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Abstract: The basic reproduction number R0 is a concept which originated in population dynamics,

mathematical epidemiology, and ecology and is closely related to the mean number of children

in branching processes (reflecting the fact that the phenomena of interest are well approximated

via branching processes, at their inception). Despite the very extensive literature around R0 for

deterministic epidemic models, we believe there are still aspects which are not fully understood.

Foremost is the fact that R0 is not a function of the original ODE model, unless we also include in it

a certain (F, V) gradient decomposition, which is not unique. This is related to the specification of

the ªinfected compartmentsº, which is also not unique. A second interesting question is whether

the extinction probabilities of the natural continuous time Markovian chain approximation of an

ODE model around boundary points (disease-free equilibrium and invasion points) are also related

to the (F, V) gradient decomposition. We offer below several new contributions to the literature:

(1) A universal algorithmic definition of a (F, V) gradient decomposition (and hence of the resulting

R0). (2) A fixed point equation for the extinction probabilities of a stochastic model associated to a

deterministic ODE model, which may be expressed in terms of the (F, V) decomposition. Last but

not least, we offer Mathematica scripts and implement them for a large variety of examples, which

illustrate that our recipe offers always reasonable results, but that sometimes other reasonable (F, V)

decompositions are available as well.

Keywords: deterministic epidemic model; disease-free equilibrium; stability threshold; basic repro-

duction number; (F, V) gradient decomposition; next-generation matrix; Jacobian approach; CTMC

stochastic model associated to a deterministic epidemic model; probability of extinction; rational

univariate representation

MSC: 34D20; 65L07; 37N30

1. Introduction

Motivation. Mathematical epidemiology had started by proposing simple models
for specific epidemics and computing explicitly certain important characteristics like the
basic reproduction number and the final size; for example, the SIR model was introduced,
among other concepts, in the celebrated ªA contribution to the mathematical theory of
epidemicsº [1]. The most fundamental, and actually the only general result of the field due
to Diekmann, Heesterbeek, Van den Driesche and Watmough, expresses the disease-free
equilibrium stability domain in terms of R0, which is defined as the Perron±Frobenius eigen-
value of a certain (F, V) gradient decomposition (this is presented in detail in Section 2.2).

Mathematics 2024, 12, 27. https://doi.org/10.3390/math12010027 https://www.mdpi.com/journal/mathematics



Mathematics 2024, 12, 27 2 of 40

But, since the (F, V) decomposition is not unique, it seems to us that the question of what
R0 is still deserves further discussion.

On the other hand, one may note that nowadays, mathematical epidemiologists
typically either restrict themselves to low-dimensional models, resolved symbolically, even
by hand, or consider very complicated models which are resolved only numerically, for
particular values gleaned from the medical literature. Missing from here are moderately
complex models, which may be solved partly symbolically for any values of the parameters,
but in a way where the use of computer algebra systems (CAS) is either indispensable or
greatly facilitating. Even in the case of papers belonging to this levelÐsee, for example [2],
that the role of the CAS is deemphasized. Our paper is also an attempt to cast the CAS as
one of the main heroes of our story.

Our main result . We provide below, for the first time, a universal recipe for choosing
a natural (F, V) gradient decomposition, which only requires specifying the disease com-
partments (a subset of those which are zero for the boundary point under consideration)
(informally, these are not far conceptually from the so-called fast components of singu-
lar perturbation theory). This decomposition is useful both for determining R0 and for
computing the extinction probabilities of an associated stochastic model. We identify also
examples in which the (F, V) decomposition is not unique and in which choosing another
decomposition with F of a lower rank may be beneficial for simplifying the R0 formula.

First restriction (among others to follow). In this paper, we will restrict to math-
ematical epidemiology models for which there exist at least two possible special fixed
states. The first, the disease-free equilibrium (DFE), corresponds to the elimination of all
possible compartments involving sickness and will be assumed to be unique. Typically,
this point is locally stable only for certain values of the parameters. Outside of this domain,
it is typically replaced by another fixed point, which will be called ªendemicª if all its
components are positive, and ºresident boundary pointº otherwise.

Importantly, the stability of the DFE may be related to the historically famous ba-

sic reproduction number and net reproduction rateÐsee (1). These pillar concepts in
population dynamics, mathematical epidemiology, virology, ecology, etc., were already
introduced by the father of mathematical demography LotkaÐsee [3,4]Ðand also the
introduction of the book [5], and in [6], the authors described the stability of the solution of
differential systems.

A bit of history of the net reproduction rate R, and its evolution into the mathemati-

cal concept of basic reproduction number/stability threshold R0. Loosely speaking, in the
case of only one infectious class, the net reproduction rate R describes the expected number
of secondary cases which one infected case would produce in a homogeneous, completely
susceptible population during the lifetime of the infection. This description is especially
relevant at the start of an epidemic, when the dynamics is well approximated by that of a
branching process (a fact which goes back to Bartlett and KendallÐsee for example [7,8]).
The main characteristic of a branching process is the ªfertilityº, i.e., the expected number
of descendants one individual produces in the next generation. As a consequence, in
epidemiology, the branching result insuring extinction when the fertility is less than one
translates into local stability results of the disease-free equilibrium involving R.

The reproduction number R intervened already, in a particular case, in the foundational
paper ªA contribution to the mathematical theory of epidemicsº [1], which showed that:

1. The condition
R0 < 1, where R0 = sd f eR, (1)

implies local stability of the DFE. Here R is the net reproduction rate (number of
secondary infections produced by one infectious individual), and sd f e is the fraction
of susceptibles at the DFE.

2. The condition
R0 > 1

implies instability of the DFE.
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With more infectious classes, one deals, at the inception of an epidemic, with approxi-
mate multi-class branching processes, whose stability is determined via a ªnext-generation

matrix º (NGM)Ðsee Section 2.2.
The ªJacobian approachº for computing R0. For big size problems, this approach is

doomed to fail symbolically, since it is equivalent to the Routh±Hurwitz conditions (RH),
which rarely succeed symbolically beyond dimension 4 (also, RH is irrelevant numerically,
since the eigenvalues themselves are just as easy to compute). Therefore, we studied below
a variant, the ªJacobian factorization approachº, which focuses on an approximation, which
we show to yield always upper or lower bounds of the NGM R0, depending on whether
R0 ≤ 1 or notÐsee Theorem 1. Several questions around this bound are scattered below in
Sections 6.3, 8.1, and 8.2.

Note, as mentioned in [9], that an example where the Jacobian method does not yield
R0 is offered in [10] (Exe 5.43) and that of [11] suggesting that when threshold parameters
determined from the Jacobian do not have the biological interpretation of the dominant
eigenvalue of the next-generation matrix, then they should not be called basic reproductive
ratios nor denoted as R0 (we follow their suggestion and use the notation RJ in this case).

The dilemma of the several different methods for computing R0 has been discussed
in many papers, see for example [9,12]. But, this is a direct consequence of the non-
uniqueness of the (F, V) decomposition.

Deterministic or stochastic models? Most of the mathematical epidemiology papers
belong exclusively to one of these two paradigms. However, any deterministic model
may also be viewed as a stochastic continuous time Markov field (CTMC) evolving on
the integers. One interesting CTMC, which seems not to have been discussed before, is
presented in Section 2.4.

Contents. Our paper is structured as follows. Section 2 recalls the definition of the
DFE and provides our algorithmic definition of the (F,V) decomposition, in the form of a
Mathematica script, as well as a discussionÐsee Remark 6Ðof why other decompositions
might turn out useful. This section also provides a new Equation (8) for computing
extinction probabilities for associated continuous time Markov chain models in terms of
the (F, V) decomposition, showing that the Jacobian factorization approach yields upper
bounds and lower bounds for NGM R0’s in Appendix A.

We turn then to a series of examples, chosen to help investigate what may be the major
open problem in the field nowadays, which, in our opinion, relates on one hand to R0,
and on the other hand, to the extinction probabilitiesÐsee belowÐand duration of minor
epidemics [13±17], which is not further touched on here.

Let us now briefly explain why so many examples were included in the paper.
Section 4 is dedicated to a host-only model, with a single susceptible class and an F

matrix of rank one, where the formula of R0 may be ªguessed by inspectionº of the flow
chart. These kinds of examples have kept alive the hope of ªinterpretable R0 formulasº,
as illustrated in other recent papersÐsee for example [18,19]. But in fact, as far as we
know, no interpretable R0 formula has emerged outside the rank one case, which is already
fully studied in [20]. The papers [18,19] start by presenting simple rank one cases, then
proposing algorithms for more complex cases based on the graph structure of the flow
chart, which, in our opinion, are not sufficiently detailed or documented. While it may
well be that tools like Petri nets, as proposed in the second paper, will one day succeed
for resolving flow charts with certain structures, this does not seem to have happened yet.
Also, for models with a next-generation matrix of high rank, the lack of simple formulas for
R0 and of ªsimple biological interpretationsº is naturally to be expected; simple formulas
for the spectral radius can only be a consequence of a simple graph structure which has not
been pinpointed yet.

Sections 5.1 and 7.1 offer two examples in which several R0 formulas were offered
in the literature, but we are at a loss of how to choose among them. In the first case
(a virus±tumor model), the recipe R0 is simpler than its competitor, but in the second case
(a vector±host model), it is more complicated.
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Section 6.2 shows that the boundary equilibria and the (invasion) reproduction num-
bers may be easily computed with our scripts; to illustrate this, we use a two-strain
host-only model from [21] (Ch.8), where our recipe NGM yields the same answer as that
given by the Jacobian factorization.

Section 6.3 offers another two-strain host-only example, this time including also
vaccination, in which our recipe NGM yields again the same answer as that given by the
Jacobian factorization.

Section 7.2 offers an example from the textbook of [21] in which the square relation
stops holding.

Sections 8.1 and 8.2 offer yet more examples, this time in the two-strain vector±host
context, in which our recipe NGM yields an R0 formula which is precisely the square root
of that given by the Jacobian approach. Note that here, the first of the three elegant relations
concerning the invasion numbers from Section 6.3Ðsee Remark 22Ðholds, but the other
two seem to break down.

The last subsection provides, for the invasion numbers, a second example where
another choice of R0 may be more reasonable, on the grounds of leading to a simpler answer
(but the admissibility requirement forces then extra assumptions on the parameters).

2. A Bird’s Eye View of Mathematical Epidemiology: The Disease-Free Equilibrium,
the Next-Generation Matrix, and an Algorithmic Definition of a Stability Threshold
Associated to the Basic Reproduction Number R0

2.1. The Disease-Free Equilibrium (DFE)

The DFE may be defined as a ªmaximal boundary stateº and may be found by identi-
fying a maximal sub-system of the ODE epidemic model which factors

i′ = Mi, (2)

where the prime denotes the derivative with respect to time, and M is a matrix that may
depend on i, but also may not explode in the domain of interest, which we will take for the
sake of simplicity to be Rn

+.

Remark 1. One fixed point of this system is i = 0. This motivates us to call the components i

disease or infectious states. The set of all its indices will be denoted by I . Note that specifying ‘I
induces a partition of both the coordinates and the equations of our original system into infection
(eliminable) and ªnon-infectionº (the others) components.

The eventual other fixed points may be found by solving M = 0 together with the other
non-infection equations under the condition i = 0.

In this paper, we will assume the uniqueness of the DFE, at least after excluding
biologically irrelevant fixed points, like an unreachable origin.

We end this section with the very elementary script that implements this. Note that
any ODE model ªmodº (like SIR, etc...) is a pair mod = (dyn,X) consisting of a vector field
ªdynº and a list of variables ªXº, and that to find any boundary fixed point, it suffices to
know the set of indices ªinfº where it is 0, so that we solve the system ªdyn==0º under the
condition ªX[[inf]]->0º. But, since sometimes only numeric solutions are possible, our DFE
Mathematica script below also has an optional numerical condition parameter ªcnº, which
is taken by default as the empty set.

DFE[mod_,inf_,cn_:{}]:=Module[{dyn,X},

dyn=mod[[1]]/.cn;X=mod[[2]];

Solve[Thread[dyn==0]/.Thread[X[[inf]]->0],X]];

For the non-Mathematica users, only the Solve command is relevant, with the others
being just Mathematica implementation details.



Mathematics 2024, 12, 27 5 of 40

2.2. (F, V) Gradient Decompositions, the Next-Generation Matrix, R0, and a Simple Recipe for
Computing Them

From now on, the infection Equation (2) will be rewritten as

i′ = F − V = (F − V)i. (3)

Of course, such a decomposition is not unique, but we will also ask, following [7,22,23],
that F, the gradient of F , is a matrix with non-negative elements, and −V, the gradient
of −V , is a Markovian generating matrix (i.e., a matrix with non-negative off-diagonal
elements and non-positive row sums). Conceptually, F models input to the disease com-
partments from outside (ºnew infectionsº), and −V models transfer between the disease
compartments. Still, a priori, the decomposition (3) is not unique.

Example 1. Let us illustrate this via an SIR example with superinfection parameter ξ, in which the
classes S and R play symmetric roles inspired by the works of [24±26]















s
′(t) = Λs − s(t)[βsi(t)(1 + ξi(t)) + ds] + isi(t) + γrr(t)

i
′(t) = i(t)

[

[βss(t) + βrr(t)](1 + ξi(t))
]

− dii(t), di = ir + is + Λs + Λr + δ

r
′(t) = Λr − r(t)[βri(t)(1 + ξi(t)) + dr] + iri(t) + γss(t)

.

