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Abstract Stable isotope fractionation of sulfur offers a window into Io's tidal heating history, which is
difficult to constrain because Io's dynamic atmosphere and high resurfacing rates leave it with a young surface.
We constructed a numerical model to describe the fluxes in Io's sulfur cycle using literature constraints on rates
and isotopic fractionations of relevant processes. Combining our numerical model with measurements of the
348/%2S ratio in Io's atmosphere, we constrain the rates for the processes that move sulfur between reservoirs and
model the evolution of sulfur isotopes over time. Gravitational stratification of SO, in the upper atmosphere,
leading to a decrease in >*S/*2S with increasing altitude, is the main cause of sulfur isotopic fractionation
associated with loss to space. Efficient recycling of the atmospheric escape residue into the interior is required to
explain the **S/*>S enrichment magnitude measured in the modern atmosphere. We hypothesize this recycling
occurs by SO, surface frost burial and SO, reaction with crustal rocks, which founder into the mantle and/or mix
with mantle-derived magmas as they ascend. Therefore, we predict that magmatic SO, plumes vented from the
mantle to the atmosphere will have lower **S/**S than the ambient atmosphere, yet are still significantly
enriched compared to solar-system average sulfur. Observations of atmospheric variations in **S/*S with time
and/or location could reveal the average mantle melting rate and hence whether the current tidal heating rate is
anomalous compared to Io's long-term average. Our modeling suggests that tides have heated Io for >1.6 Gyr if
Io today is representative of past lo.

Plain Language Summary 1o is a moon of Jupiter and is the most volcanically active body in our
solar system. lo is in an orbital resonance with two other large moons of Jupiter; Europa and Ganymede: every
time Ganymede orbits Jupiter once, Europa orbits twice, and Io orbits four times. This situation causes tidal
heating in Io (like how the Moon causes ocean tides on Earth), which causes the volcanism. We do not know
how long this resonance has been occurring and whether what we observe today is “normal.” This is because the
volcanism renews lo's surface all the time, leaving little trace of the past. We use the isotopes of sulfur as a tracer
of tidal heating on o because sulfur is released through volcanism, processed in the atmosphere, and recycled
into the mantle. We build a numerical model to simulate the sulfur isotope cycle on Io. Recent measurements of
the sulfur isotopic composition of Io's atmosphere allow us to constrain a likely evolution for Io over time. We
find that tidal heating on Io has occurred for billions of years and that the variability of the sulfur isotopic
composition of the atmosphere may indicate the average tidal heating rate on lo.

1. Introduction

Io is the most volcanically active body in our solar system. Its volcanism is driven by tidal heating, powered by the
orbital resonance of lo, Europa, and Ganymede around Jupiter (Peale et al., 1979). The high rates of volcanism
lead to high resurfacing rates (and therefore a young surface), leaving little surface record of Io's past (Johnson
et al., 1979). Additionally, Io's day-night temperature variations fluctuate around the freezing point of SO,
(~113 K, <107 bar), resulting in at least the lower atmosphere collapsing to form surface frosts and then
subliming to re-release vapor every ~41 hr (and additionally during eclipse; e.g., Tsang et al., 2016). This dy-
namic nature of Io makes the history of tidal heating difficult to constrain (de Kleer et al., 2019). For instance, the
Laplace resonance is thought to have started quickly after the formation of these satellites (e.g., Peale &
Lee, 2002), but it is not observationally confirmed how long the orbital resonance has been active. Cyclic
behavior of the tidal heating has been proposed, with quantitative models indicating that the heat flow varies by an
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Table 1
Values, Formulas, and Definitions of Isotope Values and Fractionation Factors
Parameter Value/formula Definition Equation number. Reference
28/%3Syeor 126.948 + 0.047 Standard value = Ding et al. (2001)
2838 yenr 22.6436 + 0.0020 Standard value = Ding et al. (2001)
28/%Syenr 6,515 + 20 Standard value = Ding et al. (2001)
0> 0.515 Canonical value = Ono (2017)
0° 1.9 Canonical value = Ono (2017)
B emir 1000C"S/*2S—[*"S/*S ]y et/ [2"SF*Slyenr  Delta-notation 1) =
gy érsP 2S)p‘,odum/(*%"S/3ZS)rcac‘anl Fractionation factor ) -
3y 343 Fractionation factor 3) =

Note. VCDT = Vienna Canyon Diablo Troilite, the standard for sulfur isotopes. n = 3, 4, or 6 depending on the sulfur isotope
of interest. Note that the sulfur isotope ratios for VCDT are the inverse (i.e., 328/3"S rather than >"S/2S) of the ratios used
throughout the text to preserve the values as stated in the reference.

order of magnitude over oscillation periods of ~100 Myr (e.g., Hussmann & Spohn, 2004; Ojakangas & Ste-
venson, 1986). However, this is not observationally constrained, and it is unknown whether the current heating
rate is anomalous or typical of lo's long-term average (e.g., Bierson & Steinbriigge, 2021).

Stable isotopes offer a potential window into the past for systems such as Io (e.g., de Kleer et al., 2019), especially
isotopes of elements found in constituents of the atmosphere and surface frosts that are measurable via remote
and/or in situ techniques. Such measurements must be interpreted through isotope-enabled models that describe
the sources, sinks, and distributions of these species (e.g., Donahue et al., 1997; Hunten, 1973; Jakosky, 1991).
Recent examples include models constructed to interpret isotope measurements of Titan's modern atmosphere.
Such models have been used to constrain the initial '>N/**N ratio for N, and the D/H ratio for CH,, as well as the
time-scale for methane outgassing from the interior (Mandt et al., 2009, 2012), and to place constraints on the
timing and source of nitrogen in the atmosphere (Erkaev et al., 2020). For Pluto, modeling nitrogen isotopes
highlighted the importance of condensation and aerosol trapping for the composition of HCN in the atmosphere
(Mandt et al., 2017). On Mars, the D/H ratio of the atmosphere today can be explained by atmospheric escape
modulated by sequestering water via crustal hydration (Scheller et al., 2021), whilst coupled CO,-N,-Ar isotope
modeling was used to constrain the size and composition of the ancient atmosphere (Thomas et al., 2023). A
combination of isotopic fractionation in impact-driven hydrothermal systems with photochemistry and chemical
reactions in the atmosphere can explain the wide range of sulfur isotope ratios measured in Gale crater on Mars
(Franz et al., 2017).

On Io, sulfur (mostly as SO,) is the dominant volatile species; it covers the surface as frosts (e.g., Nelson
et al., 1980), forms the main constituent of the atmosphere (e.g., Lellouch et al., 1990), is emitted from the many
volcanoes (e.g., McGrath et al., 2000), and escapes from the atmosphere to populate Io's orbit as plasma (e.g.,
Broadfoot et al., 1979). Additionally, the natural isotopic abundances of the two most common stable isotopes of
sulfur are sufficiently abundant (**S ~ 95% and **S ~ 5%) that millimeter and/or spacecraft observa-
tions/sampling can detect and measure the isotopologues of sulfur-bearing species (e.g., de Kleer et al., 2024;
Franz et al., 2017; Moullet et al., 2013). Hence, measurements of sulfur isotopes in the frost, atmosphere, and/or
volcanic plumes of Io could be used to further our understanding of the geological history of Io.

de Kleer et al. (2024) measured the isotope ratio of sulfur (**S/*2S) in Io's atmosphere using the Atacama Large
Millimeter/submillimeter Array. Two observations of Io were made covering a frequency range containing
multiple rotation transitions of SO,, SO, their isotopologues, as well as other species. A radiative transfer model
was used to determine the **S/°%S ratio by fitting the observed emission lines. Although spatial data were
collected, a single ratio and accompanying error was calculated for each of the two observations (values are
consistent within 26) and both observations together. For both observations together, the **S/>*S ratio of SO, in
Io's lower atmosphere is 0.0595 =+ 0.0038 (equivalent to +347 + 86%o 5>*Sycpr. Where 8°*Sycpr is defined in
Equation 1 of Table 1). The signal-to-noise ratio for SO data was too low to fit a **S/>2S ratio of SO independently
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to the **S/*S ratio of SO,. However, assuming that the **S/**S ratio of SO was the same as the **S/**S ratio of
SO, was consistent with the measured SO data.

