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A B S T R A C T   

Mathematical models are useful for public health planning and response to infectious disease threats. However, 
different models can provide differing results, which can hamper decision making if not synthesized appropri
ately. To address this challenge, multi-model hubs convene independent modeling groups to generate ensembles, 
known to provide more accurate predictions of future outcomes. Yet, these hubs are resource intensive, and how 
many models are sufficient in a hub is not known. Here, we compare the benefit of predictions from multiple 
models in different contexts: (1) decision settings that depend on predictions of quantitative outcomes (e.g., 
hospital capacity planning), where assessments of the benefits of multi-model ensembles have largely focused; 
and (2) decisions settings that require the ranking of alternative epidemic scenarios (e.g., comparing outcomes 
under multiple possible interventions and biological uncertainties). We develop a mathematical framework to 
mimic a multi-model prediction setting, and use this framework to quantify how frequently predictions from 
different models agree. We further explore multi-model agreement using real-world, empirical data from 14 
rounds of U.S. COVID-19 Scenario Modeling Hub projections. Our results suggest that the value of multiple 
models could be different in different decision contexts, and if only a few models are available, focusing on the 
rank of alternative epidemic scenarios could be more robust than focusing on quantitative outcomes. Although 
additional exploration of the sufficient number of models for different contexts is still needed, our results indicate 
that it may be possible to identify decision contexts where it is robust to rely on fewer models, a finding that can 
inform the use of modeling resources during future public health crises.   

1. Introduction 

Policy makers are increasingly leveraging mathematical models to 
support public health planning and outbreak response (Biggerstaff et al., 
2022; Egger et al., 2018). Models can be used to estimate key biological 
parameters, predict what will happen in the future, or anticipate the 
effectiveness of potential intervention strategies (Biggerstaff et al., 2022; 
Metcalf et al., 2020). However, during an infectious disease outbreak, 
there are many unknowns (e.g., about pathogen biology or human 
behavior), and these unknowns can hamper decision making and public 
health response. For example, uncertainties can lead to differing models 
that offer conflicting results and contradictory policy recommendations 

(den Boon et al., 2019; Reich et al., 2022). 
In the face of uncertainty, approaches that leverage multiple models 

can be used to better support decision making (den Boon et al., 2019; 
Reich et al., 2022; Shea et al., 2020). In particular, aggregating results 
from multiple models into an ensemble has been shown to provide more 
robust and reliable estimates of future outcomes across a range of set
tings (Clemen, 1989; Timmermann, 2006), including for infectious 
diseases such as Dengue fever (Johansson et al., 2019), Ebola (Viboud 
et al., 2018), influenza (Reich et al., 2019), and SARS-CoV-2 (Cramer 
et al., 2022; Howerton et al., 2023a). Ensembles are most useful when 
independent model predictions provide different insights about what 
could happen in the future, and therefore collectively represent 
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uncertainty and estimate future outcomes better than a single model 
alone (Pennell and Reichler, 2011). 

Multi-model hubs that leverage the power of ensembles are 
becoming increasingly common to support the management of infec
tious diseases (Reich et al., 2022), yet these efforts can be costly to 
initiate and maintain. A large part of this cost arises because hubs 
require effort from many modeling teams, and existing inequities in 
disease modeling mean that in some settings, multiple models may not 
even be available. There is likely a balance between convening enough 
models to gain the benefits of an ensemble while not wasting effort of 
teams that could instead address other important questions. But how do 
we find this balance? 

Here, we provide perspective on this question by addressing multi- 
model agreement (or, conversely, disagreement) in different contexts. 
If there are contexts where we expect models are more likely to agree, 
we may then be able to proceed with fewer models and reserve multi- 
model ensembles for other contexts. Similarly, these may be the con
texts we choose to support if only a few models are available. We 
consider situations that focus on predictions of quantitative epidemio
logical outcomes such as incident cases or peak timing; these are the 
settings in which multi-model ensembles have been repeatedly shown to 
be effective. We contrast these cases with settings where the primary 
decision depends on the ranking of alternative possible future scenarios. 
For example, a decision maker may compare outcomes under potential 
intervention scenarios and choose to implement the strategy that best 
achieves some objective. For these types of decision contexts, a few 
multi-model infectious disease studies have found different models to be 
largely consistent in scenario ranking, despite disagreement on the ex
pected magnitude of the outbreak (Li et al., 2017; Prasad et al., 2023; 
Probert et al., 2018; Shea et al., 2023). Similar findings have also 
emerged in other ecological settings (Bauer et al., 2019). The generality 
of this pattern could have important implications for the allocation of 
modeling resources, especially in settings where modeling resources are 
limited. Could it be that fewer models are needed to accurately rank the 
severity of outcomes across multiple epidemic scenarios, including 
possible interventions to control infectious disease outbreaks? 

We start to approach this question from both theoretical and real- 
world, empirical perspectives. First, we propose a simulation frame
work that mimics a multi-model setting and allows us to consider the 
potential factors that could drive various patterns of model agreement. 
Using this framework, we span a large universe of possible models and 
compare their predictions of epidemic size and corresponding ranks 
across alternative intervention scenarios, to assess the probability of 
model agreement in situations with varied degrees of biological uncer
tainty (e.g., an emergent vs. recurring pathogen). This simple framework 
can also be extended to address policies (i.e., suites of actions) rather 
than single intervention decisions. Second, we explore agreement be
tween models across 14 rounds of real-time scenario projections from 
the U.S. COVID-19 Scenario Modeling Hub (SMH), a multi-model effort 
to generate 3- to 12- month ahead projections of cases, hospitalizations, 
and deaths throughout the evolving pandemic. SMH projections, which 
included four epidemic scenarios per round, were used to inform de
cisions about pandemic planning (Borchering et al., 2021; Truelove 
et al., 2022) and control (Borchering et al., 2023; Rosenblum, 2022). 
Across these rounds, an ensemble of SMH models demonstrated marked 
improvement in projecting the magnitude of future public health out
comes compared to the 4–9 component models (Howerton et al., 2023a). 
For the same 14 rounds spanning a variety of pandemic phases, we 
evaluate the agreement of individual models on scenario ranking. Taken 
together, this work further motivates the importance of understanding 
the benefits of multiple models in different decision contexts. 

