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ABSTRACT

As the demand for high-speed and reliable wireless networks con-

tinues to increase, multi-user multiple-input multiple-output (MU-

MIMO) technology has become a popular choice for wireless com-

munication systems. However, this technology also brings new

security challenges, one of which is the vulnerability during the

channel sounding process. In this paper, we propose an active eaves-

dropping attack targeting MU-MIMO systems. The attack consists

of two phases. First, the attacker sends a forged pilot packet to the

victims. After that, the access point transmits streams intended

for victims to the attacker, who operates in full-duplex mode and

relays the streams to the victims. Compared to existing eavesdrop-

ping attacks targeting MU-MIMO systems, our proposed attack

requires less prior knowledge and coordination from attackers and

maximizes eavesdropping opportunities. We evaluate the proposed

attack in various settings and prove its e�ectiveness with multiple

victims and partial channel knowledge. Additionally, we explore

the use of physical-layer features to detect our proposed attack.
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1 INTRODUCTION

Wireless communication has become an essential part of modern

society with a growing demand for high-speed and reliable wireless

networks. In response to this demand, multiple-input multiple-

output (MIMO) technology has been widely adopted in wireless

communication systems due to its ability to improve spectral e�-

ciency and enhance the quality of service [1, 8, 10, 22]. Multi-user

MIMO (MU-MIMO) further extends MIMO technology. It allows

multiple users to communicate with a multi-antenna access point

(AP) simultaneously at the same frequency by spatial multiplex-

ing. MU-MIMO technology has been incorporated into the latest

wireless communication standards, such as IEEE 802.11ac [9], IEEE

802.11ax [11] and 5G [26, 34]. The proliferation of wireless de-

vices and the exponential growth of data tra�c have also made

MU-MIMO increasingly popular in both academic research and

industrial applications in recent years [16, 27, 32, 37, 50].

While MU-MIMO technology o�ers signi�cant bene�ts to wire-

less communication systems, it also introduces new security chal-

lenges. One of them arises from the channel sounding process [39].

To perform MU-MIMO, the AP needs to measure accurate chan-

nel state information (CSI) between the clients and itself, which is

completed through the exchange of control packets. To ensure that

clients at di�erent locations can all participate in the channel sound-

ing and later MU-MIMO communications, the AP broadcasts the

control packets omnidirectionally. Additionally, to reduce the over-

head of the channel sounding, the control packets are all transmitted

in plaintext. The broadcasted plaintext packets make it possible for

a potential attacker to passively eavesdrop on CSIs of clients or

even launch active attacks.

Several studies in the literature have investigated vulnerabilities

in the channel sounding process, leading to various eavesdropping

attacks on MU-MIMO systems. Tung et al. [39] and Mao et al. [29]

propose active eavesdropping attacks for MU-MIMO systems with

explicit or implicit channel feedback. The malicious party executes

the attacks by joining the network as a malicious client and send-

ing forged CSI feedback or pilots to the AP to corrupt its channel

measurements. The polluted channel measurements allow the at-

tacker to receive signals containing the information intended for

the victim client and itself. When signals intended for the attacker

are known, the attacker can cancel them from the received signals

and decode the messages meant for the victim from the remaining
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Figure 1: Attack model. In the �rst phase, the attacker transmits a forged pilot packet to cancel out the AP-victim channel and

inject the AP-attacker channel. In the second phase, the AP transmits the victim’s data stream to the attacker, which then

relays the received data stream to the victim.

signals. Wang et al. [47] extend this attack model to attack multiple

victims with more attacker devices as malicious clients.

While active eavesdropping attacks have been proven e�ective in

compromisingMU-MIMO systems, they place speci�c requirements

on the attacker devices: (1) Participation in targeted transmis-

sions as client(s): If there are more clients than the maximum

data streams an AP can support in one transmission, only a sub-

set of clients is selected for each transmission based on channel

conditions, user fairness, and system capacity [37, 52]. This client

selection process can reduce the opportunities for successful eaves-

dropping attacks [45], especially in multi-victim scenarios where

the number of attackers participating in the transmissions must

be equal to or greater than the number of victims [47]. (2) Prior

knowledge of packets for malicious client(s): Attacker devices

need to know contents of the packets intended for them as input for

signal cancellation, which typically requires cooperating servers

to transmit prede�ned data. (3) Shared eavesdropped signals

among attacker devices: In multi-victim scenarios, the multiple

attacker devices must collaborate and share eavesdropped signals

to decode messages intended for the victims.

In this work, we propose a novel eavesdropping attack in MU-

MIMO systems where the attacker can use a multi-antenna full-

duplex device to eavesdrop on one or multiple victims. Our pro-

posed attack consists of two phases, as illustrated in Figure 1 with

a one-victim example. In the �rst phase, the attacker sends a forged

pilot packet with null-steering beamforming to the victims while

the AP sends the legitimate pilot packet to the clients. The pilot in

the forged packet is manipulated so that the channels measured

from this packet will cancel the AP-victim channel and inject the

AP-attacker channel. In the second phase, the AP transmits the

streams intended for the victims to the selected antennas at the

attacker, who operates in MIMO full-duplex mode and relays the

received streams to the victims.

Compared to existing eavesdropping attacks targetingMU-MIMO

systems, the proposed attack o�ers several signi�cant advantages.

First, it demands less prior knowledge and coordination from the at-

tacker. To execute this attack, the attacker only requires control

over a single multi-antenna full-duplex device. This malicious de-

vice does not need to join the network as a client together with the

victims, and our attack does not rely on external servers to transmit

any known data packets. What’s more, it maximizes eavesdropping

opportunities by operating independently of user selection results

and can be performed whenever the targeted victims are selected.

We summarize our contributions as follows:

• We propose a novel active eavesdropping attack on MU-

MIMO systems. Compared to existing eavesdropping attacks

targeting MU-MIMO systems, our proposed attack requires

less prior knowledge and coordination from attackers and

maximizes eavesdropping opportunities.

