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HIGHLIGHTS GRAPHICAL ABSTRACT

e Microplastics (MPs) are widely distrib-
uted in global freshwater systems.

e Higher MP abundances are found in
areas with intense human activities,
such as United States, Europe, and
China.

e The selection of the sampling methods
and the size range will significantly
affect the reported MP abundance.

e There is a pressing need for a standard
analysis protocol for MP pollution in
freshwater.
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e Future studies should employ artificial
intelligence for fast, accurate, and large-
scale characterization of MPs.

ARTICLE INFO ABSTRACT

Keywords: The escalating production of synthetic plastics and inadequate waste management have led to pervasive
Microplastics microplastic (MP) contamination in aquatic ecosystems. MPs, typically defined as particles smaller than 5 mm,
Occurrences

have become an emerging pollutant in freshwater environments. While significant concern about MPs has risen
since 2014, research has predominantly concentrated on marine settings, there is an urgent need for a more in-
depth critical review to systematically summarize the current global efforts, knowledge gaps, and research
priorities for MP monitoring in freshwater systems. This review evaluates the current understanding of MP
monitoring in freshwater environments by examining the distribution, characteristics, and sources of MPs,
alongside the progression of analytical methods with quantitative evidence. Our findings suggest that MPs are
widely distributed in global freshwater systems, with higher abundances found in areas with intense human
economic activities, such as the United States, Europe, and China. MP abundance distributions vary across
different water bodies (e.g., rivers, lakes, estuaries, and wetlands), with sampling methods and size range se-
lections significantly influencing reported MP abundances. Despite great global efforts, there is still a lack of
harmonized analyzing framework and understanding of MP pollution in specific regions and facilities. Future
research should prioritize the development of standardized analysis protocols and open-source MP datasets to
facilitate data comparison. Additionally, exploring the potential of state-of-the-art artificial intelligence for rapid,
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accurate, and large-scale modeling and characterization of MPs is crucial to inform effective strategies for
managing MP pollution in freshwater ecosystems.

1. Introduction

Plastics are the most common product in modern society. Since their
initial commercial development in the 1950s, plastics production has
increased dramatically with over 390.7 million tons produced globally
in 2022[1]. Due to their widespread production and usage, plastic
wastes inevitably enter the aquatic environment through various path-
ways and it was reported that around 9-14 million tonnes of plastic
waste would enter aquatic ecosystems every year[2]. Among them,
those very small plastics with a diameter of less than 5 mm in length are
referred to as ‘microplastics’ (MPs) and have become a major concern in
aquatic environments|3,4]. Many studies have reported the ubiquitous
presence of MPs in aquatic ecosystems and their potential risks to the
environment and human health through the release of harmful additives
contained within MPs or bioaccumulation via the food chain[5,6].
Furthermore, the physical and chemical properties of MPs have been
found to facilitate contaminant sorption to their surfaces which also
makes MPs a vector of contaminants to organisms following ingestion
[7].

Based on these facts, research on MPs as an emerging environmental
contaminant is expanding rapidly due to increasing global concern.
Previously, the investigation of MP pollution has mainly focused on the
marine systems[8-11] and has been studied extensively since approxi-
mately 2005[12]. However, understanding of the occurrence and im-
pacts of MP pollution in freshwater systems remains relatively
underdeveloped and it was reported that only about 3.7 % of MP-related
studies are associated with freshwaters[13,14]. Much of the existing
studies only consider freshwater systems as sources and transport
pathways of MPs to the marine systems[15] while ignoring their close
relationships to humans and ecosystems (e.g., such as the ecological
function as crucial drinking water sources). Recent findings suggest that
streams and rivers have the potential to serve as MP sinks [16] and the
prevalence and impact of MP pollution in freshwater systems might be
as significant, if not greater, than in marine systems[17-20], which
deserves more public attention.

Based on the above consensus, the studies of MPs in the freshwater
system have grown dramatically since 2014 (Fig. 2(a)). Recent reviews
of MP pollution in freshwater systems have focused on methodology for
analyzing and detecting MPs[21,22], the occurrence and impact anal-
ysis of MPs[23-26], toxicity assessment[15,27,28], or specific regions
[29-36]. Through their findings, the global presence of MPs in fresh-
water systems has been verified, demonstrated by their appearances
from tropical rivers to remote mountain lakes with highly varying
abundance in surface water and sediments[23]. The ecological impacts
and chemical hazards of MPs in freshwater systems are discussed[15]
and the current techniques used for MP sampling and detection are listed
and compared[21,22]. However, most of these reviews only simply lis-
ted the information from the cited studies without carefully integrating
and summarizing the results and failed to provide the potential expla-
nations behind the data and additional conclusions. There is an urgent
need to provide a more in-depth critical review with quantitative evi-
dence of the latest global efforts on understanding MP pollution in
freshwater systems, systematically summarize the standard workflow of
analyzing MP pollution, explore the cause and sources of MP pollution,
and discuss the needed actions and future opportunities for MP pollution
in freshwater systems.

Therefore, the aim of this review is to systematically assess the cur-
rent situation of global MP monitoring in freshwater environments, with
a specific focus on surface water and partial studies of sediments.
Reviewed publications were retrieved from Google Scholar for the last
decade (from 2013). Preliminary search keywords included
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“freshwater”, “lake”, “lakes”, “river”, “rivers”, “reservoir”, “reservoirs”,
“wetland”, “wetlands”, “estuary”, “estuaries” * AND “microplastic”
which generates a list of 755 publications (Fig. 2(a)). After the initial
search, a screen was conducted by all the co-authors to filter publica-
tions beyond the scope of this review (e.g., studies focused on nano-
plastics, biota, impact assessment, groundwater, drinking water
treatment plants, commercial ponds) with a shorter list of 649 publi-
cations. Quality control was then conducted to remove publications
without strict peer review (e.g., all preprint publications and part of the
conference and journal papers), producing a shortlist of 557 studies.
Among them, 328 of these studies were then selected based on their
direct relevance to the scope of this review, focusing on MP monitoring
in freshwater systems. Three key aspects are identified and summarized
in this paper which are: methods used in MP analysis in freshwater
systems, occurrence and characteristics of MP pollution, and factors
affecting the spatial-temporal distribution of MPs. Finally, we reviewed
the best practices and standard workflow for analyzing MP pollution and
discussed the current knowledge gaps and future potential in this area.

2. Methods used in microplastic sampling, separation, and
detection in freshwater systems

2.1. Sampling methods

The sampling methods for collecting MPs in freshwater are quite
similar to those that are used in marine environments, which can be
mainly summarized in two types, volume-reduced sampling and bulk
sampling[37] (Table 1). In the volume-reduced sampling, the volume of
the sample is reduced during the sampling period. While bulk sampling
refers to sampling where the whole volume of the sample is taken
without reducing it during the sampling process.

For water compartments, neuston plankton net and manta trawl are
two commonly adopted volume-reduced sampling approaches to collect
surface-water MPs in open water areas [38-52]. These trawls are
designed with an opening to funnel the water into the net, a long net
with a fine mesh opening to filter the water, and a cod end to retain the
collected materials. During sampling, the trawl is usually attached to a
boat through a rope system, submerged, and towed at a low speed over a
predetermined distance or time to collect surface water samples from
0-50 cm (mainly based on the heights/diameter of the trawl and the
submerged level)[44,46,53,54]. A mesh size in the range of 60 to
500 um (300-335 pm is the most commonly used)[41,53,55] is typically
used to concentrate surface water samples due to the lower size
boundary of MPs of 333 um suggested by the National Oceanic and
Atmospheric Administration of USA[4]. The volume of water through
the trawl (usually >100 m?) is either measured using a flow meter[44,
56] or is calculated by multiplying the towing distance by the width and
height of the trawl[54]. For bulk sampling, the most frequently used
methods are grab sampling and pump sampling, which raises increasing
attention in recent sampling campaigns after 2018 (53.5 %). Grab
sampling method usually uses a stainless-steel bucket or glass bottle
with fixed sizes to collect surface water samples from 0-50 cm[57-62].
Typical sample volume (single sample) is usually in the range of 1 to
30 L[63-67]. After initial collection, the samples were sieved using
designed mesh sizes to concentrate the samples and keep those potential
MP particles. Pump sampling refers to pumping water from 0-100 cm
depth manually or using a motor through an inline sieve or filter
[68-73]. Compared to grab sampling, pump sampling allows larger
volumes of water samples to be collected (usually in the range of 20 to
50 L for a single sample, but can be up to 2000 L) and a deeper sampling
depth which may be more suitable in areas with low MPs density. For
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both of these two bulk sampling methods, taking multiple replicates
(usually three or more) is highly suggested[57,74-80] considering the
limited sampling area covered and the high variability of MP spatial
distribution. Upon collection of the samples from the environment, the
collected particle samples are usually preserved with 5 % methyl alde-
hyde[54,75,78] and stored at 4 °C before analysis[54,76] or fixed in
2.5-5 % formalin[76,81] or submerged in ~ 40 % ethanol (EtOH)[82].

