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ABSTRACT

Cooperative Augmented Reality (AR) can provide real-time, immersive, and context-aware situational awareness
while enhancing mobile sensing capabilities and benefiting various applications. Distributed edge computing has
emerged as an essential paradigm to facilitate cooperative AR. We designed and implemented a distributed system
to enable fast, reliable, and scalable cooperative AR. In this paper, we present a novel approach and architecture
that integrates advanced sensing, communications, and processing techniques to create such a cooperative AR
system, and demonstrate its capability with HoloLens and edge servers connected over a wireless network. Our
research addresses the challenges of implementing a distributed cooperative AR system capable of capturing
data from a multitude of sensors on HoloLens, performing fusion and accurate object recognition, and seamlessly
projecting the reconstructed 3D model into the wearer’s field of view.

The paper delves into the intricate architecture of the proposed cooperative AR system, detailing its dis-
tributed sensing and edge computing components, and the Apache Storm-integrated platform. The implemen-
tation encompasses data collection, aggregation, analysis, object recognition, and rendering of 3D models on the
HoloLens, all in real-time. The proposed system enhances the AR experience while showcasing the vast poten-
tial of distributed edge computing. Our findings illustrate the feasibility and advantages of merging distributed
cooperative sensing and edge computing to offer dynamic, immersive AR experiences, paving the way for new
applications.

Keywords: Distributed edge computing, Cooperative sensing, Augmented reality, Mobile sensing, Apache
Storm, HoloLens

1. INTRODUCTION

Augmented Reality (AR) has emerged as a transformative technology, enriching real-world environments with
real-time, immersive, and context-sensitive digital overlays.1 Cooperative AR further advances this innovation
by harnessing the collective sensing capabilities of multiple devices2 to enhance situational awareness and enrich
user experiences. However, the comprehensive deployment of cooperative AR presents substantial challenges,
including complexities in data processing, communication, and system scalability.

Distributed edge computing34 has surfaced as a potent solution to these challenges. By leveraging the
computational power and proximity of edge servers, this technology supports cooperative AR systems effectively.
It facilitates the offloading of computationally intensive tasks from mobile devices, thereby enhancing processing
speeds and reducing latency. This capability is crucial for enabling real-time data processing, accurate object
detection, and seamless integration of virtual content with the physical environment, which is essential for
immersive cooperative AR experiences.
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Moreover, the importance of mobile sensing5 is escalating across various domains, becoming more critical
as applications become increasingly distributed, dynamic, and large-scale. Mobile sensing faces significant chal-
lenges, such as accurately capturing and effectively coordinating information from an expanding global network
of sensors. Distributed stream processing1 addresses these challenges by enabling the real-time handling and
analysis of continuous data streams across multiple interconnected nodes. This method is particularly relevant
for applications that generate large volumes of data, including sensor networks, social media platforms, and
Internet of Things (IoT) devices.

Edge computing complements distributed stream processing by bringing computational resources closer to
where data is generated. This shift not only significantly reduces latency and bandwidth usage but also enhances
privacy and security by allowing sensitive data to be processed locally, minimizing exposure to long-distance
transmission risks. In dynamic environments such as autonomous vehicles, smart cities, and industrial IoT,
real-time analytics and decision-making are crucial, making edge computing a cornerstone for modern mobile
sensing applications.

In sum, the convergence of distributed edge computing and distributed stream processing forms a robust
foundation for advancing mobile sensing technologies, particularly in the context of cooperative AR. This paper
discusses how these technologies collectively enhance the capabilities of cooperative AR, paving the way for
innovative applications that require dynamic, efficient, and secure data processing.

Specifically, we introduce an innovative framework and architecture that facilitates advanced sensing, com-
munication, and processing technologies to develop a robust distributed cooperative AR system. Our approach
addresses the operational challenges of collecting extensive sensor data, executing efficient data fusion, ensuring
precise object recognition, and integrating interactive 3D models directly into the user’s view. At the heart of
our proposed system is an architecture that combines the capabilities of HoloLens—a state-of-the-art AR head-
set—with edge servers interconnected via a wireless network. The HoloLens serves as a comprehensive sensing
unit, gathering inputs from a variety of sensors, including cameras, depth sensors, and Inertial Measurement
Units (IMUs). This sensor data is transmitted to edge servers, where it is processed through data fusion, ana-
lyzed, and used for object detection, all within the distributed edge computing framework. Our system not only
elevates the AR experience by providing timely, context-aware insights but also demonstrates the extensive capa-
bilities of distributed edge computing in supporting cooperative AR applications. By delegating computationally
demanding tasks to edge servers, our architecture significantly eases the load on mobile devices, facilitating fluid
and interactive AR experiences.