• We prove the e�ectiveness of our proposed attack in various

settings, including cases with multiple victims and partial

channel knowledge. The secrecy capacity1 of the victims can

be brought down to zero.

• We evaluate the performance of using physical-layer features,

such as angle of arrival (AoA) and carrier frequency o�set

(CFO), to detect the proposed attack.

2 BACKGROUND

2.1 MU-MIMO Systems

MU-MIMO is a space division multiplexing technology for wireless

communication systems. By creating multiple independent spa-

tial streams, it allows a multi-antenna AP to communicate with

multiple users simultaneously in one frequency band and thus sig-

ni�cantly improves the overall network e�ciency. MU-MIMO has

been introduced as a mandatory feature to Wi-Fi protocols since

802.11ac [9] and supported by numerous commercial devices [16].

To generate independent spatial streams, the AP needs to mea-

sure channels between the clients and itself during the channel

sounding process. In MU-MIMO systems with explicit channel feed-

back, the AP �rst broadcasts a pilot packet. Upon receiving the pilot

packet, each client measures the channels from the AP’s antennas

to itself based on the known pilot and sends the channel measure-

ments back to the AP in the form of a feedback packet. Based on

the received feedback packets, the AP calculates the appropriate

weights to apply to each data stream to transmit at its antennas

to reduce interference among clients. The matrix formed by these

weights is called the precoding matrix.

Precoding methods can be classi�ed as linear and non-linear.

Although the achievable capacity of linear precoding methods is

slightly lower than some more complicated non-linear methods

such as dirty paper coding, the linear precoding methods are widely

1Secrecy capacity measures the maximum rate of the con�dential information under
the threat of eavesdroppers. It is calculated asÿď = max{0,ÿ −ÿā } whereÿ denotes
the legitimate channel capacity andÿā denotes the eavesdropper capacity. A secrecy
capacity of zero means that the victims are completely compromised.
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preferred for their lower computation overheads [19, 48]. A rep-

resentative example of linear precoding methods is zero-forcing

beamforming [5, 38, 52]. Consider a case of an"-antenna AP and

# single-antenna clients (# < ") and let H denote the # -by-"

channel matrix between the AP and clients, where the entry in the

8-th column and 9-th row represents the channel value from the

AP’s 8-th antenna observed at the 9-th client. With zero-forcing

beamforming, the precoding matrix C is calculated as:

C = H+
= H∗ (HH∗)−1 (1)

where H∗ represents the conjugate transpose of H, (·)+ represents

Moore-Penrose inverse, and (·)−1 represents inverse.
Let x denote the # -by-1 data vector to be transmitted to the #

clients, and P denote the diagonal # -by-# power allocation matrix

diag(?1, · · · , ?Ċ ), where ? Ġ represents the power allocated to the

9-th client during transmission. The precoded vector to be sent at

" antennas is C
√
Px and the received signal at receivers will be:

y = HC
√
Px + n = HH∗ (HH∗)−1

√
Px + n =

√
Px + n (2)

where n denotes the noise vector observed at receivers. With pre-

coding, the received signal at each receiver will have negligible

interference from other clients, and each client can decode the sig-

nal independently without any knowledge about the other clients.

The power allocation matrix P needs to satisfy the constraint

∥C
√
Px∥2 f % , where % is the total transmit power. The values of

each entry in P can be decided by the speci�c power allocation

strategy. The two most representative strategies are equal power

allocation and maximal throughput power allocation. The equal

power allocation maximizes fairness among concurrent receivers

with ?1 = · · · = ?Ċ , and the maximal throughput power allocation

maximizes the aggregated capacity of concurrent receivers with

argmaxĦ Ġ

∑Ċ
Ġ=1 log2 (1 + ? Ġ/|= Ġ |2), where = Ġ represents the noise

observed at the 9-th client and |= Ġ |2 is the noise power.

2.2 Full-Duplex Implementations

Full-duplex devices are designed to transmit and receive signals

simultaneously at the same frequency bands. The main challenge to

implement full-duplex devices is canceling the strong self-interference

caused by the transmitted signal at the receiving side. Various tech-

niques have been proposed to tackle this challenge, such as com-

bining antenna, analog and digital cancellations [18], using Balun

transformers to improve the analog cancellation [25], and canceling

non-linear distortions [15]. In [6, 14], the authors extend the full-

duplex implementations to MIMO scenarios and propose methods

to cancel the interference across the multiple antennas.

Full-duplex devices can be used as real-time relays when they

retransmit the signals that are just received. Full-duplex relays have

been implemented and used to improve wireless communication

system performance [13, 17] and sensing system security [33].

3 RELATED WORK

3.1 Eavesdropping in Wireless Networks

While tra�c through wireless communication systems is often

protected by end-to-end encryption, the security built upon crypto-

graphic protocols can be time-limited, as demonstrated by historical

vulnerabilities in standards such as wired equivalent privacy (WEP)

[21], Wi-Fi protected access (WPA) [42], WPA2 [43, 44], and WPA3

[41, 44]. The ever-present risk of current protocols being com-

promised necessitates a comprehensive understanding of security

problems in lower network layers such as eavesdropping.

Eavesdropping attacks include passive and active eavesdropping

attacks. Active eavesdropping attacks involve an attacker participat-

ing in wireless transmissions, such as transmitting jamming signals

[53] or performing man-in-the-middle attacks [40] for more advan-

tage. On the other hand, passive eavesdropping attacks involve an

attacker intercepting wireless transmissions proactively. They are

typically carried out with a wireless receiver that can capture the

transmissions between legitimate transmitters and receivers, such

as eavesdropping on access control tokens in RFID systems [23] or

mmWave communications [12].

Thewidespread use ofmulti-antenna systems presentsmore chal-

lenges for eavesdropping. In multiple-input single-output (MISO)

systems, beamforming enables the transmitter to send a directional

beam to the receiver, limiting passive eavesdropping e�ectiveness

unless the attacker is located at speci�c positions [51]. In MIMO

systems, a passive eavesdropper receives mixed signals of all data

streams. Additionally, if the data streams are precoded, precoding

matrices will introduce more unknowns, making passive eaves-

dropping impractical with a reasonable number of antennas at

the attacker device. In [36], an eavesdropping attack with known

plaintext is proposed to counter the e�ect of precoding matrices.

