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ARTICLE INFO ABSTRACT

Keywords: Across many fields, scenario modeling has become an important tool for exploring long-term projections and how they
Sceflario m"deli_ﬂg might depend on potential interventions and critical uncertainties, with relevance to both decision makers and sci-
Design of experiments entists. In the past decade, and especially during the COVID-19 pandemic, the field of epidemiology has seen sub-

Sensitivity analysis
Value of information
Multi-model projections

stantial growth in the use of scenario projections. Multiple scenarios are often projected at the same time, allowing
important comparisons that can guide the choice of intervention, the prioritization of research topics, or public
communication. The design of the scenarios is central to their ability to inform important questions. In this paper, we
draw on the fields of decision analysis and statistical design of experiments to propose a framework for scenario design
in epidemiology, with relevance also to other fields. We identify six different fundamental purposes for scenario
designs (decision making, sensitivity analysis, situational awareness, horizon scanning, forecasting, and value of
information) and discuss how those purposes guide the structure of scenarios. We discuss other aspects of the content
and process of scenario design, broadly for all settings and specifically for multi-model ensemble projections. As an
illustrative case study, we examine the first 17 rounds of scenarios from the U.S. COVID-19 Scenario Modeling Hub,
then reflect on future advancements that could improve the design of scenarios in epidemiological settings.
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1. Introduction

Epidemics prompt many questions, from public health policy makers
wanting to know how to intervene, to members of the public wanting to
know what to expect, to industrial leaders wanting to know how to react.
These questions are all necessarily forward looking, creating a demand
for epidemiologists to project what may happen in the future. Epide-
miological models provide a way to integrate historical observations,
biological and sociological knowledge, and our understanding of disease
mechanisms to produce projections of epidemiological outcomes into
the future. These projections can be used to guide decisions (by gov-
ernments, industries, and individuals) about how to respond, and to
guide research investment (to reduce uncertainty in projections or
processes).

Quantitative scientists make a distinction between forecasts and
scenario projections (Reich et al., 2022). Forecasts are unconditional
predictions about the future, statements about what is expected to
happen. The most useful forecasts are probabilistic, expressly recog-
nizing and transparently quantifying the uncertainty in the prediction.
Scenario projections, on the other hand, are conditional predictions
about the future, statements about what would happen if a set of con-
ditions were to be met. The most useful scenario projections are also
probabilistic, but conditionally so; they typically express the probability
of outcomes if certain conditions are met, but do not usually quantify the
probability of those conditions themselves being met. Scenario pro-
jections, then, are exploratory—they allow the examination and contrast
of multiple futures. Both forecasts and scenario projections make as-
sumptions (for example about social behavior or public health policy)
and so, in a sense, the predictions from both are conditional on those
assumptions. But in forecasts, the intent is to embed any uncertainty in
those assumptions in the forecast itself, so that the forecast is a singular
probabilistic representation of what is likely to happen. In scenario
projections, some of the conditions are of specific interest and are iso-
lated as separate scenarios.

Scenario modeling is common in many disciplines, including climate
science (Krey, 2014), conservation biology (Nicholson et al., 2019),
wildlife and fisheries management (Johnson et al., 1997), economics
(McDowall and Eames, 2006), transportation (Bartholomew, 2007),
urban planning (Khakee, 1991), energy development (Leung and Yang,
2012), agriculture (Pfister et al., 2011), invasion ecology (Shea et al.,
2005), military planning (Dowse, 2021), disaster planning and response
(Tyszkiewicz et al., 2012), nuclear war and terrorism (NASEM, 2023),
and many others. One of the most visible global examples is the Coupled
Model Intercomparison Project (CMIP), which has produced six phases
of climate projections based on shared scenario specifications (Eyring
et al., 2016; Meehl et al., 2000). The most recent phase of projections
(CMIP6) is based on a set of “shared socio-economic pathways” and
provides central evidence for the sixth assessment report of the Inter-
governmental Panel on Climate Change. Importantly, the shared
socio-economic pathways (and the “representative concentration path-
ways” of CMIP5) represent forcing scenarios (notably concerning carbon
emissions); the climate projections are conditional on the scenario as-
sumptions, but the likelihood of those conditions occurring was not
estimated. Similar types of scenario projections are made in many other
fields, but there is not yet a common lexicon that unites the large
literature on this subject. In an influential book, Martelli (2014) argued
that the field of scenario planning faces a number of shortcomings,
notably a lack of clarity in the conceptual foundations, methodological
inconsistency, and absence of evidence of effectiveness. A more recent
review finds progress toward a synthesis of concepts and methods and
increasing evidence of effectiveness, but notes that the field remains
fragmented (Cordova-Pozo and Rouwette, 2023).

The use of scenario modeling has become pervasive in infectious
disease epidemiology over the last two decades. Notable examples
include modeling of different types and layers of interventions to control
emerging outbreaks such as foot-and-mouth disease in the United

Epidemics 47 (2024) 100775

Kingdom (Tildesley et al., 2006), avian influenza (Longini et al., 2005),
the Ebola outbreak in West Africa (Meltzer et al., 2014), and the
COVID-19 pandemic (Borchering et al., 2023; Borchering et al., 2021;
Hellewell et al., 2020; Truelove et al., 2022; Walker et al., 2020).
Additional notable use cases include the roll-out of new interventions for
endemic pathogens where, for instance, scenario projections can help
anticipate the benefits and dynamic changes associated with new vac-
cines or improved drugs (Flasche et al., 2016; Pitzer et al., 2009; Eaton
etal., 2012; Houben et al., 2016). In some cases, the scenario projections
are produced from a single model (e.g., Meltzer et al., 2014), while in
others, the scenario projections come from multiple models (Flasche
et al., 2016; Houben et al., 2016), drawing on a growing literature
documenting the value of multi-model efforts (Johansson et al., 2019;
Shea et al., 2020, 2023; Cramer et al., 2022; Prasad et al., 2023). Sce-
nario design plays an important role in infectious disease projections
over long time scales, not only to contrast different intervention
schemes, but also to control for uncertainty in key parameters that may
be magnified over time. However, there is little guidance on how to
optimize scenario assumptions to answer particular public health
questions, especially in the context of multi-model efforts.

Across fields, one of the central features of scenario projections is
that “scenarios seem to exist in sets and the scenarios that inhabit those
sets are systematically prepared to co-exist as meaningfully different
alternatives to one another” (Spaniol and Rowland, 2019). How, then,
are these sets developed? Many methods for scenario design exist and
attempts have been made to classify the methods into several schools of
approach (Amer et al., 2013). In this paper, we draw from the fields of
decision analysis and experimental design to propose a framework for
scenario development that integrates the three schools discussed by
Amer et al. (2013). We place this work in the context of epidemiological
modeling, but intend the framework to be more broadly useful. Our
primary thesis is that clarity about the purpose of the scenarios is central
to their design, and we offer a taxonomy of design purposes.

