2019 IEEE Cloud Summit

Experimental Study on the Detectability of
Man-in-the-Middle Attacks for Cloud Applications

Cheng-Yu Cheng, Edward Colbert, and Hang Liu
Department of Electrical Engineering and Computer Science
The Catholic University of America
Washington, DC, USA
{chengc, colberte, liuh} @cua.edu

Abstract—Man-in-the-Middle (MITM) attacks can signifi-
cantly compromise the security of the Internet and cloud com-
puting applications, where an attacker intercepts the packets
transmitted between the clients and servers over the network
to steal confidential information and/or change the packets. It
is essential and challenging to detect MITM attacks. In this
paper, we build a virtual network testbed to emulate a real-world
cloud environment and study the detection of MITM attacks.
We consider an MITM detection approach that utilizes network
packet analysis and machine learning techniques to measure the
changes in the packet Round-Trip Time (RTT) between a client
and a server. Specifically, we use the machine learning algorithms
in TensorFlow to analyze the RTT data collected on the testbed
to determine the detectability of MITM attacks. If the attacker’s
link speed is much higher than the client’s link speed in an access
network, e.g. an attacker connecting the network through a wired
Ethernet and a normal client connecting the network through a
wireless link, it would be difficult to discern the RTT difference
with and without the MITM attacks. We are able to deduce a
threshold below which the MITM attacks can be detected based
on the RTT difference with a certain accuracy. Our experiments
show the detectability accuracy becomes lower.

Index Terms—Man-in-the-middle attacks, packet round-trip-
time analysis, machine learning.

I. INTRODUCTION AND MOTIVATION

In this paper, we explore detectability of adversarial attacks
on network connections. With the ever-changing nature of
computer networks there are many types of network attacks.
In Distributed Denial of Service (DDoS) attacks, an attacker
breaks into different computers (called zombies), and then
controls all these zombies to send a large number of network
packets to a victim server. By executing this attack, one can
consume the server’s finite resources and affect the availability
of the services [1]. Other attacks such as SQL injection,
cross-site scripting and SSL attacks affect different aspects
of computer networks.

In particular, we focus on an attack known as the Man-
in-the-Middle (MITM) attack. This attack offers the ability
to intercept the connection between two network devices. By
executing this attack, one can eavesdrop on the traffic and
steal confidential information such as bank account number,
Social Security number, passwords, or anything that is being
transferred in this network connection. The MITM attack is an
active attack. It utilizes several network attack methods such as

Address Resolution Protocol (ARP) spoofing, Dynamic Host
Configuration Protocol (DHCP) spoofing or port stealing [2].
For ARP spoofing, the MITM attack is executed on the media
access control (MAC) layer by poisoning the ARP cache of a
local network switch or router. A detection method for ARP
spoofing type of attack was proposed by [3] by measuring the
Round Trip Time (RTT) of network packets. However, for fast
networks such as land-based Ethernet network links or for the
anticipated 5th Generation cellular links, the additional delay
may not be measurable by the user.

In this paper, we want to explore the impact of attacker’s
link speed to the detection method that we adopted from [3]
for detecting MITM attack. The contributions of this paper is
that we created a virtual network testbed to simulate a real-
world network topology, and conducted a MITM attack within
the virtual network. To make it more realistic, we generated
background traffic by setting up a web server and using web
browser automation to automatically fetch the websites. RTT
measurements between client and server were collected by
sending ICMP packets and calculating the time that elapsed.
In order to have more comprehensive experimental results,
we introduced a link with variable speed into the network.
We compared the RTT result using Tensorflow Deep Neuron
Network (DNN) classification to test the accuracy of the
detection method. The result shows that the smaller difference
in connection speed between client’s link speed and attacker’s
link speed, the detection accuracy will be the worst. In other
word, if the attacker’s link speed is much higher than the
client’s link speed, then the proposed MITM detection method
may have a lower chance to detect the presence of MITM
attack.

The remainder of this paper is organized as follow. In
Section 2, we will talk about some related research and previ-
ous work. Section 3 introduces our experiment configuration
and the deployment of our testbed. Section 4, we detail the
method for detecting MITM attack and the way to adopt
machine learning to test the detectability. Section 5 presents
our conclusions and future work.