The above-mentioned works concentrate on eavesdropping in

the physical layer. Many existing attacks in wireless networks, such

man-in-the-middle attacks [4, 20, 30, 54], focus on compromising

protocols in higher layers and assume raw signal access. We be-

lieve that the contributions of physical layer eavesdropping attacks,

including our proposed attack, are orthogonal to these attacks.

And the eavesdropping attacks can help realize the signal access

assumptions in the attacks focusing on higher network layers.

3.2 Attacks in MU-MIMO Systems

In MU-MIMO systems, each transmission contains multiple data

streams and precoding is mandatory for users to decode their pack-

ets independently. This presents similar eavesdropping challenges

encountered in MIMO systems. Additionally, due to the indepen-

dence of data streams of multiple users, assuming prior knowledge

of plaintext for all packets within the same transmission becomes

more di�cult, hindering the extension of known plaintext attacks

as demonstrated in [36].

One related line of research to our proposed attack involves

active eavesdropping attacks on MU-MIMO networks using mali-

cious clients. In [39], the authors propose letting the attacker join

MU-MIMO communications as a malicious client and send forged

CSI feedback during channel sounding, enabling the reception of

mixed information for both the victim and the attacker. By canceling

the known signals intended for the attacker sent by a cooperating

server, the attacker can eavesdrop on messages received by the

other client. Similarly, in [28, 29], the authors propose a compara-

ble attack targeting networks with implicit channel feedback by

sending forged pilots to the base station to corrupt its channel mea-

surements. Generalizations of this attack to multiple victim client

scenarios are explored in [47], where multiple attacker devices
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forge CSI feedback as a polynomial function of the CSI of victims

and attackers. Considering that to perform this attack the number

of attackers must be no less than the victims in one MU-MIMO

communication, in [45], the authors study how to optimize the

opportunity of having the malicious clients being selected with the

victim clients in the same transmissions.

4 THREAT MODEL AND METHODOLOGY

We make the following assumptions about the attacker:

(i) The attacker controls amulti-antenna full-duplex devicewhose

antenna count is greater than or equal to the number of tar-

geted victim clients. This attacker device always has su�cient

transmit power.

(ii) The attacker device is within the communication ranges of

the AP, victim clients, and optionally non-victim clients.

(iii) The attacker has some basic knowledge of the communication

system, such as packet format and pilot for channel sounding.

(iv) The attacker device can anonymously query the channels

from the victim clients, and optionally the non-victim clients

to itself.

Assumption (iii) is based on the fact that pilots used for chan-

nel measurements are usually de�ned in corresponding standards

and are thus commonly known by devices [29]. Combined with as-

sumption (ii), the attacker is able to measure channels from the AP,

victim clients, and optionally non-victim clients to itself from regu-

lar transmissions in the system, such as beacons, channel sounding

packets for MU-MIMO user selection updates, and previous data

transmissions. If some parties have not participated regular trans-

missions for a long time, the attacker can leverage assumption (iv)

to query the channels of interest. Assumption (iv) has been proved

feasible in real-world Wi-Fi networks, where an AP will always

respond clear-to-send frames to fake request-to-send frames [46],

or acknowledgment frames to fake data frames [2] even if the client

is unauthorized. To query the channels from clients, the attacker

can send fake beacons and get the clients’ responses [3].

With these assumptions, we propose an active eavesdropping

attack on MU-MIMO systems with explicit channel feedback, out-

lined in two phases as shown in Figure 1. In the �rst phase, during

the AP’s channel measurement, the attacker simultaneously sends a

forged pilot packet with null-steering beamforming to victims. The

pilot in the forged packet manipulates channels measured from this

packet to cancel the AP-victim channel and inject the AP-attacker

channel. In the second phase, the AP precodes data streams with

measured channels and transmits the stream intended for victims

to selected attacker antennas. To ensure the communications for

the victims are not interrupted, the attacker operates in the MIMO

full-duplex mode and relays the received streams to the victims.

In the remainder of this section, we will �rst introduce the two

phases of this attack with an example case of one victim client and

the attacker having prior knowledge of channels from all clients

to itself. We will then extend this attack to multi-victim scenarios

and discuss strategies when the channels of non-victims are not

accessible to the attacker.

4.1 Channel Measurement Manipulation

MU-MIMO systems rely on channel measurements for e�ective

beamforming. In MU-MIMO systems using explicit channel feed-

back, the beamformer initiates channel measurement by transmit-

ting a pilot packet omnidirectionally to all potential beamformees.

Upon receipt of the pilot packet, each beamformee estimates the

channel between itself and the beamformer and reports the results.

Figure 2 demonstrates the channel feedback process in 802.11ac,

where the pilot packet is referred to as the null data packet (NDP).

To avoid feedback collapses, the AP sends beamforming report poll

packets to notify one speci�c client to send its report each time.

The short interframe space (SIFS) is the minimum separation time

between high-priority frames, such as these control frames used

for channel sounding.

To manipulate the victim’s channel measurements, the attacker

transmits a forged pilot packet at the same time as the AP, as illus-

trated in Figure 2. The simultaneous transmission can be achieved

by letting the attacker prepare the forged pilot packet in advance

and send it one SIFS after the NDP announcement transmission.

