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We present a novel method to simulate the Lindblad equation, drawing on the relationship between

Lindblad dynamics, stochastic differential equations, and Hamiltonian simulations. We derive a sequence

of unitary dynamics in an enlarged Hilbert space that can approximate the Lindblad dynamics up to an arbi-

trarily high order. This unitary representation can then be simulated using a quantum circuit that involves

only Hamiltonian simulation and tracing out the ancilla qubits. There is no need for additional postse-

lection in measurement outcomes, ensuring a success probability of one at each stage. Our method can

be directly generalized to the time-dependent setting. We provide numerical examples that simulate both

time-independent and time-dependent Lindbladian dynamics with accuracy up to the third order.
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I. INTRODUCTION

The Lindblad quantum master equation is a fundamen-

tal tool in studying open quantum systems [1,2]. Unlike

the time-dependent Schrödinger equation, the Lindblad

equation accounts for the effects of an environment on a

quantum system by incorporating non-Hermitian operators

that depict dissipative processes and jump operators that

characterize environment noise. Beyond its seminal appli-

cations in quantum electron dynamics [3–6], the Lindblad

equation, due to its universal representation property, has

found extensive utility in various disciplines, ranging from

material science [7,8] to cosmology [9]. Lindblad dynam-

ics can also be used to describe circuit noise in quantum

computing [10] and it underpins many quantum error-

mitigation (QEM) strategies [11–14]. Recent advances

have also leveraged Lindblad dynamics as an algorith-

mic tool for thermalizing quantum systems [15,16] and for

preparing ground states [17].
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As the range of applications for the Lindblad dynam-

ics continues to expand, it becomes increasingly important

to develop efficient and robust simulation methodologies.

Classical simulation algorithms [6,18–20] are often hin-

dered by a complexity that scales polynomially with the

Hilbert-space dimension, resulting in exponential cost rel-

ative to the system size (such as the number of spins or

qubits). In this context, quantum algorithms have emerged

as promising alternatives that may reduce the cost expo-

nentially. However, many of the current algorithms [16,

21–25], particularly when high-order accuracy is required,

can require many ancilla qubits, complicated quantum con-

trol logic for clock registers, and an involved amplitude-

amplification procedure. These algorithms are thus much

more intricate to implement compared to those designed

for Hamiltonian simulation [26–29]. This paper presents a

novel approach to simulating the Lindblad equation. Our

method leverages the intimate relationship between Lind-

blad dynamics, stochastic differential equations (SDEs),

and Hamiltonian simulations. We show that by adding

extra ancilla qubits, the Lindblad dynamics can be incor-

porated into a unitary dynamics in a larger Hilbert space.

Moreover, the unitary dynamics can be simulated using

a quantum circuit that only involves Hamiltonian sim-

ulation and tracing out the ancilla qubits (see Fig. 1).

In this work, we present a systematic approach for con-

structing this unitary map and the corresponding Hamil-

tonian. Compared to other Lindblad simulation meth-

ods [22,23,30], our proposed method has several distinct

features:
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(1) Our numerical scheme reduces the Lindblad simula-

tion problem to Hamiltonian simulations, for which

many algorithms are available.

(2) When a unitary dynamics is constructed for the

Hamiltonian simulation (e.g., via Trotterization),

there is no need for additional postselection in mea-

surement outcomes. The unitary evolution and the

trace-out procedure guarantee that the success prob-

ability at each step is one, eliminating the need for

amplitude-amplification procedures.

(3) The algorithm can be systematically improved to

achieve high-order accuracy.

(4) The algorithm can be easily generalized to time-

dependent Lindbladians in applications such as

driven open quantum systems. Such direct gen-

eralization is highly nontrivial for many existing

algorithms.

Our procedure involves the following three steps, sum-

marized in Fig. 1. For simplicity, the Lindbladian dynamics

are assumed to be time independent. The detailed explana-

tion of the flowchart can be found in Sec. IV.

(1) We unravel the Lindblad dynamics and reformulate

them as SDEs.

(2) We use classical numerical SDE schemes and

approximate the unraveled equation with an Itô-

Taylor expansion of an arbitrary order of accu-

racy. This induces a Kraus representation of

the dynamics of the density operator, which is

completely positive.

(3) Finally, instead of using the quantum algorithm due

to Ref. [24] to implement the Kraus form, we pro-

pose a new procedure that converts the Kraus form

to the Stinespring form, detailing the construction of

the Hamiltonian operator from the Kraus operators.

This gives rise to a numerical scheme represented

as unitary dynamics that can be simulated through

Hamiltonian simulation and trace-out. The result-

ing map is completely positive and trace preserving

(CPTP).

A. Related works

Wang et al. [30] have demonstrated how a single-qubit

completely positive trace-preserving quantum channel can

be approximated by simple quantum channels that can

be simulated using only one ancillary qubit. Kliesch et

al. [21] introduced the first quantum algorithm for sim-

ulating general Markovian open quantum systems. This

algorithm has a complexity scaling of O(t2/ε), where t

denotes the evolution time and ε represents the desired

precision. The computational cost has been improved con-

siderably in more recent works [22–24,31]. In particu-

lar, the complexity of the algorithms in Refs. [23,24,31]

is O (tpolylog(t/ε)), with a linear dependence on t and

a polylogarithmic dependence on ε. To our knowledge,

all of the works focus on time-independent Lindbladian

dynamics. In Ref. [24], the authors have suggested

an extension of their method to time-dependent Lind-

blad dynamics, which emerges from rotating-wave

approximations [32]. However, such an extension has not

FIG. 1. A flowchart illustrating the derivation of our numerical scheme and the quantum circuit (one step) for simulating the time-

independent Lindbladian dynamics using the following steps: (1) unraveling of the Lindblad equation into stochastic differential

equations (SDEs); (2) expressing classical numerical SDE schemes as the Kraus-representation form for the density operator; (3)

mapping the Kraus form to the dilated Hamiltonian in the Stinespring form. The simulation on the circuit advances a Hamiltonian

simulation for a time duration of
√

�t, after which the ancilla qubits are measured. The outcomes of these measurements on the ancilla

qubit are disregarded and the ancilla qubits are subsequently reset to the state |0ak 〉 in preparation for the next iteration. The inherent

unitary and trace-out design ensures that the algorithm achieves a success probability of one, eliminating the need for any additional

amplitude-amplification steps.
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been fully explored, e.g., how to block encode the time-

dependent Hamiltonians and jump operators. Schlimgen

et al. [33] have proposed to decompose Kraus operators

into unitary operators that can be approximated by matrix

exponentials. This approach has later been applied to the

vectorized form of the Lindblad equation [25]. The overall

complexity, however, has not been presented. Andersson

et al. [34] have explored how to construct the Kraus form

for the quantum channel induced by the Lindblad dynam-

ics but without a full characterization of the numerical or

model error. More importantly, this approach requires the

input of the density matrix as a d2-dimensional vector, with

d being the Hilbert-space dimension. Maintaining quantum

speed-up with such a classical input is highly nontrivial.