2. Methods 

First, we propose a controlled epidemiological decision setting in 
which to theoretically investigate multi-model agreement. We define 

specific ways that models can differ in their assumptions and control all 
the other uncertainties so they do not complicate our results and inter
pretation. The goal here is to enumerate a large set of plausible models 
and assess the characteristics of agreement between models in this set. 
We deliberately focus on a decision setting where models are asked to 
rank three simple epidemic scenarios, to allow us to develop the 
approach, but such an analysis could be replicated for many different 
types of questions (e.g., see the case study in Howerton et al. (2023b)). 
In the following sections, we describe this simple decision setting and 
the proposed mathematical framework, discuss implementation of the 
analysis, and explain two potential methods for estimating model 
agreement. Second, we describe our application of these methods to 
real-world, empirical COVID-19 Scenario Modeling Hub (SMH) 
projections. 

2.1. Hypothetical decision setting and mathematical framework 

We consider the case where a decision maker is choosing between 
two possible interventions to control a hypothetical outbreak: (1) non- 
pharmaceutical interventions (NPIs), such as masking, or (2) vaccina
tion, which immunizes individuals and prevents future infections. The 
decision maker can implement one, but not both, interventions (owing, 
say, to budget constraints or public tolerance for intervention). Multiple 
modeling groups generate scenario projections of future disease out
comes under each intervention and rank the scenarios accordingly to 
provide recommendations about which intervention will be most 
effective. Here, we set up a mathematical framework to mimic this 
multi-model setting. 

Most multi-model efforts rely on independent modeling groups to 
make predictions (e.g., about future outcomes, intervention effective
ness), and each of these models will represent disease transmission 
processes differently because of uncertainties about pathogen biology, 
human behavior, etc. These uncertainties could lead to different model 
parameters (e.g., transmission rate), different model structure (e.g., 
including asymptomatic transmission), or different modeling ap
proaches (e.g., agent-based vs. compartmental). In real-world multi- 
model settings, all these factors are present to some degree. However, 
this complicated set of differences can be hard to enumerate and un
tangle in model results, so here we intentionally simplify the sources of 
uncertainty driving differences between models. We assume the primary 
source of uncertainty is about biological model parameters, and let the 
structure and approach be consistent across models. Importantly, we 
also let assumptions about the effectiveness of interventions be shared 
across all models; in practice these assumptions would be based on 
literature estimates or expert opinion and would be uncertain to some 
degree. A similar approach, where well-defined alternative in
terventions make up different modeling scenarios and biological un
certainties are left to be handled by different models, has been used by 
multi-model scenario projection efforts to evaluate the impact of new 
interventions for a range of diseases (Borchering et al., 2023, 2021; 
Flasche et al., 2016; Prasad et al., 2023). We also assume that models 
generate projection point estimates rather than probabilistic distribu
tions, although the same logic would apply to studying between-model 
agreement in different quantiles. 

We represent different “modeling teams” with different combina
tions of parameters in a Susceptible-Infected-Recovered (SIR) model 
(Keeling and Rohani, 2008). The SIR model assumes that all individuals 
in the population can be classified as susceptible (S, can be infected), 
infected (I, currently infected), or recovered (R, immune to future in
fections). In the SIR model, susceptible individuals are infected through 
contact with infected individuals at some transmission rate, β. Infected 
individuals recover at rate, γ. We let all modeling teams assume the NPI 
intervention reduces transmission by some amount, d, and vaccines are 
distributed to susceptible individuals at some rate, v. The total popula
tion size is assumed to be N. Then, the SIR model can be represented as a 
system of ordinary differential equations: 
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dS
dt

= − (1 − d)βSI
/

N − vS  

dI
dt

= (1 − d)βSI
/

N − γI  

dR
dt

= γI + vS  

2.2. Implementation of multi-model mathematical framework 

We assume NPIs will reduce the transmission rate by 30% (i.e., d =

0.3) and the attainable vaccination rate (of fully immunizing susceptible 
individuals) is 0.01 (i.e., v = 0.01), approximating 1% of the susceptible 
population per day (Bjørnstad, 2018). In other words, the decision 
maker asks teams to model and rank scenarios where (1) NPIs reduce 
transmission by 30% or where (2) approximately 1% of the susceptible 
population is vaccinated per day. We assume we have a perfectly 
effective vaccine with sterilizing immunity. If either intervention is not 
implemented, then the respective parameter (d or v) is set to zero. In
terventions will be implemented for 50 days, which is sufficient time 
under these parameters to deplete the susceptible population and for the 
epidemic to fade out (Fig. S1). Then, we consider outcomes under each 
potential intervention from modeling teams with a range of assumptions 
about transmission and recovery rates in the absence of intervention. 
Specifically, we test models with all combinations of β between 0.75 and 
1.25 and γ between 0.1 and 0.5, both in increments of 0.01. These ranges 
were chosen to span a wide range of plausible disease characteristics and 
basic reproduction numbers (here, R0 =

β
γ values are between 1.5 and 

12.5). These combinations yielded a total of 2091 possible models. Note, 
γ = 0.1 can be interpreted as an average recovery time of 10 days. 

We assume the decision maker is interested in the intervention that 
minimizes cumulative infections (defined as the number of new in
fections that occur over the 50-day period). So, each model estimates the 
number of cumulative infections for three scenarios in total: under each 
of the two interventions, and a case without any intervention (i.e., d = 0, 
v = 0). Then, ranks are determined based on these projections, where 
the best ranked scenario is the one with the lowest projected cumulative 
infections. All models assume the outbreak occurs in a closed population 
of 1000 individuals, where 995 individuals are susceptible and 5 are 
infected at the start of the simulation. We implement each model 
numerically using lsoda integrator from the deSolve package in R 
version 4.2.0 (R Core Team, 2018; Soetaert et al., 2010). 

We also assess the sensitivity of our results to the choice of objective 
(Probert et al., 2016) and the assumed effectiveness of each interven
tion. First, we perform a sensitivity analysis assuming the objective is to 
minimize the peak number of infected individuals (defined as the 
maximum number of individuals infected in a single day over the 50-day 
period). Second, we assess how results are affected by different levels of 
NPIs and vaccination (all combinations of d ∈ {0.1, 0.2, 0.3, 0.4} and 
v ∈ {0.005, 0.01, 0.015, 0.02}). For these additional analyses on inter
vention effectiveness, we use fewer models for computational efficiency 
(i.e., a step size for β and γ of 0.1). 