The forged pilot is designed to contain the information of a

channel that can cancel the AP-victim channel and inject the AP-

attacker channel. When the victim client receives both the original

pilot packet and this forged packet, its measurement result will

be the channel between the AP and the attacker, rather than the

channel between the AP and itself. To formulate this process, we

consider the case of an"-antenna AP (the transmitter), # clients

(receivers), and a  -antenna attacker. Let ℎĪğĨ Ġ denote the channel

from the AP’s 8-th antenna to the 9-th client, ℎĪğėġ denote the

channel from the AP’s 8-th antenna to the attacker’s :-th antenna,

and GĦ,ğ denote the original pilot value sent from the AP’s 8-th

antenna. Assume that the �rst client is chosen as the victim, and the

attacker wants to inject the channel of its �rst antenna ℎĪğė1 with a

scaling factor U . Then the attacker needs to modify the forged pilot

so that the victim can receive it as (UℎĪğė1 − ℎĪğĨ1 )GĦ,ğ , where ℎĪğĨ1
can be heard from the victim’s broadcasted beamforming report

in the last round of MU-MIMO channel measurement (based on

assumption (ii)), and ℎĪğė1 can be queried directly from the AP

(based on assumption (iv)). Together with the original pilot packet

ℎĪğĨ1GĦ,ğ received from the AP, the victim client will consider

~ = (UℎĪğė1 − ℎĪğĨ1 )GĦ,ğ + ℎĪğĨ1GĦ,ğ + = = UℎĪğė1GĦ,ğ + = (3)

as the received pilot value, where = represents the noise. It will

report a channel value close to UℎĪğė1 if the noise power is signi�-

cantly smaller than the signal power.

While manipulating the channel measurements at the victim, the

impact of forged pilots on non-victim clients should be minimized

to avoid interference with their communications with the AP. To

address this issue, the attacker utilizes zero-forcing beamforming

on victim and non-victim clients when transmitting the forged pilot

packet. In this transmission, we let the data intended for the victim

be as derived above, and the data for non-victims be null, i.e.,

xA,i = [(UℎĪğė1 − ℎĪğĨ1 )GĦ,ğ 0 · · · 0]Đ (4)

where (·)Đ denotes matrix transpose. Let PA represent the power

allocation matrix used by the attacker, where the attacker sets

?ý,1 = 1 with its su�cient transmit power. According to Equation

2, if the channel stays stable and the noise has signi�cantly lower
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Figure 2: MU-MIMO channel measurement process in 802.11ac and the attacker channel injection

power than signals, the signal vector yA,i received from the attacker

is supposed to be very close to
√
PAx in zero-forcing beamforming

transmissions. Thus the victim will receive the forged pilot from

the attacker while all other clients will receive zero, i.e.,

yA,i ≈ [(UℎĪğė1 − ℎĪğĨ1 )GĦ,ğ 0 · · · 0]Đ (5)

Meanwhile, the AP is also broadcasting the original pilot packet

to all users. For the pilot value GĦ,ğ , it arrives at clients as its origi-

nal value multiplied by corresponding channels between the 8-th

antenna of the AP to clients. When noise is signi�cantly weaker

than signals, the signal vector yT,i received from the AP will be

yT,i ≈ [ℎĪğĨ1GĦ,ğ ℎĪğĨ2GĦ,ğ · · · ℎĪğĨĊ GĦ,ğ ]Đ (6)

and the sum signal vector will be

yi = yA,i + yT,i ≈ [UℎĪğė1GĦ,ğ ℎĪğĨ2GĦ,ğ · · · ℎĪğĨĊ GĦ,ğ ]Đ (7)

This approach ensures that the victim client measures its channel

as UℎĪğė1 while non-victim clients are less impacted. To control the

power of the injected channels, we introduce the scaling factor

U . The power of ℎĪğė1 can di�er signi�cantly from ℎĪğĨ1 due to

variations in transmit power and locations between the AP and

the attacker, which could a�ect the power allocation or even user

selection results in MU-MIMO networks. The impact of this scaling

factor on the attack e�ciency will be evaluated in Section 5.2.

4.2 Data Stream Relaying

After successfully injecting pilot signals, the AP will regard the

AP-attacker channel as the channel to the victim, and transmit

the victim’s data stream to the attacker. To avoid interrupting the

communication between the AP and the victim, we let the attacker

device function as a multi-antenna full-duplex relay during data

transmissions. Similar to the pilot injection phase, the attacker

performs null-steering zero-forcing beamforming while relaying

the signal. Initially focusing on a single frequency band, let GĚ,Ġ
denote the data intended for the 9-th client. Assuming the �rst

client is the victim, according to Equation 2, the attacker receives

~Ě,1 ≈
√
?1GĚ,1 (8)

during the data transmission when the noise power is neglectable.

To relay the signal with null-steering zero-forcing beamforming,

the attacker prepares the data vector to relay as

rd = [V~Ě,1 0 · · · 0]Đ (9)

where data stream for the victim is a scaled version of what the

attacker receives about the victim’s data, and the data streams for

non-victims are null. We use V to denote the scaling factor used

in data stream relaying. In this way, the victim client can get the

information intended for it from the attacker, while other non-

victim clients are less impacted by the relayed signals.

Many communication protocols use frequency division multi-

plexing (FDM) methods that involve multiple subcarriers, such as

the orthogonal frequency division multiplexing (OFDM) used in

LTE [1] and Wi-Fi standards since 802.11a [7]. A common practice

to perform zero-forcing beamforming with multiple subcarriers is

to �rst multiply the modulated symbols with the precoding matrix

at each subcarrier in the frequency domain as in Section 2.1. The

transmitter then converts the precoded symbols of all subcarriers

to the time domain, and adds the cyclic pre�xes (CP) to complete

the OFDM symbol. While we adopt a similar method to obtain the

precoded pilots during the pilot injection phase, this becomes in-

feasiable during data transmission. This is because the attacker has

su�cient time to prepare a forged pilot packet before the channel

measurement process with the known pilot and channels during

pilot injection, but the data packets during data transmission are un-

predictable. Decoding the packet and performing frequency domain

precoding is neither feasible given the intolerable delay.

To facilitate the real-time beamforming, we transform the pre-

coding matrices in the frequency domain into precoding �lters

in the time domain. In [13], the authors implement a MIMO full-

duplex relay with a construct-and-forward �lter to make relayed

signals constructively combine with the direct signals from the

source. Our precoding �lters can be implemented in the same way

without introducing additional delay time.

