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A B S T R A C T   

Across many fields, scenario modeling has become an important tool for exploring long-term projections and how they 
might depend on potential interventions and critical uncertainties, with relevance to both decision makers and sci
entists. In the past decade, and especially during the COVID-19 pandemic, the field of epidemiology has seen sub
stantial growth in the use of scenario projections. Multiple scenarios are often projected at the same time, allowing 
important comparisons that can guide the choice of intervention, the prioritization of research topics, or public 
communication. The design of the scenarios is central to their ability to inform important questions. In this paper, we 
draw on the fields of decision analysis and statistical design of experiments to propose a framework for scenario design 
in epidemiology, with relevance also to other fields. We identify six different fundamental purposes for scenario 
designs (decision making, sensitivity analysis, situational awareness, horizon scanning, forecasting, and value of 
information) and discuss how those purposes guide the structure of scenarios. We discuss other aspects of the content 
and process of scenario design, broadly for all settings and specifically for multi-model ensemble projections. As an 
illustrative case study, we examine the first 17 rounds of scenarios from the U.S. COVID-19 Scenario Modeling Hub, 
then reflect on future advancements that could improve the design of scenarios in epidemiological settings.  
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1. Introduction 

Epidemics prompt many questions, from public health policy makers 
wanting to know how to intervene, to members of the public wanting to 
know what to expect, to industrial leaders wanting to know how to react. 
These questions are all necessarily forward looking, creating a demand 
for epidemiologists to project what may happen in the future. Epide
miological models provide a way to integrate historical observations, 
biological and sociological knowledge, and our understanding of disease 
mechanisms to produce projections of epidemiological outcomes into 
the future. These projections can be used to guide decisions (by gov
ernments, industries, and individuals) about how to respond, and to 
guide research investment (to reduce uncertainty in projections or 
processes). 

Quantitative scientists make a distinction between forecasts and 
scenario projections (Reich et al., 2022). Forecasts are unconditional 
predictions about the future, statements about what is expected to 
happen. The most useful forecasts are probabilistic, expressly recog
nizing and transparently quantifying the uncertainty in the prediction. 
Scenario projections, on the other hand, are conditional predictions 
about the future, statements about what would happen if a set of con
ditions were to be met. The most useful scenario projections are also 
probabilistic, but conditionally so; they typically express the probability 
of outcomes if certain conditions are met, but do not usually quantify the 
probability of those conditions themselves being met. Scenario pro
jections, then, are exploratory—they allow the examination and contrast 
of multiple futures. Both forecasts and scenario projections make as
sumptions (for example about social behavior or public health policy) 
and so, in a sense, the predictions from both are conditional on those 
assumptions. But in forecasts, the intent is to embed any uncertainty in 
those assumptions in the forecast itself, so that the forecast is a singular 
probabilistic representation of what is likely to happen. In scenario 
projections, some of the conditions are of specific interest and are iso
lated as separate scenarios. 

Scenario modeling is common in many disciplines, including climate 
science (Krey, 2014), conservation biology (Nicholson et al., 2019), 
wildlife and fisheries management (Johnson et al., 1997), economics 
(McDowall and Eames, 2006), transportation (Bartholomew, 2007), 
urban planning (Khakee, 1991), energy development (Leung and Yang, 
2012), agriculture (Pfister et al., 2011), invasion ecology (Shea et al., 
2005), military planning (Dowse, 2021), disaster planning and response 
(Tyszkiewicz et al., 2012), nuclear war and terrorism (NASEM, 2023), 
and many others. One of the most visible global examples is the Coupled 
Model Intercomparison Project (CMIP), which has produced six phases 
of climate projections based on shared scenario specifications (Eyring 
et al., 2016; Meehl et al., 2000). The most recent phase of projections 
(CMIP6) is based on a set of “shared socio-economic pathways” and 
provides central evidence for the sixth assessment report of the Inter
governmental Panel on Climate Change. Importantly, the shared 
socio-economic pathways (and the “representative concentration path
ways” of CMIP5) represent forcing scenarios (notably concerning carbon 
emissions); the climate projections are conditional on the scenario as
sumptions, but the likelihood of those conditions occurring was not 
estimated. Similar types of scenario projections are made in many other 
fields, but there is not yet a common lexicon that unites the large 
literature on this subject. In an influential book, Martelli (2014) argued 
that the field of scenario planning faces a number of shortcomings, 
notably a lack of clarity in the conceptual foundations, methodological 
inconsistency, and absence of evidence of effectiveness. A more recent 
review finds progress toward a synthesis of concepts and methods and 
increasing evidence of effectiveness, but notes that the field remains 
fragmented (Cordova-Pozo and Rouwette, 2023). 

The use of scenario modeling has become pervasive in infectious 
disease epidemiology over the last two decades. Notable examples 
include modeling of different types and layers of interventions to control 
emerging outbreaks such as foot-and-mouth disease in the United 

Kingdom (Tildesley et al., 2006), avian influenza (Longini et al., 2005), 
the Ebola outbreak in West Africa (Meltzer et al., 2014), and the 
COVID-19 pandemic (Borchering et al., 2023; Borchering et al., 2021; 
Hellewell et al., 2020; Truelove et al., 2022; Walker et al., 2020). 
Additional notable use cases include the roll-out of new interventions for 
endemic pathogens where, for instance, scenario projections can help 
anticipate the benefits and dynamic changes associated with new vac
cines or improved drugs (Flasche et al., 2016; Pitzer et al., 2009; Eaton 
et al., 2012; Houben et al., 2016). In some cases, the scenario projections 
are produced from a single model (e.g., Meltzer et al., 2014), while in 
others, the scenario projections come from multiple models (Flasche 
et al., 2016; Houben et al., 2016), drawing on a growing literature 
documenting the value of multi-model efforts (Johansson et al., 2019; 
Shea et al., 2020, 2023; Cramer et al., 2022; Prasad et al., 2023). Sce
nario design plays an important role in infectious disease projections 
over long time scales, not only to contrast different intervention 
schemes, but also to control for uncertainty in key parameters that may 
be magnified over time. However, there is little guidance on how to 
optimize scenario assumptions to answer particular public health 
questions, especially in the context of multi-model efforts. 

Across fields, one of the central features of scenario projections is 
that “scenarios seem to exist in sets and the scenarios that inhabit those 
sets are systematically prepared to co-exist as meaningfully different 
alternatives to one another” (Spaniol and Rowland, 2019). How, then, 
are these sets developed? Many methods for scenario design exist and 
attempts have been made to classify the methods into several schools of 
approach (Amer et al., 2013). In this paper, we draw from the fields of 
decision analysis and experimental design to propose a framework for 
scenario development that integrates the three schools discussed by 
Amer et al. (2013). We place this work in the context of epidemiological 
modeling, but intend the framework to be more broadly useful. Our 
primary thesis is that clarity about the purpose of the scenarios is central 
to their design, and we offer a taxonomy of design purposes. 