2.3. Two potential methods to estimate model agreement 

Quantifying and comparing agreement in rank and magnitude is not 
a straightforward task, and we are not aware of any existing methods in 
the modeling literature that do so. This difficulty arises in part because 
definitions of “agreement” will vary based on the decision context. For 
example, what degree of difference among projection magnitudes is 
tolerable for the decision at hand? Here, we propose two potential 
methods as a starting point for thinking about this problem. The first 
method compares ranks and magnitudes for projections under a single 
scenario, and the second attempts to quantify agreement of rank and 

magnitude both across and within scenarios. We outline each method 
below. 

2.3.1. Single scenario agreement: the “tolerance” method 
The “tolerance” method focuses on model projections for a single 

scenario and compares the number of models that agree about (1) the 
ranking of that scenario projection (relative to the other scenarios) 
versus (2) the magnitude of that scenario projection. Here, we suppose 
models agree on scenario rank when their assigned rank matches 
exactly. In other words, for a single scenario, we count the number of 
models that have returned each rank, and we report the largest of these 
values. For example, a set of 10 models may have 4 models that rank 
intervention A as best, and 6 models that rank intervention A as second 
best; we always take the largest number of agreeing models (so 6 in this 
example). 

For agreement on projection magnitude, we presume a decision 
maker has some tolerance, τ, within which projections of varying 
magnitudes are largely equivalent. So, for a given scenario projection p, 
we define a window of width τ, and again count the number of model 
projections that fall within this window. Practically, we calculate this by 
defining two windows for each projection, p: [p, p +τ] and [p −τ, p].We 
calculate the number of projections across the set that fall within these 
windows, and again choose the window that contains the most pro
jections. We test various window sizes, τ. In the supplement, we also 
report results with a window size relative to the projection magnitude, i. 
e., window size τ = rp, for some relative change r, but other definitions 
of “agreement” for rank and magnitude could also be used. 

2.3.2. Agreement across scenarios: Inter-rater reliability method 
The first method compares agreement of outbreak rank and magni

tude in only a single epidemic scenario. However, our goal may also be 
to assess the consistency of projections across multiple epidemic sce
narios. This problem is similar to evaluating the reliability of different 
measurements, and therefore we propose to use multiple statistics from 
the inter-rater reliability literature (Field, 2005; Liljequist et al., 2019) 
as a first attempt at quantifying rank and magnitude agreement across 
scenarios. 

First, Kendall’s Coefficient of Concordance, or Kendall’s W could be 
used to measure rank agreement. This statistic compares the sum of 
squared error (SSE) of the observed rank totals to the SSE of the expected 
rank totals (Field, 2005). Kendall’s W is bounded between 0, denoting 
no concordance in ranks, and 1, denoting perfect concordance in ranks. 
In other words, larger Kendall’s W implies more agreement among 
models on the rank of different epidemic scenarios. 

To illustrate this calculation, consider the following example pre
sented in Table 1, where we have 4 models that rank 4 scenarios (so the 
mean of rank totals, x, is 10). First, we calculate SSE of the observed rank 
totals, where 

SSEobserved =
∑n

i=1
(xi − x)

2

= (8 − 10)
2

+ (7 − 10)
2

+ (15 − 10)
2

+ (10 − 10)
2

= 38 

Then, for m models and n scenarios, the Kendall’s W statistic is 
calculated using the following formula (Field, 2005): 

Table 1 
Example of 4 scenarios ranked across 4 models. The “Rank Total” column is the 
sum for a given scenario across model ranks, or xi (for scenario i). The mean of 
rank totals, x, is 10.   

Model 1 Model 2 Model 3 Model 4 Rank Total 

Scenario A  2  1  2  3  8 
Scenario B  1  2  3  1  7 
Scenario C  4  3  4  4  15 
Scenario D  3  4  1  2  10  
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W =
12 ∗ SSEobserved

m2(n3 − n)
=

12 ∗ 38
42(43 − 4)

= 0.475 

We also correct for the relatively rare case of ties between ranks, by 
calculating a correction factor Tj =

∑ki
i=1(t3

i −ti) for each model j that 
includes ki distinct tied ranks across scenarios, each containing ti sce
narios tied for that rank. Then, we calculate Kendall’s W statistic as W =

12∗SSEobserved

m2(n3−n)−m
∑m

j=1
Tj
. Finally, we can estimate the probability that the 

observed agreement occurred by random chance using a p-value. To 
estimate the p-value, we use a chi-square test with χ2 = m(n −1)W and 
n −1 degrees of freedom. In this example, with four models and four 
scenarios, the p-value is 0.127. For other settings with four scenarios, a 
Kendall’s W value of 0.65 is required for a p-value of less than or equal to 
0.05 if there are four models, 0.43 if there are six models, and 0.33 if 
there are eight models. 

Next, the intraclass correlation coefficient (ICC) could be used to 
measure agreement across models in projection magnitude. This metric 
compares the variance of projections between scenarios to the total 
variance across projections from all models and scenarios (Liljequist 
et al., 2019). There are multiple versions of the ICC calculation, and here 
we use the “two-sided” model for measuring agreement. Following Lil
jequist et al. (2019), this model assumes a projection, pij from model j in 
scenario i can be decomposed into pij = μ + ri + cj + vij, where μ is the 
mean value across models and scenarios, ri is random variance across 
scenarios, cj is random variance across models, and vij is additional error. 
Then, the ICC calculation measures the proportion of variance explained 
by differences between scenarios (as measured by σr

2), compared to the 
total variance (σr

2 + σc
2 + σv

2), or ICC = σr
2

σr2+σc2+σv2. 
To estimate this value from a set of projections, we use various mean 

square relationships. Again let m be the number of models and n the 
number of scenarios; xi,j is a projection for scenario i from model j, x is 
the mean of projections across all models and scenarios, si is the mean of 
projections in scenario i, and mj is the mean of projections from model j. 
Then, the total sum of squares is SST =

∑m
j=1

∑n
i=1(xij − x)

2, the mean 

squared errors between scenarios is MSBS = m
n−1

∑n
i=1(si − x)

2, the mean 
squared errors between models is MSBM = n

m−1
∑m

j=1(mj − x)
2, and the 

mean squared error is MSE =
SST−(n−1)MSBS−(m−1)MSBM

(n−1)(m−1)
. Using these 

quantities, we can estimate ICC as 

ICC =
MSBS − MSE

MSBS + (k − 1)MSE + (k
n)(MSBM − MSE)

.

