
From Distributed Coverage to Multi-agent Target Tracking

Shashwata Mandal1 and Sourabh Bhattacharya1,2

Abstract— In this work, we address the problem of deploying
mobile agents that try to visually track a mobile intruder
in a polygonal environment. First, we present an algorithm
to generate a set of regions (referred to as tiles) that can
ensure distributed coverage of the entire environment. Next, we
propose a tracking strategy for a line guard to track a mobile
intruder. Finally, we propose resource-constrained deployment
strategies for the team. Simulation results are presented to
demonstrate the efficacy of the proposed technique.

I. INTRODUCTION

Advancements in hardware and algorithmic prowess of
modern robotic systems has provided effective solutions to
real-world problems [1]. In the recent years, surveillance
technology has made significant strides [2] in harnessing the
power of autonomous multi-robot systems. Building on these
technological feats, the intricate domain of target-tracking
has gained prominence [3]. Target-tracking refers to the
problem of planning the motion of a mobile observer that
tries to track a mobile intruder in the presence of obstacles
[4]. In this work, we use tools from computational geometry
to find a set of salient points for mobile guards in a simply-
connected environments that ensure visual coverage.

Non-convex environments present unique challenges in
visibility, creating blindspots that can impede accurate track-
ing [5]. These blindspots [6] (or gaps or shadow regions),
essentially lapses in visibility, accentuate the need for a
solution rooted in algorithmic sophistication and geometric
understanding. Motivated from computational geometry, our
approach re-envisions the traditional understanding of the
kernels of polygons [7][8], proposing a tailored solution for
these geometrically complex spaces. While most prevailing
techniques for visual coverage are based on polygon par-
titioning (triangulation and its extensions) [9][10], we ad-
vocate for a fresh “kernel-centric” approach. This emphasis
on the kernel as the core of our methodology allows for
an optimized guard deployment strategy, catering to both
coverage and effective tracking. By recentering the focus in
this manner, we transform the way challenges presented by
polygons are addressed, ensuring a more holistic and efficient
surveillance technique.

Tracking is closely related to the problem of coverage [11].
Given a set of points that cover the polygon, mobile sensors
can be deployed to travel between the points to prevent an
intruder from breaking the line-of-sight [12]. The Art Gallery
problem and its variants [9] propose deployment strategies
for multiple guards to visually cover an environment. In [13],

1Department of Computer Science, Iowa State University, Ames, IA
50010, USA, 2Department of Mechanical Engineering, Ames, IA 50010,
USA smandal@iastate.edu, sbhattac@iastate.edu

authors show that ⌊ n
3⌋ point guards are always sufficient and

sometimes necessary to cover a n-vertex polygon. For special
cases, this bound can be further reduced (for example, ⌊n/4⌋
point guards are sufficient, and in some cases necessary, to
cover the interior of an orthogonal polygon with n vertices
[14][15][9]). Mobility further reduces the aforementioned
bounds. For example, ⌊n/4⌋ diagonal guards are sufficient to
cover a general polygon [9]. [16] provides an upper bound of⌊ 3n+4

16

⌋
for mobile guards to cover any n-vertex orthogonal

polygon. Based on techniques on polygon partitioning [17]
and convex optimization [18], authors in [19] propose a
strategy and maximum speed for Ω(n

6) guards to track a mo-
bile intruder (maximum speed known) in a simply-connected
environment. The dichotomy between mobile guards and
point guards has consistently been deliberated as a trade-off
between utility and cost - while the latter necessitates more
hardware, the former entails lower operational costs [20].

In the past, researchers have investigated target-tracking in
the framework of mathematical optimization. [21] provides
a technique to compute motion for a mobile observer that
tracks a predictable target in obstacle-rich environments. For
unpredictable targets, persistent tracking can be formulated
as a stochastic control problem if the behaviour of the
target is assumed to be random [22]. For a strategic target
that is adversarial, game theory has been used to obtain
optimal strategies for the observer in simple environments [5]
[23][24]. In case of complex environments, advanced tools
for hybrid systems [25], sampling-based motion planning
[26], and numerical methods [27] have been investigated to
plan motion for the observer. [28] presents a hierarchical
motion planner to deploy a team of drones for target-
tracking applications in practice. Recent efforts [4] that draw
connections between the problem of path planning for a
mobile observer trying to track a mobile intruder, and the
well-known watchman-route problem [29][30] provide some
guarantees on the tracking performance.