2. Purposes of scenario design

We approach scenario design like experimental design. First, a sce-
nario design, like an experimental design, should have a purpose—a
question (or questions) that the designers seek to answer. Second, a
scenario design consists of a set of alternative scenarios (analogous to
experimental treatments), which differ with regard to one or a few
factors. Third, the foundational experimental design concepts of control,
randomization, and replication have analogs in scenario design. The
scenarios can be designed to control certain factors by prescribing
shared assumptions or parameter values. By randomly sampling from
the probability distributions for uncontrolled parameters, inferences
from scenario comparisons can be extended to the full parameter space
represented by those distributions. Controlling for these otherwise un-
specified variables is common in experimental design through a method
called pairing; this is also possible in scenario modeling by pairing
replicates across scenarios (i.e., compare replicates with the same un-
controlled parameters, that therefore differ only by scenario). Further,
each scenario can be replicated many times, either by soliciting repeated
projections from a single model structure or by soliciting projections
from multiple models of varying structure. These concepts are
embedded in our framework for scenario design.

One of the central questions in scenario design is how the individual
scenarios differ. Many factors that will affect future dynamics are un-
known at the time of projection (e.g., human behavior or key aspects of
pathogen biology). Scenario design, then, is the process of strategically
choosing among those many uncertainties to identify a set of scenarios
that together can achieve the purpose of the scenario projection exer-
cise. Inspired by multiple rounds of COVID-19 projections that have
addressed public health goals at different stages of the pandemic, we
identify three primary purposes in scenario design: making decisions,
exploring uncertainty, and identifying how decisions may be affected by
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uncertainty. To understand the differences between these purposes, we
distinguish two types of factors (often described as “scenario axes”):
interventions (or decision options) and uncertainties. Interventions are
factors that are under the control (or partial control) of one or more
decision makers, such as vaccination policies, non-pharmaceutical
intervention (NPI) policies, or hospital staffing and capacity. Un-
certainties are factors that are not under any decision maker’s control,
but that might affect the outcomes or possibly even the choice of
intervention. This distinction between intervention and uncertainty
factors is not always sharp, and can depend on the primary audience. For
instance, the arrival of a new virus variant will always be considered
uncertain, as its emergence is beyond anyone’s control. However, other
factors, such as vaccine coverage, are more complicated, as they can be
affected by the informational campaigns of public health agencies (a
decision) and the behavioral responses of individuals (an uncertainty).
Further, a factor that is an intervention for one decision maker (e.g.,
vaccination recommendation by the Centers for Disease Control and
Prevention, CDC) might be an uncertainty for another decision maker (e.
g., a hospital complex). The explicit purpose of a scenario design and its
intended primary audience, however, can help shed light on whether a
factor should be treated as a decision or an uncertainty.

2.1. Purposes of scenario design: a taxonomy

Scenario modeling is an attempt to glimpse something about the
future, often with the intention of informing actions in the present. In
this sense, there is a decision-making element to scenario modeling, but
the decisions can have many purposes: to change the trajectory of the
future through interventions; to respond to future outcomes; or to seek
more information. We believe that understanding the purpose of a sce-
nario modeling exercise informs the design of the scenarios, as well as
any subsequent ability to evaluate the success of the exercise. We pro-
pose six classes of scenario design that stem from the three primary

A. Decision Making
(decision axes only)

Example: Decide whether to implement
an intervention in all locations, select
ocations, or not at all

ntin  implement
idate everywhere

B. Uncertainty focus
(uncertainty axes only)
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goals. Two-factor designs are very common in scenario modeling across
all fields, so we provide shorthand for each class based on what the two
factors would be, but note later that simpler (one factor) or more com-
plex designs are possible.

2.1.1. Decision making (decisionx decision in a 2x2 matrix design)

In a decision-making setting, the scenarios are designed to contrast
alternative interventions, actions that are intended to influence the
outcomes being modeled. For example, in Fig. 1(A), the scenario design
consists of three scenarios, varying spatial extents of an intervention
(nowhere, in 1 of 3 candidate locations, everywhere). If multiple types of
interventions are being considered, a factorial arrangement of the levels
of each might be of interest, so the scenario design could be, say, a 2x2
matrix with both axes being interventions. The interventions could be
alternatives being considered by a decision maker (e.g., Borchering
et al., 2023) or potential interventions being explored to nudge decision
makers to consider new options (Meltzer et al., 2014).

2.1.2. Sensitivity analysis (uncertainty xuncertainty in a 2x2 matrix
design)

The purpose of sensitivity analysis is to understand the contributions
of different sources of uncertainty to the outcomes of interest (Saltelli
et al., 2004), and potentially whether they interact. In a sensitivity
analysis setting, then, the scenario axes focus on uncertainties. For
example, in the 2x2 scenario design in Fig. 1(B1), one axis captures
uncertainty about the basic reproductive number (Rg of 2.2 or 3.0) and
the other captures uncertainty about the serial interval (3 or 4.5 days).
Note that there is no decision explicit in this design, although research
efforts could be devoted to the more influential factor.

2.1.3. Situational awareness (uncertainty xuncertainty)
Three additional classes of scenario design resemble sensitivity
analysis designs, in that the scenario axes focus on uncertainties only,

C. Value of Information
(decision and uncertainty axes)

Example: |dentify whether the choice of spatial allocation
is affected by the basic reproduction number, R,

[ I

B1. Sensitivity Analysis B2. Situational Awareness
Example: Understand whether the Example: Project potential outcomes,
outcome is more strongly affected by
R, or the serial interval for ancillary decision making
prior
mmunity
90%

i
i
i
i susceptible

45 days 10%

susceptible

& }
< T
cold

against the backdrop of key uncertainties,

| |
B3. Horizon Scanning B4. Forecasting
Example: Characterize potential Example: Predict most likely
outcomes if a new viral variant emerges outcomes, given current
uncertainties