Assuming an initial 8**Sycpy of ~0%o, de Kleer et al. (2024) argued that at steady state (i.e., atmospheric source
and sink rates are equal, and the atmospheric source has a 5° 4SVCDT of 0%o) the atmosphere would be +83%o
834SVCDT if gravitational stratification and atmospheric escape are the primary causes of isotopic fractionation.
One explanation of the discrepancy between measurements and expectations is that the exceptional **S enrich-
ment of the atmosphere largely reflects extensive time-integrated escape from a planetary sulfur reservoir (i.e., a
physical domain that contains a finite amount of sulfur that is isotopically well-mixed) that actively exchanges
with the tenuous atmosphere where isotopic fractionation occurs (de Kleer et al., 2024). Assuming Rayleigh
distillation (i.e., an infinitesimal amount is removed from a reservoir and the residue is perfectly mixed after each
removal), and that gravitational stratification followed by loss from the upper atmosphere is the cause of isotopic
fractionation, requires ~94%-99% of the initial sulfur in the reservoir to have been removed (de Kleer
etal., 2024). This suggests that either much of Io's sulfur is in the core or has been lost in the past (likely during an
early period of more rapid volcanic outgassing), or the initial **S/**S ratio of the reservoir was much higher than
assumed.

However, this first-order interpretation presumes that geological cycling of sulfur on Io can be approximated by
Rayleigh distillation of the planetary reservoir through atmospheric escape. This proposition must be examined
by a more detailed consideration of sizes, distributions, and isotopic compositions of lo's sulfur reservoirs; rates
and fluxes of relevant processes involving transfer of sulfur from one reservoir to another; and the possibility that
isotopic fractionations associated with processes other than gravitational stratification and atmospheric escape
contribute to the overall sulfur isotope evolution of the atmosphere.

In this paper, we present a numerical model for the sulfur cycle on Io and describe constraints on the sizes and
sulfur isotopic ratios of the different reservoirs, as well as the rates and isotopic fractionation factors for the
different processes (Section 2 and Sections S2—S4 in Supporting Information S1). We investigate how, within this
conceptual framework, the sulfur isotopic compositions of these reservoirs evolve over time, as well as assess the
model sensitivity to different parameters (Section 3 and Section S5 in Supporting Information S1). We explore the
appropriateness of Rayleigh distillation involving gravitational stratification, escape to space, and efficient
mixing as an approximation for Io's sulfur isotope cycle; what processes enable efficient mixing; how large the
sulfur reservoir is that interacts with the atmosphere; and whether we can constrain the average mantle melting
rate (Section 4). Section 5 summarizes our key conclusions.

2. Model

The sulfur cycle on Io is complex: sulfur moves between different reservoirs by way of multiple processes, several
of which involve the atmosphere (e.g., de Pater et al., 2021, 2023; Figure 1), and most of these processes are at
least potentially capable of fractionating sulfur isotopes. Based on this conceptual model, we build a numerical
isotope-enabled box model to track the four stable isotopes of sulfur over time (Figure 2; Hughes, 2024).
Although we do not explicitly track the chemical species of sulfur in the model, the isotopic fractionation factors
and what reservoirs sulfur is transferred between are informed by the speciation of sulfur. We focus on **S and **S
due to the recent measurements in the lower atmosphere (de Kleer et al., 2024) but include 333 and %S because
measurements of these isotopes may be made in the future.

First, we constrain the initial amount of sulfur in the mantle and its isotopic composition (Section 2.1). From this
initial condition, our numerical model calculates the amount of sulfur and its isotopic composition for the mantle,
crustal frosts, crustal silicates/sulfates, and space over time (see Section S3 in Supporting Information S1 for
details). This is based on sulfur fluxes and isotopic fractionation factors (3"(x, Equation 2 in Table 1) detailed in
Section 2.2. Unless otherwise stated (i.e., for gravitational stratification, photo-dissociation, and electro-ioniza-
tion), *"a for n = 3 and 6 are calculated assuming canonical mass-dependent fractionation laws (Table 1) using
Equation 3 in Table 1. The space reservoir is the cumulative material lost to space from photo-ionization and
plasma interactions. It is tracked as a model reservoir for mass conservation but is not a meaningful physical
reservoir because this “reservoir” does not return to the atmosphere and thus has no subsequent exchange with the
other model reservoirs. The atmosphere reservoir in our model is treated differently to other reservoirs
because the atmosphere represents a tiny proportion of the sulfur on Io (Table 2, Section S1.4 in Supporting
Information S1), which would make the size of the time-step required for modeling unfeasible otherwise. At each
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Figure 1. Conceptual model for the sulfur cycle on Io.

time-step, sulfur is transferred from the mantle (and crustal frosts) due to outgassing (4sublimation) to the at-
mosphere, and then removed by photo-dissociation + space loss (+deposition) to crustal frosts and space. As the
atmosphere size is constant over time (e.g., Tsang et al., 2012), these fluxes balance such that there is no sulfur in
the atmosphere reservoir between time-steps. We feel this is a justified simplification given that the atmosphere
size (1.8-3.2 x 10° mol S, Table 2) is many orders of magnitude smaller than the flux of sulfur into or out of the
atmosphere over a time-step (for the 0.1 Myr time-step used, the flux is ~10'® mol S). However, the isotopic
composition of the atmosphere at each time-step can be calculated given the assumption that it is in equilibrium
with the crustal frosts (Section S1.4 in Supporting Information S1).

