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We present a novel method to simulate the Lindblad equation, drawing on the relationship between
Lindblad dynamics, stochastic differential equations, and Hamiltonian simulations. We derive a sequence
of unitary dynamics in an enlarged Hilbert space that can approximate the Lindblad dynamics up to an arbi-
trarily high order. This unitary representation can then be simulated using a quantum circuit that involves
only Hamiltonian simulation and tracing out the ancilla qubits. There is no need for additional postse-
lection in measurement outcomes, ensuring a success probability of one at each stage. Our method can
be directly generalized to the time-dependent setting. We provide numerical examples that simulate both
time-independent and time-dependent Lindbladian dynamics with accuracy up to the third order.
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I. INTRODUCTION

The Lindblad quantum master equation is a fundamen-
tal tool in studying open quantum systems [1,2]. Unlike
the time-dependent Schrodinger equation, the Lindblad
equation accounts for the effects of an environment on a
quantum system by incorporating non-Hermitian operators
that depict dissipative processes and jump operators that
characterize environment noise. Beyond its seminal appli-
cations in quantum electron dynamics [3—6], the Lindblad
equation, due to its universal representation property, has
found extensive utility in various disciplines, ranging from
material science [7,8] to cosmology [9]. Lindblad dynam-
ics can also be used to describe circuit noise in quantum
computing [10] and it underpins many quantum error-
mitigation (QEM) strategies [11—14]. Recent advances
have also leveraged Lindblad dynamics as an algorith-
mic tool for thermalizing quantum systems [15,16] and for
preparing ground states [17].
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As the range of applications for the Lindblad dynam-
ics continues to expand, it becomes increasingly important
to develop efficient and robust simulation methodologies.
Classical simulation algorithms [6,18—20] are often hin-
dered by a complexity that scales polynomially with the
Hilbert-space dimension, resulting in exponential cost rel-
ative to the system size (such as the number of spins or
qubits). In this context, quantum algorithms have emerged
as promising alternatives that may reduce the cost expo-
nentially. However, many of the current algorithms [16,
21-25], particularly when high-order accuracy is required,
can require many ancilla qubits, complicated quantum con-
trol logic for clock registers, and an involved amplitude-
amplification procedure. These algorithms are thus much
more intricate to implement compared to those designed
for Hamiltonian simulation [26—29]. This paper presents a
novel approach to simulating the Lindblad equation. Our
method leverages the intimate relationship between Lind-
blad dynamics, stochastic differential equations (SDEs),
and Hamiltonian simulations. We show that by adding
extra ancilla qubits, the Lindblad dynamics can be incor-
porated into a unitary dynamics in a larger Hilbert space.
Moreover, the unitary dynamics can be simulated using
a quantum circuit that only involves Hamiltonian sim-
ulation and tracing out the ancilla qubits (see Fig. 1).
In this work, we present a systematic approach for con-
structing this unitary map and the corresponding Hamil-
tonian. Compared to other Lindblad simulation meth-
ods [22,23,30], our proposed method has several distinct
features:
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(1) Our numerical scheme reduces the Lindblad simula-
tion problem to Hamiltonian simulations, for which
many algorithms are available.

When a unitary dynamics is constructed for the
Hamiltonian simulation (e.g., via Trotterization),
there is no need for additional postselection in mea-
surement outcomes. The unitary evolution and the
trace-out procedure guarantee that the success prob-
ability at each step is one, eliminating the need for
amplitude-amplification procedures.

The algorithm can be systematically improved to
achieve high-order accuracy.

The algorithm can be easily generalized to time-
dependent Lindbladians in applications such as
driven open quantum systems. Such direct gen-
eralization is highly nontrivial for many existing
algorithms.

2

€)
(4)

Our procedure involves the following three steps, sum-
marized in Fig. 1. For simplicity, the Lindbladian dynamics
are assumed to be time independent. The detailed explana-
tion of the flowchart can be found in Sec. IV.

(1) We unravel the Lindblad dynamics and reformulate
them as SDEs.

(2) We use classical numerical SDE schemes and
approximate the unraveled equation with an It6-
Taylor expansion of an arbitrary order of accu-
racy. This induces a Kraus representation of
the dynamics of the density operator, which is
completely positive.

Lindblad equation =
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(3) Finally, instead of using the quantum algorithm due
to Ref. [24] to implement the Kraus form, we pro-
pose a new procedure that converts the Kraus form
to the Stinespring form, detailing the construction of
the Hamiltonian operator from the Kraus operators.
This gives rise to a numerical scheme represented
as unitary dynamics that can be simulated through
Hamiltonian simulation and trace-out. The result-
ing map is completely positive and trace preserving
(CPTP).

A. Related works

Wang et al. [30] have demonstrated how a single-qubit
completely positive trace-preserving quantum channel can
be approximated by simple quantum channels that can
be simulated using only one ancillary qubit. Kliesch et
al. [21] introduced the first quantum algorithm for sim-
ulating general Markovian open quantum systems. This
algorithm has a complexity scaling of O(#*/€), where ¢
denotes the evolution time and € represents the desired
precision. The computational cost has been improved con-
siderably in more recent works [22-24,31]. In particu-
lar, the complexity of the algorithms in Refs. [23,24,31]
is O (tpolylog(t/€)), with a linear dependence on ¢ and
a polylogarithmic dependence on €. To our knowledge,
all of the works focus on time-independent Lindbladian
dynamics. In Ref. [24], the authors have suggested
an extension of their method to time-dependent Lind-
blad dynamics, which emerges from rotating-wave
approximations [32]. However, such an extension has not
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A flowchart illustrating the derivation of our numerical scheme and the quantum circuit (one step) for simulating the time-

independent Lindbladian dynamics using the following steps: (1) unraveling of the Lindblad equation into stochastic differential
equations (SDEs); (2) expressing classical numerical SDE schemes as the Kraus-representation form for the density operator; (3)
mapping the Kraus form to the dilated Hamiltonian in the Stinespring form. The simulation on the circuit advances a Hamiltonian
simulation for a time duration of /A¢, after which the ancilla qubits are measured. The outcomes of these measurements on the ancilla
qubit are disregarded and the ancilla qubits are subsequently reset to the state |0%) in preparation for the next iteration. The inherent
unitary and trace-out design ensures that the algorithm achieves a success probability of one, eliminating the need for any additional

amplitude-amplification steps.
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been fully explored, e.g., how to block encode the time-
dependent Hamiltonians and jump operators. Schlimgen
et al. [33] have proposed to decompose Kraus operators
into unitary operators that can be approximated by matrix
exponentials. This approach has later been applied to the
vectorized form of the Lindblad equation [25]. The overall
complexity, however, has not been presented. Andersson
et al. [34] have explored how to construct the Kraus form
for the quantum channel induced by the Lindblad dynam-
ics but without a full characterization of the numerical or
model error. More importantly, this approach requires the
input of the density matrix as a d>-dimensional vector, with
d being the Hilbert-space dimension. Maintaining quantum
speed-up with such a classical input is highly nontrivial.
More recently, Patel and Wilde [35,36] have proposed to
encode the jump operators into a pure state [v), called a
program state. Their algorithm is implemented through a
quantum channel that involves both p and ¥, followed by a
trace-out step. For multiple jump operators, their approach
follows a Trotter-type splitting [22], which is at most sec-
ond order. The work of Nakazato [37] has also studied the
Kraus form but with a focus on specific open quantum sys-
tem models. Very recently, Ref. [38] has proposed a novel
approach using repeated-interaction (RI) maps for approx-
imating Lindblad dynamics. The simulation based on RI
maps offers a first-order accuracy scheme for Lindblad
simulations.

In the domain of Hamiltonian simulations, various algo-
rithms with near-optimal query complexities suitable for
different settings have been introduced. For instance, quan-
tum signal processing [39] can reach the optimal query
complexity for time-independent problems. In contrast,
the truncated Dyson series [40] is applicable to general
time-dependent Hamiltonian simulation but it is based on
block encodings with complex control-logic operations.
Although Trotterization does not achieve the optimal query
complexity, it is more accessible in terms of its imple-
mentation (especially its lower-order versions). Taking this
perspective into account, this work diverges notably from
existing methods for simulating open quantum systems
[23,24], which are based on block encodings and entail
complex control-logic operations. The nature and com-
plexity of our algorithm for simulating open quantum sys-
tems resemble those of higher-order Trotter schemes used
in Hamiltonian simulation. Combining our approach with
different Hamiltonian simulation frameworks could lead
to the development of new efficient Lindblad simulation
algorithms.

B. Organization

The organization of the rest of the paper is as follows.
In Sec. II, we introduce essential notation, the relation
between the Lindblad equation and the SDEs, along with
classical numerical methods for solving SDEs. The main

idea with the development of a first-order scheme is illus-
trated in Sec. III. Our main results and quantum algorithms
for simulating the Lindblad equation [Eq. (2)] are detailed
in Sec. IV. The performance of our algorithm is validated
through various numerical experiments in Sec. V, for both
time-independent and time-dependent Lindbladians.

Moreover, in Appendix A, we provide a detailed deriva-
tion of the time-independent second-order scheme, serv-
ing as a constructive example for our main results. For
practical implementation, we provide formulations of the
first-, second-, and third-order schemes (in both time-
independent and time-dependent frameworks) in Appendix
B. The technical proofs supporting our main results are
found in Appendices C and D.

II. PRELIMINARIES

This paper uses capital letters for matrices and a curly
font for superoperators. In particular, the identity map
(superoperator) is denoted by Z and the density opera-
tor (matrix), which is a positive-semidefinite (PSD) matrix
with Tr(p) = 1, is represented by p. The vector or matrix
2-norm is denoted by || - ||: when v is a vector, its 2-norm
is denoted by ||v|| and when 4 is a matrix, its 2-norm (or
operator norm) is denoted by ||4]|.