For sediment compartments, bulk sampling is so far the dominant
method and is selected based on the sampling location. For collecting
samples in littoral zones and on beaches, manual grab methods utilize
tools such as stainless-steel hand scoops/spades/trowels/shovels are
quite common[83-88]. Sampling was usually conducted using a sam-
pling quadrat (10 x 10 to 50 x 50 cm) and sediment samples were
collected from the top 2-10 cm [40,83,85,89-91], which are consistent
with those protocols used for marine environments[92,93]. However,
the sample weight (0.025-10 kg)[94-96] or volume (1-12 L)[97-102]
largely varies between studies, potentially affecting cross-comparison
and representativeness. Once collected, the sample is usually sieved in
the field using a stainless steel 5 mm mesh size to remove large debris
[103]. While for deep sediment sampling of the beds for the water body,
the sampling campaigns usually require a vessel and the use of

Table 1
Sampling methods of MPs in water and sediment of freshwater systems.
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specialized equipment that is lowered to the bottom to collect the
samples (e.g., grab sampler or corer)[104-107]. Among them, Ponar,
Ekman, and Van Veen grab samplers (which can also be used for surface
sediment sampling but are less commonly employed for this purpose)
are frequently deployed to collect benthic sediment from 0-10 cm[76,
108-114]. The sample volume is mainly based on the designed size of
the grab sampler which typically ranges from 3-8 L[113,115]. Besides
grab sampler, core sampling is another crucial method for investigating
the vertical distribution and historical accumulation of MPs in deep
sediments[115-120]. This technique involves extracting cylindrical
sections of sediment, typically using gravity corers or piston corers[118,
121], which preserve the stratigraphic integrity of the sample, allowing
researchers to analyze MP concentrations at different depths (from
5-10cm to up to over 2m)[116,120,121] and potentially date the
sediment layers to understand the temporal trends of MP pollution[120,
121]. The core samples were then sliced into 1-5 cm thick layers for
further analysis [118,120,121]. After that, the samples are transferred
using non-plastic containers (such as glass trays or steel-less buckets) or
covered with aluminum foil[110,122-124]. While, in the case of plastic
container utilization, blank control should be included to prevent po-
tential contamination of the samples[125]. Need to mention, an

Compart- Type Technique Sampling Lower Sampling Potential Issues
ment volume detection depth
boundary
Surface Volume- Manta trawl and neuston >100 m® 60to 500 um 0 —50 cm Underestimation of MPs in
water reduced plankton net smaller size;
sampling Limited by the sampling
environment;

[126,127] Disturbance of volume measuring
by turbulence generated by the
movement of the ship.

Bulk Grab sampling 1to30L 0.45 to 0 —50 cm High variability due to relevant
sampling 100 um small sample size;
Lack of representativeness.
Pump sampling 20t02000L 20to100yum 0 —-1m Potential contamination by the
apparatus;
Limited application scenarios;
Lack of representativeness.
[128]
Sediment Bulk Manual grab samplers 0.5 to 5 kg 0.45 to 2-5cm High variability due to sampling
sampling (for surface sediment in 500 pm area and depth selection;
the bank/shore of the High subjectiveness for the
water body) selection of sampling area.
Grab samplers (for 1 to 4 kg or 0.45 to 0 -10 cm High variability due to fluctuation
benthic sediment in the 05to1L 500 ym of sampling depth;
beds) May cause disturbance in the
sampling area.
Corer (for vertical / 0.45 to From Limited application scenarios.
sampling of benthic 500 ym 510 cm up
sediment) to2m




B. Zhao et al.

accurate estimation of MP concentration in sediment samples requires a
clear definition of sampling depth and number of replicates to guarantee
the representativeness of the results[104].

2.2. Sample separation

Upon collection of the samples from the environment, the MPs
contained within that sample need to be separated from all other organic
and inorganic materials to ensure that the MPs can be quantified or
positively identified (Fig. 1)[131]. These processes are similar for the
surface water and sediment samples, while the later ones require more
effort due to the much greater solid contents retained by the initial
sieving. Therefore, the dry sediment samples usually require an addi-
tional step to be stirred with certain dispersant solutions (e.g., potassium
metaphosphate solution or sodium hexametaphosphate solution) to
disaggregate sediment before the sample separation[59,132].

For the initial separation after volume reduction, density separation
is the most often used approach (~65 % of studies implementing this
process), which involves the mixing of the sample with salt-saturated
solutions with known density (Fig. 1(a))[133]. The saturated sodium
chloride (NaCl) solution with a density of 1.2kg/L is the most
commonly (~68 % of the cited studies with density separation) used to
achieve this separating process due to its low cost and no toxicity to
humans[61,78,134-140]. While, the relatively low density of saturated
NaCl solution could cause the loss of heavier polymers (e.g., poly-
ethylene terephthalate (PET) and polyvinylchloride (PVC)) and occa-
sionally result in low recovery rates (<90 %) and larger error bars[141].
As a result, other saturated salt solutions such as sodium iodide (Nal,
1.6 kg/L)[141-144], zinc chloride (ZnCly, 1.6-1.8 kg/L)[58,72,74,81,
98,102,112,145-148], calcium chloride (CaCly, 1.4 kg/L)[149], potas-
sium formate (HCO2K)[150,151], and sodium tungstate dihydrate
(NagWO4-2 H20, 41 % w/v; 1.4-1.6 kg/L)[152-154] are emerging as
new trends due to their good recovery rates during lab experiments
(99 %) and tight error bars. After mixing, the suspension is stirred for a
specified time before being left to settle. This step allows low-density
particles, including MPs, to rise to the upper layer, while high-density
materials descend to the bottom layer. Through this process, inter-
fering inorganic materials (such as inorganic clay) could be largely
removed and MPs could be recovered from the supernatant. Besides
traditional density separation using salt-saturated solutions, elutriation
and oil-based separation are some other efficient alternatives to separate
MPs in freshwater systems. Elutriation uses a stream of fluid flowing in
the opposite direction to the centrifugal force to separate MPs from the
settling organic matter and sediment based on their size, shape, and
density (Fig. 1(b)) [155-157]. These methods are suitable for sediment
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samples and could also be applied as an effective way to reduce the
volume of brine solution required for density separation[158]. However,
this method is not suitable for samples with high concentrations of
organic matter and sometimes still needs to be applied with salt solu-
tions[159]. Meanwhile, elutriation needs precise control of flow velocity
which was investigated through numerical modeling based on hydro-
dynamic equations which can be technically challenging and restricts its
applications[160]. Oil-based separation technique exploits the oleo-
philic property of MPs to separate them from their surrounding envi-
ronmental matrix to the upper oil layer and segregate the non-MP
suspended solids in a separation funnel (Fig. 1(c))[82]. However,
oil-based separation has not been widely applied so far due to its un-
stable efficiency and accuracy [161] and the reported recovery rates
could be less than 75 % [162]. Especially, the lipophilic properties of
MPs may be altered due to the adherence of other containments or
organic matters which may lead to the loss of MPs in the oil-water
interface. Meanwhile, the residual oil might further interfere with the
following identification of MPs by Fourier transform infrared (FT-IR)
spectroscopy and thus need additional cleaning steps[163]. Overall, the
approach still needs further development before large-scale
applications.