See Liljequist et al. (2019) for derivations. 
Overall ICC values are generally limited to the range of 0–1, where 

higher values again imply higher agreement. When models agree about 
the magnitude of projections within each scenario, we expect the vari
ance between models to be low and thus the variance between scenarios 
to compose the majority of the observed variance (i.e., ICC is close to 
one, and thus high ICC implies that projections between models within a 
single scenario are largely consistent). However, there can be cases 
where both variance between models and variance between scenarios 
are low (say, for example, because the scenarios themselves are not 
inherently different); in these cases, ICC can be estimated to be low, or 
even negative, even though variance between models is small. In the 
rare cases where ICC was estimated to be negative, we set it to zero 
following Bartko (1976). 

Directly comparing these metrics assumes that they can be inter
preted in similar ways (i.e., 0.5 has a similar meaning for both metrics), 
but this may not be the case. So, we also propose the comparison of 
Kendall’s W and ICC metrics to a “null” model (discussed in 2.5) to 
understand the joint behavior of the two metrics under controlled as
sumptions and to quantify the significance of results relative to this joint 
behavior. We implement Kendall’s W and ICC calculations using func
tions from the irr package (Gamer et al., 2019) in the R statistical 

software version 4.2.0 (R Core Team, 2018). 

2.4. Application to projections from the theoretical multi-model setting 

The theoretical simulation results span a large set of possible models, 
and from this set, we can estimate the probability that any subset of 
those models will agree using the methods defined in 2.3. However, with 
2091 models from which to choose, it is not computationally feasible to 
explicitly enumerate all possible combinations and calculate the prob
ability of agreement exactly. So instead, we approximate this probability 
by randomly drawing sets of models and calculating agreement for each 
set. We then summarize how many within the drawn set agree on the 
ranking of scenarios or the size of the uncontrolled outbreak (i.e., cu
mulative infections without intervention). Our algorithm to randomly 
select a set of models is based on our idea of how a multi-model set is 
generated in practice. 

Typically, teams build their models and calibrate parameters based 
on available information, however limited that information may be. This 
available information, then, will inform where models are more likely to 
fall within the uncertainty space. Within our mathematical framework, 
we introduce this idea using the concept of a “neighborhood”, or a 
subset of the uncertainty space from which a set of models is drawn. The 
center of the neighborhood is determined by available information and 
the size of the neighborhood is driven by how strong that information is. 
In our case, the uncertainty space is defined only by model parameters 
for transmission and recovery rates. 

Here, we do not explicitly define what information is available, but 
instead randomly select neighborhoods of varying sizes and test how 
likely models are to agree for neighborhoods of that size. To implement 
this, we draw one model at random and find all models within neigh
borhood size ±η of that model’s parameters. Because transmission and 
recovery rates are on relatively similar scales, we use the same η for both 
model parameters (i.e., β ± η and γ ± η). This defines our neighborhood. 
Then, from the neighborhood, we draw m −1 additional models (the first 
model drawn is included in the set of m models), and we calculate 
agreement following our two proposed methods. We generate results for 
10,000 sets of models from a neighborhood of size η = 0.1 for both 
parameters, and we test alternative neighborhood sizes, η ∈ {0.05, 0.2}

for both parameters. 

2.5. Application to U.S. COVID-19 Scenario Modeling Hub projections 

To complement our simulation study, we use the two proposed 
methods in an attempt to quantify patterns of agreement across a large- 
scale multi-model projection collaboration used to guide policy during 
the COVID-19 pandemic. Data from over two years of U.S. COVID-19 
SMH projections (Howerton et al., 2023a, https://covid19scenariomo 
delinghub.org/) provide instances of multi-model projections across 
multiple future scenarios (covering both possible policy actions as well 
as key uncertainties about drivers of disease dynamics), generated 
across a range of pandemic contexts. Although each round is not entirely 
independent (e.g., many rounds include projections from some of the 
same models), SMH projections across multiple rounds provide a unique 
opportunity to test multi-model agreement in a real-world setting. 

Between February 2021 and November 2022, SMH produced 16 
rounds of multi-model projections of incident and cumulative cases, 
hospitalizations, and deaths. We focus our analysis on 14 rounds that 
were released publicly (i.e., we exclude Rounds 8 and 10). In each 
round, models made projections for four distinct scenarios, which 
typically included two axes of uncertainty. Each axis focused on drivers 
of disease dynamics that were uncertain at the time of scenario design 
and projection, including implementation of potential control strategies 
and uncertainties about pathogen biology or human behavior. Models 
made projections on horizons of 12 weeks to 52 weeks, depending on the 
goals of the round. SMH projections were generated for 52 locations in 
total, including U.S. national projections and all U.S. states. For more 
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details on the SMH process, see Loo et al. (2023). 
Thirteen teams participated over the first 16 rounds, with each round 

including projections from 4 to 9 models. SMH modelers have come 
from a diversity of backgrounds, ranging from well-established epide
miological modeling groups to groups from other fields. Some models 
only made projections in some rounds, and others only made projections 
for specific states. The approach of each model was different, including 
mechanistic models and agent-based models across a variety of spatial 
structures and fitting schemes (summary of each model provided in 
(Howerton et al., 2023a)). Some submitted projections did not comply 
with basic SMH standards, and we exclude those here (following the 
inclusion criteria of (Howerton et al., 2023a)). 

We analyze agreement for each set of SMH projections again using 
the two methods we have proposed. A single set of projections are made 
for one location (e.g., U.S. national projections or projections for a single 
state), target (e.g., cumulative hospitalizations), horizon (e.g., 26 weeks 
into the future), and SMH round. For the tolerance method, we redefined 
projections relative to the population size of a given location (i.e., cu
mulative hospitalizations per 100,000 population) so that an absolute 
window size would be comparable across locations. We provide results 
for a relative window size in the supplement. 

Then, to better understand the possible joint behavior of Kendall’s W 
and ICC values for different sets of SMH projections, we generate 1000 
“null” projection sets for each round-target-location assuming no 
agreement between models and accounting for inherent variation be
tween scenarios observed in the SMH projections. To do so, for a given 
round-target-location, we calculate the range of median projections 
across models for each scenario (i.e., a lower bound of all projections for 
scenario i across models j, li = min

j=1,..,m
xij, and a corresponding upper 

bound ui = max
j=1,..,m

xij). Then, null projection sets are drawn uniformly 

from these ranges, nij ∼ U(li,ui), where the same number of projections 
are drawn from each scenario as models that made SMH projections. 
These null projections retain the differences between scenarios observed 
in SMH projections (which can influence measures of agreement as 
discussed in 2.3.2). Importantly, the null projections also sample each 
scenario independently, explicitly excluding potential consistencies 
within a model (for instance, a model that would systematically project 
low outcomes in all scenarios, compared to all other models). Note that 
these consistencies may or may not exist in SMH projections. We then 
use these null projection sets to calculate the relative change in ranking 
and magnitude agreement. We estimate Kendall’s W and ICC relative to 
the mean value of Kendall’s W and ICC and the percent of null projection 
sets that had higher Kendall’s W and ICC. 