2.1. Amount of Sulfur and Its Isotopic Composition in the Initial Mantle

We assume that the initial bulk composition of lo is represented by either L/LL ordinary chondrite meteorites
(Dreibus et al., 1995; Gao & Thiemens, 1993; Kuskov & Kronrod, 2001) or solar system proportions (Lod-
ders, 2021; McKinnon, 2007) to give lower and upper bounds, respectively, on sulfur concentration (Table 2;
Section S1.1 in Supporting Information S1). Currently, there are no constraints on the potential extent of sulfur
evaporation from an early magma ocean for Io. Thus, we do not consider this process, although it would have little
effect on the bulk sulfur isotopic composition (Wang et al., 2021). We constrain the sulfur content of the core and
the initial mantle by combining constraints on Io's mantle/core density and core radius from Io's mean density and
moment of inertia (Sohl et al., 2002) with experimental metal-silicate sulfur partition coefficients at Io's core-
mantle boundary (Keszthelyi & McEwen, 1997a; Keszthelyi & Suer, 2023; Keszthelyi et al., 2004, 2007,
Kuskov & Kronrod, 2000; Moore, 2001; Suer et al., 2017; Section S1.2 in Supporting Information S1). While the
density and moment of inertia constraints alone permit 0%—100% of Io's initial sulfur to reside in the core,
incorporating the partition coefficient constraints and assuming equilibrium results in 80%-97% of Io's bulk sulfur
partitioning into the core (5.1-14.7 x 10%> mol S, where the minimum assumes L/LL ordinary chondrite for Io's
bulk composition, whilst the maximum assumes solar system proportions; Table 2). Given the small sulfur
isotopic fractionation factor between metal and silicate (340: = 0.9998; Labidi et al., 2016), there is minimal
isotopic fractionation when the core differentiates from the mantle (Section S1.2 in Supporting Information S1).
Once sulfur in Io is partitioned between the core and the mantle, we assume that there is negligible interaction
between these reservoirs. Hence, the core is not included in our numerical model. The amount of sulfur and its
isotopic composition in the mantle reservoir are initial inputs into our numerical model. We assume the crust is
40 km thick as estimates range from 20 to 50 km based on the maximum height and total volume of tectonic
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Figure 2. Outline of our numerical model of Io's sulfur isotope cycle based on the conceptual model in Figure 1, indicating how sulfur fluxes between reservoirs are

calculated.

mountains (Carr et al., 1998; Jaeger et al., 2003; Keszthelyi & McEwen, 1997b; Kirchoff & McKinnon, 2009;
Ross & Schubert, 1985; Schenk et al., 2001).

2.2. Sulfur Fluxes and Isotopic Fractionation Factors

When the mantle partially melts (Section S2.1 in Supporting Information S1), sulfur initially held in the mantle
dissolves into melt as sulfide, up to the limit of sulfide-saturation at ~1,000 ppm (Battaglia et al., 2014). If the
mantle is sulfide-undersaturated (i.e., due to previous sulfur extraction), we assume the melt sulfur concentration
equals that of the mantle as the degree of mantle melting on Io is uncertain. There is negligible sulfur isotopic
fractionation between the melt and the residual for the case where all sulfur is present as sulfide in both materials,
based on the isotope composition of coexisting silicate and sulfide in natural samples (**a = 1.0000 £ 0.0003;
Labidi & Cartigny, 2016; Labidi et al., 2014; Mandeville et al., 2009). Some studies suggest that the mantle may
be split into an upper and lower mantle (Spencer, Katz, Hewitt, May, & Keszthelyi, 2020), which we include as
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Table 2

Sizes and Isotopic Compositions of Sulfur Reservoirs on lo

Reservoir S (mol) 8 3SVCDT (%0) 634SVCDT (%0) 63°SVCDT (%0) Reference

Bulk Io 6.4-15.1 x 10% —0.04 to +0.06 —0.08 to +0.04 —0.54 to +0.39 Dreibus et al. (1995), Gao and
Thiemens (1993), Kuskov and
Kronrod (2001), Lodders (2021),
McKinnon (2007)

Core 5.1-14.7 x 10* ~0 ~0 ~0 This study

Initial mantle 3.0-22.4 x 10! ~0 ~0 ~0 This study

Crustal silicates 7.9 % 10" - - - Leone et al. (2011)

Crustal sulfates - - - - -

Crustal frosts 1.9 x 10%° 3838 = 0.13 £ 0.07 = = Leone et al. (2011), Howell et al. (1989)

Atmosphere 1.7-3.2 x 10° - +347 £+ 86 - de Pater et al. (2020), de Kleer

et al. (2024)

Note. See Section S1 in Supporting Information S1 for details on the constraints on the size and initial isotopic ratio of each reservoir (e.g., in all calculations, the radius
and density of Io are 1822.6 + 0.2 km and 3527.5 +£ 2.9 kg/m3, respectively: Oberst & Schuster, 2004; Schubert et al., 2004).

an option with an inter-mantle flux of sulfur between them. Our model assumes that mantle melts are either
intruded into the crust as plutons or erupted at the surface and degassed; based on Spencer, Katz, and
Hewitt (2020), we assume 80% is intruded (Section S2.2 in Supporting Information S1). Current resurfacing rates
on lo are ~1 cm/yr (e.g., Johnson et al., 1979), which are the erupted melts in our model from which we calculate
the mantle melting and pluton emplacement rate (Sections S2.1 and S2.2 in Supporting Information S1).
Degassing is assumed to be complete due to the low pressure at Io's surface. Hence, all magmatic sulfur is
transferred to the vapor for erupted melts with no net isotopic fractionation, whilst plutons do not degas (Section
S$2.2 in Supporting Information S1).

The heat from volcanism remobilizes sulfurous frosts and melts in the crust, which mix with magmatic gases
during ascent to form a single volcanic gas (Section S2.3 in Supporting Information S1). In the gas mixture,
homogeneous gas equilibria form SO, (which enters the atmosphere) and S, (which precipitates onto the surface)
(McGrath et al., 2000; Moses et al., 2002; Spencer et al., 2000; Zolotov & Fegley, 2000), with a relatively small
fractionation between the two (**a = 0.998: Richet et al., 1977; Section S2.4 in Supporting Information S1). We
do not consider SO formation via homogeneous gas equilibria as its volcanic origin is debated (e.g., Kumar, 1982,
1985; Summers & Strobel, 1996; Wong & Johnson, 1996; Zolotov & Fegley, 1998). The SO, in the gas can also
react with silicate rocks in the crust, becoming sequestered as sulfates (Burnett, 1995; Burnett et al., 1997,
Geissler & Goldstein, 2007; Renggli et al., 2019; Zolotov, 2018). Sequestration can fix up to half of the SO,
(Henley & Fischer, 2021) and could be isotopically fractionating (e.g., **a = 0.9985; based on experiments by
Fiege et al., 2014, for a related system; Section S2.5 in Supporting Information S1). SO, (4S) production in the
atmosphere occurs from the bi-molecular reaction of SO with itself (Moses et al., 2002), but the flux is small
compared to outgassing and hence ignored (Section S2.7 in Supporting Information S1).

SO, that is outgassed to the atmosphere is well mixed below the homopause, where eddy diffusion dominates, but
gravitationally and thermally stratified above, where molecular diffusion dominates (e.g., Moses et al., 2002;
Section S2.8 in Supporting Information S1). Photo-dissociation is the dominant process involving photon-
molecule interactions that removes SO, from the atmosphere (Moses et al., 2002), and it produces SO that
recombines at the surface to form SO, and S,0 (e.g., Lellouch et al., 1996; Section S2.10 in Supporting Infor-
mation S1). We calculate the sulfur isotope fractionation factors associated with photo-dissociation over the
wavelength range of 100-220 nm (e.g., Danielache et al., 2012; Endo et al., 2016; Whitehill et al., 2015) based on
theoretical and experimental studies of photo-absorption (Danielache et al., 2012; De La Haye et al., 2008; Endo
et al., 2015; Keller-Rudek et al., 2013; Meftah et al., 2021; Mills, 1998; Sunanda et al., 2015) through an lo
atmosphere (Lodders, 2003; Moses et al., 2002) to be Bo=1.008, **a = 1.009, and *°a = 1.007 (details in Section
S2.10 in Supporting Information S1). This is consistent with the magnitude of isotopic fractionation for photo-
dissociation expected at low pressures of SO, (e.g., Figure 4 in Endo et al., 2022). Photodissociation will pro-

duce mass-independent fractionation as 913)(31 =0.943 and Hgg = 0.780 (calculated using Equation 3 of Table 1). At
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the surface, SO, sublimates/deposits with isotopic fractionation controlled by the vapor-pressure isotope effect.
This is likely to be small relative to other fractionations considered based on measurements of CO, and SF ice
(e.g., **a ~ 0.9969—1.0004; Eiler et al., 2000, 2013: Section S2.9 in Supporting Information S1). We assume that
any sulfur compounds not lost to space (next paragraph) or broken down by photo-dissociation are deposited as
crustal frosts (or if there is insufficient sulfur, sublimated from the crustal frosts) such that the atmosphere size is
constant over time (e.g., Tsang et al., 2012).

