, the uncertainty space is defined only by model parameters
for transmission and recovery rates.

Here, we do not explicitly define what information is available, but
instead randomly select neighborhoods of varying sizes and test how
likely models are to agree for neighborhoods of that size. To implement
this, we draw one model at random and find all models within neigh-
borhood size +# of that model’s parameters. Because transmission and
recovery rates are on relatively similar scales, we use the same 7 for both
model parameters (i.e., § + 7 and y & #). This defines our neighborhood.
Then, from the neighborhood, we draw m —1 additional models (the first
model drawn is included in the set of m models), and we calculate
agreement following our two proposed methods. We generate results for
10,000 sets of models from a neighborhood of size # = 0.1 for both
parameters, and we test alternative neighborhood sizes, n € {0.05,0.2}
for both parameters.

2.5. Application to U.S. COVID-19 Scenario Modeling Hub projections

To complement our simulation study, we use the two proposed
methods in an attempt to quantify patterns of agreement across a large-
scale multi-model projection collaboration used to guide policy during
the COVID-19 pandemic. Data from over two years of U.S. COVID-19
SMH projections (Howerton et al., 2023a, https://covid19scenariomo
delinghub.org/) provide instances of multi-model projections across
multiple future scenarios (covering both possible policy actions as well
as key uncertainties about drivers of disease dynamics), generated
across a range of pandemic contexts. Although each round is not entirely
independent (e.g., many rounds include projections from some of the
same models), SMH projections across multiple rounds provide a unique
opportunity to test multi-model agreement in a real-world setting.

Between February 2021 and November 2022, SMH produced 16
rounds of multi-model projections of incident and cumulative cases,
hospitalizations, and deaths. We focus our analysis on 14 rounds that
were released publicly (i.e., we exclude Rounds 8 and 10). In each
round, models made projections for four distinct scenarios, which
typically included two axes of uncertainty. Each axis focused on drivers
of disease dynamics that were uncertain at the time of scenario design
and projection, including implementation of potential control strategies
and uncertainties about pathogen biology or human behavior. Models
made projections on horizons of 12 weeks to 52 weeks, depending on the
goals of the round. SMH projections were generated for 52 locations in
total, including U.S. national projections and all U.S. states. For more
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details on the SMH process, see Loo et al. (2023).

Thirteen teams participated over the first 16 rounds, with each round
including projections from 4 to 9 models. SMH modelers have come
from a diversity of backgrounds, ranging from well-established epide-
miological modeling groups to groups from other fields. Some models
only made projections in some rounds, and others only made projections
for specific states. The approach of each model was different, including
mechanistic models and agent-based models across a variety of spatial
structures and fitting schemes (summary of each model provided in
(Howerton et al., 2023a)). Some submitted projections did not comply
with basic SMH standards, and we exclude those here (following the
inclusion criteria of (Howerton et al., 2023a)).

We analyze agreement for each set of SMH projections again using
the two methods we have proposed. A single set of projections are made
for one location (e.g., U.S. national projections or projections for a single
state), target (e.g., cumulative hospitalizations), horizon (e.g., 26 weeks
into the future), and SMH round. For the tolerance method, we redefined
projections relative to the population size of a given location (i.e., cu-
mulative hospitalizations per 100,000 population) so that an absolute
window size would be comparable across locations. We provide results
for a relative window size in the supplement.

Then, to better understand the possible joint behavior of Kendall’s W
and ICC values for different sets of SMH projections, we generate 1000
“null” projection sets for each round-target-location assuming no
agreement between models and accounting for inherent variation be-
tween scenarios observed in the SMH projections. To do so, for a given
round-target-location, we calculate the range of median projections
across models for each scenario (i.e., alower bound of all projections for
scenario i across models j, l; = ; E?inme, and a corresponding upper

