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In this paper, an urban object detection system via unmanned aerial vehicles (UAVs) is developed to collect real-
time traffic information, which can be further utilized in many applications such as traffic monitoring and urban
traffic management. The system includes an object detection algorithm, deep learning model training, and
deployment on a real UAV. For the object detection algorithm, the Mobilenet-SSD model is applied owing to its
lightweight and efficiency, which make it suitable for real-time applications on an onboard microprocessor. For model
training, federated learning (FL) is used to protect privacy and increase efficiency with parallel computing. Last, the
FL-trained object detection model is deployed on a real UAYV for real-time performance testing. The experimental
results show that the object detection algorithm can reach a speed of 18 frames per second with good detection
performance, which shows the real-time computation ability of a resource-limited edge device and also validates the

effectiveness of the developed system.

I. Introduction

N THE last decade, unmanned aerial vehicles (UAVs) have been

widely applied in many real-time applications, such as package
delivery [[HB], agriculture [A], and wind condition monitoring
[B-BlI. Among a variety of engineering applications, one of the most
important application fields is traffic monitoring and analysis [B,[T].
By applying UAVs, the traffic flow information can be collected,
which is crucial in urban traffic management. The information can be
further applied to traffic flow prediction, which is considered a key
element for the development of Intelligent Transportation System
[[L1]]. Hence, it is crucial to build a monitoring and information-
collecting system for urban object detection with UAVs.

In recent years, deep learning (DL) and convolutional neural net-
works (CNNs) have shown great success in computer vision appli-
cations such as image recognition and object detection. Compared
with traditional object detection methods such as the Viola—Jones
algorithm [[[J], which utilize primitive features such as corners and
edges, CNNs can extract both low-level features (e.g., corners and
edges) and high-level features (e.g., eyes, ears, wheels) on different
scales, making them more suitable for complex environments such as
urban areas [[J]. However, to build the UAV traffic monitoring
system using DL and CNNs, there are still several challenges that
need to be addressed. First, deploying DL algorithms on a UAV
requires a powerful microprocessor to reach real-time performance.
Second, to train CNNs with traditional centralized learning on a
server requires drones transmitting collected data, resulting in high
communication costs and privacy concerns. Therefore, in this work,
the object detection system is developed by utilizing federated learn-
ing to solve the issues of centralized learning, and the Mobilenet-SSD
object detection model is used to provide efficient object detection.
The model trained by the FL framework is deployed on the onboard
microprocessor of areal UAV, and its performance is validated by real
UAY image data. The experimental results suggest that the detection
speed is able to reach 18 frames per second (FPS), which verifies the
real-time operation capability of the developed urban object detection
system.
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A. Related Works
1. CNN-Based Object Detection

Object detection aims to find instances of objects from known
classes in an image. The latest state-of-the-art techniques rely on deep
CNNs, which are widely used in image processing tasks such as
detection, recognition, and segmentation. Numerous object detectors
have been proposed by the DL community, including Faster Regional-
Convolutional Neural Network (R-CNN) [[3], You Only Look Once
(YOLO) [[[4], and Single-Shot Detector (SSD) [[3]. The CNN-based
object detectors can be categorized into two classes: 1) two-stage
detectors, which find potential object locations by region-proposal
network (RPN) in the first stage and classify objects within the regions
by another classifier module in the second stage, and 2) single-shot
detectors, which utilize only one CNN architecture to perform end-to-
end object detection.

1) Two-stage detectors: Two-stage detectors separate the predic-
tion process into two consecutive steps, which are object localization
and classification. For instance, in Faster R-CNN [[J], the RPN
module is applied in the first stage to extract feature maps and identify
regions of interest (box proposals) from the input image. The box
proposals are locations that potentially contain target objects. In the
second stage, the box proposals are used to crop features and pass
them through a Detection Head, which consists of a classifier module
in order to predict class probability and a localization module that
refines a specific bounding box in the proposal. With two separate
RPN modules and a Detection Head module, two-stage detectors are
able to achieve high object localization and classification accuracy.
However, the drawback of two-stage detectors like Faster R-CNN is
that there are typically hundreds of proposals per image, which makes
them computationally heavy and challenging to deploy in resource-
limited embedded systems or edge devices.

