
Experimental Study on the Detectability of
Man-in-the-Middle Attacks for Cloud Applications

Cheng-Yu Cheng, Edward Colbert, and Hang Liu
Department of Electrical Engineering and Computer Science

The Catholic University of America
Washington, DC, USA

{chengc, colberte, liuh}@cua.edu

Abstract—Man-in-the-Middle (MITM) attacks can signifi-
cantly compromise the security of the Internet and cloud com-
puting applications, where an attacker intercepts the packets
transmitted between the clients and servers over the network
to steal confidential information and/or change the packets. It
is essential and challenging to detect MITM attacks. In this
paper, we build a virtual network testbed to emulate a real-world
cloud environment and study the detection of MITM attacks.
We consider an MITM detection approach that utilizes network
packet analysis and machine learning techniques to measure the
changes in the packet Round-Trip Time (RTT) between a client
and a server. Specifically, we use the machine learning algorithms
in TensorFlow to analyze the RTT data collected on the testbed
to determine the detectability of MITM attacks. If the attacker’s
link speed is much higher than the client’s link speed in an access
network, e.g. an attacker connecting the network through a wired
Ethernet and a normal client connecting the network through a
wireless link, it would be difficult to discern the RTT difference
with and without the MITM attacks. We are able to deduce a
threshold below which the MITM attacks can be detected based
on the RTT difference with a certain accuracy. Our experiments
show the detectability accuracy becomes lower.

Index Terms—Man-in-the-middle attacks, packet round-trip-
time analysis, machine learning.

I. INTRODUCTION AND MOTIVATION

In this paper, we explore detectability of adversarial attacks

on network connections. With the ever-changing nature of

computer networks there are many types of network attacks.

In Distributed Denial of Service (DDoS) attacks, an attacker

breaks into different computers (called zombies), and then

controls all these zombies to send a large number of network

packets to a victim server. By executing this attack, one can

consume the server’s finite resources and affect the availability

of the services [1]. Other attacks such as SQL injection,

cross-site scripting and SSL attacks affect different aspects

of computer networks.

In particular, we focus on an attack known as the Man-

in-the-Middle (MITM) attack. This attack offers the ability

to intercept the connection between two network devices. By

executing this attack, one can eavesdrop on the traffic and

steal confidential information such as bank account number,

Social Security number, passwords, or anything that is being

transferred in this network connection. The MITM attack is an

active attack. It utilizes several network attack methods such as

Address Resolution Protocol (ARP) spoofing, Dynamic Host

Configuration Protocol (DHCP) spoofing or port stealing [2].

For ARP spoofing, the MITM attack is executed on the media

access control (MAC) layer by poisoning the ARP cache of a

local network switch or router. A detection method for ARP

spoofing type of attack was proposed by [3] by measuring the

Round Trip Time (RTT) of network packets. However, for fast

networks such as land-based Ethernet network links or for the

anticipated 5th Generation cellular links, the additional delay

may not be measurable by the user.

In this paper, we want to explore the impact of attacker’s

link speed to the detection method that we adopted from [3]

for detecting MITM attack. The contributions of this paper is

that we created a virtual network testbed to simulate a real-

world network topology, and conducted a MITM attack within

the virtual network. To make it more realistic, we generated

background traffic by setting up a web server and using web

browser automation to automatically fetch the websites. RTT

measurements between client and server were collected by

sending ICMP packets and calculating the time that elapsed.

In order to have more comprehensive experimental results,

we introduced a link with variable speed into the network.

We compared the RTT result using Tensorflow Deep Neuron

Network (DNN) classification to test the accuracy of the

detection method. The result shows that the smaller difference

in connection speed between client’s link speed and attacker’s

link speed, the detection accuracy will be the worst. In other

word, if the attacker’s link speed is much higher than the

client’s link speed, then the proposed MITM detection method

may have a lower chance to detect the presence of MITM

attack.