The key contribution of this paper can be summarized as:

1. Proposed a novel framework that integrates advanced sensing, communication over wireless networks, and
distributed edge computing for enabling real-time, scalable, and reliable cooperative AR experiences.

2. Addressed the challenges of implementing a distributed cooperative AR system by capturing data from
multiple sensors on HoloLens, performing data fusion and accurate object recognition on edge servers, and
seamlessly projecting reconstructed 3D models into the user’s field of view.

3. Demonstrated the feasibility of the proposed cooperative AR system through an implementation that
leverages the sensing capabilities of HoloLens, the computation power of edge servers integrated with
Apache Storm, and wireless communication, thereby showcasing the potential of distributed edge computing
for immersive AR applications.

In subsequent sections, we explore the detailed architecture of our cooperative AR system, focusing on its
distributed sensing elements, edge computing infrastructure, and integration with the Apache Storm platform.
Those details are presented in Section 4. We outline the implementation processes, encompassing data collection,
aggregation, analysis, object detection, and the reconstructing and rendering of 3D models on the HoloLens in
Section 5. Additionally, we present our findings and discuss the practical benefits and potential of merging
distributed cooperative sensing with edge computing to deliver dynamic, immersive AR experiences in Section
6. This integration opens avenues for novel applications across various fields. Moreover, we list the most related
work in Section 2 and conclude our work in Section 7.



2. RELATED WORK

In our previous work,6 we conducted a comprehensive study and evaluation of Coded Distributed Computing
models to demonstrate their capability to enhance distributed computing. We also integrated Named Data
Networking into the Apache Storm-based distributed computing environment for improving object classification
and recognition tasks. However, this work only remained at the simulation level with virtual machines for building
the testbed. The capability of supporting other applications or services was missing either. In this work, we aim
at higher level framework design and implementation and demonstrate the framework capability by using the
Microsoft HoloLens enhanced AR sensing as an example application. Moreover, we have done other work on edge
computing in the medical field. In our most recent work,7 we delved into the integration of 5G8 connectivity,
edge computing, and Medical Extended Reality (MXR)9 in healthcare, exemplified by an MXR setup in an
edge computing-enabled 5G network testbed. It assessed the effects of 5G network configurations on MXR
by analyzing communication traffic, and providing insights into MXR application behavior and infrastructure.
Notably, our work focused solely on client-server architecture, overlooking distributed computing setups.

Previous works such as the scalable distributed stream processing,10 only focus on the specific systems Au-
rora11 and Medusa,12 which have several limitations. While Aurora assumes a single administrative domain for
all nodes, Medusa attempts to address federated operation across administrative boundaries, but the proposed
economic contract model and mechanisms for load sharing and availability may be overly complex and impracti-
cal in real-world scenarios. Additionally, the paper was written in 2003, and the landscape of distributed stream
processing has evolved significantly since then, with the emergence of more modern systems and frameworks.
Consequently, we conducted a meticulous comparison of various distributed stream processing frameworks as
detailed in two survey papers1.13 The frameworks evaluated include Apache Storm,14 Apache Spark Stream-
ing,15 S4,16 Amazon Kinesis,17 and IBM Streams.18 Our analysis encompassed several dimensions: the type
of framework, implementation language, supported languages for application development, level of abstraction,
data sources, computation or transformation models, persistence mechanisms, execution reliability, fault toler-
ance, latency, and vendor affiliation. After careful evaluation,19 we ultimately selected Apache Storm as our
distributed stream processing framework for several reasons. Firstly, Apache Storm offers robust support for
real-time data processing with its low latency and fault-tolerant architecture. Secondly, its scalability and flexi-
bility make it suitable for handling large volumes of data streams across distributed environments. Additionally,
Apache Storm provides a wide range of programming languages for application development and integrates seam-
lessly with other big data tools and platforms. Overall, its comprehensive features and proven performance make
Apache Storm the ideal choice for our cooperative augmented reality system.