2) Single-shot detectors: Single-shot detectors are designed to
avoid the performance bottlenecks of RPN in two-stage detectors.
The YOLO [[[4] framework transforms object detection into a regres-
sion problem. Different from a two-stage structure like RPN +
Detection Head, YOLO deploys only one single CNN model to do
localization and classification at once. YOLO divides the inputimage
into a grid of cells, and for each cell, the predictor generates output
predictions for bounding box coordinates, the confidence level of
each box, and the class probability. YOLO is designed to mitigate the
computational cost of a two-stage detector and aims to be applied for
real-time execution. SSD [[[J] is another single-shot detector aiming
to combine the efficiency of YOLO with the accuracy of two-stage
detectors. SSD also applies the idea of grid cells and extends the CNN
architecture by adding more feature extraction layers to detect objects
on a variety of scales. With the multiscale feature pyramid architec-
ture, SSD finds the balance between computation efficiency and
object detection accuracy.
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In general, a CNN-based object detection model can be separated
into three parts: backbone, neck, and head. The function of the
backbone is to extract features from source images; the neck is to
further extract features for location and classification; and the head is
to generate final detection results. The design of neck and head
modules depends on different strategies, as mentioned previously.
As for the design of the backbone, different feature extraction mod-
ules can be deployed inspired by image classification models. For
instance, VGG net [[[d] is used in Faster-RCNN as the backbone
feature extractor, and Darknet [[[4] is used in YOLO. In [[[7], the SSD
is improved by replacing the backbone VGG net with ResNet [[[8]. In
Mobilenet-SSD, Mobilenet [B] is used as the backbone feature
extractor. Comparing to the backbone modules mentioned above,
Mobilenet is much more efficient due to its special design, which will
be introduced in detail later in this section. This advantage makes
Mobilenet more suitable for mobile or edge device applications.

2. Object Detection on UAV Images

In recent years, due to the success of DL and CNNs in object
detection tasks, many works have applied the CNN-based object
detectors mentioned in the previous section on UAV object detection
[EQ-P3]. One branch of work utilizes two-stage detectors such as
Faster-RCNN [B4] or Casecade-RCNN [23] to pursue high detection
accuracy, especially on small targets in aerial images. In [6], a
Faster-RCNN-based multilayer feature fusion model is proposed to
enhance the moving object tracking ability in aerial images. How-
ever, these methods require high-end Graphics Processing Units
(GPUs) to perform high-accuracy object detection, which is not
suitable in real UAV applications. The other branch of work utilizes
single-shot detectors such as YOLO and SSD to increase efficiency.
For instance, authors in [E7-£9] use the YOLO-based object detec-
tion algorithm to detect and track aircraft or other small objects in
aerial images. Nevertheless, those works still used GPUs and desk-
tops and did not apply the detectors to microprocessors with low
computational power. In this work, we use single-shot detectors due
to their efficiency and applicability to embedded systems. We also
validated the performance and applicability of the microcomputer on
areal UAV.

3. Federated Learning

Federate learning (FL) was first introduced by McMahan et al.
[B]]. In their original work, they proposed a new machine learning
scheme that is capable of tackling practical issues such as limited
computation and communication power, data heterogeneity, and
privacy concerns. In FL, the machine learning model is trained
collaboratively by clients in parallel with their own local dataset,
and the process is coordinated by a central server. The local data
within each client is not transmitted to the central server, which can
not only reduce the communication cost but also avoid privacy
concerns. Due to the advantages mentioned above, FL has become
one of the most popular research directions in the machine learning
community, and many studies have been conducted to improve the
vanilla FL paradigm in different aspects. Li et al. [BT] proposed the
algorithm FedProx to tackle the data heterogeneity issue by intro-
ducing a proximal term in the local objective function. Zhang et al.
[B2] utilized active learning and reinforcement learning to reveal the
best client selection in each global communication round and achieve
better convergence. As another branch of FL research, in [BJ], the
author proposed a hybrid approach combining differential privacy
with multiparty computation to address the privacy issue and prevent
malicious attacks on the FL system.

There are several challenges when integrating FL. with an object
detection model. One of the main practical challenges is how to
perform FL training and real-time object detection inference under
the constraints of resource-limited edge devices. Another challenge is
data heterogeneity [B4]. Specifically, in urban areas, cars are much
more frequently seen compared to bicycles. Such object-level class
imbalance could affect the global model detection performance of
minority classes after FL training.