bound y; = max x;). Then, null projection sets are drawn uniformly
j=1,..m

from these ranges, n; ~ U(l;,u;), where the same number of projections
are drawn from each scenario as models that made SMH projections.
These null projections retain the differences between scenarios observed
in SMH projections (which can influence measures of agreement as
discussed in 2.3.2). Importantly, the null projections also sample each
scenario independently, explicitly excluding potential consistencies
within a model (for instance, a model that would systematically project
low outcomes in all scenarios, compared to all other models). Note that
these consistencies may or may not exist in SMH projections. We then
use these null projection sets to calculate the relative change in ranking
and magnitude agreement. We estimate Kendall’s W and ICC relative to
the mean value of Kendall’s W and ICC and the percent of null projection
sets that had higher Kendall’s W and ICC.

In the main text, we focus our analysis on agreement of median cu-
mulative projections of incident hospitalizations over the maximum
projection horizon for each round, in order to maximize the differences
between scenarios. This avoids instances where agreement is spuriously
low because scenario projections are not sufficiently different. For
example, Round 11 and 12 scenarios focused one uncertainty axis on the
severity of the emerging Omicron variant. Because severity scenarios
focused on risk of hospitalization and death, we do not expect agreement
about ranking of scenarios for cumulative cases to be meaningful. We
provide additional results for alternative quantiles (Q25, Q75) and ho-
rizons (4, 8, 12, 16, 20, 26 weeks) in the supplement. For more infor-
mation on SMH scenario projections and participating models, see other
papers in this special issue or visit https://covidl9scenariomodelingh
ub.org/.

3. Results
3.1. Simulation study

Our simulation study illustrates how models with different parame-
ters predict different epidemic trajectories and can offer different
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rankings of alternative epidemic scenarios, which here corresponds to
divergent intervention recommendations (Fig. 1). For example, one
model (that assumes a transmission rate of 1 and a recovery rate of 0.2 in
the absence of interventions, model 1 in Fig. 1A) estimates 961 cumu-
lative infections with NPIs and 919 cumulative infections with vacci-
nation, therefore recommending vaccination to minimize infections. A
second model assumes a transmission rate of 1.15 and a recovery rate of
0.4 (model 2 in Fig. 1A) in the absence of interventions; this model es-
timates 797 and 847 cumulative infections under NPIs or vaccination,
therefore recommending NPIs.

Whether a model ranks NPIs or vaccination scenarios as best to
minimize infections depends on both transmission and recovery rates
(Fig. 1B), with assumptions about recovery rate being the more mean-
ingful driver. Models that assume recovery is fast (i.e., high recovery
rates) rank NPI scenarios as best, and models that assume recovery is
slow (i.e., low recovery rates) rank vaccination scenarios as best. Across
all combinations of transmission and recovery rates, predictions of cu-
mulative infections without intervention vary dramatically (Fig. 1C). As
expected, models predict the outbreak will be small when Ry is low (583
cumulative infections in the smallest predicted outbreak), whereas
models with large R predict nearly all individuals in the population will
be infected.

Despite the substantial heterogeneity in predicted outbreak magni-
tude, ranking of intervention scenarios are largely consistent (i.e.,
models with small Ry recommend NPIs, and models with large Ry
recommend vaccination). However, there is a subset of models that
make similar biological assumptions but rank intervention scenarios
differently (45% of pairs of models with Ry between 3 and 4 will have
differing intervention scenarios ranked as best). In these instances, the
models predict similar cumulative infection outcomes under the two
possible interventions. The largest difference in cumulative infections is
44 (or 4.4% of the population) for models with Ry between 3 and 4,
compared to 250 (or 25% of the population) which is the largest dif-
ference overall.

Within our simulation framework, a randomly drawn set of models is
more likely to agree on the ranking of intervention scenarios than
generate highly similar estimates of cumulative infections (Fig. 2). The
probability that 4 of 6 randomly selected models agree on ranking of
intervention scenarios is 68%, whereas the probability that they agree
on estimates of cumulative infections within small bounds is less likely
(18% probability of agreement within 20 infections, which is 2% of the
population and 5% of the range of possible cumulative infection out-
comes; 50% agreement within 50 infections, which is 5% of the popu-
lation and 12% of the range of possible cumulative infection outcomes).
However, for all numbers of models in the set, the probability at least
66% of those models agree on infection estimates within 100 infections
is similar to or greater than the probability of agreeing on intervention
scenario ranking. A window of one hundred infections covers almost
40% of the range of possible cumulative infection outcomes. In all cases,
probability of agreement is higher when models make similar
assumptions.