More recently, Patel and Wilde [35,36] have proposed to

encode the jump operators into a pure state |ψ〉, called a

program state. Their algorithm is implemented through a

quantum channel that involves both ρ and ψ , followed by a

trace-out step. For multiple jump operators, their approach

follows a Trotter-type splitting [22], which is at most sec-

ond order. The work of Nakazato [37] has also studied the

Kraus form but with a focus on specific open quantum sys-

tem models. Very recently, Ref. [38] has proposed a novel

approach using repeated-interaction (RI) maps for approx-

imating Lindblad dynamics. The simulation based on RI

maps offers a first-order accuracy scheme for Lindblad

simulations.

In the domain of Hamiltonian simulations, various algo-

rithms with near-optimal query complexities suitable for

different settings have been introduced. For instance, quan-

tum signal processing [39] can reach the optimal query

complexity for time-independent problems. In contrast,

the truncated Dyson series [40] is applicable to general

time-dependent Hamiltonian simulation but it is based on

block encodings with complex control-logic operations.

Although Trotterization does not achieve the optimal query

complexity, it is more accessible in terms of its imple-

mentation (especially its lower-order versions). Taking this

perspective into account, this work diverges notably from

existing methods for simulating open quantum systems

[23,24], which are based on block encodings and entail

complex control-logic operations. The nature and com-

plexity of our algorithm for simulating open quantum sys-

tems resemble those of higher-order Trotter schemes used

in Hamiltonian simulation. Combining our approach with

different Hamiltonian simulation frameworks could lead

to the development of new efficient Lindblad simulation

algorithms.

B. Organization

The organization of the rest of the paper is as follows.

In Sec. II, we introduce essential notation, the relation

between the Lindblad equation and the SDEs, along with

classical numerical methods for solving SDEs. The main

idea with the development of a first-order scheme is illus-

trated in Sec. III. Our main results and quantum algorithms

for simulating the Lindblad equation [Eq. (2)] are detailed

in Sec. IV. The performance of our algorithm is validated

through various numerical experiments in Sec. V, for both

time-independent and time-dependent Lindbladians.

Moreover, in Appendix A, we provide a detailed deriva-

tion of the time-independent second-order scheme, serv-

ing as a constructive example for our main results. For

practical implementation, we provide formulations of the

first-, second-, and third-order schemes (in both time-

independent and time-dependent frameworks) in Appendix

B. The technical proofs supporting our main results are

found in Appendices C and D.

II. PRELIMINARIES

This paper uses capital letters for matrices and a curly

font for superoperators. In particular, the identity map

(superoperator) is denoted by I and the density opera-

tor (matrix), which is a positive-semidefinite (PSD) matrix

with Tr(ρ) = 1, is represented by ρ. The vector or matrix

2-norm is denoted by ‖ · ‖: when v is a vector, its 2-norm

is denoted by ‖v‖ and when A is a matrix, its 2-norm (or

operator norm) is denoted by ‖A‖.

The trace norm (or Schatten 1-norm) of a matrix A is

‖A‖1 = Tr
[√

A†A
]
. Given a superoperator M that acts on

operators (matrices in this paper), the induced 1-norm is

‖M‖1 =: sup
‖ρ‖1≤1

‖M(ρ)‖1. (1)

The main emphasis of the paper is on the approximation of

the Lindblad master equation [1,2],

d

dt
ρ = −i[H , ρ]︸ ︷︷ ︸

LH (ρ)

+
J∑

j =1

(
Vj ρV

†
j −

1

2

{
V

†
j Vj , ρ

})

︸ ︷︷ ︸
LV(ρ)

=: L(ρ).

(2)

Here, H ∈ Cd×d is the system Hamiltonian and Vj ∈ Cd×d

are known as the jump operators that come from the

interactions with the environment.

The Gorini-Kossakowski-Lindblad-Sudarshan (GKLS)

theorem [1,2] states that if L is a Lindbladian with the form

given in Eq. (2), then exp(Lt) is a quantum channel, which

means that it is a CPTP map that transforms one density

operator into another. As a quantum channel, it is contrac-

tive under the trace distance [41, Theorem 9.2]: for any two

density operators ρ1 and ρ2, and any t > 0, it holds that

‖exp(Lt)ρ1 − exp(Lt)ρ2‖1 ≤ ‖ρ1 − ρ2‖1. (3)

To approximate the dynamics up to a given time T, one can

divide the time interval into N steps, N ∈ N, with step size
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�t = T/N . Thus it suffices to construct an approximation,

here denoted by M�tρ, for a small step, e.g.,

‖exp(L�t)ρ − M�t[ρ]‖1 ≤ Ck�tk+1, (4)

for any density operator ρ and some k ≥ 1 with a constant

Ck. The global error can then be deduced due to the con-

tractive property, given in Eq. (3). Specifically, if M�t[·]
is a quantum channel, we have

‖ exp(LT)ρ − (M�t)
N ρ‖1

≤ ‖ exp(L�t)(exp(L(T − �t))ρ − (M�t)
N−1ρ)‖1

+ ‖(exp(L�t) − M�t)(M�t)
N−1ρ)‖1

≤
∥∥exp(L(T − �t))ρ − (M�t)

N−1ρ
∥∥

1
+ Ck�tk+1

· · ·

≤ CkT�tk,

(5)

where we have repeated the method N times to arrive at

the last inequality. This gives us a kth-order convergence

and we note that the final constant Ck is independent of T.

A. Unraveling the Lindblad equation using SDEs

The solution to the Lindblad equation can be expressed

through an SDE, which in turn also offers an intuitive

description of a quantum dynamics subject to environmen-

tal noise. Such a procedure is known as unraveling [6] and,

for this purpose, we consider the stochastic Schrödinger

equation,

d |ψt〉 =

⎛
⎝−iH −

1

2

J∑

j =1

V
†
j Vj

⎞
⎠ |ψt〉 dt +

J∑

j =1

Vj |ψt〉 dW
j
t ,

(6)

where {Wj
t }J

j =1 are independent Wiener processes and the

solutions are interpreted in Itô’s sense [42].

The connection to the Lindblad equation [Eq. (2)] can

be made by using Itô’s formula for |ψt〉 〈ψt| and taking the

expectation, which yields

dE(|ψt〉〈ψt|)
dt

= −i[H , E (|ψt〉〈ψt|)]

+
J∑

j =1

Vj E (|ψt〉〈ψt|) V
†
j −

1

2

{
V

†
j Vj , E (|ψt〉〈ψt|)

}
.

(7)

If the initial condition is E(|ψ0〉 〈ψ0|) = ρ0, then Eq. (7)

is equivalent to the Lindblad equation [Eq. (2)] with ρt =
E(|ψt〉 〈ψt|).