2. Purposes of scenario design 

We approach scenario design like experimental design. First, a sce
nario design, like an experimental design, should have a purpose—a 
question (or questions) that the designers seek to answer. Second, a 
scenario design consists of a set of alternative scenarios (analogous to 
experimental treatments), which differ with regard to one or a few 
factors. Third, the foundational experimental design concepts of control, 
randomization, and replication have analogs in scenario design. The 
scenarios can be designed to control certain factors by prescribing 
shared assumptions or parameter values. By randomly sampling from 
the probability distributions for uncontrolled parameters, inferences 
from scenario comparisons can be extended to the full parameter space 
represented by those distributions. Controlling for these otherwise un
specified variables is common in experimental design through a method 
called pairing; this is also possible in scenario modeling by pairing 
replicates across scenarios (i.e., compare replicates with the same un
controlled parameters, that therefore differ only by scenario). Further, 
each scenario can be replicated many times, either by soliciting repeated 
projections from a single model structure or by soliciting projections 
from multiple models of varying structure. These concepts are 
embedded in our framework for scenario design. 

One of the central questions in scenario design is how the individual 
scenarios differ. Many factors that will affect future dynamics are un
known at the time of projection (e.g., human behavior or key aspects of 
pathogen biology). Scenario design, then, is the process of strategically 
choosing among those many uncertainties to identify a set of scenarios 
that together can achieve the purpose of the scenario projection exer
cise. Inspired by multiple rounds of COVID-19 projections that have 
addressed public health goals at different stages of the pandemic, we 
identify three primary purposes in scenario design: making decisions, 
exploring uncertainty, and identifying how decisions may be affected by 
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uncertainty. To understand the differences between these purposes, we 
distinguish two types of factors (often described as “scenario axes”): 
interventions (or decision options) and uncertainties. Interventions are 
factors that are under the control (or partial control) of one or more 
decision makers, such as vaccination policies, non-pharmaceutical 
intervention (NPI) policies, or hospital staffing and capacity. Un
certainties are factors that are not under any decision maker’s control, 
but that might affect the outcomes or possibly even the choice of 
intervention. This distinction between intervention and uncertainty 
factors is not always sharp, and can depend on the primary audience. For 
instance, the arrival of a new virus variant will always be considered 
uncertain, as its emergence is beyond anyone’s control. However, other 
factors, such as vaccine coverage, are more complicated, as they can be 
affected by the informational campaigns of public health agencies (a 
decision) and the behavioral responses of individuals (an uncertainty). 
Further, a factor that is an intervention for one decision maker (e.g., 
vaccination recommendation by the Centers for Disease Control and 
Prevention, CDC) might be an uncertainty for another decision maker (e. 
g., a hospital complex). The explicit purpose of a scenario design and its 
intended primary audience, however, can help shed light on whether a 
factor should be treated as a decision or an uncertainty. 

2.1. Purposes of scenario design: a taxonomy 

Scenario modeling is an attempt to glimpse something about the 
future, often with the intention of informing actions in the present. In 
this sense, there is a decision-making element to scenario modeling, but 
the decisions can have many purposes: to change the trajectory of the 
future through interventions; to respond to future outcomes; or to seek 
more information. We believe that understanding the purpose of a sce
nario modeling exercise informs the design of the scenarios, as well as 
any subsequent ability to evaluate the success of the exercise. We pro
pose six classes of scenario design that stem from the three primary 

goals. Two-factor designs are very common in scenario modeling across 
all fields, so we provide shorthand for each class based on what the two 
factors would be, but note later that simpler (one factor) or more com
plex designs are possible. 

2.1.1. Decision making (decision×decision in a 2×2 matrix design) 
In a decision-making setting, the scenarios are designed to contrast 

alternative interventions, actions that are intended to influence the 
outcomes being modeled. For example, in Fig. 1(A), the scenario design 
consists of three scenarios, varying spatial extents of an intervention 
(nowhere, in 1 of 3 candidate locations, everywhere). If multiple types of 
interventions are being considered, a factorial arrangement of the levels 
of each might be of interest, so the scenario design could be, say, a 2×2 
matrix with both axes being interventions. The interventions could be 
alternatives being considered by a decision maker (e.g., Borchering 
et al., 2023) or potential interventions being explored to nudge decision 
makers to consider new options (Meltzer et al., 2014). 

2.1.2. Sensitivity analysis (uncertainty×uncertainty in a 2×2 matrix 
design) 

The purpose of sensitivity analysis is to understand the contributions 
of different sources of uncertainty to the outcomes of interest (Saltelli 
et al., 2004), and potentially whether they interact. In a sensitivity 
analysis setting, then, the scenario axes focus on uncertainties. For 
example, in the 2×2 scenario design in Fig. 1(B1), one axis captures 
uncertainty about the basic reproductive number (R0 of 2.2 or 3.0) and 
the other captures uncertainty about the serial interval (3 or 4.5 days). 
Note that there is no decision explicit in this design, although research 
efforts could be devoted to the more influential factor. 

2.1.3. Situational awareness (uncertainty×uncertainty) 
Three additional classes of scenario design resemble sensitivity 

analysis designs, in that the scenario axes focus on uncertainties only, 

Fig. 1. Graphical depiction of six classes of scenario design, with heuristic examples. (A) In a Decision Making scenario design, the axis or axes are variables that are 
under the control of the decision maker; the purpose of the design is to understand the outcomes associated with different interventions. (B) Four classes of design 
have a similar structure (uncertainty axes only) but different purposes. (B1) Sensitivity Analysis designs focus on understanding the role of different sources of 
uncertainty on the outcomes of interest. (B2) Situational Awareness designs resemble Sensitivity Analysis designs, but have an additional purpose to provide insight 
about potential outcomes that may be relevant for ancillary decisions. (B3) Horizon Scanning designs explore the edges of the epistemic uncertainty, often to prompt 
insights about what could happen in the future, in an effort to develop new interventions. (B4) Forecasting designs postulate multiple hypotheses in the parameter 
space, with an appropriately weighted average of outcomes constituting a well-calibrated forecast, given the current uncertainty. (C) A Value of Information (VOI) 
design (decision axis×uncertainty axis) examines whether a source of uncertainty affects the relative effects of interventions. The dashed lines represent the current 
point estimates and the shaded regions represent the current confidence intervals for the uncertainty parameters. 
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but their purposes differ, possibly affecting construction of the sce
narios. Sometimes scenarios are used for situational awareness, to give 
decision makers and the public a sense of the current state-of-the-world 
and what might be coming. In this way, different from the sensitivity 
analysis class, decisions are implied, although their effects are not 
embedded in the design. For example, in the case of an emerging disease, 
initial data may provide an estimate of the degree of prior immunity 
from cross-immunity and the severity of the disease, but there might be 
considerable uncertainty about both parameters (Fig. 1(B2)). A scenario 
design that examines plausible values of both parameters allows scien
tists to better understand the role of the sources of uncertainty, but also 
allows decision makers to anticipate the range of possible outcomes, and 
so consider how to prepare or respond. 