In the main text, we focus our analysis on agreement of median cu
mulative projections of incident hospitalizations over the maximum 
projection horizon for each round, in order to maximize the differences 
between scenarios. This avoids instances where agreement is spuriously 
low because scenario projections are not sufficiently different. For 
example, Round 11 and 12 scenarios focused one uncertainty axis on the 
severity of the emerging Omicron variant. Because severity scenarios 
focused on risk of hospitalization and death, we do not expect agreement 
about ranking of scenarios for cumulative cases to be meaningful. We 
provide additional results for alternative quantiles (Q25, Q75) and ho
rizons (4, 8, 12, 16, 20, 26 weeks) in the supplement. For more infor
mation on SMH scenario projections and participating models, see other 
papers in this special issue or visit https://covid19scenariomodelingh 
ub.org/. 

3. Results 

3.1. Simulation study 

Our simulation study illustrates how models with different parame
ters predict different epidemic trajectories and can offer different 

rankings of alternative epidemic scenarios, which here corresponds to 
divergent intervention recommendations (Fig. 1). For example, one 
model (that assumes a transmission rate of 1 and a recovery rate of 0.2 in 
the absence of interventions, model 1 in Fig. 1A) estimates 961 cumu
lative infections with NPIs and 919 cumulative infections with vacci
nation, therefore recommending vaccination to minimize infections. A 
second model assumes a transmission rate of 1.15 and a recovery rate of 
0.4 (model 2 in Fig. 1A) in the absence of interventions; this model es
timates 797 and 847 cumulative infections under NPIs or vaccination, 
therefore recommending NPIs. 

Whether a model ranks NPIs or vaccination scenarios as best to 
minimize infections depends on both transmission and recovery rates 
(Fig. 1B), with assumptions about recovery rate being the more mean
ingful driver. Models that assume recovery is fast (i.e., high recovery 
rates) rank NPI scenarios as best, and models that assume recovery is 
slow (i.e., low recovery rates) rank vaccination scenarios as best. Across 
all combinations of transmission and recovery rates, predictions of cu
mulative infections without intervention vary dramatically (Fig. 1C). As 
expected, models predict the outbreak will be small when R0 is low (583 
cumulative infections in the smallest predicted outbreak), whereas 
models with large R0 predict nearly all individuals in the population will 
be infected. 

Despite the substantial heterogeneity in predicted outbreak magni
tude, ranking of intervention scenarios are largely consistent (i.e., 
models with small R0 recommend NPIs, and models with large R0 
recommend vaccination). However, there is a subset of models that 
make similar biological assumptions but rank intervention scenarios 
differently (45% of pairs of models with R0 between 3 and 4 will have 
differing intervention scenarios ranked as best). In these instances, the 
models predict similar cumulative infection outcomes under the two 
possible interventions. The largest difference in cumulative infections is 
44 (or 4.4% of the population) for models with R0 between 3 and 4, 
compared to 250 (or 25% of the population) which is the largest dif
ference overall. 

Within our simulation framework, a randomly drawn set of models is 
more likely to agree on the ranking of intervention scenarios than 
generate highly similar estimates of cumulative infections (Fig. 2). The 
probability that 4 of 6 randomly selected models agree on ranking of 
intervention scenarios is 68%, whereas the probability that they agree 
on estimates of cumulative infections within small bounds is less likely 
(18% probability of agreement within 20 infections, which is 2% of the 
population and 5% of the range of possible cumulative infection out
comes; 50% agreement within 50 infections, which is 5% of the popu
lation and 12% of the range of possible cumulative infection outcomes). 
However, for all numbers of models in the set, the probability at least 
66% of those models agree on infection estimates within 100 infections 
is similar to or greater than the probability of agreeing on intervention 
scenario ranking. A window of one hundred infections covers almost 
40% of the range of possible cumulative infection outcomes. In all cases, 
probability of agreement is higher when models make similar 
assumptions. 

These patterns are also demonstrated by ICC and Kendall’s W sta
tistics (Fig. 3). Model agreement on intervention rank is high and sig
nificant for all sets of models. Kendall’s W is always above 0.7 and is 0.8 
on average across model set size (IQR: 0.75–0.81) for randomly selected 
models and is 0.93 on average (IQR: 0.85–1.0) for similar models. In 
contrast, agreement in magnitude is more variable (average ICC of 0.24 
(IQR: 0.13–0.28) across randomly selected model sets of all sizes, and 
0.68 (IQR: 0.54–0.82) across similar models). Presumably the high 
agreement on ranking of intervention scenarios is due in part to the 
inclusion of the “no intervention” scenario, which is the worst of the 
three intervention scenarios in every model. When we assessed ranking 
of the two intervention scenarios (without the counterfactual, “no 
intervention” scenario), Kendall’s W dropped to an average of 0.19 
(IQR: 0.12–0.25) for randomly selected models and 0.75 (IQR: 
0.40–1.00) for similar models (Fig. S7). 
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The agreement between models depends on the intervention sce
narios that are being compared, especially with respect to differences in 
effectiveness and coverage of interventions (Fig. S2). In some instances, 
the same intervention scenario is ranked as best by all models. For 
example, if NPIs will only reduce transmission by 10%, vaccination of at 
least 0.5% of the population per day is universally best to minimize 
cumulative infections. The agreement between models also depends on 
the objective of interest (i.e., the outcome we are minimizing). Of the 
NPI efficacies and vaccination rates we considered, there were no in
stances where NPIs were universally best in all models. However, for 
minimizing peak infections, NPIs were ranked best by almost all models 
(except when NPI efficacy was low and the vaccination rate was high) 
(Fig. S3). 

3.2. Empirical study based on SMH scenario projections for COVID-19 

We analyzed 14 rounds of SMH projections (the 2 non-public rounds 
were excluded), which included 4 scenarios in each round from 4 to 9 
independent modeling teams. The scenarios modeled by SMH and the 
number of teams participating varied across rounds. For example, the 
earliest SMH rounds (Round 1 – Round 4) focused on the early rollout of 
vaccination and NPIs, whereas the later rounds (Round 13 – Round 16), 
generated more than two years later, addressed booster vaccination and 
continuing SARS-CoV-2 evolution. We assessed the agreement across 
models on scenario rank and projection magnitude for 52 locations per 
round, totaling 728 sets of projections overall. 