3. BACKGROUND

3.1 Apache Storm

Apache Storm20 is an open-source, distributed real-time computation system designed for processing unbounded
streams of data. Developed by the Apache Software Foundation, Storm is widely utilized for real-time analytics,
online machine learning, and continuous computation applications. Its primary strength lies in its ability to
reliably process vast amounts of data in real-time, making it an ideal choice for building robust and scalable
distributed systems.

At the core of Apache Storm is its streaming data model, which represents unbounded sequences of Tuples
(key-value pairs). These Tuples are processed by Topology, which is composed of Spouts (data sources) and Bolts
(computational units). Spouts ingest data from external sources, such as message queues or databases, and emit
Tuples into the Topology. Bolts, on the other hand, consume Tuples, perform computations or transformations,
and optionally emit new Tuples downstream. Apache Storm’s architecture is designed to be horizontally scalable,
fault-tolerant, and highly available. It employs a master-worker paradigm, where a central component called
Nimbus manages the distribution of tasks across a cluster of worker nodes (Supervisors), ensuring efficient
resource utilization and fault tolerance through automatic reassignment of tasks upon node failures. One of
the key features of Apache Storm is its real-time processing capabilities, enabling low-latency computation
and response times. This characteristic makes it well-suited for applications that require immediate analysis
and decision-making, such as real-time monitoring, anomaly detection, and event processing. Our testbed is



built upon the Apache Storm framework, leveraging its distributed real-time computation capabilities to enable
cooperative AR experiences. Apache Storm’s ability to process unbounded streams of data in real-time makes
it an ideal platform for handling the continuous flow of sensor data required for cooperative AR applications.

3.2 Microsoft HoloLens

In our evaluation testbed and demonstration, we leveraged the capabilities of the Microsoft HoloLens,21 a pio-
neering AR headset, to showcase the potential of our cooperative AR system. The HoloLens played a crucial
role as both a sensing device and a visualization platform, enabling us to capture real-world data, process it
through our Apache Storm-based distributed system, and render the augmented content back into the user’s
field of view. The HoloLens’ advanced sensor suite, comprising multiple cameras, depth sensors, and IMUs, was
instrumental in capturing rich environmental data. These sensors collaborated to generate a detailed spatial map
of the surroundings, facilitating a precise understanding of the physical environment and accurate placement of
virtual objects within it.

One of the key advantages of the HoloLens is its untethered, self-contained nature, which allowed for seamless
mobility and freedom of movement during our evaluation. Without the constraints of external computing devices
or cables, users can freely explore and interact with the augmented environment, providing a truly immersive and
natural experience. The see-through display of the HoloLens played a pivotal role in visualizing the augmented
content generated by our cooperative AR system. Leveraging the device’s spatial awareness capabilities, we can
render 3D virtual contents that appear to coexist with real-world objects, creating a seamless integration of
virtual and physical elements. Interaction with these virtual objects was facilitated by the HoloLens’ intuitive
interface, which supports natural gestures, gaze tracking, and voice commands. Users could manipulate and
explore the augmented content using hand gestures, providing a highly engaging and interactive experience.

By incorporating the Microsoft HoloLens into our evaluation testbed and demonstration, we showcase the
full potential of our cooperative AR system, from distributed sensing and real-time data processing to immersive
visualization and natural interaction. The HoloLens’ unique capabilities enabled us to validate the feasibility and
efficacy of our approach, paving the way for future advancements in cooperative AR applications across various
domains.

4. FRAMEWORK ARCHITECTURE DESIGN

In this section, we outline our framework architecture, detailing the integration of the Apache Storm and the
interactions between its components. As shown in Figure 1, our Service-Centric Distributed Resource-Aware
(SCDRA) architecture aims to enhance edge computing platforms with distributed computing, content man-
agement, and advanced communication. In addition, our framework focuses on developing a platform that is
not merely a data transit but an intelligent and proactive participant in data processing, management, and
dissemination. The framework integrates various components into a coherent structure that simplifies complex
operations while retaining the sophistication required for high-performance edge computing tasks. Moreover, the
SCDRA architecture is composed of three primary layers: the Physical Layer, the Management Layer, and the
Service Layer, which interact synergistically to support various edge computing applications.