The trace norm (or Schatten 1-norm) of a matrix 4 is

|A|l, = Tr [v ATA]. Given a superoperator M that acts on
operators (matrices in this paper), the induced 1-norm is

[IMlly = sup [[M(p)ll:. )

ol <1

The main emphasis of the paper is on the approximation of
the Lindblad master equation [1,2],

J
d ) 1
—p = <ilH.pl+ Y :(Vij}—z {VjV,-m}) =: L(p).

cuey {7

Ly(p)

@

Here, H € C?* is the system Hamiltonian and V; € C4*4
are known as the jump operators that come from the
interactions with the environment.

The Gorini-Kossakowski-Lindblad-Sudarshan (GKLS)
theorem [1,2] states that if £ is a Lindbladian with the form
given in Eq. (2), then exp(Lf) is a quantum channel, which
means that it is a CPTP map that transforms one density
operator into another. As a quantum channel, it is contrac-
tive under the trace distance [41, Theorem 9.2]: for any two
density operators p; and p;, and any ¢ > 0, it holds that

lexp(Lt)p1 — exp(LHp2ll; < llp1 — p2lli- 3)

To approximate the dynamics up to a given time 7, one can
divide the time interval into N steps, N € N, with step size
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At = T/N. Thus it suffices to construct an approximation,
here denoted by M x,p, for a small step, e.g.,

lexp(LADp — Madplly = Gar™!, (@)
for any density operator p and some k£ > 1 with a constant
Cr. The global error can then be deduced due to the con-
tractive property, given in Eq. (3). Specifically, if Mat[-]
is a quantum channel, we have

lexp(LT)p — (Ma)" plly
< [lexp(LAD (exp(L(T — At))p — (Mad)" ')l
+ [Iexp(LAL — Ma)(Mad)™ " o)l
< |lexp(L(T = AD)p — (Mad" o, + CrALH!

< G, TAY,
5)

where we have repeated the method N times to arrive at
the last inequality. This gives us a kth-order convergence
and we note that the final constant C; is independent of 7.

A. Unraveling the Lindblad equation using SDEs

The solution to the Lindblad equation can be expressed
through an SDE, which in turn also offers an intuitive
description of a quantum dynamics subject to environmen-
tal noise. Such a procedure is known as unraveling [6] and,
for this purpose, we consider the stochastic Schrodinger
equation,

J J
1 .
diy) = | =il =2 3 ViV | W) de 3 ;) A,
j=1 j=1
(6)
where {W} _, are mdependent Wiener processes and the

solutions are interpreted in [t0’s sense [42].

The connection to the Lindblad equation [Eq. (2)] can
be made by using It6’s formula for |v;,) (1| and taking the
expectation, which yields

dE(ya (v _

o —i[H, E (1Y) (¥:D)]

J
1
+ Y VE WD V] =3 {7V Eqwawin]-
j=1
)

If the initial condition is E(|v) (¥o]) = po, then Eq. (7)
is equivalent to the Lindblad equation [Eq. (2)] with p; =

E) (We).

In the classical regime, the aforementioned relationship
serves as the basis for a stochastic algorithm designed to
simulate the Lindblad solution [19,43]. More specifically,
the approach involves the following steps. First, several
initial states |, ,) _, are randomly sampled from the den-
sity operator pg. Next, numerical simulations of Eq. (6)
are performed for each initial state, evolving them up to
time 7. Finally, by averaging the resulting set of density
matrices |Vr;)(¥r;|, one obtains an approximation to the
solution p7.

B. Numerical schemes for SDE

Having reformulated the Lindblad dynamics using
SDEs as in Eq. (6), we can leverage a wide variety of
numerical techniques available in the literature for solv-
ing SDEs. In this paper, we mainly rely on the techniques
described in Ref. [42, Chapter 14]. The simplest among
these methods is the Euler-Maruyama scheme, which, for
any time step At > 0, is given by

1 J
=)+ | =il = 5 3 VIV | 1) A

121

[¥nt1)

Vi W) VAW =1 Ly pi(1¥)),  (8)

Jj=1

where { W/ }f _, are independent Gaussian random variables
with zero expectation and unit variance. At is a discretiza-
tion of dtin Eq. (6) and ~/AtW is a discretization of dW,.
This scheme provides a first-order approximation to the
solution in the weak sense. Specifically, for N € N and
T = N At, we have

IEQYn) (n D) — EQvr) (bl = O (TAD,  (9)

where |7) is the solution of Eq. (6) and the constant is
independent of At.

Like ordinary differential equations (ODEs), higher-
order numerical schemes can be obtained through a high-
order expansion of SDEs. Due to the presence of the
Brownian-motion terms, the It6-Taylor expansion needs to
be employed. This leads to many more terms when com-
pared to such expansions from ODEs (see the higher-order
schemes in Appendix B).

III. ILLUSTRATIVE DEMONSTRATION USING A
FIRST-ORDER ALGORITHM

While numerical simulations of SDEs have been exten-
sively explored in the literature, adapting these schemes
directly for execution on a quantum computer presents
challenges. For instance, the transformation from [,) to
[¥n41) in Eq. (8) is generally nonunitary and there is no
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guarantee that [v,,;) will remain a unit vector. On the
other hand, since our objective is to simulate the Lindblad
equation, it is not necessary to simulate every individual
SDE trajectory in Eq. (6). Instead, due to Eq. (6), it suffices
to simulate the “expectation form” of SDE in Eq. (6).

We illustrate our main concept by deriving a first-order
Lindblad simulation scheme from the Euler-Maruyama
scheme [Eq. (8)]. For simplicity, we assume J = 1, i.e.,
there is only one jump operator. Using Eq. (8) and the
property that E(W) = 0 and E(W?) = 1, we obtain

E(Yne1) (Ynh) = E (Ll,At[Wn)] (Ll,At[h”n)])T)

_ (1 + <—iH _ %VT V) Ar) E(¥) ()

1
x <1+ (iH— EVTV> At)

+ VE () (Y ) VT AL (10)

Let Fo =1+ (—iH — }V'V) At, Fy = VJ/At, and p, =
E(v,)(¥,]). The evolution from p, to p,y; is then
expressed in the Kraus form:

a1 = E(Wui1) Wus1]) = Klpal = FopuF+F1 paF.
(11)

Furthermore, one also observes that

Pt = Pn + L(on) At + O(AF) = exp(LHp, + O(AP),
(12)

where L is the Lindbladian that is defined in Eq. (2). This
equality implies that Eq. (11) is a first-order scheme for the
Lindblad equation.

The above calculation shows that an SDE solver implies
an approximation for the density matrix in the Kraus form.
Next, to derive a first-order quantum simulation scheme,
we further expand the Kraus form K in Eq. (11) into a
Stinespring representation,

Klp] = Tty (U10)(0] ® pU")

)
=: Try ([5‘; :} |O)(O|®,O|:§? ]) (13)

where U is a unitary matrix that can be derived from Stine-
spring’s factorization theorem. A key focus of this paper is
on the construction of a Hamiltonian-generated unitary to
approximate U, so that the algorithm can be implemented
via a Hamiltonian simulation. In particular, we want to find

a 2d x 2d Hermitian matrix A such that

Klp] = Tt, (exp<_i@ﬁ) 10)(0] ® p exp(i@ﬁ))
+OAP), (14)

where the operator Try traces out the ancilla qubit. We
construct H that takes the following form:

~ 1l
= [Z(l) %1], (15)

where Hj is a Hermitian matrix. After applying Tay-
lor expansion to exp(—i\/ AtH ) and matching O(1) and
O(A?) terms on both sides of Eq. (14), we find that

Hy=~AtH, H =V. (16)

The above derivation suggests that the scheme

Pnt1 = Try (exp (—z\/Kt [@H Ig]) 10){0]

onen(ea P 1)) o

serves as a first-order approximation to the Lindblad
equation [Eq. (2)]. This formula can be directly extended
to the general case with multiple jump operators, simply
by appending the additional jump operators along the first
row and the first column. Furthermore, the update process
described in Eq. (17) only comprises a Hamiltonian simu-
lation and a trace-out procedure, making it straightforward
to implement and succeed with probability one.

The above algorithm is similar to the first-order scheme
in Ref. [23], which uses first-order Trotter splitting to sep-
arate exp(LyAtf) and exp(LyAf). Subsequently, it uses
formulas analogous to those in Eq. (17) to simulate
exp(LyAf). However, it is difficult to extend the first-order
scheme in Refs. [23,38] to high-order schemes. We note
that the limitation of the first-order accuracy comes from
two components: (i) the first-order approximation of the
map exp(LyAf)(p); and (ii) the first-order Trotter split-
ting used to separate exp(LyAt) and exp(LyAf). While
the approximation of exp(LyAf)(p) might be improved to
a higher-order approximation, which is already not trivial,
it is very difficult to avoid the first-order error caused by
the first-order Trotter splitting. Unlike Hamiltonian sim-
ulation, the simulation of the dissipative part e/’ must
have a non-negative ¢, meaning the simulation cannot go
backward in time, since it does not constitute a CPTP
map. However, for Trotter splitting beyond second order
with a real time variable ¢, a backward-in-time simula-
tion is required [44]. The method described in Ref. [23]
employs Eq. (17) merely as an illustrative example. The
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authors’ primary algorithm is built upon the first-order
method expressed in the Kraus form [Eq. (11)] and the
accuracy is boosted using a compression scheme. A key
goal of this paper is to demonstrate that the Stinespring
form, such as the one in Eq. (17), paired with an appro-
priate dilated Hamiltonian, can be constructed to achieve
arbitrary orders of accuracy.