The contributions of this work are as follows. (i) We
present a novel technique to compute regions inside the
polygon that can provide decentralized coverage for arbitrary
polygons. (ii) We present control strategy for a line guard
(guarding multiple tiles) to track a mobile intruder. (iii) We
propose deployment strategy for a mixed team of static and
mobile guards to track an intruder that takes into account
constraints on team size and guard speed.

The paper is organized as follows. Section II presents the
problem formulation. Section III presents a generalization of
kernel to arbitrary polygons, and the resulting partitioning of
the polygon. Section IV presents a clustering based approach
to design strategy for a line guard to track an intruder. Section

2023 International Symposium on Multi-Robot and Multi-Agent Systems (MRS)
December 4-5, 2023. Boston, USA

979-8-3503-7076-8/23/$31.00 ©2023 IEEE 36

20
23

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
M

ul
ti-

R
ob

ot
 a

nd
 M

ul
ti-

A
ge

nt
 S

ys
te

m
s (

M
R

S)
 |

97
9-

8-
35

03
-7

07
6-

8/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
M

R
S6

01
87

.2
02

3.
10

41
67

73

Authorized licensed use limited to: Iowa State University. Downloaded on August 16,2024 at 12:26:35 UTC from IEEE Xplore. Restrictions apply.

V presents deployment strategies that take into consideration
resource constraints to optimize team-based metrics. Section
VI presents simulation and experimental results. Section VII
presents our conclusions and future work.

II. PROBLEM FORMULATION

Consider a simply-connected polygonal environment with
n vertices containing a mobile intruder. A team of mobile
agents, called guards, is deployed in the environment to
track the intruder. We assume that all the mobile agents
are holonomic, and have a bounded speed. Additionally, the
guards have an omni-directional field-of-view without any
limitations on the range of visibility. In other words, any
point in the polygon that can be connected to the agent
by a straight line in free space is visible to it. We assume
that the guards and the intruder have a maximum speed
denoted by vg and ve, respectively and that the team of
guards can communicate among themselves. Additionally, it
is assumed that the initial position of the intruder is known to
the guards. Given the aforementioned scenario, we address
the following: (1) Design an algorithm to find a set of points
inside the polygon that covers it? (2) For mobile guards,
find a deployment strategy that visits the aforementioned
points to track an unpredictable mobile intruder inside the
environment? From the art-gallery problems, we know that
⌈ n

3⌉ static guards are sufficient and sometimes necessary
to cover a simply-connected polygonal environment, where
n is the number of vertices of the polygon [13][31][14].
Therefore, ⌈ n

3⌉ is also a trivial upper bound for tracking.
This is a trivial upper bound for tracking. Sections V and VI
demonstrate that this bound can be further reduced using the
technique proposed in Sections II and III when the guards
are mobile.

III. DEPLOYMENT FOR DISTRIBUTED COVERAGE

Consider a simply-connected polygon P with n vertices
labelled {v0,v1, . . . ,vn−1}. Two points within P, denoted p
and q, are mutually visible if the line segment joining them
doesn’t intersect ∂P (the boundary of P). A vertex vi is
termed a reflex vertex (or equivalently, a corner) if its internal
angle exceeds 180◦. An edge in P is defined as a reflex edge
if it is incident to a reflex vertex. For a reflex vertex vi, its
associated star region, represented by SR(vi), is the region
within P bounded by the extension of reflex edges adjacent
to vi and visible from vi. The kernel of P [32][33] (Ker(P))
is formally defined as follows:

Ker(P) =
⋂

vi is reflex

H(vi)

where H(vi) is the half-plane at vi which is an extension
of the reflex edges contained inside the polygon. A guard
located at any point belonging to Ker(P) can see the entire
polygon. However, polygons can have an empty kernel in
which case a single guard cannot cover the entire polygon.