Symbol 1 Symbol 2 CP

Symbol 1 Symbol 2 CP

Symbol 1 Symbol 2 CP

�������
�������

Original symbols

Filtered symbols, ������� < ���
Filtered symbols, ������� > ���

���

Figure 3: Impact of �lter lengths on symbols. Green sections

represent samples carrying information from both symbols.

After being converted to the time domain, the initial length of

precoding �lters will match the number of subcarriers. However,

with a large number of subcarriers, the precoding �lter length

may exceed the maximum possible length permitted by the relay

implementation. Moreover, if the precoding �lter length is greater

than the cyclic pre�x length, applying the �lters will increase the

inter-symbol interference, as shown in Figure 3. This increased

interference can adversely a�ect data transmission.

To constrain the length of precoding �lters, we leverage the

empirical observation that the power of precoding �lters typically

concentrates on a small number of consecutive samples. Figure 4



WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Xingya Zhao, Anwesha Roy, Avishek Banerjee, and Kannan Srinivasan

0 10 20 30

Number of samples

0

0.5

1
C

D
F >= 50% of the total filter power

>= 80% of the total filter power

>= 90% of the total filter power

Figure 4: Distribution of the sample numbers taken to reach

certain percentages of the total power of precoding �lters

shows the cumulative distribution function (CDF) of the minimum

number of consecutive samples required to reach speci�c power

levels. We consider 50 traces of an MU-MIMO network serving

three clients. We observe that choosing just 6 consecutive samples

from the �lters covers over 50% of total �lter power, while selecting

up to 19 consecutive samples covers over 80% of total �lter power.
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Figure 5: An example channel in the time domain and its

corresponding precoding �lter at full length. The precoding

�lter looks similar to a time-reversed version of the channel,

with its power concentrated in the last few samples.

We believe that this observation will hold in most cases. For each

subcarrier, while calculating the precoding matrix C according to

Equation 1, we have observed that for every row of the matrixHH∗,
the magnitude of the diagonal entry is usually larger than or equal

to the sum of the magnitudes of non-diagonal entries in this row,

i.e.,HH∗ is usually a diagonally dominant matrix. This is because in

HH∗ the diagonal entries represent the channel powers of clients,
and the non-diagonal entries represent the interference of channels

between client pairs. In the inverse of a strict diagonally dominant

matrix, such as (HH∗)−1 in many cases, the largest entry in each

column is on the diagonal [31]. Thus in C = H∗ (HH∗)−1, the values
from a scaled version of H∗ can take a large part. When consider-

ing the precoding values of multiple subcarriers, the dominating

conjugate of channel values in the frequency domain (values from

C’s of these subcarriers) will lead to a conjugate reverse of channel

values in the time domain. Since in time-domain channel values,

the power will usually concentrate on the �rst few samples, we can

conclude that in the precoding �lters, the �lter power will usually

concentrate on the last few samples, as shown in Figure 5.

By selecting these consecutive samples with dominant power,

we can obtain shorter �lters without signi�cantly compromising

beamforming performance.

4.3 Scaling to Multiple Victims

The proposed attack can extend to multi-victim scenarios by uti-

lizing multiple antennas of the attacker device. In the one-victim

scenario, the attacker performs null-steering zero-forcing beam-

forming and has one non-null data stream for the forged pilot or

relayed data packets. In the multi-victim scenario, the attacker can

similarly create multiple non-null data streams, one for each victim.

Theoretically, a  -antenna attacker node can create up to  data

streams, enabling it to attack up to  clients in one transmission.

If the attacker has equal or more antennas than the AP ( g "),

it can attack all clients served in one transmission. In this section,

we assume that the attacker aims to attack + out of # clients. For

ease of explanation, we assume that the �rst + clients are victims,

although the attack can be applied to any subset of size + .

To initiate the attack, the attacker selects + antennas to receive

data streams intended for the victims. As channels from the AP to

selected antennas will later be injected into the AP’s channel mea-

surement, these antennas should have the least correlated channels

from the AP to minimize interference in the AP’s channel measure-

ment. For simplicity, we assume the �rst + antennas are chosen,

with each victim corresponding to a respective antenna.

In the pilot injection phase, similar to Equation 4, the attacker

prepares a data vector

xA,i = [(UℎĪğė1 − ℎĪğĨ1 )GĦ,ğ · · · (UℎĪğėĒ − ℎĪğĨĒ )GĦ,ğ 0 · · · 0]Đ
(10)

where the �rst non-zero + values are the forged pilot value for the

victims, and the following # −+ zeros are the null data streams

for non-victim clients. With zero-forcing beamforming, the forged

pilot will be received by clients as

yA,i ≈ [(UℎĪğė1 − ℎĪğĨ1 )GĦ,ğ · · · (UℎĪğėĒ − ℎĪğĨĒ )GĦ,ğ 0 · · · 0]Đ
(11)

together with the the signal yT,i received from the AP

yT,i ≈ [ℎĪğĨ1GĦ,ğ · · · ℎĪğĨĒ GĦ,ğ ℎĪğĨĒ +1GĦ,ğ · · · ℎĪğĨĊ GĦ,ğ ]Đ
(12)

the sum signal vector yi = yA,i + yT,i will be

yi ≈ [UℎĪğė1GĦ,ğ · · · UℎĪğėĒ GĦ,ğ ℎĪğĨĒ +1GĦ,ğ · · · ℎĪğĨĊ GĦ,ğ ]Đ
(13)

In this way, the E-th victim client will measure its channel as

UℎĪğėĬ , while measurements at non-victim clients are not impacted.

In the data relaying phase, the attacker behaves similarly as in

Section 4.2, except that there will be + antennas receiving signals

for the eavesdropping purpose, and now there are+ data streams to

relay to the clients with zero-forcing beamforming. Let GĚ,Ġ denote

the data intended for the 9-th client, and ~Ě,Ġ ≈
√
? ĠGĚ,Ġ denote the

signal received by the attacker about the 9-th victim’s data. The

attacker prepares the data vector to relay as

rd = [V~Ě,1 · · · V~Ě,Ē 0 · · · 0]Đ (14)

The precoding �lters can be shortened in the same way as men-

tioned in Section 4.2.