The remainder of this paper is organized as follow. In

Section 2, we will talk about some related research and previ-

ous work. Section 3 introduces our experiment configuration

and the deployment of our testbed. Section 4, we detail the

method for detecting MITM attack and the way to adopt

machine learning to test the detectability. Section 5 presents

our conclusions and future work.

II. RELATED WORK

In this section, we will introduce several MITM attack

detection mechanisms and briefly explain how they work.

52

2019 IEEE Cloud Summit

978-1-7281-3101-6/19/$31.00 ©2019 IEEE
DOI 10.1109/CloudSummit47114.2019.00015

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2020 at 14:16:35 UTC from IEEE Xplore. Restrictions apply.

Since the most popular MITM attack approach in Local Area

Network (LAN) is ARP Spoofing, majority of the detection

methods are focusing on detecting ARP Spoofing types of

MITM attack. A method was proposed to detect MITM

attacks using machine learning algorithm [4]. They collected

MITM attack network traffic on a real production network

and provided a feature subset algorithm to select which parts

of packet should be compared along with other packets for

detecting MITM packets. A combination of supervised and

semi-supervised machine learning method was used to build

the detection model. The result shows that with the selected

fields of IP identification number, TCP sequence number and

TCP flags, the True Positive Rate (TNR) of the model is

0.9113.

A detection method was proposed by Ziqian et al. [3]

using their client-side application that set a threshold for

measured round trip time (RTT) and received signal strength

(RSS) without MITM attack scenario and do analysis on the

measured RTT and RSS to detect and further locate the MITM

attacks. Since spoofed packets travel additional links to and

from the attacker machine and this introduces some delay in

the connection. By setting a detection threshold for the RTT

and monitoring the delay from client-base application, one is

often able to detect the presence of a MITM attack. If the

delay is longer than the normal baseline, it will be considered

as MITM attack. The framework will activate the locating

mechanism to locate the physical machine by applying the

measured RSS to machine learning model and predict the

location.

Several MITM attack detection methods are calculating dif-

ference in delay to illustrate the abnormal behavior occurring

in the connection. In this paper, we mainly focusing on testing

the detectability of the method that use delay as their decision-

making factor. We adopt the concept from [3] using Ping

application to collect the RTT for each packet. And also collect

the RTT for each packet under MITM attack. Finally, we

adopt the concept from [4] using supervised machine learning

algorithm to further test the detectability of the RTT detection

method.

III. EXPERIMENT CONFIGURATION

In this section, we present the virtual network used this ex-

periment. We deployed the virtual network on VMware ESXi

vSphere Server (ESXi) [6] which can contain many virtual

machines. We used VyOS virtual router operating systems

[7] and Ubuntu operating systems [8] to simulate a realistic

computer network. We built an Apache Web Server [9] using

one of the Ubuntu computers and let all other computers

perform common web browsing to simulate a background

traffic.

A. Virtual Network

1) Network Infrastructure: ESXi is software that provides

a virtualization layer which can abstract specific hardware

resources from the physical host, such as processor, storage,

memory, and networking interface cards. ESXi also provides

several network infrastructures which allow the creation of

different Virtual Local Area Networks (VLANs). VLANs are

the logical segmentation of workgroups that the nodes in the

same group can communicate with each other. One of the

infrastructures is virtual switches which have the same packet-

switching functionality as a physical switch. In addition, the

virtual switches also have flexible capabilities that can connect

the virtual machines to both virtual network and the physical

network. We configured unique ESXi port groups and keep the

configuration of logical rules and policy to the virtual ports for

each virtual switch, so that the switches effectively operate as

VLANs for each network segment. A diagram of our virtual

network is shown in Fig. 1.