prior
mmunity

Fig. 1. Graphical depiction of six classes of scenario design, with heuristic examples. (A) In a Decision Making scenario design, the axis or axes are variables that are
under the control of the decision maker; the purpose of the design is to understand the outcomes associated with different interventions. (B) Four classes of design
have a similar structure (uncertainty axes only) but different purposes. (B1) Sensitivity Analysis designs focus on understanding the role of different sources of
uncertainty on the outcomes of interest. (B2) Situational Awareness designs resemble Sensitivity Analysis designs, but have an additional purpose to provide insight
about potential outcomes that may be relevant for ancillary decisions. (B3) Horizon Scanning designs explore the edges of the epistemic uncertainty, often to prompt
insights about what could happen in the future, in an effort to develop new interventions. (B4) Forecasting designs postulate multiple hypotheses in the parameter
space, with an appropriately weighted average of outcomes constituting a well-calibrated forecast, given the current uncertainty. (C) A Value of Information (VOI)
design (decision axisxuncertainty axis) examines whether a source of uncertainty affects the relative effects of interventions. The dashed lines represent the current
point estimates and the shaded regions represent the current confidence intervals for the uncertainty parameters.
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but their purposes differ, possibly affecting construction of the sce-
narios. Sometimes scenarios are used for situational awareness, to give
decision makers and the public a sense of the current state-of-the-world
and what might be coming. In this way, different from the sensitivity
analysis class, decisions are implied, although their effects are not
embedded in the design. For example, in the case of an emerging disease,
initial data may provide an estimate of the degree of prior immunity
from cross-immunity and the severity of the disease, but there might be
considerable uncertainty about both parameters (Fig. 1(B2)). A scenario
design that examines plausible values of both parameters allows scien-
tists to better understand the role of the sources of uncertainty, but also
allows decision makers to anticipate the range of possible outcomes, and
so consider how to prepare or respond.

2.1.4. Horizon scanning (uncertainty x uncertainty)

There is a large literature, primarily outside of epidemiology, that
focuses on horizon scanning (also often called scenario planning;
Sutherland and Woodroof, 2009). In this approach, scenarios are
designed to explore plausible extremes of what could happen (Fig. 1
(B3)), as a way to provoke awareness of future possibilities, motivate
preparation, avoid or plan for surprises, and encourage creation of new
intervention strategies. Even though there are no interventions on the
axes of this design, this approach is more decision-centric than sensi-
tivity analysis or situational awareness, in that a decision maker is aware
of looming threats and is looking for insight to guide novel in-
terventions. In conservation settings, horizon scanning around the
possible impacts of climate change has become an important approach,
as natural resource management agencies realize that their old tools may
no longer be effective in changing ecosystems. In epidemiological set-
tings, the horizon scanning class has been used particularly in thinking
about emergence of novel pathogens or variants, like spillover of avian
influenza to humans (Colizza et al., 2007).

2.1.5. Forecasting (uncertainty X uncertainty)

The fourth approach with a focus on uncertainty aims to design a set
of scenarios that can be combined into an unconditional probabilistic
forecast of the future, by careful choice of scenarios to bracket key un-
certainties (Fig. 1(B4)). This approach differs fundamentally from the
other types of designs described above: first, the set of scenarios needs to
collectively represent the full degree of uncertainty about influential
parameters (e.g., those included in analytical expressions for the
reproductive numbers derived from mechanistic models); and second,
the likelihood of the individual scenarios needs to be specified (or
derived from experience). With these conditions, a weighted combina-
tion of the scenario projections forms a proper forecast with appropriate
uncertainty. The belief weights on the scenarios (i.e., likelihood of each
scenario) can be updated dynamically in time as new evidence comes in,
using a Bayesian approach or its generalization, Dempster-Shafer The-
ory (Shafer, 1990). In the field of natural resource management, when
such dynamic scenario forecasting is embedded in a Markov decision
process, it is called “adaptive management” (Chades et al., 2012; Wal-
ters, 1986); similar approaches are commonly used in machine learning
and artificial intelligence applications (Sutton and Barto, 2018). Thus,
while descriptions in the epidemiological literature tend to make a sharp
distinction between forecasts and scenario projections, we believe the
latter can be transformed into the former with appropriate design and
weighting.

2.1.6. Value of information (decisionxuncertainty)

Value of information (VOI) is a common concept in the field of de-
cision analysis that assesses whether the more effective intervention
(rather than its outcome) is sensitive to the uncertainty. Thus, value of
information is a form of sensitivity analysis from the standpoint of the
decision maker (Felli and Hazen, 1998). In a value of information
design, at least one scenario axis is an intervention and at least one other
is an uncertainty. For example, in Fig. 1(C), the design consists of 6
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scenarios, in a 3x2 design, with one decision axis (the same spatial
implementations as in Fig. 1(A)) and one uncertainty axis (Ry); the result
of particular interest would be whether the ranking of decision options
was different under the two values of the basic reproductive number.
From a decision-making perspective, this is the most important design,
because it evaluates intervention alternatives while also investigating
whether their performance is robust to major sources of uncertainty; it
also can be used to inform the value of gathering more information prior
to making a decision.

There are other uses of scenario modeling, in training and tabletop
exercises, where the users’ interactions with the scenarios are central to
their purpose. The use of scenario modeling has a rich history in military
training (Straus et al., 2019; Kim et al., 2014; NRC, 2008), as well as
other fields. The goals of tabletop exercises include understanding
inter-agency coordination, preparedness in terms of personnel, equip-
ment, and protocols, and other aspects of complex responses to
emerging threats. Policy and decision makers are assigned roles and
asked to make various decisions during an evolving scenario. Examples
of settings where scenario modeling has been used in tabletop exercises
include responses to a novel SARS-like agent (Dausey et al., 2005),
release of plague bacteria (Yersinia pestis, Henderson et al., 2001), and a
new outbreak of foot-and-mouth disease in the United Kingdom
(DEFRA, 2018). The design of scenarios in these types of exercises tends
to be more complex than the others described above, with nested and
branching scenarios that respond to user actions. The details of such
designs are beyond the scope of this paper, although many of the ele-
ments that we discuss will be relevant.

3. Scenario designs used by the COVID-19 Scenario Modeling
Hub

To illustrate the proposed scenario classification, we retrospectively
analyzed 17 rounds of scenario designs developed by the U.S. COVID-19
Scenario Modeling Hub (SMH) (https://covid19scenariomodelinghub.
org/). Since December 2020, the SMH has convened multiple
modeling teams to generate scenario-based projections of COVID-19
cases, hospitalizations, and deaths over 3-24 month horizons, in close
collaboration with U.S. public health agencies. The 17 rounds of sce-
narios available for study addressed different needs at different stages of
the pandemic. The scenario classification described in this paper (Fig. 1)
was not available when SMH scenarios were designed, but we have
applied it retrospectively, recapturing the intent of each round through
publicly released reports and internal notes taken during the design
process (Table 1). Scenarios were typically designed through an iterative
discussion process between the SMH coordination group, participating
modeling teams, and public health partners. This process took anywhere
from 3 to 86 days (median 32.5 days; see also Loo et al., 2024 for more
details). For each round, we have identified the “motivating audience”
as the decision-making body that the designers had foremost in mind. In
most rounds, the motivating audience was the collection of federal,
state, and local public health agencies with authority to set public health
policy or guidance, but in 6 of the 17 rounds, the design was more
strongly motivated by consultation with a specific public health partner
(notated in Table 1 with bold type). It is important to note, however, that
the SMH coordination group always worked with, and had in mind, the
needs of multiple decision-making agencies beyond the motivating
audience, and, at times, these considerations also influenced the sce-
nario design.