2.1.4. Horizon scanning (uncertainty×uncertainty) 
There is a large literature, primarily outside of epidemiology, that 

focuses on horizon scanning (also often called scenario planning; 
Sutherland and Woodroof, 2009). In this approach, scenarios are 
designed to explore plausible extremes of what could happen (Fig. 1 
(B3)), as a way to provoke awareness of future possibilities, motivate 
preparation, avoid or plan for surprises, and encourage creation of new 
intervention strategies. Even though there are no interventions on the 
axes of this design, this approach is more decision-centric than sensi
tivity analysis or situational awareness, in that a decision maker is aware 
of looming threats and is looking for insight to guide novel in
terventions. In conservation settings, horizon scanning around the 
possible impacts of climate change has become an important approach, 
as natural resource management agencies realize that their old tools may 
no longer be effective in changing ecosystems. In epidemiological set
tings, the horizon scanning class has been used particularly in thinking 
about emergence of novel pathogens or variants, like spillover of avian 
influenza to humans (Colizza et al., 2007). 

2.1.5. Forecasting (uncertainty×uncertainty) 
The fourth approach with a focus on uncertainty aims to design a set 

of scenarios that can be combined into an unconditional probabilistic 
forecast of the future, by careful choice of scenarios to bracket key un
certainties (Fig. 1(B4)). This approach differs fundamentally from the 
other types of designs described above: first, the set of scenarios needs to 
collectively represent the full degree of uncertainty about influential 
parameters (e.g., those included in analytical expressions for the 
reproductive numbers derived from mechanistic models); and second, 
the likelihood of the individual scenarios needs to be specified (or 
derived from experience). With these conditions, a weighted combina
tion of the scenario projections forms a proper forecast with appropriate 
uncertainty. The belief weights on the scenarios (i.e., likelihood of each 
scenario) can be updated dynamically in time as new evidence comes in, 
using a Bayesian approach or its generalization, Dempster-Shafer The
ory (Shafer, 1990). In the field of natural resource management, when 
such dynamic scenario forecasting is embedded in a Markov decision 
process, it is called “adaptive management” (Chadès et al., 2012; Wal
ters, 1986); similar approaches are commonly used in machine learning 
and artificial intelligence applications (Sutton and Barto, 2018). Thus, 
while descriptions in the epidemiological literature tend to make a sharp 
distinction between forecasts and scenario projections, we believe the 
latter can be transformed into the former with appropriate design and 
weighting. 

2.1.6. Value of information (decision×uncertainty) 
Value of information (VOI) is a common concept in the field of de

cision analysis that assesses whether the more effective intervention 
(rather than its outcome) is sensitive to the uncertainty. Thus, value of 
information is a form of sensitivity analysis from the standpoint of the 
decision maker (Felli and Hazen, 1998). In a value of information 
design, at least one scenario axis is an intervention and at least one other 
is an uncertainty. For example, in Fig. 1(C), the design consists of 6 

scenarios, in a 3×2 design, with one decision axis (the same spatial 
implementations as in Fig. 1(A)) and one uncertainty axis (R0); the result 
of particular interest would be whether the ranking of decision options 
was different under the two values of the basic reproductive number. 
From a decision-making perspective, this is the most important design, 
because it evaluates intervention alternatives while also investigating 
whether their performance is robust to major sources of uncertainty; it 
also can be used to inform the value of gathering more information prior 
to making a decision. 

There are other uses of scenario modeling, in training and tabletop 
exercises, where the users’ interactions with the scenarios are central to 
their purpose. The use of scenario modeling has a rich history in military 
training (Straus et al., 2019; Kim et al., 2014; NRC, 2008), as well as 
other fields. The goals of tabletop exercises include understanding 
inter-agency coordination, preparedness in terms of personnel, equip
ment, and protocols, and other aspects of complex responses to 
emerging threats. Policy and decision makers are assigned roles and 
asked to make various decisions during an evolving scenario. Examples 
of settings where scenario modeling has been used in tabletop exercises 
include responses to a novel SARS-like agent (Dausey et al., 2005), 
release of plague bacteria (Yersinia pestis, Henderson et al., 2001), and a 
new outbreak of foot-and-mouth disease in the United Kingdom 
(DEFRA, 2018). The design of scenarios in these types of exercises tends 
to be more complex than the others described above, with nested and 
branching scenarios that respond to user actions. The details of such 
designs are beyond the scope of this paper, although many of the ele
ments that we discuss will be relevant. 

3. Scenario designs used by the COVID-19 Scenario Modeling 
Hub 

To illustrate the proposed scenario classification, we retrospectively 
analyzed 17 rounds of scenario designs developed by the U.S. COVID-19 
Scenario Modeling Hub (SMH) (https://covid19scenariomodelinghub. 
org/). Since December 2020, the SMH has convened multiple 
modeling teams to generate scenario-based projections of COVID-19 
cases, hospitalizations, and deaths over 3–24 month horizons, in close 
collaboration with U.S. public health agencies. The 17 rounds of sce
narios available for study addressed different needs at different stages of 
the pandemic. The scenario classification described in this paper (Fig. 1) 
was not available when SMH scenarios were designed, but we have 
applied it retrospectively, recapturing the intent of each round through 
publicly released reports and internal notes taken during the design 
process (Table 1). Scenarios were typically designed through an iterative 
discussion process between the SMH coordination group, participating 
modeling teams, and public health partners. This process took anywhere 
from 3 to 86 days (median 32.5 days; see also Loo et al., 2024 for more 
details). For each round, we have identified the “motivating audience” 
as the decision-making body that the designers had foremost in mind. In 
most rounds, the motivating audience was the collection of federal, 
state, and local public health agencies with authority to set public health 
policy or guidance, but in 6 of the 17 rounds, the design was more 
strongly motivated by consultation with a specific public health partner 
(notated in Table 1 with bold type). It is important to note, however, that 
the SMH coordination group always worked with, and had in mind, the 
needs of multiple decision-making agencies beyond the motivating 
audience, and, at times, these considerations also influenced the sce
nario design. 