4.1 Physical Layer

The Physical Layer constitutes the fundamental infrastructure of the SCDRA architecture. It is an ensemble
of edge devices, each outfitted with a suite of sensors, computation resources, and communication interfaces.
These devices form the backbone of the architecture, collecting data and executing tasks in concert with the
overlaying layers. Devices in this realm include advanced AR headsets, such as the HoloLens, which provide
immersive experiences through detailed environmental scanning and interaction capabilities. Complementing
these are drones and other mobile platforms that extend the sensing and computational reach of the framework.
Communication technologies interconnecting these devices range from conventional WiFi and wired networks to
cutting-edge 5G infrastructures, ensuring rapid and robust data exchange. This layer is meticulously engineered
to ensure seamless integration and interoperability, providing a reliable and responsive fabric for the complex
workflows demanded by contemporary edge computing applications.



Figure 1. Service-centric distributed resource-aware architecture.

4.2 Management Layer

Central to the SCDRA architecture is the Management Layer which is entrusted with the coherent orchestration
of tasks and the management of computational resources across the entire edge computing framework. In
our architecture design, this layer was anchored by Apache Storm which brings resilience and elasticity to the
framework. It is composed of multiple critical components, such as Node Registry, Network Management, Task
Scheduler, Service Registry, Storage Management, and Failure Handling. To be concise, the management layer
orchestrates the communications between the service layer and the physical layer, thereby enabling Apache Storm
to seamlessly perform distributed computing across the network. This integration ensures efficient data flow and
real-time processing capabilities, which are essential for the robust performance of our distributed architecture.

4.3 Service Layer

The Service Layer is the domain where specialized application services reside, offering a spectrum of capabilities
that turn the raw resources into meaningful user experiences. In addition, with different service module designs,
the service layer can act as a mediator which allows each module to convert complex data that it needs into
accessible formats and provide the necessary interfaces for user interaction. For instance, the Object Detection
module, as illustrated in Figure 1, is capable of collecting video from the HoloLens or any video-capturing edge
devices and performing object detection on the footage. Any edge device that subscribes to this module will
gain access to the processed video frames. This functionality not only enhances real-time data analysis but
also enables devices across the edge network to benefit from advanced visual recognition capabilities, improv-
ing overall system responsiveness and enabling more informed decision-making processes. The Service Layer’s
versatility serves as its cornerstone, ensuring a fluid integration of a set of services that cater to a wide array
of functionalities. These services range from Location Tracking, which offers real-time positioning information,
to 3D Model Reconstruction, which converts spatial data into detailed three-dimensional representations. Each
service is meticulously crafted to align with the specific preferences and objectives of the end-users. As a result,
the layer becomes a dynamic ecosystem that not only responds to user demands but anticipates future needs,
thereby fostering an environment of continuous innovation and service-centric development.



Figure 2. The small-scale evaluation testbed hardware implementation.

5. EVALUATION TESTBED IMPLEMENTATION

To conduct validation experiments and demonstrations, we developed a testbed based on our design introduced
in Section 4, centering on a distributed computing environment utilizing Apache Storm framework. This section
details the Apache Storm cluster constructed for the testbed, illustrated in Figure 2.

The cluster comprises three nodes: a master node and two slave nodes. The master node, also known as
the Nimbus node, is facilitated by a Dell laptop equipped with a 2.5GHz Intel i5 CPU and 8GB RAM. The
slave nodes, referred to as Supervisor nodes, are implemented using two Raspberry Pi 4 model B devices. Each
Raspberry Pi features a Broadcom BCM2711, Quad-core Cortex-A72 (ARM v8) 64-bit SoC CPU operating
at 1.5GHz, and 8GB LPDDR4-3200 SDRAM. Additionally, these devices are equipped with an IEEE 802.11ac
wireless interface supporting both 2.4 GHz and 5.0 GHz frequencies, and a BLE Gigabit Ethernet port. All nodes
run a Linux operating system, which has been appropriately configured. The nodes are interconnected within a
Local Area Network (LAN) via a TP-LINK router, as depicted in Figure 2. For optimal network connectivity,
we utilized a wired connection between each node and the router, avoiding the potential variability of wireless
connections.