When ξ = 0, this reduces to the symmetric SIR model introduced for mathematical purposes
by [25,26], in which births may also directly enter the R class, with parameter Λr, and may also
infect, with parameter βr. Furthermore, there are linear flows from i to both s and r, where the former
does not make epidemiologic sense.

Here, the only infection equation, the second, is already written in a decomposed form

F − V ,V = dii(t), and F =
[

[βss(t) + βrr(t)](1 + ξi(t))
]

+ ξi(t)[βss(t) + βrr(t)].

Note that for the application of the next-generation matrix method, we must finally plug i = 0;
therefore, the second term in F, due to ºsuperinfectionº, is irrelevant for this purpose.

Remark 2. The possible non-uniqueness of the decomposition brings us to a delicate point in
mathematical epidemiology. Anticipating a bit, since R0 is the Perron±Frobenius eigenvalue of
FV−1, strictly speaking, R0 is not determined just by an ODE epidemical model, but also by the
(F, V) gradient decomposition. If we want an ODE epidemical model to uniquely determine an R0,
we must include, in the definition of the ODE epidemical model, the (F, V) gradient decomposition
we also adopt.

Remark 3. For us, an ODE epidemic model is an ODE dynamical model in which a certain subset
of equations, usually called ªdisease/infectionº equations, referred from now on as a zeroable set,
admits at least one admissible decomposition (3), with (F ,V) satisfying the conditions (A1±A5)
of [23].

Remark 4. Note that (3) is the most common model used in population dynamics. This makes it
natural to informally define ODE epidemic models as population dynamics models (3), with extra
equations modeling interactions with the non-disease compartments, which admits at least one
admissible decomposition.

Remark 5. The definition of ODE epidemic models above is imprecise, since it does not list all the
requirements we must put on an ODE model. Some reasonable restrictions are

1. Essentially non-negative processes have a non-empty set of disease classes, so we deal with an
epidemic (note, however, that we define disease classes in the sense of classes which satisfy (2),
which excludes, for example, importation models).

2. Processes with a unique DFE, at least after excluding biologically irrelevant fixed points, like
an unreachable origin.

3. The local stability domain of the DFE is non-empty and not the full set.
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4. The dynamical system has polynomial coefficients to be able to take advantage of the remarkable
symbolic computation tools available for this class.

We make these assumptions because they are satisfied by most mathematical models which
have already been used for modeling real-life biological phenomena. However, these assumptions
might not be enough and further ones might be necessary for obtaining the currently missing precise
definition of ªreal life ODE mathematical epidemiology modelsº.

Remark 6. Admissible decompositions need not be unique. A priori, one may ªmove terms from F
to Vº, to lower its rank and simplify the formula for R0, and also ªmove off-diagonal terms from V
to Fº, which enlarges the domain of parameters which ensure that V−1 has positive terms. There
is a tradeoff between these two possible moves, since the simplicity of R0 comes at the cost of extra
assumptions on the parameters. Our universal decomposition seems to strike a balance between the
two directions.

Remark 7. It was emphasized from the outstartÐsee for example [12,27±29]Ðthat an ODE
mathematical epidemiology model might have several ªadmissible decompositionsº, which might
yield distinct next-generation matrices and distinct R0’s.

For any admissible decomposition, Diekmann, Heesterbeek, Van den Driesche, and
Watmough established the following celebrated DFE stability theorem:

Proposition 1. For any admissible decomposition (F, V), let

R0 = ρ(FV−1)

denote the Perron±Frobenius eigenvalue of the next-generation matrix. Then, the DFE is unstable
on R0 > 1, and locally stable on R0 < 1 [7,10,22,23].

For a recent historical overview of R0, next-generation matrices, and their calculation
in many examples, we refer the reader to the delightful paper [30].

Unfortunately, the standard definition of a next-generation matrix (and hence of R0)
involves concepts like ªnew infectionsº, which were defined in the original papers based
on epidemiological considerations and therefore require the intervention of a human expert.
This had created the impression that this method cannot be encapsulated into a computer
program. However, we offer and implement below a simple algorithmic definition, based
only on the structure of the system and of the ªinfectious/disease equationsº.

Our proposal is to use a special F-V decomposition, with F constructed as the positive
part of all the interactions in the disease equations which involve both disease compart-
ments and input/susceptible ones. The latter are defined as the complement of the disease
compartments, after the possible removal of output compartments, which may be spec-
ified as deterministic functions of the other compartments (i.e., may be computed, once
the other compartments are known). Note now that the concept of the ªpositive part
of the interactionsº may be hard to pinpoint mathematically, but useful enough to have
been implemented in CAS’s (Mathematica, Maple, Sage, etc.); this made us adopt the
following definition:

Remark 8. For a given zeroable set, an admissible (F, V) gradient decomposition (3) is one
where F, the gradient of F , does not contain, in its expanded form, syntactic minuses in its CAS
representation, and also where V, the gradient of V , is such that −V is a ªsub-generating matrixº
under the assumption of non-negativity of all the model parameters.

The problem of whether the R0 of the decomposition provided satisfies, under certain
conditions, the stability theorem of Van den Driessche and Watmough is still open; therefore,
it should be viewed for now just as a recipe that works well in simple cases.
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After lots of experimenting, we have found only few casesÐsee for example Section 8.2,
where the recipe NGM has a serious competitor; it is for computing the invasion repro-
duction number for a two-strain vector±host model, with altered infectivity for co-infected
vectors, and with ADE (antibody-dependent enhancement).

2.3. An Algorithmic F − V Decomposition

We complement now the famous F − V ªequations decompositionº and the next-
generation matrix method of [7,22,23] using a algorithmic F − V decomposition.

1. The user supplies the model ªmodº (a pair containing the RHS of the dynamical
system and its variables) and the indices ªinfº of the disease (or infectious) variables;
the indices of the other compartments are denoted by ªinfcº.

2. Subsequently, the Jacobian of the infectious equations M with respect to the corre-
sponding variables is computed.

3. Define the interaction terms as terms in M which contain variables s ∈ infc, and
which, if positive, must end up in F. Their complement, denoted by V1, will form
part of V.

4. As a first guess for F, F1 is constructed as the complement of V1. It contains all the
interaction terms (which involve both disease and susceptible compartments).

5. F is obtained by retaining only the positive part of the matrix F1, i.e., the terms which
do not contain syntactic minuses (we use the simplest algebraic representation of the
equations and do not study the effect which algebraic manipulations introducing
minuses might have). Finally, V1 is increased to V, which is the complement of F.

6. The script outputs {M, V1, F1, F, V, K}.

NGM[mod_,inf_]:=Module[{dyn,X,infc,M,V,F,F1,V1,K},

dyn=mod[[1]];X=mod[[2]];

infc=Complement[Range[Length[X]],inf];

M=Grad[dyn[[inf]],X[[inf]]]

(*The jacobian of the infectious equations*);

V1=-M/.Thread[X[[infc]]->0]

(*V1 is a first guess for V, retains all gradient terms which

disappear when the non infectious components are null*);

F1=M+V1

(*F1 is a first guess for F, containing all other gradient terms*);

F=Replace[F1, _. _?Negative -> 0, {2}];

(*all terms in F1 containing minuses are set to 0*);

V=F-M;

K=(F . Inverse[V])/.Thread[X[[inf]]->0]//FullSimplify;

{M,V1,F1,F,V,K}]

Note that our NGM script requires a minimal input from the user, which is just the
specification of the disease compartments; there is no need to specify ªnew infectionsº.

The results of this decomposition seem to yield correct results in all the examples from
the literature we checked. We would like to add that for dynamical systems satisfying the
four conditions in Remark 5, this decomposition yields ªadmissible gradient decomposi-
tionsº in the sense that V−1 will contain only non-negative terms, and that it is furthermore
obtainable from an equations’ decomposition, which is admissible in the sense of [23] and
therefore yields the correct stability domain.

Remark 9. Note that the ªReplaceº command in the script uses the powerful Mathematica capability
of applying a ªruleº to parts of an ªexpressionº, specified by ªlevelspecº, and that it was furnished
to us by the user Michael E2 in

https://mathematica.stackexchange.com/questions/286500/

how-to-set-to-0-all-terms-in-a-matrix-which-contain-a-minus

/287406?noredirect=1#comment715559_287406
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Finally, let us discuss an alternative possible implementation. We could just provide
NGM with the right-hand side of the differential equations, compute the steady states,
specify one of them, and then define the infected classes as the components with zeros.

However, this would be impractical, since for the majority of the models with explicit
DFE, the other fixed points are either not explicit or require very long execution times. It is
therefore much simpler to have the user help the AI by providing it with I , which leads
immediately to the matrix M. Essentially, we jump directly to the factorization (2) of the
infected equations, postponing the solving of the non-infection variables to later.

2.4. A Multi-Dimensional Birth-and-Death CTMC Process Associated to a (F, V) Decomposition,
Its Branching Process Approximation, and the Bacaer Equation for the Probability of Extinction

The works of Kendall and Bartlett suggest that ODE epidemic models may be associ-
ated to corresponding birth-and-death CTMC processes and then approximated further via
branching process.

Citing [31] :ªIt has been noted by Bartlett (1955), p. 129, that for an epidemic in a large
population, the number of susceptibles may, at least in the early stages of an outbreak, be
regarded as approximately constant at its initial value and that this approximation will
continue to hold throughout the course of an epidemic, provided that the final epidemic
size is small relative to the total susceptible population. Thus the general epidemic process
may be approximated by a simple birth-and-death processº.

To make this more precise, a (F, V) decomposition (3) determines a naturally as-
sociated multi-dimensional birth-and-death CTMC process by fixing the values of the
non-disease variables, so that the matrices (F, V) depend only on i, and interpreting the
transition rates between compartments as rates of BD transitions.If the CTMC has rates
which are linear in the disease variables, one may associate it to a branching process and
take advantage of the well-known equation for extinction probabilities. This procedure
has been detailed in previous works like [13±17] and used to approximate extinction and
invasion probabilities, as well as the duration of minor epidemics. If the CTMC has rates
which are super linear in the disease variables, a further approximation of ignoring the
higher power terms in i is necessary. At the end, this results in assuming that the matrices
(F, V) are constant (they do not depend on i).

Let us illustrate this philosophy on the famous SIR example. However, in line with
our interest in this paper and also getting a bit ahead of ourselves, we will only look at
a ªdisease processº of the infected, with the other components fixed. The state space of
the process will thus be N. We note this is similar in spirit with the ªslow-fast/singular
perturbationº technique of considering only variables whose lifetime is short and fixing
the other variables whose lifetime is longer, which in fact is the idea behind the famous
next-generation matrix approach.

Example 2. The ªSIRº disease process (i.e., defined on the disease compartments) is i′ = (s
Å
− γ)i.

The natural SIR/linear CT birth-and-death disease stochastic process (DSP) is a Markov process
Xt ∈ N with a generating operator on the set of functions f : N− > N defined by

G f (i) = s
Å
i( f (i + 1)− f (i)) + γi( f (i − 1)− f (i)) = A f (i), (4)

and corresponding to a semi-infinite generator matrix

A =

















−β β 0 · · · 0
γ −β − γ β · · · 0

0 γ −β − γ β
. . .

...
. . .

. . .
. . . β

0 0 · · · γ −β − γ

















. (5)
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Remark 10. We recall, for the benefit of readers who have not been exposed to the (immense)
literature on Markov processes, that the behavior of expectations of this class of stochastic processes
always involves one deterministic operator A, the generator of the Markovian semigroup, which
acts on a space of ªappropriate functionsº on the state space (4) and where ªappropriateº may be
skipped in simple cases like ours (5). The essential thing to note here is that our Markov generator
operator A is completely defined by the rates, just like its ªmean-fieldº deterministic ODE. Thus,
from the practical point of view of estimating rates, we have added nothing to the parameters of the
ODE model (as would be the case with other stochastic processes involving Brownian motion, etc.).
We have only modified the state space and the operator; however, this way, phenomena which are
invisible in the continuous mean-field limit become relevant.

Finally, for readers puzzled by the question of where the randomness hidden in the deterministic
operator (4) is , we mention that this arrives via two Poisson processes describing the times when
the process jumps up and down, respectively, and we refer to the literature for more details.

This process converges to ∞ (i.e., is non-recurrent) or to a stationary distribution if R0 :=
s
Åγ

is strictly bigger than 1, or strictly smaller than 1, respectively. The probability of ªextinc-
tion/absorbtion into 0º, when starting the process with j infected, are

p(j) = qj, q =

{

1 R0 < 1
γ
s
Å
= 1

R0
R0 ≥ 1

. (6)

This result may be found for example in the textbook [32] (it is, up to technical difficulties
caused by the non-compact state space, the simplest illustration of the fact that solutions of ªDirichlet
problemsº of the form p(j) = EX0=j[g(Xτ)], where τ is the exit time from a domain S, must solve
Gp = 0 and p = g on the boundary of S).

The expected time to extinction when starting the process, with j infected and when R0 < 1 may
be found using the fact that solutions of ªPoisson problemsº of the form
T(j) = EX0=j[

∫ τ
0 h(X(s)ds], must solve

{

GT + h = 0

T = 0 on the boundary of S
.