Of the 17 rounds, 3 were classified as Decision designs (deci
sion×decision), 6 rounds as VOI designs (decision×uncertainty), and the 
other 8 as some form of uncertainty×uncertainty design (Table 1). The 
Decision designs were clustered earlier in the pandemic (December 
2020-March 2021), representing a period when decisions regarding 
NPIs and vaccines were most needed. The VOI designs occurred 
throughout the pandemic (January 2021-April 2023) and focused on 
various vaccination decisions, such as increase of primary series 
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coverage among adults (Round 2), expansion of the vaccine program 
among children (Round 9), or comparison of different booster strategies 
(Rounds 14 and 15). In these VOI designs, the second axes typically 
described properties of virus variants, extent of waning, or immune 

escape. Of the 8 rounds classified as uncertainty×uncertainty designs, 6 
were considered as situational awareness, 1 as sensitivity analysis, and 1 
as horizon scanning. Situational awareness rounds were designed to 
anticipate the arrival of new variants, or evaluate the potential impact of 

Table 1 
Retrospective determination of scenario designs used by the U.S. COVID-19 Scenario Modeling Hub (SMH) in its first 17 rounds, released February 2021-April 2023. 
Most SMH rounds included 4 scenarios reflecting different levels of controls or epidemiological situation, depending on the stage of the epidemic. All rounds, except for 
Rounds 1 and 17, were organized as a 2×2 table representing two axes or key epidemic drivers (e.g., vaccination and NPI, Factors 1 and 2 columns), with a high and 
low value assumed for each of these drivers. The classification of scenario design (last column) arises from considering the axes types, as well as the purpose of the 
round: a “Decision” class arises when all scenario axes are decision axes; a value of information (VOI) class arises when a decision axis is crossed with an uncertainty 
axis; and the remaining types (sensitivity analysis, situational awareness, and horizon scanning) arise from uncertainty by uncertainty structures. The classification of 
the axis types was done with reference to the motivating audience, but other audiences could use the results for other purposes. Audience abbreviations: PHA, public 
health agencies, that is, federal, state, or local public health decision makers (default generic audience for most rounds); CDC, U.S. Centers for Disease Control and 
Prevention; WH, the White House COVID-19 Task Force; ACIP, the CDC Advisory Committee on Immunization Practices; SMH, the U.S. COVID-19 Scenario Modeling 
Hub (for internal insights). Other abbreviations: NPI, non-pharmaceutical intervention (social distancing, masking, etc.); vax, vaccination.  

Round 
# 

Data Cut- 
off Date 

Purpose Motivating 
Audience 

Factor 1 (axis type) Factor 2 (axis type) Scenario 
Design 

1 12/15/2020 Examine the impact of several combinations of 
vaccination and NPI levels 

PHA Vaccination and NPIsa 

(decisions) 
(none) Decision 

2 1/23/2021 Examine the impact of vaccination and NPIs in 
light of the emergence of a new variant (Alpha) 

PHA Vaccination and NPIsb 

(decisions) 
Variant (uncertainty) VOI 

3 3/06/2021 Compare the effects of vaccination and NPIs, in 
light of limitations in vaccine distribution 

PHA Vaccination (decision) NPIs (decision) Decision 

4* 3/27/2021 Compare the effects of vaccination and NPIs, 
with updated estimations of variant (Alpha) 
characteristics and availability of vaccine 

CDC Vaccination (decision) NPIs (decision) Decision 

5 5/01/2021 Understand potential long-term outcomes, in 
light of ongoing reduction in NPIs and slower- 
than-expected update of vaccination 

PHA NPI (uncertainty) Vaccination (uncertainty) Situational 
awareness 

6 5/29/2021 Understand potential long-term outcomes, in 
light of emergence of a new variant (Delta) and 
slowing vaccine uptake 

PHA Vaccination/Hesitancy 
(uncertainty) 

Variant (uncertainty) Situational 
awareness 

7* 7/03/2021 (Same as Round 6, with updated variant 
parameters) 

PHA Vaccination/Hesitancy 
(uncertainty) 

Variant (uncertainty) Situational 
awareness 

8X 8/14/2021 Examine the potential effects of waning 
immunity 

PHA Protection level after 
waning immunity 
(uncertainty) 

Speed of waning immunity for 
natural infection and vaccination 
(uncertainty) 

Sensitivity 
analysis 

9 9/11/2021 Estimate the impact of childhood vaccination, 
with a stress test involving emergence of a new 
variant 

ACIP Childhood vaccination 
(ages 5–11) (decision) 

Hypothetical variant 
(uncertainty) 

VOI 

10X 11/13/2021 Examine booster coverage aspirations needed to 
offset waning immunity 

PHA Waning immunity 
(uncertainty) 

Booster coverage (decision) VOI 

11 12/18/2021 Understand medium- to long-term outcomes, as 
related to uncertainties about the Omicron 
variant 

PHA, SMH Variant Severity 
(uncertainty) 

Immune escape/transmissibilityc 

(uncertainty) 
Situational 
awareness 

12* 1/08/2022 Evaluate the potential impact of the Omicron 
wave (with parameters updated from Round 11) 

PHA Severity (reduction 
relative to Delta) 
(uncertainty) 

Immune escape (uncertainty) Situational 
awareness 

13 3/12/2022 Examine the long-term impact of waning 
immunity, in the face of potential emergence of 
a new variant 

CDC Waning immunity 
(uncertainty) 

Hypothetical variant 
(uncertainty) 

Horizon 
scanning 

14 6/04/2022 Compare the effects of different age targets for 
fall 2022 boosters, with a stress test involving a 
new variant 

ACIP Age targets for boosters 
(decision) 

Variant (uncertainty) VOI 

15 7/30/2022 Examine the effect of the timing of rollout of 
bivalent boosters, with and without emergence 
of a new high immune-escape variant 

WH, ACIP Timing of reformulated 
boosters (decision) 

Variant (uncertainty) VOI 

16 10/29/2022 Understand the 6-month outcomes, as related to 
uncertainty about booster update and the 
epidemiology of emerging variant “swarms” 

PHA Booster uptake 
(uncertainty) 

Variant (uncertainty) Situational 
awareness 

17 4/15/2023 Examine the effect of different booster targets on 
multi-year outcomes, in the face of uncertainty 
about antigenic drift 

CDC, ACIP Age targets for new 
boostersd (decision) 

Rate of immune escape 
(uncertainty) 

VOI  

* Rounds marked with an asterisk were primarily an update of the previous round. 
a Round 1 included 4 scenarios that looked at combinations of social distancing measures, masking guidance, vaccine availability, and vaccine hesitancy, and did not 

include a factorial structure. 
b The first axis of Round 2 was composed of three decision variables: state orders with regard to NPIs (social distancing, masking) and vaccine availability. A full 

factorial for the first axis would have had 8 levels (2x2x2), but this was reduced to just two levels by combining the most optimistic and most pessimistic choices for 
each factor. 

c Round 11 had an implicit 2x2x2 design (severity of Omicron infection, transmissibility, and immune escape), but the second two factors were condensed together 
(low transmissibility coupled with higher immune escape; high transmissibility coupled with low immune escape). Thus, a fractional factorial design was used to allow 
exploration of more factors with fewer scenarios. 

d Round 17 was a 3×2 design, where the first axis included three levels. 
X These rounds were not publicly released. 
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growing vaccine hesitancy and declining NPIs. The round classified as 
sensitivity analysis was devoted to understanding the impact of waning 
assumptions on disease dynamics (training Round 8 in summer 2021, 
which was not publicly released). The round classified as horizon 
scanning explored potential interactions between waning immunity and 
a hypothetical immune escape variant in the post-Omicron period. 
Although SMH scenarios span many of the designs presented in our 
proposed classification, forecasting scenarios were not represented per 
se, in part because the primary purpose of the SMH was not to explicitly 
combine scenarios (see Bay et al., 2024 for a post-hoc application of this 
concept). 