II. RELATED WORK

In this section, we will introduce several MITM attack
detection mechanisms and briefly explain how they work.

978-1-7281-3101-6/19/$31.00 ©2019 IEEE
DOI 10.1109/CloudSummit47114.2019.00015

52

Authorized licensed use limited to: University of lllinois. Downloaded on July 24,2020 at 14:16:35 UTC from IEEE Xplore. Restrictions apply.

Since the most popular MITM attack approach in Local Area
Network (LAN) is ARP Spoofing, majority of the detection
methods are focusing on detecting ARP Spoofing types of
MITM attack. A method was proposed to detect MITM
attacks using machine learning algorithm [4]. They collected
MITM attack network traffic on a real production network
and provided a feature subset algorithm to select which parts
of packet should be compared along with other packets for
detecting MITM packets. A combination of supervised and
semi-supervised machine learning method was used to build
the detection model. The result shows that with the selected
fields of IP identification number, TCP sequence number and
TCP flags, the True Positive Rate (TNR) of the model is
0.9113.

A detection method was proposed by Zigian et al. [3]
using their client-side application that set a threshold for
measured round trip time (RTT) and received signal strength
(RSS) without MITM attack scenario and do analysis on the
measured RTT and RSS to detect and further locate the MITM
attacks. Since spoofed packets travel additional links to and
from the attacker machine and this introduces some delay in
the connection. By setting a detection threshold for the RTT
and monitoring the delay from client-base application, one is
often able to detect the presence of a MITM attack. If the
delay is longer than the normal baseline, it will be considered
as MITM attack. The framework will activate the locating
mechanism to locate the physical machine by applying the
measured RSS to machine learning model and predict the
location.

Several MITM attack detection methods are calculating dif-
ference in delay to illustrate the abnormal behavior occurring
in the connection. In this paper, we mainly focusing on testing
the detectability of the method that use delay as their decision-
making factor. We adopt the concept from [3] using Ping
application to collect the RTT for each packet. And also collect
the RTT for each packet under MITM attack. Finally, we
adopt the concept from [4] using supervised machine learning
algorithm to further test the detectability of the RTT detection
method.

III. EXPERIMENT CONFIGURATION

In this section, we present the virtual network used this ex-
periment. We deployed the virtual network on VMware ESXi
vSphere Server (ESXi) [6] which can contain many virtual
machines. We used VyOS virtual router operating systems
[7] and Ubuntu operating systems [8] to simulate a realistic
computer network. We built an Apache Web Server [9] using
one of the Ubuntu computers and let all other computers
perform common web browsing to simulate a background
traffic.

A. Virtual Network

1) Network Infrastructure: ESXi is software that provides
a virtualization layer which can abstract specific hardware
resources from the physical host, such as processor, storage,
memory, and networking interface cards. ESXi also provides

53

several network infrastructures which allow the creation of
different Virtual Local Area Networks (VLANs). VLANs are
the logical segmentation of workgroups that the nodes in the
same group can communicate with each other. One of the
infrastructures is virtual switches which have the same packet-
switching functionality as a physical switch. In addition, the
virtual switches also have flexible capabilities that can connect
the virtual machines to both virtual network and the physical
network. We configured unique ESXi port groups and keep the
configuration of logical rules and policy to the virtual ports for
each virtual switch, so that the switches effectively operate as
VLANSs for each network segment. A diagram of our virtual
network is shown in Fig. 1.

!‘
VS38 VS39
VS34

Fig. 1. Virtual Network Diagram, contains 20 clients, 45 virtual switches, 21
VyOS virtual routers, 1 webserver and 1 attacker

We connected the 45 virtual switches (Fig. 1, labeled as
VS1...VS45) to 21 VyOS virtual router (Fig 1, labeled as
RO...R20). VyOS virtual router software has the advantages
that it is open source, highly configurable, easily scaling into
larger network and most important of all, capable of running
on a virtual machine, which makes it a good choice of this
experiment. We adopted Routing Information Protocol (RIP)
as the routing protocol. Every router that uses RIP will update
its routing table periodically with its routing table through
multitasking and exchanging routing information. The routing
information that received from neighbor routers will always
be trusted by host router itself.