These patterns are also demonstrated by ICC and Kendall’'s W sta-
tistics (Fig. 3). Model agreement on intervention rank is high and sig-
nificant for all sets of models. Kendall’s W is always above 0.7 and is 0.8
on average across model set size (IQR: 0.75-0.81) for randomly selected
models and is 0.93 on average (IQR: 0.85-1.0) for similar models. In
contrast, agreement in magnitude is more variable (average ICC of 0.24
(IQR: 0.13-0.28) across randomly selected model sets of all sizes, and
0.68 (IQR: 0.54-0.82) across similar models). Presumably the high
agreement on ranking of intervention scenarios is due in part to the
inclusion of the “no intervention” scenario, which is the worst of the
three intervention scenarios in every model. When we assessed ranking
of the two intervention scenarios (without the counterfactual, “no
intervention” scenario), Kendall’s W dropped to an average of 0.19
(IQR: 0.12-0.25) for randomly selected models and 0.75 (IQR:
0.40-1.00) for similar models (Fig. S7).
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Fig. 1. Model projections of a generic infectious disease outbreak under two potential interventions. (A) Two models that differ in recommended intervention. Model
1 (top) assumes transmission rate is 1 and recovery rate is 0.2 (i.e., average time to recovery is 5 days) in the absence of interventions. Model 2 (bottom) assumes
transmission rate is 1.15 and recovery rate is 0.4 (i.e., average time to recovery is 2.5 days) in the absence of interventions. Both models predict the cumulative
number of infections over a period of 50 days under three intervention scenarios: no intervention (solid), non-pharmaceutical interventions (NPIs) that reduce
transmission by 30% (dashed), and vaccination of approximately 1% of the susceptible population per day (dotted). In Model 1, vaccination is recommended as it
minimizes infections, whereas NPIs minimize infections and are recommended by Model 2. (B) Spanning the space of possible models across biological uncertainties
(transmission rate, §, and recovery rate, y, in the absence of interventions), each position on the graph represents an individual model, with the color of the tile
representing the recommended intervention (orange: non-pharmaceutical interventions, NPIs; purple: vaccination), and the intensity of the color recommending the
magnitude of the projected difference in cumulative infections. The gray line shows where the difference in cumulative infections is 0, or where neither intervention
is recommended over the other. Black contours show sample values of individual model Ry = 2, 3.5, 6, and 10. (C) Projected magnitude of outbreak without
intervention, by model Ry. Each point represents projections from a different model, and the color of each point represents the intervention that model recommends
(orange: non-pharmaceutical interventions, NPIs; purple: vaccination). (D) Zoom in on results for individual models with Ry between 3 and 4. (E) Percent (%) of
models with Ry between 3 and 4 that recommend NPIs (orange) or vaccination (purple).

The agreement between models depends on the intervention sce-
narios that are being compared, especially with respect to differences in
effectiveness and coverage of interventions (Fig. S2). In some instances,
the same intervention scenario is ranked as best by all models. For
example, if NPIs will only reduce transmission by 10%, vaccination of at
least 0.5% of the population per day is universally best to minimize
cumulative infections. The agreement between models also depends on
the objective of interest (i.e., the outcome we are minimizing). Of the
NPI efficacies and vaccination rates we considered, there were no in-
stances where NPIs were universally best in all models. However, for
minimizing peak infections, NPIs were ranked best by almost all models
(except when NPI efficacy was low and the vaccination rate was high)
(Fig. S3).