Algorithm 1 presents a technique to find a set of regions
inside the polygon that provide distributed visual coverage
of the entire polygon. Algorithm 1 iteratively selects a

reflex vertex, denoted as u for a given polygon. For vertices
sequenced as u, . . . ,w, . . . ,v, where v represents the ensuing
reflex vertex in an anti-clockwise traversal and w is the
terminal non-reflex vertex seen from u. Line 6 intersects the
star region of u in Q with w’s visibility polygon, modifying
the star region while Line 7 updates the polygon by omitting
vertices between u and w and introduces edge uw. When a
reflex vertex u is chosen, any point within the convex region
u, . . . ,w remains visible to the modified star region at u. If
u is selected later, the visibility holds since a post-iteration
modified star region at a reflex vertex is always a subset of
its pre-iteration counterpart. Consequently, regions pruned
in interim steps are fully visible from all locations in the
ending modified star region at the reflex vertex. The process
concludes once the polygon becomes convex or retains a
single reflex vertex.

The overall time complexity of Algorithm 1 is O(n4 logn),
where n is the number of vertices of the polygon1. The
output of Algorithm 1 comprises a collection of disjoint non-
empty regions {Ri}k

i=1 (k is called the cardinality) such that⋃k
i=1 V P(pi) = P for any pi ∈ Ri.

Fig. 1: The shaded region shows the intersection between
the star region of u (SR(u)), and the visibility polygon of w
(V P(w)).

Lemma 1. The output of Algorithm 1 is the same as the
intersection of all the star regions of the polygon if the
intersection is non-empty.

Proof. Let S represent the non-empty intersection of all the
star regions within the polygon. Suppose S′ is the output of
Algorithm 1 for this polygon. Given the way the modified
star regions are constructed in Algorithm 1, it’s clear that
S′ ⊆ S. Now, suppose there exists a point p such that p ∈ S
but p /∈ S′. This implies that a portion of the polygon isn’t
visible from p, contradicting the fact that p is part of every
star region (since p ∈ S). This contradiction indicates that
no such point p can exist, ensuring every point in S is also
contained in S′. ■

1visibility polygon computations at O(n logn) [34] and polygon intersec-
tions at O(n2) [8]

37

Authorized licensed use limited to: Iowa State University. Downloaded on August 16,2024 at 12:26:35 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Star Region Generator

Input: Q Polygon, C corners
Output: SR Set of star regions

1: function STAR GEN(Q,C)
2: SR(j)←−V P(j)∩EdgeExtension(j),∀ j ∈C
3: Q′←− Q,C′←−C
4: while |C′|> 1 do
5: Find a corner u such that v is the next reflex vertex

and w is the last non-reflex vertex visible to u.
6: SR(c)←− SR(c)∩V P(w)
7: Remove all vertices from Q′ starting from u till w

excluding u and w
8: if v is visible to u then
9: Remove w from Q′

10: end if
11: Remove u ∈C′, if u is not a corner in Q′

12: end while
13: return SR
14: end function

Given a tile Ri with vertex set v1, . . . ,vn, we can define
its visibility polygon V P(Ri) = ∩ j∈{1,...,n}V P(v j). In other
words, the visibility polygon of a tile consists of the regions
inside the polygon that are visible from all points inside the
tile. Tiles Ri and R j are said to be mutually visible if a line-
of-sight exists between any two points pi ∈ Ri and p j ∈ R j.

Fig. 2: The shaded region shows the tile generated by the
intersection of the star regions from the reflex vertices c1,c2
and c3. The star regions at the corners are generated by
Algorithm 1.

IV. TRACKING STRATEGY FOR A LINE GUARD

If the number of guards is equal to the number of tiles,
a guard deployment in each tile covers the entire polygon.
From hereon, we will refer to guards which are confined to a
tile as a static guard. In this section, we address the scenario
in which the number of guards is strictly less than the number
of tiles. In such cases, some guards have to be responsible
for two or more tiles. In this work, we specifically address
the case when a guard is deployed to track the intruder inside
the union of the visibility polygon of the two tiles. At first,
we explain the concept of corner segregation and supporting

hyper-planes to locally re-assign corners between two tiles
that are mutually visible.