4.4 Strategy with Partial Channel Knowledge

Assumptions (ii) and (iv) in Section 4 take into account scenar-

ios where the attacker lacks channel information on some or all

non-victim clients. This can occur if the attacker is too distant

from certain clients to detect their signals. Another case is that the

attacker has fewer antennas than the number clients in a transmis-

sion ( < # ). In the second case, the attacker cannot generate data
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streams for all clients and has to rely on partial channel feedback

due to this constraint on data stream generation.

We suggest that the attacker can prioritize non-victim clients

with stronger received signal strengths (RSS) and disregard those

with weaker RSS. If the attacker’s antenna count equals or exceeds

the total number of victims and known non-victims, it can proceed

with the attack as usual. Otherwise, it can ignore channels with the

lowest RSS values. For non-victim clients not known or ignored

by the attacker, their communication with the AP may be a�ected

by the attacker’s signals. However, due to their weaker RSS, this

interference will have a lesser impact compared to other non-victim

clients. Thus, neglecting them optimizes overall performance when

the attacker has limited antennas.

5 EVALUATION

5.1 Data Collection

Certain key information for the attack evaluation, such as the raw

signal and SINRs, is not accessible in commercial devices. To over-

come this limitation, we use WARP v3 software-de�ned radios

to collect channels in a typical indoor o�ce environment. The

full-duplex device parameters are set as in [13]. We emulate the full-

duplex relay scheme by �rst letting the AP transmit and the relay

receive. After that, the AP remains silent, and the relay retransmits

its received signal. Both received signals are later combined to form

a single received signal during the attack.

We generate packets following the 802.11ac physical layer stan-

dard and use band 11 with a 20 MHz bandwidth at 2.4 GHz for

the experiments. Each channel measurement contains values of

64 subcarriers, 52 of which are data subcarriers. The AP and the

attack are both equipped with four VERT2450 antennas, and the

AP serves three single-antenna clients unless otherwise speci�ed.

16.5 m

1
3

 m

AP

Client

Attacker

Figure 6: Layout of the o�ce space and device locations

We consider a total of 30 settings in the typical o�ce environ-

ment, and collect 5 channels with each setting. Each setting has a

unique combination of AP/clients/attacker locations. The AP-client

distances vary between 1 m and 10 m, the AP-attacker distances

vary between 0.5 m and 9 m. The data collection spans two months

and includes line-of-sight (LoS) and non-line-of-sight (NLoS) set-

tings. In NLoS settings, we introduce common o�ce obstacles such

as cubicle panels, chairs, and books. Figure 6 illustrates the o�ce

layout and example device locations.

5.2 Impact of Key Parameters on Eavesdropping
E�ciency

5.2.1 Precoding filter lengths. To evaluate the impact of the pre-

coding �lter lengths on the attacker’s data relaying performance,

we select 50 traces collected at 5 locations with 3 clients and 1

victim. By varying the precoding �lter length, we evaluate its e�ect

using two metrics: signal-to-noise ratio (SINR) at the victim of the

received relayed data, and the leakage at the non-victims resulting

from transmissions. We de�ne the leakage as the sum of received

signal power at the non-victim clients from the attacker. Lower

leakage indicates that the attacker causes less interference to the

non-victims’ communications with the AP.
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Figure 7: SINR at the victim and leakage at the non-victims

with varying precoding �lter length

From Figure 7 we can see that initially the SINR at victims in-

creases with the �lter length. This is because very short �lters

cannot fully perform the beamforming. However, beyond a �lter

length of 20, SINR decreases due to increased inter-symbol interfer-

ence, as discussed in Section 4.2. The average leakage at non-victims

decreases with �lter length, since the null data streams for non-

victims do not su�er from inter-symbol interference and bene�t

from better beamforming performance. We use precoding �lters of

length 16 for balanced performance in the following experiments.

5.2.2 Scaling factors for the channel injection and data stream re-

laying. The scaling factors in the pilot injection and data relaying

phases, U and V , play a signi�cant role in the eavesdropping ef-

�ciency and MU-MIMO communication performance. We notice

that the varying RSS of AP-attacker channels has a great impact on

the eavesdropping e�ciency. To eliminate its impact, we rede�ne

the scaling factors with the RSS at non-victims as references, i.e.,

U ′ =

∑
ġ∈V U ∥Hta,k∥/|V|

∑
Ġ∉V∥Htr,j∥/(# − |V|) , V′ =

∑
ġ∈V V ∥Hta,k∥/|V|

∑
Ġ∉V∥Htr,j∥/(# − |V|)

(15)

where V denotes the victim set, Hta,k denotes the channel matrix

from the AP to the attacker’s:-th antenna,Htr,j denotes the channel

matrix from the AP to the 9-th client, and # is the number of clients.

Let� denote the subcarrier count and �Ī denote the antenna count

at the AP. Both Hta,k and Htr,j are of size �Ī -by-� .

To select appropriate scaling factors U ′ and V′, we aim to ful�ll

the following requirements: (1) The estimated signal-to-interference-

plus-noise ratios (SINR) of all clients should closely match their

actual SINRs during data transmissions; (2) The SINR of the attacker

should be close to or higher than that of the victims; (3) The victims

should achieve as high SINRs as possible. The �rst requirement is

to accommodate rate adaptation, where the AP selects the optimal

transmission rate based on channel conditions. Setting the rate too

high can cause packet loss and retransmissions, while setting it

too low will reduce the network throughput. The second require-

ment aims to maximize eavesdropping e�ciency, while the third

minimizes the attacker’s impact on victims’ communications.
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(a) Absolute di�erence of estimated and actual
SINRs with equal power allocation
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(b) SINR di�erence of the attacker and the victim
with equal power allocation
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(c) SINR of the victim with equal power allocation
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(d) Absolute di�erence of estimated and actual
SINRs with maximal throughput power

allocation
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(e) SINR di�erence of the attacker and the victim
with maximal throughput power allocation