3.2. Empirical study based on SMH scenario projections for COVID-19

We analyzed 14 rounds of SMH projections (the 2 non-public rounds
were excluded), which included 4 scenarios in each round from 4 to 9
independent modeling teams. The scenarios modeled by SMH and the
number of teams participating varied across rounds. For example, the
earliest SMH rounds (Round 1 — Round 4) focused on the early rollout of
vaccination and NPIs, whereas the later rounds (Round 13 — Round 16),
generated more than two years later, addressed booster vaccination and
continuing SARS-CoV-2 evolution. We assessed the agreement across
models on scenario rank and projection magnitude for 52 locations per
round, totaling 728 sets of projections overall.

Visually inspecting the SMH projections reveals a spectrum of
possible outcomes across this large set. For example, there were some
SMH projections where models appear to largely agree about the rank of
interventions but are less consistent in the projected magnitude for at
least some scenarios (such as the projection shown in Fig. 4A). Other

instances with largely consistent ranking across models have projection
magnitude more clearly aligned within scenarios (example in Fig. 4B).
There are also instances where rank across models is less consistent, both
when projected magnitude across models is relatively similar (example
in Fig. 4C) or variable (example in Fig. 4D). Here, we provide a few
illustrative examples from a single SMH round, but these patterns also
vary across all SMH rounds and locations (Figs. S8-S21).

For most SMH projections, more than 50% of models agree about the
ranking of scenarios (707/728 total sets of projections, or 97%, for
Scenario A; 659/728, 91% for Scenario B; 676,/728, 93% for Scenario C;
and 708/728, 97% for Scenario D). Yet, it is less common for 75% of
models to agree about scenario rank, especially in Scenarios B and C
(513/723, 70% for Scenario A; 272/728, 37% for Scenario B, 243/728,
33% for Scenario C, and 508/728, 70% for Scenario D). The higher rank
agreement in Scenarios A and D likely reflects the “optimistic” and
“pessimistic” definitions that were typical of these scenarios in most
SMH rounds; Scenarios B and C were typically defined as intermediate to
Scenarios A and D. Similar or greater levels of agreement for projection
magnitude can be obtained with sufficiently large windows to define
“agreement” (Fig. 5). For example, in Scenario B, the number of models
agreeing on projection magnitude (i.e., falling within a window of a
particular size) is greater than or equal to the number of models agreeing
on projection rank in 379/728 (52%) sets of projections when the
window size is 200 cumulative hospitalizations, 581,/728 (80%) when
the window size is 500 cumulative hospitalizations, and 710,/728 (98%)
when the window size is 1000 cumulative hospitalizations. Similar
tradeoffs can be found for the other three SMH scenarios (Fig. S22) and
can be examined relative to the projection rather than using an absolute
window size (Fig. S23).

We can also attempt to summarize agreement across all scenarios
simultaneously. A substantial part of this analysis involves
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Fig. 3. Agreement between models in theoretical framework. For a varying number of models in a set, agreement is measured for projection magnitude across
intervention scenarios (using intraclass correlation coefficient, ICC) and ranking of intervention scenarios (using Kendall’s W). Results are shown when models in the
set come from all possible models considered (red), and when models are similar (blue). Each point represents one set of randomly selected models from either all
possible models considered (red) or a neighborhood of “similar” models (blue, those with transmission and recovery rate assumptions within +0.1 of a given model).
Ellipses show the area within which 95% of points fall. Dotted horizontal lines show agreement that is significant with a p-value of 0.05. See Fig. S7 for results with
only vaccination and NPI scenarios included.