Visually inspecting the SMH projections reveals a spectrum of 
possible outcomes across this large set. For example, there were some 
SMH projections where models appear to largely agree about the rank of 
interventions but are less consistent in the projected magnitude for at 
least some scenarios (such as the projection shown in Fig. 4A). Other 

instances with largely consistent ranking across models have projection 
magnitude more clearly aligned within scenarios (example in Fig. 4B). 
There are also instances where rank across models is less consistent, both 
when projected magnitude across models is relatively similar (example 
in Fig. 4C) or variable (example in Fig. 4D). Here, we provide a few 
illustrative examples from a single SMH round, but these patterns also 
vary across all SMH rounds and locations (Figs. S8-S21). 

For most SMH projections, more than 50% of models agree about the 
ranking of scenarios (707/728 total sets of projections, or 97%, for 
Scenario A; 659/728, 91% for Scenario B; 676/728, 93% for Scenario C; 
and 708/728, 97% for Scenario D). Yet, it is less common for 75% of 
models to agree about scenario rank, especially in Scenarios B and C 
(513/723, 70% for Scenario A; 272/728, 37% for Scenario B, 243/728, 
33% for Scenario C, and 508/728, 70% for Scenario D). The higher rank 
agreement in Scenarios A and D likely reflects the “optimistic” and 
“pessimistic” definitions that were typical of these scenarios in most 
SMH rounds; Scenarios B and C were typically defined as intermediate to 
Scenarios A and D. Similar or greater levels of agreement for projection 
magnitude can be obtained with sufficiently large windows to define 
“agreement” (Fig. 5). For example, in Scenario B, the number of models 
agreeing on projection magnitude (i.e., falling within a window of a 
particular size) is greater than or equal to the number of models agreeing 
on projection rank in 379/728 (52%) sets of projections when the 
window size is 200 cumulative hospitalizations, 581/728 (80%) when 
the window size is 500 cumulative hospitalizations, and 710/728 (98%) 
when the window size is 1000 cumulative hospitalizations. Similar 
tradeoffs can be found for the other three SMH scenarios (Fig. S22) and 
can be examined relative to the projection rather than using an absolute 
window size (Fig. S23). 

We can also attempt to summarize agreement across all scenarios 
simultaneously. A substantial part of this analysis involves 
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Fig. 1. Model projections of a generic infectious disease outbreak under two potential interventions. (A) Two models that differ in recommended intervention. Model 
1 (top) assumes transmission rate is 1 and recovery rate is 0.2 (i.e., average time to recovery is 5 days) in the absence of interventions. Model 2 (bottom) assumes 
transmission rate is 1.15 and recovery rate is 0.4 (i.e., average time to recovery is 2.5 days) in the absence of interventions. Both models predict the cumulative 
number of infections over a period of 50 days under three intervention scenarios: no intervention (solid), non-pharmaceutical interventions (NPIs) that reduce 
transmission by 30% (dashed), and vaccination of approximately 1% of the susceptible population per day (dotted). In Model 1, vaccination is recommended as it 
minimizes infections, whereas NPIs minimize infections and are recommended by Model 2. (B) Spanning the space of possible models across biological uncertainties 
(transmission rate, β, and recovery rate, γ, in the absence of interventions), each position on the graph represents an individual model, with the color of the tile 
representing the recommended intervention (orange: non-pharmaceutical interventions, NPIs; purple: vaccination), and the intensity of the color recommending the 
magnitude of the projected difference in cumulative infections. The gray line shows where the difference in cumulative infections is 0, or where neither intervention 
is recommended over the other. Black contours show sample values of individual model R0 = 2, 3.5, 6, and 10. (C) Projected magnitude of outbreak without 
intervention, by model R0. Each point represents projections from a different model, and the color of each point represents the intervention that model recommends 
(orange: non-pharmaceutical interventions, NPIs; purple: vaccination). (D) Zoom in on results for individual models with R0 between 3 and 4. (E) Percent (%) of 
models with R0 between 3 and 4 that recommend NPIs (orange) or vaccination (purple). 
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understanding how projection variance is partitioned across models and 
scenarios. Results show that differences between models drove the 
variance of SMH projections. The mean squared error between models 
composed 72% of the total sum of squares on average (35%-95% range 

across rounds), whereas mean squared error between scenarios 
composed 23% on average (4%-53% range across rounds) (Fig. 6C). This 
could be a result of comparatively low model agreement about the 
magnitude of projections (if agreement about projection magnitude was 
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probability is shown for estimates of cumulative cases within 20 infections (2% of population, red), within 50 infections (5% of population, yellow), within 100 
infections (10% of population, blue), or recommended intervention (black). Probabilities are calculated for agreement of 2 models out of a set of 3, 4 out of a set of 6, 
6 out of set of 8, and 8 out of a set of 12. Agreement on intervention recommendations is 100% for a set of 3 models because for a binary task (i.e., recommend 
vaccination or non-pharmaceutical interventions), agreement of 2 models is guaranteed. All probabilities were calculated both when choosing randomly among all 
models or among models with “similar” assumptions. “Similar” models are defined as those with transmission and recovery rate assumptions within ±0.1 of a given 
model. See Fig. S4 for the probability that at least 2,4, 6, or 8 models agree across alternative definitions of “similar” and see Fig. S5 for agreement probabilities for all 
combinations of model set size and percentage of models agreeing. See Fig. S6 for results when magnitude agreement is defined relative to the projected magnitude. 
Note that the space of model parameters is the same as in Fig. 1B. 
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high, variance would be driven primarily by differences between sce
narios) or minimal inherent differences between the scenarios. We can 
use the null projections to help interpret these findings and distinguish 
between the two hypotheses, since the null projections control for (low) 
variation between scenarios. We find that SMH projections had low ICC 
values compared to the null projections, indicating low model agree
ment about magnitude. ICC values for SMH projections were on average 
71% lower than the average of null simulations in the same location and 
for the same round (range across rounds: 35%-92%) (Fig. 7A). In 234 
locations (out of 728, 32%), ICC was lower than 90% of simulations 
(Fig. 7B). 