2) Network Elements: The attacker of this experiment
(Fig. 1, labeled as A1) was deployed at virtual switch number
zero using a computer running Kali Linux [10]. Kali Linux is
a pen-test operating system that has many tools and flexible
frameworks for security researcher to utilize, such as vul-
nerability assessment, penetration testing and in this paper,
launching a Man-in-the-Middle attack. Kali Linux provides a
tool called ARPspoof [11], which has an ability to intercept the
conversation between two nodes by maliciously modifying the

Authorized licensed use limited to: University of lllinois. Downloaded on July 24,2020 at 14:16:35 UTC from IEEE Xplore. Restrictions apply.

Address Resolution Protocol (ARP) cache of a nearby network
device. In our experiments the attacker A1 modified the ARP
table in network device RO.

To simulate real-world background traffic, an Apache Web
Server version 2.4.18 (Fig. 1, labeled as WS) was introduced
into this virtual network. We built up the Apache Web Server
on an Ubuntu virtual machine, and used it to provide website
services to the clients. We make use of Hypertext Markup
Language (HTML) to create twelve different websites. Each
website contained a picture and a sentence. We also configured
20 web clients (Fig. 1, labeled as C1...C20) running Ubuntu
16.04 to fetch these websites.

B. Simulation of Web User Background Traffic

In order to make the virtual network more realistic, we
utilized the Selenium Browsers Automation (Selenium) [13]
software to enable automated browsing. We used one of the
tools called Selenium-WebDriver, which we controlled using a
command-line python script. In the Python automation script,
we stored the URL of twelve websites that we had created
in the WS, and we closed the cache, cookie and history
of Firefox by configuring the Firefox profile through the
Selenium-WebDriver, so that every website request will go
through the virtual network to the WS and will not fetch
directly from the cache. In addition, all 20 Ubuntu clients were
running the same Python script, but were randomly fetching
different websites and set to fetch websites with a random
time interval between 1 and 3.5 seconds. The traffic rate of
website requests from all 20 clients was approximately 150
packets per second, measured from the WS.

IV. EXPERIMENT

We simulated a MITM attack by adopting the method of [3]
to detect MITM attack. We collected the RTT using the Linux
Ping application and compared the RTT variance between
normal traffic transmission, and the intercepted transmission.
We conduct seven experiments with different setting in order
to provide comprehensive results to support the assumption.
In addition, we use Tensorflow to analyse the collected RTT
to find out the impact of attacker’s link speed with regard to
the detectability of MITM attack.

A. Experiment Description

After setting up all the background traffic, we want to in-
vestigate the relationship between attacker’s connection speed
and victim’s connection speed and the accuracy of detecting
MITM attack. We deployed the MITM attack between C1 and
RO (Fig. 1) by launching an ARPspoofing from Al. After
the ARP table was modified, C1 will believe that Al is its
default gateway, and RO will believe that Al is the one that
sending the website fetching request. Every traffic that going
through between C1 and RO will be intercepted by Al, the
MITM attacker. To detect the presence of MITM attack, we
adopted the method of [3] by collecting the RTT from Ping
application and comparing the RTT variance between normal
traffic transmission, and the intercepted transmission between

54

C1 and WS. With all the background traffic turning on, we
collected two datasets for the first case and labeled it as CASE-
1. The first dataset is using Ping application to send ICMP
packets to WS without the presence of MITM attack between
C1 and RO. We collected the RTT by letting C1 send 5000
ICMP packets to WS, waiting for the reply from WS. The
Ping application will record the RTT for each packet and
store all the RTT including the measurement of minimum,
average, maximum and standard deviation of RTT. The second
dataset is having the same setting as above, but have the
MITM attack deployed between C1 and RO. With an aim of
knowing the relationship between the connection speed and
the detectability of MITM attack, all the run-time connection
speed to the RO was calculated by iPerf [14]. iPerf is an open
source tool that can measure the bandwidth of a wired or
wireless connection within the WLAN/LAN network. We use
iPerf to measure the bandwidth of C1 to RO and Al to RO to
represent their connection speed. After using iPerf to measure
each connection speed, we calculated the ratio of Al’s link
speed to C1’s link speed and used this value to represent the
relativity of client and attacker. These values will also be used
to indicate the difference in link speed between C1 to RO and
Al to RO for Tensorflow analysis in the next section.