IV. MAIN RESULTS

In the previous section, the passage from Eqgs. (8)—(11)
and Eq. (13) and then to Eq. (17), unveils a procedure
to construct a Stinespring representation of the solution
map with a Hamiltonian-generated unitary operator. Since
numerical solutions for the SDE [Eq. (6)] can be system-
atically constructed with an arbitrary order of accuracy, by
taking expectations, we arrive at the Kraus-form approx-
imation for simulating the Lindblad equation [Eq. (2)] to
arbitrary order. Our main contribution is to extend the first-
order scheme [Eq. (17)] to an arbitrarily high order. We
present a family of methods, as detailed in Eq. (19) and
Algorithm 1, to derive the unitary dynamics that approx-
imate the Lindblad dynamics [Eq. (2)] to an arbitrarily
high order. Moreover, the simulation of the unitary dynam-
ics requires only Hamiltonian simulations and tracing out
ancilla qubits, similar to Eq. (17).

Our main theoretical result is stated as follows.

Theorem 1. Let [|£]ly, = (1+||H||+Z ||V||) Given

k>0, At= (9(||£||be ), NeN, and T= NA¢t. There
exists a Hermitian matrix

Sk
H = 1001 ® Hy+ 3 (1) 015 +10)41 H]) . (18)
j=1

where the matrices H; € C9=d  H, is Hermitian, the
number of terms S; is upper bounded by (J 4 1)F1,

and ||Hj || = O (ILlye). Furthermore, using a; < [(k +
1) log,(J + 1)7 ancilla qubits,

Pt = Tr (exp(—iv/AtlT ) [0%) (0%
® prexp (i«/Kzﬁ)), (19)

is a kth-order scheme for simulating the Lindblad equation
[Eq. (2)], 1.,

lor—oxll = O (TILIE AF)  @0)
and the constant only depends on k£ and J.

The proof of Theorem 1 is constructive. The Her-
mitian operator H in our construction will be called

the dilated Hamiltonian. For any order k£ > 0, we can
always construct the corresponding Kraus-representation
and Stinespring forms of the Lindblad dynamics [Eq.
(2)]. Specifically, we will propose a method to construct
each block of H (denoted as Hy,H,...,Hs,) using a

polynomial of H, V;, V', and Ar'/? with the maximum
degree of poly(k). According to the above theorem, our
algorithm requires O(klog(J + 1)) ancilla qubits to gen-
erate a kth-order scheme, which is slightly fewer than the
Q(klog((J + 1)k)) ancilla qubits needed in Ref. [24].

In Ref. [23, Theorem 4], a lower bound on the
total Hamiltonian simulation time is proved using the
amplitude-damping process. It asserts that discretizing
Lindblad dynamics into N stages requires a minimum total
Hamiltonian evolution time of €2 (+/N). In Theorem 1 with
N = 1/At (assuming the final time 7 = 1 for simplicity),
this implies that the required total Hamiltonian simulation
time must be at least O(1/+/A7). In Eq. (19), the Hamil-
tonian simulation time step is +/Af, resulting in a total
simulation time of +/At/At = 1/+/At, which agrees the
aforementioned lower bound.

In practical applications, the implementation of
exp(—iH t) relies on the assumptions made about the ora-
cles for H and V;. Assuming that / and V; can be
decomposed into a sum of local operators, we can then
decompose each H; into a sum of local operators. This
decomposition enables the implementation of exp(—zH t)
using e.g., a high-order Trotter formula. In this case, the
complexity depends on how complicated H and V; are.
An alternative method of implementation involves utiliz-
ing block encoding. In Appendix F, we explore a specific
approach to implement the block encoding of H assuming
the block encoding of H and H;. This provides a method
for implementing exp( iH t) using block-encoding-based
Hamiltonian simulation algorithms. Alternative methods
for efficiently implementing exp(—iH t) are an important
direction for future research.

A. Overview of the main algorithm

In this section, we describe the construction of our
main simulation algorithm, focusing on deriving the kth-
order scheme for the time-independent Lindblad equation.
We outline the general procedure for constructing the
Hamiltonian A for any k and in Appendix A we provide
a specific example of a second-order scheme for time-
independent Lindbladian dynamics. In Appendix B, we
extend our approach to time-dependent Lindblad equa-
tions and present the explicit forms of H for the first-
to third-order schemes, covering both time-dependent and
time-independent scenarios.

We first note that the simulation algorithm for Eq. (2)
is straightforward after obtaining H (see Fig. 1). Given a
required order k > 0, after finding the Hamiltonian A such
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that
exp(LAH)p = Try (exp(—i Atﬁ) |09 (0% |
® pexp<i«/KtF1)) +OMY, @)
our numerical scheme is
puer = Try (exp(—iv/AdlT ) 10%) (0%
® pn eXp(z\/Xzﬁ)) F O, (22

The trace-out process can be accomplished by measuring
and resetting the ancilla qubit.

Now, we focus on our approach to constructing the
dilated Hamiltonian # in Eq. (18). Similar to the deriva-
tion of the first-order scheme in Sec. III, we follow three
steps to generate a kth-order scheme:

(1) Formulate the weak scheme of order & for SDEs in
Eq. (6). Find a random linear operator L 5, : C¢ —
C? that generalizes Eq. (8), such that for any unit
vector |),

B (Leadl)] (Leadi))")
- E(p@n)w@nh| = 0wan*h, @3)

where |y (Atf)) is a realization of the solution of
Eq. (6) with | (0)) = |¢). We recall that p(Af) =
E (] (A1) (¥ (Ar)]) is the solution of the Lindblad
equation with p(0) = E (|4 (0)) (v (0)]).
We note that there are many approaches to designing
a kth-order weak formulation for SDE [Eq. (6)]. In
Sec. IV B, we will present the It6-Taylor-expansion
approach from Ref. [42, Chapter 14].

(2) Formulate the kth-order Kraus form. From the
operator L A, find a sequence of Kraus operators

{F; )%, where S < (J + 1F, such that

Sk
E (Leadl)] (Leadlv)])') = D]
p=

+ O ((ap*).
(24)

The above equation directly implies that the trace-
preserving property holds approximately:

Sk
Y FIF =1+0r), (25)

Jj=0

We can explore various methods to construct the
Kraus form mentioned above. In Sec. IVB, we

will discuss one approach to obtain the Kraus form
associated with a kth-order weak scheme for the
SDEs. With the Kraus form ready, the algorithms
in Refs. [23,24] can be directly used to simu-
late the Lindblad dynamics by implementing the
Kraus form. Therefore, the unraveling approach
provides an alternative to obtaining a higher-order
approximation expressed in Kraus form, without
using Dyson series and numerical quadrature. More
importantly, here we take a different path forward,
by converting the Kraus form to a Stinespring
form, thereby enabling simulations of the Lindblad
dynamics through Hamiltonian simulations.

(3) Construct the dilated Hamiltonian H. Find a
sequence of matrices {; }JS": o such that

Sk
S F W) (1 Ff =Ty (exp(—iv/Ad ) 10%) (0%
j=0

® V)l exp(iVAil ) )

+O0(an*h, (26)
where the Hermitian matrix H = |0)(0| Hy +
Y74, [7)(01 H; +10){j| H]'. This is achieved thro-
ugh asymptotic analysis. This versatile approach is
applicable not only when the Kraus form is derived
from an SDE integrator but also in situations in
which the Kraus form emerges from alternative
derivations.

B. Proof of the main theorem: Congtruction of the
dilated Hamiltonian H

In this section, we detail the strategies to accomplish the
preceding three steps, which provide a constructive proof
of Theorem 1. The algorithm to construct H is summarized
in Algorithm 1.

In the following part of the derivation, we simplify our
notation by omitting the subindex of L; », and denoting it
as L. We also define

J
: 1 +
Vo= =it =3 Y VIV,
Jj=1

@7

which is responsible for the non-Hermitian part of the
Lindblad dynamics. We will not include the subscript of
[1,,) in the following proof for the sake of simplicity.

(1) Formulate the weak scheme of order k for the SDE
[Eq. (6)]. The kth-order weak scheme has been thoroughly
investigated in the classical numerical SDE literature.
Here, we employ the scheme derived from the It6-Taylor
expansion as presented in Ref. [42, Chapter 14]. Toward
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ALGORITHM 1.

Construction of the dilated Hamiltonian 7.

Input: Desired order: k; Time step: At; Hamiltonian: H; Jump operators: {V;};

Output: H.

1: Formulate a k-th order SDE scheme following Eq. (30).

2: Produce the corresponding k-th Kraus using Eq. (39

3: Construct the dilated Hamiltonian H based on the pathway detailed in Eq. (D21) and Fig. 5

in the Appendix D.

this end, we define two sets of multi-indices,

Tp = {o = (1,j2, -+ - ofia)) €{0,1,2,...,J}8 : |a| <k}
(28)

and
Tio = i\ {o = {0}®) : || < &}, (29)

where |«| is the number of components of the multi-index
a. These indices are necessary to keep track of the differ-
ent components of the Brownian motion W (f). A scheme
of weak order & can be expressed using multiple integrals
over) <s; <5, <--- <s; < Af,

Y+ S (V¥ Vi 9) /O ™ /0 /0.

OtEFk
. / dp dw - dW;‘;l\
0

Ll¥)]

k
-y aF A )+ Y RValw),  (0)

Jj=0 a€lk/o

where we set dW? =ds, Vo, =V, V}, -V}, denotes a
product of the jump operators and the sequence of random
variables {Rq}qer, " corresponds to multiple Itd stochastic
integrals as follows:

At pSig| LSjg|-1 2 . )
Ro= [ [ e an,
0 0 0 0

31

According to Ref. [42, Theorems 14.5.1, 14.5.2] (see
also Ref. [45]), the direct expansion given in Eq. (30)
induces a kth-order weak scheme that satisfies the desired
order condition given in Eq. (23). In addition, when Af =
O (I £llve), we have

|E LI LD -
= O (ILIg(AD ).