Our proposed control strategy relies on parallel separation
planes between the corners of two mutually visible tiles.
For planar environments, the separation hyperplanes are
parallel lines (called the support vectors) that divide the
plane into three regions - two half-planes and a section of
the plane bounded by the support vectors. Each half-plane
contains a tile and the corners associated with it. Compound
tiles are generated by intersecting local overlapping tiles
using heuristics on local geometry. Support vector machines
(SVM) is a learning algorithm used to find a hyperplane
between multi-dimensional data to segregate points [35]. We
use SVM on the corners associated with a pair of mutually
visible tiles to generate the line of segregation. We use SVM
in two dimensions to find corners in tiles that are outliers
from their locality [36]. To segregate a corner from its
locality, we use a linear kernel on a standard support vector
machine and apply it to two adjacent tiles. Using the line
of segregation, we find corner outliers in the tiles. A corner
outlier is a corner in a tile that lies on the half plane for
the other tile. Once we identify corner outliers, we try to
assign them to existing tiles. If such a tile doesn’t exist, we
generate a separate tile for the corner using the star region
for that corner. This ensures that the locality information
of the cluster of corners is preserved in the tile allowing
us to move to the next step. Figure 3a demonstrates this in
detail. When SVM is applied the corners are segregated by
support vectors. Corner which lie on the wrong side of the
segregation are considered outliers.

(a) (b)

Fig. 3: Figure a) describes the tiles before applying SVM to
the corners in the red tile and the blue tile. Initially corner c
is a member of the red tile. Figure b) describes the tiles after
reassignment. We can see that corner c has become an outlier
for the red tile; hence it is now reassigned to the green tile.

Figure 4 shows two mutually visible tiles T1 (constituent
corners a1, . . . ,an) and T2 (constituent corners b1, . . . ,bm) in
the tiles of the polygon. The guard moves on the shortest line
segment H connecting the two tiles. Let g1 and g2 denote
the points at which the segment is incident on tiles T1 and
T2, respectively.

38

Authorized licensed use limited to: Iowa State University. Downloaded on August 16,2024 at 12:26:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Figure shows a polygon and its associated tiles. The
corners a1, . . . ,a5 are associated to T1 and b1, . . . ,b4 are
associated to T2. The green region is the intersection of the
visibility polygons of T1 and T2.

A necessary condition for the guard to persistently track
the intruder is to prevent it from reaching any corner before
the guard reaches the tile associated with the corner [5].
Therefore the following equation must hold for all corners
ai and bi:

α∥xe− xai∥2 ≥ d1, α∥xe− xbi∥2 ≥ d2, (1)

where α =
vg
ve

, xe is the position of the intruder, xai and xbi

are the positions of corners ai and bi, respectively. Please
note that the ∥∥2 in (1) is replaced by the minimum distance
of the intruder to the corner on the visibility graph 2 (also
called the geodesic distance [38]) if the corner is not directly
visible to the intruder. If (1) holds for the corners ai and bi
closest to the intruder, then it holds for all the corners in
the environment. At each point inside the polygon, there is
a pair (ai,bi) closest to it.

Algorithm 2 Voronoi Segmentation

Input: Q Polygon, T = {T1,T2} Tiles
Output: V Vornoi Diagram with extremal points

1: function EXTEMEAL VORONOI(Q,T)
2: C← T1∩T2 where T1,T2 are a set of corners
3: V ← GeodesicVoronoi(P,C)
4: V1← GeodesicVoronoi(P,T1)
5: V2← GeodesicVoronoi(P,T2)
6: Intersect each cell associated with corners in T1 in V

with T2
7: Repeat previous step for T2 and V1
8: return V
9: end function

Algorithm 2 partitions any environment into regions based
on pair of corners (ai,bi) closest to each point in the
environment. Figure 5 presents the output of Algorithm 2
for the polygon in figure 4.

2Visibility graph is a graph of mutually visible locations inside a polygon
[37].