understanding how projection variance is partitioned across models and across rounds), whereas mean squared error between scenarios
scenarios. Results show that differences between models drove the composed 23% on average (4%-53% range across rounds) (Fig. 6C). This
variance of SMH projections. The mean squared error between models could be a result of comparatively low model agreement about the
composed 72% of the total sum of squares on average (35%-95% range magnitude of projections (if agreement about projection magnitude was
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Fig. 4. Four examples of U.S. COVID-19 Scenario Modeling Hub multi-model projections. Panels (A)-(D) show examples of SMH projections from four different
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high, variance would be driven primarily by differences between sce-
narios) or minimal inherent differences between the scenarios. We can
use the null projections to help interpret these findings and distinguish
between the two hypotheses, since the null projections control for (low)
variation between scenarios. We find that SMH projections had low ICC
values compared to the null projections, indicating low model agree-
ment about magnitude. ICC values for SMH projections were on average
71% lower than the average of null simulations in the same location and
for the same round (range across rounds: 35%-92%) (Fig. 7A). In 234
locations (out of 728, 32%), ICC was lower than 90% of simulations
(Fig. 7B).

In the null projections, ICC values were highly correlated with
Kendall’s W values (> > 0.8 in 431/728 locations, 59%; example in
Fig. 6B, all results in Figs. S21-S34). In other words, null projections that
have low ICC (i.e., agreement of scenario magnitude, which is largely
observed for SMH projections) are also expected have low Kendall’s W
(i.e., agreement on scenario ranking). However, observed SMH pro-
jections have high Kendall’s W values compared to the null (Fig. 7A).
Averaged across rounds, Kendall’s W for SMH projections was 1.25
times higher than the average null projections (range across rounds:
1.22-4.3) (Fig. 7A). In 562 locations (77%), Kendall’s W for SMH pro-
jections was higher than 90% of null projections (Fig. 7B). This suggests
that that SMH models agree more frequently about ranking than would
be expected based on the variability we see between the projections
from these models.

Agreement of SMH projections also varied by round. With the
exception of Round 1, agreement relative to the null projections was
high in early SMH rounds. In Rounds 2-6, 86% of locations (269/312)
had Kendall’s W greater than 90% of null projections and 23% of lo-
cations (73/312) had ICC lower than 90% of null projections (Fig. 5B).
These early scenarios focused on uncertainties around early vaccine
supply and uptake, NPI adherence, and the emergence of the Alpha and
Delta variants. The scenarios modeled likely had an a priori expectation
of ranking (e.g., optimistic vaccination scenarios are expected to be
better than pessimistic vaccination scenarios with an efficacious vaccine
in a largely susceptible population). Later SMH rounds (Rounds 13-16)
addressed the emergence of immune escape variants and booster

vaccination, scenarios in which the a priori ordering is less clear (e.g.,
due to complex interactions with the rate of immune waning). These
rounds demonstrated comparatively low levels of agreement relative to
the null; 76% of locations (159/208) had Kendall’s W greater than 90%
of null projections and 27% of locations (58/208) had ICC lower than
90% of null projections (Fig. 5B).

4. Discussion

Leveraging predictions from multiple models via an ensemble is
more robust than relying on a single model, especially when uncertainty
is high (Clemen, 1989; Howerton et al., 2023b; Timmermann, 2006).
Yet, multi-model efforts require substantial resources, and we lack clear
theoretical or empirical guidance on the sufficient number of models
needed to address a particular intervention or planning decision.
Moreover, a multitude of models is not always available. Here, we have
proposed the idea that the incremental value of adding a model to a
multi-model set depends on the decision context. In particular, we
considered decisions that depend on ranking a discrete set of
well-defined epidemic scenarios (e.g., choosing between alternative
interventions based on some objective). For our theoretical simulations
and empirical results across 14 rounds of COVID-19 Scenario Modeling
Hub projections, agreement between models on scenario ranking was
relatively common. Similar levels of agreement could be obtained for
projection magnitudes with sufficiently large tolerance windows;
whether such windows are appropriate will depend on the decision
context. Better understanding these tradeoffs, and how general such
tradeoffs are, could have important implications for understanding the
decision contexts in which using fewer models may be tolerable.