After that, the samples collected need to experience a digestion
process to remove organic material such as algae from the samples. This
process can be divided into two main categories of chemical degradation
and enzymatic degradation[23]. For chemical degradation, the
hydrogen peroxide (H202, 30 %) solution (usually in the presence of an
iron(II) catalyst, i.e., Fenton’s reagent) is the most popular oxidizing
agent (~82 % of the cited studies which involves the digestion process)
considering its efficiency in digesting organic matter (24 h) and negli-
gible damage to the MPs[39,41,46,53,57,73,75,118,136,164-166].
Acid (e.g., HCl and H3SO4) and Alkali (e.g., KOH) digestions are also
used in many studies, while the high risk of destroying or discoloring
MPs raises concerns for these techniques[40,42,72,80,97,155,164,
167-169]. There are also studies trying to use sodium hypochlorite
(NaOCl, also written as NaClO) along with the above chemicals for the
further digestion process of organic-rich freshwater samples [69,148,
167,170]. In addition to chemical degradation, enzymatic degradation is
gaining attention as an emerging environment-friendly approach
method that is less likely to induce damage to MPs[171-173]. During
the degradation process, MP samples are incubated with a blend of in-
dustrial enzymes such as protease, cellulase, and chitinase to remove
different types of organic matter[174,175]. However, the application of
enzymatic degradation is still limited on small scales due to its high
price, relatively long time cost, and the fluctuation of enzyme efficiency
due to different organic compositions in the samples[176]. Sometimes,
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Fig. 1. Typical sample separation techniques for MPs in freshwater systems. (a) Density separation using salt-saturated solutions. (b) Elutriation separation tech-

niques. (c) Oil-based separation.
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enzymatic degradation still needs a following treatment with HyO5 to
remove undigested debris[104].

2.3. Sample identification and quantification

After the MP-containing sample is treated, identification and quan-
tification techniques are applied to determine the abundance and
composition of the MP in the sample (Table 2).

The microscopic technique is the regular process used for the visual
inspection of MPs for the monitoring studies, which simply means
visually selecting and classifying the suspected MPs through a micro-
scope (from normal optical and ultraviolet microscopes to more
advanced electron microscopes such as scanning electron microscope
(SEM)) based on physical characteristics|123,164]. The distinct
advantage of microscopic inspection is that it can determine the shape,
color, and size of the MPs at the same time. However, this method is
criticized as highly subjective as different observers may record different
proportions of MPs (like 67.3-81.3 % reported in the study of Lavers
et al.)[177], leading to either overestimation (e.g., misclassification of

Table 2

Summary of commonly used identification and quantification techniques for MPs.
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organic matters and dusts)[175] or underestimation (e.g. missing
transparent particles) of certain types and colors of MPs. And an error
rate of up to 70 % is reported when compared with baseline spectros-
copy in relevant studies[178]. To improve the results provided by visual
inspection, staining methods were applied to provide researchers with a
simple and time-effective tool to facilitate the identification and quan-
tification process. Currently, Nile Red is the most effective dye material
based on its low cost, lower detection limit, high recovery rates
(96.6 %), and less interaction with biogenic material[40,179-181].
After staining, the Nile-Red-stained MPs are visible under a fluorescent
microscope, which can easily be counted[170]. Currently, the main
drawback of Nile Red is that it can still stain some natural organic matter
[23]. Hence, pre-purification is required to guarantee the accuracy of
counting.

To further determine the chemical composition of the detected MPs,
FT-IR (52 % have been applied in the cited studies, one study can apply
more than one technique) and Raman spectroscopy (21 % of the cited
studies) are prevalent spectroscopic methods for identifying MPs[91,
150,173,182-188]. These methods utilize radiation at specific

Type Technique Details Potential Issues
Visual Method Microscope Visually selecting and classifying the suspected MPs through a microscope e Time consuming;
based on physical characteristics. e Highly subjective and may result in either
overestimation or underestimation of the abundance
for certain types of MPs;
e Extremely inaccurate in determining the polymer
types.

Staining method Use of specific stains and dyes to enhance contrast of MPs with other e Potential confounding effect of staining other organic

(with microscope) particles under a microscope. material in the MP samples.

SEM/EDS Utilize a focused electron beam to scan the sample surface, generating e Struggling with detecting light elements (H, He, Li, Be),
high-resolution images of topography and morphology, while which are important components of most polymers;
simultaneously producing characteristic X-rays that are analyzed to e The technique provides bulk elemental composition,
determine the elemental composition of the sample. which may not distinguish between similar polymer

types;
e Contamination or surface coatings can interfere with
accurate analysis.
Spectroscopic FT-IR spectroscopy Infrared radiation (IR) is passed through the MP sample. Specific e High fixed costs for the instruments;
Method frequencies of IR radiation are absorbed and transmitted, causing peaksin e Time-consuming for whole particle identification;

Raman spectroscopy

Chromato-graphic
Method

Pyrolysis GC/MS

TED-GC/MS

Liquid chromato-
graphy

an IR spectrum to identify and quantify the molecular composition and
structure of a sample.

Irradiated laser light interacts with the molecules and atoms of the MP
sample. The molecules will reflect back-scattered light in a different
wavelength and generate a molecular fingerprint spectrum to
characterize the chemical components of the sample.

MP sample is heated to decomposition to produce smaller molecules that
are separated by gas chromatography and detected using mass
spectrometry.

Employ thermal desorption to volatilize compounds from a sample, which
are then separated by gas chromatography and identified using mass
spectrometry.

MP sample is dissolved in a selected solvent and size exclusion
chromatography for polymer characterization.

e o o o e o o

Limited resolution, samples below 20 um may not yield
enough interpretable spectra;

Certain requirements for the thickness, regularity, and
transparency of the samples under different operating
modes.

High fixed costs for the instruments;

Time-consuming for whole particle identification;
Fluorescence interference with biological residual and
other chemicals leads to difficulties in the
identification of polymer types;

Limited spectra database.

Destruction of the samples;

Limited identification of polymer types;

Provides no information regarding number, size, or
shape;

Less applicable for mixtures with high impurities;

e Requirement of well-trained and experienced

3

3

operators.

Destruction of the samples;

Provides no information regarding number, size, or
shape;

Time-consuming and high cost

Requirement of well-trained and experienced
operators.

Destruction of the samples;

Provides no information regarding number, size, or
shape;

Limited resolution and high fixed costs for the
instruments;

Sample preparation requires careful handling, which
can be time-consuming and may introduce additional
errors.
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wavelengths to excite samples, producing vibrations unique to the
structure of the material. The produced characteristic spectra were
compared with the known plastic polymers in the spectral library to
allow the identification of the material[189]. The FT-IR and Raman
spectroscopy are accurate, non-invasive, and complementary tech-
niques. Currently, various FT-IR techniques have been employed for MP
characterization. For large MPs with sizes > 100 um, attenuated total
reflection FT-IR (ATR-FTIR) is effective, offering enhanced identifica-
tion capabilities for MPs that are irregular, thick, or opaque[42,57,72,
74,75,168,190]. For smaller MPs (down to 20 um), the micro-FT-IR
spectroscopy facilitates simultaneous visualization, mapping, and
collection of spectra[74,168,175,191], but has certain requirements for
the thickness, regularity, and transparency of the samples[72,192,193].
On the other hand, Raman spectroscopy, with its finer laser beam, can
detect MPs as small as 1 um[102], surpassing the capabilities of FT-IR
spectroscopy which is limited to MPs larger than 20 um[194]. Also,
the non-contact analysis of Raman spectroscopy allows MPs to remain
intact for subsequent examinations. However, Raman spectroscopy is
extremely time-consuming and needs to take 24 h for Raman mapping
[195]. Also, as Raman spectroscopy is based on the methodology that
the fluorescent samples are excited by the laser, the contaminants by
biological residual and others (such as additive and pigment chemicals)
would interfere with the spectra, leading to the difficulty in the identi-
fication of polymer types[149,196]. For both techniques, given the large
number of particles counted and time considerations, usually only a
representative subset of samples (by color/category, in the range of
10 % to 100 % with a total number of around 100-200 particles) are
chemically identified across all samples[42,46,55,79,149,165,167,168,
197]. Particles achieving a synthetic polymer hit quality index (HQI) of
> 60-80 % were considered reliable and assigned to the tested samples
[42,44,70,71,74,82,167].

Besides these spectroscopic methods, Scanning Electron Microscopy
coupled with Energy Dispersive X-ray Spectroscopy (SEM/EDS) is
another powerful analytical technique widely used in MP identification
[41,46,78,198-200]. SEM employs a focused beam of high-energy
electrons to scan the surface of a sample, producing high-resolution
images of its topography and morphology. When combined with EDS,
the electron beam interacts with the sample and generates characteristic
X-rays specific to the elements present [41,46,199,201]. Although these
techniques could determine the elemental composition, which is
particularly valuable for distinguishing between plastic particles and
other materials, they only provide qualitative analysis (not confirmatory
tests) to identify particles that are similar to plastic (e.g., distinguish
between organic and inorganic materials) [21]. Therefore, this method
could not provide detailed polymer information which strongly restricts
its application (~4 % of the cited studies).