Given any position of the intruder, the guard should be able
to ensure that it can reach both tiles before the intruder can
reach the nearest corner constituting the tiles. This implies
the following:

xg = L
∥xe− xai∥2

∥xe− xai∥2 +∥xe− xbi∥2
, (2)

where xg is the position of the guard on H with respect to
g1, and ai and bi are corners closest to the intruder. Figure
6 shows a polygon with two tiles. Each cell of the partition
has a distinct pair of corners nearest from the two tiles. The
curves in each partition are locus of evader positions with
a constant value of

∥xe−xai∥2
∥xe−xbi∥2

, where ai and bi are corners
closest to the intruder. Each curve is a locus of evader
positions for which the pursuer has a fixed position on its
path.

Fig. 5: Figure shows output of Algorithm 2 for the polygon.
Each cell has a unique pair (ai,bi) nearest to the points in
the cell.

Equation (2) leads to the following control law for the
guard:

vg = L
∥xe− xai∥2

∥xe− xai∥2 +∥xe− xbi∥2
v⃗e ·

[−−−−−→
(xe− xai)−

−−−−−→
(xe− xai)+

−−−−−→
(xe− xbi)

∥xe− xai∥2 +∥xe− xbi∥2

]
(3)

Equation (1) implies that the following holds for all pairs
of corner (ai,bi):

α ≥ d1 +d2

∥xe− xai∥2 +∥xe− xbi∥2

≥ L
min
ai,bi
∥xai − xbi∥2

, (4)

39

Authorized licensed use limited to: Iowa State University. Downloaded on August 16,2024 at 12:26:35 UTC from IEEE Xplore. Restrictions apply.

Fig. 6: Figure shows a polygon with 2 tiles (shaded in blue).
The level curves for

∥xe−xai∥2
∥xe−xbi∥2

are plotted in each partition of
the polygon. The violet lines are the boundary of the Voronoi
cells associated with the tiles constructed from Algorithm 2.

(4) provides the minimum α necessary for the guard
to track the intruder. If ai and bi are not mutually visible,
then ∥∥2 is replaced by the geodesic distance between the
two points. The denominator in (4) is lower bounded by the
distance between the support vectors obtained by SVM. The
distance between the closest corners in T1 and T2 increase
with the increase in the margin length between the support
vectors. Hence, computing a wider margin facilitates a
lower minimum speed requirement for the guard.

V. DEPLOYMENT OF A MIXED TEAM OF STATIC AND
MOBILE GUARDS

In previous section, we presented a strategy for a line
guard to cover two mutually visible tiles so that it can track
a mobile intruder that lies in the union of the visibility
polygon of the tiles. In this section, we address the problem
of deploying a team of static and mobile guards on the tiles of
an arbitrary polygon. The two parameters that are of interest
are the number of guards and the maximum speed of the
guards. The aforementioned parameters play an important
role in resource-constrained deployment scenarios where the
system operator often faces a dilemma between choosing a
large number of cheap static sensors or a few costly mobile
sensors.

Algorithm 3 Deployment with n guards

Input: K Tiles, G = (V,E) Tile Graph, k guards
Output: D Deployment list

1: function DEPLOYMENTLIMITEDGUARDS(K,G,k)
2: For e ∈ E, calculate αmax
3: Store E with αmax in a min-priority queue Q
4: m← |K|, D← φ

5: Allocate a pair of tiles in G to a guard till k < m unless
k = 0 in which case return ”Not Possible”

6: Add a static guard to D for remaining tile in K
7: return D
8: end function

First, we consider the problem of minimizing the speed
required by a fixed number of guards to track an intruder
inside an arbitrary polygon. Let K denote the cardinality of
the tile, and m denote the number of guards. For m ≥ K,
guards can be deployed in each tile for covering the entire
polygon. Algorithm 3 addresses the case when m < K. It
provides a deployment for a team of static and mobile guards
that minimizes the speed required for the guards to track the
intruder.

(a)

(b)

Fig. 7: (a) shows an environment with 5 tiles. The green
circles represent the guards (1 static and 2 mobile). (b) shows
a plot of the minimum number of guards (m) deployed as a
function of the speed ratio α .

Each tile graph edge generates a maximum value of α . In
Algorithm 3, Line 3 arranges all edges in an ascending order
priority queue. Then we take an edge from the queue and
check if a guard has already been assigned to an incident
vertex (Line 10). If not, we assign a guard to the edge
(i.e., a line guard deployed between tiles) (Line 11). When
the number of remaining guards is equal to the number of
unassigned tiles, a guard is allocated to each tile. If there are
no more guards left to be allocated to unassigned tiles, there
is no feasible solution (the algorithm returns ”Not possible”)
(Line 7).