These classifications were challenging to make because the SMH 
rounds were used (and implicitly designed for) many audiences, each of 
which might interpret a design differently. For example, Round 4 was 
designed specifically with the CDC in mind in Spring 2021, and, at the 
time, the degree to which they should emphasize vaccination versus 
compliance with NPIs was important (Decision category, deci
sion×decision axes). A similar classification would apply from the lens 
of a state or county public health agency, because recommendations to 
the public about vaccination and NPIs were in their authority. In 
contrast, for a hospital administrator, these scenarios might have served 
as situational awareness (uncertainty×uncertainty) that was useful in 
anticipating staff and resource needs over the coming months. Relatedly, 
Rounds 11 (December 2021) and 12 (January 2022) addressed the 
Omicron variant and were designed primarily for situational awareness, 
with scenarios informed by early data on variant characteristics from 
South Africa. However, given the limited amount of information avail
able on Omicron severity in Round 11, a broad range of severity as
sumptions was chosen, so that this round could also be considered 
horizon scanning. 

Another interesting challenge in retrospectively classifying the de
signs of the 17 SMH rounds was judging whether a particular axis was a 
decision or uncertainty axis, as the same axis designed for the same user 
might have had a different meaning at different stages of the pandemic. 
For instance, in the first four rounds, we interpreted the vaccination and 
NPI axes as decision axes, because the CDC and other public health 
agencies were actively grappling with how aggressively to recommend 
vaccination, how to allocate initially limited doses of vaccine, and how 
strongly to implement and enforce NPIs. In Round 5, however, by May of 
2021, public health agencies seemed to have become somewhat resigned 
to the behavioral choices of individuals regarding vaccination and 
compliance with NPIs, and so we treated those factors as uncertainties 
rather than decisions. On reflection, it would have been easier to classify 
the axes and the scenario designs in the moment, and in consultation 
with the motivating audiences. 

4. Detailed considerations in scenario design 

In the following sections, we describe the elements of a scenario 
design in an epidemiological setting, more elements of experimental 
design that are pertinent, and other practical considerations. To guide 
the reader, we have provided a figure that recapitulates the process of 
scenario design and highlights key components that need to be consid
ered (Fig. 2). When relevant, we illustrate these considerations with 
examples drawn from the 17 rounds of SMH scenario designs. 

4.1. Elements of a scenario design 

Several key elements should be considered in scenario design, 
including output metrics, details of how the scenarios differ, initial 
conditions, common factors, and the approach for handling uncertainty 
not otherwise expressed across scenarios. All such design decisions 
should be informed by the scenario’s purpose. Transparency and pre
cision is important for communication, especially in multi-model set
tings to ensure that contributing models produce comparable outputs. 

4.1.1. Output metrics 
A scenario design needs to specify output metrics to be projected. 

This choice can strongly influence the insights gained as well as in
terventions recommended (Probert et al., 2016). For infectious disease 
projections, output metrics might include incident or cumulative cases, 
hospitalizations, or deaths, which may be further broken down by 
subgroups (e.g., age, region, race, or ethnicity). Metrics that are not 
strictly epidemiological may also be of interest (e.g., business closure 
duration for NPI-based scenarios, Shea et al., 2023). Generally, multiple 
outputs are assessed separately, but multi-criteria decision analysis 
(Keeney and Raiffa, 1993) would permit composite outputs to be 
addressed. The scenario design also needs to specify the time frame and 
spatial extent of outputs, including temporal and spatial resolution. 
Another important consideration is the establishment of shared “ground 
truth” data for output metrics, particularly in the context of a collabo
rative effort, as these data are typically used for model calibration. 

Details about how to summarize and report results also should be 
specified; this will depend in part on the desired inference. A full 
probability distribution for the output metrics might be desired, or 
summaries like the mean, median, or an exceedance probability might 
suffice. Alternatively, individual replicates (e.g., daily or weekly simu
lations) may be useful in several cases. First, for outputs that are time- 
dependent, presenting an average over replicates can mask important 
features, like the size of a peak in cases (Juul et al., 2021); calculation of 
the desired metric by replicate before averaging can help avoid this 
issue. Second, individual replicates can be used to contrast projections 
across scenarios (see discussion about pairing replicates in section 4.2 
Principles of experimental design as applied to scenarios). Finally, individ
ual replicates also offer more flexibility than summary measures, as the 
need for nuanced metrics may arise after scenarios have been designed. 
We refer the reader to Sherratt et al. (2024) for deeper comparison of 
summary outputs and individual replicates. 

4.1.2. Distinguishing features of scenarios 
The key aspects that differentiate the scenarios are the choice of axes 

and levels set for each (Fig. 2). As we discussed earlier, the choice of 
scenario axes arises out of the purposes of the scenario design, but even 
with clarity of purpose, the choice can be difficult. Notably, the sources 
of uncertainty may be quite numerous, and selecting the focal un
certainties can thus be challenging. A large factorial design (over many 
different axes of uncertainty) is possible to imagine but may be time- 
consuming to implement and even harder to interpret and communi
cate. Selection of a subset of uncertainties essentially asks the designers 
to conduct an implicit sensitivity analysis to identify the sources they 
think will most affect the outcomes of interest. This sensitivity analysis 
can be, and sometimes is, undertaken with a simplified prototype model; 
in other cases, the expert judgment of the designers is used to select the 
axes. A similar concern can arise with decision axes—there can be many 
different interventions and combinations of interventions to consider. In 
our experience, however, the decision axes are easier to identify, 
because they often arise from direct questions being posed by decision 
makers. 

Levels on a decision axis may represent specific discrete in
terventions (e.g., approve a vaccine for a specific age group or not) or 
represent a continuous variable that is closely tied to a decision (e.g., 
high and low coverage of a vaccination campaign). In the latter case, the 
levels chosen might bracket the range of effects that could be achieved 
under different strategies. Sometimes counterfactual scenarios are used 
to evaluate the population-level benefits of an intervention. For 
example, at the beginning of COVID-19 vaccine rollout in December 
2020, SMH Round 1 considered a scenario without any vaccination as 
well as scenarios with various coverage levels (Table 1). Because the 
vaccine had already been approved and manufacturing was in progress 
(FDA, 2020), the no-vaccination scenario was not expected to eventuate, 
but it was important for comparative purposes. 

Levels on an uncertainty axis may be based on available estimates of 
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the parameter of interest and it is common to set values using the 
associated confidence intervals. For sensitivity analysis or situational 
awareness designs, values associated with an 80- to 95-percent confi
dence interval may represent reasonable bounds on current knowledge 
(Fig. 1(B1) and 1(B2)). Horizon scanning designs may use more extreme 
values to illustrate what could happen if the future does not conform 
with the past (Fig. 1(B3)). When empirical confidence intervals are not 
available, expert opinion, literature review, or survey information can 
be used to bracket optimistic and pessimistic assumptions (e.g., SMH has 
used behavioral surveys of propensity to get vaccinated, Beleche et al., 
2021). Further considerations on the choice of levels, as related to 
experimental design, are discussed below. 