Fig. 1. Virtual Network Diagram, contains 20 clients, 45 virtual switches, 21
VyOS virtual routers, 1 webserver and 1 attacker

We connected the 45 virtual switches (Fig. 1, labeled as

VS1...VS45) to 21 VyOS virtual router (Fig 1, labeled as

R0...R20). VyOS virtual router software has the advantages

that it is open source, highly configurable, easily scaling into

larger network and most important of all, capable of running

on a virtual machine, which makes it a good choice of this

experiment. We adopted Routing Information Protocol (RIP)

as the routing protocol. Every router that uses RIP will update

its routing table periodically with its routing table through

multitasking and exchanging routing information. The routing

information that received from neighbor routers will always

be trusted by host router itself.
2) Network Elements: The attacker of this experiment

(Fig. 1, labeled as A1) was deployed at virtual switch number

zero using a computer running Kali Linux [10]. Kali Linux is

a pen-test operating system that has many tools and flexible

frameworks for security researcher to utilize, such as vul-

nerability assessment, penetration testing and in this paper,

launching a Man-in-the-Middle attack. Kali Linux provides a

tool called ARPspoof [11], which has an ability to intercept the

conversation between two nodes by maliciously modifying the

53

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2020 at 14:16:35 UTC from IEEE Xplore. Restrictions apply.

Address Resolution Protocol (ARP) cache of a nearby network

device. In our experiments the attacker A1 modified the ARP

table in network device R0.

To simulate real-world background traffic, an Apache Web

Server version 2.4.18 (Fig. 1, labeled as WS) was introduced

into this virtual network. We built up the Apache Web Server

on an Ubuntu virtual machine, and used it to provide website

services to the clients. We make use of Hypertext Markup

Language (HTML) to create twelve different websites. Each

website contained a picture and a sentence. We also configured

20 web clients (Fig. 1, labeled as C1...C20) running Ubuntu

16.04 to fetch these websites.

B. Simulation of Web User Background Traffic

In order to make the virtual network more realistic, we

utilized the Selenium Browsers Automation (Selenium) [13]

software to enable automated browsing. We used one of the

tools called Selenium-WebDriver, which we controlled using a

command-line python script. In the Python automation script,

we stored the URL of twelve websites that we had created

in the WS, and we closed the cache, cookie and history

of Firefox by configuring the Firefox profile through the

Selenium-WebDriver, so that every website request will go

through the virtual network to the WS and will not fetch

directly from the cache. In addition, all 20 Ubuntu clients were

running the same Python script, but were randomly fetching

different websites and set to fetch websites with a random

time interval between 1 and 3.5 seconds. The traffic rate of

website requests from all 20 clients was approximately 150

packets per second, measured from the WS.

IV. EXPERIMENT

We simulated a MITM attack by adopting the method of [3]

to detect MITM attack. We collected the RTT using the Linux

Ping application and compared the RTT variance between

normal traffic transmission, and the intercepted transmission.

We conduct seven experiments with different setting in order

to provide comprehensive results to support the assumption.

In addition, we use Tensorflow to analyse the collected RTT

to find out the impact of attacker’s link speed with regard to

the detectability of MITM attack.

A. Experiment Description

After setting up all the background traffic, we want to in-

vestigate the relationship between attacker’s connection speed

and victim’s connection speed and the accuracy of detecting

MITM attack. We deployed the MITM attack between C1 and

R0 (Fig. 1) by launching an ARPspoofing from A1. After

the ARP table was modified, C1 will believe that A1 is its

default gateway, and R0 will believe that A1 is the one that

sending the website fetching request. Every traffic that going

through between C1 and R0 will be intercepted by A1, the

MITM attacker. To detect the presence of MITM attack, we

adopted the method of [3] by collecting the RTT from Ping

application and comparing the RTT variance between normal

traffic transmission, and the intercepted transmission between

C1 and WS. With all the background traffic turning on, we

collected two datasets for the first case and labeled it as CASE-

1. The first dataset is using Ping application to send ICMP

packets to WS without the presence of MITM attack between

C1 and R0. We collected the RTT by letting C1 send 5000

ICMP packets to WS, waiting for the reply from WS. The

Ping application will record the RTT for each packet and

store all the RTT including the measurement of minimum,

average, maximum and standard deviation of RTT. The second

dataset is having the same setting as above, but have the

MITM attack deployed between C1 and R0. With an aim of

knowing the relationship between the connection speed and

the detectability of MITM attack, all the run-time connection

speed to the R0 was calculated by iPerf [14]. iPerf is an open

source tool that can measure the bandwidth of a wired or

wireless connection within the WLAN/LAN network. We use

iPerf to measure the bandwidth of C1 to R0 and A1 to R0 to

represent their connection speed. After using iPerf to measure

each connection speed, we calculated the ratio of A1’s link

speed to C1’s link speed and used this value to represent the

relativity of client and attacker. These values will also be used

to indicate the difference in link speed between C1 to R0 and

A1 to R0 for Tensorflow analysis in the next section.