0 0.5 1 1.5 2 2.5 3 3.5 4

-0

0.25

0.5

0.75

1

1.25

1.5

,
0

0.7

-0.4

-0.4

-1.5

-2.1

-3.1

2.4

1.7

2.7

1.2

1.0

-0.1

3.7

4.2

5.5

4.5

4.3

3.2

4.3

5.8

7.2

6.7

6.7

5.8

4.5

6.8

8.3

8.0

8.3

7.6

4.6

7.3

9.0

8.9

9.0

4.7

7.6

4.8

7.8

4.8

7.9

9.6

9.6

9.6

10.4

10.0

9.9

10.0

11.0

10.7

10.1

10.4

11.4

11.3

0

5

10

(f) SINR of the victim with maximal throughput
power allocation

Figure 8: Metrics with varying scaling factors U ′ and V′

To evaluate the e�ectiveness of di�erent scaling factors in meet-

ing three critical requirements, we consider an experimental sce-

nario where an AP serves three clients, of which one is selected as

the victim. We consider 10 settings in the o�ce environment and

collect 5 traces in each setting. The metrics corresponding to the

three requirements are shown in Figure 8. The di�erence between

estimated and actual SINRs typically ranges from 2.5 to 3.5 dB in

regular MU-MIMO transmissions without an attacker. Figures 8a

and 8d indicate that selecting U ′ = 0.75 and V′ = 1.5 or 2 maintains

this range for both power allocation strategies. Figures 8b and 8e

show that in most cases the attacker’s SINR at the attacker exceeds

that at the victim, reducing secrecy capacity to 0. This is because the

victim receives both the attacker’s relayed signal and interference

from the AP’s beamforming. Despite this degradation brought by

the nature of our attack model, with proper scaling factor selection

considering the �rst metric, the AP will take the victims as clients

with inherently weaker channels and adjust the transmission rates

to accommodate them. Finally, Figures 8c and 8f show that with a

�xed U ′ value, the victim’s SINR increases with V′, which indicates

greater ampli�cation is applied during data relay.

In the following evaluations, we will use U ′ = 0.75 and V′ = 2.

The corresponding U and V values are calculated with Equation 15.

5.3 Overall Eavesdropping E�ciency

To investigate the overall eavesdropping e�ciency, we collect 150

traces with 30 settings with varying AP/clients/attacker locations in

the o�ce environment. We consider a case of one AP serving three

clients, and the AP adopts the equal power or maximal throughput

power allocation strategies. To establish a baseline, while collecting

each trace, we disable the attack once and monitor the signals re-

ceived by the attacker. This baseline represents a receiver colocated

with the attacker when the proposed attack is not executed.We refer

to the baseline as a passive eavesdropper. The passive eavesdropper

targets the same victim as the attacker in each transmission.
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Figure 9: Distributions of average SINRs at the victims, the

attacker, and a passive eavesdropper

From Figure 9 we can see that in almost all cases, the attacker

gets higher SINRs than the victim and reduces the victim’s secrecy

capacity to zero. Compared to the passive eavesdropper, an attacker

performing our proposed active eavesdropping attack has an SINR

gain of around 18 dB with equal power allocation, and around 14

dB with maximal throughput power allocation.
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Figure 10: Distributions of average SINRs at the victims and

the attacker with varying victim counts
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5.4 Eavesdropping E�ciency with Multiple
Victims

To evaluate how the eavesdropping e�ciency varies with victim

counts, we collect 50 traces with 10 settings in the o�ce environ-

ment with varying AP/clients/attacker locations. We consider a

case of one AP serving three clients, and the AP adopts the equal

power or maximal throughput power allocation.

From Figure 10 we can see that with both power allocation

strategies, SINRs decrease for victims and the attacker as the vic-

tim count increases due to increased channel correlation among

attacker antennas compared to clients. In our test settings, the aver-

age correlation among channels from the AP to attacker antennas

is 0.623, while to di�erent clients it is 0.496. As more clients become

victims, the AP utilizes more channels from attacker antennas, lead-

ing to increased channel correlation and interference. The signals

are then relayed to victims and cause SINR drops.

5.5 Eavesdropping E�ciency with Partial
Channel Knowledge

To evaluate the eavesdropping e�ciencywith partial channel knowl-

edge of non-victim clients, we collect 50 traces with 10 settings in

the o�ce environment with varying AP/clients/attacker locations.

We assume one of the three clients is selected as the victim, and the

attacker is aware of channels of 0-2 non-victim clients. For the cases

of 1 known non-victim, we assume the non-victim with higher RSS

at the attacker is known and the other one is unknown.

Victim - 0 known non-victim

Victim - 1 known non-victim

Victim - 2 known non-victims

Attacker - 0 known non-victim

Attacker - 1 known non-victim

Attacker - 2 known non-victims
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Figure 11: Distributions of SINRs at the victim client and the

attacker with partial channel feedbacks
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Figure 12: Distributions of SINRs at non-victim clients with

partial channel feedbacks

Figures 11 and 12 depict the SINRs of the attacker, the victim, and

non-victim clients with varying numbers of non-victim channels

known at the attacker. Figures 11a and 11b indicate that the number

of known non-victim clients has a negligible e�ect on the attacker

and the victim for both power allocation strategies. Conversely,

SINRs of unknown non-victim clients notably decrease compared

to known counterparts, as shown in Figures 12a and 12b. We at-

tribute this to the lack of null streams generated by the attacker for

unknown non-victim clients, which makes them su�er from the

interference of the relayed signals. Another observation is that the

SINRs of known non-victim clients decrease as more non-victims

are known at the attacker. This is because more clients involved

in generating the precoding matrices make the precoding values

for the same client across subcarriers less correlated, which yields

received signals with lower powers. Since we assume that the at-

tacker adjusts its transmit power to maintain the RSS at the victim

at a constant level, the attacker needs to allocate higher transmit

power per client. Consequently, the increased transmit power leads

to higher leakage and lower SINRs at non-victim clients.