4.1.3. Common factors 
Another important aspect of scenario design is the factors that are 

common across the scenarios. These commonalities are not part of the 
scenario axes and can include shared data sources and their interpre
tation, common assumptions about disease dynamics, behavioral re
sponses, or interventions. 

4.1.4. Initial conditions 
Initial conditions represent the state of the modeled system at the 

start of the scenario projection period. The initial conditions may vary 
across scenarios or across models. For example, differing scenario as
sumptions about waning immunity may not only imply a different un
derstanding of what will happen in the future, but also about what 
occurred in the past; thus, calibration of the model could lead to 
different initial conditions for each scenario. In a multi-model setting, 
precise initial conditions are rarely defined, because the models have 
different calibration approaches and structures. Instead, it is valuable to 
specify aspects of the process that all models should employ to set initial 
conditions. 

4.1.5. Additional sources of uncertainty 
While well calibrated forecasts integrate over all sources of uncer

tainty, scenarios typically encompass a subset of all possible un
certainties (Reich et al., 2022). Forecasting scenario designs represent a 
special case of scenarios, where the combination of uncertainty captured 
within a single scenario and between scenarios should be comprehensive 
(see Fig. 1(B4)). For all other scenario designs, judgment can be made 
about how much uncertainty to include. The power to discern 

differences among the scenarios increases as other factors are controlled, 
but this comes at the expense of generalizability. In a collaborative hub 
setting, it is important for different modeling teams to make their own 
choices about many of the uncertainties not specified in the designs. 
However, it can sometimes be valuable to provide guidance for how to 
handle key parameters and assumptions that could drive disease dy
namics that are not part of the scenario axes (e.g., all SMH rounds 
provided guidelines on vaccine efficacy, and bounds were often pre
scribed for waning immunity). 

4.2. Principles of experimental design as applied to scenarios 

As noted above, scenario design and experimental design are closely 
related conceptually and structurally. Individual scenarios are analo
gous to experimental treatments, and there are analogous considerations 
of replication, randomization, and control. Here we briefly discuss these 
parallels. 

The scenario designs proposed in our taxonomy have analogs in 
experimental design. For example, a 2×2 VOI design is analogous to a 
randomized block design, where the uncertainty axis serves as a control 
(or block) variable, to test whether the intervention effect is consistent 
across blocks (Montgomery, 2017). Designs with more than two axes or 
levels per axis are also possible, and fractional factorial designs (where 
only a strategically selected part of the full factorial design is explored) 
can be used to explore the main effects of many factors, without having 
to run as many scenarios. Also, there is a tension in statistical design of 
experiments that helps choose the levels of the factors: the closer the 
levels are together, the more reasonable it is to assume a linear effect 
between them; but the farther the levels are apart, the higher the power 
to discern differences and the scope of inferences that can be made. 
Similar logic is applicable in scenario design. 

In experimental design, holding all factors constant within each 
replicate is a powerful form of control. Pairing replicates across sce
narios is an analogous concept, where as many elements of the model as 
possible are matched in a particular replicate, like the initial conditions, 
the sampled parameter values, and, if possible, some aspects of temporal 
variance. Although common in some fields (e.g., McGowan et al., 2011), 
pairing replicates can be challenging in epidemiological models, espe
cially if the initial conditions depend on the scenario specification or if 
demographic stochasticity (e.g., binomial sampling for individual out
comes) is integral to the model (Kaminsky et al., 2019). Nevertheless, 

Fig. 2. Overview of scenario design process. First, determine the purpose of the scenario modeling exercise, including the questions to be addressed and the intended 
audience. This purpose informs all other design decisions. The taxonomy defined in Fig. 1 should be applied at this step. Then, define the features that distinguish 
scenarios and those that are common across scenarios. Last, consider other design issues that may be relevant during all phases of scenario design. 
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even if it is partial, pairing replicates increases the power to discern 
treatment effects. 

In some cases, multiple rounds of experiments are anticipated, and 
the results from the early experiments can be used to refine later ex
periments. Similarly, sequential designs can be achieved with multiple 
rounds of scenarios. Several SMH rounds were sequential updates in 
response to the arrival of a new variant or to inform a new policy. For 
instance, Round 14 was designed to inform the CDC Advisory Com
mittee on Immunization Practices (ACIP) recommendation for refor
mulated boosters in the fall of 2022, comparing age-restricted versus 
broader coverage. Presenting results to policymakers (Rosenblum et al., 
2022) prompted a follow-up round (Round 15), which made small 
changes to scenario axes and values to assess whether there would be 
benefits to releasing boosters earlier (Table 1). If a comparison of out
puts across sequential rounds is planned, it is important to record factors 
that change between rounds, which could confound outputs of interest 
(e.g., changes in data availability, types of interventions being consid
ered, or new model developments). 

More complex scenario designs are possible with multi-round sce
narios, including dynamic sequential and branching scenarios. 
Sequential designs are not fixed a priori, but depend on the outcomes of 
experiments during the exercise (Wald, 1947; Robbins, 1952; Chernoff, 
1992). Methods to analyze such sequential statistical designs can be 
employed to analyze sequential scenarios. Branching scenarios, moti
vated by branching or nested statistical designs (Hung et al., 2009), can 
be combined with sequential elements to produce scenarios that are 
valuable for training and tabletop exercises, where the branches arise in 
response to dynamic interventions made by users (Barrett et al., 2015; 
Parikh et al. 2016). 

4.3. Other design considerations 

4.3.1. Practical limitations 
There are practical limitations and trade-offs in scenario design, 

including model capability, computational resources, clarity of as
sumptions, and time taken to design a scenario that is actionable. Sce
narios must not be too complex, so that modeling teams can generate 
projections in a reasonable amount of time. In a multi-model setting, 
minimally complex scenarios also encourage participation from a larger 
number of teams. Access to additional computational resources can be 
enhanced in times of crisis, but the need to balance the aims of the 
scenario design with the practical aspects of modeling remains. If 
practical constraints strongly and repeatedly influence scenario design, 
the purposes of the scenario may need to be revisited. 

To accommodate these multifaceted needs, the scenario design 
process is often iterative, involving both internal and external discus
sions. Internal communication of scenario requirements, especially in 
the context of a multi-model hub, usually requires multiple rounds of 
discussion to reduce unwanted (linguistic) uncertainties while retaining 
a good expression of the scientific uncertainties focal to the scenarios 
(Shea et al., 2020). If time permits, something akin to the modified 
Delphi process is valuable: produce a first round of results; discuss the 
results across models as a group, looking for differences arising from 
linguistic uncertainty; then allow teams to produce a second round of 
results that reflect the clarifications (Shea et al., 2020). However, if 
decision makers only have a short period of time to implement an 
intervention, a small number of simple scenarios run on stripped-down 
models might be all that can be achieved. 