The above experimental procedures, with virtual network’s
websites fetching turning on, sending ICMP packets from C1
to WS, and collecting two RTT datasets of without and under
the MITM attack, were used for all the experiments. However,
With the aim of having more comprehensive results of the
effect of link speed to the detectability of MITM attack, for
second to seventh experiments we moved RO router, C1 client
and A1 attacker to a physical network, and changing RO to be a
physical wireless router. The virtual switch inside the ESXi has
the ability that can connect the virtual machines with physical
network. So, we used this feature to connect a NETGEAR
access point (Fig. 2, labeled as AP) to the virtual switch
(Fig. 2, labeled as VS2), and set the access point with the same
configuration as VyOS, running RIP to route the packets. We
use NETGEAR N300 Wi-Fi Router, which has 802.11g and
802.11n protocol to manipulate for wireless connection within
these experiments. The client (C1) was changed from virtual
machine to a physical personal computer running Ubuntu
16.04.2 LTS, with the same configuration as the original C1
in ESXi. The attacker (A1) was also changed to a physical
personal computer running Kali Linux, with ARPspoof tool
installed. Both client and attacker have wired and wireless
network interface that allow us to utilize for different network
scenarios.

For the second experiment, we connected C1 to AP with
an Ethernet CAT 5 cable which has the connection speed up
to 100 Mbps and connected Al to AP with wireless signal.
Fig. 2 shows the network scenario for CASE-2. The datasets
that have been collected for this experiment were labeled as
CASE-2. For the third experiment (CASE-3), we connected
both C1 to AP and Al to AP with wireless connection. Fig. 3
shows the network scenario for CASE-3. The third datasets
that we generated from this experiment were labeled as CASE-

Authorized licensed use limited to: University of lllinois. Downloaded on July 24,2020 at 14:16:35 UTC from IEEE Xplore. Restrictions apply.

3. Lastly, for the fourth experiment (CASE-4), we connect C1
to AP with wireless connection and connect Al to AP with an
Ethernet cable. The datasets were labeled as CASE-4. Fig. 4
shows the network scenario for CASE-4. In these network
scenarios, the AP was set with 8§02.11n protocol for all the
wireless connection which means it has up to 150 Mbps link
speed in this NETGEAR N3000 Wi-Fi router.

*Ethernet Cable}

AP(RO)

{Ethernet Cable;

AP (RO)

“Ethernet Cable'

: e
: w

Fig. 4. Network Architecture of CASE-4 and CASE4a

In order to have much more comprehensive results to sup-
port the assumption, we also configure the wireless protocol
of AP from 802.11n to 802.11g and implement three more
experiments. By changing the wireless connection protocol of
the AP, it will limit the transmission speed of the packets.
To be concise, the 802.11g protocol provides the highest
of 54 Mbps bandwidth for the wireless connection in this
NETGEAR N3000 Wi-Fi router. In addition, the delay that
was introduced to the connection by the attacker might also be
different. As a result, we can have more experimental results
to show the relationship between the connection speed and
the detectability of MITM attack from different connection
speed. The experiments were labeled as the following. The
network scenario from Fig. 2 was adopted for CASE-2a, Fig. 3
was adopted for CASE-3a and finally, Fig. 4 was adopted for
CASE-4a. For CASE-2a to CASE-4a, we also utilized iPerf
to measure all the connection speed from C1 to AP and Al
to AP. Table 1 shows the measurement result of connection
speed and difference between 2 link speeds for all the cases.

55

B. Experiment Result and Comparison

After collecting all the datasets for different network sce-
narios. We first compared these results by manual analysis
and secondly, used Tensorflow machine learning technology
to classified these data. We then use the result accuracy to
represent the detectability of MITM attack within different
network scenarios.