In addition to spectroscopic methods, chromatographic methods
such as pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS),
thermal extraction desorption-gas chromatography-mass spectrometry
(TED-GC/MS), and liquid chromatography offer valuable mass-based
insights into MP composition [53,111,183,202-204]. Py-GC/MS em-
ploys controlled thermal degradation to pyrolyze the polymer under an
inert atmosphere by breaking its chemical bonds. This process breaks
down the macromolecules into lower molecular weight molecules,
which can be separated chromatographically by GC and detected by
their mass spectrum through MS[104,205,206]. TED-GC/MS, a less
destructive alternative to Py-GC/MS, uses lower temperatures to vola-
tilize compounds from the sample[207-210]. By analyzing their thermal
degradation products and comparing their mass spectra with those of
spectral libraries or databases or by comparing the pyrograms obtained
with the reference pyrograms generated by known virgin polymers,
these methods could provide detailed mass-based information on poly-
mer composition and additives, allowing for quantitative analysis of
different polymer types[211]. In addition, results from these methods
usually with high accuracy and greater sensitivity, since it is less affected
by impurities that may be in the matrix (such as organic matter)
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compared to spectroscopic techniques[24]. Liquid chromatography, on
the other hand, involves dissolving MPs in a selected solvent and size
exclusion chromatography for polymer characterization[179]. While
this method typically requires substantial sample volumes, it offers a
mass-based chemical characterization of bulk samples, improving
representativeness. However, it should be noted that these chromato-
graphic methods are destructive and need to be applied with caution,
which may be the primary reason limiting their current applications
(~10 % of the cited studies) [212,213].

Need to mention, considering the complex nature of environmental
MPs (such as the different sizes, shapes, polymer types, and interfering
materials) and the different features for various identification tech-
niques. No single method can achieve comprehensive analyses of MPs
and it is necessary to use multiple complementary analytical tools for
accurate identification and characterization. In real-world practice,
potential MPs are typically visually identified and categorized using
stereomicroscopes for morphology features. Staining techniques like
Nile Red may be employed to enhance the visibility of potential MPs.
Following this preliminary sorting, chemical identification techniques
are applied to confirm the polymer composition. Non-destructive spec-
troscopic methods, primarily FT-IR or Raman spectroscopy, are
commonly used techniques to provide polymer-specific spectral finger-
prints for chemical identification. For bulk samples or when investi-
gating additives, destructive techniques such as Py-GC/MS or TED-GC/
MS may be employed to provide additional mass-based information.
This combination of visual and chemical analytical approaches allows
the overcoming of limitations for individual methods and enables cross-
validation of the results, ensuring a more comprehensive and reliable
identification of MPs in environmental samples.

3. Microplastic occurrence in freshwater
3.1. Distribution and abundance of microplastic in freshwater

In the past years, an increasing number of studies have been iden-
tifying MPs in varied freshwater systems across the world in 72 coun-
tries, with most of the efforts in North America, Europe, and East Asia
(Fig. 2 and Fig. 3). While after 2020, more efforts have been put into
those underrepresented areas, such as Balkans (Albania[214], Greece
[215], Romania[151], Montenegro[216], Turkey[120]), Central Asia
(Kazakhstan[217], Uzbekistan[218]), South Asia (Nepal[219],
Bangladesh[220], Pakistan[136,221]), West Asia (Saudi Arabia[222,
223], Iran[224], Jordan[225], Iraq[226]), Africa (South Africa[80],
Botswana[227,228], Ghana[229], Kenya[229], Nigeria[230], Egypt
[231], Tanzania[154], Morocco[232], Tunisia[233], Namibia[234]),
Oceania (New Zealand[97,235], Fiji[236]) and Central and South
America (Mexico[237], Brazil[238], Ecuador[239], Colombia[240],
Chile[241], Guatemala[242]). Based on the reviewed papers, MPs have
been found in the freshwater systems on all continents, even in the
stream of Antarctica[243], while the abundance of MPs is highly varying
between different regions.

In the surface water, the MP abundance could vary from 0.003
particles/m® (Northern Dvina River, Russia, in the size range of
0.5-5 mm, the observations in Antarctica are excluded considering their
uniqueness)[244] to 3622,000 particles/m3 (Kinnickinnic River, U.S.A.,
in the size range of 0.01-5mm) [65]. When considering the same
sampling methods, for both surface water and sediment samples, the
highest MP abundance was found in the area with the highest human
economic activities, such as the Laurentian Great Lakes of North
America, lakes and rivers in many European countries, and China (de-
tails can be found in the Supporting information, SI). Take grab sam-
pling as an example, the abundance of MPs in surface waters of
freshwater environments worldwide varied greatly from almost none to
hundreds of thousands per cubic meter[245]. High MP abundance was
found in residential areas and industrial areas with intense human ac-
tivities. For example, high MP abundance is observed in the Amsterdam
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Fig. 3. MPs occurrences and characteristics in the sediments of global freshwater systems from the selected studies.
canals, Netherlands (48,000 to 187,000 particles/mB, in the size range of River estuary, China, where the abundance could reach 623,000-1392,

0.01-5 mm)[145], Saigon River, Ho Chi Minh City, Vietnam (172,000 to 000 particles/m3 (in the size range of 0.05-5 mm) [57] where larger
519,000 particles/m?, in the size range of 0.05-5 mm)[58], and Yellow residential areas, industrial and commercial centers exist. Opposite of



B. Zhao et al.

these, areas with less economic activity may have a relevant low MP
pollution level, such as Lake Victoria in Uganda (0.73 particles/m?, in
the size range of 0.3-5 mm)[42].

Regarding different water types (Fig. 2(b)), the estuaries exhibit
notably higher MP abundance. This can be attributed to their unique
position as convergence zones where rivers meet the sea. These dynamic
environments experience frequent hydraulic exchanges, which inhibit
MP settlement and promote resuspension, resulting in a higher abun-
dance of MPs in the surface water[246]. As one of the most common
water body types, the river has the lowest average abundance varying in
a wider range. These results may be due to the constant movement of
water (i.e., less residence time) to transport MPs downstream, poten-
tially reducing local concentrations. This result may indicate that the
rivers are more likely major transport pathways of MPs rather than
sinks. Compared with rivers, lakes have a slightly higher average
abundance. The potential explanation behind these results is that, as
semi-closed systems with varying and weaker hydrodynamic conditions,
MPs would stay longer in lakes and accumulate more readily[150,247].
Surprisingly, the wetlands, that usually away from intense human ac-
tivities, have the second-highest average abundance. There are two
potential reasons for this result. First, wetlands could act as natural fil-
ters, where complex vegetation structures, shallow water depth, and
slow water movement may impede MP transportation and facilitate the
long-term accumulation of MPs[197,248,249]. Second, based on the
complex sampling environment, grab sampling is usually the only
accessible method to collect the environmental samples in wetlands
(85.7 % of these studies (6 of 7)) which results in higher recovery and
counting rates (the reason is discussed below).

Also, there is a huge difference among different sampling methods
(Fig. 2(c)). Trawl sampling is so far the dominant sampling method used
in freshwater systems. The reported abundances using trawling sam-
pling lie in a wide range which demonstrates the heterogeneity among
different sampling areas. However, as discussed earlier, due to the
relatively large mesh size (e.g., 300-335 um is the most commonly
used), trawl sampling will inevitably neglect small particles (<300 pm)
which results in a lower MP abundance and the potential underesti-
mation of the MP pollution levels. The highest MP abundance is reported
when applying the grab sampling method. There are several potential
explanations for this phenomenon. First, the samples for grab sampling
are typically filtered through a membrane or glass filter with small pore
sizes (typically 0.45 um). Therefore, this method is capable of capturing
small particles. Second, the grab sampling is suitable for locations
without open water which may facilitate MP accumulation. Third, the
selection bias from the researcher is also a potential reason. The re-
searchers may have prior knowledge about the sampling areas and
would typically expect a certain particle distribution (e.g., dominant of
small MPs) and select the method accordingly. Besides these two
methods, pump sampling seems to be a compromise option that could
guarantee enough sampling size while also capturing the MPs in the
smaller size range, leading to moderate MP abundance. While the
adoption of pump sampling is currently limited with the least number of
applications in the reviewed studies.