B. Contribution

In this paper, an urban object detection system using UAVs is
developed. In the system, the Mobilenet-SSD object detection model
is deployed on the real UAV for urban object detection. The object
detection model is trained in the FL framework because its efficiency
and privacy protection properties are perfect for IoT and UAV appli-
cations. The main contributions of this paper are 1) implementing and
applying FL to train an object detection model and 2) deploying the
object detection model on a microprocessor with limited computa-
tional power to validate the real-time performance of detecting urban
objects from a real aerial image dataset.

II. Methodology
A. Federated Learning

In this section, the FL framework is introduced. In FL, each client &
has a local objective F(w) = (1/ny) Z;Ll lw,x;,y;), where w is
the machine learning model parameters, n;, is the number of samples
in client k, (x;, y;) is the jth sample-target pair, and [ is the loss
function. The goal is to minimize the global average of loss, which is
stated as follows:

K
min F(w) := ) | piFi(@) M
k=1

where K is the total number of clients, p;, = n;/n,andn = >_ n;. To
solve this optimization problem, we use FedAvg [B(Q], which consists
of four steps in every global iteration, as demonstrated in the upper part
of Fig. [I. For ith global iteration, in step 1, the server will randomly
select clients and send the global model w; to them. In step 2, once the
clients receive the global model, they use it as the initial state and start
model training with their own local dataset for E epochs. The optimizer
for local training is stochastic gradient descent (SGD) in this paper, but
it can be any other optimizer, such as Adam [B3]. In step 3, after the
local training, the clients transmit the updated model ¥ back to the
server. In step 4, the server aggregates the collated models and gen-
erates a new global model w; | by weighted average:

K
w1 = Y ol )
k=1

B. Proposed System Framework

In Fig. [ll, the overall proposed system framework is demonstrated.
The system consists of two parts: FL training and object detection. In
the first part, a global object detection model is trained under the FL

FL Training with P
sub-server UAVs
A
I
w r 1 l*
3 1/ * 1
1 3 3

R e

I b L ™ & v - :
& ™ = W
Object detection with
edge UAVs

Fig. 1 Demonstration of the proposed FL training and object detection
framework.
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framework collaboratively by subserver UAVs. These UAVs with
better computational power are capable of collecting aerial image data
and training locally with their own data. Once the global model is well
trained, the subserver UAVs will distribute the model to edge UAVs
with limited resources, as illustrated in the lower part of Fig. [[.. The edge
UAVs perform real-time object detection tasks with the given global
model exclusively. The motivation behind this two-tier structure is that
using low-power edge UAVs for both training and inference is ineffi-
cient. Therefore, the FL training task is done by the subserver UAVs
with fewer numbers but better hardware. In this way, the advantages of
FL, such as parallel computation and data privacy, can be fully utilized,
while the overall system efficiency can also be improved.

C. Mobilenet-SSD Object Detector

Mobilenet-SSD is an object detection method that uses Mobilenet
[[J] as the backbone feature extractor and SSD [[[J] as the detection
network. Itis a single-shot object detection framework designed to be
deployed on mobile or embedded systems. The overall CNN archi-
tecture is shown in Fig. . The following subsections describe the
steps performed in the Mobilenet-SSD algorithm.

1. Feature Extraction

The purpose of feature extraction is to extract high-level features
from the original images. The features are further used in object
localization and classification. Feature extraction heavily relies on
convolutional operations, which are time-consuming. To accelerate
the computational speed, the Mobilenet model is built on depthwise
separable convolutions (DSCs), which are a form of factorized con-
volution operations. The DSC operation is illustrated in Fig. f. DSCs
factorize a standard convolution into a depthwise convolution and a
1 x 1 pointwise convolution. This factorization has the effect of
drastically reducing computation and model size. For example, in
Fig. B, assume the input size of a convolution layer is F X F, kernel
size is 3 X 3, and the output channels are 4. Conventional convolution
requires 3 X 3 X 3 X 4 X F2 = 108F? operations. On the other hand,
the DSC only requires 3 X 3 X3 X F2 + 1 x 1 Xx3x 4 X F? = 39F2,
In general, the reduction in computation is (1/M) + (1/D?), where
M is the number of output channels and 1/Dy, is the kernel size.
Besides the backbone Mobilenet, the extra feature pyramid network
and Detection Head networks in SSD also use DSCs to replace
conventional convolution operations for efficiency. The detailed
layer structures are listed in Table [[.