The above experimental procedures, with virtual network’s

websites fetching turning on, sending ICMP packets from C1

to WS, and collecting two RTT datasets of without and under

the MITM attack, were used for all the experiments. However,

With the aim of having more comprehensive results of the

effect of link speed to the detectability of MITM attack, for

second to seventh experiments we moved R0 router, C1 client

and A1 attacker to a physical network, and changing R0 to be a

physical wireless router. The virtual switch inside the ESXi has

the ability that can connect the virtual machines with physical

network. So, we used this feature to connect a NETGEAR

access point (Fig. 2, labeled as AP) to the virtual switch

(Fig. 2, labeled as VS2), and set the access point with the same

configuration as VyOS, running RIP to route the packets. We

use NETGEAR N300 Wi-Fi Router, which has 802.11g and

802.11n protocol to manipulate for wireless connection within

these experiments. The client (C1) was changed from virtual

machine to a physical personal computer running Ubuntu

16.04.2 LTS, with the same configuration as the original C1

in ESXi. The attacker (A1) was also changed to a physical

personal computer running Kali Linux, with ARPspoof tool

installed. Both client and attacker have wired and wireless

network interface that allow us to utilize for different network

scenarios.

For the second experiment, we connected C1 to AP with

an Ethernet CAT 5 cable which has the connection speed up

to 100 Mbps and connected A1 to AP with wireless signal.

Fig. 2 shows the network scenario for CASE-2. The datasets

that have been collected for this experiment were labeled as

CASE-2. For the third experiment (CASE-3), we connected

both C1 to AP and A1 to AP with wireless connection. Fig. 3

shows the network scenario for CASE-3. The third datasets

that we generated from this experiment were labeled as CASE-

54

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2020 at 14:16:35 UTC from IEEE Xplore. Restrictions apply.

3. Lastly, for the fourth experiment (CASE-4), we connect C1

to AP with wireless connection and connect A1 to AP with an

Ethernet cable. The datasets were labeled as CASE-4. Fig. 4

shows the network scenario for CASE-4. In these network

scenarios, the AP was set with 802.11n protocol for all the

wireless connection which means it has up to 150 Mbps link

speed in this NETGEAR N3000 Wi-Fi router.

Fig. 2. Network Architecture of CASE-2 and CASE2a

Fig. 3. Network Architecture of CASE-3 and CASE3a

Fig. 4. Network Architecture of CASE-4 and CASE4a

In order to have much more comprehensive results to sup-

port the assumption, we also configure the wireless protocol

of AP from 802.11n to 802.11g and implement three more

experiments. By changing the wireless connection protocol of

the AP, it will limit the transmission speed of the packets.

To be concise, the 802.11g protocol provides the highest

of 54 Mbps bandwidth for the wireless connection in this

NETGEAR N3000 Wi-Fi router. In addition, the delay that

was introduced to the connection by the attacker might also be

different. As a result, we can have more experimental results

to show the relationship between the connection speed and

the detectability of MITM attack from different connection

speed. The experiments were labeled as the following. The

network scenario from Fig. 2 was adopted for CASE-2a, Fig. 3

was adopted for CASE-3a and finally, Fig. 4 was adopted for

CASE-4a. For CASE-2a to CASE-4a, we also utilized iPerf

to measure all the connection speed from C1 to AP and A1

to AP. Table 1 shows the measurement result of connection

speed and difference between 2 link speeds for all the cases.