In the classical regime, the aforementioned relationship

serves as the basis for a stochastic algorithm designed to

simulate the Lindblad solution [19,43]. More specifically,

the approach involves the following steps. First, several

initial states |ψ0,i〉N
i=1 are randomly sampled from the den-

sity operator ρ0. Next, numerical simulations of Eq. (6)

are performed for each initial state, evolving them up to

time T. Finally, by averaging the resulting set of density

matrices |ψT,i〉〈ψT,i|, one obtains an approximation to the

solution ρT.

B. Numerical schemes for SDE

Having reformulated the Lindblad dynamics using

SDEs as in Eq. (6), we can leverage a wide variety of

numerical techniques available in the literature for solv-

ing SDEs. In this paper, we mainly rely on the techniques

described in Ref. [42, Chapter 14]. The simplest among

these methods is the Euler-Maruyama scheme, which, for

any time step �t > 0, is given by

|ψn+1〉 = |ψn〉 +

⎛
⎝−iH −

1

2

J∑

j =1

V
†
j Vj

⎞
⎠ |ψn〉�t

+
J∑

j =1

Vj |ψn〉
√

�tWj =: L1,�t(|ψn〉), (8)

where {Wj }J
j =1 are independent Gaussian random variables

with zero expectation and unit variance. �t is a discretiza-

tion of dt in Eq. (6) and
√

�tWj is a discretization of dW
j
t .

This scheme provides a first-order approximation to the

solution in the weak sense. Specifically, for N ∈ N and

T = N�t, we have

‖E(|ψN 〉〈ψN |) − E(|ψT〉〈ψT|)‖1 = O (T�t) , (9)

where |ψT〉 is the solution of Eq. (6) and the constant is

independent of �t.

Like ordinary differential equations (ODEs), higher-

order numerical schemes can be obtained through a high-

order expansion of SDEs. Due to the presence of the

Brownian-motion terms, the Itô-Taylor expansion needs to

be employed. This leads to many more terms when com-

pared to such expansions from ODEs (see the higher-order

schemes in Appendix B).

III. ILLUSTRATIVE DEMONSTRATION USING A

FIRST-ORDER ALGORITHM

While numerical simulations of SDEs have been exten-

sively explored in the literature, adapting these schemes

directly for execution on a quantum computer presents

challenges. For instance, the transformation from |ψn〉 to

|ψn+1〉 in Eq. (8) is generally nonunitary and there is no
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guarantee that |ψn+1〉 will remain a unit vector. On the

other hand, since our objective is to simulate the Lindblad

equation, it is not necessary to simulate every individual

SDE trajectory in Eq. (6). Instead, due to Eq. (6), it suffices

to simulate the “expectation form” of SDE in Eq. (6).

We illustrate our main concept by deriving a first-order

Lindblad simulation scheme from the Euler-Maruyama

scheme [Eq. (8)]. For simplicity, we assume J = 1, i.e.,

there is only one jump operator. Using Eq. (8) and the

property that E(W) = 0 and E(W2) = 1, we obtain

E(|ψn+1〉〈ψn+1|) = E

(
L1,�t[|ψn〉]

(
L1,�t[|ψn〉]

)†
)

=
(

I +
(

−iH −
1

2
V†V

)
�t

)
E(|ψn〉〈ψn|)

×
(

I +
(

iH −
1

2
V†V

)
�t

)

+ VE(|ψn〉〈ψn|)V†�t. (10)

Let F0 = I +
(
−iH − 1

2
V†V

)
�t, F1 = V

√
�t, and ρn =

E(|ψn〉〈ψn|). The evolution from ρn to ρn+1 is then

expressed in the Kraus form:

ρn+1 =: E(|ψn+1〉〈ψn+1|) = K[ρn] = F0ρnF
†

0 +F1ρnF
†

1 .

(11)

Furthermore, one also observes that

ρn+1 = ρn + L(ρn)�t + O(�t2) = exp(Lt)ρn + O(�t2),

(12)

where L is the Lindbladian that is defined in Eq. (2). This

equality implies that Eq. (11) is a first-order scheme for the

Lindblad equation.

The above calculation shows that an SDE solver implies

an approximation for the density matrix in the Kraus form.

Next, to derive a first-order quantum simulation scheme,

we further expand the Kraus form K in Eq. (11) into a

Stinespring representation,

K[ρ] = TrA

(
U |0〉〈0| ⊗ ρU†

)

=: TrA

([
F0 ·
F1 ·

]
|0〉〈0| ⊗ ρ

[
F0 ·
F1 ·

]†
)

, (13)

where U is a unitary matrix that can be derived from Stine-

spring’s factorization theorem. A key focus of this paper is

on the construction of a Hamiltonian-generated unitary to

approximate U, so that the algorithm can be implemented

via a Hamiltonian simulation. In particular, we want to find

a 2d × 2d Hermitian matrix H̃ such that

K[ρ] = TrA

(
exp
(
−i

√
�tH̃

)
|0〉〈0| ⊗ ρ exp

(
i
√

�tH̃
))

+ O(�t2), (14)

where the operator TrA traces out the ancilla qubit. We

construct H̃ that takes the following form:

H̃ =
[

H0 H
†

1

H1 0

]
, (15)

where H0 is a Hermitian matrix. After applying Tay-

lor expansion to exp
(
−i

√
�tH̃

)
and matching O(1) and

O(�t) terms on both sides of Eq. (14), we find that

H0 =
√

�tH , H1 = V. (16)

The above derivation suggests that the scheme

ρn+1 = TrA

(
exp

(
−i

√
�t

[√
�tH V†

V 0

])
|0〉〈0|

⊗ ρn exp

(
i
√

�t

[√
�tH V†

V 0

]))
(17)

serves as a first-order approximation to the Lindblad

equation [Eq. (2)]. This formula can be directly extended

to the general case with multiple jump operators, simply

by appending the additional jump operators along the first

row and the first column. Furthermore, the update process

described in Eq. (17) only comprises a Hamiltonian simu-

lation and a trace-out procedure, making it straightforward

to implement and succeed with probability one.

The above algorithm is similar to the first-order scheme

in Ref. [23], which uses first-order Trotter splitting to sep-

arate exp(LV�t) and exp(LH�t). Subsequently, it uses

formulas analogous to those in Eq. (17) to simulate

exp(LV�t). However, it is difficult to extend the first-order

scheme in Refs. [23,38] to high-order schemes. We note

that the limitation of the first-order accuracy comes from

two components: (i) the first-order approximation of the

map exp(LV�t)(ρ); and (ii) the first-order Trotter split-

ting used to separate exp(LV�t) and exp(LH�t). While

the approximation of exp(LV�t)(ρ) might be improved to

a higher-order approximation, which is already not trivial,

it is very difficult to avoid the first-order error caused by

the first-order Trotter splitting. Unlike Hamiltonian sim-

ulation, the simulation of the dissipative part etLV must

have a non-negative t, meaning the simulation cannot go

backward in time, since it does not constitute a CPTP

map. However, for Trotter splitting beyond second order

with a real time variable t, a backward-in-time simula-

tion is required [44]. The method described in Ref. [23]

employs Eq. (17) merely as an illustrative example. The
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authors’ primary algorithm is built upon the first-order

method expressed in the Kraus form [Eq. (11)] and the

accuracy is boosted using a compression scheme. A key

goal of this paper is to demonstrate that the Stinespring

form, such as the one in Eq. (17), paired with an appro-

priate dilated Hamiltonian, can be constructed to achieve

arbitrary orders of accuracy.