Next, we address the dual problem. Algorithm 4 provides
a strategy to deploy minimum number of guards when there
is a constraint on their maximum speed. Since each tile graph
edge can be used to generate a maximum α , we can do so
by limiting the number of edges being considered based on
the maximum value of α . The idea is similar to Algorithm
3. The main difference is in Line 3. Contrary to Algorithm
3, Algorithm 4 populates the priority queue with edges with
α lower than the input maximum speed.

40

Authorized licensed use limited to: Iowa State University. Downloaded on August 16,2024 at 12:26:35 UTC from IEEE Xplore. Restrictions apply.

Algorithm 4 Deployment with max α αg

Input: K Tiles, G Tile Graph, αg Max Alpha
Output: D Deployment list, k guards needed

1: function DEPLOYMENTLIMITEDSPEED(K,G,αg)
2: For e ∈ E, calculate αmax
3: Store ∀e∈E,αmax≤αg in a min-priority queue Q αmax
4: m← |K|, k← 0,D← φ

5: Allocate a pair of tiles in G to a guard till Q is not
empty

6: Add a static guard to D for remaining tile in K
7: return D,k
8: end function

Figure 7a shows a polygon with 10 reflex vertices. An
intruder is located inside the polygon and its initial position
is denoted by the red dot. The polygon contains 5 (= k)
tiles. The figure shows the line segments on which mobile
guards are deployed as the value of α increases along with
their initial location. Figure 7b shows a plot of the minimum
number of guards (m) required to track the intruder as a
function of α . The plot clearly shows the trade-off between
m and α for the polygon which is a universal phenomenon
is surveillance-related deployments.

VI. SIMULATIONS

In this section, we implement our proposed deployment
and tracking strategy for sample environment and present
our simulation results.

Fig. 8: Figure shows an environment with 3 tiles and 2
guards. The mobile guard and the static guard are shown
in green and in purple respectively. The red circle denotes
the location of the intruder. The yellow curves in the polygon
are the level curves for the voronoi cells associated with tiles
covered by the line guard.

Figure 8 shows a polygonal environment with 5 reflex
vertices. The initial position of the intruder is shown as a
red circle. The polygon has tiles of cardinality 3 as shown
in the figure. For α ≥ 2.6, two tiles can be guarded by a line

guard as shown in the figure with the remaining tile being
covered by a static guard. For α ≤ 2.6, a guard needs to be
deployed for each tile. The figure shows the locus of intruder
positions that leads to a fixed location of the line guard as
discussed in Section IV.

In the next simulation, we study the effects of varying
the maximum allowable α on the number of guards and
their deployment strategy. Figure 9 shows a polygonal en-
vironment with 40 vertices of which 16 vertices are reflex.
A heuristic algorithm is used to generate tile intersections
which reduces the cardinality from 16 to 6. Initially, the
maximum α provided for the environment is 2.6. Due to a
relatively high value of maximum α , Algorithm 4 generates a
deployment of 2 mobile guards and 2 static guards. However,
when the value of α is reduced to 2.2, Algorithm 4 generates
a deployment of 1 mobile guard and 4 static guards. The edge
with α = 2.6 gets removed and the green guard is replaced
by two yellow guards in the tiles hosting the mobile guard.

Fig. 9: Figure shows an environment with 40 vertices and
16 corners. The dark cyan polygons highlight the tiles of the
polygon. The yellow circles show the location of the static
guards and the green circles represents the mobile guards.

VII. CONCLUSION AND FUTURE WORKS

In this work, we addressed the problem of deploying
mobile agents that try to visually track a mobile intruder in
a polygonal environment. First, we presented an algorithm
to generate a set of regions (referred to as tiles) that can
ensure distributed coverage of the entire environment. Next,
we proposed a tracking strategy for a line guard to track a
mobile intruder. Finally, we proposed resource-constrained
deployment strategies for the team. Simulation results are
presented to demonstrate the efficacy of the proposed tech-
nique.