B. Experiment Result and Comparison
After collecting all the datasets for different network sce-

narios. We first compared these results by manual analysis

and secondly, used Tensorflow machine learning technology

to classified these data. We then use the result accuracy to

represent the detectability of MITM attack within different

network scenarios.
1) Manual Analysis: After collecting the RTT results for

all the cases, we did a manual analysis for all the cases. Table

2 shows statistics for the RTT measurements result for all

the cases. For CASE-1, we can find out that there is only a

slight difference in RTT between without the MITM attack

and under the attack. The difference in average RTT is 0.114

millisecond, and for the difference in minimum RTT is only

0.004 millisecond. This can indicate that in the virtual network

scenario, because the attacker’s link speed is fast enough that it

didn’t introduce much delay to the attack. Therefore, it might

be a little harder for the client to find out the presence of the

attacker by analysing the RTT measurement.
For CASE-2, CASE-3 and CASE-4, we can see that the

average packet RTT of CASE-2 without the presence of MITM

attack is 1.062 millisecond and the average packet RTT under

the MITM attack is 10.302 millisecond. The result shows that

the MITM attacker introduced a huge delay to the link between

C1 and AP. In addition, for CASE-3, the average packet RTT

without the attack is 4.854 millisecond and with the attack is

17.257 millisecond. The difference in average RTT of CASE-3

is smaller than CASE-2 because the difference in connection

speed between C1 and A1 at CASE-3 is also smaller than

CASE-2. As for CASE-4, we can find out that the difference in

average RTT is only 0.497 millisecond, which also provides an

evidence that if the attacker’s link speed is getting much higher

than the client, it might influent the RTT detection method.
For CASE-2a, CASE-3a and CASE-4a, we can know from

Table 2 that the measurement RTT is similar to CASE-2

to CASE-4 respectively. Except that the packet loss and the

average RTTs of these cases are all higher than CASE-2 to

CASE-4. The reason is that when we changed the wireless

connection protocol from 802.11n to 802.11g, it also reduced

the channel bandwidth, causing a higher rate of packet loss.
2) Tensorflow Analysis: We used machine learning tech-

nology to test the detection method by adopting a classifi-

cation model using Google Tensorflow Python API [15]. We

utilized a sample code of supervised classification model from

Tensorflow, and modified it to test the detectability of the

MITM attack detection method. For the Tensorflow analysis,

we separated the datasets into training and testing data for

each case. We’ve trained different classifier for each case to

test the classifying accuracy respectively. This accuracy then

be used to represent the detectability of the MITM attack.

For the propose of supervised learning, we pre-processed each

case’s datasets into formal input data. Take CASE-1 as an

example. We tagged each RTT result from the first dataset

with an “OFF” label to specify that this is the result without

the presence of MITM attack. Same thing with the second

dataset, we tagged each RTT result with an “ON” to indicate

55

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2020 at 14:16:35 UTC from IEEE Xplore. Restrictions apply.

TABLE I
MEASUREMENT RESULT OF WIRELESS CONNECTION SPEED AND WIRED CONNECTION SPEED

Case Type of Connection to the AP C1 Connection Speed (Mbps) A1 Connection Speed (Mbps) Ratio of A1’s Connection Speed
to C1’s Connection Speed

Case-1 Both Virtual Wired 7245 7224 0.99
Case-2 C1 wired, A1 wireless 93.3 33.2 0.355
Case-3 C1 wireless, A1 wireless 29.5 29.9 1.013
Case-4 C1 wireless, A1 wired 31.7 91.2 2.87
Case-2a C1 wired, A1 wireless 94.4 14.8 0.15
Case-3a C1 wireless, A1 wireless 15.5 17.6 1.13
Case-4a C1 wireless, A1 wired 14.6 93.8 6.4
∗Protocol of wireless access point: 802.11n for CASE-2 to CASE-4, 802.11g for CASE-2a to CASE-4a

TABLE II
MEASUREMENT RESULT OF PACKETS RTT

Average RTT Minimum RTT Maximum RTT Packets Loss
Case Dataset

Case-1 Attack OFF 0.639 ms 0.299 ms 7.703 ms 0 packet
Attack ON 0.753 ms 0.303 ms 4.935 ms 0 packet