Another interesting quantity is the expected time to extinction when R0 > 1, in the case that
extinction occurs. This ªDirichlet-Poisson problemº may be written as

T(j) = EX0=j[g(Xτ)
∫ τ

0
h(X(s)ds],

where h = 1, and g is the indicator of extinction occurring. Such expectations must solve

{

GT + hp = 0

T = 0 on the boundary of S
,

where p is the solution of the Dirichlet problem with boundary value g.
For SIR, we must solve, respectively,

{

βsx(T(x + 1)− T(x)) + γx(T(x − 1)− T(x)) + 1 = 0, T(0) = 0, T(K) = 0, K− > ∞, when R0 < 1

βsx(T(x + 1)− T(x)) + γx(T(x − 1)− T(x)) + qx = 0, T(0) = 0, T(K) = 0, K− > ∞, when R0 ≥ 1
. (7)

These two equations may be solved explicitly. The limits are quite challenging even with
Mathematica, as shown in Appendix A.1. We are able to recover and generalize the results of [33]
(see also ([16] eq(10))) when j ≥ 1 for the first problem, but not for the second one).

The Bacaer equation. One missing aspect in the previous works, however, char-
acterizes the extinction probabilities via one final equation, without going through the
discretization procedure employed in [13±17], solving each example individually. Interest-
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ingly, such an equation in terms of (F, V) decompositions was provided by Griffiths in [31],
except that this paper considers only BD’s with no transfers.

We review now the work of [34] (who were motivated by analyzing the case of pe-
riodic steady solutions), but on the way also spelled out the simple Equation (8) below.
To each fixed value for the disease variables, one may associate to a (F, V) decomposition
i′ = (F − V)i a ªmulti-dimensional birth and death processº (BD), with birth rates given
by F, and with transfer and death rates given by −V. (i′ = (F − V)i are precisely
the mean-field equation for the multi-dimensional birth-and-death process; this is pre-
cisely ([31] eq(6)), under the extra condition that we assume that the immigration vector
into the disease compartments is 0. In fact, the −V matrix by itself generates an absorbing
CTMC (and the F matrix models’ rough inputs to be fed into this absorbing CTMC). This
observation explains that an ODE mathematical epidemiology model has associated it to
both a birth-and-death process, as well as a ªdeath and transfer onlyº absorption CTMCÐ
see Remark 24 for an example. Furthermore, if (F, V) are independent of i, we are dealing
with a branching process (approximation).

A useful fact to recall is that the probabilities of extinction of a multi-variate discrete
time-branching process are of the form

P0 = qj1
1 qj2

2 ...,

where q = (qj, j = 1, ..., J), J is the number of disease compartments, andqj satisfies the
ªBacaer equationº

(qt ◦ F) ∗ q + (1 − q) ◦ V − q ∗ f = 0 ⇔ qj =
∑

J
k=1(1 − qk)Vkj

f j − ∑
J
k=1 qkFkj

, (8)

where ∗ denotes the coordinate-wise product, the dot product is denoted by ◦, and fj = ∑k Fk,j.
This equation is new, but it may be inferred from ([31] eq(9)) and refs. ([34] eq(11)) and ([35]
eq(5.3)) (after some changes in the variables).

For the SIR process for example, (8) becomes

(q − 1)s
Å
q + (1 − q)γ = (q − 1)(s

Å
q − γ) = 0,

with the two roots q = 1 and q = γ
s
Å
= 1

R0
, recovering Whittle’s result (the two roots yield

the correct result when R0 is strictly smaller than 1 and strictly bigger than 1, respectively).
We will check below that (8) also recovers other explicit particular cases offered in the

literature, like SEIR [13], ([14] (Section 4)), SIV [36], etc.

2.5. The Jacobian Factorization Bound

Note first the following elementary fact:

Lemma 1. A sufficient (but not necessary) condition for a polynomial with real coefficients and a
positive leading term to admit a positive root is that c0 < 0, where c0 is the constant term of
the polynomial.

For polynomials of degree 1, this condition is also necessary. This converse result may
be strengthened to ªDescartes type polynomialsº.

Definition 1. We will say that a parametric polynomial with real coefficients, whose constant
coefficient may change signs, but whose all other coefficients are ªsign definiteº and of the same sign
(which w.l.o.g. could be supposed as +), is of Descartes type.

As an immediate consequence of Descartes’s rule of signs, it follows that



Mathematics 2024, 12, 27 11 of 40

Lemma 2. A sufficient and necessary condition for a Descartes polynomial with a positive leading

term to admit a positive root is that c0 < 0, where c0 is the constant term of the polynomial.

Remark 11. Note the immense simplification with respect to the Routh±Hurwitz conditions, when
we need to establish the existence of a positive root for a Descartes type polynomial .

We believe that ªthe mystery of the success of the Jacobian factorization approachº comes from
the fact that ªsimple epidemic modelsº often feature Descartes type polynomials. However, this
leaves us with many further questions, like when does this happen and what to do when it does not.

The Jacobian factorization approach consists in:

1. Putting all the rational factors of the characteristic polynomial of the Jacobian in a
form normalized to have positive leading term, assuming they are sign definite (if
this is not the case, this approach does not work but may be generalized).

2. Removing all linear factors with eigenvalues which are negative.

3. For all remaining factors Fi for which c(i)0 < 0 may hold for certain parameter values,
rewrite this inequality into the form

c(i)0 = c+ − c− = c+(1 − R(i)
J ) < 0 ⇔ R(i)

J :=
c−
c+

> 1,

where c+, c− are the positive and negative parts of the expanded form of c(i)0 .
4. Define the ªJacobian factorization R0º

RJ = max
i

[R(i)
J ]. (9)

Theorem 1. (A) In the instability domain, RJ is a lower bound for infF admissible RF.
(B) In the stability domain, RJ is an upper bound for supF admissible RF.

Proof. (A) Fix any admissible F and let RF be its associated NGM R0. Then

RJ > 1 ⇔ ∃i : R(i)
J > 1 ⇔ ∃i : c(i)0 < 0 =⇒ DFE instability ⇔ RF > 1.

Thus
RJ > 1 =⇒ RF > 1 ⇔ RJ ≤ RF, (10)

and the result follows.
(B) Similar proof.
Conjecture: We conjecture that if all the factors Fi are Descartes polynomials, then

RJ = RF for any admissible decomposition (F, V) will denote the resulting object by R0.
Open question 1: Under what conditions do our NGM R0 and our Jacobian RJ coincide?
The implementation of the Jacobian factorization approach is provided in Appendix A.

2.6. The ªRational Univariate Representationº (RUR) and the Reduced Order
Quasi-Stationary Approximation

Hundreds of mathematical epidemiology papers have already employed the idea of
reducing the fixed point system to one scalar equation in one of the disease variables via
rational substitutions for the other variables. We note that this is a particular case of the so-
called ªrational univariate representationº (RUR), but for Mathematica users, this is irrelevant,
since RUR is not implemented currently and we had to write our own script, included below,
in which the user chooses a variable in a system that they want to restrict to.

The current code for this reduction to one equation algorithm is

RUR[mod_, ind_, cn_ : {}] := Module[{dyn, X, par, eq, elim},

dyn = mod[[1]]; X = mod[[2]]; par = mod[[3]];

elim = Complement[Range[Length[X]],ind];



Mathematics 2024, 12, 27 12 of 40

eq = Thread[dyn == 0];

ratsub = Solve[Drop[eq, ind], X[[elim]]][[1]];

pol =

Collect[GroebnerBasis[Numerator[Together[dyn /. cn]],

Join[par, X[[ind]]], X[[elim]]], X[[ind]]];

{ratsub, pol}

]

Remark 12. The command which does the essential work is ºGroebnerBasisº. When ºindº is a set
with just one component, this reduces the system to a polynomial in this variable. Alternatively,
this could be achieved by plugging the results of ºratsubº into the system.

The script above works directly for models with demographics but must be modified for ªconser-
vation systemsº, where the fixed points are only determined by adding the total mass conservation
equation to the fixed point equations.

This script may also be used for order reduction, both in the spirit of the ( quasi-steady-
state assumption) QSSA method in biochemistry and of the recent epidemiology paper [37].
We illustrate this for the simplest SIR example.

Example 3. For the SIR process (S(t), I(t), R(t), t ≥ 0) with linear birth rates bs, br for the

susceptible and the recovered, the system for the fractions s(t) = S(t)
N , i(t) = I(t)

N , r(t) = R(t)
N ,

N = S + I + R is:










s
′(t) = bs − βs(t)i(t) + γrr(t)− dss(t), ds = γs + µ

i
′(t) = βs(t)i(t)− dii(t), di = γi + µ + δ

r
′(t) = br + γii(t) + γss(t)− drr(t), dr = γr + µ

. (11)

The DFE is: ( brγr+bs(µ+γr)
µ(µ+γr+γs)

, 0,
br(µ+γs)+bsγs

µ(µ+γr+γs)
).

The rational substitution with respect to i obtained via RUR is:
(

s → γr(br + bs + iγi) + µbs

βi(µ + γr) + µ(µ + γr + γs)
, r → br(βi + µ + γs) + bsγs + iγi(βi + µ + γs)

βi(µ + γr) + µ(µ + γr + γs)

)

.

Note that this reduces to the DFE when i = 0.
The reduced approximate model obtained via RUR is:

i′ = i[a0 − a1i], a1 = β(µγi + (δ + µ)(µ + γr)), (12)

a0 = β(brγr + bs(µ + γr))− µ(µ + γr + γs)(δ + γi + µ) (13)

= µ(µ + γr + γs)(δ + γi + µ)
(

sd f eR− 1
)

= µ(µ + γr + γs)(δ + γi + µ)(R0 − 1).

This has an explicit (rather formidable) analytic solution, provided in the Mathematica file.
One may notice that for the chosen numerical illustration, the plots of i and its approximation

converge towards the same value but differ sharply for the chosen numeric values as far as shape is
concerned; see Figure 1.

We mention finally the possibility to develop yet another possible algorithm for
computing a ªbifurcation R0º, suggested by the example above, which is based on the
known fact that this parameter is expected to produce bifurcations at R0 = 1.

The steps are:

1. Factor out the variable in the scalar polynomial of the reduced model (always possible
if this is a disease variable).

2. Write the free coefficient of the divided polynomial as F(R0) = G(R0)(R0 − 1), where
F(R) is rational (always possible due to the known bifurcation at R0 = 1).
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3. Identify a factor which is linear in susceptible variables like sd f e, etc., and write it as a
difference of positive and negative terms. Upon normalizing one of them to one, the
other will be R0, or 1/R0.

20 40 60 80 100
t

0.06

0.07

0.08

0.09

Full model

a0

a1

=0.092

Approximation of SIR

Figure 1. Illustration of the asymptotic convergence of i(t) towards the endemic value a0
a1

= 0.092,

both for the full SIR model and its approximation.

3. R0 and Extinction Probabilities for the SEIR Epidemic Model

The SEIR process (S(t), E(t), I(t), R(t), t ≥ 0) adds to the SIR model the class E(exposed).

The model for the fractions s(t) = S(t)
N , e(t) = E(t)

N , i(t) = I(t)
N , r(t) = R(t)

N ,
N = S + E + I + R is:























s
′(t) = bs − βs(t)i(t) + γrr(t)− dss(t), ds = γs + µ

e
′(t) = βs(t)i(t)− γee(t)− dee(t), de = γe + µ

i
′(t) = γee(t)− dii(t), di = γi + µ + δ

r
′(t) = br + γii(t) + γss(t)− drr(t), dr = γr + µ

.

This is both a textbook model and one for which answers to many open questions (con-
cerning, for example, the emergence of chaos under stochastic and periodic perturbations)
are still awaitedÐsee for example [38±40].

The DFE of (14) is ( brγr+bs(µ+γr)
µ(µ+γr+γs)

, 0, 0,
br(µ+γs)+bsγs

µ(µ+γr+γs)
). The decomposition matrices and

basic reproduction number are:

F =

(

0 βs
0 0

)

, V =

(

γe + µ 0
−γe δ + γi + µ

)

, R0 =
βsγe

(γe + µ)(δ + γi + µ)
.

The associated disease stochastic process X = (e, i) ∈ N2 has a generating operator

G = s
Å
i( f (x + e1)− f (x)) + γee( f (x + tr)− f (x)) + dee( f (x + e3)− f (x)) + dii( f (x + e2)− f (x)),

where x = (e, i), e1 = (1, 0) = −e3, tr = (−1, 1), e2 = (0,−1).
The extinction probabilities obtained by solving (8) are

{

qi = 1, qe = 1 when R0 < 1

qi =
1

R0
, qe =

µ
de
+ γe

de
1

R0
when R0 ≥ 1

.

This checks with the particular case in [13], where sd f e = 1.

Remark 13. It is not clear intuitively why separating the transition rates into those of F (which
increase the norm of x) and those of V (which do not increase the norm of x) should matter for
determining the extinction probabilities, as happens in (8). This seems to be an interesting question.
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4. Rank One Host-Only Models with Pathogen and R0 Readable from the Flow-Chart

The SEIARW Model with ªCatalyzing Pathogenº of [18] Has Rank One Next-Generation Matrix
and R0 = RJ

Ref. [18] attempted to offer a ªdefinition-based methodº for ªcomputing R0 of dy-
namic models of single host species, which is mutually coherent with the next-generation
method (NGM)º (and somewhat unclear for ªcomputing R0 for a population with multi-
group modelsº). Unfortunately, these authors do not seem aware of the fact that all the
single host species they examined have a next-generation matrix of rank one, and that
in this case, there exists a simple general formula [20,41,42], which is also related to the
definition-based method of [43].