2. Prediction of Bounding Box and Class Probability

The extracted features are sent to the Detection Head, which is a
module consisting of convolution layers. The Detection Head takes
extracted features from different scales and generates bounding boxes
and class probabilities for localization and classification, respectively.
The bounding box is defined by four values (b, by, b,,, b,), where b,
b, are the coordinates of the bounding box center and b,,, b;, are the
width and height of the box. The prediction of class probability is
represented by a c-dimensional vector, where ¢ is the number of classes.

3. Nonmaximum Suppression

In the end, the nonmaximum suppression (NMS) is applied to

Pointwise convolution

Depthwise convolution

Fig. 3 Example of a depthwise separable convolution.

III. Experimental Results
A. Dataset

To train and test the Mobilenet-SSD object detection model for
UAV images, the public dataset Visdrone [Bg] is used. Visdrone is an
open-source image dataset containing aerial images captured by
UAVs. The training set used in the training process consists of
6471 images, and the testing set used in validation consists of 548
images. The 12 class names and their distribution in the training set
are listed in Table [.

B. Experimental Setup

The Mobilenet-SSD object detection model and FL training script
are implemented in Pytorch. The proposed training scheme is simu-
lated on an offline computer. For the FL setting, the Visdrone dataset
is divided and distributed to four clients, simulating the subserver
UAVs. The global training iteration is 90. In each global iteration, the
clients do 10 local training epochs. The following are the hyper-
parameter settings in clients’ local training for the experiment. The
input image is resized to 512 x 512, the optimizer is SGD with
momentum set to 0.9, the learning rate is 0.05, and the batch size is
24. Image data augmentation includes random flip, random crop, and
PhotometricDistort. The trained model is deployed to Jetson Nano
4 GB, the onboard computer for the edge UAYV, for performance
testing. The edge UAV and its onboard computer used in the experi-
ment are shown in Fig. il

C. Evaluation Index

To quantitatively evaluate the detection performance of the object
detection network, the same protocol as Common Objects in Context
(COCO) is used. Four indices, recall R, precision P, average preci-
sion AP, and mean average precision mAP, are used in the protocol.
The definition of recall is

TP

R=Tp N ©
where TP is true positive and FN is false negative. TP means that the
predictor detects a positive class object and that there is one in reality.
FN means that the predictor says there is no class object but there is
actually one object. R is an index showing the percentage of objects
that the detector can find. The definition of precision is

suppress the nonmaximum bounding boxes and find the best bound- p= TP (4)
ing box prediction as the final prediction result. TP + FP
- — . =
2/ A 18/ 5
b 8 4 T
| g g
2 B ) =
1 &
32 0 4 =
2 1
512 1024 512 256 256 256

Fig. 2 Mobilenet-SSD model architecture.
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Table1 Mobilenet-SSD architecture
Input size Type/stride Filter shape Note
512x512%x3 Conv/s2 3x3x%x3x%x32
256 x 256 x 32 DSConv/sl 3x3%x32+1x1x%x32x64
256 x 256 x 64  DSConv/s2 3x3x64+1x1x64x128

128 x 128 x 128 DSConv/sl
128 x 128 x 128 DSConv/s2

64 X 64 X 256 DSConv/s1
64 X 64 X 256 DSConv/s2
32 x32x%x512

32 x32x512 DSConv/s2

3Xx3x128+1x1x128x128
3x3x128+1x1x128x%x256
3x3x256+1x1x256x%256
3X3%x256+1x1x256x%x512
DSConv/sl 5X(3x3x512+1x1x512x512) Output used in Detection Head
3x3x512+1x1x512x 1024

16 x 16 x 1024  DSConv/sl 3 x3x 1024 + 1 x 1 x 1024 x 1024

16 x 16 x 1024 Conv/sl

16 X 16 X 256 DSConv/s2
8x8x%x512 Conv/sl
8 x 8 x 128 DSConv/s2
4 x4x256 Conv/sl
4x4x128 DSConv/s2
2 X2 %256 Conv/sl
2xX2x128 DSConv/s2
1x1x256 Conv/sl
1x1x128 DSConv/s2

1 x1x 1024 x 256
3X3x%x256+1x1x512x128
1x1x512x128
3x3x128+1x%x1x64x256
1x1x256x 128
3x3x128+1x1x128x%x256
1x1x256x 128
3x3x128+1x1x128x%x256
1x1x256x 128
3x3x128+1x1x128x%x256