5.6 Comparative Analysis with the Malicious
Client Eavesdropping Attack

We compare our proposed attack’s eavesdropping e�ciency with

a representative MU-MIMO attack [39]. In [39], the attacker joins

MU-MIMO communications as a client, exploiting forged channels

to receive both intended victim messages and its own. With the

message intended for itself as prior knowledge, the attacker cancels

its signals to decode the victim’s message. Following the system

setting in [39], we consider an AP serving two clients. We collect 50

traces with 10 di�erent settings in the o�ce environment. We set

the adjustable coe�cientF = 1 for the attack in [39]. We refer to

the attack in [39] as the malicious client method and our proposed

attack as the malicious relay method in this section.
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Figure 13: Distributions of average SINRs at the victims and

the attacker with di�erent attack methods

Figure 13 illustrates the SINRs at the attacker and the victim with

two attack methods. In our method, the attacker’s SINR is typically

8-10 dB higher than the victim’s, whereas with the malicious client

method, the attacker’s SINR is generally 10-15 dB lower than the

victim’s. This di�erence stems from the attack methods’ nature. In

our proposed attack, the attacker’s SINR is higher than the victim’s

because the signals received by the attacker are only intended for

the victim, while at the victim they are a mix of the signals relayed

by the attacker and the interference from the AP. Conversely, the

malicious client method requires the attacker to estimate and cancel

its own signals from received signals, introducing the unavoidable

cancellation errors that decrease victim SINR. The victim’s commu-

nication with the AP remains una�ected by the attacker, leading to

a higher SINR for the victim compared to the attacker.
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6 COUNTERMEASURES

The authors of prior research on eavesdropping attacks in MU-

MIMO systems have proposed various countermeasures. In [39],

the authors propose to use secret pilot values for channel sounding.

In [29], a two-phase pilot commitment process is proposed to pre-

vent unauthorized access to CSI. While these methods can defend

against our attack, they require altering the existing communication

protocols and can introduce extra control signal exchange overhead

in MU-MIMO, which already has noticeable delays. Therefore, we

evaluate the e�ectiveness of two representative features, AoA and

CFO, used in physical-layer source authentication in detecting our

attacks. These source authentication methods are fully compati-

ble with existing protocols. They utilize metrics calculated during

decoding and introduce minimal overhead.

6.1 Detection with Angle of Arrival

AoA describes signal arrival direction at the receiver, which can

be estimated at multi-antenna devices with the multiple signal

classi�cation (MUSIC) algorithm [35]. Recent research has applied

AoA pro�les in detecting malicious activity in wireless networks

[45, 49]. To detect our proposed attack, the AP can employ the

MUSIC algorithm with CSIs from the feedback packets as input and

monitor changes in AoA pro�les for each client. Sudden deviations

in a client’s AoAs may indicate the attack initiation. This is because

the channel measurements from feedback packets represent AP-

attacker antenna channels, their AoA pro�les may di�er from AP-

victim channels before the attack.
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Figure 14: Example AoA spectra for detection

We evaluate the e�ectiveness of AoA-based detection with traces

collected in Section 5.6. For each setting, we use 3 out of 5 traces

to extract the AoA signature of the victim. The victim’s channels

before and after the attack in the remaining traces serve as input.

We employ a simpli�ed version of the method from [49], i.e., get-

ting AoA spectra with the MUSIC algorithm and extracting local

maximum angles as features. From Figure 14 we can see that in both

examples, the AoA spectra closely match the victim’s signature in

the absence of an attack. During an attack, there are noticeable dif-

ferences for cases such as Figure 14a. However, Figure 14b presents

a challenging scenario missed by the detection method due to the

close proximity of the attacker and victim. This AoA-based method

achieves an accuracy of 90%, with an 80% true positive rate (TPR)

and a 100% true negative rate (TNR).

In [45], the authors propose to assess a correlation metric be-

tween AoAs of feedback packets and angles of departure (AoD)

of the reported channels to detect their proposed attack. In our

proposed attack, since the reported channels will be AP-attacker

antenna channels, the AoDs of reported channels and AoAs of at-

tacked packets will be very close. Thus, we believe performances

of the defense in [45] and our evaluation should be comparable.

6.2 Detection with Carrier Frequency O�set

CFO represents the carrier signal frequency di�erence between

two devices. It is a ubiquitous phenomenon in wireless communi-

cation systems and is usually caused by oscillator drifts or Doppler

shifts. In [24], CFO is employed as a signature for device authen-

tication based on transmitter-receiver oscillator biases. To detect

the proposed attack with CFO signatures, clients need to monitor

CFO changes between the AP and themselves over time. Since CFO

values are already estimated with pilots for successful decoding,

reusing CFO as authentication signatures introduces minimal over-

head. Sudden deviations in CFO values observed by a client can

indicate the attack initiation and its victim status, as victim clients

receive mixed signals from the attacker and AP during the attack,

leading to combined CFO values due to oscillator drifts.
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Figure 15: Example CFO distributions for detection

We extract CFO distributions from 50 traces for the same AP-

client pair as the signature, comparing them to CFO distributions

before and during attacks from the experiment in Section 5.6. Fig-

ure 15 displays probability density functions (PDF) and Gaussian

approximations, which shows clear distinctions between clean sig-

natures and observations during attacks. To evaluate the detection

accuracy with CFO, we use 4 of the 5 traces per setting to create

distribution pro�les with and without the attack and the remain-

ing one for testing. We determine the CFO observation result by

comparing the likelihood of PDF functions at that CFO value. The

CFO-based method reports a 65% accuracy, with a 40% TPR and a

90% TNR. The lower accuracy of the CFO-based method is due to

signi�cant overlap in CFO distributions.

7 CONCLUSION

In this paper, we introduce an active eavesdropping attack on MU-

MIMO systems using a multi-antenna full-duplex device. Our attack

comprises two phases: beamformed channel measurement manipu-

lation and data stream relaying. We perform extensive experiments

to evaluate the e�ectiveness of our attack under various settings,

demonstrating its capability to successfully eavesdrop on AP-victim

communications and bring the victims’ secrecy capacity down to

zero. We also investigate the feasibility of using physical-layer

features to detect the proposed attack.
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