Within the simulation framework, one key mechanism driving
agreement was the similarity of model assumptions. In practice, we
expect the similarity of model assumptions to be governed in part by the
quality of our existing information and the independence of the models.
For example, Ry for an endemic pathogen will be much more certain
than for an emerging pathogen. However, the set of models will not
necessarily capture all uncertainties (e.g., unknown unknowns will not
be accounted for), and model independence may be difficult to obtain in
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Fig. 5. Agreement of U.S. COVID-19 Scenario Modeling Hub projections assessed using the “tolerance” method. For each round of COVID-19 projections, we
calculated the percent of all models that agreed on scenario ranking and on projection magnitude, where projection magnitude agreement was defined as the number
of projections falling within a window of n hospitalizations per 100,000 population. For a given round (panel), the height of each bar shows the number of locations
that fall within a given bin of percent of models agreeing. Here, we show results for Scenario B, as Scenario B has lower overall levels of rank agreement; see Fig. S22
for results across all scenarios and Fig. 523 for results when the tolerance window is defined relative to the projected magnitude (tolerance windows under a relative
definition are shown in Fig. S24). Note, the number of contributing models varies across rounds (R1: 4, R2: 5, R3: 4, R4: 6, R5: 7, R6: 8, R7: 8, R9: 8, R11: 6, R12: 6,
R13: 8, R14: 8, R15: 6, R16: 6 models). This list reports the number of models that is most frequent across all locations in a given round, although occasionally the
number of contributing models for a particular location would vary slightly (e.g., some models only submitted for a subset of locations).

practice (Knutti et al., 2013; Pennell and Reichler, 2011). Further,
agreement between models was higher when the effectiveness of the
interventions considered was greater. In other words, the expected
agreement will depend not only on the similarity of the underlying
model assumptions and approach but also on the scenarios modeled.
This provides one hypothesis for the relatively high rank agreement
observed for SMH projections: there was some inherent expectation
about the ranking of SMH scenarios which was shared across models (e.

g., a counterfactual scenario should be worst). There are many possible
goals in scenario design (Runge et al., 2023), and future work could
consider whether agreement is more or less likely for different kinds of
designs. Model agreement on scenario ranking also depended strongly
on the objective of interest (i.e., recommendations were largely consis-
tent for minimizing peak cases, but different from recommendations
targeted at minimizing final epidemic size), emphasizing the importance
of having a clearly defined objective (Probert et al., 2016).
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Fig. 6. U.S. COVID-19 Scenario Modeling Hub (SMH) projections. (A) Example of SMH multi-model projections for four scenarios (scenarios A-D) from Round 11
released on December 25, 2022 at the outset of the Omicron variant wave. Median projections from 6 models (models a-f) of cumulative hospitalizations in
Pennsylvania (after 12 weeks (on March 12, 2023). Color of each point represents how each model ranked that scenario (e.g., model a ranked scenario A best, and
scenario D worst). Scenarios in this round varied low and high levels of immune escape and transmissibility of Omicron. This example is also shown in Fig. 4B. (B)
Results from null model for the round, location, and target presented in (A). The agreement of projection magnitude (as measured by intraclass correlation coef-
ficient, ICC) and agreement of scenario rank (as measured by Kendall’s W) for each of the 1000 null simulations shown as black points. The observed ICC and
Kendall’s W for the SMH projections (shown in (A)) is shown with a red point. The densities above either axis show the distribution of ICC and Kendall’'s W for the
null model, and the red filled regions represent those null simulations with higher values than the SMH projections. (C) Components of variance for SMH projections
of incident hospitalizations across all locations and rounds (mean squares between scenarios in light gray, mean squares between models in gray), and mean squared
error in dark gray; see Methods for formulas). Each panel shows results for a single SMH round, and the header for that panel also include the axes of uncertainty
addressed by the scenarios (e.g., Round 1 scenarios varied levels of vaccine supply in early rollout phases and levels of NPIs in the community), as well as the
projection start date (Round 1 projections began on Jan 9, 2021) and the projection horizon (Round 1 projections were made 26 weeks into the future). Each bar
within a panel represents one location. For more discussion of scenario specifications in each SMH round, see Runge et al. (2023) and Howerton et al. (2023a). For all
SMH projections, see Figs. S8-S21 and for all null model results, see Figs. $25-S38.