Following the hardware setup and network configuration, we proceeded to install and configure the Apache
Storm software across the three nodes. The installation process involved several critical steps to ensure a
robust deployment of Apache Storm suitable for our testing and experimental needs. Initially, we installed
the prerequisite packages required by Apache Storm on all nodes to prepare them for the subsequent software
deployments. Next, we focused on the Dell laptop, which serves as the Nimbus node within our Apache Storm
cluster. On this node, we installed ZooKeeper22 to manage coordination and provide essential services such as
configuration management, synchronization, and naming registry to both the Nimbus and Supervisor nodes. For
preliminary testing, we opted for a simplified setup using a single-node ZooKeeper cluster. This decision was
driven by the need to streamline the initial testing phase while planning to expand the ZooKeeper cluster for
enhanced fault tolerance and scalability in future iterations and during the final demonstration.

Following the setup of ZooKeeper, we proceeded to install the Apache Storm package on all three nodes.
Each node’s configuration parameters were meticulously adjusted to optimize performance and ensure seamless
integration within the cluster. After the cluster is launched, we can also activate the Apache Storm UI, which
provides a graphical interface for monitoring and managing the cluster’s operations. The successful setup and
operational status of the cluster are depicted in Figure 3, illustrating the interaction between the nodes and
the overall health of the system. The screenshot indicates that we are utilizing Apache Storm version 2.4.0



Figure 3. The screenshot of the Apache Storm UI webpage of the testbed.

as our software foundation. Currently, there are two Supervisor nodes operational within the cluster. Despite
no active workers, executors, or tasks currently running, the system’s Topology remains active and its uptime
continues to accrue. A distinctive feature of Storm Topology is that they remain active until manually deactivated
or terminated by an administrator. The Storm UI serves as a crucial tool for administrators to manage and
interact with the system. Through this interface, administrators can execute several critical operations. The first
one is Activate. This function restores a previously deactivated Topology to an active state, allowing it to resume
processing data. The second one is Deactivate. This option sets the Topology’s status to inactive, temporarily
halting its execution. However, it does not affect the Topology’s recorded uptime or require redeployment. The
third one is Rebalance. This powerful feature enables dynamic adjustment of the number of worker processes
and executors assigned to a Topology. Remarkably, this can be accomplished without the need to restart the
cluster or the Topology itself, ensuring uninterrupted operations. The last one is Kill. This command terminates
the Topology entirely, removing it from Apache Storm and erasing it from the Storm UI. To run this Topology
again, an administrator must redeploy the application from scratch. Administrators can initiate these actions
by navigating to the Topology Summary section of the Storm UI, selecting the desired Topology, and accessing
its Topology summary page. This level of interactivity and control enables efficient and flexible management of
Storm Topology, crucial for maintaining robust and reliable system operations.



Figure 4. Service modules and system architecture demonstration.

6. DEMONSTRATION

In this section, we present two service modules developed to harness the capabilities of the SCDRA architecture,
which together facilitate cooperative augmented reality, thereby enhancing mobile sensing. This serves as a proof
of concept to demonstrate the practical applications and effectiveness of our architectural design. These modules
not only illustrate the potential for augmented collaboration but also set the stage for future innovations in mobile
sensory augmentation. The design of these two modules harnesses the sensory capabilities of HoloLens devices,
leveraging its advanced sensor suite to capture rich environmental data crucial for AR applications. In our
module design for distributed sensing using Hololens, we use Microsoft HoloLens 2 Research Mode API2321