E (v An) (A,

(32)
(2) Formulate the kth-order Kraus form. In the second

step, we construct the Kraus form of kth order from the It6-
Taylor-expansion method in Eq. (30). As a preparation, we

introduce some notation and definitions for the terms with
multi-indices. Note that the zero components in « indicate
a standard integration over ¢, while nonzero components
correspond to stochastic integrals. Given a € 'y, let o™ be
the multi-index obtained by removing all components of «
that are equal to zero. For example, if ¢ = (1,0,2, 1), then
we have

T =(1,0,2,)" = (1,2,1).

We define /_¢(«) as the number of zero elements, which
means that /_¢(a) = |a| — |@™|. According to Ref. [42,
Chapter 5, Lemma 5.7.2], given «, &’ € 'y, we have

E[RyRy] = Cow = O(1).

(33)

Here, 1,+_(y)+ stands for the indicator function and C, o
is a factor that depends on the indices & and &’ but not on
At. In addition, |Cy 4| < 1 for all @, . Based on Eq. (33),
we define the normalization of R, by the step size Aft:

la|+1_q (@)

Roo = RoAF 20, (34)

As a result of this rescaling, we can work with a set
of Gaussian random variances R,, with mean zero and
covariance independent of Az. In particular, we can rewrite
L[|¥)] in Eq. (30) as

k .
A .
1] = Z(j—fy%hm

Jj=0

+ Y Rua (AT

€l /o

Here, E(Rfm) =Cya

Note that even though the expected value of R, is
zero, the expected value of R, 4R, may not be equal to
zero; i.e., in general, these random variables are correlated.
Specifically,

E(Rn,aRn,a/) ?é 0. (35)

= JE(R2 ) A H=0@2y

we will encounter some cross terms in the expansion of

Thus, if we naively define K|,
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the Kraus form, leading to a nondiagonal Kraus form. To
overcome this difficulty, we introduce the following lemma
to orthogonalize the noise term.

Lemma 2. Let Ry o be defined in Eq. (34). There exists
a sequence of random variables {Ra }we Mo that satisfy the

following conditions:

(i) Each Ry, is a linear combination of R, such that

Rn,a: Z ca,a/ﬁa’; (36)

a/erk/o

where ¢, o is a constant independent of Az. In addi-
tion, Y lcow > = E(wa) and ¢y =0 if ot #
(™.

(ii) Forany o, E (ﬁa) = 0. In addition, ﬁa is either zero
or E(R2) = 1. o

(iii) For any a # o' € I'y, we have E (R,Ry') = 0, i.e.,
they are uncorrelated.

The proof of Lemma 2 is in Appendix C. With this new
expression for the noise terms, we can plug Eq. (36) from

J

Lemma 2 into Eq. (30) and obtain

k .
AV
Liadl)] = Z(j—ny’o )

Jj=0

~ o/ [+1_q (@)
+ Z Ry Z Cot/,let 2 Vo |l//>

aely a’ely

(37)
We are now in a position to derive a Kraus form. We define

k

Aty
FO:Z%V/O’
=0 J°

. I I+l @)
Fy= =i Y cawalt 7 Vy|lg Vo €Tk

o'ely

(3%

In light of Eq. (37), we obtain an approximation of the
density-operator in a Kraus form,

E (LI CIDT) = Fo ) (W1 Fy + Y Ful¥) (| F), (39)

OtGFk/O

which satisfies Eq. (24). We note that the total number of Kraus operators is at most ((J + DY —1/7) — k.
(3) Construct the dilated Hamiltonian H. We start by ordering and expressing Kraus operators by the powers of A¢, i.e.,

in an asymptotic form:

Fo=1+ AtYoo+ AfYyy + APYos + -+ AF Yoy,
F}' :_i(Atl/zyj,0+At3/2Yj,l+At5/2Yj,2+"'+AZJ{_1/2Y},/€—1)5 j = 1725-"7‘9/{9 (40)
Fi=—i(AtY o+ ALY 4+ + AFY ), j=se+ 1., 8

Here, we separate those Kraus operators with integer powers of At from those with half powers of Af. We note that
Sy + 1 equals to the number of Kraus operators. Thus, Sy < ((J + D' —1/J) —k—1 < (J 4+ D¥,

From Eqgs. (23) and (24), we see that Zf’; 01*},01*}T is a kth-order approximation of a Lindblad equation and can be

expanded into Stinespring form, meaning that

Sk
¢*Np =Y FipF] + O((AN!) = Try (U10%)(0%] @ pU") + O((AD*)
j=0
F, Fy - ... Af
F Fy k+1
=Tre| | . 00l | . +0(An™™, (41)
Fg, Fg,

where U is a unitary matrix that can be constructed by Stinespring’s factorization theorem. -
Now, we are ready to introduce the following lemma that implies the existence of the dilated Hamiltonian H.
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Lemma 3. Given the Kraus operators {F] }jS": o in Eq. (40), there exists H such that

Sk
> F I F] = oy (exp(—iv/Ai ) 109) (0% @ [y (v exp(iVAH') ) + 0204, “2)
j=0

Furthermore, H can be written as Eq. (18) with

Hy = At Xo0 + AP2Xy ) -+ AKX,

[_Ij :)(j,()-{—ALX},[+"‘+Atk_l)(},k—1: J =1,2,...,8, (43)
Hy = AtPX o+ APPX 4+ AFPX L, j=si+ LS

Here, each X; , is a polynomial of H, V; that satisfies [X; .| = O(ILIIET?) for 1 <j < s and X ]| = O(ILIE

otherwise.

Intuitively, the unitary operator on the right-hand side
of Eq. (42) can be expanded and its first column can be
compared to the first column of the unitary matrix in Eq.
(41). Specifically, each matrix in Eq. (43) can be obtained
by matching the corresponding terms in the expansion in
Eq. (40). The proof'is in Appendix D. According to Lemma
3, we obtain [|H; || = O([L]lbe)-

Finally, to complete the proof of Theorem 1, the remain-
ing step is to demonstrate that 7 must be a Hermitian
matrix. This is stated in the following lemma.

Lemma 4. The dilated Hamiltonian A constructed in
Lemma 3 is Hermitian.

The proof of Lemma 4 is in Appendix E.

V. NUMERICAL EXPERIMENTS

In this section, we provide results from several numer-
ical experiments to illustrate the convergence of our
algorithm. We start with a time-independent transverse-
field Ising model (TFIM) in Sec. VA and examine the
convergence rate of the first-, second-, and third-order
methods. The specific forms of these methods can be found
in Appendix B. To extend the applications to more gen-
eral cases, we also present two time-dependent examples
in Secs. VB and V C to further test the performance of our
proposed methods.

In all the following numerical experiments, we use the
fourth-order Runge-Kutta scheme with a very small time
step to generate the “exact solution” pr and measure the
error at time 7 using the trace distance, which means that

Error = || oy — prlh1, (44)

where T is the stopping time, N = T/At, and py is the
output of our algorithm.

A. A TFIM damping model

Consider the one-dimensional TFIM model defined on
m sites:

m—1 m
H=- (Z ZiZis +ZLZI) —g) X (45
i=1

i=1

where g is the coupling coefficient that describes the trans-
verse magnetic field strength, Z; and X; are Pauli operators
for the ith site, and the dimension of H is 2"*. We setm = 4
and g = 1 and simulate the TFIM model with damping
[25]:

d . J S

P = il + Vijj_E{VjV}"O}’
j=1

p(0) = Vo) (Yol , (46)

where V; = /v (X; —iY;)/2, the damping parameter y =
0.1, and |yg) is the ground state of H. In Ref. [25], the
authors have used this model to test the accuracy of their
numerical scheme and to investigate the effect of magnetic
field strengths and damping parameters on the solution tra-
jectory. For our experiment, we focus on the scaling of the
error of our numerical methods with A, so we only assess
its effectiveness with fixed values of g and y.

We examine the convergence of three numerical
schemes (see Appendix B): (i) the first-order scheme in
Eq. (B3); (ii) the second-order scheme in Eq. (B6); and
(iii) the third-order scheme in Eq. (B11). The results are
shown in Fig. 2. The graph on the left shows the over-
laps between p(f) and the ground state when the time
step At = 0.1. We can see that the second- and third-order
schemes match the exact solution better than the first-order
scheme. In the right graph, with a stopping time of 7 =1,
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(a) 1.0 Exact (b) 10-1
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0.9 )’ —¥— Third
/\ 3
_50_ . 10
= 0.8 5
S i 0
So.7 —o— llp. el first
v 107%1 —— o, = pcllr Second
—4— ||pL — ocll¢r, third
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,,,,, A3
1077
0 1 2 3 a 5 101 102

Time 1/At

FIG. 2. Examining the accuracy of the first-, second-, and third-order methods using the TFIM damping mode [Eq. (45)]. (a) The
comparison of the evolution of the ground state overlap (V| o (¢) |¥o) with different schemes and the same step size At = 0.1 up to
the stopping time 7 = 5. (b) The comparison of the error versus At using different schemes with stopping time 7= 1. We set the x
axis as 1/ At and plot it in the log scale to illustrate the order scaling of our methods. The three dashed lines are drawn by matching the

error curve from the kth scheme with (A#)¥. The comparison of the slopes verifies that our kth-order scheme indeed leads to an error
that is O(ADF.

we have evaluated the convergence of the three methods
using different A¢ and measured the end error using Eq.
(44). One can observe that all the schemes converge in the . G
expected order. Due to the random selection of the opera- Via=vyX; —iYp)/2, Vja = I G K
tors G and G; », as well as the initial condition, these orders 7

of accuracy are very likely sharp.

choose random damping operators

(43)

where y = 0.1 and G, , ~ N(0,1, lmyom). We note that
this is a time-dependent Lindblad equation with two jump

B. A time-dependent TFIM model with damping operators. We test the first, second, and third methods as

In the following numerical test, we consider the time-
dependent TFIM damping model, where both the Hamilto-
nian and jump operators are driven by a linear pulse,

H(t)=H +tH, (47)
Here, H is the TFIM model with m =4,g =1 and H' =
G+ GG+ G| with G~ N(0,1,Lmm). We also

(a) 10 Exact
--- First
—&— Second
0.8 —¥— Third
A
o
;0.6
ol
2
So.4
'
0.2

2 3 4 5
Time

FIG. 3.

discussed in Appendix B.