IV. MAIN RESULTS

In the previous section, the passage from Eqs. (8)–(11)

and Eq. (13) and then to Eq. (17), unveils a procedure

to construct a Stinespring representation of the solution

map with a Hamiltonian-generated unitary operator. Since

numerical solutions for the SDE [Eq. (6)] can be system-

atically constructed with an arbitrary order of accuracy, by

taking expectations, we arrive at the Kraus-form approx-

imation for simulating the Lindblad equation [Eq. (2)] to

arbitrary order. Our main contribution is to extend the first-

order scheme [Eq. (17)] to an arbitrarily high order. We

present a family of methods, as detailed in Eq. (19) and

Algorithm 1, to derive the unitary dynamics that approx-

imate the Lindblad dynamics [Eq. (2)] to an arbitrarily

high order. Moreover, the simulation of the unitary dynam-

ics requires only Hamiltonian simulations and tracing out

ancilla qubits, similar to Eq. (17).

Our main theoretical result is stated as follows.

Theorem 1. Let ‖L‖be =
(
1+‖H‖+

∑
j ‖Vj ‖2

)
. Given

k > 0, �t = O(‖L‖−1
be ), N ∈ N, and T = N�t. There

exists a Hermitian matrix

H̃ = |0〉〈0| ⊗ H0 +
Sk∑

j =1

(
|j 〉〈0| Hj + |0〉〈j | H

†
j

)
, (18)

where the matrices Hj ∈ Cd×d, H0 is Hermitian, the

number of terms Sk is upper bounded by (J + 1)k+1,

and
∥∥Hj

∥∥ = O (‖L‖be). Furthermore, using ak ≤ 
(k +
1) log2(J + 1)� ancilla qubits,

ρn+1 = TrA

(
exp
(
−i

√
�tH̃

)
|0ak 〉〈0ak |

⊗ ρn exp
(

i
√

�tH̃
))

, (19)

is a kth-order scheme for simulating the Lindblad equation

[Eq. (2)], i.e.,

‖ρT − ρN ‖ = O

(
T ‖L‖k+1

be �tk
)

(20)

and the constant only depends on k and J .

The proof of Theorem 1 is constructive. The Her-

mitian operator H̃ in our construction will be called

the dilated Hamiltonian. For any order k > 0, we can

always construct the corresponding Kraus-representation

and Stinespring forms of the Lindblad dynamics [Eq.

(2)]. Specifically, we will propose a method to construct

each block of H̃ (denoted as H0, H1, . . . , HSk
) using a

polynomial of H , Vj , V
†
j , and �t1/2 with the maximum

degree of poly(k). According to the above theorem, our

algorithm requires O(k log(J + 1)) ancilla qubits to gen-

erate a kth-order scheme, which is slightly fewer than the

�(k log((J + 1)k)) ancilla qubits needed in Ref. [24].

In Ref. [23, Theorem 4], a lower bound on the

total Hamiltonian simulation time is proved using the

amplitude-damping process. It asserts that discretizing

Lindblad dynamics into N stages requires a minimum total

Hamiltonian evolution time of �(
√

N ). In Theorem 1 with

N = 1/�t (assuming the final time T = 1 for simplicity),

this implies that the required total Hamiltonian simulation

time must be at least O(1/
√

�t). In Eq. (19), the Hamil-

tonian simulation time step is
√

�t, resulting in a total

simulation time of
√

�t/�t = 1/
√

�t, which agrees the

aforementioned lower bound.

In practical applications, the implementation of

exp
(
−iH̃ t

)
relies on the assumptions made about the ora-

cles for H and Vj . Assuming that H and Vj can be

decomposed into a sum of local operators, we can then

decompose each Hj into a sum of local operators. This

decomposition enables the implementation of exp
(
−iH̃ t

)

using e.g., a high-order Trotter formula. In this case, the

complexity depends on how complicated H and Vj are.

An alternative method of implementation involves utiliz-

ing block encoding. In Appendix F, we explore a specific

approach to implement the block encoding of H̃ assuming

the block encoding of H and Hj . This provides a method

for implementing exp
(
−iH̃ t

)
using block-encoding-based

Hamiltonian simulation algorithms. Alternative methods

for efficiently implementing exp
(
−iH̃ t

)
are an important

direction for future research.

A. Overview of the main algorithm

In this section, we describe the construction of our

main simulation algorithm, focusing on deriving the kth-

order scheme for the time-independent Lindblad equation.

We outline the general procedure for constructing the

Hamiltonian H̃ for any k and in Appendix A we provide

a specific example of a second-order scheme for time-

independent Lindbladian dynamics. In Appendix B, we

extend our approach to time-dependent Lindblad equa-

tions and present the explicit forms of H̃ for the first-

to third-order schemes, covering both time-dependent and

time-independent scenarios.

We first note that the simulation algorithm for Eq. (2)

is straightforward after obtaining H̃ (see Fig. 1). Given a

required order k > 0, after finding the Hamiltonian H̃ such
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that

exp(L�t)ρ = TrA

(
exp
(
−i

√
�tH̃

)
|0ak 〉〈0ak |

⊗ ρ exp
(

i
√

�tH̃
))

+ O(�tk+1), (21)

our numerical scheme is

ρn+1 = TrA

(
exp
(
−i

√
�tH̃

)
|0ak 〉〈0ak |

⊗ ρn exp
(

i
√

�tH̃
))

+ O(�tk+1). (22)

The trace-out process can be accomplished by measuring

and resetting the ancilla qubit.

Now, we focus on our approach to constructing the

dilated Hamiltonian H̃ in Eq. (18). Similar to the deriva-

tion of the first-order scheme in Sec. III, we follow three

steps to generate a kth-order scheme:

(1) Formulate the weak scheme of order k for SDEs in

Eq. (6). Find a random linear operator Lk,�t : Cd →
Cd that generalizes Eq. (8), such that for any unit

vector |ψ〉,
∥∥∥E
(

Lk,�t[|ψ〉]
(
Lk,�t[|ψ〉]

)†
)

− E (|ψ(�t)〉〈ψ(�t)|)
∥∥∥

1
= O((�t)k+1), (23)

where |ψ(�t)〉 is a realization of the solution of

Eq. (6) with |ψ(0)〉 = |ψ〉. We recall that ρ(�t) =
E (|ψ(�t)〉〈ψ(�t)|) is the solution of the Lindblad

equation with ρ(0) = E (|ψ(0)〉〈ψ(0)|).
We note that there are many approaches to designing

a kth-order weak formulation for SDE [Eq. (6)]. In

Sec. IV B, we will present the Itô-Taylor-expansion

approach from Ref. [42, Chapter 14].