Of the 17 rounds, 3 were classified as Decision designs (deci-
sionxdecision), 6 rounds as VOI designs (decision x uncertainty), and the
other 8 as some form of uncertainty xuncertainty design (Table 1). The
Decision designs were clustered earlier in the pandemic (December
2020-March 2021), representing a period when decisions regarding
NPIs and vaccines were most needed. The VOI designs occurred
throughout the pandemic (January 2021-April 2023) and focused on
various vaccination decisions, such as increase of primary series
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Table 1

Retrospective determination of scenario designs used by the U.S. COVID-19 Scenario Modeling Hub (SMH) in its first 17 rounds, released February 2021-April 2023.
Most SMH rounds included 4 scenarios reflecting different levels of controls or epidemiological situation, depending on the stage of the epidemic. All rounds, except for
Rounds 1 and 17, were organized as a 2x2 table representing two axes or key epidemic drivers (e.g., vaccination and NPI, Factors 1 and 2 columns), with a high and
low value assumed for each of these drivers. The classification of scenario design (last column) arises from considering the axes types, as well as the purpose of the
round: a “Decision” class arises when all scenario axes are decision axes; a value of information (VOI) class arises when a decision axis is crossed with an uncertainty
axis; and the remaining types (sensitivity analysis, situational awareness, and horizon scanning) arise from uncertainty by uncertainty structures. The classification of
the axis types was done with reference to the motivating audience, but other audiences could use the results for other purposes. Audience abbreviations: PHA, public
health agencies, that is, federal, state, or local public health decision makers (default generic audience for most rounds); CDC, U.S. Centers for Disease Control and
Prevention; WH, the White House COVID-19 Task Force; ACIP, the CDC Advisory Committee on Immunization Practices; SMH, the U.S. COVID-19 Scenario Modeling

Hub (for internal insights). Other abbreviations: NPI, non-pharmaceutical intervention (social distancing, masking, etc.); vax, vaccination.

Round Data Cut- Purpose Motivating Factor 1 (axis type) Factor 2 (axis type) Scenario

# off Date Audience Design

1 12/15/2020 Examine the impact of several combinations of PHA Vaccination and NPIs® (none) Decision
vaccination and NPI levels (decisions)

2 1/23/2021 Examine the impact of vaccination and NPIs in PHA Vaccination and NPIs” Variant (uncertainty) VOI
light of the emergence of a new variant (Alpha) (decisions)

3 3/06/2021 Compare the effects of vaccination and NPIs, in ~ PHA Vaccination (decision) NPIs (decision) Decision
light of limitations in vaccine distribution

4% 3/27/2021 Compare the effects of vaccination and NPIs, CDC Vaccination (decision) NPIs (decision) Decision
with updated estimations of variant (Alpha)
characteristics and availability of vaccine

5 5/01/2021 Understand potential long-term outcomes, in PHA NPI (uncertainty) Vaccination (uncertainty) Situational
light of ongoing reduction in NPIs and slower- awareness
than-expected update of vaccination

6 5/29/2021 Understand potential long-term outcomes, in PHA Vaccination/Hesitancy Variant (uncertainty) Situational
light of emergence of a new variant (Delta) and (uncertainty) awareness
slowing vaccine uptake

7% 7/03/2021 (Same as Round 6, with updated variant PHA Vaccination/Hesitancy Variant (uncertainty) Situational
parameters) (uncertainty) awareness

8* 8/14/2021 Examine the potential effects of waning PHA Protection level after Speed of waning immunity for Sensitivity
immunity waning immunity natural infection and vaccination  analysis

(uncertainty) (uncertainty)

9 9/11/2021 Estimate the impact of childhood vaccination, ACIP Childhood vaccination Hypothetical variant VoI
with a stress test involving emergence of a new (ages 5-11) (decision) (uncertainty)
variant

10" 11/13/2021 Examine booster coverage aspirations needed to ~ PHA Waning immunity Booster coverage (decision) VOI
offset waning immunity (uncertainty)

11 12/18/2021 Understand medium- to long-term outcomes, as ~ PHA, SMH Variant Severity Immune escape/transmissibility” Situational
related to uncertainties about the Omicron (uncertainty) (uncertainty) awareness
variant

12* 1/08/2022 Evaluate the potential impact of the Omicron PHA Severity (reduction Immune escape (uncertainty) Situational
wave (with parameters updated from Round 11) relative to Delta) awareness

(uncertainty)

13 3/12/2022 Examine the long-term impact of waning CDC Waning immunity Hypothetical variant Horizon
immunity, in the face of potential emergence of (uncertainty) (uncertainty) scanning
a new variant

14 6/04/2022 Compare the effects of different age targets for AcCIP Age targets for boosters Variant (uncertainty) VoI
fall 2022 boosters, with a stress test involving a (decision)
new variant

15 7/30/2022 Examine the effect of the timing of rollout of WH, ACIP Timing of reformulated Variant (uncertainty) VoI
bivalent boosters, with and without emergence boosters (decision)
of a new high immune-escape variant

16 10/29/2022 Understand the 6-month outcomes, as related to =~ PHA Booster uptake Variant (uncertainty) Situational
uncertainty about booster update and the (uncertainty) awareness
epidemiology of emerging variant “swarms”

17 4/15/2023 Examine the effect of different booster targetson ~ CDC, ACIP Age targets for new Rate of immune escape VOI

multi-year outcomes, in the face of uncertainty
about antigenic drift

boosters (decision)

(uncertainty)

" Rounds marked with an asterisk were primarily an update of the previous round.

@ Round 1 included 4 scenarios that looked at combinations of social distancing measures, masking guidance, vaccine availability, and vaccine hesitancy, and did not
include a factorial structure.

b The first axis of Round 2 was composed of three decision variables: state orders with regard to NPIs (social distancing, masking) and vaccine availability. A full
factorial for the first axis would have had 8 levels (2x2x2), but this was reduced to just two levels by combining the most optimistic and most pessimistic choices for
each factor.