1) Manual Analysis: After collecting the RTT results for
all the cases, we did a manual analysis for all the cases. Table
2 shows statistics for the RTT measurements result for all
the cases. For CASE-1, we can find out that there is only a
slight difference in RTT between without the MITM attack
and under the attack. The difference in average RTT is 0.114
millisecond, and for the difference in minimum RTT is only
0.004 millisecond. This can indicate that in the virtual network
scenario, because the attacker’s link speed is fast enough that it
didn’t introduce much delay to the attack. Therefore, it might
be a little harder for the client to find out the presence of the
attacker by analysing the RTT measurement.

For CASE-2, CASE-3 and CASE-4, we can see that the
average packet RTT of CASE-2 without the presence of MITM
attack is 1.062 millisecond and the average packet RTT under
the MITM attack is 10.302 millisecond. The result shows that
the MITM attacker introduced a huge delay to the link between
C1 and AP. In addition, for CASE-3, the average packet RTT
without the attack is 4.854 millisecond and with the attack is
17.257 millisecond. The difference in average RTT of CASE-3
is smaller than CASE-2 because the difference in connection
speed between C1 and Al at CASE-3 is also smaller than
CASE-2. As for CASE-4, we can find out that the difference in
average RTT is only 0.497 millisecond, which also provides an
evidence that if the attacker’s link speed is getting much higher
than the client, it might influent the RTT detection method.

For CASE-2a, CASE-3a and CASE-4a, we can know from
Table 2 that the measurement RTT is similar to CASE-2
to CASE-4 respectively. Except that the packet loss and the
average RTTs of these cases are all higher than CASE-2 to
CASE-4. The reason is that when we changed the wireless
connection protocol from 802.11n to 802.11g, it also reduced
the channel bandwidth, causing a higher rate of packet loss.

2) Tensorflow Analysis: We used machine learning tech-
nology to test the detection method by adopting a classifi-
cation model using Google Tensorflow Python API [15]. We
utilized a sample code of supervised classification model from
Tensorflow, and modified it to test the detectability of the
MITM attack detection method. For the Tensorflow analysis,
we separated the datasets into training and testing data for
each case. We’ve trained different classifier for each case to
test the classifying accuracy respectively. This accuracy then
be used to represent the detectability of the MITM attack.
For the propose of supervised learning, we pre-processed each
case’s datasets into formal input data. Take CASE-1 as an
example. We tagged each RTT result from the first dataset
with an “OFF” label to specify that this is the result without
the presence of MITM attack. Same thing with the second
dataset, we tagged each RTT result with an “ON” to indicate

Authorized licensed use limited to: University of lllinois. Downloaded on July 24,2020 at 14:16:35 UTC from IEEE Xplore. Restrictions apply.

TABLE I
MEASUREMENT RESULT OF WIRELESS CONNECTION SPEED AND WIRED CONNECTION SPEED

Case Type of Connection to the AP C1 Connection Speed (Mbps) Al Connection Speed (Mbps) Ratio of A1’s Connection Speed
to C1’s Connection Speed
Case-1 Both Virtual Wired 7245 7224 0.99
Case-2 C1 wired, Al wireless 93.3 33.2 0.355
Case-3 C1 wireless, Al wireless 29.5 29.9 1.013
Case-4 C1 wireless, Al wired 31.7 91.2 2.87
Case-2a C1 wired, Al wireless 94.4 14.8 0.15
Case-3a C1 wireless, Al wireless 15.5 17.6 1.13
Case-4a C1 wireless, A1 wired 14.6 93.8 6.4

*Protocol of wireless access point: 802.11n for CASE-2 to CASE-4, 802.11g for CASE-2a to CASE-4a