(2) Formulate the kth-order Kraus form. From the

operator Lk,�t, find a sequence of Kraus operators

{Fj }Sk
j =0, where Sk ≤ (J + 1)k, such that

E

(
Lk,�t[|ψ〉]

(
Lk,�t[|ψ〉]

)†
)

=
Sk∑

j =0

Fj |ψ〉〈ψ | F
†
j

+ O
(
(�t)k+1

)
.

(24)

The above equation directly implies that the trace-

preserving property holds approximately:

Sk∑

j =0

F
†
j Fj = I + O(�tk+1). (25)

We can explore various methods to construct the

Kraus form mentioned above. In Sec. IV B, we

will discuss one approach to obtain the Kraus form

associated with a kth-order weak scheme for the

SDEs. With the Kraus form ready, the algorithms

in Refs. [23,24] can be directly used to simu-

late the Lindblad dynamics by implementing the

Kraus form. Therefore, the unraveling approach

provides an alternative to obtaining a higher-order

approximation expressed in Kraus form, without

using Dyson series and numerical quadrature. More

importantly, here we take a different path forward,

by converting the Kraus form to a Stinespring

form, thereby enabling simulations of the Lindblad

dynamics through Hamiltonian simulations.

(3) Construct the dilated Hamiltonian H̃ . Find a

sequence of matrices {Hj }Sk
j =0 such that

Sk∑

j =0

Fj |ψ〉〈ψ | F
†
j = TrA

(
exp
(
−i

√
�tH̃

)
|0ak 〉〈0ak |

⊗ |ψ〉〈ψ | exp
(

i
√

�tH̃
))

+ O((�t)k+1), (26)

where the Hermitian matrix H̃ = |0〉〈0| H0 +∑Sk
j =1 |j 〉〈0| Hj + |0〉〈j | H

†
j . This is achieved thro-

ugh asymptotic analysis. This versatile approach is

applicable not only when the Kraus form is derived

from an SDE integrator but also in situations in

which the Kraus form emerges from alternative

derivations.

B. Proof of the main theorem: Construction of the

dilated Hamiltonian H̃

In this section, we detail the strategies to accomplish the

preceding three steps, which provide a constructive proof

of Theorem 1. The algorithm to construct H̃ is summarized

in Algorithm 1.

In the following part of the derivation, we simplify our

notation by omitting the subindex of Lk,�t and denoting it

as L. We also define

V0 = −iH −
1

2

J∑

j =1

V
†
j Vj , (27)

which is responsible for the non-Hermitian part of the

Lindblad dynamics. We will not include the subscript of

|ψn〉 in the following proof for the sake of simplicity.

(1) Formulate the weak scheme of order k for the SDE

[Eq. (6)]. The kth-order weak scheme has been thoroughly

investigated in the classical numerical SDE literature.

Here, we employ the scheme derived from the Itô-Taylor

expansion as presented in Ref. [42, Chapter 14]. Toward
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ALGORITHM 1. Construction of the dilated Hamiltonian H̃ .

Input: Desired order: k; Time step: Δt; Hamiltonian: H; Jump operators: {Vj};

Output: H̃.
1: Formulate a k-th order SDE scheme following Eq. (30).
2: Produce the corresponding k-th Kraus using Eq. (39).

3: Construct the dilated Hamiltonian H̃ based on the pathway detailed in Eq. (D21) and Fig. 5
in the Appendix D.

this end, we define two sets of multi-indices,

�k = {α = (j1, j2, . . . , j|α|) ∈ {0, 1, 2, . . . , J }⊗|α| : |α| ≤ k}
(28)

and

�k/0 = �k \ {α = {0}⊗|α| : |α| ≤ k}, (29)

where |α| is the number of components of the multi-index

α. These indices are necessary to keep track of the differ-

ent components of the Brownian motion Wj (t). A scheme

of weak order k can be expressed using multiple integrals

over 0 ≤ s1 ≤ s2 ≤ · · · ≤ sk ≤ �t,

L[|ψ〉] = |ψ〉 +
∑

α∈�k

(
Vj1Vj2 · · · Vj|α| |ψ〉

) ∫ �t

0

∫ s|α|

0

∫ s|α|−1

0

· · ·
∫ s2

0

dWj1
s1

dWj2
s2

· · · dW
j|α|
s|α|

=
k∑

j =0

(�t)j

j !
V

j

0 |ψ〉 +
∑

α∈�k/0

RαVα |ψ〉 , (30)

where we set dW0
s = ds, Vα = Vj1Vj2 · · · Vj|α| denotes a

product of the jump operators and the sequence of random

variables {Rα}α∈�k/0
corresponds to multiple Itô stochastic

integrals as follows:

Rα =
∫ �t

0

∫ s|α|

0

∫ s|α|−1

0

· · ·
∫ s2

0

dWj1
s1

dWj2
s2

· · · dW
j|α|
s|α| .

(31)

According to Ref. [42, Theorems 14.5.1, 14.5.2] (see

also Ref. [45]), the direct expansion given in Eq. (30)

induces a kth-order weak scheme that satisfies the desired

order condition given in Eq. (23). In addition, when �t =
O (‖L‖be), we have

∥∥E
(
L[|ψ〉] (L[|ψ〉])†

)
− E (|ψ(�t)〉〈ψ(�t)|)

∥∥
1

= O
(
‖L‖k

be(�t)k+1
)

. (32)

(2) Formulate the kth-order Kraus form. In the second

step, we construct the Kraus form of kth order from the Itô-

Taylor-expansion method in Eq. (30). As a preparation, we

introduce some notation and definitions for the terms with

multi-indices. Note that the zero components in α indicate

a standard integration over t, while nonzero components

correspond to stochastic integrals. Given α ∈ �k, let α+ be

the multi-index obtained by removing all components of α

that are equal to zero. For example, if α = (1, 0, 2, 1), then

we have

α+ = (1, 0, 2, 1)+ = (1, 2, 1).

We define l=0(α) as the number of zero elements, which

means that l=0(α) = |α| − |α+|. According to Ref. [42,

Chapter 5, Lemma 5.7.2], given α, α′ ∈ �k, we have

E [RαRα′] = Cα,α′�t|α|+|α′|−|α+|1α+=(α′)+ , Cα,α′ = O(1).