to capture sophisticated sensors’ streams such as Recurrent Modulation (RM) Depth Long Throw sensors,
RM IMUs, Spatial Input, Scene Understanding, and RGB front camera, enabling precise depth perception,
spatial mapping, and high-definition video capture. This distributed sensing capabilities of HoloLens ensures the
availability of real-time environmental context for enhanced AR experiences, providing users with immersive and
interactive overlays seamlessly integrated into their physical surroundings. For our proposed service modules, it
is crucial to manage the data streams from HoloLens sensors, facilitating real-time computation and dynamic
response. The proposed SCDRA architecture excels in fault tolerance, scalability, and the reliable processing of
unbounded data streams, making it an ideal system for high-demand AR applications that require immediate
processing and minimal latency. Our system also uses a network of Apache Storm Supervisors, each responsible
for executing portions of stream processing tasks. The Supervisors are organized in a cluster managed by a
Nimbus server, which distributes tasks, monitors performance, and reallocates resources as necessary to ensure
efficient data handling. This configuration not only enhances the system’s resilience against node failures but
also improves load balancing across the computing nodes. Figure 4 demonstrates the data flow as well as how
the service can be performed on the SCDRA system. The stream processing in our system is designed to handle
various data streams transmitted from the HoloLens sensors, which can further be used by our service modules.
This includes depth information from RM Depth Long Throw sensors, motion data from IMUs, and visual inputs
from the front cameras. The Apache Storm Topology is configured to ingest these streams and orchestrate the
processing workflows required for AR rendering. In our proposed architecture, two service modules have been
developed for cooperative sensing which will be described in the following subsections.

6.1 3D Model Reconstruction Service

We’ve developed a 3D model reconstructing application in the Apache Storm to provide a 3D cooperative
perception mobile sensing service. In this proposed service, the Apache Storm Topology receives data from



the HoloLens users through the HoloLens Research Mode API23,21 which provides raw sensor streams. Then,
the service processes these streams to calculate positional data relative to the user’s head position, capturing
the surrounding environment, and calibrating the RGB front camera data with RM Depth Long Throw sensor
information to generate a point cloud24 output which is crucial for accurate 3D model placement in the user’s field
of view. In this 3D reconstructing service module, the 3D models are constructed using the Open3D toolkit and
are then ready to stream to another HoloLens user for display. Whichever HoloLens subscribes to the 3D model
reconstruction service can select another user’s 3D model, enabling the user to interact with the environment
augmented by accurate and real-time 3D content.

6.2 Video Object Detection Service

We’ve also developed a video object detection service module within our framework that utilizes the advanced
capabilities of the HoloLens devices to create a video cooperative perception mobile sensing service. In this
service module, the Apache Storm Topology captures video streams from the front cameras of the HoloLens,
facilitated by the HoloLens Research Mode API, which offers access to raw sensor data. These streams are
immediately processed using the YOLOv825 algorithm, implemented via OpenCV,26 to perform real-time object
detection. This detection is pivotal for interactive AR applications, enhancing user engagement by identifying
and annotating objects within the user’s environment. Furthermore, the processed frames are shared among
users through the SCDRA system, fostering a cooperative AR experience. As shown in Figure 4, any user of
the end devices that subscribes to this service module will have access to the processed video frames. This
enables multiple users to view each other’s perspectives with object detection enabled, allowing them to see the
same object from different angles. This enriches the interactive experience and enhances the perception of the
environment.

7. CONCLUSION

In this paper, we have presented a novel framework and approach for enabling cooperative AR through the
integration of advanced sensing, wireless communication, and distributed edge computing. By leveraging the
capabilities of the Microsoft HoloLens AR headset and edge servers connected over a wireless network, our system
addresses the significant challenges involved in implementing a scalable and reliable distributed cooperative AR
solution. Our implementation, built upon the Apache Storm platform, demonstrates the feasibility of this
approach and illustrates the potential of distributed edge computing for delivering immersive and context-aware
AR experiences. By effectively merging distributed cooperative sensing with edge computing resources, our
system enables the seamless projection of reconstructed 3D models directly into the user’s field of view, offering
a truly dynamic and interactive AR experience. We have showcased the viability of combining cutting-edge
technologies, such as the HoloLens and edge computing, to create innovative solutions that push the boundaries
of what is possible in the realm of AR. Additionally, our findings pave the way for future advancements and
applications in various domains, where the fusion of virtual and physical environments can provide significant
benefits.

As we move forward, the integration of cooperative AR with distributed edge computing will continue to
evolve, enabling more sophisticated and robust systems capable of handling increasingly complex scenarios. The
lessons learned from our research will serve as a foundation for further exploration and development in this
exciting field, ultimately driving the creation of more immersive, intuitive, and transformative AR experiences.
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