We review now the SEIAR model (susceptibles, exposed, infected, asymptomatic, and
recovered), to which [18] add also a pathogen compartment W, resulting in the SEIARW
model. See also Figure 2.









































































e′ = s(aβa + iβi + wβw)− ede, de = ei + ea + µ

i′ = eei − idi, di = γi + µ + δ,

a′ = eea − ada, da = γa + µ,

w′ = aϵa + iϵi − wdw

r′ = aγa + γii − µr

s′ = Λ − s(aβa + iβi + wβw + µ).

(14)

In matrix form, the disease equations are:













e′

i′

a′

w′

r′













=













−de sβi sβa sβw 0
ei −di 0 0 0
ea 0 −da 0 0
0 ϵi ϵa −dw 0
0 γi γa 0 −µ

























e
i
a
w
r













.

In the absence of a pathogen, SEIAR is a rank one ªgeneralized stage-structured infectious

disease modelº as revealed by its F =





0 sβi sβa
0 0 0
0 0 0



 and by its V =





de 0 0
−ei di 0
−ea 0 da





matrix, which is triangular (compare to ([14] (Section 3))).
The R0 has a very intuitive and easily explainable form:

R0 =
sd f e

de

[

βi
ei

di
+ βa

da

ea

]

(15)

(compare to ([14] (Section 3)) to see the general pattern for more stages).

Remark 14. Note that this result may be obtained with I = {e, i, a, r} and also with I = {e, i, a},
which raises the question of defining the concept of a minimal or ªsufficient diseaseº set in such a
way that it allows for deriving both R0 and the extinction probabilities.

After the addition of the catalyzing pathogen, the SEIARW is still a rank one ªgeneral-
ized stage-structured infectious disease modelº, but the R0 is less intuitive

R0 =
sd f e

de

[

βi
ei

di
+ βa

da

ea
+

βw

dw

(

ϵi
ei

di
+ ϵa

ea

da

)]

; (16)

still, it may be read out of the flow chart ªalmost by inspectionº (see also [18] for an
algorithm computing this).
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ϵi

γi

μ

dω

A βa + I βi +W βω

μ

ei

ea

μ

ϵa

γa

μ

μ

Λ

I

W

S

E

A

R

Figure 2. Flow chart corresponding to the SEIARW model (14).

Despite the fact that the characteristic polynomial is not of the Descartes type, all our
three R0 recipes yield the above result. We provide now details for the NGM method. After
removing the compartment r (since it does not appear in the other equations), the calls
ªinf=Range[4];DFE[SEIARW,inf]; NGM[SEIARW,inf]º of our scripts yield that the DFE is

{

s → Λ

µ
, e → 0, i → 0, a → 0, w → 0

}

and

F = s









0 βi βa βw
0 0 0 0
0 0 0 0
0 0 0 0









= s









1
0
0
0









(

0 βi βa βw
)

, V =









de 0 0 0
−ei di 0 0
−ea 0 da 0

0 −ϵi −ϵa dw









. (17)

Here the dominant eigenvalue of K = FV−1, that of the transpose

Kt = s











βidweida+βaeadwdi+βw(eiϵida+eaϵadi)
dedidadw

βidw+ϵi βw
dwdi

βadw+ϵa βw
dwda

βw
dw

0 0 0 0
0 0 0 0
0 0 0 0











,

the rank 1 formula of [20,41,42]

(1, 0, 0, 0).(Vt)−1.(0, βi, βa, βw)
t,

as well as the Jacobian factorization confirm all the results (16) of [18].

5. Target-Infection-Virus Models

5.1. Two Admissible (F, V) Decompositions and R0’s for the Three Dimensional Model of [44]

The three dimensional model of ([44] eq(1)) is:











x′ = Λ(x)− βxv − βxyxy, Λ(x) = µx(xd f e − x)
(

y′

v′

)

=

(

βxv + βxyxy

0

)

−
(

µyy

µvv + βxvxv + βyvyv − bµyy

)

,
(18)
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where we represented already the infectious equations as a difference of ªnew (positive)
infectionº terms and ªtransfersº. The DFE is x = xd f e, y = 0, v = 0.

This reduces to the case with zero delays in ([45] eq(5.1)), when the rate of viruses
moving into a healthy cell βxv and the rate of viruses moving into an infected cell βyv are
both 0, and to the case in [46], when βyv = 0 = βxy (the latter is the cell-to-cell infection
rate) and βxv = β.

The gradient of the infectious equations is

M =

(

xβxy − µy βx
bµy − vβyv −µv − xβxv − yβyv

)

. (19)

Calling our NGM script with ªinf = {2,3}º yields [44]’s result: namely,

F = xd f e

(

βxy β

0 0

)

,−V =

( −µy 0
bµy −µv − xd f eβxv

)

,

the next-generation matrix (NGM) of the infectious coordinates at the DFE

K =

(

βbx
µv+xβxv

+
xβxy
µy

βx
µv+xβxv

0 0

)

,

and that the DFE is Lyapunov±Malkin stable when R0 defined in

R0 =
xd f e

xc
+ βb

xd f e

µv + xd f eβxv
, xc :=

µy

βxy
, (20)

is smaller than 1 and unstable when R0 > 1.
The Jacobian factorization provides the same formula, despite the fact that the charac-

teristic polynomial is of the Descartes type only conditionally, when βxv ≥ βxy.

Remark 15. Interestingly, another admissible decomposition F =

(

βxv + βxyxy
betaµyy

)

, appears in

an earlier version of [44] at https://people.clas.ufl.edu/pilyugin/files/cosner60-dcdsB.pdf (accessed
on 1 November 2023):

F =

(

xβxy βx
bµy 0

)

, V =

(

µy 0
0 µv + βxvxd f e

)

, K =

( xd f e
xc

βxd f e
µv+βxvxd f e

b 0

)

(21)

This second decomposition yields a different R0:

R0 =
xd f e

2xc

(

1 +

√

1 +
4βbx2

c

xd f e(xd f eβxv + µv)

)

. (22)

Furthermore, this early version also shows that the two decompositions have the same stability
domain for the DFE, which may be reexpressed as

R0 = K1,1 + K1,2K2,1 =
xd f e

xc
+ bβ

xd f e

µv + βxvxd f e
< 1. (23)

We note that this equivalence also follows by applying the first criterion in [47] (when the character-
istic polynomial, given here by λn − a1λn−1 − a2λn−1 − ... has all coefficients as non-negative, then
∑i ai may be used as the threshold parameter instead of R0), with n = 3, a1 = K1,1, a2 = K1,2K2,1,
a3 = 0.

Remark 16. Note the second decomposition has one more non-zero term in F, which does not
appear in ours, since we view it as a transfer and not as an interaction. We see here an excellent
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example of non-uniqueness, where one must choose between an answer with F of a lower rank and a
simpler R0 formula, but which is valid only under certain conditions (that the non-diagonal term
bµy in V is small enough), and an answer with a simpler V, which requires less assumptions on the
parameters but yields a more complicated R0.

Remark 17. The domain of stability, in terms of the parameters. As an aside, it is easy to
show that (23) is equivalent to

xd f e < xc, b < b0 :=
µv + βxvxd f e

βxd f e

(

1 −
xd f e

xc

)

, (24)

where b0 is the solution of equation R0(b) = 1. Thus, the stability of the DFE is equivalent to both
xd f e and the ªburst parameterº b being small enough.

We offer now a third gradient decomposition, which turns out to be inadmissible

sometimes, but it again yields our recipe’s R0. Taking F =

(

xd f eβxy 0

bµy 0

)

yields

V = F − M =

(

µy −βxd f e
0 µv + xd f eβxv

)

, V−1 =





1
µy

βxd f e

µy(µv+xd f e βxv)

0 1
µv+xd f e βxv



.

Note that V is a sub-generating matrix only if xd f e ≤
µy
β .

However K =







xd f e βxy

µy

βx2
d f e βxy

µvµy+xd f e βxvµy

b
βbxd f e

µv+xd f e βxv






yields the correct

R0 = max

(

0,
βbxd f e

µv + xd f eβxv
+

xd f eβxy

µy

)

.

In the current example, the RUR algorithm works as well. The difference of the two
positive terms is

βbxd f eµy + xd f eβxy(µv + xd f eβxv)− µy(µv + xd f eβxv) = µy(µv + xd f eβxv)(R0 − 1),

for both choices y and v as scalar variables, and the appropriate cosmetics recover the
recipe NGM R0.

This example illustrates the fact that sometimes several admissible and even conditionally
non-admissible decompositions, as well as other approaches, may lead to the same R0.

5.2. Two Distinct Approximate Extinction Probabilities, One for Each Admissible (F, V)
Decomposition for the Model of [44]

The extinction probabilities of the stochastic model are of course unique. We may use
the result of Bacaer’s formula as approximations. In this interesting example, we find out
that both (F, V) decompositions yield reasonable results. This suggests that we have not
one, but two deterministic epidemiologic approximations for a single stochastic model.
This strengthens our point of view that a deterministic epidemiologic model must include
a specification of the (F, V) decomposition.

The respective results we obtained are:

1. For the first decomposition, the extinction probabilities obtained by solving (8) are























qy = 1, qz = 1, when R0 ≤ 1,

qy =
±
√

x2((βxy(µv+x(β+βxv))+βµy)2−4ββxyµy(x(β−bβ+βxv)+µv))+x(µvβxy+βµy)+x2(β+βxv)βxy

2βx2βxy
, when R0 > 1

qz =
(µv+xβxv)

(

±
√

x2((βxy(µv+x(β+βxv))+βµy)2−4ββxyµy(x(β−bβ+βxv)+µv))−xµvβxy+x2(β+βxv)(−βxy)+βxµy

)

2β2bx2µy
.
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2. For the second decomposition, the extinction probabilities obtained by solving (8) are:























qy = 1, qz = 1, when R0 ≤ 1,

qy =
±
√

x2((β(b+1)µy+βxy(µv+x(β+βxv)))2−4ββxyµy(µv+x(β+βxv)))+β(b+1)xµy+xµvβxy+x2(β+βxv)βxy

2βx2βxy
, when R0 > 1,

qz =
(µv+xβxv)

(

±
√

x2((β(b+1)µy+βxy(µv+x(β+βxv)))2−4ββxyµy(µv+x(β+βxv)))+β(b+1)xµy−xµvβxy+x2(β+βxv)(−βxy)
)

2βbxµy(µv+x(β+βxv))
.

In a numeric instance, we found the two results reasonably close to each other.

6. Multi-Strain Host-Only Models

Multi-strain diseases are diseases that consist of several strains, or serotypes. One
interesting thing about multi-strain models is that, besides the DFE, we have new boundary
points which are relevant epidemiologically, in which one subset of strains A is present
(ªresidentº). We have then a natural coexistence of several ªR thresholdsº:

1. RA is the bifurcation threshold at which the DFE stops being stable, when the only
compartments present are those of A.

2. RA is the bifurcation threshold at which the boundary point EA starts existing (in the
presence of the Ac compartments).

3. RAc ,A is the bifurcation threshold at which the boundary point EA stops being stable,
i.e., when the Ac compartments invade the A compartments.

Note that for two strains already, we have at least two new thresholds, R21, R12, which,
together with R0 and the thresholds R1, R2 of the individual strains, divide the line into
six regions with different stability properties. Studying the relations between the various
thresholds in the parameter space is quite a challenging topic. However, their calculation is
a priori of the same level of difficulty as for the DFE.

6.1. The Two-Strain SIS Tuberculosis Model of ([22] (Section 4.4))

The model presented here is a limiting case of that presented in the next section, ob-
tained when the transition rates γ1, γ2 converge to ∞. It also generalizes the two-strain SIS
tuberculosis model of ([22] (Section 4.4)) by allowing for cross infections in both directions











i′1 = i1(i2(ν2 − ν1) + β1s − σ1 − b) = i1(i2(ν2 − ν1) + β1s − d1),

i′2 = i2(i1(ν1 − ν2) + β2s − σ2 − b) = i2(i1(ν1 − ν2) + β2s − d2),

s′ = b − s(β1i1 + β2i2 + b) + i1σ1 + i2σ2,

where we put d1 = σ1 − b, d2 = σ2 − b in the first two equations to simplify their notation
(the last equation may be removed, since s = 1 − i1 − i2).

Noting that the first two equations’ factor yields the following three boundary steady
states, where x = (i1, i2, s):

x0 = (0, 0, 1), (25)

x1 =
(

1 −R−1
1 , 0,R−1

1

)

, (26)

x2 =
(

0, 1 −R−1
2 ,R−1

2

)

,

where we put

R1 =
β1

b + σ1
,R2 =

β2

b + σ2
.