Various plasma and photon interactions result in sulfur in the atmosphere being lost to space, principally through
reactions that generate ionic products, which are then accelerated away from Io by Jupiter's magnetosphere
(Bagenal & Dols, 2020; Delamere et al., 2004; Section S2.12 in Supporting Information S1). The space loss rate is
bounded by the measured supply rate to the torus and the estimated production rate (Bagenal & Dols, 2020;
Delamere et al., 2004). Photo-ionization of SO, is not isotopically fractionating and is a relatively small pro-
portion of the sulfur lost to space (e.g., Bagenal & Dols, 2020; Croteau et al., 2011; Saur et al., 1999; Section
S2.11 in Supporting Information S1). The upper atmosphere will be gravitationally stratified (e.g., gradients in
isotopic composition can form in <1.5 hr), which produces large isotopic fractionations between the homopause
and the exobase (330( =0.9574, 3o = 0.9168, and 360 = (0.8404: de Kleer et al., 2024; Section S2.8 in Supporting
Information S1: calculations based on Giunta et al., 2017; Seltzer et al., 2017). Gravitational stratification scales
with the absolute difference between isotope masses rather than the relative difference and therefore can
contribute to mass-anomalous fractionations as 923 =0.501 and 62" = 2.0 (calculated using Equation 3 of Table 1)
rather than the canonical values of 0.515 and 1.9, respectively (see also Dauphas & Schauble, 2016). Thermal
stratification (also called the Soret effect) between the homopause and the exobase is predicted to be relatively
small (**a = 0.9998: based on experiments by Wullkopf (1956); Section S2.8 in Supporting Information S1). We
assume that the plasma-neutral processes occurring (and their rates; Table 2) are those described in Figure 8 of
Bagenal and Dols (2020). Electro-ionization has a negligible isotope effect (e.g., Basner et al., 1995; Section
S$2.13 in Supporting Information S1). We estimate the sulfur isotope fractionation factor for electro-dissociation
(Foa=0.996, **a = 0.994, and *°a = 0.989) using the experiments of Ustinov and Grinenko (1971) (Section S2.13
in Supporting Information S1). Asymmetric charge exchange between S** or O* and SO, is assumed to be non-
fractionating, but this simplifying assumption is unlikely to lead to systematic errors in our model as it is an
insignificant loss process (Section S2.14 in Supporting Information S1). Resonant charge exchange between
SO,* and SO, is unlikely to be isotopically fractionating as the collisional energies are much larger than the
threshold energies required for charge exchange (e.g., Bodo et al., 2008; Hodges & Breig, 1993; Zhang
et al., 2011; Section S2.14 in Supporting Information S1). Elastic collision between SO, and SO," is not
isotopically fractionating based on the high energy of the incoming SO,* from the torus compared to the escape
energy (e.g., Chassefiere & Leblanc, 2004; Johnson et al., 2000; Section S2.14 in Supporting Information S1).
Pick-up ion escape is not isotopically fractionating because the energy of the pick-up ion is much larger than the
energy required to escape lo's atmosphere (Chassefiere & Leblanc, 2004; Dols et al., 2008; Section S2.15 in
Supporting Information S1). Overall, the isotopic composition of material lost to space is dominated by the effects
of gravitational separation, as the energies involved in the plasma interactions are high enough that negligible
isotopic fractionation occurs.

All sulfur on the surface and in the crust is slowly buried as further resurfacing occurs (Section S2.16 in Sup-
porting Information S1). The crustal thickness stays constant because it is controlled by temperature and melting.
Hence, surface-deposited and crustal sulfur compounds are either returned to the mantle or recycled to the surface.
We infer that sulfur that remains in the form of buried frost and fluids will be retained in the crust or transferred to
the atmosphere, whereas sulfur as sulfates and sulfide accessory minerals in igneous rocks can subside to the
crust-mantle boundary and return to the mantle. The amount of sulfur returned to the mantle depends on the
amount of sulfur in the crustal silicates/sulfates and the amount of silicate added to the crust. A summary of the
rates and isotopic fractionation factors is given in Table 3.

2.3. Amount of Sulfur and Its Isotopic Composition on Io Today

There are a few constraints on the amount of sulfur and its isotopic composition in various reservoirs on lo today
as well as the sulfur flux from some processes that we can compare to outputs from our numerical model. SO,
frost on the surface may be >1 km thick in some locations (Keszthelyi et al., 2004; Schenk & Bulmer, 1998;
Turtle et al., 2001) and we derive an estimate for the mass of sulfur present in the crustal silicates and frosts/fluids
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;I?‘Z:Zels% 3and Isotopic Fractionation Factors for Sulfur Exchange Processes on Io
Process SOZ-eq:c rate (kg/s) Ba 3o 3o Reference
Volcanism
Mantle melting (mm) 4% 10° 1 1 1 This study, Labidi and Cartigny (2016)
8* mantte = S metc
Plutons (pl) 3% 10° 1 1 1 This study, Labidi and Cartigny (2016)
S* et = 5™ sotia
Melt degassing (md) 1 x 10° 1 1 1 This study
S et = “Sas
Frost remobilization (fr) 1 1 1 This study
“Strost = S gas
Gas equilibria (ge) 0.9990 0.9980 0.9962 Richet et al. (1977)
0.58; gas + O3 gas = SO o
Sequestration (sq) 0.9992 0.9985 0.9972 Fiege et al. (2014)
S0, + silicates,, — silicate-SO, ¢,
Outgassing (og) 2-640 x 10° 1 1 1 This study, Lellouch et al. (2003)
“S” olcanic gas = S atmosphere
Mantle-return (mr) 1 1 1 This study
“S”crust = “S” mantle
Inter-mantle (im) 1 1 1 This study
ST ower mantle = 8% mantte
Molecular diffusion
Gravitational stratification (gs)# n/a 0.9574 0.9168 0.8404 de Kleer et al. (2024)
Thermal stratification (ts) n/a 0.9999 0.9998 0.9996 This study
Photon interactions
Photo-ionization (pi)* 205-326 1 1 1 Saur et al. (1999), Bagenal and Dols (2020)
SO, + hv - SO," + e~
Photo-dissociation (pd)# 3,028-3,533 1.008 1.009 1.007 Moses et al. (2002), This study
SO, + v - O + SO
Bi-molecular production (bm) 173-245 - - - Moses et al. (2002)
280 —» SO, + S
Plasma interactions
Electro-ionization (ei)*,* 105 1 1 1 Bagenal and Dols (2020)
SO, + e~ = SO," + 2e”
Electro-dissociation (ed)’M 1,500 0.9960 0.9940 0.9890 Bagenal and Dols (2020), This study
SO, +e” = SO+ 0+e”
Asymmetric charge exchange (ac)*, 30 1 1 1 Bagenal and Dols (2020)
[S** or O*] + SO, — [S* or O] + SO,*
Resonant charge exchange (rc)*,’ 1,600 1 1 1 Bagenal and Dols (2020)
SO, + SO,* — S0,* + SO,
Elastic collision (ec)*," 110 1 1 1 Bagenal and Dols (2020)
S0, + SO,* - SO, + SO,*
Pick-up (pu) 1,000-3,000 1 1 1 Bagenal and Dols (2020), Delamere et al. (2004)
S stmosphere = “8” piasma
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Table 3
Continued