In addition to surface water, sediment is another important “sink” of
MPs in freshwater environments[99] (Fig. 3). Throughout the world, the
abundance of MPs in freshwater sediments ranged from dozens to tens of
thousands per kilogram dry weight (d.w.)[87,100,132,250-254]. For
example, the MP abundance in the sediments of the Lagoon-Channel of
Bizerte in North Tunisia reached 3000-18,000 particles/kg d.w. (in the
size range of 0.3 to 5 mm)[233]. While, the average abundance values
per unit of dry weight in China could range from 34 (in the size range of
0.3 to 5 mm) to 32,947 particles/kg d.w. (in the size range of 0.02 to
5 mm)[31,255,256]. The distribution of MPs on sediments is uneven,
largely influenced by their properties, human and environmental fac-
tors, such as winds, currents, and distance to the wastewater treatment
plants (WWTPs) and industrial areas. Also, the results will be largely
dependent on the sampling area (e.g., high tide line, intertidal areas,
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transects) and sampling depth since some areas may contain higher
concentrations of MPs[257-259]. For instance, MP content in different
depth sediments shows significant differences, with a descending trend
from the surface 0-5 cm layer to the 15-20 cm layer (54.7 % of that in
0-5 cm layer), and ultimately disappears when the depth exceeds 40 cm
[258]. Similar results are also found in other studies[118,259]. Besides,
the collection of sediments on the tide line, the high accumulation area
for MPs, may result in overestimation[260]. In general, there is no sig-
nificant difference between the MP abundance in the surface sediment
and the benthic sediment globally (Fig. 3). However, when evaluated in
the same or close sampling spots, MP concentrations found in the
benthic sediments are typically higher than those observed in sandy
beaches[99,113], which supports the hypothesis that benthic sediments
might be an important accumulation pool for MP pollutants. Although
there is more consistency in the selection of sampling tools for sediments
compared to that for surface water, the abundance of sediment is still
incomparable among different studies due to the different selection of
units and the size range[59,261].

Need to mention, that almost all the studies reported the MP abun-
dance using number-based units (i.e., number of particles) rather than
weight-based units (~4 %)[67,183,204,256,262,263] primarily due to
the special characteristics of MPs, that is MPs with smaller sizes may be
more abundant and with higher environmental impacts but contribute
negligibly to the total mass due to their tiny size.

3.2. Characterization of microplastic in freshwater

Although MPs have generally been defined as plastic debris between
1 and 5000 pm[22], there is still some deviation from the typical size
classification of MPs, especially at the lower end of that scale[264,265].
The smallest size of MPs reported is mainly affected by the methodology
applied to collect, extract, and detect MPs from environmental samples.
In practice, the minimum size of MPs reported in water samples varied
from 5 um to 500 um depending on i) the size of the mesh/filter used to
sample water or perform filtration and ii) the resolution capability of the
instrument used to identify the MP polymer type. Only 30.8 % of
reviewed studies reported the smallest sizes of MPs detected or targeted,
which leaves the cross-comparison between studies extremely chal-
lenging. In addition, it is also difficult to compare the concentrations and
characteristics of MPs within different size classes across studies because
there is no consistent size binning. There are 34 different size classes
reported among the reviewed studies (SI), such as a typical five size
categories of < 1 mm, 1-2 mm, 2-3 mm, 3-4 mm and 4-5 mm|[76] and
a more coarse size category of 0.02-0.25 mm, 0.25-1 mm, and 1-5 mm
[78]. This discrepancy has made the comparison of MP concentrations
by size very challenging.

Although there is no standard size classification binning for MP
reporting, a number of studies have reported a trend of increasing
concentration by decreasing the size of MPs in both water and sediment
samples[97,142,266-269]. For example, Hu et al.[266] reported that
MPs smaller than 500 um were the most abundant in both water and
sediment samples from the Yangtze River Delta, China, and that the
abundance of MPs decreased with increasing MP size. The same trend
has also been reported in the study of Yuan et al.[270] and others[199,
223,271]. In general (Fig. 4(a)), among the reviewed studies for surface
water, MPs smaller than 1 mm are dominant (62 %). This emphasizes
the importance of detecting smaller-size MPs to avoid underestimation
of MP concentrations in freshwater environments because of the po-
tential bioavailability to a wider range of organisms[272].

For the polymer types (Fig. 4(b)), Polyethylene (PE) (31 %) and
polypropylene (PP) (27 %) were the dominant types of MPs reported in
water samples across studies reviewed in this study. Further, poly-
styrene (PS), polyethylene terephthalate (PET), polyamide (PA), and
polyvinyl chloride (PVC) accounted for 9 %, 8 %, 6 %, and 2 %,
respectively. The abundance of polymer types found would reflect the
global plastic demand as PE and PP are highly produced polymers
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Fig. 4. Composition of MPs in size (a), polymer type (b), and shape (c). The detailed data can be found in the SI.

around the world and are widely used in packaging, personal care
products, and containers[57,124,150,270]. In addition, PET and PA are
commonly used plastic polymers in synthetic fabric which may be
derived from WWTPs discharge[273].

Based on the morphological characteristics, MPs can generally be
divided into fiber, fragment, pellet/granule, film, and foam based on the
forms and definitions suggested by GESAMP[274]. Shapes can, to a large
extent, indicate the parent materials of the MPs. Textiles are considered
a major contributor of MP fibers, and washing is an important pathway
that releases them into the environment[275]. Film mainly originates
from plastic bags and packing materials, and foam and irregularly sha-
ped fragments can originate from the breakdown of plastic containers or
other plastic products[54]. Granules can be virgin pellets spilled during
transportation and processing [276] or microbeads used as sandblasting
media and abrasives in consumer products[199,261]. Based on the
aforementioned studies, fibers, and fragments account for the over-
whelming majority[277,278]. As shown in Fig. 4(c), fibers account for
53 %, probably because of a large amount of laundry wastewater
discharge[251,279-282], and it is a concern because it is not removed
by the current wastewater treatment process[283]. Fragments account
for 26 %, and this can be because of the impact of runoff on the crushing

mmmmm Influencing Factors

Geographical Factors:
Elevation and slope could affect
the distribution of MPs

Hydrodynamic Factors : {
Weakened hydrodynamics may
facilitate the accumulation of MPs

In-stream Barriers:
Dams and other natural
barriers are sinks for light MPs

of large pieces of plastic[284]. In addition, pellets, films, and foams have
also been found in freshwater in proportions < 10 %, of the total
pollutants.

4. Factors affecting the spatial-temporal distribution of
microplastics

4.1. Sources and pathways of microplastics to freshwater

MP pollution was strongly affected by a variety of factors, such as
those related to human activities[43], geographic characteristics[247],
and seasonal variation[57,98]. Understanding the sources and sinks of
MPs can help to design targeted mitigation strategies (Fig. 5).

Considerable evidence has demonstrated that the effluents from
WWTPs are a major pathway of MP pollution in freshwater systems,
especially in developed urban areas [59,76,172,238,267,283,285-288].
Despite the fact that advanced WWTPs (like tertiary treatments) are
capable of removing up to 98 % of MPs over 10 um[147,203,287,289,
290], there are still millions to trillions pieces of MPs being discharged
into the receiving water per year via WWTPs considering their giant
volume[111,145,286,287,291,292-297]. Studies have reported that the

EEmm Sources and pathways

Atmospheric Deposition:
Enable long-distance transport of small
= MPs

WWTPs:
Direct discharge MPs into
water body through effluent

Surface Runoff:
= Flush the land-based MPs into
aquatic environments

Secondary MPs:
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Fig. 5. Sources, pathways, and fate of MPs in freshwater systems. The direct pathways include effluents of the WWTPs, surface runoff, and atmospheric deposition.
After entering the water bodies, the existing large plastic debris could degrade to secondary MPs through the weathering and degradation process. After that, these
MPs would be transported along the freshwater systems which are affected by geographical and hydrodynamic factors.
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MP abundance in the effluents could reach a very high level (e.g., 51,
000-81,000 particles/m3 reported by Leslie et al.[145] in the size range
of 0.01-5 mm) and the MP abundances were highest in sediment sam-
ples closest to the discharge site of WWTP effluents (e.g., 4400
+ 620 n/kg d.w. reported from Viitala et al.[153] in the size range of
0.063-5 mm) compared to other sites. Besides, there are also studies
found that the MP abundances at sites downstream of WWTPs could be
nearly ten times higher than that in upstream [298], which indicates
that WWTPs (especially those areas without advanced treatment tech-
niques where the MP abundance could be 4000 times higher than that in
upstream)[239] serve as an important pathway of MPs to freshwater
environments[299]. However, the level of pollution they contributed
may still vary based on their scale, location, and type of influents
[300-302]. Besides, the composition of the MPs in the effluents can also
be a clue to determine the original sources of the MPs. For example, MPs
in the effluent of a sewage WWTP were very similar to those in tooth-
paste formulations regarding color, shape, and size, indicating that MPs
in personal care products may be potential sources of MPs in freshwater
environments|[290].