The result is shown in Fig. 3. On the left graph, we set
the initial state as the ground state of H and perform the
simulations up to 7 = 5. We compare the evolution of the
overlap with the ground state for all three methods. It can
be seen from the graph that the second- and third-order
schemes show much better agreement with the exact solu-
tion than the first-order scheme. The results shown in the

(b) 100

1071

" —o— Jlou = plli first
—*— |lpL = pcller, second
—&— ||oL = Pcll¢r, third
————— At

1ot 102
1/At

Testing the accuracy of the first-, second-, and third-order methods using the time-dependent TFIM Lindbladian [Eq. (47)].

(a) The comparison of the evolution of the ground state overlap (| o (f) | o) with different schemes and the same step size At = 0.1
up to stopping time 7 = 5. (b) The comparison of the error versus Az (on the logarithmic scale) using different schemes with stopping
time 7 = 1. We set the x axis as 1/At¢ and plot it in the log scale to illustrate the order scaling of our methods. The three dashed lines
are drawn by matching the error curve from the kth scheme with (A#)%. This verifies that our kth-order scheme indeed leads to an error
that is O (A~
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Time

(b) —\\\

1074

Error

—o— |lo — pcller, first — ~
—*— |loL — Pc|ler, second
—&— |lPL = Pcller third

1076

-8
10 A2
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1/At

FIG. 4. Testing the accuracy of the first-, second-, and third-order methods using the periodic driving Lindbladian [46]. (a) The
comparison of the evolution of Tr (p(f)o,) with different schemes and the same step size At = 0.1 up to stopping time 7 = 107x. (b)
The comparison of the error versus Az using different schemes with stopping time 7'= 107. We set the x axis as 1/Az and plot it in
the log scale to illustrate the order scaling of our methods. The three dashed lines are drawn by matching the error curve from the kth
scheme with (A#)*. The comparison of the slopes verifies that our kth-order scheme indeed leads to an error that is O (A7,

right panel are obtained with a random initial state and sim-
ulation of the dynamics up to time 7 = 1. We examine the
convergence of the methods by varying A¢ and measur-
ing the end error as defined in Eq. (44). We observe that
all three schemes converge to the true solution with the
expected order of accuracy.

C. Periodically driven Lindbladian dynamics

In this section, we consider a single-qubit time-
dependent system that is driven by a periodic Hamiltonian
and jump operators [46]. Specifically, we choose

2
H() = —%(1 — cos(?))o; 49)
and the damping operators
Vi=Q2+40.5sin())oy, Vo= (3 —0.5sin())o-.
(50)

We then compare the performance of the first-, second-,
and third-order methods at the stopping time 7' = 10z with
arandom initial state. The error is measured using Eq. (44).

The numerical results are summarized in Fig. 4. In the
left graph, we choose At = 0.1 and compare the evolution
of Tr (p(f)o,). We observe that the second- and third-order
schemes exhibit significantly better accuracy than the first-
order scheme. Similar to the previous results, in the right
figure, the error of all schemes behaves with the expected
order of convergence.

VI. DISCUSSION AND CONCLUSIONS

This paper presents a new method for simulating the
Lindblad dynamics using Hamiltonian simulation in an

enlarged Hilbert space. Our algorithm only involves sim-
ulation of a dilated Hamiltonian and trace-out operations.
The latter can be implemented simply by measuring the
ancilla qubits and discarding the results. Each step of
our algorithm forms a CPTP map, thereby guaranteeing a
success probability of one. Contrary to previous methods
[23,24], our algorithm eliminates the need for oblivious
amplitude amplification at the level of Lindbladian sim-
ulation, which may require precise adjustment of the time
step At with respect to the block-encoding factor.

Our methodology bridges the gap between Lindblad
simulation and Hamiltonian simulation. This approach also
introduces a new class of Hamiltonian simulation prob-
lems, where the Hamiltonian H consists of commutators
among the jump operators (including the system Hamilto-
nian H) and the various components of the dilated Hamil-
tonian scale differently with respect to the time step At.
Identifying suitable Hamiltonian simulation techniques for
this specific context poses an interesting question for future
investigations. For example, suppose that both H and
V; can be expressed as sums of Pauli operators. In that
case, we can decompose Hy,H,,...,Hs, into sums of
Pauli operators and further refine the simulation using a
high-order Trotterization method.

In contrast to Hamiltonian simulations, where a diverse
range of methods are available and practicality resource
estimates have been conducted (see e.g., Ref. [47]), quan-
tum algorithms for Lindblad simulations remain in their
nascent stages. This study introduces a framework that
differs from those in the existing literature. Low-order
methods, such as second and third order, may be more
practical than higher-order versions in terms of practi-
cal implementation. We hope that this work can facilitate
future resource estimates for identifying the most practical
methods for simulating Lindblad dynamics.
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APPENDIX A: DERIVATION OF THE TIME-INDEPENDENT SECOND-ORDER SCHEME

As a concrete example, in this appendix, we derive a second-order scheme to simulate time-independent Lindbladian

dynamics.

(1) Formulate the weak scheme of order 2 for the SDE [Eq. (6)]. According to the first step of Algorithm 1, we can write
down the weak order-2.0 scheme according to Ref. [42, (14.2.6)]:

1
Lyadl¥)] = <|1/fn) + Vo lm) At + EV?) V) At2>
J

At
+Z(V,f0 dwl +

Here, we have defined

J
I
Vo=~itl 2 > VY.
j=1

At ) ) At 852 . J At 52
VjVof / ds\dW + VoV / / dwgldsz> +> f f AWk dwt .
o Jo o Jo Jim1voJo

(AT)

(2) Formulate the second-order Kraus form. In the second step, we construct the Kraus form according to the scheme
described above. Generally, we must convert the It integrals to random variables and arrange them to ensure that they
are not correlated (see, e.g., Lemma 2). In this case, we simply take the formula from Ref. [42, (14.2.7)] and reformulate
the above second-order scheme as follows:

J

1, At
Was1) = (hm + Vo [Y) At 4 V5 1) Ar2> +3 (V_,» + 5o+ Vij)> V) AV,

J J
1 1
+ 5 D Vi) (AW} = A+ = 3 ViV, ) (AW, AW, = AZ ). (A2)
Jj=1 J1#2
Here, {AW; }j , are independent Gaussian random variables with mean zero and variance At and {AZ; ;} are

independent two-point random variables such that

E(AZ, ;) =0, E(AZ 1J2| ) = AZZ

forj, =1,2,...,j; — 1 and AZJW2 =-AZ,; .

Given that the random noises in distinct terms are uncorrelated and taking the expectation on both sides, we arrive at the
following relation for the expected state at time n + 1:

E( Y1) (Ynr1 ) = FoE() (WD Fy + ZFL,E(I%)(% )F + Z Foj B} (Ya ] 2k

j=1 J k=1
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where
1 2
Fo =1+ VoAt+ EVOAtz,
, At .
Fyj :—NN(VJ += (VjV0+V0Vj)), Vi<j<J,

N2At
2

FZ,/,k:_l V;Vk: VIijakSJ

Here, we have combined the third and fourth lines of Eq. (A2) in Fy; using E((AW? — A?) =2A7 and
E(AW;, AW;, — AZ;, ;,)*) = 2A7. This leads us to define the Kraus form,

J J
Klel = Fo,OFg + ZFl,j,OFL + Z F2,/,ka2TJ,ka
j=l1 J k=1
and to define the iteration scheme as

Pn+1 = IC[:On]-
(3) Construct the dilated Hamiltonian H. The goal of the last step is to construct the Hamiltonian H such that

K[p] = Tty (exp(—i Azﬁ) (10)(0] ® py) exp(z\/Ktﬁl)) +OP). (A3)

Since there are J2 +J + 1 Kraus operators, we seek a Hamiltonian with the following block structure:

Hy --- Hl',j . HZT,j,k
N .0 0 0 0
A=|m; o o o o0 |
0 0 0 0
Hyy 0 0 0 0

where we require H to be a Hermitian matrix.
We begin by noting that

Try (exp(—i«/&ﬁ) [0){(0] ® p exp(i«/EFl))
= Try ((exp(—i Atﬁ) |0) ®I,,> Li®p ((OI 1, exp(i\/KZN»)

J24J+1

= Y (<i| ® I, exp(—i«/XtFI) 10) ®1n) L®p (<0| ®1, exp(i@ﬁ) i) ®In> .
j=1

This will be compared to the Stinespring form,

Fo - - - Fo - - Af
Klpl=Tra | | Fi; - -+ | 100{0[®p | Fi;
Faji = oo - Faj

J24J+1

= > (Glenhoier) L) Les(0en(06eF) ) en).
Jj=1
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By matching the above two equations, we see that, to arrive at Eq. (A3), we need to find Hy, H;;, and H, ; so that
(1l exp(—iv/AdT ) 10) = Fyy + O((AD), (A4)

where [-]is 0, (1,7), or (2,7, k).
Next, we note that the matrix exponential can be expanded in the following Taylor expansion:

. ~ Af~ iIAP? AP
o VAH _ [ AP SH + P 28

.
6 24 +

Plugging this formula into the left-hand side of Eq. (A4), we match terms in the blocks of the first column and find that

A2

At
Fo=1—iV/AtHy — = (H; + Q) +1i (Hp + HoQ + OHy)

Af
+ —— (Hy + Q> + H; QO + QH; + HyQHp) + O(AF?),

24
VALt

1
Fi; = —ivAtHy; — = AtHy jHy + i~———H,;(Q + H}) + O(AP?), VY1<j <J,
J J 2 J 6 J

(AS)

v AtAt

1
Fajix = —ivAtHy, i — EAtHz,,,kHo +i Hyj  (Q+ HY + OAP?), Y1 <j,k<J,

where

J J
i i i
Q=) HiHij+ ) Hyj
j=l Jk=1
We first match the first-order terms in the last two equations by taking the leading terms to obtain
/2
V2

where we use X|j to represent the coefficient of the order terms A#.