¢ Round 11 had an implicit 2x2x2 design (severity of Omicron infection, transmissibility, and immune escape), but the second two factors were condensed together
(low transmissibility coupled with higher immune escape; high transmissibility coupled with low immune escape). Thus, a fractional factorial design was used to allow
exploration of more factors with fewer scenarios.

4 Round 17 was a 3x2 design, where the first axis included three levels.

X These rounds were not publicly released.

coverage among adults (Round 2), expansion of the vaccine program
among children (Round 9), or comparison of different booster strategies
(Rounds 14 and 15). In these VOI designs, the second axes typically
described properties of virus variants, extent of waning, or immune

escape. Of the 8 rounds classified as uncertainty x uncertainty designs, 6
were considered as situational awareness, 1 as sensitivity analysis, and 1
as horizon scanning. Situational awareness rounds were designed to
anticipate the arrival of new variants, or evaluate the potential impact of
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growing vaccine hesitancy and declining NPIs. The round classified as
sensitivity analysis was devoted to understanding the impact of waning
assumptions on disease dynamics (training Round 8 in summer 2021,
which was not publicly released). The round classified as horizon
scanning explored potential interactions between waning immunity and
a hypothetical immune escape variant in the post-Omicron period.
Although SMH scenarios span many of the designs presented in our
proposed classification, forecasting scenarios were not represented per
se, in part because the primary purpose of the SMH was not to explicitly
combine scenarios (see Bay et al., 2024 for a post-hoc application of this
concept).

These classifications were challenging to make because the SMH
rounds were used (and implicitly designed for) many audiences, each of
which might interpret a design differently. For example, Round 4 was
designed specifically with the CDC in mind in Spring 2021, and, at the
time, the degree to which they should emphasize vaccination versus
compliance with NPIs was important (Decision category, deci-
sionxdecision axes). A similar classification would apply from the lens
of a state or county public health agency, because recommendations to
the public about vaccination and NPIs were in their authority. In
contrast, for a hospital administrator, these scenarios might have served
as situational awareness (uncertainty x uncertainty) that was useful in
anticipating staff and resource needs over the coming months. Relatedly,
Rounds 11 (December 2021) and 12 (January 2022) addressed the
Omicron variant and were designed primarily for situational awareness,
with scenarios informed by early data on variant characteristics from
South Africa. However, given the limited amount of information avail-
able on Omicron severity in Round 11, a broad range of severity as-
sumptions was chosen, so that this round could also be considered
horizon scanning.

Another interesting challenge in retrospectively classifying the de-
signs of the 17 SMH rounds was judging whether a particular axis was a
decision or uncertainty axis, as the same axis designed for the same user
might have had a different meaning at different stages of the pandemic.
For instance, in the first four rounds, we interpreted the vaccination and
NPI axes as decision axes, because the CDC and other public health
agencies were actively grappling with how aggressively to recommend
vaccination, how to allocate initially limited doses of vaccine, and how
strongly to implement and enforce NPIs. In Round 5, however, by May of
2021, public health agencies seemed to have become somewhat resigned
to the behavioral choices of individuals regarding vaccination and
compliance with NPIs, and so we treated those factors as uncertainties
rather than decisions. On reflection, it would have been easier to classify
the axes and the scenario designs in the moment, and in consultation
with the motivating audiences.

4. Detailed considerations in scenario design

In the following sections, we describe the elements of a scenario
design in an epidemiological setting, more elements of experimental
design that are pertinent, and other practical considerations. To guide
the reader, we have provided a figure that recapitulates the process of
scenario design and highlights key components that need to be consid-
ered (Fig. 2). When relevant, we illustrate these considerations with
examples drawn from the 17 rounds of SMH scenario designs.

4.1. Elements of a scenario design

Several key elements should be considered in scenario design,
including output metrics, details of how the scenarios differ, initial
conditions, common factors, and the approach for handling uncertainty
not otherwise expressed across scenarios. All such design decisions
should be informed by the scenario’s purpose. Transparency and pre-
cision is important for communication, especially in multi-model set-
tings to ensure that contributing models produce comparable outputs.
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4.1.1. Output metrics

A scenario design needs to specify output metrics to be projected.
This choice can strongly influence the insights gained as well as in-
terventions recommended (Probert et al., 2016). For infectious disease
projections, output metrics might include incident or cumulative cases,
hospitalizations, or deaths, which may be further broken down by
subgroups (e.g., age, region, race, or ethnicity). Metrics that are not
strictly epidemiological may also be of interest (e.g., business closure
duration for NPI-based scenarios, Shea et al., 2023). Generally, multiple
outputs are assessed separately, but multi-criteria decision analysis
(Keeney and Raiffa, 1993) would permit composite outputs to be
addressed. The scenario design also needs to specify the time frame and
spatial extent of outputs, including temporal and spatial resolution.
Another important consideration is the establishment of shared “ground
truth” data for output metrics, particularly in the context of a collabo-
rative effort, as these data are typically used for model calibration.

Details about how to summarize and report results also should be
specified; this will depend in part on the desired inference. A full
probability distribution for the output metrics might be desired, or
summaries like the mean, median, or an exceedance probability might
suffice. Alternatively, individual replicates (e.g., daily or weekly simu-
lations) may be useful in several cases. First, for outputs that are time-
dependent, presenting an average over replicates can mask important
features, like the size of a peak in cases (Juul et al., 2021); calculation of
the desired metric by replicate before averaging can help avoid this
issue. Second, individual replicates can be used to contrast projections
across scenarios (see discussion about pairing replicates in section 4.2
Principles of experimental design as applied to scenarios). Finally, individ-
ual replicates also offer more flexibility than summary measures, as the
need for nuanced metrics may arise after scenarios have been designed.
We refer the reader to Sherratt et al. (2024) for deeper comparison of
summary outputs and individual replicates.

4.1.2. Distinguishing features of scenarios

The key aspects that differentiate the scenarios are the choice of axes
and levels set for each (Fig. 2). As we discussed earlier, the choice of
scenario axes arises out of the purposes of the scenario design, but even
with clarity of purpose, the choice can be difficult. Notably, the sources
of uncertainty may be quite numerous, and selecting the focal un-
certainties can thus be challenging. A large factorial design (over many
different axes of uncertainty) is possible to imagine but may be time-
consuming to implement and even harder to interpret and communi-
cate. Selection of a subset of uncertainties essentially asks the designers
to conduct an implicit sensitivity analysis to identify the sources they
think will most affect the outcomes of interest. This sensitivity analysis
can be, and sometimes is, undertaken with a simplified prototype model;
in other cases, the expert judgment of the designers is used to select the
axes. A similar concern can arise with decision axes—there can be many
different interventions and combinations of interventions to consider. In
our experience, however, the decision axes are easier to identify,
because they often arise from direct questions being posed by decision
makers.