Besides point sources such as WWTPs, MPs can also enter the
freshwater system through non-point sources through surface runoff and
atmospheric deposition[303]. For surface runoff, one typical pathway is
through precipitation which may flush the MPs or larger debris from
terrestrial environments (e.g., tire and road wear particles, leachate
from waste landfill, and agricultural plastic mulching) into aquatic en-
vironments[149,304-312] or cause the combined sewer overflows
[313]. High abundances of MPs in surface waters (could be up to 2
magnitudes higher than the normal abundance) have been observed
after rain events[55,149,291,304,308,314-317] and these abundances
(e.g., 1100 to 24,600 particles/m> reported by Werbowski et al. in size
range of 0.125-5 mm and 15,400 particles/m> reported by Grbié et al. in
size range of 0.025-5 mm) could be even higher than those in nearby
WWTPs effluent[149,318]. Besides, large amounts (with a maximum
abundance of 660 particles/kg) of large-size (1-4 mm) MPs in sediments
downstream of storm drainage outlets have also been discovered [15,
100]. Based on the composition of the MPs, tire and road wear particles
[318], industrial overflows[313,315], leachate from waste landfills
[311], and agricultural runoff [53,149] are all identified as direct
sources of MPs in surface runoff. All this evidence suggests urban surface
runoff is a major source of MPs, especially for areas away from WWTPs.

Another important source of MPs in freshwater was atmospheric
transport and deposition[45,319-321]. Wind can blow away light MPs
from the ground and deposit them in areas far from their original sites
(could also be facilitated through precipitation) [322]. A study based on
the monitoring of the wet and dry deposition in a remote Pyrenean
mountain location found that MPs can be transported through the at-
mospheric deposition to reach and affect remote, sparsely inhabited
areas[323]. This conclusion is further verified by the fact that large
amounts of secondary MPs were found along the shores of sparsely
populated mountain lakes, where there was scarce primary MP pollution
[89,321,324]. Another study also monitored the MP abundance in the
rainfall (700 to 6000 particles/m® reported by Zhang et al. in the size
range of 0.1-5 mm)[325], which could account for 24.0 % to 77.4 % of
the total surface runoff to the receiving water.

Besides these direct sources and pathways, weathering and degra-
dation of existing plastic waste (mainly from mismanaged municipal
solid waste like open dumping and inadequate landfilling) [119,326] in
water bodies also provide great contributions[12,168,327]. Plastics in
freshwater systems undergo physical (e.g., mechanical degradation from
the action of waves or sand friction)[328] and environmental degrada-
tion (such as oxidative weathering from exposure to UV-B or biodegra-
dation such as by the action of hydrocarbon-degrading microorganisms)
[328,329]. In general, the overall degradation patterns of MPs in
freshwater were found to be similar to those in the marine environment:
cracks, pits, and adherent particles[330,331], despite milder physical
forces than in marine environments[11]. The degree of weathering to
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the surface of MPs can be used to track the history of the particles which
indicates most of the MPs in the natural waterbodies are secondary MPs.
However, the rate of fragmentation and degradation of plastics is still
unknown in freshwater environments[24].

Unlike many other pollutants, MPs can continuously break down into
smaller particles through degradation which significantly increases the
abundance and the difficulty of removal once they are released to the
aquatic environment[332-334]. Therefore, due to this special charac-
teristic, it is extremely valuable to understand the potential sources of
MPs and implement effective mitigation strategies at its source. Among
them, the primary mitigation strategy focuses on effective plastic waste
management [335-338], such as the restriction of open dumping, pro-
motion of effective plastic recycling, and conduct of strict leachate
management. Besides, interception strategies such as implementing
advanced wastewater treatment technologies (e.g., tertiary treatments,
membrane bioreactors) is a key step to capture a large proportion of MPs
before they enter freshwater systems[339-341]. Additionally, the
implementation of green infrastructure in urban areas, such as bio-
retention systems and constructed wetlands, can help trap MPs in
stormwater runoff before they reach water bodies[342-344]. Recently,
research efforts have been shifted to degrading environmental MPs into
nontoxic intermediates or highly valuable products through techniques
such as advanced oxidation processes and biodegradation[345-349].
Although satisfying degradation performance has been achieved under
lab conditions, there is still a long way before large-scale application in
aquatic environments[350]. Consequently, source control will remain a
cornerstone of MP management strategies for the foreseeable future.

4.2. Transport of microplastics in freshwater

Understanding the transport and potential pathways of MPs in
freshwater systems is crucial for shaping effective management strate-
gies. Many studies have demonstrated the critical role of rivers for MP
transportation and the annual load/flux could vary from hundreds of
billion to trillion particles per year[281,314,351] or dozens to thousands
of tons per year[44,71,352-355]. For instance, the annual load of MPs
carried by the Nakdong River, South Korea was 53.3-118 tons by
weight, with 81 % transported during the wet season [352]. While, the
annual MP load from the Yangtze River, China to the East China Sea
could reach 7020 tons [353]. There is also another study trying to es-
timate the MP loads from all European rivers and the results indicated
that in total of 14,400 tons of MPs were exported from point sources to
the North Sea, Baltic Sea, Black Sea, Mediterranean Sea, and the Euro-
pean river basins draining into the Atlantic Ocean in 2000[356]. All
these results highlight the substantial contribution of river systems to
marine plastic pollution. Lakes and reservoirs present a different dy-
namic, often acting as sinks for MPs. A modeling study conducted for
Switzerland found that 33 % of all MPs are retained in lakes, of which
99 % are retained in the 15 biggest lakes in Switzerland[357]. However,
the number of studies on the lake is still highly limited and requires extra
effort in the future. In general, these loads and fluxes are typically
estimated through process modeling that combines field survey data
with source information. MP fluxes may be inaccurately estimated if the
input data are not sufficiently comprehensive, which hinders
cross-comparisons between studies and regions[356].

While it is widely acknowledged that freshwater systems serve as
critical pathways for MPs, their transport is governed by a complex
interplay of factors. Among these, geographical characteristics play a
significant role in determining the distribution and fate of MPs in
aquatic environments[167]. Various geographical characteristics (e.g.,
elevation, slope, bend, surface water areas) could influence the transport
of MP, which further affects its abundance distribution. Correlation and
regression analysis have been conducted to demonstrate that the MPs
seems to accumulate in downstream areas where higher abundances and
lower elevations are observed when there are no other direct emission
sources upstream|[79,80,154,167,358]. Similarly, bivariate regressions
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also find there is a positive relationship between the slope of the
watershed with its MP abundance[149]. In addition, the narrowing of
the water surface may increase the concentration of buoyant MPs, since
there is less surface area for these particles to be distributed across[68,
73]. Regarding sediment, studies have shown that MPs tend to be
deposited in the sediment along the bends of rivers[257]. However, only
very few studies have directly addressed these links and additional ef-
forts are urgently needed for research in this area.

Besides the geographical factors, hydrodynamic factors also play a
vital role in MP transport[53,359]. There is evidence that longer water
residence time, lower flow rates, and weakened hydrodynamics may
facilitate the accumulation and deposition of MPs due to the inhabita-
tion of the turbulence and resuspension of settled particles to the surface
of the water column and the facilitation of the settlement to the sediment
through the biofouling, adsorption of natural substances and gravity
[68,186,256,270,360-365]. For instance, MP abundances are typically
lower in the center of river channels and higher along river banks[366,
367] and higher MP abundances may be present in sediment than in
surface water during the dry season[352,368,369]. Meanwhile, volume
changes (usually due to seasonality such as floods in wet seasons) could
also affect the vertical transport of MPs [360,370,371]. Such intense
hydrological activities could cause MPs to be less apt to settle or to
remain trapped in surface sediment, and even resuspend from benthic
sediments in the water column due to sediment mobilization[117,369,
372,373], especially for small-sized MPs (50-500 pm)[374].

Besides these, in-stream barriers, such as dams or aquatic vegetation,
have been found to be sinks for light plastic particles, which would also
drive the spatial variability of MPs along rivers [361,375-379]. As a
result of water impoundment, floating materials on the water surface
cannot pass the dam. Previous studies have reported the accumulation
effects of dams on MPs by comparing the concentrations in upstream
rivers and within reservoirs [54,380-383], indicating that accounting
for dams may be important when modeling global riverine MP transport.