External discussions with public health decision makers can inform 
the choice of scenario axes (e.g., potential interventions) and corre
sponding assumptions (e.g., compliance with those interventions). 
Curiously, evidence from cognitive psychology suggests that decision 
makers often need help to fully articulate their concerns (Bond et al., 
2008), so a back-and-forth conversation to develop the purpose is an 
important step. As a result, scenario design can sometimes take several 
weeks, as illustrated by the SMH experience (Table 1). 

4.3.2. Ethical considerations 
Ethics of scenario design inherit attributes from the broader ethics of 

biomedical research (Beauchamp and Childress, 2009), epidemiological 
research (CIOMS 2009), and decision-making for public health emer
gencies (Emanuel et al., 2022). Scenario design should have the prop
erties of autonomy, beneficence, non-maleficence, and justice. 
Autonomy requires the scenario design process to be scientifically 
grounded and well-documented (including specification of clear objec
tives, Smith et al., 2021), capturing uncertainty and recording as
sumptions. Additionally, scenario design should be beneficial, in that it 
should promote evidence-based policymaking (Choi et al., 2005), 
providing benefit over decisions that would be made without scenario 
projections (Taylor, 2003). These principles also play a role in 
non-maleficence, as inaccuracies in scenario design may cause harm to 
populations affected by the recommendations. Simultaneously, affected 
populations may have conflicting perspectives on the decision alterna
tives (Brownson et al., 2013), which can ideally be incorporated into 
scenario design via counterfactual null scenarios or multi-objective 
formulations. Existing inequalities should be incorporated into and 
addressed by scenario design; further, scenario design should not 
exacerbate these inequalities, nor create new inequalities (CIOMS 
2009). Scenario modeling efforts should be evaluated according to these 
criteria (Boden and McKendrick, 2017). Multiple metrics of equity and 
fairness can be considered in scenario design (Braveman and Gruskin, 
2003; Whitehead, 1992; Mhasawade et al., 2021), as different stake
holders may have different perspectives (Whitehead, 1992). 

4.3.3. Scenario evaluation 
In some cases, there may be a desire to evaluate scenarios and pro

jections after the projection period has passed; does this desire affect 
scenario design? Broadly, scenarios are well designed if the resulting 
projections answer the primary question and serve the intended users 
even if the scenario assumptions do not materialize. Yet it still may be 
useful to assess how well scenario assumptions match unfolding reality, 
especially when a goal of scenario design is bracketing (i.e., situational 
awareness or forecasting situations). Scenario evaluation is difficult in 
practice; Howerton et al. (2023a) provide an illustration of salient is
sues. Scenario parameters may not be measurable even after projection 
periods have passed (e.g., degree of immune escape of a new variant, or 
even the impact of an NPI). For horizon scanning and for scenarios 
including counterfactuals, evaluation of scenario parameters and 
resulting projections can be particularly difficult. But against these 
challenges, there can be meaningful benefits of scenario evaluation, 
including ongoing improvement of individual models (Alley et al., 
2019), improvement in scenario design itself, and building trust with 
end-users (Raftery, 2016). Consideration of scenario evaluation at the 
design stage may enhance the ability to evaluate the scenarios, for 
instance, by choosing scenario axes that can eventually be measured. 
Thus, while scenario evaluation is not the primary purpose of a scenario 
projection exercise, it might be a strategic consideration in scenario 
design. 

4.3.4. Communication 
In epidemiology, scenario projections are often designed for specific 

audiences and can have public visibility. Thus, it can be advantageous 
for scenarios to be clear enough for easy communication to and inter
pretation by external audiences. For example, SMH uses a standard 
scenario design template to provide consistency in how scenario as
sumptions are shared and ease comparisons between rounds and be
tween hubs (see https://github.com/midas-network/covid19-scena 
rio-modeling-hub for an example). For additional discussion of gener
alizable infrastructure, see the HubVerse project (https://hubdocs. 
readthedocs.io/). 

Presentation of scenario results is also an important component of 
communication worth anticipating. A successful display of results en
tails three, often conflicting, objectives: enabling comparisons among 
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scenarios; communicating the uncertainty within and across models (in 
a multi-model setting); and supporting multiple different classes of 
constituents, including researchers, public health officials, journalists, 
and members of the public. Key challenges include communication of 
the nuances of scenario projections to lay audiences (as different from 
forecasts), and visualization of uncertainty (Kamal et al., 2021; Hullman 
et al., 2019; Hägele et al., 2022; Spiegelhalter, 2017). See Loo et al. 
(2024) for further discussion of SMH communication strategies. 

5. Discussion 

The experience of the U.S. COVID-19 Scenario Modeling Hub over its 
first 17 rounds provided an impetus for the scenario taxonomy proposed 
in this work, which we believe will be valuable in epidemiological set
tings, and perhaps more broadly. We have attempted to provide broad 
guidelines for scenario design that apply in single and multi-model ef
forts, and made parallels with other fields such as experimental design. 
Several insights with broader relevance bear reflection: the importance 
of the audience and a clear statement of the purpose of the design; the 
power of the design itself; the need to think carefully about uncertainty; 
and the benefits of a clear process. 

By projecting multiple, clearly defined scenarios that were motivated 
by public health needs, SMH projections have had significant public 
health impact (Borchering et al., 2021, 2023; Truelove et al., 2022; 
Rosenblum et al., 2022; Biggerstaff et al., 2022). It was difficult at times, 
however, to balance the needs of decision makers with the capabilities of 
available models. Implementing realistic scenarios and generating 
well-calibrated projections can require added model complexity or 
additional time. Key policy questions or vast uncertainty may suggest 
the need for many scenarios, but computational constraints may limit 
the number of scenarios that can be modeled in a timely fashion. 
Further, the foundational philosophy behind multi-model ensembles, 
namely, the diversity of approaches taken by the independent groups 
(Shea et al., 2020) can itself pose a challenge for scenario design. But the 
repeated nature of the SMH effort has allowed the complexity of the 
models and the subtleties of scenarios to increase. 

Clarity of audience and purpose affect scenario design and its impact. 
The influence of SMH rounds that were developed in direct conversation 
with a decision-making agency was easiest to illustrate. But many 
valuable impacts are harder to demonstrate, like the deepening under
standing among modeling teams of the epidemic in the U.S. prompted by 
the structured challenge of shared scenarios. In retrospect, we found it 
somewhat challenging to look back over two years of work and recover 
the specific purposes of each round. We propose that an active and clear 
articulation of the audiences and the purposes of a scenario design will 
help to sharpen the design of the scenarios in future SMH rounds, and 
similar efforts in the future. 

The design of scenarios provides the structure for inference. The 
taxonomy captured in Fig. 1 was not available during the design of SMH 
Rounds 1 through 17, but we believe that it could have enhanced some 
of the designs. Value of information designs are particularly interesting, 
because they both allow the comparison of alternative interventions and 
test those comparisons against critical sources of uncertainty. The SMH 
used VOI designs in 6 of the first 17 rounds, but curiously, none of those 
showed a reversal in preference of intervention based on the uncertainty 
axis. On one hand, that’s a great relief to decision makers, but on the 
other hand, it raises a question about whether the uncertainties 
considered were most relevant to the decisions. Would conscious 
attention to the power of particular design structures lead to even more 
valuable scenario designs? 