Levels on a decision axis may represent specific discrete in-
terventions (e.g., approve a vaccine for a specific age group or not) or
represent a continuous variable that is closely tied to a decision (e.g.,
high and low coverage of a vaccination campaign). In the latter case, the
levels chosen might bracket the range of effects that could be achieved
under different strategies. Sometimes counterfactual scenarios are used
to evaluate the population-level benefits of an intervention. For
example, at the beginning of COVID-19 vaccine rollout in December
2020, SMH Round 1 considered a scenario without any vaccination as
well as scenarios with various coverage levels (Table 1). Because the
vaccine had already been approved and manufacturing was in progress
(FDA, 2020), the no-vaccination scenario was not expected to eventuate,
but it was important for comparative purposes.

Levels on an uncertainty axis may be based on available estimates of
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Determine purpose to inform scenario design

questions to address, intended audience

Define features that
distinguish scenarios

scenario axes, axis levels

Define features in
common across scenarios

output metrics, initial conditions,

shared parameters, sources of uncertainty

Other design considerations:

e practical limitations
e needs of multi-model setting
e ethics

e desired inference
e scenario evaluation
e anticipated communication

Fig. 2. Overview of scenario design process. First, determine the purpose of the scenario modeling exercise, including the questions to be addressed and the intended
audience. This purpose informs all other design decisions. The taxonomy defined in Fig. 1 should be applied at this step. Then, define the features that distinguish
scenarios and those that are common across scenarios. Last, consider other design issues that may be relevant during all phases of scenario design.

the parameter of interest and it is common to set values using the
associated confidence intervals. For sensitivity analysis or situational
awareness designs, values associated with an 80- to 95-percent confi-
dence interval may represent reasonable bounds on current knowledge
(Fig. 1(B1) and 1(B2)). Horizon scanning designs may use more extreme
values to illustrate what could happen if the future does not conform
with the past (Fig. 1(B3)). When empirical confidence intervals are not
available, expert opinion, literature review, or survey information can
be used to bracket optimistic and pessimistic assumptions (e.g., SMH has
used behavioral surveys of propensity to get vaccinated, Beleche et al.,
2021). Further considerations on the choice of levels, as related to
experimental design, are discussed below.

4.1.3. Common factors

Another important aspect of scenario design is the factors that are
common across the scenarios. These commonalities are not part of the
scenario axes and can include shared data sources and their interpre-
tation, common assumptions about disease dynamics, behavioral re-
sponses, or interventions.

4.1.4. Initial conditions

Initial conditions represent the state of the modeled system at the
start of the scenario projection period. The initial conditions may vary
across scenarios or across models. For example, differing scenario as-
sumptions about waning immunity may not only imply a different un-
derstanding of what will happen in the future, but also about what
occurred in the past; thus, calibration of the model could lead to
different initial conditions for each scenario. In a multi-model setting,
precise initial conditions are rarely defined, because the models have
different calibration approaches and structures. Instead, it is valuable to
specify aspects of the process that all models should employ to set initial
conditions.

4.1.5. Additional sources of uncertainty

While well calibrated forecasts integrate over all sources of uncer-
tainty, scenarios typically encompass a subset of all possible un-
certainties (Reich et al., 2022). Forecasting scenario designs represent a
special case of scenarios, where the combination of uncertainty captured
within a single scenario and between scenarios should be comprehensive
(see Fig. 1(B4)). For all other scenario designs, judgment can be made
about how much uncertainty to include. The power to discern

differences among the scenarios increases as other factors are controlled,
but this comes at the expense of generalizability. In a collaborative hub
setting, it is important for different modeling teams to make their own
choices about many of the uncertainties not specified in the designs.
However, it can sometimes be valuable to provide guidance for how to
handle key parameters and assumptions that could drive disease dy-
namics that are not part of the scenario axes (e.g., all SMH rounds
provided guidelines on vaccine efficacy, and bounds were often pre-
scribed for waning immunity).

4.2. Principles of experimental design as applied to scenarios

As noted above, scenario design and experimental design are closely
related conceptually and structurally. Individual scenarios are analo-
gous to experimental treatments, and there are analogous considerations
of replication, randomization, and control. Here we briefly discuss these
parallels.

The scenario designs proposed in our taxonomy have analogs in
experimental design. For example, a 2x2 VOI design is analogous to a
randomized block design, where the uncertainty axis serves as a control
(or block) variable, to test whether the intervention effect is consistent
across blocks (Montgomery, 2017). Designs with more than two axes or
levels per axis are also possible, and fractional factorial designs (where
only a strategically selected part of the full factorial design is explored)
can be used to explore the main effects of many factors, without having
to run as many scenarios. Also, there is a tension in statistical design of
experiments that helps choose the levels of the factors: the closer the
levels are together, the more reasonable it is to assume a linear effect
between them; but the farther the levels are apart, the higher the power
to discern differences and the scope of inferences that can be made.
Similar logic is applicable in scenario design.

In experimental design, holding all factors constant within each
replicate is a powerful form of control. Pairing replicates across sce-
narios is an analogous concept, where as many elements of the model as
possible are matched in a particular replicate, like the initial conditions,
the sampled parameter values, and, if possible, some aspects of temporal
variance. Although common in some fields (e.g., McGowan et al., 2011),
pairing replicates can be challenging in epidemiological models, espe-
cially if the initial conditions depend on the scenario specification or if
demographic stochasticity (e.g., binomial sampling for individual out-
comes) is integral to the model (Kaminsky et al., 2019). Nevertheless,
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even if it is partial, pairing replicates increases the power to discern
treatment effects.

In some cases, multiple rounds of experiments are anticipated, and
the results from the early experiments can be used to refine later ex-
periments. Similarly, sequential designs can be achieved with multiple
rounds of scenarios. Several SMH rounds were sequential updates in
response to the arrival of a new variant or to inform a new policy. For
instance, Round 14 was designed to inform the CDC Advisory Com-
mittee on Immunization Practices (ACIP) recommendation for refor-
mulated boosters in the fall of 2022, comparing age-restricted versus
broader coverage. Presenting results to policymakers (Rosenblum et al.,
2022) prompted a follow-up round (Round 15), which made small
changes to scenario axes and values to assess whether there would be
benefits to releasing boosters earlier (Table 1). If a comparison of out-
puts across sequential rounds is planned, it is important to record factors
that change between rounds, which could confound outputs of interest
(e.g., changes in data availability, types of interventions being consid-
ered, or new model developments).