Process

SOz—eq:C rate (kg/s) Ba ] 3o Reference

Other
Core formation (cf)

s>

silicate melt

Sublimation-deposition (sd)

SO2,frnst a4 SOZ,gas

- 8>

n/a 0.9999 0.9998 0.9996 Labidi et al. (2016)

1 1 1 This study

Note. See Section S2 in Supporting Information S1 for details on the constraints on the rate and isotopic fractionation factor of each process. *Rates listed here are model
inputs and constraints from the literature that can be compared to model outputs: rates that are only calculated as part of a model run without an independent constraint
are not listed here. *All rates are given in kg/s SO,-eq (i.e., if all sulfur was present as SO,), where n/a indicates not applicable. *indicates **a and *°« are calculated
independently of **a: otherwise, *>a and *°a are calculated from **« assuming canonical mass-dependent law coefficients (Table 1) and Equation 3 in Table 1. “S” in
reactions denotes unspecified speciation of sulfur. Process also affected by +gravitational and thermal stratification and/or *pick-up.

from the lithospheric density model of Leone et al. (2011) (Table 2; Section S1.3 in Supporting Information S1).
The **S/**S To's surface frosts is 0.13 =+ 0.07 from infrared spectroscopy (**S was saturated), which is within error
of the solar system average (Howell et al., 1989; Table 2). de Kleer et al. (2024) measured the 8>*Sycpy of SO, in
the lower atmosphere as 4347 + 86%o (0.0595 + 0.0038 **S/*2S; Table 2). The flux of SO, entering the at-
mosphere via volcanism (i.e., equivalent to outgassing) can be estimated from the observed atmospheric abun-
dance and an estimated residence time (e.g., Jessup et al., 2004; Lellouch et al., 2003; Table 3; Section S2.4 in
Supporting Information S1). We compare our model outputs to these constraints in Section 3.

3. Results

We use our numerical model of Io's sulfur cycle to constrain the combinations of conditions that can result in the
8**Syepr value measured in Io's atmosphere today (de Kleer et al., 2024) and to explore model sensitivities.

3.1. Base Scenario: If Io Today Is Representative of Past Io

The “today” scenario assumes that exchange rates relevant for Io today have been constant throughout Io's history
(Table 4). The amount of sulfur in the mantle is set such that ~97% of the mantle sulfur has been lost after 4.57
billion years (Gyr) based on the Rayleigh distillation calculations by de Kleer et al. (2024). Here we describe the
different reservoirs and how they evolve with time using our model under this scenario. “Space-loss” is the sulfur
lost to space in a given time-step, whilst “outgassing” is the SO, that is transferred to the atmosphere during a
given time-step. We emphasize these model variables because they are potentially measurable by future remote
and/or in situ techniques.

The behavior of the different reservoirs in the “today” scenario is shown as a function of time over Io's 4.57 Gyr
history in Figure 3. As the model evolves from time zero, the amount of sulfur in the mantle reservoir decreases as
sulfur is transferred to the crust and space, whilst the size of the space reservoir increases over time (Figure 3a).
The amount of sulfur in the crust as frosts and sulfates/silicates reaches steady-state quickly (<30 Myr), with more
sulfur in the form of sulfates/silicates than frosts (Figure 3a). The steady-state reservoir sizes of the crustal frosts
and silicates are of a similar order of magnitude to estimates derived from the literature (~10?° mol S: Leone
etal., 2011; Table 2). After ~3.2 Gyr, the sizes of both crustal reservoirs begin to decrease because the sulfur flux
from mantle melting decreases as the sulfur concentration of the mantle decreases below sulfide-saturation (the
rate of sulfur lost-to-space does not change because it is constant in the model). Hence, the sulfur concentration of
the mantle melt is no longer at sulfide-saturation but is equal to that of the mantle. As the mantle melt is no longer
sulfide-saturated, the rate of mantle outgassing of sulfur decreases over time, even for a constant rate of mantle
melting. The rate of outgassing in the model falls between the minimum and maximum estimates based on the
estimates of residence time of SO, in the atmosphere (Table 3).

The 634SVCDT for all reservoirs becomes more positive over time, that is, >*S becomes progressively enriched
relative to >%S (Figure 3b). Sulfur isotope ratios of mantle, crust, and outgassed material are closely coupled at any
given time, with crustal sulfates/silicates slightly isotopically heavier compared to the mantle, and crustal frosts
further enriched in **S. The space-loss material is isotopically lighter (lower >*S/*?S) compared to the mantle and
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Table 4
Details of Scenarios Explored
Value used in Value used in alternate
Scenario Description Parameter varied compared to “today” scenario “today” scenario scenario
Today Today* - - -
Hsl High space loss Space loss rate (kg/s SO,) 2,336 3,671
Mantle size (mol S) 5.4 % 10°! 8.5 x 10!
BM Big Mantle Mantle size (mol S) 5.4 x 107! 8.5 x 107!
2 Segregated (2) mantle® Lower mantle (mol S) 0 6.9 x 10*!
Upper mantle (mol S) 5.4 % 10*! 4.5 x 10°!
Inter-mantle flux factor 0 0.001
Osq No (0) sequestration Sequestration factor 0.25 0
Ofr No (0) frost remobilization Remobilization factor 1 0
Opd No (0) photo-dissociation Photo-dissociation rate (kg/s SO,) 3,281 0
Lpl Low plutons Pluton versus erupted factor 0.8 0.2
[BM-]Mmm [Big Mantle-]Medium mantle melting® Resurfacing rate (cm/yr) [Mantle size (mol S)] 1.0 [5.4 x 10%'] 5[8.5 x 10]°
[BM-]Hmm [Big Mantle-]High mantle melting® 10 [8.5 x 10?1
Omm Oscillating mantle melting 19 [5.4 x 102114

Uses values representative of today and a mantle size such that ~97% of the sulfur has been lost after 4.57 Gyr. "Mantle is segregated into an upper and lower

mantle with a small flux of lower mantle

into the upper mantle. “Scenarios using variable mantle melting rate use the mantle size of today (e.g., Hmm) or that used for

BM (e.g., BM-Hmm). “Resurfacing rate changes every 100 Myr between 1 and 9 (where the last 100 Myr is 5 cm/yr), which averages to 5 cm/yr overall (equivalent

to Mmm).

crust because this material has undergone gravitational stratification in the atmosphere, which enriches the light
isotope in the upper atmosphere that is then lost to space. This means that the space reservoir is also isotopically
light. The mantle, crust, and outgassed material become progressively isotopically heavier because the light
isotope is irreversibly lost to space and the isotopically heavy residual material is mixed back into the crust and
mantle. Over time, the space reservoir and space-loss material become isotopically heavier with respect to their
earlier values because the reservoirs providing the material being lost to space (i.e., mantle and crust) become
heavier over time. Due to mass balance, the space reservoir is always isotopically lighter than the initial 8**Sycpr
and tends toward the initial 634SVCDT value as more sulfur is transferred to it.