(33)

Here, 1α+=(α′)+ stands for the indicator function and Cα,α′

is a factor that depends on the indices α and α′ but not on

�t. In addition, |Cα,α′ | ≤ 1 for all α, α′. Based on Eq. (33),

we define the normalization of Rα by the step size �t:

Rn,α = Rα�t−
|α|+l=0(α)

2 . (34)

As a result of this rescaling, we can work with a set

of Gaussian random variances Rn,α with mean zero and

covariance independent of �t. In particular, we can rewrite

L[|ψ〉] in Eq. (30) as

L[|ψ〉] =
k∑

j =0

(�t)j

j !
V

j

0 |ψ〉

+
∑

α∈�k/0

Rn,α

(
�t

|α|+l=0(α)

2 Vα |ψ〉
)

.

Here, E(R2
n,α) = Cα,α′ .

Note that even though the expected value of Rn,α is

zero, the expected value of Rn,αRn,α′ may not be equal to

zero; i.e., in general, these random variables are correlated.

Specifically,

E(Rn,αRn,α′) �= 0. (35)

Thus, if we naively define Kα =
√

E(R2
n,α)�t|α|+l=0(α)/2Vα ,

we will encounter some cross terms in the expansion of
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the Kraus form, leading to a nondiagonal Kraus form. To

overcome this difficulty, we introduce the following lemma

to orthogonalize the noise term.

Lemma 2. Let Rn,α be defined in Eq. (34). There exists

a sequence of random variables
{
R̃α

}
α∈�k/0

that satisfy the

following conditions:

(i) Each Rn,α is a linear combination of R̃α′ such that

Rn,α =
∑

α′∈�k/0

cα,α′ R̃α′ , (36)

where cα,α′ is a constant independent of �t. In addi-

tion,
∑

α′ |cα,α′ |2 = E(R2
n,α) and cα,α′ = 0 if α+ �=

(α′)+.

(ii) For any α, E
(̃
Rα

)
= 0. In addition, R̃α is either zero

or E(̃R2
α) = 1.

(iii) For any α �= α′ ∈ �k, we have E
(̃
RαR̃α′

)
= 0, i.e.,

they are uncorrelated.

The proof of Lemma 2 is in Appendix C. With this new

expression for the noise terms, we can plug Eq. (36) from

Lemma 2 into Eq. (30) and obtain

Lk,�t[|ψ〉] =
k∑

j =0

(�t)j

j !
V

j

0 |ψ〉

+
∑

α∈�k/0

R̃α

⎛
⎝∑

α′∈�k

cα′,α�t
|α′|+l=0(α′)

2 Vα′

⎞
⎠ |ψ〉 .

(37)

We are now in a position to derive a Kraus form. We define

F0 =
k∑

j =0

(�t)j

j !
V

j

0,

Fα =

⎛
⎝−i

∑

α′∈�k

cα′,α�t
|α′|+l=0(α′)

2 Vα′

⎞
⎠ 1R̃α �=0, ∀α ∈ �k/0.

(38)

In light of Eq. (37), we obtain an approximation of the

density-operator in a Kraus form,

E
(
L[|ψ〉] (L[|ψ〉])†

)
= F0 |ψ〉〈ψ | F

†

0 +
∑

α∈�k/0

Fα |ψ〉〈ψ | F†
α , (39)

which satisfies Eq. (24). We note that the total number of Kraus operators is at most ((J + 1)k+1 − 1/J ) − k.

(3) Construct the dilated Hamiltonian H̃ . We start by ordering and expressing Kraus operators by the powers of �t, i.e.,

in an asymptotic form:

F0 = I + �tY0,0 + �t2Y0,1 + �t3Y0,2 + · · · + �tkY0,k−1,

Fj = −i
(
�t1/2Yj ,0 + �t3/2Yj ,1 + �t5/2Yj ,2 + · · · + �tk−1/2Yj ,k−1

)
, j = 1, 2, . . . , sk,

Fj = −i
(
�tYj ,0 + �t2Yj ,1 + · · · + �tk−1Yj ,k−2

)
, j = sk + 1, . . . , Sk.

(40)

Here, we separate those Kraus operators with integer powers of �t from those with half powers of �t. We note that

Sk + 1 equals to the number of Kraus operators. Thus, Sk ≤ ((J + 1)k+1 − 1/J ) − k − 1 < (J + 1)k+1.

From Eqs. (23) and (24), we see that
∑Sk

j =0 Fj ρF
†
j is a kth-order approximation of a Lindblad equation and can be

expanded into Stinespring form, meaning that

eL�tρ =
Sk∑

j =0

Fj ρF
†
j + O((�t)k+1) = TrA

(
U |0ak 〉〈0ak | ⊗ ρU†

)
+ O((�t)k+1)

=: TrA

⎛
⎜⎜⎝

⎡
⎢⎢⎣

F0 · · · · ·
F1 · · · · ·
...

...
. . .

...

FSk
· · · · ·

⎤
⎥⎥⎦ |0〉〈0| ⊗ ρ

⎡
⎢⎢⎣

F0 · · · · ·
F1 · · · · ·
...

...
. . .

...

FSk
· · · · ·

⎤
⎥⎥⎦

†⎞
⎟⎟⎟⎠+ O((�t)k+1), (41)

where U is a unitary matrix that can be constructed by Stinespring’s factorization theorem.

Now, we are ready to introduce the following lemma that implies the existence of the dilated Hamiltonian H̃ .
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Lemma 3. Given the Kraus operators {Fj }Sk
j =0 in Eq. (40), there exists H̃ such that

Sk∑

j =0

Fj |ψ〉〈ψ | F
†
j = TrA

(
exp
(
−i

√
�tH̃

)
|0ak 〉〈0ak | ⊗ |ψ〉〈ψ | exp

(
i
√

�tH̃ †
))

+ O((�t)k+1). (42)

Furthermore, H̃ can be written as Eq. (18) with

H0 = �t1/2X0,0 + �t3/2X0,1 · · · + �tk−1/2X0,k−1,

Hj = Xj ,0 + �tXj ,1 + · · · + �tk−1Xj ,k−1, j = 1, 2, . . . , sk,

Hj = �t1/2Xj ,0 + �t3/2Xj ,1 + · · · + �tk−3/2Xj ,k−2, j = sk + 1, . . . , Sk.

(43)

Here, each Xj ,q is a polynomial of H , Vj that satisfies ‖Xj ,q‖ = O(‖L‖q+1/2

be ) for 1 ≤ j ≤ sk and ‖Xj ,q‖ = O(‖L‖q+1

be )

otherwise.

Intuitively, the unitary operator on the right-hand side

of Eq. (42) can be expanded and its first column can be

compared to the first column of the unitary matrix in Eq.

(41). Specifically, each matrix in Eq. (43) can be obtained

by matching the corresponding terms in the expansion in

Eq. (40). The proof is in Appendix D. According to Lemma

3, we obtain ‖Hj ‖ = O(‖L‖be).