We then substitute them into Q to obtain

Hi; =V; +O(A) = X0+ O(AD), Hyjp= ViVi4+ O(AP?) =: AP Xy 0 + O(AP),

0= VjV, + O(AD) =: Qp + O(A).
j=1

Plugging this into the first equation of Eq. (AS) and matching the first term, we obtain
1
Hy = iAf'/? (VO + EQO) = At'?H + O(AFP?).

Next, we include the next-order terms in F; and [, ;. Again, matching both sides of the last two equations, we obtain
the asymptotic expansion,

J
1 1 1 i
Hu ZXIJ’()—FAIXUJ = Vj—f—At EVOVj—i_ VJV()—l- Vj E VJT/VI/—F VjH s

Hyj = Afl/zXz,j,k,o + At}/zXz,j,k,l =:
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We then substitute them into Q and obtain

2

J J
1 1 !
0= 1 +Az§: VIV + 3V ViVot SVl V4 2 [ 2oV 0 | +

it il
>V : (Vivirr —1v[v;) | + o)
j=1 j=1 =1

=: 0y + A1Q; + O(AP).
Plugging this into the first equation of Eq. (A5) and matching the second term, we find that
Hy = At Xo1 4+ AP X,

where

1 i .
XO,Z—E(V2+X01+Q1) 6{X()15Q0} 24Q H’J; T

We have left out higher-order terms, since they only contribute at most O(Af) terms, which is comparable to the leading
error term in Eq. (A3). This completes the construction of the Hamiltonian H.

APPENDIX B: A SUMMARY OF FIRST-, SECOND-, AND THIRD-ORDER SCHEMES FOR SIMULATING
TIME-DEPENDENT LINDBLAD EQUATIONS

In this appendix, we extend the construction in the previous appendix and derive the numerical schemes to the time-
dependent Lindblad equation, which takes the form:

J
c;‘; = Li(p) = —i[H(®), p] + le VoV - % [Viwro,o}. (B1)
j=

In our derivation, we assume that H (1), V; (1) € C?[0, 00). We note that when H(?), V;(t) are smooth enough, we can
directly implement the strategy (Algorithm 1) in this paper to develop a high-order scheme. In this appendix, we sum-
marize the first-, second-, and third-order schemes for solving the time-dependent Lindblad equation in Eq. (B1). The
scheme for solving time-independent Lindblad equations can readily be obtained by removing the terms involving the
time derivatives of H and V.

We define Vy(f) = —iH (f) — Z =1 VJr (H)V(¢). For simplicity, we omit the first step and start by expressing the Kraus
operators in an asymptotic form (we omlt —i in front of F for simplicity since it does not affect the Kraus representation),

1 1
Fo=1+VoAt+ E(VS + Vo) AP + g(Vf’; + (Vy) + VoVo + Vo) AP

=1+ Yoot + Yo AL + Yoo AP,

52
Fl,j = At

(VeV; + VoV + VoV Vo + (Vo V)
YRV + V) + V), V1)<,

= Yl,j,oAl‘l/z + Y]}/’IAZS/z + le/,zAls/z,

N AtAt
V12
N AtAt
F3j 5= 7

At
F4J,k:\/"m< A (VOVVk+VV0Vk+VVk+ VkV0+(VVk)>) V1<j,k<J,

(B2)

Fyy = (Vo = Vi¥o = 1)) =t Vapa P2, V1 <j <,

ViViVi=: Yo n AP, Y1 <j,k1<J,

= Y4J’k’0At—|— Y4J’k)1At2.
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Here, Y}.; contains the coefficient of the order term A# in each expansion.

We note that, in the time-independent case, all derivative terms with " and ” are equal to zero. After obtaining the above
formula, we can use our general strategy in Sec. IV B to derive H. For simplicity, we omit the derivation process and
directly give the formulas of different-order schemes:

(i) The first-order scheme. H = |0)(0| ® Ho + >_/_, (1,'><0| QH,; +10)(j| ® HL), where
H() = Atl/z (l.Y()’() + l%) = Al‘l/zX()’Q, I_Ij,O = Yl,/,() = Xl,/',Oa (B3)

with Oy = Zle YI"/”OY]J,() foralll <j <J.
Direct calculations yield

Xoo=H,
Xijo=V;,
; (B4)
Q=7 1V
j=1
Altogether, the dilated Hamiltonian is given by
VaH Viovi oo
4 0o 0 --- 0
H = V) o 0 - 0], (B5)
Vy o o0 --- 0

which is a direct generalization of Eq. (17).
(i) The second-order scheme:

J
i =10001® Ho+ Y- (1001 @ Hiy +10)G1 @ ], ) + (U + 001 @ Hay +10) +J1 @ H], )

j=1

J
+ Y VAR A =T IN0I® Hyjag +10)G + kS + 12 =T+ | @H,
jki=1
J
+ Y AR AT IO ® Hagp +10) § + KT+ + T @ HY . (B6)
J k=1

Using Xy, X1,0, and Qg in Eq. (B4) from the first-order scheme, we have the expressions for the entries of H ,

Jj.klelJ].:
Hyj =Xij0+ At (Y1, — Xij0Z1) = X100 + AtXy, ),
H,;, = AtY, i1 = AtX, i1
J J J B7)
Hyjp= AtYs) 1 = AtXz) i1,
Hyjp = AtY?Yaj 50 =2 A2 Xy ko,
where
Z = —tx-10 (B8)
1= —5X00 = 2o
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In addition, the first diagonal block is given by
12 Qo Al I 2 in 1
Hy = At/* | iYo0 + =)+ A iYo1+ E(Ql + Xo0) — ﬁQo + E{QOaXO,O} ,
where

J J
= Z ( JoXui X 1X1,/,0> + Z X4Z,k,oX4,/’,k,0- (B9)
j=1

J k=1

We find the explicit form of H:

~ 1 1
_ 32 ( Zggr T :

H_|O)(O|®<vAtH+At <2H B {H,E V;V}} )

At 1 & i
+§ i@ (v + 5 (.7 + 7+ 27, (X7 n) + 5vH
, At 1 : i I

+|0><z|®<V,-+7({V,-,Vo}+Vj+8V,(}jV,V,-)+5V,-H)))

fZ<V+J 101 (Vo 11 = 1)) +10)G +J1@ ([Fo, 131 V;))

J
At
7 Yo AR U= TR )01® V ViV
61k11
+10) G + kS + 12 =T+ T (W Vi)'
,/ Z J+ k) + T+ DO0IQVVi+ 100 +kJ +J° +J| @ (V; V). (B10)
]k 1

(i) The third-order scheme:

=001 Ho + 3 (1001 iy + 10,1 @ 1)) + (1 +)01 8 Hay + 10 +1 @ 4,))
j=l1
J
+ Y AR =T ) 0| ® Hs, - 2
3,/,k,l+|0>(] + kU —J +J|QH 3,]k1
k=1

J
+ Y U AR T HIN0I® Hyyy+ 10) + KT+ + T ®@H] (B11)
J k=1

Defining X]...10,1, Qo, O1, and Z; as in the first- and second-order schemes, we have

Hy; = Y10+ At (Y1 — Xij0Z1) + AP (Y12 — X112 —Xl,j,ozz)

=i+ APXy 5,
Hyj = AtYs  + AP (Yoj0 — Xoj1Z)) =t -+ APXo 5,
Hijpi = AtYs) g1 + AP (Y3, k12 —X3,j,k,1,121) =+ APXs 10,
Hyjo = APYy5 00 + AP (Yaj a1 — XajuoZi) =: -+ AP Xy g1,
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where

Lo (B12)

i 1
Zy = —2Xo) — _on,o - ng {QO’XOO} 120

In addition,
172 - .QO 32 ( ; i 2 i 0 1
Hy = At lY()’o + 17 + At lYo,l + E(Ql +XO,O) — ﬁQO + E{QO’XO’O}

L3
(X + {Q0. Xo.1} + {01, Xo0})

+Al‘5/2<lY02+ ({Xo,0, X0} + O2) + 3

- L (Q0X02,0 + X0,000X0,0 + X50Q0 + {00, O1})
120 (Qo 0000 + 03Xo0 + X000;) + 720Q3>

where

J
= Z <X1,/ oX1,.2 +X1,] 2X1,.0 +X1,, 1 X171 +X2TJ,1X2JJ>

j=1

J J
+ Z X3Z,k,,,1X3J,k,l,1 + Z (X4TJ’k,1X4,j,k,0 +X4T’/’k,0X4,j,k,l>- (B13)
k=1 k=1

APPENDIX C: PROOF OF LEMMA 2

The purpose of Lemma 2 is to decompose the noise terms into uncorrelated random variables. According to Eq. (33),
the noise terms in the It6-Taylor expansion [Eq. (30)] have the property that

E [RyeRne] =0, ifat#(@)*. (C1)
We define the set of multipositive indices I';” as

=B = Gujos--ofip) € 11,2, TP 1B < k. (C2)

Using the normalized noise, we rewrite L[|y)] in Eq. (30) as

L[W)]—Z(MV W+ 33 Ru (A V).