In our simulation framework, there was a subset of similar models decisions, there are usually fewer possibilities (in other words, the size
that were more likely to disagree about the ranking of intervention of the intervention space is smaller than the size of the uncertainty
scenarios (models with Ry between 3 and 4 in this example, but this space), and therefore ranking agreement will be more likely probabi-
range is likely context-specific). In these instances, the estimated dif- listically. As the number of intervention scenarios increases, the prob-
ferences in outcomes between scenarios (e.g., the benefits of a particular ability of agreement by chance will decrease. Further, infectious disease
intervention) were small, suggesting one scenario was not meaningfully control decisions are often multifaceted and complex (interventions
better than the other. Alternative considerations not explicitly modeled, depend on both effectiveness and uptake; none of which can be fully
for example about economic, social, or political costs of an intervention known when projections are made). The principles presented in this
may also affect decisions, especially when projected epidemic outcomes paper can be extended beyond comparisons of a few epidemic scenarios,
are similar. Relative effect size (Prasad et al., 2023), the uncertainty to comparisons of a multitude of control policies representing suites of
associated with such estimates, and the relative cost of implementation actions.

(e.g., Castonguay et al., 2023) are important alternative considerations The methods and results presented here are subject to a number of
and could be explored further within our framework. limitations and represent only an initial step toward understanding how

Underlying our results, at least in part, is the premise that ranking is the value of predictions from multiple models could vary across different
an easier task than quantifying continuous outcomes. For most practical decision contexts or prediction targets. Our simulation framework
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Fig. 7. Agreement between models on ranking of scenarios and projection magnitude from U.S. COVID-19 Scenario Modeling Hub (SMH). (A) Relative agreement
between SMH projections and mean of null model projections for agreement about projection magnitude (as measured by intraclass correlation coefficient, ICC) and
agreement about scenario ranking (as measured by Kendall’s W). Each panel shows results for a single SMH round, and the header for that panel also includes the
axes of uncertainty addressed by the scenarios, as well as the projection start date and the projection horizon. Each point represents a single location. Relative
agreement between projection magnitude is calculated as log(ICCgmu/ICChun) and relative agreement between scenario ranks is calculated as 1og(KWsyu/KWnun)
where ICC,,; and KW, are mean values across all 1000 null simulations for that location. Interpretation is shown in the bottom right panel; negative relative
agreement implies the value observed for SMH projections were smaller than the mean value for the null model. (B) Percent of null simulations that have ICC and
Kendall’s W greater than the observed SMH value. Each bar plot shows the number of locations falling into each discrete class of percentages (<5%, 5%-10%, 10%-
25%, 25%-75%, 75%-90%, 90%-95%, and >95%, where the highest value in the range is not included, i.e., 5% exactly would be included in the 5%-10% range). For

SMH agreement for other quantiles, horizons, and targets see Figs. S39-542.

deliberately controlled for many aspects that may be important in real-
world multi-model settings. We used highly simplistic disease models
and assumed the models only differed in their assumed biological pa-
rameters. In practice, many other modeling decisions (e.g., about model
structure, initial conditions) will vary and data sources used as part of
model calibration or model fitting may vary across approaches, as seen
in our empirical (SMH-based) analyses. We also did not include opera-
tional uncertainty (e.g., about intervention effectiveness) in the models,
which may affect intervention rank more strongly than biological un-
certainty. Future work could build operational uncertainties into this
framework (Li et al., 2019), and investigate how model agreement is
affected by interactions between operational uncertainty and biological
uncertainty. Given the potential importance of these interactions, our
conclusions should be validated under such complexities before being
generalized. Second, our simulation framework considered a simple
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decision at one point in time. However, outbreak response and infectious
disease management is a complex, ongoing task, with changing bio-
logical context (e.g., changes in human behavior, pathogen evolution)
and acquisition of new information. Questions about how model
agreement changes across time, and as more information is acquired,
could inform better strategies for passive and active learning within and
across outbreaks (Atkins et al., 2020; Shea et al., 2014). Building upon
our simulation framework and exploring the implications of these
real-world complexities could extend the generality of our conclusions.