Finally, to complete the proof of Theorem 1, the remain-

ing step is to demonstrate that H̃ must be a Hermitian

matrix. This is stated in the following lemma.

Lemma 4. The dilated Hamiltonian H̃ constructed in

Lemma 3 is Hermitian.

The proof of Lemma 4 is in Appendix E.

V. NUMERICAL EXPERIMENTS

In this section, we provide results from several numer-

ical experiments to illustrate the convergence of our

algorithm. We start with a time-independent transverse-

field Ising model (TFIM) in Sec. V A and examine the

convergence rate of the first-, second-, and third-order

methods. The specific forms of these methods can be found

in Appendix B. To extend the applications to more gen-

eral cases, we also present two time-dependent examples

in Secs. V B and V C to further test the performance of our

proposed methods.

In all the following numerical experiments, we use the

fourth-order Runge-Kutta scheme with a very small time

step to generate the “exact solution” ρT and measure the

error at time T using the trace distance, which means that

Error = ‖ρN − ρT‖1, (44)

where T is the stopping time, N = T/�t, and ρN is the

output of our algorithm.

A. A TFIM damping model

Consider the one-dimensional TFIM model defined on

m sites:

H = −
(

m−1∑

i=1

ZiZi+1 + ZLZ1

)
− g

m∑

i=1

Xi, (45)

where g is the coupling coefficient that describes the trans-

verse magnetic field strength, Zi and Xi are Pauli operators

for the ith site, and the dimension of H is 2m. We set m = 4

and g = 1 and simulate the TFIM model with damping

[25]:

d

dt
ρ = −i[H , ρ] +

J∑

j =1

Vj ρV
†
j −

1

2

{
V

†
j Vj , ρ

}
,

ρ(0) = |ψ0〉〈ψ0| , (46)

where Vj = √
γ (Xj − iYj )/2, the damping parameter γ =

0.1, and |ψ0〉 is the ground state of H . In Ref. [25], the

authors have used this model to test the accuracy of their

numerical scheme and to investigate the effect of magnetic

field strengths and damping parameters on the solution tra-

jectory. For our experiment, we focus on the scaling of the

error of our numerical methods with �t, so we only assess

its effectiveness with fixed values of g and γ .

We examine the convergence of three numerical

schemes (see Appendix B): (i) the first-order scheme in

Eq. (B3); (ii) the second-order scheme in Eq. (B6); and

(iii) the third-order scheme in Eq. (B11). The results are

shown in Fig. 2. The graph on the left shows the over-

laps between ρ(t) and the ground state when the time

step �t = 0.1. We can see that the second- and third-order

schemes match the exact solution better than the first-order

scheme. In the right graph, with a stopping time of T = 1,
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(a) (b)

FIG. 2. Examining the accuracy of the first-, second-, and third-order methods using the TFIM damping mode [Eq. (45)]. (a) The

comparison of the evolution of the ground state overlap 〈ψ0| ρ(t) |ψ0〉 with different schemes and the same step size �t = 0.1 up to

the stopping time T = 5. (b) The comparison of the error versus �t using different schemes with stopping time T = 1. We set the x

axis as 1/�t and plot it in the log scale to illustrate the order scaling of our methods. The three dashed lines are drawn by matching the

error curve from the kth scheme with (�t)k. The comparison of the slopes verifies that our kth-order scheme indeed leads to an error

that is O(�t)k.

we have evaluated the convergence of the three methods

using different �t and measured the end error using Eq.

(44). One can observe that all the schemes converge in the

expected order. Due to the random selection of the opera-

tors G and Gj ,2, as well as the initial condition, these orders

of accuracy are very likely sharp.

B. A time-dependent TFIM model with damping

In the following numerical test, we consider the time-

dependent TFIM damping model, where both the Hamilto-

nian and jump operators are driven by a linear pulse,

H(t) = H + tH ′, Vj (t) = Vj ,1 + tVj ,2. (47)

Here, H is the TFIM model with m = 4, g = 1 and H ′ =
G + G†/‖G + G†‖ with G ∼ N (0, 1, I2m×2m). We also

choose random damping operators

Vj ,1 = √
γ (Xj − iYj )/2, Vj ,2 =

Gj ,2

‖Gj ,2‖
, (48)

where γ = 0.1 and Gj ,2 ∼ N (0, 1, I2m×2m). We note that

this is a time-dependent Lindblad equation with two jump

operators. We test the first, second, and third methods as

discussed in Appendix B.

The result is shown in Fig. 3. On the left graph, we set

the initial state as the ground state of H and perform the

simulations up to T = 5. We compare the evolution of the

overlap with the ground state for all three methods. It can

be seen from the graph that the second- and third-order

schemes show much better agreement with the exact solu-

tion than the first-order scheme. The results shown in the

(a) (b)

FIG. 3. Testing the accuracy of the first-, second-, and third-order methods using the time-dependent TFIM Lindbladian [Eq. (47)].

(a) The comparison of the evolution of the ground state overlap 〈ψ0| ρ(t) |ψ0〉 with different schemes and the same step size �t = 0.1

up to stopping time T = 5. (b) The comparison of the error versus �t (on the logarithmic scale) using different schemes with stopping

time T = 1. We set the x axis as 1/�t and plot it in the log scale to illustrate the order scaling of our methods. The three dashed lines

are drawn by matching the error curve from the kth scheme with (�t)k. This verifies that our kth-order scheme indeed leads to an error

that is O(�t)k.

020332-11



DING, LI, and LIN PRX QUANTUM 5, 020332 (2024)

(a) (b)

FIG. 4. Testing the accuracy of the first-, second-, and third-order methods using the periodic driving Lindbladian [46]. (a) The

comparison of the evolution of Tr (ρ(t)σz) with different schemes and the same step size �t = 0.1 up to stopping time T = 10π . (b)

The comparison of the error versus �t using different schemes with stopping time T = 10π . We set the x axis as 1/�t and plot it in

the log scale to illustrate the order scaling of our methods. The three dashed lines are drawn by matching the error curve from the kth

scheme with (�t)k. The comparison of the slopes verifies that our kth-order scheme indeed leads to an error that is O(�t)k.

right panel are obtained with a random initial state and sim-

ulation of the dynamics up to time T = 1. We examine the

convergence of the methods by varying �t and measur-

ing the end error as defined in Eq. (44). We observe that

all three schemes converge to the true solution with the

expected order of accuracy.

C. Periodically driven Lindbladian dynamics

In this section, we consider a single-qubit time-

dependent system that is driven by a periodic Hamiltonian

and jump operators [46]. Specifically, we choose

H(t) = −
√

2

2
(1 − cos(t))σz (49)

and the damping operators

V1 = (2 + 0.5 sin(t))σ+, V2 = (3 − 0.5 sin(t))σ−.

(50)

We then compare the performance of the first-, second-,

and third-order methods at the stopping time T = 10π with

a random initial state. The error is measured using Eq. (44).