Scenario design invites careful and deliberate consideration of un
certainties. Scenario axes often focus on uncertainties hypothesized to 
be major drivers of future dynamics or decision outcomes. The first 
question is whether the process used to identify those uncertainties is 
robust. The second, perhaps more difficult question, is how to handle the 
remaining uncertainty. For example, operational uncertainties about the 

implementation of interventions may be required to create clear, easy- 
to-interpret scenarios, but such uncertainties are also important to ac
count for in projected outcomes. In evaluating outcomes of the early 
SMH rounds, Howerton et al. (2023a) and Wade-Malone et al. (2024) 
note that results of individual models often had quite different vari
ances, suggesting that they captured different sets of uncertainty that 
weren’t otherwise specified in the scenario design. Is that problematic or 
desirable? How does calibration of the individual models affect cali
bration of the ensemble projection (Howerton et al., 2023b), and how 
does that affect scenario design? We believe that there are some open 
questions here that warrant further study. 

The process of scenario design affects efficiency, participation, trust, 
and communication. Particularly in multi-model collaborative settings, 
the process of scenario design is challenging, and a clear process with 
dedicated support staff can support and invite the participation of the 
collaborating teams. But even in single-model settings, the process of 
scenario design aids in communication with the intended audiences and 
can promote trust. 

As noted earlier, scenario design is practiced in many fields besides 
epidemiology. The framework that we have proposed in this paper in
tegrates elements of the three schools described by Amer et al. (2013): 
like the Intuitive Logics School, it relies on experts’ conceptual under
standing of systems to develop causal maps that inform scenario design; 
like the Probabilistic Modified Trends School, it combines extrapolation 
of past trends with modifications to acknowledge changes in the future; 
and, like the French School, it places an emphasis on the decision 
setting, that is, the ways in which trajectories can be influenced by 
intervention. We are hopeful that more cross-disciplinary examination 
of how scenario projections are designed and used can lead to common 
advances across fields. 

Beyond the insights that arose from the SMH experience, there are 
other questions that may be relevant for development of scenario 
modeling practices in epidemiology. We see these as open questions for a 
future research agenda, to improve the impact of scenario methods:  

• Are there perspectives in scenario design, especially in collaborative 
ensemble settings in other fields, that would enhance the practice in 
epidemiology? Similarly, can our efforts inform practice in other 
fields?  

• Is there a design trajectory across an epidemic? That is, can we 
anticipate a specific sequence of questions, and even have template 
scenario designs ready? As a proposal, four stages could arise: (1) 
initial bounding of uncertainty and exploration of simple in
terventions; (2) assessing specific interventions (e.g., vaccination) as 
they become available; (3) assessing new dynamics (e.g., variants, 
behavior changes) as they arise; and (4) transitions to questions 
relevant in an endemic phase. Is this a useful start?  

• What are the pitfalls to avoid in scenario design in public health 
settings? Is it possible to inadvertently mislead or confuse decision 
makers with poorly designed scenarios? Are other unintentional 
negative outcomes possible?  

• Were there an operational scenario modeling hub for a particular 
disease, would a set of scenario designs become standard? For 
instance, would a regularly calibrated baseline scenario with several 
updated contrasts (e.g., emergence of a new variant) make sense? Or 
are infectious diseases too complex, because human behavior, 
available interventions, and viral evolution change so quickly that 
standard scenario designs are not useful?  

• Can lessons from scenario design in one location or outbreak reliably 
be applied in other settings? This will be particularly important at 
times where urgent results are needed, or in low-resource settings (e. 
g., low and middle income countries). 

• How can we best communicate scenario results and explain the dif
ference between scenarios and forecasts, which are more intuitive? 
Are verbal or numerical or graphical representations of scenario 
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designs and results most effective and do they differ for more or less 
quantitatively comfortable users? 

In summary, the COVID-19 pandemic coalesced a great deal of 
burgeoning expertise in epidemiological modeling, scenario projection, 
scenario design, and collaborative modeling endeavors. Using the 
experience of the U.S. Scenario Modeling Hub to reflect on the state-of- 
the-art in scenario design, we believe that a sound philosophical 
framework and procedural methodology for scenario design would in
crease the efficiency and efficacy of these methods, both in epidemio
logical settings and in other fields of endeavor. 
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C., Oidtman, R., Pasco, R., Pastore y Piontti, A., Paul, R., Pearson, C.A.B., 
Perdomo, D.R., Perkins, T.A., Pierce, K., Pillai, A.N., Rael, R.C., Rosenfeld, K., 
Ross, C.W., Spencer, J.A., Stoltzfus, A.B., Toh, K.B., Vattikuti, S., Vespignani, A., 
Wang, L., White, L., Xu, P., Yang, Y., Yogurtcu, O.N., Zhang, W., Zhao, Y., Zou, D., 
Ferrari, M.J., Pannell, D., Tildesley, M.J., Seifarth, J., Johnson, E., Biggerstaff, M., 
Johansson, M., Slayton, R.B., Levander, J., Stazer, J., Salerno, J., Runge, M.C., 2023. 
Multiple models for outbreak decision support in the face of uncertainty. Proc. Natl. 
Acad. Sci. 120, e2207537120 https://doi.org/10.1073/pnas.2207537120. 

Shea, K., Kelly, D., Sheppard, A.W., Woodburn, T.L., 2005. Context-dependent biological 
control of an invasive thistle. Ecology 86, 3174–3181. https://doi.org/10.1890/05- 
0195. 

Shea, K., Runge, M.C., Pannell, D., Probert, W.J., Li, S.-L., Tildesley, M., Ferrari, M., 
2020. Harnessing multiple models for outbreak management. Science 368, 577–579. 
https://doi.org/10.1126/science.abb9934. 

Sherratt, K., Srivastava, A., Ainslie, K., Singh, D.E., Cublier, A., Marinescu, M.C., 
Carretero, J., Garcia, A.C., Franco, N., Willem, L., Abrams, S., Faes, C., Beutels, P., 
Hens, N., Müller, S., Charlton, B., Ewert, R., Paltra, S., Rakow, C., Rehmann, J., 
Conrad, T., Schütte, C., Nagel, K., Abbott, S., Grah, R., Niehus, R., Prasse, B., 
Sandmann, F., Funk, S., 2024. Characterising information gains and losses when 
collecting multiple epidemic model outputs. Epidemics 46, 100765. https://doi.org/ 
10.1016/j.epidem.2024.100765. 

Smith, M.J., Ahmad, A., Arawi, T., Dawson, A., Emanuel, E.J., Garani-Papadatos, T., 
Ghimire, P., Iliyasu, Z., Lei, R., Mastroleo, I., Mathur, R., Okeibunor, J., Parker, M., 
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