Additionally, our ICC analysis comes with significant assumptions
and limitations, which should be reconsidered with future methodo-
logical developments. Kendall’s W and ICC are conceptually distinct
statistical metrics, with differing definitions of “agreement”. This makes
the interpretation of their comparison difficult. We have attempted to
overcome this limitation by quantifying their joint behavior via null
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projections; however, this approach still requires that we assume
changes in each metric relative to the null can be interpreted in similar
ways. In addition, ICC may not be the best metric for quantifying
magnitude agreement; ICC depends in part on projection rank, it is not
well suited for sets of projections with small differences between sce-
narios, and it may not clearly correlate with meaningful levels of
agreement in epidemiological decision contexts. More generally, the
definitions we have created here for “ranking agreement” and “magni-
tude agreement” may be somewhat artificial, and in fact the decision
context should ultimately determine what is most important to predict
and what constitutes “agreement” for these predictions. Other analytical
approaches will be required to soundly compare agreement of rank and
magnitude across multiple scenarios. By building off SMH, other multi-
model efforts (e.g., Li et al., 2017; Prasad et al., 2023; Shea et al., 2023),
and the multitude of existing studies that consider different intervention
scenarios across uncertainties, we can further test our hypotheses, un-
derstand model agreement, and make informed decisions about when
we need multiple models for predicting and controlling infectious dis-
ease outbreaks. These conclusions may translate into other fields that
use multiple models to inform decisions, such as climate science or
ecology.

This work provides a first step in helping us better balance the
tradeoffs between the resources required to obtain predictions from
multiple models, the risks of under-expressing uncertainty, and the po-
tential consequences of being wrong. When predicting quantitative
future outcomes, discordant results from multiple models may be
problematic for decision makers if interpreted arbitrarily. However,
when combined into a multi-model ensemble, this diversity of opinions
becomes a key asset and allows the ensemble to provide more accurate
and reliable information about the future. The same is true for ranking
alternative epidemic scenarios; whenever possible, opinions from mul-
tiple models should be solicited. Agreement from multiple independent
sources builds confidence in the conclusions. However, as seen in our
results, multi-model agreement on scenario ranking is by no means
guaranteed. In cases where models disagree about scenario ranking, a
decision maker could use vote processing methods to combine rankings
from each model into a consensus, much like an ensemble combines
quantitative predictions (Probert et al., 2022). There are also many
settings where projections from multiple models are not available, due
for example to inequities in disease modeling resources (Heesterbeek
et al., 2015). In these instances, decision makers may choose to focus on
qualitative model results or the ranking of model projections, rather
than quantitative outcomes.

5. Conclusions

Understanding what mathematical models can effectively predict is
essential to using modeling resources wisely, including during public
health crises like an infectious disease outbreak or in low-resource set-
tings where modeling teams are scarce. Multi-model ensembles are
known to be an important tool to generate accurate and robust pre-
dictions of future outcomes, overcoming inconsistency and disagree-
ment in predictions from individual models. Much of the work on multi-
model ensembles has focused on predictions of quantitative outcomes
(e.g., incident deaths), but quantitative outcomes are not the only type
of information a decision maker may glean from model predictions.
Here, we considered decision contexts that depend on the ranking of
alternative epidemic scenarios. In both a simple simulation context and
an empirical setting that includes 14 rounds of real-world COVID-19
projections, our results suggest that multi-model agreement may depend
on the decision context, and it may thus be possible to identify decision
contexts where predictions from only a few models, or possibly even a
single model, may suffice. When few models are available, these are the
kinds of decisions we can robustly support. Further exploring the con-
ditions under which models disagree will be important to understand
when to initiate resource-intensive, multi-model predictions, and in
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what circumstances we can use models to support decision making, if
only a single or a few models are available.
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