In the future, we plan to extend this technique to take
into account motion and sensing constraints for the guards.
Extension of the technique for tracking in 3-d environments
[39][40] is another interesting direction of future research.

41

Authorized licensed use limited to: Iowa State University. Downloaded on August 16,2024 at 12:26:35 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: Mod-
elling, Planning and Control, 1st ed. Springer Publishing Company,
Incorporated, 2008.

[2] R. Ayad. (2023) Security trends: Four surveillance trends
for 2023 (and beyond). Accessed: 2023-05-25. [Online].
Available: https://www.asisonline.org/publications--resources/news/
blog/2023/security-trends-four-surveillance-trends/

[3] M. Kumar and S. Mondal, “Recent developments on target tracking
problems: A review,” Ocean Engineering, vol. 236, p. 109558, 2021.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0029801821009471

[4] G. J. Laguna and S. Bhattacharya, “Path planning with incremental
roadmap update for visibility-based target tracking,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2019, pp. 1159–1164.

[5] S. Bhattacharya and S. Hutchinson, “A cell decomposition approach
to visibility-based pursuit evasion among obstacles,” The International
Journal of Robotics Research, vol. 30, no. 14, pp. 1709–1727, 2011.
[Online]. Available: https://doi.org/10.1177/0278364911415885

[6] B. Tovar, L. Guilamo, and S. LaValle, Gap Navigation Trees: Minimal
Representation for Visibility-based Tasks, 10 2005, vol. 17, pp. 425–
440.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[8] M. I. Shamos and D. Hoey, “Geometric intersection problems,” in 17th
Annual Symposium on Foundations of Computer Science (sfcs 1976),
1976, pp. 208–215.

[9] J. O’Rourke, Art gallery theorems and algorithms / Joseph O’Rourke.,
ser. International series of monographs on computer science ; 3, 1987.

[10] M. Keil, “Polygon decomposition,” Handbook of Computational Ge-
ometry, 01 2000.

[11] Y. Amit, J. Mitchell, and E. Packer, “Locating guards for visibility
coverage of polygons.” Int. J. Comput. Geometry Appl., vol. 20, pp.
601–630, 01 2010.

[12] A. Ganguli, J. Cortés, and F. Bullo, “Distributed deployment
of asynchronous guards in art galleries,” 2006 American Control
Conference, pp. 6 pp.–, 2006. [Online]. Available: https://api.
semanticscholar.org/CorpusID:13264364

[13] V. Chvátal, “A combinatorial theorem in plane geometry,” Journal
of Combinatorial Theory, Series B, vol. 18, no. 1, pp. 39–41, 1975.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
0095895675900611

[14] J. Kahn, M. Klawe, and D. Kleitman, “Traditional galleries
require fewer watchmen,” SIAM Journal on Algebraic Discrete
Methods, vol. 4, no. 2, pp. 194–206, 1983. [Online]. Available:
https://doi.org/10.1137/0604020

[15] E. Györi, “A short proof of the rectilinear art gallery theorem,” Siam
Journal on Algebraic and Discrete Methods, vol. 7, pp. 452–454,
1986. [Online]. Available: https://api.semanticscholar.org/CorpusID:
121732626

[16] A. Aggarwal, “The art gallery theorem: its variations, applications and
algorithmic aspects,” 1984.

[17] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,
Computational Geometry: Algorithms and Applications, 2nd ed.
Springer-Verlag, 2000. [Online]. Available: http://www.cs.uu.nl/
geobook/

[18] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[19] H. Emadi, T. Gao, and S. Bhattacharya, “Visibility-based target-
tracking game: Bounds and tracking strategies,” IEEE Robotics and
Automation Letters, vol. 2, no. 4, pp. 1917–1924, 2017.

[20] E. Győri and T. R. Mezei, “Mobile versus point guards,” Discrete
& Computational Geometry, vol. 61, no. 2, pp. 421–451, apr 2018.
[Online]. Available: https://doi.org/10.1007%2Fs00454-018-9996-x

[21] S. LaValle, H. Gonzalez-Banos, C. Becker, and J.-C. Latombe,
“Motion strategies for maintaining visibility of a moving target,” in
Proceedings of International Conference on Robotics and Automation,
vol. 1, 1997, pp. 731–736 vol.1.