More complex scenario designs are possible with multi-round sce-
narios, including dynamic sequential and branching scenarios.
Sequential designs are not fixed a priori, but depend on the outcomes of
experiments during the exercise (Wald, 1947; Robbins, 1952; Chernoff,
1992). Methods to analyze such sequential statistical designs can be
employed to analyze sequential scenarios. Branching scenarios, moti-
vated by branching or nested statistical designs (Hung et al., 2009), can
be combined with sequential elements to produce scenarios that are
valuable for training and tabletop exercises, where the branches arise in
response to dynamic interventions made by users (Barrett et al., 2015;
Parikh et al. 2016).

4.3. Other design considerations

4.3.1. Practical limitations

There are practical limitations and trade-offs in scenario design,
including model capability, computational resources, clarity of as-
sumptions, and time taken to design a scenario that is actionable. Sce-
narios must not be too complex, so that modeling teams can generate
projections in a reasonable amount of time. In a multi-model setting,
minimally complex scenarios also encourage participation from a larger
number of teams. Access to additional computational resources can be
enhanced in times of crisis, but the need to balance the aims of the
scenario design with the practical aspects of modeling remains. If
practical constraints strongly and repeatedly influence scenario design,
the purposes of the scenario may need to be revisited.

To accommodate these multifaceted needs, the scenario design
process is often iterative, involving both internal and external discus-
sions. Internal communication of scenario requirements, especially in
the context of a multi-model hub, usually requires multiple rounds of
discussion to reduce unwanted (linguistic) uncertainties while retaining
a good expression of the scientific uncertainties focal to the scenarios
(Shea et al., 2020). If time permits, something akin to the modified
Delphi process is valuable: produce a first round of results; discuss the
results across models as a group, looking for differences arising from
linguistic uncertainty; then allow teams to produce a second round of
results that reflect the clarifications (Shea et al., 2020). However, if
decision makers only have a short period of time to implement an
intervention, a small number of simple scenarios run on stripped-down
models might be all that can be achieved.

External discussions with public health decision makers can inform
the choice of scenario axes (e.g., potential interventions) and corre-
sponding assumptions (e.g., compliance with those interventions).
Curiously, evidence from cognitive psychology suggests that decision
makers often need help to fully articulate their concerns (Bond et al.,
2008), so a back-and-forth conversation to develop the purpose is an
important step. As a result, scenario design can sometimes take several
weeks, as illustrated by the SMH experience (Table 1).
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4.3.2. Ethical considerations

Ethics of scenario design inherit attributes from the broader ethics of
biomedical research (Beauchamp and Childress, 2009), epidemiological
research (CIOMS 2009), and decision-making for public health emer-
gencies (Emanuel et al., 2022). Scenario design should have the prop-
erties of autonomy, beneficence, non-maleficence, and justice.
Autonomy requires the scenario design process to be scientifically
grounded and well-documented (including specification of clear objec-
tives, Smith et al., 2021), capturing uncertainty and recording as-
sumptions. Additionally, scenario design should be beneficial, in that it
should promote evidence-based policymaking (Choi et al., 2005),
providing benefit over decisions that would be made without scenario
projections (Taylor, 2003). These principles also play a role in
non-maleficence, as inaccuracies in scenario design may cause harm to
populations affected by the recommendations. Simultaneously, affected
populations may have conflicting perspectives on the decision alterna-
tives (Brownson et al., 2013), which can ideally be incorporated into
scenario design via counterfactual null scenarios or multi-objective
formulations. Existing inequalities should be incorporated into and
addressed by scenario design; further, scenario design should not
exacerbate these inequalities, nor create new inequalities (CIOMS
2009). Scenario modeling efforts should be evaluated according to these
criteria (Boden and McKendrick, 2017). Multiple metrics of equity and
fairness can be considered in scenario design (Braveman and Gruskin,
2003; Whitehead, 1992; Mhasawade et al., 2021), as different stake-
holders may have different perspectives (Whitehead, 1992).

4.3.3. Scenario evaluation

In some cases, there may be a desire to evaluate scenarios and pro-
jections after the projection period has passed; does this desire affect
scenario design? Broadly, scenarios are well designed if the resulting
projections answer the primary question and serve the intended users
even if the scenario assumptions do not materialize. Yet it still may be
useful to assess how well scenario assumptions match unfolding reality,
especially when a goal of scenario design is bracketing (i.e., situational
awareness or forecasting situations). Scenario evaluation is difficult in
practice; Howerton et al. (2023a) provide an illustration of salient is-
sues. Scenario parameters may not be measurable even after projection
periods have passed (e.g., degree of immune escape of a new variant, or
even the impact of an NPI). For horizon scanning and for scenarios
including counterfactuals, evaluation of scenario parameters and
resulting projections can be particularly difficult. But against these
challenges, there can be meaningful benefits of scenario evaluation,
including ongoing improvement of individual models (Alley et al.,
2019), improvement in scenario design itself, and building trust with
end-users (Raftery, 2016). Consideration of scenario evaluation at the
design stage may enhance the ability to evaluate the scenarios, for
instance, by choosing scenario axes that can eventually be measured.
Thus, while scenario evaluation is not the primary purpose of a scenario
projection exercise, it might be a strategic consideration in scenario
design.

4.3.4. Communication

In epidemiology, scenario projections are often designed for specific
audiences and can have public visibility. Thus, it can be advantageous
for scenarios to be clear enough for easy communication to and inter-
pretation by external audiences. For example, SMH uses a standard
scenario design template to provide consistency in how scenario as-
sumptions are shared and ease comparisons between rounds and be-
tween hubs (see https://github.com/midas-network/covid19-scena
rio-modeling-hub for an example). For additional discussion of gener-
alizable infrastructure, see the HubVerse project (https://hubdocs.
readthedocs.io/).

Presentation of scenario results is also an important component of
communication worth anticipating. A successful display of results en-
tails three, often conflicting, objectives: enabling comparisons among


https://github.com/midas-network/covid19-scenario-modeling-hub
https://github.com/midas-network/covid19-scenario-modeling-hub
https://hubdocs.readthedocs.io/
https://hubdocs.readthedocs.io/

M.C. Runge et al.

scenarios; communicating the uncertainty within and across models (in
a multi-model setting); and supporting multiple different classes of
constituents, including researchers, public health officials, journalists,
and members of the public. Key challenges include communication of
the nuances of scenario projections to lay audiences (as different from
forecasts), and visualization of uncertainty (Kamal et al., 2021; Hullman
et al., 2019; Hagele et al., 2022; Spiegelhalter, 2017). See Loo et al.
(2024) for further discussion of SMH communication strategies.