Output used in Detection Head
Output used in Detection Head
Output used in Detection Head
Output used in Detection Head

Output used in Detection Head

Table2 Visdrone training
dataset and object class

distributions
Class name Object number
Ignored regions 8,813
Pedestrian 79,337
People 27,059
Bicycle 10,480
Car 144,867
Van 24,959
Truck 12,875
Tricycle 4,812
Awning tricycle 3,246
Bus 5,926
Motor 29,647
Others 1,532

where FP is false positive. FP means that the predictor detects a
positive class object but actually there is no object. P is an index
showing the correctness of the detector’s prediction. The definition of
average precision is

AP = / ' P(R)AR )
0

AP is an index showing the overall performance considering R and
P at once. Last, mAP is the average of AP’s of all classes.

C
mAP = > " AP, (6)

i=1

In this paper, the indices AP and mAP are used since only R or P
itself cannot precisely represent the performance. This is because
when R is large it is less false negative but it can potentially have more
incorrect detections, which leads to low precision P. Similarly, when
P is large it can still have many miss detections, which leads to a low
recall R. Therefore, it is more reasonable to consider AP, which takes
both R and P into account at the same time. We are also interested in
mAP since it indicates the overall performance among all the differ-
ent classes.

D. Results

The object detection results are illustrated in Fig. f. The proposed
detection model can successfully detect most of the large and
medium-sized traffic objects in different scenes, such as highway,
intersection, and construction zone and at night. All the detection
results are generated by the onboard microcomputer Jetson Nano,
and the processing speed is around 18 FPS. This result validates the
real-time operation capability of the resource-limited hardware. The
evaluation indices are also shown in Table . The performance is
compared with the model trained in a centralized scheme, and the
detection result comparison is demonstrated in Fig. [J. One can
observe that the performance of the model trained in the FL scheme
is slightly degraded, but the difference is insignificant, which verifies
the efficiency and effectiveness of FL in training the object detection
model. The AP results for different classes are also shown in the same

Fig. 4 The UAYV (left) and the onboard computer (right) used in the experiment in this work.
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Table3 AP and mAP of the models for
different classes on Visdrone test set

Mobilenet-SSD  Mobilenet-SSD

Class name (centralized), % (FL), %
Ignored regions 1.3 3.0
Pedestrian 11.5 11.1
People 11.0 10.6
Bicycle 9.7 9.5
Car 429 40.1
Van 20.1 17.8
Truck 24.1 18.9
Tricycle 11.8 10.9
Awning tricycle 11.1 11.3
Bus 39.8 36.4
Motor 13.3 9.8
Others 1.4 3.1
mAP 17.9 16.3

table. Most of the missed detections are for small objects, such as cars
far away or pedestrians. Another typical classification error is
between pedestrians and people, which are extremely difficult to
classify by attributes.

IV. Conclusions

In this paper, a system for urban object detection utilizing UAVs
with FL is developed. The system is in a two-tier structure, including
training a global object detection model via FL by subserver UAVs
collaboratively and deploying on-edge UAVs for inference exclu-
sively. The trained object detection model is deployed and tested on
the real UAV’s onboard microprocessor. For the object detection
model, the Mobilenet-SSD object detector is used due to its light-
weight and efficiency, which are suitable for a resource-limited
microprocessor on an edge UAV. To train the model more efficiently

Fig. 6 Detection result comparison between the FL-trained model (up)
and the centralized learning trained model (down).

and to consider the privacy issue, the FL framework is applied to train
the object detection model. The model trained by FL is deployed on a
real UAV and tested with a real-world traffic dataset in the experi-
ments. The object detection model can not only successfully detect
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vehicles in different scenarios but also small objects such as pedes-
trians. The experiments also indicate that the detection speed can
reach 18 FPS for the microprocessor, which validates the real-time
operation capability on edge devices. We compare the performance
of the model trained by the FL scheme with the model trained by the
centralized scheme as well. The results suggest that training with FL
can affect performance, but the degradation is insignificant, which
verifies the effectiveness and efficiency of FL in this application.

For future work, some tracking algorithms, can be aggregated into
the system for broader engineering applications. Applying more
advanced neural network structures, such as attention mechanisms,
can be another potential research direction. Last but not the least,
finding the balance between performance and resource constrains is
also an important research direction for real-world applications in the
future.
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