In the null projections, ICC values were highly correlated with 
Kendall’s W values (r2 > 0.8 in 431/728 locations, 59%; example in 
Fig. 6B, all results in Figs. S21-S34). In other words, null projections that 
have low ICC (i.e., agreement of scenario magnitude, which is largely 
observed for SMH projections) are also expected have low Kendall’s W 
(i.e., agreement on scenario ranking). However, observed SMH pro
jections have high Kendall’s W values compared to the null (Fig. 7A). 
Averaged across rounds, Kendall’s W for SMH projections was 1.25 
times higher than the average null projections (range across rounds: 
1.22–4.3) (Fig. 7A). In 562 locations (77%), Kendall’s W for SMH pro
jections was higher than 90% of null projections (Fig. 7B). This suggests 
that that SMH models agree more frequently about ranking than would 
be expected based on the variability we see between the projections 
from these models. 

Agreement of SMH projections also varied by round. With the 
exception of Round 1, agreement relative to the null projections was 
high in early SMH rounds. In Rounds 2–6, 86% of locations (269/312) 
had Kendall’s W greater than 90% of null projections and 23% of lo
cations (73/312) had ICC lower than 90% of null projections (Fig. 5B). 
These early scenarios focused on uncertainties around early vaccine 
supply and uptake, NPI adherence, and the emergence of the Alpha and 
Delta variants. The scenarios modeled likely had an a priori expectation 
of ranking (e.g., optimistic vaccination scenarios are expected to be 
better than pessimistic vaccination scenarios with an efficacious vaccine 
in a largely susceptible population). Later SMH rounds (Rounds 13–16) 
addressed the emergence of immune escape variants and booster 

vaccination, scenarios in which the a priori ordering is less clear (e.g., 
due to complex interactions with the rate of immune waning). These 
rounds demonstrated comparatively low levels of agreement relative to 
the null; 76% of locations (159/208) had Kendall’s W greater than 90% 
of null projections and 27% of locations (58/208) had ICC lower than 
90% of null projections (Fig. 5B). 

4. Discussion 

Leveraging predictions from multiple models via an ensemble is 
more robust than relying on a single model, especially when uncertainty 
is high (Clemen, 1989; Howerton et al., 2023b; Timmermann, 2006). 
Yet, multi-model efforts require substantial resources, and we lack clear 
theoretical or empirical guidance on the sufficient number of models 
needed to address a particular intervention or planning decision. 
Moreover, a multitude of models is not always available. Here, we have 
proposed the idea that the incremental value of adding a model to a 
multi-model set depends on the decision context. In particular, we 
considered decisions that depend on ranking a discrete set of 
well-defined epidemic scenarios (e.g., choosing between alternative 
interventions based on some objective). For our theoretical simulations 
and empirical results across 14 rounds of COVID-19 Scenario Modeling 
Hub projections, agreement between models on scenario ranking was 
relatively common. Similar levels of agreement could be obtained for 
projection magnitudes with sufficiently large tolerance windows; 
whether such windows are appropriate will depend on the decision 
context. Better understanding these tradeoffs, and how general such 
tradeoffs are, could have important implications for understanding the 
decision contexts in which using fewer models may be tolerable. 

Within the simulation framework, one key mechanism driving 
agreement was the similarity of model assumptions. In practice, we 
expect the similarity of model assumptions to be governed in part by the 
quality of our existing information and the independence of the models. 
For example, R0 for an endemic pathogen will be much more certain 
than for an emerging pathogen. However, the set of models will not 
necessarily capture all uncertainties (e.g., unknown unknowns will not 
be accounted for), and model independence may be difficult to obtain in 
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Fig. 4. Four examples of U.S. COVID-19 Scenario Modeling Hub multi-model projections. Panels (A)-(D) show examples of SMH projections from four different 
locations in SMH Round 11. Each SMH round consists of four scenarios (scenarios A-D), shown in a different segment of each panel, and for each scenario, median 
projections from 6 models (models a-f) are shown as points. The color of each point represents how each model ranked that scenario (blue indicates best ranked 
scenario, and red indicates worst ranked scenario). SMH Round 11 was released on December 25, 2022 at the outset of the Omicron variant wave; scenarios in this 
round varied low and high levels of immune escape and transmissibility of Omicron, and projections were made 12 weeks into the future (i.e., the x-axis shows 
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practice (Knutti et al., 2013; Pennell and Reichler, 2011). Further, 
agreement between models was higher when the effectiveness of the 
interventions considered was greater. In other words, the expected 
agreement will depend not only on the similarity of the underlying 
model assumptions and approach but also on the scenarios modeled. 
This provides one hypothesis for the relatively high rank agreement 
observed for SMH projections: there was some inherent expectation 
about the ranking of SMH scenarios which was shared across models (e. 

g., a counterfactual scenario should be worst). There are many possible 
goals in scenario design (Runge et al., 2023), and future work could 
consider whether agreement is more or less likely for different kinds of 
designs. Model agreement on scenario ranking also depended strongly 
on the objective of interest (i.e., recommendations were largely consis
tent for minimizing peak cases, but different from recommendations 
targeted at minimizing final epidemic size), emphasizing the importance 
of having a clearly defined objective (Probert et al., 2016). 
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Fig. 5. Agreement of U.S. COVID-19 Scenario Modeling Hub projections assessed using the “tolerance” method. For each round of COVID-19 projections, we 
calculated the percent of all models that agreed on scenario ranking and on projection magnitude, where projection magnitude agreement was defined as the number 
of projections falling within a window of n hospitalizations per 100,000 population. For a given round (panel), the height of each bar shows the number of locations 
that fall within a given bin of percent of models agreeing. Here, we show results for Scenario B, as Scenario B has lower overall levels of rank agreement; see Fig. S22 
for results across all scenarios and Fig. S23 for results when the tolerance window is defined relative to the projected magnitude (tolerance windows under a relative 
definition are shown in Fig. S24). Note, the number of contributing models varies across rounds (R1: 4, R2: 5, R3: 4, R4: 6, R5: 7, R6: 8, R7: 8, R9: 8, R11: 6, R12: 6, 
R13: 8, R14: 8, R15: 6, R16: 6 models). This list reports the number of models that is most frequent across all locations in a given round, although occasionally the 
number of contributing models for a particular location would vary slightly (e.g., some models only submitted for a subset of locations). 
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In our simulation framework, there was a subset of similar models 
that were more likely to disagree about the ranking of intervention 
scenarios (models with R0 between 3 and 4 in this example, but this 
range is likely context-specific). In these instances, the estimated dif
ferences in outcomes between scenarios (e.g., the benefits of a particular 
intervention) were small, suggesting one scenario was not meaningfully 
better than the other. Alternative considerations not explicitly modeled, 
for example about economic, social, or political costs of an intervention 
may also affect decisions, especially when projected epidemic outcomes 
are similar. Relative effect size (Prasad et al., 2023), the uncertainty 
associated with such estimates, and the relative cost of implementation 
(e.g., Castonguay et al., 2023) are important alternative considerations 
and could be explored further within our framework. 