[22] G. P. Huang, K. X. Zhou, N. Trawny, and S. I. Roumeliotis, “Bearing-
only target tracking using a bank of map estimators,” in 2011 IEEE
International Conference on Robotics and Automation, 2011, pp.
4998–5005.

[23] S. Bhattacharya and S. Hutchinson, “On the existence of nash
equilibrium for a two-player pursuit—evasion game with visibility
constraints,” The International Journal of Robotics Research,
vol. 29, no. 7, pp. 831–839, 2010. [Online]. Available: https:
//doi.org/10.1177/0278364909354628

[24] R. Zou and S. Bhattacharya, “On optimal pursuit trajectories for
visibility-based target-tracking game,” IEEE Transactions on Robotics,
vol. 35, no. 2, pp. 449–465, 2019.

[25] G. J. Laguna and S. Bhattacharya, “Hybrid system for target tracking
in triangulation graphs,” in 2017 IEEE International Conference on
Robotics and Automation (ICRA), 2017, pp. 839–844.

[26] G. Laguna, S. Mandal, and S. Bhattacharya, “Roadmap for visibility-
based target tracking: Iterative construction and motion strategy,” in
2021 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2021, pp. 4732–4737.

[27] S. Bhattacharya and T. Başar, “Spatial approaches to broadband
jamming in heterogeneous mobile networks: a game-theoretic
approach,” Autonomous Robots, vol. 31, pp. 367–381, 2011. [Online].
Available: https://api.semanticscholar.org/CorpusID:30214890

[28] S. Mandal, T. Gao, and S. Bhattacharya, “Planning for aerial robot
teams for wide-area biometric and phenotypic data collection,” in 2021
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2021, pp. 2586–2591.

[29] J. O’Rourke, “Galleries need fewer mobile guards: A variation on
chvátal’s theorem,” Geometriae Dedicata, vol. 14, pp. 273–283, 1983.

[30] M. Ernestus, S. Friedrichs, M. Hemmer, J. Kokemüller, A. Kröller,
M. Moeini, and C. Schmidt, “Algorithms for art gallery illumination,”
Journal of Global Optimization, vol. 68, pp. 23–45, 2017.

[31] S. Hengeveld and T. Miltzow, “A practical algorithm with performance
guarantees for the art gallery problem,” arXiv.org, 2022.

[32] F. P. Preparata and M. I. Shamos, Computational Geometry: An
Introduction. Berlin, Heidelberg: Springer-Verlag, 1985.

[33] J. Mark, “Studies on Kernels of Simple Polygons,” 2020. [Online].
Available: http://dx.doi.org/10.34917/19412121

[34] T. Asano, “An efficient algorithm for finding the visibility
polygon for a polygonal region with holes,” IEICE Transactions
on Fundamentals of Electronics, Communications and Computer
Sciences, vol. 68, pp. 557–559, 1985. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:119415599

[35] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, p. 273–297, sep 1995. [Online]. Available:
https://doi.org/10.1023/A:1022627411411

[36] A. Ben-Hur, “Support vector clustering,” Scholarpedia, vol. 3, no. 6,
p. 5187, 2008, revision #186055.

[37] S. K. Ghosh and D. M. Mount, “An output sensitive algorithm for
computing visibility graphs,” in FOCS, 1987.

[38] C. Liu, “A nearly optimal algorithm for the geodesic voronoi diagram
in a simple polygon,” CoRR, vol. abs/1803.03526, 2018. [Online].
Available: http://arxiv.org/abs/1803.03526

[39] E. Lipka, “A note on minimal art galleries,” 09 2019.
[40] S. Lunz, Y. Li, A. W. Fitzgibbon, and N. Kushman, “Inverse

graphics GAN: learning to generate 3d shapes from unstructured
2d data,” CoRR, vol. abs/2002.12674, 2020. [Online]. Available:
https://arxiv.org/abs/2002.12674

42

Authorized licensed use limited to: Iowa State University. Downloaded on August 16,2024 at 12:26:35 UTC from IEEE Xplore. Restrictions apply.