The disease-free steady state x0 exists for all parameter values, while the original strain-
only steady state x1 is physically relevant if and only if R1 > 1, and the emerging strain-only
steady state x2 is physically relevant if and only if R2 > 1.
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There may also be a fourth non-negative coexistence equilibrium (COE), given by















i1 = β1d2−β2d1−(ν1−ν2)(β2−d2)
(ν1−ν2)(β1−β2+ν1−ν2)

i2 = d1(β2−ν1+ν2)−β1(d2−ν1+ν2)
(ν1−ν2)(β1−β2+ν1−ν2)

s = 1 − i1 − i2

. (27)

Note that this depends only on ν1 − ν2, which shows that the case ν1 = 0 considered
in ([22] (Section 4.4)) is not that restrictive (However, the appearance of ν1 − ν2 in the
denominator suggests limiting the diffusion phenomena, which may be worth studying in
their own right.) In this case, the COE point simplifies to:















i1 = d2(d1(R1−R2)+ν(R2−1))
ν(−d1R1+d2R2+ν)

i2 = d1(d2(R2−R1)+ν(1−R1))
ν(−d1R1+d2R2+ν)

s = 1 − i1 − i2

, (28)

which is positive if R2 > 1 and the following conditions hold







R1 >
ν+R2d2

ν+d2
, 0 < ν <

d1(R2−R1)
R2−1 , or,

R1 <
ν+R2d2

ν+d2
,
(

0 < d1 < ν(1 − 1
R2

) or d1 > ν(1 − 1
R2

), ν <
d1(R2−R1)

1−R2

)

.
(29)

We give now some details of the NGM implementation for the three boundary points.
Recall that the idea is to project the ODE at each boundary point on the 0 coordinates (or
some subset), while fixing the other coordinates. We must therefore compute new (F, V)
pairs at each boundary point, since the respective zero coordinates are different.

1. At the DFE, the zero coordinates are {i1, i2}, and so I = {1, 2}.
Our script yields the expected result

R0 = Max
[

β2sd f e

σ2 + b
,

β1sd f e

σ1 + b

]

= Max[R1, R2], Ri = sd f eRi = Ri, i = 1, 2.

2. At x2, I = {1}, and

R12 =
R1

R2
+

(ν2 − ν1)
(

1 −R−1
2

)

b + σ1
.

When ν1 = 0, ν2 = ν, we recover the result ([22] (18)) R12 = R1
R2

+ ν
b+σ1

(

1 −R−1
2

)

.

This implies that the stability holds if R2 > 1 and R1 are not too big, more precisely:

R12 < 1 ⇔ R1 < R2 +
ν(1 −R2)

b + σ1
. (30)

For a sanity check, we will derive the stability condition of the point x2 also by the
direct Jacobian approach. The Jacobian at x2 is









−β2(b+ν1−ν2+σ1)+β1(b+σ2)+(ν1−ν2)(b+σ2)
β2

0 0

− (ν1−ν2)(b−β2+σ2)
β2

0 −b + β2 − σ2

σ1 − β1(b+σ2)
β2

−b σ2 − β2









.

In the case of [22], the eigenvalues are

{

−b,−((R2 − 1)(b + σ2)),
(b + σ1)(R1 −R2) + ν(R2 − 1)

R1

}

.
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The second eigenvalue is negative if R2 > 1, and the third eigenvalue is negative when

(R1 −R2) +
ν

b + σ1
(R2 − 1) < 0 ⇔ R12 < 1 see (30).

3. An analog result holds via symmetry at x1, where I = {2}, and

R21 =
(ν1 − ν2)(R1 − 1)

d2R1
+

R2

R1
.

We illustrate now in Figure 3 via an i1 bifurcation diagram that, as natural, when β1

is small enough, the x2 fixed point is stable enough to be replaced as an attractor, first by
the COE, and finally by the x1 fixed point, when β1 increases. Figure 4 illustrate time and
phase plots at the critical point β1c = 2.

1 2 3 4 5
β1

-0.5

0.5

1.0

i1

β1 cβ12
β21

β2 c

x2 stable

x2 unstable

COE negative

COE stable

COE unstable

x1 negative

x1 unstable

x1 stable

Figure 3. i1 bifurcation diagram when β1 varies and ν1 = 0, ν2 = ν = 3 = β2 = 3, b = σ1 = σ2 = 1,

R1 =
β1

2 , R2 = 3
2 , so that x2 is always positive. Since R0 ≥ R2 > 1, the DFE is never stable. Observe

the following three regimes: (a) until β12 = 1.5 is defined by equality in R12 :=
ν(R2−1)

d1R2
+ R1

R2
≤ 1

⇔ β12 ≤ β2(b−ν+σ1)
b+σ2

+ ν, where the only stable solution is x2. (b) At β12 = 1.5, x2 becomes unstable

and the coexistence solution becomes non-negative and stable, until β21 is defined by R21 = R2
R1

−
ν(R1−1)

d2R1
= 1 ⇔ β21 = (b+σ1)(β2+ν)

b+ν+σ2
= 2.4. This is also the first intersection point of the COE and x1.

For a numerical check, at β1c = 2, defined by R1 = 1 ⇔ β1c = b + σ1, where the x1 solution emerges

and is initially unstable, the eigenvalues for the COE are (−1,−0.333333 ± 0.235702 Im). (c) After

β1 = β21 ⇔ R21 < 1, the x1 solution becomes stable and the COE loses its stability (the latter was

checked numerically). Note that at β2c = 3 ⇔ R1 = R12 ⇔ β1 = ν, there is no stability change: the

COE and x1 continue to be unstable and stable, respectively.
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t

0.2

0.4
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0.8

(a) Time plot corresponding to the

dynamics

0 1 2 3 4 5

0

1

2

3

4

5

i1

i 2

Phase portrait

(b) Phase plot at β1c = 2

Figure 4. Time and phase plot at the point β1c = 2 illustrating convergence towards COE =

(i1 → 0.0833333, i2 → 0.166667, s → 0.75). (a) (i1, i2, s)-time plot at the point β1c = 2 reveals con-

vergence towards the COE. (b) (i1, i2)−stream plot.

6.2. The Minimal Disease Set of the Multi-Strain Host-Only Dengue Model with
Antibody-Dependent Enhancement (ADE) [48]

The ADE (antibody-dependent enhancement) effect, believed to occur for dengue
and Zika, means that infection with a single serotype is asymptomatic, but infection
with a second serotype may lead to serious illness accompanied by greater infectivity.
It was first studied mathematically by [49,50], who showed that for sufficiently small
ADE, the numbers of infectives of each serotype synchronize, with outbreaks occurring
in phase, but when the ADE increases past a threshold, the system becomes chaotic, and
infectives of each serotype desynchronize (however, certain groupings of the primary
and secondary infectives remain synchronized even in the chaotic regime). Subsequently,
Ref. [51] examined the effects of single-strain vaccine campaigns on the dynamics of an
epidemic multi-strain dengue model. We cite now the eloquent dengue description given
by these authors:

ªWhat makes modeling the dengue virus so interesting is that it has developed a
sophisticated spreading process. Dengue is known to exhibit as many as four coexisting
serotypes (strains) in a region. Once a person is infected and recovered from one serotype,
they confer life-long immunity from that serotype. However, the antibodies that the body
develops for the first serotype will not counteract a second infection by a different serotype.
In fact, due to the nature of the disease, the antibodies developed from the first infection
form complexes with the second serotype so that the virus can enter more cells, increasing
viral production. The increased transmission rate in subsequent infections is known as
antibody-dependent enhancement (ADE). ADE is an alarming evolutionary development
in multistrain viruses with respect to vaccines. An optimal vaccination would need to cover
all strains of the disease at once, or the vaccinations could increase transmission of the
strains not covered. This is particularly dangerous for people who have dengue because
the infections are more severe in individuals who already have dengue antibodiesº.

A multi-strain model which adds further compartments allowing for temporary cross-
immunity has been developed in the works of Aguiar, Stollenwerk, and Kooi [48,52±55].

In this section, we consider a ten-compartmentasymmetric version of the model of [48],
whose variables, denoted by capital letters, represent

1. S as individuals susceptible to both strains;
2. Ii, for i, j = 1, 2, as individuals infected with strain i and with temporary cross-

immunity to strain j ̸= i;
3. Ri as individuals who have recovered from strain i, but are not yet susceptible to the

other strain j;
4. Si as individuals who have recovered from strain i, and have become susceptible to

the other strain j;
5. Yj = Iij as individuals previously infected with strain i and are now immune to it, but

became reinfected with strain j, i, j = 1, 2, i ̸= j;
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6. R, omitted in (31) since they do not feed back to the other components, as the recovered
individuals immune to all the strains.

After denoting by small letters the corresponding proportions, we arrive at:







































































s′ = µ − s(β1i1 + β2i2 + µ + β1y1ϕ1 + β2y2ϕ2),

i′1 = β1s(i1 + y1ϕ1)− i1(γ1 + µ),

r′1 = γ1i1 − r1(θ1 + µ),

s′1 = θ1r1 − s1(β2α2(i2 + y2ϕ2) + µ),

y′2 = β2α2s1(i2 + y2ϕ2)− y2(γ2 + µ),

i′2 = β2s(i2 + y2ϕ2)− i2(γ2 + µ),

r′2 = γ2i2 − r2(θ2 + µ),

s′2 = θ2r2 − s2(β1α1(i1 + y1ϕ1) + µ),

y′1 = β1α1s2(i1 + y1ϕ1)− y1(γ1 + µ).

(31)

In addition to the DFE where s = 1 and all the other compartments are 0, this system

also has two other boundary points. With Ri =
βi

γi+µ , these are:

1. one with i2 = r2 = s2 = y1 = y2 = 0, given by

E1 =

(

µ

β1
(R1 − 1),

µγ1

β1(α1 + µ)
(R1 − 1),

α1γ1

β1(α1 + µ)
(R1 − 1), 0, 0, 0, 0, 0,

1

R1

)

,

2. and one with i1 = r1 = s1 = y1 = y2 = 0, given by

E2 =

(

0, 0, 0, 0,
µ

β2
(R2 − 1),

µγ2

β2(α2 + µ)
(R2 − 1),

α2γ2

β2(α2 + µ)
(R2 − 1), 0,

1

R2

)

. (32)

Thus, Ri, i = 1, 2 are the bifurcation values at which these two boundary points appear.
The maximal disease set contains Ii, Ri, Si, Yi, i = 1, 2. The DFE may be determined

already using the disease set Ii, Yi, i = 1, 2, which has the advantage of possessing a simple
characteristic polynomial with two factors R1(X), R2(X), which yields:

RJ = max[R1(X), R2(X)], R1(X) =
β2(α2s1ϕ2 + s)

γ2 + µ
, R2(X) =

β1(α1s2ϕ1 + s)
γ1 + µ

.

Also, our scripts find that

Rji = sd f e Rj, j ̸= i, i = 1, 2. (33)

Finally, applying the NGM script to Ei, i = 1, 2 yields the elegant relation

R0 = sd f e max[R1,R2] = max[R21, R12]. (34)

Remark 18. Note the notations R1(X), R2(X), suggesting that we want to view these as polyno-
mials in the variables of the model, rather than as values evaluated at one of the fixed points.

We end this section by drawing the attention to the object which allowed for computing
the key polynomials R1(X), R2(X).

Definition 2. (A) A minimal disease set I is a minimal set which still allows the computation of
the DFE, after being set to 0.

(B) The model factors are the factors which may admit positive roots in the characteristic
polynomial of the Jacobian with all variables in I set to 0.
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Remark 19. Assume w.l.o.g. R1 < R2. Two situations may arise:

{

sd f eR1 < R1 < sd f eR2 < R2

sd f eR1 < sd f eR2 < R1 < R2,

and in each of them, 1 may lie in any of the partition intervals. This gives raise to six disjoint cases:



















































R1 < R2 ≤ 1 the DFE is the only boundary equilibrium

sd f eR1 < sd f eR2 < 1 < R1 < R2 both E1, E2 exist and are unstable

sd f eR1 < 1 < min[R1, sd f eR2] < R2 E1 unstable, E2 stable

sd f eR1 < R1 < 1 < sd f eR2 < R2 only E2 exists and is stable

sd f e max[R1, sd f eR2] < 1 < R2 only E2 exists and is unstable

1 < sd f eR1 < sd f eR2 competition between the two stable dominants

strains E1, E2.

(35)

All these cases have been investigated in detail; for a more general model, see [56], which
reviewed in the next section. Thus, it turns out that the results are fully determined by the
model factors.

Before proceeding, let us give a name to the very interesting structure we have started
to investigate.

Definition 3. A Descartes multi-strain model of order M is an epidemic model for which the
characteristic polynomial of the Jacobian factors are completely over the rationals as a product of
terms, where precisely M of which are ªDescartes polynomialsº. For such models, the Jacobian
factorization threshold is defined as

RJ(X) := max
1≤m≤M

Rm(X).

One may check that

Lemma 3. For Descartes multi-strain models of order K, the local stability set is a subset of

RJ(X) ≤ 1.

Remark 20. The example of this section is a Descartes two-strain model (since the characteristic
polynomial has only linear factors, precisely two of which have constant coefficients which may
change signs).

6.3. Effects of Single-Strain Vaccination on the Dynamics of a Multi-Strain Host-Only Dengue
Model with ADE

In this section, we will show that the mysterious Formula (34) continues to hold under
the considerably more complicated two-strains model of [56], with vaccination applied to
one strain only. The model studied in [56] is depicted in Figure 5.
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Figure 5. Schematic representation of the infection status due to the concomitant transmission of

viruses 1 and 2, considering that the population is vaccinated against virus 1.