Similar behavior to §**Sycpr is observed for 8>Sy cpr and 8¢Sy in all reservoirs and fluxes (Figures 3¢
and 3d). The magnitude of the isotopic enrichment compared to **Sycpr is approximately half for 8**Sycpr
and double for 8*°Sy,cpr, reflecting the mass differences between the different isotopes. The >*S/**S ratio of the
crustal frost after 4.57 Gyr is 0.16, which is in the range measured spectroscopically (Howell et al., 1989;
Table 2). We choose not to calculate and compare A**S and A*®S values (e.g., Farquhar & Wing, 2003; Ono,
2017) because: (a) A-values mostly reflect the contrast between the mass law of the gravitational isotope effect
and the somewhat arbitrary mass law of the canonical reference frame (Table 1); and (b) at the large 5-values
predicted for all sulfur isotopes by our numerical model (Figures 3b—3d) A-values behave non-intuitively due to
their definitions (discussed further in Section S4.1 in Supporting Information S1; see also Kaiser et al., 2004;
Miller, 2002).

3.2. Alternate Scenarios: If Past Io Differs From Io Today

We next explore dropping the assumption that exchange rates were the same throughout Io's history as they are
today and vary the amount of sulfur in the initial mantle. For each of these different scenarios, we alter an in-
dividual parameter of interest to track its effect on Io's isotopic signatures and keep all other parameters the same
as the “today” scenario; the scenarios we consider are described in Table 4. Equivalent figures to Figure 3 for the
“today” scenario are shown in Figures S10-S21 in Supporting Information S1 for the other scenarios. Below, we
focus on the isotope values of the mantle, crustal frosts, and space-loss material after 4.57 Gyr (Figure 4). In our
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Figure 3. Reservoir sizes and isotopic compositions in the “today” scenario, which applies exchange rates thought to be relevant for Io today as having been constant
through time and assumes an initial amount of sulfur in the mantle reservoir such that ~97% of the sulfur has been lost after 4.57 Gyr. Evolution over time of different
reservoirs and fluxes for (a) total moles of sulfur and (b—d) 63"SVCDT using the left-hand axis and 3ngp328 using the right-hand axis, where n = (b) 4, (c) 3, and (d) 6.
Results from our numerical model are in colored curves (solid: mantle = red, crustal frosts = yellow, crustal sulfates/silicates = blue, and space = gray; dash:
outgassing = red and space loss = gray), while the black curves show the Rayleigh distillation results for the scenario described in the text (reservoir = solid, total
loss = dash, and instantaneous loss = dot). The black horizontal line in the gray shaded region in (b) is the atmosphere value with error observed today from de Kleer

et al. (2024) [dK+].

model, the lower atmosphere will have the same isotopic composition as the crustal frosts, but the upper at-
mosphere will vary due to gravitational separation (see Figure S9 in Supporting Information S1 for more details).

In “High space loss” (Hsl: blue square), we set the mantle size to 8.5 x 10*' mol S (i.e., larger mantle size
compared to “today”) and increase the space loss rate such that ~97% of the sulfur has been lost after 4.57 Gyr
(i.e., same overall loss fraction as “today”). The compositions of the mantle, frost, and space-loss material after
4.57 Gyr are very similar for Hsl and “today.” This highlights that the value of the isotopic composition of the
atmosphere today is primarily sensitive to the fraction of sulfur lost (i.e., size of reservoirs and rate of loss trade off
against each other). There is little effect on the results when varying the intrusive:extrusive ratio of igneous
material (i.e., “Low plutons” Lpl: gray square, where the ratio was 20:80 rather than 80:20 in “today”) or turning
off photo-dissociation (Opd: gray circle).

In “Big Mantle” (BM: red diamond), we increase the mantle size relative to “today” (same value as Hsl), which
decreases the loss fraction after 4.57 Gyr. For BM, 8**Sy .y of the mantle, frost, and space-loss material and the
8**Syepr of the frost are all less positive compared to “today.” In 2M (“Segregated Mantle™: blue circle), Io's
mantle is split into a lower and upper mantle that do not mix except for a small flux from the lower mantle into the
upper mantle. The amount of sulfur in the initial upper mantle plus that added to the upper mantle over 4.57 Gyr
from the lower mantle is approximately equal to the amount of sulfur in the initial mantle for “today” to give
similar loss fractions. In practice, this means that the total amount of mantle sulfur (i.e., across the lower and upper
mantle) is more than double the mantle sulfur in the “today” scenario. This scenario results in a significantly less
positive 8**Sycpy of the mantle, frost, and space-loss material (by ~60%c) and 8°*Sycpy of the frost (by ~30%o)
compared to the “today” scenario. Thus, it is challenging to achieve the high positive 634SVCDT observed by de
Kleer et al. (2024) if the upper mantle is continuously replenished from a reservoir with 0%o 834SVCDT.
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Figure 4. Isotopic composition of Io's different reservoirs after 4.57 Gyr. Frost 8**Sy,cpr against: (a, d) frost §**Sycprs (b, €) mantle 8**Sy,cpr; and (c, f) space-loss
material 634SVCDT. (d—f) are zoomed-in versions of (a—c), where the extent is indicated by the dashed boxes. Symbol color indicates initial mantle size (mol S):

5.4 x 10*' = white/gray (used for “today”) versus 8.5 X 10*! = red/blue (except 2M, which is 11.4 x 10*"). Symbol shapes indicates the scenarios (Table 4):

today = white diamond; high space loss (Hsl) = blue square; low plutons (Lpl) = gray square; segregated mantle (2M) = blue circle; no sequestration (0sq) = gray up-
triangle; no frost remobilization (0fr) = gray down-triangle; no photo-dissociation (Opd) = gray circle; medium mantle melting (Mmm) = white/red circle; high mantle
melting (Hmm) = white/red up-triangle; and oscillating mantle melting (Omm) = gray diamond. The results from Rayleigh distillation (Rd) are shown as the white
square. The black horizontal line in the gray shaded region is the lower atmosphere value with error observed today de Kleer et al. (2024) [dK+].

We turn off sulfur sequestration via gas-rock reactions in “no sequestration” (0sq: gray up-triangle), whilst in Ofr
(gray down-triangle) we turn off frost remobilization. In the former case, sulfur is not returned to the mantle; while
in the latter, frost is not released from the crust by heating from magmatism. In both cases, this causes all the sulfur
to be transferred from the mantle to the crust very quickly, resulting in the amount of sulfur in the crust as frosts
being two orders of magnitude larger than the estimates derived from Leone et al. (2011) (Table 2; Figures S14a
and S15ain Supporting Information S1) for Io today. At the maximum crustal frost size during the model-run, this
scenario would have >10% of the crust by mass being sulfur. For 0sq, the 8°*Sycpr of the frost and space-loss
material is slightly more positive (by ~9 and ~2%o, respectively) compared to “today” and frost 633SVCDT is
more positive (by ~2%o) (note there is essentially no mantle sulfur by 4.57 Gyr). However, the outgassing rate for
much Io's history is one-to-two orders of magnitude greater than the maximum in Table 3. For Ofr, the §**Sy ¢y of
the frost and space-loss material (again, there is essentially no mantle sulfur at 4.57 Gyr) is much more negative (by
~103 and ~72%o, respectively) and frost 8>Sy cpr is more negative (by ~42%o) compared to “today.” Material is
supplied to the atmosphere via sublimation of the crustal frosts after the mantle runs out of sulfur for this scenario.