5. Discussion

The experience of the U.S. COVID-19 Scenario Modeling Hub over its
first 17 rounds provided an impetus for the scenario taxonomy proposed
in this work, which we believe will be valuable in epidemiological set-
tings, and perhaps more broadly. We have attempted to provide broad
guidelines for scenario design that apply in single and multi-model ef-
forts, and made parallels with other fields such as experimental design.
Several insights with broader relevance bear reflection: the importance
of the audience and a clear statement of the purpose of the design; the
power of the design itself; the need to think carefully about uncertainty;
and the benefits of a clear process.

By projecting multiple, clearly defined scenarios that were motivated
by public health needs, SMH projections have had significant public
health impact (Borchering et al., 2021, 2023; Truelove et al., 2022;
Rosenblum et al., 2022; Biggerstaff et al., 2022). It was difficult at times,
however, to balance the needs of decision makers with the capabilities of
available models. Implementing realistic scenarios and generating
well-calibrated projections can require added model complexity or
additional time. Key policy questions or vast uncertainty may suggest
the need for many scenarios, but computational constraints may limit
the number of scenarios that can be modeled in a timely fashion.
Further, the foundational philosophy behind multi-model ensembles,
namely, the diversity of approaches taken by the independent groups
(Shea et al., 2020) can itself pose a challenge for scenario design. But the
repeated nature of the SMH effort has allowed the complexity of the
models and the subtleties of scenarios to increase.

Clarity of audience and purpose affect scenario design and its impact.
The influence of SMH rounds that were developed in direct conversation
with a decision-making agency was easiest to illustrate. But many
valuable impacts are harder to demonstrate, like the deepening under-
standing among modeling teams of the epidemic in the U.S. prompted by
the structured challenge of shared scenarios. In retrospect, we found it
somewhat challenging to look back over two years of work and recover
the specific purposes of each round. We propose that an active and clear
articulation of the audiences and the purposes of a scenario design will
help to sharpen the design of the scenarios in future SMH rounds, and
similar efforts in the future.

The design of scenarios provides the structure for inference. The
taxonomy captured in Fig. 1 was not available during the design of SMH
Rounds 1 through 17, but we believe that it could have enhanced some
of the designs. Value of information designs are particularly interesting,
because they both allow the comparison of alternative interventions and
test those comparisons against critical sources of uncertainty. The SMH
used VOI designs in 6 of the first 17 rounds, but curiously, none of those
showed a reversal in preference of intervention based on the uncertainty
axis. On one hand, that’s a great relief to decision makers, but on the
other hand, it raises a question about whether the uncertainties
considered were most relevant to the decisions. Would conscious
attention to the power of particular design structures lead to even more
valuable scenario designs?

Scenario design invites careful and deliberate consideration of un-
certainties. Scenario axes often focus on uncertainties hypothesized to
be major drivers of future dynamics or decision outcomes. The first
question is whether the process used to identify those uncertainties is
robust. The second, perhaps more difficult question, is how to handle the
remaining uncertainty. For example, operational uncertainties about the
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implementation of interventions may be required to create clear, easy-
to-interpret scenarios, but such uncertainties are also important to ac-
count for in projected outcomes. In evaluating outcomes of the early
SMH rounds, Howerton et al. (2023a) and Wade-Malone et al. (2024)
note that results of individual models often had quite different vari-
ances, suggesting that they captured different sets of uncertainty that
weren’t otherwise specified in the scenario design. Is that problematic or
desirable? How does calibration of the individual models affect cali-
bration of the ensemble projection (Howerton et al., 2023b), and how
does that affect scenario design? We believe that there are some open
questions here that warrant further study.

The process of scenario design affects efficiency, participation, trust,
and communication. Particularly in multi-model collaborative settings,
the process of scenario design is challenging, and a clear process with
dedicated support staff can support and invite the participation of the
collaborating teams. But even in single-model settings, the process of
scenario design aids in communication with the intended audiences and
can promote trust.

As noted earlier, scenario design is practiced in many fields besides
epidemiology. The framework that we have proposed in this paper in-
tegrates elements of the three schools described by Amer et al. (2013):
like the Intuitive Logics School, it relies on experts’ conceptual under-
standing of systems to develop causal maps that inform scenario design;
like the Probabilistic Modified Trends School, it combines extrapolation
of past trends with modifications to acknowledge changes in the future;
and, like the French School, it places an emphasis on the decision
setting, that is, the ways in which trajectories can be influenced by
intervention. We are hopeful that more cross-disciplinary examination
of how scenario projections are designed and used can lead to common
advances across fields.

Beyond the insights that arose from the SMH experience, there are
other questions that may be relevant for development of scenario
modeling practices in epidemiology. We see these as open questions for a
future research agenda, to improve the impact of scenario methods:

o Are there perspectives in scenario design, especially in collaborative
ensemble settings in other fields, that would enhance the practice in
epidemiology? Similarly, can our efforts inform practice in other
fields?
Is there a design trajectory across an epidemic? That is, can we
anticipate a specific sequence of questions, and even have template
scenario designs ready? As a proposal, four stages could arise: (1)
initial bounding of uncertainty and exploration of simple in-
terventions; (2) assessing specific interventions (e.g., vaccination) as
they become available; (3) assessing new dynamics (e.g., variants,
behavior changes) as they arise; and (4) transitions to questions
relevant in an endemic phase. Is this a useful start?

e What are the pitfalls to avoid in scenario design in public health
settings? Is it possible to inadvertently mislead or confuse decision
makers with poorly designed scenarios? Are other unintentional
negative outcomes possible?

e Were there an operational scenario modeling hub for a particular
disease, would a set of scenario designs become standard? For
instance, would a regularly calibrated baseline scenario with several
updated contrasts (e.g., emergence of a new variant) make sense? Or
are infectious diseases too complex, because human behavior,
available interventions, and viral evolution change so quickly that
standard scenario designs are not useful?

Can lessons from scenario design in one location or outbreak reliably

be applied in other settings? This will be particularly important at

times where urgent results are needed, or in low-resource settings (e.

g., low and middle income countries).

e How can we best communicate scenario results and explain the dif-
ference between scenarios and forecasts, which are more intuitive?
Are verbal or numerical or graphical representations of scenario
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designs and results most effective and do they differ for more or less
quantitatively comfortable users?

In summary, the COVID-19 pandemic coalesced a great deal of
burgeoning expertise in epidemiological modeling, scenario projection,
scenario design, and collaborative modeling endeavors. Using the
experience of the U.S. Scenario Modeling Hub to reflect on the state-of-
the-art in scenario design, we believe that a sound philosophical
framework and procedural methodology for scenario design would in-
crease the efficiency and efficacy of these methods, both in epidemio-
logical settings and in other fields of endeavor.
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