TABLE II
MEASUREMENT RESULT OF PACKETS RTT

Average RTT

Minimum RTT

Maximum RTT Packets Loss

Case Dataset
Case-1 Attack OFF 0.639 ms 0.299 ms 7.703 ms 0 packet
Attack ON 0.753 ms 0.303 ms 4.935 ms 0 packet
Case-2 Attack OFF 1.062 ms 0.457 ms 4.276 ms 0 packet
Attack ON 10.302 ms 3.246 ms 877.476 ms 24 packet
Case-3 Attack OFF 4.854 ms 1.213 ms 202.864 ms 2 packet
Attack ON 17.257 ms 3.566 ms 605.234 ms 6 packet
Case-4 Attack OFF 4.854 ms 1.213 ms 202.864 ms 2 packet
Attack ON 5.351 ms 1.808 ms 380.688 ms 0 packet
Case-2a Attack OFF 1.052 ms 0.446 ms 3.601 ms 0 packet
Attack ON 20.785 ms 4.258 ms 231.837 ms 134 packet
Case-3a Attack OFF 5.557 ms 1.052 ms 509.582 ms 5 packet
Attack ON 22.466 ms 3.697 ms 991.334 ms 209 packet
Case-4a Attack OFF 5.557 ms 1.052 ms 509.582 ms 5 packet
Attack ON 7.180 ms 2.072 ms 284.951 ms 11 packet

*Attack OFF represent the normal traffics, Attack ON represent the intercepted traffics..

*Each dataset contains 5000 ICMP packets.

the presence of MITM attack. Next, we randomly select 4000
RTT results from the first dataset and combine it with 4000
RTT results that have been randomly selected from second
dataset and store the combination as a CSV file, which will
be used as a training data. The remaining 2000 results from
both first and second datasets are combined into a second CSV
file, which will be used as a testing file.

Next, we built three layers Deep Neuron Network (DNN)
with 10, 20, 10 units respectively within the classifier and
set the training step to 10,000 steps. The DNN classifier will
be trained from the 8000 packets dataset, and then it will be
utilized to classify the testing dataset to see the packet is at the
class of without or under the MITM attack (“OFF” or “ON”).
We use this accuracy result to represent the detectability of
the MITM attack which was detected by RTT measurement
method. The accuracy result shows that for CASE-1, the
classification accuracy is 0.701, meaning that 70% of the 2000
testing packets were classified correctly.

For CASE-2, which is wired C1 and wireless Al, the testing
accuracy of the model is 1.00, which means that the 2000
testing packets have all been classified correctly through the
classifier. This is because the delay that was introduced to
the link by the attacker is long enough for the classifier
to figure out whether the packet is without or under the

56

attack. For CASE-3, wireless connection on both C1 and Al,
the classifying accuracy of the model is 0.8735, which also
indicates that with an identical link speed, it is a little harder
for the classifier to identify the presence of the attack compare
to CASE-2. And for CASE-4, since the attacker’s link speed
is much higher than the client, the classification accuracy is
only 0.518 which means the classifier can only recognize half
of the RTT record. Fig. 5 indicates the accuracy with respect
to the ratio of Al’s connection speed to C1’s connection speed
for all the Tensorflow analysis results. From Fig. 5, we can see
that our assumption was confirmed. When the attacker’s link
speed is getting higher than the client’s link speed (Fig. 5, X-
Axis toward right), the RTT-base detection method will have
lower chance to detect the presence of MITM attack.

For wireless connection, we can find out from Table 2 that
there were some delays caused by environmental effects that
would appear as anomalies. For example, the maximum RTT
of CASE-3a is 509.582 ms without the presence of MITM
attack. And the effects that appear in CASE-2a to CASE-4a
are really significant. The explanation is that these scenarios
were using 802.11g protocol, which has lower bandwidth and
weaker signal frequency. To illustrate this, we present sample
data in graphical form. Fig. 6 was generated from two sample
datasets without MITM attack and it also shows different

Authorized licensed use limited to: University of lllinois. Downloaded on July 24,2020 at 14:16:35 UTC from IEEE Xplore. Restrictions apply.

amount of anomalies between two different wireless protocol.
This kind of delay would appear similar to a delay of a MITM
attack which may cause some miss-classifications, in other
word reduced the accuracy of the classification result. In our
current Tensorflow analysis, we assumed that the machine
learning classifiers are intelligent enough to figure out what
kind of RTT results are considered anomalous and it would
not affect the accuracy.