5. Limitations in current studies
5.1. Lack of harmonized and standardized analyzing framework

The first issue that needs to be addressed in order to investigate the
general impact of MPs in the freshwater system is the harmonization of
MP analysis protocols. Currently, no unified methods exist for sampling,
pre-treatment, and detection of MPs. Therefore, researchers are
applying different analysis protocols in different studies which hinders
data comparability.

For example, based on the reviewed publications, current studies
have used trawl sampling (51 %, more than one technique can used in a
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study), grab sampling (37 %), and pump sampling (11 %) to collect the
MPs in the surface water. Trawl sampling offers advantages in covering
large sampling areas and reducing sample volume, but it will inevitably
neglect small particles, especially fibers[57,70,71]. In contrast, grab and
pump sampling could mitigate MP loss during sampling and are more
suitable for diverse geographical and hydrological conditions, such as
wetlands and low-flow rivers. However, these techniques are con-
strained by practical limitations on sample volume. Therefore, due to
the nature of various sampling methods and the selection of different
mesh sizes (Fig. 6(a)), the reported MP abundance is provided in
different units (such as particles/km? for trawling methods and parti-
cles/L for bulk sampling methods) or with huge differences in the
magnitude of the reported results (Figs. 6(b), up to 3 to 4 magnitudes) in
same studies, and even for the same sampling sites[59,69,75,77,170,
196,384]. Such inconsistencies have also been witnessed in the sedi-
ments where the units can vary from particles/kg d.w., particles/L, to
particles/m2[63,83,89,1 10,123,150]. In the meantime, few studies have
conducted direct comparisons of different analysis techniques in the
same environmental matrices which leads to a lack of understanding of
the selection criteria for these techniques[385,386]. In addition, there is
currently no standardized reporting format for MP studies which may
cause the missing of certain important information in the reported re-
sults. As mentioned earlier, about 70 % of the studies didn’t report the
size range of the MPs or in very rough and inconsistent size categories
(such as <1 mm, 1-2 mm, and 2-5 mm). Even for the same samples, the
MP abundance could have a difference with up to two magnitudes when
reporting in different size ranges[228]. Such inconsistency makes the
cross-comparison of different studies extremely difficult which hinders
the understanding of the status of MP pollution in ecosystems and the
development of appropriate mitigation strategies.

5.2. Lack of monitoring in specific regions and facilities

Although there is an increasing number of studies focusing on MP
pollution in freshwater systems, data on MP occurrences in freshwater
systems is still fragmented and there is a severe spatial imbalance in
relevant studies across the globe with a significant underrepresentation
of results from Africa, South America, and North Asia. The lack of
monitoring data and the geographical disparity create blind spots in the
understanding of global MP contamination, potentially overlooking
regional nuances in MP sources, distribution patterns, and environ-
mental impacts (Fig. 7). Additionally, most studies lack long-term,
replicate sampling, and continued measurement which impedes the
validation of regional MP pollution levels and hinders the tracking of
potential pollution sources and influencing factors[23]. Besides, there is
an acute absence of regular monitoring data from important industrial
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Fig. 6. Relationship among the mesh size, sampling methods, and the detected MPs abundance. (a) Mesh or pore size applied for different sampling methods. (b)

Scatter plot for the applied mesh or pore size with the reported MPs abundance.
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and infrastructural facilities (e.g., industrial companies and WWTPs)
that are likely major contributors to MP pollution. The lack of suitable
methods for cost-effective real-time monitoring and regular monitoring
data results in no clear picture of the magnitude of MP pollution and
hampers the ability to develop targeted strategies for MP management.

5.3. Lack of understanding of microplastics in finer size ranges and size
classifications

Despite the acknowledgment that smaller MPs (<100 pm) pose sig-
nificant environmental hazards[24], the majority of current studies have
still focused on relevant larger particle sizes (>300 pym), primarily due to
the limitations of the selected sampling (i.e., limited by the mesh or sieve
size) and detection methods (i.e., limited by the resolution limit for the
selected detection methods). This may lead to potential underestimation
of the concentrations and risks for those small particles (Fig. 7).
Nowadays, nanoplastics, in particular, present a novel challenge due to
their size and potential for pervasive environmental penetration. The
limitations of current analytical techniques in identifying and charac-
terizing small MPs call for urgent development in more advanced
analysis methods. By extending the detectable range of MP sizes, re-
searchers can gain a more accurate understanding of their distribution
and risks, which is essential for effective environmental risk assessment
and the development of mitigation strategies.

Lack of
harmonized
analyzing framework

Journal of Hazardous Materials 477 (2024) 135329

5.4. Lack of studies to model the distribution and transport of
microplastics

As research in the field of freshwater MPs is still in its infancy, much
is still unknown regarding their spatiotemporal distribution and trans-
port characteristics (Fig. 7). Most of the current studies are still simple
monitoring studies that report the occurrence of MPs in a single or few
water bodies and their corresponding characteristics. Only a small
number of studies focus on modeling while limited to examining MP
concentrations as a function of either spatial or temporal factors, with
very few addressing both and across scales[387]. Some studies tried to
use hydrodynamic modeling (e.g., Lagrangian transport model and
others) to simulate the transport of MPs in different water bodies[356,
388-390]. However, these models are highly computation intensive and
require massive input data, which involves the consideration of hydro-
dynamic processes (such as advection, dispersion, aggregation, sedi-
mentation, and resuspension) and various emission sources. Thus, most
of the current studies are limited in either spatial scales (usually a small
section of a single water body) or can only consider a few types of point
sources. There is a lack of modeling studies to systematically understand
the distribution of MPs on a larger spatial scale and explore the in-
teractions of multiple influencing factors with MP pollution to facilitate
the identification of hotspots and guide policy design.

Standardized
protocol for
MP analysis in
freshwater

Open-source
monitoringfl | 2 ETE
campaigns [ 773 ST

systems

Future
research
directions

Al-based Lack Pf
P [a1,| modeling
e studies

Advanced
methods for
better MP

characterization

Lack of understanding
of MPs in finer
size ranges

Fig. 7. Limitations in current studies and future research opportunities.
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6. Future research directions
6.1. Standardized protocol for microplastic analysis in freshwater systems

To fill critical gaps in MP research in freshwater systems, there is a
pressing need for a universally accepted standard analysis protocol to
harmonize the selection of sampling, separation, and detection tech-
niques. A concerted global effort could facilitate the standardization of
future MP analysis practices and guarantee the quality and compara-
bility of the provided results, which leads to a more complete and
comprehensive understanding of MP pollution. To be part of this action,
here, we summarized the minimum requirements for such protocols
based on the current scientific findings.

For MP sampling in freshwater systems, considering the obvious
flaws of trawl sampling as (1) its serious underestimation (a difference of
more than three orders of magnitude) of small particles (< 300 um) and
particles with specific shapes (usually fibers), [57,70,71] (2) infeasi-
bility in specific geographical and hydrological conditions, and (3) dif-
ficulty to estimate the exact volume of water being filtered (as the net’s
immersion depth changes constantly with waves and boat movement),
trawling methods, which are widely used in marine MP sampling,
should no longer be considered as a preferred method in MP sampling in
freshwater systems[23,196]. For two types of bulk sampling methods,
call for a minimum volume to be set to improve the representativeness
and comparability of studies is urgently needed. Based on the current
comparison studies, an absolute minimum volume of 500 L per sample is
highly suggested based on the typical MP abundance in water bodies
[22]. Besides, considering the significant environmental hazards of MPs
with smaller sizes, we recommend setting the mesh size for the sieves or
the pore size for the filter papers as 50 ym or lower to include more
particles in those ranges[391]. For all three types of sediment sampling,
it is necessary to report the sampling volume (e.g., wet weight, volume,
or sampling area) and sampling depth to guarantee representativeness
and cross-comparison. Samples are recommended transferred using
non-plastic containers (such as glass trays or steel-less buckets), covered
with aluminum foil to avoid additional efforts for blank control tests.

Regarding sample pre-treatment, during the initial density separa-
tion process, although saturated NacCl solution with a density of 1.2 kg/L
is previously recommended by both the MSFD technical subgroup
(2013)[92] and NOAA[392], considering the low recovery of higher
density polymers (i.e., resulting in an underestimation of the MP
abundance), this solution is no longer suitable for efficient MP separa-
tion. The same reasoning also applies to CaCly and sodium tungstate
dihydrate (1.4 kg/L, not high enough). Solutes such as ZnCl,, though
reusable, are often expensive, hazardous, corrosive, and flotation is
often performed using a centrifuge, where space is limited[158]. For the
current situation, we propose to use higher density solutions such as Nal
(1.6 kg/L) due to its high density, safety, and the possibility of reuse, and
possibly in combination with separation columns or the use of oil to
improve recovery rates[141]. For the purification of organic matter,
acid and alkali digestion should be avoided or at least used with caution
since it may lead to the underestimation of MPs in environmental
samples due to its destruction of certain particles.