This model involves twelve compartments, two of which capture the vaccination
against strain 1.

1. S = S0 are individuals susceptible to both strains;
2. Ii, for i, j = 1, 2 are individuals infected with strain i, with temporary cross-immunity

to strain j ̸= i;
3. Ci (Ri in the original model of [52]) are individuals recovered from strain i, and hence,

are permanently immune to it, with temporary cross-immunity to strain j ̸= i;
4. Ri (Si in the original model of [52]) are unvaccinated individuals who have recovered

from strain i, but have now become susceptible to the other strain j;
5. Yj (Iij in the original model of [52]) are individuals previously infected with strain i

and are immune to it, but have become reinfected with strain j, i, j = 1, 2, i ̸= j;
6. R = R12 are individuals immune to all the strains;
7. Finally, there are individuals V who are vaccinated against strain 1 and are still

susceptible to strain 2, and individuals Rv1 = Sv = Z who have been vaccinated
against strain 1 and have subsequently become infected by strain 2.

Denote by N(t) = S(t)+V(t)+ I1(t)+ I2(t)+C1(t)+C2(t)+R1(t)+R2(t)+Y1(t)+
Y2(t) + Sv(t) + R12(t) the total population, put Ji = Ii + Yi, i = 1, 2, and assume that the
two forces of infection acting on S are:

Fi = βi
Ji

N
,

and that the forces of infection acting on Yi = Si, i = 1, 2 are:

α1β1
J1

N
, α2β2

J2

N
, αvβ2

J2

N
,

where α1, α2, αv denote the decreases or increases in the susceptibility to secondary infec-
tions (αi > 1 implying an ADE effect).

The following equations, with appropriate initial conditions, represent the disease
dynamics model:



Mathematics 2024, 12, 27 25 of 40

dS
dt

= (1 − ξ)µ − β1 J1
S
N

− β2 J2
S
N

− µS

dI1

dt
= β1 J1

S
N

− (γ1 + µ)I1

dC1

dt
= γ1 I1 − (θ1 + µ)C1

dR1

dt
= θ2C1 − α2β2 J2

R1

N
− µR1

dY2

dt
= α2β2 J2

R1

N
+ αvβ2 J2

Sv

N
− (γ2 + µ)Y2

dI2

dt
= β2 J2

S
N

− (γ2 + µ)I2 (36)

dC2

dt
= γ2 I2 − (θ2 + µ)C2

dR2

dt
= θ1C2 − α1β1 J1

R2

N
− µR2

dY1

dt
= α1β1 J1

R2

N
− (γ1 + µ)Y1

dV
dt

= ξµ − (θv + µ)V

dSv

dt
= θvV − αvβ2 J2

Sv

N
− µSv

dR12

dt
= γ1Y1 + γ2Y2 − µR12

Table 1 summarizes the parameters and compartments of the model.

Table 1. Parameters and compartments of the model.

Parameter Description (for i, j = 1, 2)

µ Birth rate
µ Per capita death rate
βi Transmission rate of virus i
γi Per capita recovery rate of infected people with virus i
θi Per capita loss rate of cross-immunity to virus i after previous infection with virus j
θv Per capita loss rate of cross-immunity to virus 2 obtained via vaccination
αi ADE factor that can alter the susceptibility of unvaccinated individuals to the virus i
αv ADE factor that can alter the susceptibility of vaccinated individuals to virus 2
ξ Per capita vaccination rate

Compartments Description

S Susceptible individuals to both viruses
V Vaccinated individuals against the virus 1
Ii Individuals with primary infection by the virus i
Ci Individuals recovered from infection with virus i and have cross-immunity to virus j
Ri Unvaccinated individuals immune to virus i and susceptible to virus j

Z = Sv Individuals vaccinated for virus 1, and susceptible to virus 2
Y1 Individuals infected by virus 1 and recovered and hence, immune to virus 2
Y2 Individuals infected by virus 2 and immune to virus 1 either due to recovery or vaccination
R12 Individuals immune to both virus

This system does not have negative cross effects; therefore, it leaves the non-negative
quadrant invariant [57]. It follows from the equations that

dN(t)
dt

= µ(1 − N(t)).

Therefore,
lim

t→+∞
N(t) = 1.



Mathematics 2024, 12, 27 26 of 40

Assuming N(0) = 1 implies that N(t) = 1, for t ≥ 0. Using this, we may assume
w.l.o.g. that N = 1, working with the proportions, is to be denoted by the corresponding
lowercase letters.

The only non-zero compartments in the DFE, to be denoted by E0, are easily found
to be

s0 = 1 − ξ, z0 = ξ
θv

µ + θv
, v0 = ξ

µ

µ + θv
;

in fact, the last value holds at any fixed point. As known from [56], there are also two
endemic points on the boundary, whose rather complicated formulas will be given later.

Remark 21. From a modeling point of view, this system has crucial parameters like αv (note that
αv = 0 means perfect vaccination, and αv = 1, which means that infection by the second strain is
equally likely for vaccinated people).

Due to conservation, the system evolves in a compact domain, and so we may eliminate
one compartment, for example, V, from the analysis. Finally, the last compartment does
not send input to the others and therefore may also be disregarded in the analysis.

6.3.1. The Jacobian RJ(X) is the Max of Two Polynomials, Obtained Using a Minimal
Disease Set

We may tackle this example via the Jacobian factorization approach, choosing the
minimal disease set I = (i1, i2, y1, y2), just like in the previous section. Again, the charac-
teristic polynomial of the Jacobian with the variables in I are set to 0 factors completely as
a product of the linear terms

(µ + u)5(γ1 + µ + u)(γ2 + µ + u)(θ1 + µ + u)(θ2 + µ + u)(µ + u + θv)×

(γ1 + µ − α1β1r2 − β1s + u)(γ2 + µ − α2β2r1 − β2s − β2zαv + u),

only two of which (the seventh and eighth factors) may yield positive eigenvalues. Both
are of the Descartes type, and instability may occur if

RJ(X) := max[R1(X), R2(X)] = max[
β1(α1r2 + s)

γ1 + µ
,

β2(α2r1 + zαv + s)
γ2 + µ

] > 1. (37)

At the DFE, r1 = r2 = 0, and this yields

RJ := RJ(E0) = RN = max[s0
β1

d1
, s0

β2

d2
+ z0

β2αv

d2
], d1 = γ1 + µ, d2 = γ2 + µ. (38)

This expression reveals a pattern similar to (16), with the difference that the existence of
two strains are reflected in the max and that the second strain is alimented by two classes
of susceptibles, one of which is the people vaccinated against the first strain.

In addition to the disease-free equilibrium, there might exist two more equilibriums
on the boundary: the endemic equilibrium where there are only infections by strain 1, E1,
and the endemic equilibrium where there are only infections by strain 2, E2; this will be
reviewed in the next section.

6.3.2. The Endemic Boundary Equilibrium Ei Exist If Ri(E0) > 1

At the equilibrium E1, the values of I2, C2, R2, Y1, Y2 and R12 are zero. The coordinates
are easily found using the ªSolveº command. Those of V, Z are the same as at the DFE, and
the others are:

s1 =
γ1 + µ

β1
, i1 =

µ

β1

[

1 − ξ

s1
− 1

]

:=
µ

β1
(R1 − 1), c1 =

γ1

θ1 + µ
i1, r1 =

θ1

µ
c1 (39)
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where

R1 = (1 − ξ)
β1

γ1 + µ
= R1(E0) (40)

(the endemic equilibrium E1 exists if and only if R1 > 1).
At the equilibrium E2, the values of I1, C1, R1 and Y1 are zero, and that of V is the same

as at the DFE.
The solutions of the E2 system involve all complicated square roots. In such a case, it

is more convenient to replace the ªSolveº command by our RUR algorithm, which requires
the user to input a variable to reduce 2. The normal choice is i2 (which transitions to
positive at the bifurcation value), but here we will use s, to check the results of [56], who
find, using as a reduction scalar x = β2 j2, that

s2 =
(1 − ξ)µ

x + µ
, i2 =

(1 − ξ)xµ

(x + µ)(γ2 + µ)
, c2 =

(1 − ξ)xγ2µ

(x + µ)(γ2 + µ)(θ1 + µ)
,

r2 =
(1 − ξ)xγ2θ1

(x + µ)(γ2 + µ)(θ1 + µ)
, z2 =

vθvµ

(θv + µ)(αvx + µ)
, (41)

y2 =
vαvxθvµ

(αvx + µ)(θv + µ)(γ2 + µ)
,

and that x is the solution of the quadratic equation

ax2 + bx + c = 0,















a = αv

b = µαv

[

1 − β2(1−ξ)
γ2+µ

]

+ µ
[

1 − β2αvθvv
(γ2+µ)(θv+µ)

]

c = µ2(1 −R2)

.

The equilibrium E2 exists if R2 > 1, where

R2 =
β2

γ2 + µ

[

1 − ξ + ξ
αvθv

θv + µ

]

=
β2

γ2 + µ
[s0 + αvz0] = R2(E0). (42)

If R2 ≤ 1, the fractions in the expression of b must be smaller than one or equal to one,
and it is not possible for both to be one. Therefore, b > 0. We also have c ≥ 0. Since that
a > 0, Equation (42) does not have roots with positive real parts. This implies that there is
no endemic equilibrium like E2. Thus, in this case, c < 0. Since the coefficient a is positive,
Equation (42) has two real roots and only one of them is positive. To resume, if R2 > 1,
there is a unique endemic equilibrium where there are infections only by strain 2.

6.3.3. The Recipe next-generation matrix R0 and the Jacobian Factorization One Coincide

This section shows that the polynomials R1(X), R2(X) in this example may also be
obtained via the next-generation matrix approach as eigenvalues of the K matrix via a
judicious choice of infectious classes.

One may choose, as the infectious subset, the nine compartments that are 0 in the limit,
but a luckier choice here is the smaller subset I = {I1, I2, Y2, Y1}, which precisely has, as
eigenvalues, the expressions R1(X), R2(X) in (37).

The decomposition matrices are

V =









γ1 + µ 0 0 0
0 γ2 + µ 0 0
0 0 γ1 + µ 0
0 0 0 γ2 + µ









, F =









β1s 0 0 β1s
0 β2s β2s 0
0 β2zαv β2ζαv 0
0 0 0 0









= sB0 + zBv,
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where B0, Bv are:

B0 =









β1 0 0 β1

0 β2 β2 0
0 0 0 0
0 0 0 0









, Bv =









0 0 0 0
0 0 0 0
0 β2αv β2αv 0
0 0 0 0









.

The explicit non-zero eigenvalues of the next-generation matrix (sB0 + zBv)V−1 are

(

β1s

γ1 + µ
,

β2(zαv + s)

γ2 + µ

)

, (43)

confirming the result of the Jacobian method.
Let us note finally that (37), as well as the result of this section, imply the relation

R0 = max[R1,R2], (44)

where Ri, i = 1, 2 denote the bifurcation parameters at which the boundary points Ei start
to exist.

Remark 22. Interestingly, R0 = max[R1,R2] is the max of two quantities which satisfy that
Ri > 1, i = 1, 2 are precisely the domains where endemic points Ei containing exactly one of the
strains appearÐsee (44). This formula, natural in cases where the next-generation matrix has a
block structure, seems to be a general feature of multi-strain models, even when the block structure
is not apparent.

In the case of this section, there seems to be a more specific structure: the Jacobian factorization
approach allows for introducing two ªDescartes typeº (see Definition 1) factors Ri(X), i = 1, 2 of
the characteristic polynomial, which are that

1. The existence conditions for Ei may be expressed as Ri := Ri(DFE) > 1Ðsee (40), (42),
and (46).

2. The invasion reproduction numbers may be obtained simply by substituting the coordinates of
the dominance boundary equilibria into the corresponding factor. More precisely, the invasion
number of the fixed point Ei for strain i is given by Rji = Rj(Ei).

Open question 2: Does the relation R0 = maxK
1 Rk hold for all Descartes multi-strain

models of order K? (recall Definition 3 and Lemma 3).

6.3.4. The Invasion Reproduction Number of Ei is Given by Rj(Ei)

The invasion reproduction numbers (see for example [58]) may, just as the basic
reproduction number, be calculated using the next-generation matrix.

Our script yields quickly that

Rji = Rj(Ei), i = 1, 2, j ̸= i. (45)

Open question 3: Do the formulas connecting (44) and (45) to the Jacobian factorization











Ri = Ri(E0), R0 = max[R1,R2],

Rji = Rj(Ei), where Ri denote polynomials obtained via

the Jacobian factorization approach,

(46)

hold for some general class of epidemic models?
(C) For ªtwo strain epidemic modelsº, what conditions must be satisfied to ensure the

inequalities Rji < Rj, i = 1, 2, j ̸= i?
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To resolve these questions, it might be useful to study the three and four strain
generalizations of this problem and to investigate ªnon-simpleº multi-strain models (in
which the characteristic polynomial contains non-Descartes type polynomials).