For the mantle size used in “today” and BM, we vary the resurfacing rate: 1 (white and red diamonds), 5 (white
and red circles: Mmm), and 10 (white and red up-triangles: Hmm) cm/yr. This has a small effect on the 8**Sycpy
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for frost (by <2%o) and space-loss material (<4%o), and frost 8**Sycpr (<2%o). The variation of the mantle
5**Syepr is large for “today” (57%o between 1 and 10 cm/yr) but small for BM (~3%o). For the same average
mantle melting rate (5 cm/yr), there is a slight difference in the isotopic composition of the different reservoirs
between constant (Mmm; white circle) and oscillatory (Omm; gray square) rates (~10%o for 8**Sycpr), but this
effect is smaller than when changing the mantle melting rate.

From this sensitivity analysis, we find that the intrusive:extrusive ratio of igneous rocks, amount of sulfur
sequestration via gas-rock reactions, and mantle melting rate (whether static or oscillatory) have little impact on
the 8*Sycpr of the atmosphere after 4.57 Gyr. Therefore, these variables are not tightly constrained by our
modeling of the observed atmospheric & 4SVCDT today.

4. Discussion
4.1. How Big Is the Accessible Sulfur Reservoir on Io?

The size of Io's accessible sulfur reservoir (i.e., sulfur that can be moved between lo's interior and atmosphere) has
a significant impact on how a given isotopic signature is interpreted in terms of the total mass of sulfur lost. Given
the 5>*Sycpr measurement from de Kleer et al. (2024), it is unlikely that an unmixed reservoir (i.e., a lower
mantle) is a dominant input into the system (2M), because this would continuously add less fractionated material
into the system and reduce how fractionated the isotopes are in the observed atmospheric reservoir (Figure 4a).
Assuming the reservoir is the whole mantle, and that the rate of space loss has been the same for the lifetime of Io
as it is today, requires the initial reservoir to contain 5.3-5.6 x 10*' mol S, 12%—-14% between our minimum and
maximum estimates of the initial amount of sulfur in the mantle (Section 2.1). Therefore, the core contains 91%—
92% of 1o's initial sulfur if the composition is akin to L/LL ordinary chondrites or 96%—97% if in solar proportions.
This would result in a core composition of 13.9 or 27.7 wt% S, radius of 784 or 888 km, and density of ~6,688 or
5,738 kg/m?® for L/LL ordinary chondrite or solar proportions, respectively.

However, models incorporating a higher space loss rate and a larger sulfur reservoir in the mantle (Hsl) also
produce results consistent with the isotopic composition of Io's atmosphere today (de Kleer et al., 2024;
Figure 4a). These scenarios would require there to be less sulfur in the core. Hence, improving our constraints on
the size of lo's core—and hence the amount of sulfur available in the mantle—or the cumulative amount of
material lost to space is required to allow us to resolve the balancing effects of space-loss rate and mantle reservoir
size in our model. Additionally, future measurements by telescopes or spacecraft could improve our knowledge of
the temperature structure of Io's atmosphere, which would improve our estimate of the isotopic fractionation due
to gravitational stratification.

4.2. Rayleigh Distillation Approximates Sulfur Loss From Io: What Is the Mechanism for Efficient
Mixing?

We compare our model results for “today” to the Rayleigh distillation (Rd) calculation presented by de Kleer
etal. (2024; black curves in Figure 3). For Rd, given an initial isotope value for the whole system and a fractionation
factor for the loss process, all that can be calculated is the fraction of material lost required to achieve a certain
isotope ratio of the residue. To attribute a certain loss fraction over a given time requires an initial reservoir size and
loss rate. To compare Rd to the “today” scenario, we assumed that the loss rate was the space-loss rate of today and
the initial reservoir was the same initial mantle size. The space-loss material has very similar isotopic compositions
for “today” and Rd (Figures 3b—3d). However, there are differences in the evolution of the frost and mantle
**Svepr 8 Syeprs and 8¢Sy ey (Figures 3b—3d). The frost 8°*Sycpr for “today™ is lower than Rd for the same
loss fraction (e.g., after 4.57 Gyr their values are +324%o and +346%o, respectively; Figure 4). This is partly
because the isotopic fractionation factor between material that is lost to space versus buried and recycled is slightly
closer to 1 than pure gravitational stratification because of the other processes occurring. Additionally, mixing is
not instantaneous as assumed for Rd, which results in less isotopic fractionation occurring over time. Overall,
Rayleigh distillation is a good approximation and shows that gravitational stratification followed by loss of material
to space from the upper atmosphere is the main fractionating mechanism, and that recycling is highly efficient.

Our model included two recycling processes (Figures 1 and 2). The shallow cycle involves sulfur being added to
the crustal frosts via gas equilibria, photo-dissociation, and deposition, and released via frost remobilization driven
by the heat from magmatism. The deep cycle involves sulfur being added to crustal sulfates via sequestration,
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70 where gaseous SO, reacts with silicate rock to form predominantly sulfates.
0 The sulfates are then buried into the mantle and later released via mantle
§ 6or i melting and outgassing. Using realistic rates for these various processes
2 50} (Table 1) gives results close to the Rd calculation, showing that highly efficient
3 recycling is occurring. Given that if there is no sequestration (0sq) or frost
g 401 remobilization (0fr) the amount of sulfur in the crustal frosts is unrealistically
"g a0l high (i.e., .>10% of thf% crust is.f.rost), bc?th deep and shallow ref:}'/clil'lg pro-
E= cesses are likely occurring. Additionally, if there is no frost remobilization, the
é 20} atmosphere is only supported by sublimation because the mantle runs out of
& < O sulfur early in Io's history, which does not agree with observations of SO,
gvo 10 A being emitted from volcanoes (e.g., McGrath et al., 2000). Hence, the shallow

0 ¢ . , @ . A cycle is important for maintaining volcanic outgassing.
0 2 4 6 8 10

Figure 5. Difference between the 5>*Sycpy for the frost and mantle against

resurfacing rate (cm/yr)

resurfacing rate. Symbols and colors as described in Figure 4.

Deep recycling of sulfur provides a mechanism to oxidize Io's mantle over
time, as we assumed sulfur is extracted from the mantle as sulfide (e.g.,
Battaglia et al., 2014) and returned to the mantle as sulfide in plutons but also
as sulfate due to sequestration in the crust (e.g., Renggli et al., 2019). The

overall redox balance of the mantle would depend on the cycles of other redox-
sensitive elements such as iron, but if the mantle was oxidizing over time, this would cause the mantle melts to
contain significant quantities of dissolved sulfate. At sulfide-saturation, for the same melt composition and
temperature, the total sulfur content of a melt containing both dissolved sulfide and sulfate is higher than that of
S>CSS (sulfide content at sulfide saturation: e.g., Hughes et al., 2023; Wieser & Gleeson, 2023); hence, mantle
melts would carry more sulfur. This might help to explain the high SO, emissions from volcanoes on lo, which
greatly exceed the sulfur budget expected from sulfide-saturated melts (e.g., up to 30% by mass, Cataldo
et al., 2002). Additionally, mantle oxidation over time may explain the high oxygen fugacities inferred for Io's
volcanic gases (between the Ni-NiO and hematite-magnetite buffers, although volcanic degassing is likely have
increased their oxygen fugacity compared to the source mantle; Hughes et al., 2023), in addition to early hydrogen
loss (Zolotov & Fegley, 1999).