Underlying our results, at least in part, is the premise that ranking is 
an easier task than quantifying continuous outcomes. For most practical 

decisions, there are usually fewer possibilities (in other words, the size 
of the intervention space is smaller than the size of the uncertainty 
space), and therefore ranking agreement will be more likely probabi
listically. As the number of intervention scenarios increases, the prob
ability of agreement by chance will decrease. Further, infectious disease 
control decisions are often multifaceted and complex (interventions 
depend on both effectiveness and uptake; none of which can be fully 
known when projections are made). The principles presented in this 
paper can be extended beyond comparisons of a few epidemic scenarios, 
to comparisons of a multitude of control policies representing suites of 
actions. 

The methods and results presented here are subject to a number of 
limitations and represent only an initial step toward understanding how 
the value of predictions from multiple models could vary across different 
decision contexts or prediction targets. Our simulation framework 
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deliberately controlled for many aspects that may be important in real- 
world multi-model settings. We used highly simplistic disease models 
and assumed the models only differed in their assumed biological pa
rameters. In practice, many other modeling decisions (e.g., about model 
structure, initial conditions) will vary and data sources used as part of 
model calibration or model fitting may vary across approaches, as seen 
in our empirical (SMH-based) analyses. We also did not include opera
tional uncertainty (e.g., about intervention effectiveness) in the models, 
which may affect intervention rank more strongly than biological un
certainty. Future work could build operational uncertainties into this 
framework (Li et al., 2019), and investigate how model agreement is 
affected by interactions between operational uncertainty and biological 
uncertainty. Given the potential importance of these interactions, our 
conclusions should be validated under such complexities before being 
generalized. Second, our simulation framework considered a simple 

decision at one point in time. However, outbreak response and infectious 
disease management is a complex, ongoing task, with changing bio
logical context (e.g., changes in human behavior, pathogen evolution) 
and acquisition of new information. Questions about how model 
agreement changes across time, and as more information is acquired, 
could inform better strategies for passive and active learning within and 
across outbreaks (Atkins et al., 2020; Shea et al., 2014). Building upon 
our simulation framework and exploring the implications of these 
real-world complexities could extend the generality of our conclusions. 

Additionally, our ICC analysis comes with significant assumptions 
and limitations, which should be reconsidered with future methodo
logical developments. Kendall’s W and ICC are conceptually distinct 
statistical metrics, with differing definitions of “agreement”. This makes 
the interpretation of their comparison difficult. We have attempted to 
overcome this limitation by quantifying their joint behavior via null 
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projections; however, this approach still requires that we assume 
changes in each metric relative to the null can be interpreted in similar 
ways. In addition, ICC may not be the best metric for quantifying 
magnitude agreement; ICC depends in part on projection rank, it is not 
well suited for sets of projections with small differences between sce
narios, and it may not clearly correlate with meaningful levels of 
agreement in epidemiological decision contexts. More generally, the 
definitions we have created here for “ranking agreement” and “magni
tude agreement” may be somewhat artificial, and in fact the decision 
context should ultimately determine what is most important to predict 
and what constitutes “agreement” for these predictions. Other analytical 
approaches will be required to soundly compare agreement of rank and 
magnitude across multiple scenarios. By building off SMH, other multi- 
model efforts (e.g., Li et al., 2017; Prasad et al., 2023; Shea et al., 2023), 
and the multitude of existing studies that consider different intervention 
scenarios across uncertainties, we can further test our hypotheses, un
derstand model agreement, and make informed decisions about when 
we need multiple models for predicting and controlling infectious dis
ease outbreaks. These conclusions may translate into other fields that 
use multiple models to inform decisions, such as climate science or 
ecology. 

This work provides a first step in helping us better balance the 
tradeoffs between the resources required to obtain predictions from 
multiple models, the risks of under-expressing uncertainty, and the po
tential consequences of being wrong. When predicting quantitative 
future outcomes, discordant results from multiple models may be 
problematic for decision makers if interpreted arbitrarily. However, 
when combined into a multi-model ensemble, this diversity of opinions 
becomes a key asset and allows the ensemble to provide more accurate 
and reliable information about the future. The same is true for ranking 
alternative epidemic scenarios; whenever possible, opinions from mul
tiple models should be solicited. Agreement from multiple independent 
sources builds confidence in the conclusions. However, as seen in our 
results, multi-model agreement on scenario ranking is by no means 
guaranteed. In cases where models disagree about scenario ranking, a 
decision maker could use vote processing methods to combine rankings 
from each model into a consensus, much like an ensemble combines 
quantitative predictions (Probert et al., 2022). There are also many 
settings where projections from multiple models are not available, due 
for example to inequities in disease modeling resources (Heesterbeek 
et al., 2015). In these instances, decision makers may choose to focus on 
qualitative model results or the ranking of model projections, rather 
than quantitative outcomes. 

5. Conclusions 

Understanding what mathematical models can effectively predict is 
essential to using modeling resources wisely, including during public 
health crises like an infectious disease outbreak or in low-resource set
tings where modeling teams are scarce. Multi-model ensembles are 
known to be an important tool to generate accurate and robust pre
dictions of future outcomes, overcoming inconsistency and disagree
ment in predictions from individual models. Much of the work on multi- 
model ensembles has focused on predictions of quantitative outcomes 
(e.g., incident deaths), but quantitative outcomes are not the only type 
of information a decision maker may glean from model predictions. 
Here, we considered decision contexts that depend on the ranking of 
alternative epidemic scenarios. In both a simple simulation context and 
an empirical setting that includes 14 rounds of real-world COVID-19 
projections, our results suggest that multi-model agreement may depend 
on the decision context, and it may thus be possible to identify decision 
contexts where predictions from only a few models, or possibly even a 
single model, may suffice. When few models are available, these are the 
kinds of decisions we can robustly support. Further exploring the con
ditions under which models disagree will be important to understand 
when to initiate resource-intensive, multi-model predictions, and in 

what circumstances we can use models to support decision making, if 
only a single or a few models are available. 
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