7. Vector±Host Models

7.1. The Jacobian R0 is the Square of the Recipe NGM R0 for the Dengue Vector±Host Model
without Demography of [30]

Ref. ([30] eq(28)) considers a ªno demography/conservationº model with six compart-
ments, three of which represent hosts, while the rest represent the vector. Note that such
models with no demography do not have a finite set of fixed points. The DFE is not unique,
it coincides with the initial conditions. However, our algorithm works just fine. The model,
after removing two ªRº classes which do not affect the rest, is:























S′
1 = − β21 I2S1

N1

S′
2 = − β12 I1S2

N2
(

I′1
I′2

)

=

(

−γ1
β21S1

N1
β12S2

N2
−γ2

)(

I1

I2

) . (47)

The call ªinf = {1, 2}; NGM[Brouwer22, inf]º of our script yields that the decomposi-
tion matrices are

F =

(

0
β21S1

N1
β12S2

N2
0

)

, V =

(

γ1 0
0 γ2

)

,

K =

(

0
β21S1
γ2 N1

β12S2
γ1 N2

0

)

,

and

RF =

√

S1S2β12β21

N1N2γ1γ2
. (48)

After using the fact that the DFE is determined by the initial conditions S1 = N1, and
S2 = N2, we obtain the basic reproduction number

RF =

√

β12β21

γ1γ2
(49)

of ([30] eq(40)).
Here the characteristic polynomial is of the Descartes type and the Jacobian method,

as well as the RUR method, yielding for both the square of the (modified) formula (48)

RJ =
β12β21
γ1γ2

.

Remark 23. Note that ([30] eq(35)) offers yet another admissible decomposition, based on a different
biological interpretation, with RF = RJ , and raises the question of which of the answers is more
relevant for a given epidemic. Deciding this from the ODE model only seems impossible.

7.2. The Two Groups Model in ([21] eq(5.8)) Does not Obey a Square Relation

The two groups model in ([21] eq(5.8)) defined by























S′
1 = − β11 I1S1

N1
− β21 I2S1

N1
+ λ1 − µ1S1

S′
2 = − β12 I1S2

N2
− β22 I2S2

N2
+ λ2 − µ2S2

(

I′1
I′2

)

=

(

−γ1 − µ1 − δ1 +
β11S1

N1

β21S1
N1

β12S2
N2

β22S2
N2

− γ2 − µ2 − δ2

)(

I1

I2

)
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is not a vector±host model anymore, due to the addition of the ªintra-group contact infection
ratesº β11, β22.

The DFE is
{

0, 0, λ1
µ1

, λ2
µ2

}

, and the RN is quite complicated:

√
(β22 N1S2(γ1+δ1+µ1)+β11 N2S1(γ2+δ2+µ2))2+4(β12β21−β11β22)N1 N2S1S2(γ1+δ1+µ1)(γ2+δ2+µ2)

2N1 N2(γ1+δ1+µ1)(γ2+δ2+µ2)
(50)

+ β22γ1 N1S2+β11γ2 N2S1+β22δ1 N1S2+β11δ2 N2S1+β22µ1 N1S2+β11µ2 N2S1

2N1 N2(γ1+δ1+µ1)(γ2+δ2+µ2)
.

The Jacobian factorization method yields a different answer for a characteristic poly-
nomial which is not of the Descartes type, precisely because of the addition of β11, β22.

RJ =
β22N1S2(γ1 + δ1 + µ1) + β11γ2N2S1 + β11δ2N2S1 + β11µ2N2S1 + β12β21S1S2

N1N2(γ1 + δ1 + µ1)(γ2 + δ2 + µ2) + β11β22S1S2
.

8. Multi-Strain Vector±Host Models

8.1. A Two-Strain Vector±Host Model of Feng and Velasco-Hernández [59], Where the Square
Relation Holds for the Basic Reproduction Number

Ref. [59] considered a human population settled in a region where a mosquito popula-
tion of the genus Aedes is present and is a carrier of two strains of the dengue virus. Let
Vi, Ii, Yi, i = 1, 2 denote the infected mosquitoes, individuals infected by one strain, and
individuals having suffered a secondary infection, respectively, let N = S+ R+∑

2
i=1 Ii +Yi

denote the total human population, and let B1 = β1V1(t)
c+wh N , B2 = β2V2(t)

c+wh N denote the rates of
infections in human hosts produced by the two strains. The model is defined as follows:























































































S′(t) = h − S(t)(B1 + B2)− µS(t),

I′1(t) = B1S(t)− σ2B2 I1(t)− µI1(t),

I′2(t) = B2S(t)− σ1B1 I2(t)− µI2(t),

Y′
1(t) = σ1B1 I2(t)− (e1 + µ + r)Y1(t),

Y′
2(t) = σ2B2 I1(t)− (e2 + µ + r)Y2(t),

R′(t) = r(Y1(t) + Y2(t))− µR(t),

V′
1(t) = α1

I1(t)+Y1(t)
c+wv N M(t)− δV1(t),

V′
2(t) = α2

I2(t)+Y2(t)
c+wv N M(t)− δV2(t)

M′(t) = q − M(t)
(

α1
I1(t)+Y1(t)

c+wv N + α2
I2(t)+Y2(t)

c+wv N

)

− δM(t).

The DFE is given by E0 = (h/µ, 0, 0, 0, 0, 0, 0, 0, q/δ). For the infectious set
I1, I2, Y1, Y2, V1, V2, the F and V matrices used in the next-generation approach are given by

F =



















0 0 0 0 β1sd f e 0

0 0 0 0 0 β2sd f e
0 0 0 0 0 0
0 0 0 0 0 0

α1Md f e 0 α1Md f e 0 0 0

0 α2Md f e 0 α2Md f e 0 0



















, (51)
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V =

















µ 0 0 0 0 0
0 µ 0 0 0 0
0 0 e1 + r + µ 0 0 0
0 0 0 e2 + r + µ 0 0
0 0 0 0 δ 0
0 0 0 0 0 δ

















(52)

with Md f e = q/δ. Then,

FV−1 =























0 0 0 0
β1sd f e

δ 0

0 0 0 0 0
β2sd f e

δ
0 0 0 0 0 0
0 0 0 0 0 0

α1 Md f e
µ 0

α1 Md f e
e1+µ+ξ 0 0 0

0
α2 Md f e

µ 0
α2 Md f e
e2+µ+ξ 0 0























We obtain a basic reproduction number, which is a max

R = max
(

√

R1,
√

R2

)

,Ri := s0m0
αiβi

δµ
, (53)

just like (44), but also contains the extra square roots typical of vector±host models.
Furthermore, it may be checked that this is precisely the square root of the answer

given by the Jacobian factorization method, which decomposes the characteristic poly-
nomial of the Jacobian as the product of five linear factors with negative roots and two
quadratic Descartes type polynomials.

There also two boundary (dominance) equilibria where only one strain survives. The
non-zero coordinates at the first one, E1, are given by

α1i1 = δ
R1 − 1

m0β1/(µ) + 1
, β1v1 = µ

R1 − 1

s0α1(δ) + 1
, s = µ

α1s0 + δ

α1β1m0 + α1µ
,

with similar formulas holding for the other boundary point E2, using symmetry. Thus,
these points become positive precisely when the corresponding factor of the DFE becomes
bigger than 1, causing instability.

Since we had trouble with computing the invasion reproduction numbers, we switched
to the ªsimplified modelº of [59], in which M is eliminated by noting that the equation for
the total vector population T = M + V1 + V2 is T′ = q − δT, and also by assuming that
T0 = limt→∞ T(t) = q/δ, M can be removed from the system by substituting

M = q/δ − V1 − V2. (54)

As a first consequence of using (54), the RN becomes equal to RJ .
However, the recipe R0 at E1 for the natural choice of ªinfº is very complicated,

and [59] provides here a laborious local stability analysis, with a complicated result, via the
third-order Routh±Hurwitz conditions.

We note finally that the characteristic polynomial for jac(E1) has two factors of
degree 3, one of which is the Descartes type, and one which is not. The Descartes type
factor yields a polynomial R1(X). Putting this together with its symmetric R2(X) allows us
to finally define

RJ(X) = maxj[R1(X), R2(X)] = maxj[
αjβ jqs/δ

(β jvj + µ)
(

αjij + δ
)

+ β jvjαjs
].
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Invasion Numbers of [59]

The two-strain vector±host model in [59] admits two boundary equilibria beside the
DFE in which

S∗
1 , S∗

2 , I∗1 , I∗2 , V∗
1 , V∗

2 are the invasion infection classes. In this case, we consider the
subset in1 = (I2, Y1, Y2, V2) corresponding to the invasion infection class of E1, then

F =









0 0 0 b2S
b1σ1v1 0 0 0

0 0 0 b2i1σ2

a2

( q
δ − v1

)

0 a2

( q
δ − V1

)

0









, (55)

V =









b1σ1V1 + µ 0 0 0
0 e1 + µ + ξ 0 0
0 0 e2 + µ + ξ 0

a2

( q
δ − V1

)

− a2

( q
δ − V1 − V2

)

0 a2

( q
δ − V1

)

− a2

( q
δ − V1 − V2

)

a2(I2 + Y2) + δ









, (56)

K =













0 0 0 b2S
δ

b1σ1V1
b1σ1V1+µ 0 0 0

0 0 0 b2 I1σ2
δ

a2(
q
δ −V1)

b1σ1V1+µ 0
a2(

q
δ −V1)

e2+µ+ξ 0













then the IRN of strain 1 at E1 is

R1 =

√
a2

√
b2
√

q
√

S(e2 + µ + ξ)

δ
√

µ
√

e2 + µ + ξ
.

Similarly, we chose the other subset in1 = (I1, Y1, Y2, V1) corresponding to the invasion
infection class at E2, where we obtain

F =









0 0 0 b1S
0 0 0 b1 I2σ1

b2σ2V2 0 0 0

a1

( q
δ − V2

)

a1

( q
δ − V2

)

0 0









, (57)

V =









b2σ2V2 + µ 0 0 0
0 e1 + µ + ξ 0 0
0 0 e2 + µ + ξ 0

a1

( q
δ − V2

)

− a1

( q
δ − V1 − V2

)

a1

( q
δ − V2

)

− a1

( q
δ − V1 − V2

)

0 a1(I1 + Y1) + δ









, (58)

K =













0 0 0 b1S
δ

0 0 0 b1 I2σ1
δ

b2σ2V2
b2σ2V2+µ 0 0 0

a1(
q
δ −V2)

b2σ2V2+µ

a1(
q
δ −V2)

e1+µ+ξ 0 0













then the maximum eigenvalue of K yields the IRN at E2 which is

R2 =

√
a1

√
b1

√

q − δv2

√

I2σ1(b2σ2V2 + µ) + e1S + S(µ + ξ)

δ
√

e1 + µ + ξ
√

b2σ2V2 + µ
.

8.2. The dengue±Zika Model with Coinfection and ADE [2]

The model studied in this paper continues previous papers like Isea and Lonngren
2016 [60] and Okuneye et al. 2017 [61], most notably by taking into account the possibility of
coinfection and of direct transmission of Zika via sex (which entails two forces of infection
for Zika transmissions in their flowchart, hence leading to an asymmetry in the results).
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Introduce the following forces of infection:































Fvd = βhdTvd, Tvd = Ivd + Ivcνd, dengue vector force

Fvz = βhzTvz, Tvz = Ivz + Ivcνz, zika vector force

Fhz = βvzThz, Thz = Iz + Ic + Jzkz, zika human force

Fhd = βvdThd, Thd = Id + Ic + Jdkd, dengue human force

Fs = βsThz zika human-to-human force.

(59)

Note that νd, νz and kd, kz are, respectively, the parameters of altered infectivity for co-
infected vectors and of ADE, and note that even when νd = νz = 1, the co-infection model
is more accurate than previous works like [59], since it takes into account the existence of
doubly infected vectors Ivc which influence both chains of infection.

We will consider the model :















































































































S′
h = (Nh − Sh)µ − Sh(Fvd + Fvz + Fs),

I′d = ShFvd − ρId(Fvz + Fs)− Id(γd + µ),

I′z = Sh(Fvz + Fs)− ρIzFvd − Iz(γd + µ),

I′c = ρ[Id(Fvz + Fs) + IzFvd − Ic(γd + γc)]− µIc,

R′
d = Idγd − Rd(Fvz + Fs + µ),

R′
z = Izγd − Rz(Fvd + µ),

J′d = ργz Ic + Rz(Fvd − γd − µ),

J′z = ργd Ic + Rd(Fvz + Fs − γz − µ),

R′ = Jdγd + Jzγz − µR,

S′
v = (Nv − Sv)µv − Sv(Fhd + Thz),

I′vd = FhdSv − ρFhz Ivd − Ivdµv,

I′vz = FhzSv − ρFhd Ivz − Ivzµv,

I′vc = ρ(Fhz Ivd + Fhd Ivz)− Ivcµv,

(60)

which generalizes a bit [2] by introducing the parameter ρ, whose purpose is to allow for
simplifying the model to remove the Ic, Ivc classes, by setting ρ = 0.