4.3. Constraints on the History of Tidal Heating on Io

Using our bounds on the amount of sulfur in the mantle (Table 2) combined with the bounds on space-loss rates
from observations today (Table 3) gives sulfur loss fractions independent of the isotope measurement that range
from 0.10 to 2.80 (average being 0.41). These are compatible with the loss-fractions from de Kleer et al. (2024)
based on sulfur isotopes (0.94-0.99), but the range is large, highlighting the utility of isotopes for this problem.
Assuming Rayleigh fractionation, the smallest fraction of available sulfur lost on Io that is consistent with the
smallest 6345\,03T within the measurement uncertainties (+261%o; Table 2) is 0.94 (f;, de Kleer et al., 2024).
Combining this loss-fraction with the smallest amount of sulfur in the mantle within the constraints described above
(3B x 10%' mol S, M;; Table 2), and the maximum current space loss rates consistent with models and measurements
(3,671 kg/s SO,-eq, ry; Table 3) gives a minimum time interval (#) over which recycling has been occurring of
1.6 Gyr (t = f;M;/r,;). Higher space-loss rates would shorten this time; if the space-loss rate was 10 times the
maximum current space loss rate, recycling must still have been ongoing for at least 160 Myr. Better character-
ization of the present-day space-loss rate could be achieved using data from current and upcoming missions.

For a given loss-fraction, the difference between the 8**Sy .y of the frost and mantle is dependent on the average
resurfacing rate and does not seem to be affected by other processes (Figure 5; Section 3.2). For higher resurfacing
rates, the 5**Sy cpr of the mantle and frosts are more similar due to more efficient recycling, whilst the opposite is
true for lower resurfacing rates (Figure 4d). Hence, temporal and spatial variability (e.g., bulk atmosphere vs.
plume measurements, or dayside vs. nightside measurements) of atmospheric 634SVCDT (as sulfur will be sourced
from potentially pure mantle outgassing to pure frost remobilization) could be used to infer the average resur-
facing (and therefore mantle melting) rate over Io's history. The most positive 8°*Sycpr value could be inter-
preted as representing the frost end-member and the least positive value the mantle end-member. From our
modeling, a resurfacing rate of 1 cm/yr and an initial mantle sulfur amount of 5.4 x 10*' mol S (the values for
“today”’) produces a ~65%o 634SVCDT difference between frost and mantle. Hence, if the actual %o difference is
smaller than this, it suggests that today's rate is anomalously low, whilst a larger value suggests that the rate today
is anomalously high. Such differences would be resolvable using an instrument capable of measuring 8**Sycpy

HUGHES ET AL.

14 of 19

ASU2DIT suowwo)) aaneal) ajqearjdde ayy £q pauraAod aie sajonie YO asn Jo sa[ni 10y KIeIqr auljuQ A3[IA\ UO (SUONIPUOD-PUE-SULIA) W0 3]s  AIeIqijour|uo//:sdny) suonipuo)) pue swa [, ay1 23S ‘[#207/80/S 1] uo Areiqiy auruQ Aajip “A3ojouyoa], jo isuf eruwiofije) £q 980800Ar£T0T/6201 01/10p/wod Kajim  KeiqrjourjuosqndnSe;/:sdny woiy papeojumo( ‘v ‘4207 ‘00166912



NI

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Planets

10.1029/2023JE008086

Acknowledgments

This project concept was matured at the W.
M. Keck Institute for Space Studies. We
thank Frank Mills for discussions on
photo-dissociation cross-sections. ECH
and KdK acknowledge support from the
Caltech Center for Comparative Planetary
Evolution (3CPE). KdK additionally
acknowledges support from the National
Science Foundation (NSF) under Grant
2238344 through the Faculty Early Career
Development Program. KM acknowledges
support from ROSES Rosetta Data
Analysis Program Grant
80NSSC19K1306. Contributions to this
work by AEH, an employee of the Jet
Propulsion Laboratory, which is operated
by the California Institute of Technology
under contract with the National
Aeronautics and Space Administration
(80ONMO0018D0004), were supported by
internal JPL funding. We would like to
thank two anonymous reviewers for their
detailed and thoughtful comments, which
greatly improved our work, and L. Montési
for editorial handling of the paper.

with approximately +10%o precision. This assumes that the initial amount of sulfur in the mantle is
5.4 % 10*! mol S; if this is not the case, the relationship between mantle melting rate and mantle/frost difference is
different (e.g., for BM in Figure 5). This calculation becomes less sensitive the smaller the loss fraction. However,
this highlights how isotopes on Io could be used to constrain the long-term average mantle melting rate.

5. Conclusions

We explore the parameter space able to reproduce Io's current atmospheric sulfur isotope ratio using a numerical
model for the sulfur isotope cycle on Io. Based on Io's mean density and moment of inertia alone, the range of
sulfur that could be in the core ranges from 0% to 100% of Io's initial sulfur. However, assuming metal-silicate
equilibrium during planetary differentiation and using experimental constraints on sulfur partitioning between
silicate and metal narrows the range to 80%—97% of Io's original sulfur that is locked away in the core, restricting
the modeled parameter space for initial sulfur. The main factors controlling the isotopic composition of the at-
mosphere are mantle size, loss rate, and the isotopic fractionation associated with gravitational stratification. We
confirm that Rayleigh distillation is a good approximation for the net effect of sulfur loss on the sulfur isotope
ratio of atmospheric SO, on lo. However, our model also predicts the isotope ratios of the different reservoirs on
Io over time, variables that are not considered in the Rayleigh approximation and that could be targets for future
measurements. The efficient recycling on o that is required occurs for plausible rates of sulfur sequestration into
the crust and burial into the mantle combined with frost remobilization driven by the heat from magmatism. This
highlights the important role that sulfate formation via SO,-silicate reactions plays in recycling sulfur on lo,
which may have caused oxidation of Io's mantle over time. Under the most conservative assumptions (i.e.,
requiring the least mass-loss and hence the smallest initial mantle), efficient recycling on Io, which is driven by
tidal heating, must have occurred for at least 1.6 Gyr if the current space-loss rates are indicative of past space-loss
rates. We find that Io's atmospheric sulfur is too isotopically fractionated at the current day to be accounted for at
Io's current mass loss if the core contains <91% of Io's initial sulfur. The difference in 8**Sycpr between the
mantle and crustal frosts/atmosphere is predicted to depend on the average mantle melting rate, with decreasing
average mantle melting rate increasing the difference between the reservoirs. Hence, future measurements of the
temporal and spatial variability of the 8**Sycpr of the atmosphere and/or surface materials may reveal the history
of Io's tidal heating and whether the rate of mantle melting today is anomalous or typical.

Data Availability Statement

The Jupyter Notebook and associated python scripts to execute the analysis in this paper are hosted at https://
github.com/eryhughes/loSisotopecycle and are preserved at https://doi.org/10.5281/zenodo.10967347 (general
version is https://doi.org/10.5281/zenodo.8304159), which includes all data gathered from the literature and all
model outputs used in this study (Hughes, 2024).
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