Case-2 Attack OFF 1.062 ms 0.457 ms 4.276 ms 0 packet
Attack ON 10.302 ms 3.246 ms 877.476 ms 24 packet

Case-3 Attack OFF 4.854 ms 1.213 ms 202.864 ms 2 packet
Attack ON 17.257 ms 3.566 ms 605.234 ms 6 packet

Case-4 Attack OFF 4.854 ms 1.213 ms 202.864 ms 2 packet
Attack ON 5.351 ms 1.808 ms 380.688 ms 0 packet

Case-2a Attack OFF 1.052 ms 0.446 ms 3.601 ms 0 packet
Attack ON 20.785 ms 4.258 ms 231.837 ms 134 packet

Case-3a Attack OFF 5.557 ms 1.052 ms 509.582 ms 5 packet
Attack ON 22.466 ms 3.697 ms 991.334 ms 209 packet

Case-4a Attack OFF 5.557 ms 1.052 ms 509.582 ms 5 packet
Attack ON 7.180 ms 2.072 ms 284.951 ms 11 packet

∗Attack OFF represent the normal traffics, Attack ON represent the intercepted traffics..
∗Each dataset contains 5000 ICMP packets.

the presence of MITM attack. Next, we randomly select 4000

RTT results from the first dataset and combine it with 4000

RTT results that have been randomly selected from second

dataset and store the combination as a CSV file, which will

be used as a training data. The remaining 2000 results from

both first and second datasets are combined into a second CSV

file, which will be used as a testing file.

Next, we built three layers Deep Neuron Network (DNN)

with 10, 20, 10 units respectively within the classifier and

set the training step to 10,000 steps. The DNN classifier will

be trained from the 8000 packets dataset, and then it will be

utilized to classify the testing dataset to see the packet is at the

class of without or under the MITM attack (“OFF” or “ON”).

We use this accuracy result to represent the detectability of

the MITM attack which was detected by RTT measurement

method. The accuracy result shows that for CASE-1, the

classification accuracy is 0.701, meaning that 70% of the 2000

testing packets were classified correctly.

For CASE-2, which is wired C1 and wireless A1, the testing

accuracy of the model is 1.00, which means that the 2000

testing packets have all been classified correctly through the

classifier. This is because the delay that was introduced to

the link by the attacker is long enough for the classifier

to figure out whether the packet is without or under the

attack. For CASE-3, wireless connection on both C1 and A1,

the classifying accuracy of the model is 0.8735, which also

indicates that with an identical link speed, it is a little harder

for the classifier to identify the presence of the attack compare

to CASE-2. And for CASE-4, since the attacker’s link speed

is much higher than the client, the classification accuracy is

only 0.518 which means the classifier can only recognize half

of the RTT record. Fig. 5 indicates the accuracy with respect

to the ratio of A1’s connection speed to C1’s connection speed

for all the Tensorflow analysis results. From Fig. 5, we can see

that our assumption was confirmed. When the attacker’s link

speed is getting higher than the client’s link speed (Fig. 5, X-

Axis toward right), the RTT-base detection method will have

lower chance to detect the presence of MITM attack.

For wireless connection, we can find out from Table 2 that

there were some delays caused by environmental effects that

would appear as anomalies. For example, the maximum RTT

of CASE-3a is 509.582 ms without the presence of MITM

attack. And the effects that appear in CASE-2a to CASE-4a

are really significant. The explanation is that these scenarios

were using 802.11g protocol, which has lower bandwidth and

weaker signal frequency. To illustrate this, we present sample

data in graphical form. Fig. 6 was generated from two sample

datasets without MITM attack and it also shows different

56

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2020 at 14:16:35 UTC from IEEE Xplore. Restrictions apply.

amount of anomalies between two different wireless protocol.