R case-l
CASE2 CASE-2

@ CASE3

@® case4

CASE3

Z
H Casel
£ 070 ®
E cASE3a
£
> 0.65 L]
* 0.60
0.55 Critical Value 3. —
! .
0.50 L
i
; case
| B
oo 05 1o 1 0 25 30 3s 40 45 50 ss 6o 6s
The Ratio of Al's Connection Speed to C1's Conncction Speed
Fig. 5. Relationship between link speed and Man-in-the-Middle attack

detectability

600 — 802.11n

— 802.11g

400

Packet Round Trip Time (ms)

200

N\ N
§ S
N ®» o

Packet

Fig. 6. Sample datasets of C1 sending 5000 ICMP packets to WS with
different wireless protocol

V. CONCLUSION AND FUTURE WORK

We test the detectability of using round-trip time to identify
Man-in-the-Middle attack between two network devices in
different network scenarios by analysing the measured RTT. In
addition, we also assume that for the faster network interface,
the delay that was introduced to the connection by attacker
may not be measurable by the users. To assess the detectability
of the method, we simulate a realistic network testbed using
VMware ESXi vSphere Server for the deployment of detection
method, and analysing the RTT results by manual calculation
and Tensorflow machine learning classification. We generated

57

background traffic to make the network more realistic. In order
to cover different results for different network scenarios, we
also combine ESXi virtual server with physical wireless access
point to present different types of network connection. If the
attacker’s link speed is faster than the client, it is really hard
to tell the different through the RTT result. And from the
Tensorflow analysis, the classification results also provide in-
dication of difference in connection speed could impact the de-
tectability of the RTT detection method. Specifically, when the
detectability accuracy became lower than 0.55 (corresponding
to when the attacker link speed is 2.5 times faster than the
client link speed), the detection method could not detect the
attack correctly. In the worst case (attacker’s link speed is
faster than client’s link speed), the detection accuracy is only
0.43 when using Tensorflow analysis to test the detectability
of MITM attack using RTT-base method. Despite we use a
physical wireless access point to deploy several experiments
and utilizing two wireless protocols to represent different
connection speed, the result did not cover all the existing
network speed range. Also, the physical wireless access point
did not provide very stable connecting signal which introduced
some anomaly to the RTT measurement. More experiments
still need to be done with much more stable wireless access
point or any other substitute which can provide different range
of connection speeds.

REFERENCES

[1] Wu, Y., Tseng, H., Yang, W. and Jan, R. (2011), "DDoS detection and
traceback with decision tree and grey relational analysis, ” International
Journal of Ad Hoc and Ubiquitous Computing, 7(2), p.121.

Calvert, C., Khoshgoftaar, T., Najafabadi, M. and Kemp, C. (2017), ”A
Procedure for Collecting and Labeling Man-in-the-Middle Attack Traf-
fic, ” International Journal of Reliability, Quality and Safety Engineering,
24(01), p.1750002.

Dong, Z., Espejo, R., Wan, Y. and Zhuang, W. (2015), "Detecting and
Locating Man-in-the-Middle Attacks in Fixed Wireless Networks, ”
Journal of Computing and Information Technology, 23(4), p.283.
Najafabadi, M. M. (2017), "Machine Learning Algorithms for the Anal-
ysis and Detection of Network Attacks, ” Florida Atlantic University.
Vallivaara, V. A., Sailio, M., and Halunen, K. (2014, March), "Detecting
man-in-the-middle attacks on non-mobile systems, ” In Proceedings of
the 4th ACM conference on Data and application security and privacy
(pp. 131-134). ACM.

VMware ESXi vSphere Server. https://www.vmware.com/products/esxi-
and-esx.html

VyOS Network OS. https://vyos.io/

Ubuntu. https://www.ubuntu.com/

Apache. https://httpd.apache.org/

Kali Linux. https://www.kali.org/

ARPspoof. https://linux.die.net/man/8/arpspoof

OpenSSL. https://www.openssl.org/

Selenium Browser Automation. https://www.seleniumhq.org/

iPerf. https://iperf.fr/

Google TensorFlow. https://www.tensorflow.org/

Authorized licensed use limited to: University of lllinois. Downloaded on July 24,2020 at 14:16:35 UTC from IEEE Xplore. Restrictions apply.