Note that humans are born fully susceptible to dengue and Zika at a rate of µNh,
where µ is the natural birth/death rate for humans and Nh is the total human population.
Susceptible individuals can become infected with dengue from either a dengue-infected
(Ivd) or coinfected female mosquito (Ivc). The mosquito-to-human dengue infection rate
is given by βhd. This rate is modified by a factor of νd to indicate the altered infectivity
of coinfected mosquitoes. Once infected with dengue, humans can recover or become
co-infected with Zika (by a Zika-infected (Ivz) or a coinfected female mosquito (Ivc), or
via sexual transmission from a Zika-infected (Iz) or coinfected (Ic) human) and transition
into the Rd or Ic class, respectively. In a similar manner, fully susceptible humans become
infected with Zika from a mosquito in the Ivz or Ivc compartment.

The DFE has only non-zero components Sv = Nv, Sh = Nh. Choosing, as the infectious
set, all the compartments except Sv, Sh yields

R0 = max[

√

βhdNvβvd

Nhµv(γd + µ)
,

βs +
√

β2
s +

4Nv βhz βvz(µ+γz)
Nhµv

2(µ + γz)
] := max[Rd,Rz], (61)

confirming ([2] (Section 4)) and also the multi-strain structure we already met in (44)
and (53). Furthermore, one may show that Rd > 1,Rz > 1 are necessary and sufficient
conditions for the existence of the dengue-only and Zika-only fixed pointsÐsee subse-
quent sections.
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We end this section by reporting on the Jacobian factorizations at E0, when choosing
as the infectious set

I = {Id, Iz, Ic, Jd, Jz, Ivd, Ivz, Ivc}.

Now the characteristic polynomial has two second-order factors:

1. One of the Descartes type which yields the polynomial R1(X) = βhdSv βvd(kdRz+Sh)

N2
h µv(γd+µ)

,

which generalizes Rd, in the sense that R1(E0) = R2
d; this raises the question of

whether this is related to the Zika IRN.
2. One not of the Descartes type, which raises the question of how to exploit non-

Descartes type second-order factors.

8.2.1. The Dengue-Only Resident Fixed Point Ed

Even though the coordinates of the dengue-only resident fixed point Ed are pretty sim-
ple, obtaining them is not. We have an a priori choice of zeroable set in1′ = {Iz, Rz, Jz, Izv}
which turns out to lead to about 2.5 h for ªSolveº (due to the existence of four extra fixed
points which are non-positive for the numeric values of [2]. After performing the com-
putation, it turns out that the full zeroable set is in1 = {Iz, Ic, Rz, Jd, Jz, R, Ivz, Ivc}. The
remaining set of equations:

















−γd Id − µId +
IvdSh βhd

Nh
= 0

γd Id − µRd = 0
IdSv βvd

Nh
− Ivdµv = 0

µ(Nh − Sh)− IvdSh βhd
Nh

= 0

− IdSv βvd
Nh

+ Nvµv − Svµv = 0

















may be easily solved. In addition to the DFE, it has one extra fixed point:

Rd =
γd Id

µ
, Sv =

µvNhNv

µvNh + βvd Id
=

µv(γd + µ)(µNh + βhdNv)

βhd[µv(γd + µ) + µβvd]
, (62)

Sh =
N2

h (µv(γd + µ) + µβvd)

βvd(µNh + βhdNv)
, Id =

µN2
h µv

βvd(µNh + βhdNv)

(

Nvβhdβvd

Nhµv(γd + µ)
− 1

)

, (63)

Idv = βvd Id
Sv

µvNh
=

IdNvβvd

Idβvd + Nhµv
, Ivz = 0, Ivc = 0.

The bifurcation value for Ed is thus

Nvβhdβvd

Nhµv(γd + µ)
:= R2

d,

confirming ([2] Lemma 1).
The Jacobian factorizations when choosing, as the infectious set, the complement of

Id, Rd, Ivd, Sv, Sh, has a characteristic polynomial with one non-Descartes type, third-
order factor.

8.2.2. The Zika Only Resident Fixed Point Ez

Using the full zeroable set given in [2] in2 = {Id, Ic, Rd, Jd, Jz, R, Idv, Ivc}, yields the set
of equations:



















Sh

(

βhz Ivz
Nh

+ Iz βs
Nh

)

− Izγz − µIz = 0

Izγz − µRz = 0
IzSv βvz

Nh
− Ivzµv = 0

µ(Nh − Sh)− Sh

(

βhz Ivz
Nh

+ Iz βs
Nh

)

= 0

− IzSv βvz
Nh

+ Nvµv − Svµv = 0



















.
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The Zika-only resident fixed point Ez satisfies

Rz =
γz Iz

µ
, Sv =

µvNhNv

µvNh + βvz Iz
, Idv = βvz Iz

Sv

µvNh
=

IzβvzNv

µvNh + βvz Iz
, Ivz = 0, Ivc = 0, (64)

Sh =
µN2

h (Nhµv + Izβvz)

Izβvz(µNh + βhzNv + Izβs) + Nhµv(µNh + Izβs)
=

N2
h (µv(γd + µ) + µβvd)

βvd(µNh + βhdNv)
,

where Iz is a positive root of the quadratic equation aI2
z + bIz + c = 0, with coefficients:











c = µNh(Nhµv(µ − βs + γz)− βhzNvβvz),

b = Nhβsµv(µ + γz) + µNhβvz(µ − βs + γz) + βhzNvβvz(µ + γz),

a = βsβvz(µ + γz)

Assume first that βs is small enough so that b > 0; then, this equation has a unique
positive root if c < 0, which may be written also as

Nhβsµv + βhzNvβvz

Nhµv(µ + γz)
> 1. (65)

It is shown in ([2] Theorem 1) that this is equivalent to Rz > 1 (both conditions determine

the correct stability domain and both reduce when βs = 0 to the same answer
βhzNvβvz

Nhµv(µ+γz)
).

The model of [2] contains several interesting particular cases, to which we turn next.

8.2.3. The Dengue Invasion Reproduction Number (IRN) and Two Possible
(F, V) Decompositions

The dengue fixed point has non-zero values Sh, Sv, Id, Rd, Idv. Computing the IRN’s
requires specifying the ªinvasion infection classesº. Ref. [2] works with a subset of

in2′ = {Id, Ic, Rd, Jd, Jz, Idv, Icv, Rc},

given by in2 = {Id, Ic, Jd, Idv, Icv}.
The resulting recipe V matrix is diagonal, and the recipe F matrix, after denoting

proportions by minuscule letters, is:

F =













0 0 0 shβhd νdshβhd
ρ(βhzizv + izβs) 0 0 ρβhdiz ρνdβhdiz

0 0 0 βhdrz νdβhdrz
svβvd svβvd kdsvβvd 0 0
izvβvd izvβvd kdizvβvd izβvz 0













(66)

and the spectral radius of the resulting recipe K matrix satisfies a polynomial equation of
degree 4.

Now ([2] Section 5.1) move two of the F terms in the V matrix, yielding

F =













0 0 0 shβhd νdshβhd
0 0 0 ρβhdiz ρνdβhdiz
0 0 0 βhdrz νdβhdrz

svβvd svβvd kdsvβvd 0 0
izvβvd izvβvd kdizvβvd 0 0













, (67)

with the −V matrix being:
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











−γd − µ − ρ(βhzizv + izβs) ρ(βhzizv + izβs) 0 0 0
0 −ρ(γd + γz)− µ ργz 0 0
0 0 −γd − µ 0 0
0 0 0 −izβvz − µv izβvz
0 0 0 0 −µv













. (68)

They thus reduce the rank of K to 2 and obtain a simpler R0. On the other hand, their
decomposition is admissible only under extra conditions of the parameters which ensure
the non-positivity of the row sums of −V, which they omit to mention.

Remark 24. The associated CTMC is the union of two disjoint generalized Erlangs, on the host
and vector, respectively. These are employed in the probabilistic/epidemic interpretations in [2].

The probabilistic/epidemic significance of F is better understood after decomposing this matrix
as a sum of matrices of rank 1 as follows:

F =













βhdsh
ρβhdiz
βhdkdrz

0
0













(

0 0 0 1 νd
)

+













0
0
0

βvdsv
βvdizv













(

1 1 1 0 0
)

. (69)

The column vector are total infectivity rates for the resident compartments, the row vectors
are distribution vectors, and this decomposition yields immediately both the Diekmann kernel and
R0Ðsee [41,42].

9. Conclusions

The possible non-uniqueness of the NGM matrix has not been sufficiently studied in
the literature. Sometimes, like in the example of the last section, one simplifying choice is
justified a posteriori on the grounds of some interpretability of the results, ignoring the fact
that other choices might lead to even simpler answers, and there is the fact that a priori,
there is no reason to expect simple answers.

To this classic dilemma, we answer by showing, via numerous examples, that the
first ªrecipe NGMº to come to mind leads quickly to most of the results found in the
literature. The question of whether our recipe may always be associated to admissible
equation decompositions remains open.

We have also examined a variant of the Jacobian approach, a ªfactorization Jacobian
approachº, which draws the attention to certain polynomials with interesting properties (46)
and raises interesting questionsÐsee especially Open Question 3. Notably, the relation (44)
holds in all the three ªmulti-strainº examples we examined and raises the additional
question of how to define multi-strain models in terms of the dynamical system, to ensure
that this always holds for this class.
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Appendix A. The Implementation of the Jacobian Factorization Approach

First, we use a utility which, for a given model, infectious set, and dummy variable
(taken always as u, to avoid confusions) outputs the Jacobian at the DFE, the trace and
determinant (for other purposes), the characteristic polynomial in u, the NGM matrix,
and RF.

JR0[mod_,inf_,u_,cn_:{}]:=

Module[{dyn,X,par,cinf,cp,cX,jac,tr,det,chp,ngm,K,R0},

dyn=mod[[1]];X=mod[[2]];par=mod[[3]];

Print[‘‘ dyn=’’,dyn//FullSimplify//MatrixForm,X,par];

cinf=Thread[X[[inf]]->0];

cp=Thread[par>0];cX=Thread[X>0];

cdfe=Join[DFE[mod,inf],cinf];

jac=Grad[dyn,X]/.cinf/.cn;

tr=Tr[jac];

det=Det[jac];

chp=CharacteristicPolynomial[jac,u];

ngm=NGM[mod,inf];

K=ngm[[6]];

Print[‘‘K=’’,K//MatrixForm];

R0=Assuming[Join[cp,cX],Max[Eigenvalues[K]]];

{chp,R0,K,jac,tr,det}];

Most of the work is performed after calling this utility by another one, JR02. This
splitting of JR0 in two parts is necessary since the detection of the non-sign definite factors,
which must be analyzed, is easier to perform by eye than by using a program. The JR02
script is:

JR02[pol_,u_]:=Module[{co,co1,cop,con,R_J},co=CoefficientList[pol,u];

Print[‘‘the factor ’’,pol,’’ has degree ’’,Length[co]-1];

co1=Expand[co[[1]]* co[[Length[co]]]];

Print[‘‘its leading * constant coefficient product is ’’,co1];

cop=Replace[co1, _. _?Negative -> 0, {1}](*level 1 here ?*);

con=cop-co1;

Print[‘‘R_J is’’];

R_J=con/cop//FullSimplify;

{R_J,co}

]

For a specific ªmodº, both R0’s may be obtained by typing:

jr = JR0[mod, inf, u];

chp = jr[[1]] // Factor

Print[‘‘factor is ’’, pol = chp[[5]]]

pc = JR02[pol,

u];(*the script JR02 determines R_J, using the index,

for example 5, determined by \eye inspection in the previous command*)

Print[‘‘R_J is ’’, R_J = pc[[1]] // FullSimplify]

Print[‘‘R_N is ’’, R_N = jr[[2]] // FullSimplify]

Appendix A.1. Proof of [33]’s Result via Mathematica

1. The solution of the first recurrence equation in (7) for the expected time to extinction
of a linear birth-and-death process with arrival rate A and death rate qA (relevant
when R0 < 1) via Mathematica is:

q
(

HK(1−qj)+Hj(qK−1)+log
(

q−1
q

)

(qK−qj)
)

−
(

(qj−1)Φ
(

1
q ,1,K+1

))

+(qK−1)Φ
(

1
q ,1,j+1

)

A(q−1)q(qK−1)
,
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where H denotes the Harmonic function.
Since Mathematica cannot compute the limit when K converges to infinity directly,
we break the limit into its three parts and end up with the following generalization:
Making now j = 1 yields [33]’s result, which is

log(q)− log(q − 1)

A
.

2. When R0 > 1, we cannot obtain the limit for general j. When j = 1, similarly with the
previous case, the limit is divided into four parts:































































a1 = Limit







q
(

qK
(

q
(

−
(

− log(1−q)
q −1

))))

q −qK(HK+log(1−q))

A(q−1)(qK−1)
, K → ∞, Assumptions → {A > 0, 0 < q < 1}






,

a2 = Limit

[

q
(

(HK−1)qK+log(1−q)− log(1−q)
q

)

A(q−1)(qK−1)
, K → ∞, Assumptions → {A > 0, 0 < q < 1}

]

,

a3 = Limit

[

− qqKΦ(q,1,K+1)

A(q−1)(qK−1)
, K → ∞, Assumptions → {A > 0, 0 < q < 1}

]

,

a4 = Limit

[

q(qK(qΦ(q,1,K+1)))
A(q−1)(qK−1)

, K → ∞, Assumptions → {A > 0, 0 < q < 1}
]

Here Mathematica yields that a1 = 0, a2 = − log(1−q)
A , the second being precisely

Whittle’s result, but we were unable to confirm with Mathematica that a3 = a4 = 0.
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