This kind of delay would appear similar to a delay of a MITM

attack which may cause some miss-classifications, in other

word reduced the accuracy of the classification result. In our

current Tensorflow analysis, we assumed that the machine

learning classifiers are intelligent enough to figure out what

kind of RTT results are considered anomalous and it would

not affect the accuracy.

Fig. 5. Relationship between link speed and Man-in-the-Middle attack
detectability

Fig. 6. Sample datasets of C1 sending 5000 ICMP packets to WS with
different wireless protocol

V. CONCLUSION AND FUTURE WORK

We test the detectability of using round-trip time to identify

Man-in-the-Middle attack between two network devices in

different network scenarios by analysing the measured RTT. In

addition, we also assume that for the faster network interface,

the delay that was introduced to the connection by attacker

may not be measurable by the users. To assess the detectability

of the method, we simulate a realistic network testbed using

VMware ESXi vSphere Server for the deployment of detection

method, and analysing the RTT results by manual calculation

and Tensorflow machine learning classification. We generated

background traffic to make the network more realistic. In order

to cover different results for different network scenarios, we

also combine ESXi virtual server with physical wireless access

point to present different types of network connection. If the

attacker’s link speed is faster than the client, it is really hard

to tell the different through the RTT result. And from the

Tensorflow analysis, the classification results also provide in-

dication of difference in connection speed could impact the de-

tectability of the RTT detection method. Specifically, when the

detectability accuracy became lower than 0.55 (corresponding

to when the attacker link speed is 2.5 times faster than the

client link speed), the detection method could not detect the

attack correctly. In the worst case (attacker’s link speed is

faster than client’s link speed), the detection accuracy is only

0.43 when using Tensorflow analysis to test the detectability

of MITM attack using RTT-base method. Despite we use a

physical wireless access point to deploy several experiments

and utilizing two wireless protocols to represent different

connection speed, the result did not cover all the existing

network speed range. Also, the physical wireless access point

did not provide very stable connecting signal which introduced

some anomaly to the RTT measurement. More experiments

still need to be done with much more stable wireless access

point or any other substitute which can provide different range

of connection speeds.

REFERENCES

[1] Wu, Y., Tseng, H., Yang, W. and Jan, R. (2011), ”DDoS detection and
traceback with decision tree and grey relational analysis, ” International
Journal of Ad Hoc and Ubiquitous Computing, 7(2), p.121.

[2] Calvert, C., Khoshgoftaar, T., Najafabadi, M. and Kemp, C. (2017), ”A
Procedure for Collecting and Labeling Man-in-the-Middle Attack Traf-
fic, ” International Journal of Reliability, Quality and Safety Engineering,
24(01), p.1750002.

[3] Dong, Z., Espejo, R., Wan, Y. and Zhuang, W. (2015), ”Detecting and
Locating Man-in-the-Middle Attacks in Fixed Wireless Networks, ”
Journal of Computing and Information Technology, 23(4), p.283.

[4] Najafabadi, M. M. (2017), ”Machine Learning Algorithms for the Anal-
ysis and Detection of Network Attacks, ” Florida Atlantic University.

[5] Vallivaara, V. A., Sailio, M., and Halunen, K. (2014, March), ”Detecting
man-in-the-middle attacks on non-mobile systems, ” In Proceedings of
the 4th ACM conference on Data and application security and privacy
(pp. 131-134). ACM.

[6] VMware ESXi vSphere Server. https://www.vmware.com/products/esxi-
and-esx.html

[7] VyOS Network OS. https://vyos.io/
[8] Ubuntu. https://www.ubuntu.com/
[9] Apache. https://httpd.apache.org/

[10] Kali Linux. https://www.kali.org/
[11] ARPspoof. https://linux.die.net/man/8/arpspoof
[12] OpenSSL. https://www.openssl.org/
[13] Selenium Browser Automation. https://www.seleniumhq.org/
[14] iPerf. https://iperf.fr/
[15] Google TensorFlow. https://www.tensorflow.org/

57

Authorized licensed use limited to: University of Illinois. Downloaded on July 24,2020 at 14:16:35 UTC from IEEE Xplore. Restrictions apply.