+_
J=0 pery at=p

In light of Eq (C1), to ensure zero correlation between random variables, it suffices to focus on the set {Ry o }o+-p for
each 8 € Fk
In the remainder of the proof, we fix 8 € F+ To construct R, we first fix an order of the noise terms {Rn,a }a vop (the

order can be arbitrary and does not affect the statement) and reformulate the sequence as {R,g,,-}l.:l. Here, Iz denotes the
cardinality of the set. Consequently, we rewrite the original summation, {Rn,a }a +_p» @S

'
Z Ru ( JLESHCN v, |‘/f>) — ZRW INZR Y
i=1

at=p

We define Vg; =V, and gp; = |a| + I=o(cr) /2, where the index i is assigned based on the specified ordering.
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We define Covg as the covariance matrix of {Rg;}. Because Covg is a positive semidefinite matrix, we can write Covg
in eigendecomposition form Covg = QAQT, where A is a diagonal matrix the entries of which are non-negative and Q is
an orthogonal matrix. We define

Rg i Rg.1
Rg Rg»

_1
Ros | = (AD7207 [R5 |

where A is a diagonal matrix such that
1, lf Ai,i - 0,

(A")i; = .
’ Al"[, if Ai,i > 0.

We have that {k}g’i} are not correlated, which means that £ (ﬁ,g,i, I~2,g ;) =0ifi#; and
Rpi= (A" > iRy,
j=1
where 2;21 101> = (Covg).. = E(R} ). In addition, if Rg; # 0, then E(ﬁz’i) = 1. This proves Eq. (36).

APPENDIX D: PROOF OF LEMMA 3
Recall that S; + 1 = 2%. To fulfill Eq. (42), we need to construct a Hamiltonian,

Ho H{ H ... H]
H 0 0 0 0
H=|H 0 0 0 0|, (D1)
0 0 0 0
Hy, 0 0 0 0
that satisfies
Gl exp(—i«/Atﬁ) 10) = F; + O((AD"). (D2)

for0 <j <§;.

Comparing Eq. (43) with Eq. (40), we reduce the power of At by half because there is an extra +/Af term in the
Hamiltonian simulation [Eq. (43)]. We identify the blocks in Eq. (D1) by asymptotically matching Egs. (40) and (43). For
this purpose, we expand the matrix exponential in Eq. (40) using Taylor expansion:

At~y iAPP? iNP? o AP

. ~ AP~ -
—iv/AtH __ A2 2 3 4 6
=] —iAt'""H — —H —H —H" — H ——H D3
¢ : R I 120 7207 * (D3)
To proceed, we first define
Sk
0=> H'H,. (D4)
j=1

This is the part of the operations that map the |0) ancilla to the |0) ancilla. Using Eq. (43), we can also expand Q into an
asymptotic form:

0= 00+ AtQ; + APQOy + -+ (D5)
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We use asymptotic matching to obtain the form of Q; for all / < k. Here sy, is defined in Eq. (40) and refers to the number
of Kraus operators containing terms that scales as A#<*+1/2,

Sk
= XX, (D6)

j=1
Sk

0= (X% +X/1x0) + S x (D7)
j=1 J=sp+1
Sk . Sk

0= (2 + X500+ 50.) + 3 (K X0+X00%). (D8)
j=1 J=sptl

0= T () + & T (ne)

J=s+1 p=0
(D9)

We determine the first term in each asymptotic expansion [Eq. (40)]. We begin by matching the off-diagonal blocks in Eq.
(D2). Using Egs. (40), (D3), and (43), we have

Yio+ AtY; 1 + Aszj,z +o=WX o+ AKX | + Atz)(},z +--)d + AtZ) + At222 +--4) (D10)

for all j > 0. Here, {Z;};‘:1 are also operations that correspond to mapping the |0) ancilla to the |0) ancilla. They are
defined as

I 1
7 = — Xy —
%00 6Q0’
Z—_lx,_1x 1Q+i{QX}+ —
2 = 2 0,1 — 6 0,0 6 1 24 05<10,0 120 0>

i
7z = _EXO,I—I + 21 (Xo00, X015 - - - X0,1-2, 00, 015 .., O1-1),

where p.; is a polynomial of degree /.
From the asymptotic analysis and the matching O(1) term in Eq. (D10), we find the first coefficient in the off-diagonal
blocks of the Hamiltonian matrix [Eq. (43)]:

X;‘,o = Y/,o, j > 0. (Dll)

Next, we match the first block diagonal. By inserting the asymptotic expansion of Hj and Q into Eq. (D3), we find
I+ AtYoo+ O(AP) =1+ At (—iXo,o — %) + O(AP), (D12)
which leads to
Xoo = iYo0 + i%. (D13)

We now move on to the second term. Returning to Eq. (D10), we can match the Az terms to obtain

Xii=Y1—X0Z, j>0. (D14)
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Additionally, equating the terms A#* in the first block diagonal yields the second component of H, (for the sake of
simplicity, we will not write down the asymptotic expansion):

. i i 1
KXoy = iYo,1 + E(Ql + X50) — ﬁQé + E{Qo,Xo,o}- (D15)

To show that the above derivation process can always continue until we obtain the last term, we implement the induction
argument. Assume that we have already matched K terms and obtained

X0,0,X0,15--->Xox-1,
X0, Xo1, - Xjk—1, j=12,...,8, (D16)
Xj,O,XO,I,---er,K—l, ] :Sk+l"--5Sk'

We can use the above terms, Eq. (D9), and Eq. (D11) to calculate

00,01, ., k-1, (d17)
20,2y, ..., Zg.
To continue, we first match the A#X term in the off-diagonal blocks in Eq. (D2). Similarly to Eq. (D14), we obtain
K
Xx=Yk—Y Xk iZi j>0. (D18)

i=1

Using Xj o<k, we can construct Qg according to Eq. (D9). We then match the AzX*! term in the first diagonal block in
Eq. (D2):

I+ AtYoo+ -+ AET Yo i + O(AET?)

: Qo iy . . (D19)
=1+ At| —iXop — > 4.+ AK (—lXo,K + @k Xo0:x-1, Qo0:x)) + O(AET),
where gy x is a polynomial of degree K + 1. Thus, we obtain
Xox = iYox — iqex (Xo,0.x-1, Q0,0:x)- (D20)
This concludes the induction.
In summary, to determine all the coefficients, we can follow the steps
Y o) X, o)k X, z
okt gy i o= 20 0 5 s X0 ey By 7
> X > 0 - Xy - 7
Eq. (D14) 7 /=! Eq. (D7) = Eq. (D15)  Eq. (D11 (D21)
Sk
=1} _ Xok—1.
Eq. 18) 7= g, Q- Bq. D20y 0K

For clarity, we provide a graph to show the generation of Hin Fig. 5. Here, we note that in the last line, we only calculate
Xj <5, k—1 because Vi -1 = 0.

By Eq. (38), we find that each Y; , is a polynomial of H, V; that satisfies ||Y; || = O(||C||g:l/2) for 1 <j <s; and

1Y 4l = (9(||£||g:1) otherwise. Inserting this into the preceding derivation, we find that each X; , is a polynomial of H
and V; with the desired norm bound.
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Fy « oo - T+ AtYoo+AYpq +--  + eee e
Fy - «ss s AtY2 (=Y o) + At 2 (—iYi ) 4 -oe o oen o
Frr, ooooee e At (—’L'Yjuho) + At? (_iYMt,l) + -

22 Match (Af)? terms
I+ At (—iXo,0 + poly(Xj>0,0)) + At? (—iXo,1 + poly(X;>0,0, Xj>0,1)) + -+ *
Atl/Q (7iX1‘[)) =+ At3/2 (_iXI,l + pOly(ijoyo)) + .-

At (—iXpg,.0) + At? (—=iXar, 1 + poly(X;>0,0)) + -+
exp (—i’ﬁ\/At)
FIG. 5. The generation of H. We need to compare terms of the same order in the asymptotic expansion. Specifically, in each row of

the two matrices, we need to match the terms with the same color. Here, poly([-]) means that the term can be written as a polynomial
of elements in [-].

APPENDIX E: PROOF OF LEMMA 4

To show that H is a Hermitian matrix, we only need to prove that Hy is a Hermitian matrix.
We show this using the proof by contradiction. First, according to Eq. (25), we have

Sk
Tr | Y FlpOF; | — 1| = OarHh, (E1)

j=0

for all p(0). We define U= exp(—iﬁ v/ At). Then, from Lemma 3,

Sk
Try (T10001 @ p(OT") = Y F p()F; | = OAr™). (E2)
Jj=0 |
This implies that
T (T10)(0] ® p(0)T) — 1] = |Tr (T4 (T10)(0] ® p(0)T')) — 1| = O(AFH). (E3)

If we assume that Hj is non-Hermitian, it can be represented as

Hy = Dy — iD{(A?)?. (E4)

In this expression, both Dy and D; are Hermitian matrices. Additionally, p satisfies p < k — % and the norm of D; is of
order 1; i.e., |D1|| = ©2(1). Based on this representation, to construct /4, one can extract the term iD; from H as

H=H—i|0)(0|]® Dy(An?, U= exp(—i«/Atj-\l — (ADPT210)(0] ® Dl). (E5)

Pick |v) such that || Dy [) || = €2(1). We can apply Trotter splitting,

H27|0> ® y) — exp<—i@ﬁ) exp(—(ANP1210)(0] ® Dy) |0) ® |¥) H = O (arth), (E6)
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which leads to

1710 @ 19 | = [exp(=iv/AdT ) exp(—(a0r 2 0)(0 @ D1) [0) @ )| | = O (ar*). (E7)
Because | Dy |¢) || = (1), there exists a constant C independent of A¢ such that
‘Hexp(—i\/Atﬁ) exp(—(ADP1210)(0] @ Dy) |0) ® |¥) H - 1‘ > C(ADP+2, (ES)
Combining the above two equalities, we obtain that there exists another constant C' > 0 such that |[|U|0) ® |y) || — 1] >
C'(AHPT12 Since p < k — 1/2, we conclude that
T (T10)40] © [¥) (v T) = 1] = [IT10) ® [¥) I = 1] = Q(Ad), (E9)
[
which gontradigts Eq. (E3). This implies that Hy must be a HJT by the following equation:
Hermitian matrix.
~ Sk
APPENDIX F: BLOCK ENCODING OF H (I ® (05| @ 1) Z )| ® UT (I ®105) ® 1)
In this appendix, we describe a method to construct the j=0
block encoding of the dilated Hamiltonian H. For simplic- 5
ity, we assume access to the block encodings {U; }]S o of _ ll) 10)(0] ® 70 + Z ] ® H; s,
{H; } Sk *, [48]. In particular, we have j=1
(F2)

H,
(05| @ 1,) Up (105) ® ) = fg and

(081 ® 1) Uy (05 ® ) = =, forj =0, (F1)
where D = Q(max; ||H;||). At the end of this section, we
will take a closer look at the derivation of /; and give an
upper bound for || H;||.