For sample identification and quantification, based on the editorial
from the journal of Science of The Total Environment, the use of only
simple microscopic techniques or visual inspection for both sample
identification and quantification is highly questionable and is no longer
recommended in future scientific reports[393]. In fact, it is difficult to
quantify and qualify MPs from complex environmental samples using a
single analytical method. Thus, the use of complementary staining
methods and the combination of multiple methods is preferred, which
strongly depends on the sizes of MPs[23]. When the sizes of MPs fall in
the range of < 1 mm and the minimal cut-off size is tens of microns, the
combination of the microscopic analysis with spectroscopic analysis is
highly recommended. Regarding ease of handling, analytical time, and
number of polymers to be analyzed, p-ATR-FTIR spectroscopy is
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currently the method recommended for routine analyses of environ-
mental samples. If the minimal cut-off size is in a range of a few microns,
Raman spectroscopy is preferred as it is the only technique to obtain
better spectra from particles < 20 pm in size. Thermal analysis (e.g.,
pyrolysis-GC-MS) and automated mapping spectroscopy (e.g.,
FPA-FTIR) may be suitable for laboratory experimental samples of
known polymer types. Although it has some advantages over p-ATR-F-
TIR and Raman spectroscopy, small MP particles may still be missed in
complex environmental samples with various unknown types of
weathered polymers. These methods are not recommended for routine
monitoring studies at present but may be useful for screening analyses of
bulk samples or further complementary analyses of MPs that have not
been fully characterized by spectroscopy[179]. For the final reported
results, we recommend using concentrations by volume (particles/ms)
for surface water samples and concentrations by mass (particles/kg d.
w.) for sediment. Meanwhile, we suggest using detailed 7-size classes or
finer ones (i.e., 20-50 pm, 50-100 um, 100-200 ym, 200-500 pm,
500 pm-1 mm, 1-2 mm, 2-5 mm) for easy and fair comparison among
precedent and future studies.

Here, we summarized the best practices of the main procedures used
in MP analysis so far based on the current studies (Fig. 8). We hope this
result could accelerate the pace for the improvement of current protocol
for MP analysis in freshwater systems, like the recently released one
from UNEP[394] and those that have previously designed for the marine
systems (MSFD[92]° NOAA[392], and GESAMP|[274]). Meanwhile, as
new techniques are still emerging, this protocol could be further
improved in the near future.

6.2. Advanced analysis methods for better microplastic characterization

Increasing demand for MP pollution monitoring at national and
global levels requires the improvement of existing methods and the
development of novel methodologies to reduce identification time and
effort[179]. The technological frontier in MP research lies in the
development of advanced pre-treatment and detection methods for
better efficiency and accuracy. Promising research directions lie in
almost every step of MP analysis which include, for example, the further
discovery of novel enzymatic degradation methods with lower cost,
higher recovery rates, and shorter processing time for sample
pre-treatment and advanced spectroscopy or imaging techniques to
enable fast, real-time detection of MPs with lower detection limit and
reasonable cost. Besides, the fast development of artificial intelligence
(AI) also enables the realization of fully- or semi-automated analysis of
MPs that incorporate image analysis methods (e.g., computer vision and
other deep learning methods) to obtain the physical (size, shape, and
color) and chemical (polymer type) characteristics of the MPs
[395-406].

6.3. Open-source microplastic dataset for freshwater systems

An open-source, standardized MP dataset would catalyze a paradigm
shift in this research area, allowing for unprecedented levels of collab-
oration and data-driven decision-making. Currently, there are growing
efforts to build global MP datasets for public decision-making and sci-
entific discoveries. However, most of the current achievements are for
the marine environment, such as the global MP database from the Na-
tional Centers for Environmental Information (NCEI)[407] and the
Global Microplastics Initiative from the Adventure Scientists[408]. Be-
sides, considering the ununified methods for MP sampling and analysis,
there are still certain concerns about the quality of the data collected
from crowdsourcing. There is an urgent need to construct a compre-
hensive (i.e., including varied freshwater environments from remote
lakes to urban waterways), accessible (i.e., open-source), transparent (i.
e., the data source is trackable), and standard (i.e., data are calibrated
and validated to guarantee comparability) database for MP pollution in
freshwater systems. Such efforts would improve the future modeling of
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Fig. 8. Best practices of the main procedures used in MP analysis so far.

MP contamination, facilitate cross-study comparisons, and provide a global distribution and elucidate the driving factors behind MP pollution
robust evidence base to inform and influence global policy decisions. is critical. The current methods are either limited to a few influencing

6.4. Al-based data-driven methods to understand the global distribution

and driving factors of microplastics

Developing quantitative methods that accurately represent the

factors or in relatively small spatial scales. This is an urgent need for a
more fancy and sophisticated modeling approach that can simulta-
neously consider multiple influencing factors (such as flow volume,
human activities, and industrial output) and map the MP distribution
with higher spatial and temporal resolutions. As mentioned earlier,
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although in its infancy, the fast development of Al provides new insights
into this challenge[409,410]. Machine learning (ML) models have been
adopted to achieve rapid and large-scale estimation of MP abundance in
different environmental media[411-417], with only two of them
focused on the freshwater environment [416-418]. In all of these
studies, supervised learning models are trained based on the collected
empirical data from the literature or from lab experiments to charac-
terize the complex nonlinear relationship between the MP abundance
with the selected predictors[411-415,417] (Fig. 9). The common pre-
dictors include both anthropogenic (e.g., population density) [412,414,
415,417] and environmental factors (e.g., meteorological information
and physicochemical conditions of the sampling area) [411-415,417]
which may directly or indirectly affect the MP distribution. The pro-
vided results demonstrate that ML models have great potential to pro-
vide reasonable baseline estimation for MP pollution, identify potential
influencing factors, and provide predictions for future trends. These
efforts could provide quantitative evidence and transformative insights
to support sustainable MP management through the lens of a circular
plastics economy and better facilitate the understanding of how
manufacturing processes, waste management practices, and consumer
behavior contribute to MP pollution in order to develop effective, sys-
temic pollution prevention strategies.

7. Conclusions

MPs have become one of the emerging contaminants in the aquatic
environment and have caused increasing public concern. However,
there is still a lack of sufficient knowledge about MPs in freshwater
systems. This review evaluates the current understanding of MP moni-
toring in freshwater environments by systematically summarizing the
progression of analytical methods, and examining the distribution,
characteristics, and sources of MPs, alongside the existing issues and
future research directions. Currently, the presence of MPs in freshwater
systems has been reported in every continent around the world with
highly varying pollution levels. Higher MP abundance was found in the
areas with intense human economic activities and there is great het-
erogeneity in the physical and chemical characteristics of the MPs
among different regions. Different MP abundance distributions have
been witnessed among different water bodies (e.g., rivers, lakes, estu-
aries, and wetlands), while sampling methods and size range selections
could significantly influence the reported MP abundances. Based on the
current findings, the major sources and direct pathways of MPs in the
freshwater environments are the effluents of the WWTPs and surface
runoff, while the secondary MPs generated from the existing large
plastic debris also provide great contributions. After that, these MPs
would be transported along the river systems into lakes or oceans. So far,
MP pollution has no unified sampling, pre-treatment, and detection
methods, which caused significant difficulty in comparing the pollution
levels for different studies. Most studies lack long-term, replicated
sampling, and continued measurement and there is a critical data gap in
specific regions and facilities. There is an urgent need to construct a
standardized protocol for MP analysis in freshwater systems and
advanced analysis and modeling techniques are required to enable a
better understanding of MP pollution and facilitate the development of
targeted strategies for MP sustainable management.

Environmental implication

Microplastics (MPs), as an emerging environmental pollutant, have
raised great global concerns due to their ubiquitous presence in aquatic
ecosystems and their potential risks to the environment and human
health. This paper provides an updated and more in-depth review to
systematically summarize the current understanding of MP monitoring
in freshwater environments by examining the distribution, characteris-
tics, and sources of MPs, alongside the progression of analytical methods
with quantitative evidence. We also discussed the current knowledge
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gaps and research priorities for MP pollution in freshwater systems to
facilitate a better understanding of MP pollution.
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