Without loss of generality, we also assume that S; =
2P —1 for some P € N. The construction of the block

encoding of H can be divided into three steps:

(1) Construction of the block encoding of |0)(0] ®
(Ho/2) + Y75, )1 ® H.
We note that U= Z o) (/|®U provides a
block encoding of |0) (0| ® (Hy/2) + Z SLNUI®

Uo Ux Us Us

FIG. 6. The quantum circuit for directly implementing U =

Sl U

where /4 is the identity map that acts on the P ancilla
qubits. In the worst case, this selected oracle U can
be constructed using S + 1 controlled logic gates.
We give an example with S; = 3 in Fig. 6.

(2) Construction of the block encoding of |0)(0| ®

(Ho/2) + Y3, 10){j| ® H;. To construct the block
encoding of |0)<0|®(H0/2)+Z L 10) (| @ H,

we apply a block encoding of Z L0 1,
to U. In particular, we add P anc1lla qubits and
define the operator

W=H"®L®I®L)SWAP4 ® Iy ® I,
(F3)

where SWAP, |04) |by) = |by) |04) and H is the
Hadamard gate that is used to recover (1/4/S; + 1)
|04) + |L). The unitary gate W can be implemented
using P Hadamard gates and 3% controlled logic
gates. We draw the circuit in Fig. 7.

P— H®” i_

D
A%
N

D
€

FIG. 7. The quantum circuit for W = (H®” ® 1) swAP,.
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Ut

FIG. 8. The quantum circuit for the block encoding of H.

We note that W satisfies our requirement, which

means that
1
Wi, ®U) = 04)(0
Uy ) ml 1) (0]
Sk
(Y 1010 U | + L)Ll
j=0

(F4)

Furthermore, plugging in the formula of U, we
obtain

({041 ® L4 ® (05| ® 1) W (1s ® U) (|104) ® 14
® 08) ® 1)

1 Hy &

0 . +
= ———10)(0 —+ 0 H|.
e AR J;Hm@,

(F5)

Thus, W (4 ® U) is the block encoding of |0) (0] ®
(Ho/2) + Y%, 10) | @ H).

3) Constructlon of the block encoding of 0)(0] ®
Ho+ 55, (1) 01 @ By + 1001 @ H)).
This step can be completed by a linear combina-
tion of unitaries (LCU) circuit, as drawn in Fig. 8.

More specifically, the circuit implements the block
encoding of (W (I, ® U)) + (W (I, @ U))".

In summary, we define the operator generated by Fig. 8
as Q. According to the above derivation, Q is a block
encoding of H, meaning that

(0] ® (041 ® 14 ® (03] ® 1,) Q (|0)

®104) ® Li ® |05) ® 1) = (Fo)

1 ~
———H
V20 8k+1)D

The success probability of the block encoding is inversely
proportional to (S; + 1)D?. The next step is to determine
an upper bound for D, which is equivalent to finding the

maximum value of || .
We first consider the norm of the asymptotic expansion

term Y; , defined in Eq. (40). We upper bound [|Y; 4[| in the
following lemma.

Lemma 5. Fixk>1.Given0 <j < Syand 0 < g <k,

(4l Lllbe) 72,
(4 Llbe)

VI1<j<s,

F7
otherwise. (F7)

1Y) qll =

Proof. Recall the construction of F in Eq. (38). For
any a € I'y)0 and A# terms, where 2p e Nand 0 < 2p <
2k + 1, the coefficient has the bound

172
E |Coz’,ot = E Ca/,a’

o’ H’l o) =p, (@) F=at o’ H’l—()(ﬂl ) =p, (@) F=at

= 2

lo H—l—o(ot ) _

1<, (F8)

p.(e) T =at

Here, we use |cyq|> < IEJ(R2 o) = Corer <1 in the first
and second inequalities. Combmmg this and ||[Vy |, <

IICIIL‘Z ', we prove Eq. (F7). m

Next, we recall the formula of /; in Lemma 3 [Eq. (43)].
To bound ||H; ||, we first give the bound for ||.X; ;|| in the
following lemma.

Lemma 6. Fix k > 1. Assume that 0 <j < S; and 0 < g < k. Then,

[0 =

(4(q + DI + D@2, )72 01 < <,
(4(g + DI + D*ED L))

F9
otherwise. )

Proof. According to the matching Eq. (D2) and the asymptotic form given in Egs. (40) and (43), in H we should have
terms X; ,A# for 1 <j < s; and X; ;,A#971/? for other j . Furthermore, by matching the power of At on both sides of Eq.

(D2), we can rewrite Egs. (D18) and (D20) as
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. ¥ .
iYoq + Z CtyjaXonXe  Xerys o5 J =0,
Y = £eg) yell, . (F10)
g = .
Y4+ Z ey aXinXe pXerys s T > 0.

teg) yerl,
Here, [cs 4l < 1and ¢z 4 = 0if [§] # [y] — 1,

g, ={§=(&,....6) €{0,1,2,...,5)%" : |§] <29 — 1}

and

[yl
{y = (yls--'5y|}/|) € {0’1’2a""q_ 1}®|}/| : Z(yl+1/2) EQ+ 1/2}, 1 S.] =< Sk,
Hj _ i=1

q [yl
{y = vp) €10.1,2, g =1 > (i +1/2) < g + 1} ,  otherwise,
i=1

for ¢ > 0 and H{) = (). We note that to match the power of At, ¢z ,.; , = 0 whenever the power of At corresponds to

Xj,le;szgz% ...exceedsg + 1 — (1i<j<g, +171/2).
We prove Eq. (F9) by induction. From Eq. (F7), we obtain that, when ¢ = 0, Eq. (F9) is true.
Assume that Eq. (F9) is true forg < O — 1:

(i) Fix 1 </ < sy. Using Eq. (F10),

160l = %0l + D cepio (@ + DY (4010 + DHL])
}/GHQ
< GILI) T2 4+ (U + D) @ L)@t 3 1

)/GHQ
+1/2
< BILIe) 22 + ((J + DO 4010) £ ]140) /2

1/2
< (40 + DI + D*CH2 L)1, ) o2,

Here, we use the induction bound and | {£]€ € 8, €] = |y| — 1} | = ((J + D®!"I7! in the first inequality. Fur-
thermore, the power of O + % comes from the fact that the power of At corresponds to Xj,le;l,szgz,y} ... cannot

exceed O + % — (ly1/2), which implies that the power of (4Q! J + DH* ||£||be) cannot exceed O + % In the second
inequality, we use Eq. (F7), |c, | < 1, and |y| < 2Q. In the third inequality, we use |[Tp| < Q9.
(i) Fixj = 0orj > s;. Similar to before, using Eq. (F10),

X0l < %ol + 3 cevyo (@ + D5 (4010 + D))"
yEHQ

< @IL]p)2" + (U + DR @01 L)1)t S 1
)/EHQ

< AL 2 + (( + D)V 4010] L) 2!
< (4O + DI + DOV £),)

The above two inequalities conclude the induction and prove Eq. (F9).
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Finally, using Lemma 6 [Eq. (F9)], it is straightforward to obtain

k—1
(4 + DT + DR L) 2 Al 1<) <,
=0
I <5 |
(4(g + DU + D*@D L )T A#2) otherwise,
q=0

-1
forall 0 <j < S;. Choosing At = O <<kk+2(J 4 1Atk ||£||be> ), the above equation suggests that

k—1
D=0 (U +DHILREY (g + DI+ D) Lge) s ) =0 (G +D™ILRE). F1

g=1

Recall S; = O((J + 1)) from Theorem 1. We obtain the bound for the subnormalization factor of the block encoding:
V2 DD =0 (0 + 2L (F12)

It should be noted that the bound presented in Eq. (F11) significantly overstates the size of ||Hj H . In the proof of Lemma 6,
we upper bound the small coefficient ¢ by 1 and do not take into account possible cancelation of terms in the summation. In
practice, considerable cancelation occurs within asymptotic expansion and matching, resulting in a substantially reduced
I

A concrete illustration of this idea can be seen from the first order to the third order provided in Appendix B. Let us
consider £ = 2 for example, where the dilated Hamiltonian H takes the form of Eq. (B10). We have

v ARR o 12 | SAL L3 .
IHollz = VAU L e + == MW [H; [, < 1L1" + == IL17 1=j <,
At 32 .
||[_IJ'JFJ”2S ml|£||be s 1 S] SJ,
At 32 .
||H2J+(1—1)J2+(k—1)J+j ”2 = %”EHbe , 1 =j,kl<J,

At
||HJ3+2J+(k—1)J+j ||2 <./ 7”£”bea 1<j,k=<J.

We note that S, =J3 +J?+J and S, + 1 < (J + 1)>. Then, we can choose At = §||E[,e||_1 and D = 2||,C||ll)éz. This

gives us the subnormalization factor:
208k + DD = 2v2(J + DL/

We observe that the choice At is independent of J and the power of J in the subnormalization factor is significantly
smaller than that of Eq. (F12).
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