The numerical results are summarized in Fig. 4. In the

left graph, we choose �t = 0.1 and compare the evolution

of Tr (ρ(t)σz). We observe that the second- and third-order

schemes exhibit significantly better accuracy than the first-

order scheme. Similar to the previous results, in the right

figure, the error of all schemes behaves with the expected

order of convergence.

VI. DISCUSSION AND CONCLUSIONS

This paper presents a new method for simulating the

Lindblad dynamics using Hamiltonian simulation in an

enlarged Hilbert space. Our algorithm only involves sim-

ulation of a dilated Hamiltonian and trace-out operations.

The latter can be implemented simply by measuring the

ancilla qubits and discarding the results. Each step of

our algorithm forms a CPTP map, thereby guaranteeing a

success probability of one. Contrary to previous methods

[23,24], our algorithm eliminates the need for oblivious

amplitude amplification at the level of Lindbladian sim-

ulation, which may require precise adjustment of the time

step �t with respect to the block-encoding factor.

Our methodology bridges the gap between Lindblad

simulation and Hamiltonian simulation. This approach also

introduces a new class of Hamiltonian simulation prob-

lems, where the Hamiltonian H̃ consists of commutators

among the jump operators (including the system Hamilto-

nian H ) and the various components of the dilated Hamil-

tonian scale differently with respect to the time step �t.

Identifying suitable Hamiltonian simulation techniques for

this specific context poses an interesting question for future

investigations. For example, suppose that both H and

Vj can be expressed as sums of Pauli operators. In that

case, we can decompose H0, H1, . . . , HSk
into sums of

Pauli operators and further refine the simulation using a

high-order Trotterization method.

In contrast to Hamiltonian simulations, where a diverse

range of methods are available and practicality resource

estimates have been conducted (see e.g., Ref. [47]), quan-

tum algorithms for Lindblad simulations remain in their

nascent stages. This study introduces a framework that

differs from those in the existing literature. Low-order

methods, such as second and third order, may be more

practical than higher-order versions in terms of practi-

cal implementation. We hope that this work can facilitate

future resource estimates for identifying the most practical

methods for simulating Lindblad dynamics.
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APPENDIX A: DERIVATION OF THE TIME-INDEPENDENT SECOND-ORDER SCHEME

As a concrete example, in this appendix, we derive a second-order scheme to simulate time-independent Lindbladian

dynamics.

(1) Formulate the weak scheme of order 2 for the SDE [Eq. (6)]. According to the first step of Algorithm 1, we can write

down the weak order-2.0 scheme according to Ref. [42, (14.2.6)]:

L2,�t[|ψ〉] =
(

|ψn〉 + V0 |ψn〉�t +
1

2
V2

0 |ψn〉�t2
)

+
J∑

j =1

(
Vj

∫ �t

0

dW j
s1

+ Vj V0

∫ �t

0

∫ s2

0

ds1dW j
s2

+ V0Vj

∫ �t

0

∫ s2

0

dW j
s1

ds2

)
+

J∑

j ,k=1

∫ �t

0

∫ s2

0

dWk
s1

dWk
s2

.

Here, we have defined

V0 = −iH −
1

2

J∑

j =1

V
†
j Vj . (A1)

(2) Formulate the second-order Kraus form. In the second step, we construct the Kraus form according to the scheme

described above. Generally, we must convert the Itô integrals to random variables and arrange them to ensure that they

are not correlated (see, e.g., Lemma 2). In this case, we simply take the formula from Ref. [42, (14.2.7)] and reformulate

the above second-order scheme as follows:

|ψn+1〉 =
(

|ψn〉 + V0 |ψn〉 �t +
1

2
V2

0 |ψn〉 �t2
)

+
J∑

j =1

(
Vj +

�t

2
(Vj V0 + V0Vj )

)
|ψn〉 �Wj

+
1

2

J∑

j =1

V2
j |ψn〉 (�W2

j − �t) +
1

2

J∑

j1 �=j2

Vj2Vj1 |ψn〉 (�Wj1�Wj2 − �Zj1,j2). (A2)

Here, {�Wj }J
j =1 are independent Gaussian random variables with mean zero and variance �t and {�Zj1,j2} are

independent two-point random variables such that

E(�Zj1,j2) = 0, E(|�Zj1,j2 |
2) = �t2,

for j2 = 1, 2, . . . , j1 − 1 and �Zj1,j2 = −�Zj2,j1 .

Given that the random noises in distinct terms are uncorrelated and taking the expectation on both sides, we arrive at the

following relation for the expected state at time n + 1:

E(|ψn+1〉〈ψn+1|) = F0E(|ψn〉〈ψn|)F†

0 +
J∑

j =1

F1,j E(|ψn〉〈ψn|)F†

1,j +
J∑

j ,k=1

F2,j ,kE(|ψn〉〈ψn|)F†

2,j ,k,
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where

F0 = I + V0�t +
1

2
V2

0�t2,

F1,j = −i
√

�t

(
Vj +

�t

2
(Vj V0 + V0Vj )

)
, ∀ 1 ≤ j ≤ J ,

F2,j ,k = −i

√
2�t

2
Vj Vk, ∀ 1 ≤ j , k ≤ J .

Here, we have combined the third and fourth lines of Eq. (A2) in F2,j ,k using E((�W2
j − �t)2) = 2�t2 and

E((�Wj1�Wj2 − �Zj1,j2)
2) = 2�t2. This leads us to define the Kraus form,

K[ρ] = F0ρF
†

0 +
J∑

j =1

F1,j ρF
†

1,j +
J∑

j ,k=1

F2,j ,kρF
†

2,j ,k,

and to define the iteration scheme as

ρn+1 = K[ρn].

(3) Construct the dilated Hamiltonian H̃ . The goal of the last step is to construct the Hamiltonian H̃ such that

K[ρ] = TrA

(
exp
(
−i

√
�tH̃

)
(|0〉〈0| ⊗ ρn) exp

(
i
√

�tH̃
))

+ O(�t3). (A3)

Since there are J 2 + J + 1 Kraus operators, we seek a Hamiltonian with the following block structure:

H̃ =

⎡
⎢⎢⎢⎢⎣

H0 · · · H
†

1,j · · · H
†

2,j ,k

· · · 0 0 0 0

H1,j 0 0 0 0

· · · 0 0 0 0

H2,j ,k 0 0 0 0

⎤
⎥⎥⎥⎥⎦

,

where we require H0 to be a Hermitian matrix.

We begin by noting that

TrA

(
exp
(
−i

√
�tH̃

)
|0〉〈0| ⊗ ρ exp

(
i
√

�tH̃
))

= TrA

((
exp
(
−i

√
�tH̃

)
|0〉 ⊗ In

)
IA ⊗ ρ

(
〈0| ⊗ In exp

(
i
√

�tH̃
)))

=
J 2+J+1∑

j =1

(
〈j | ⊗ In exp

(
−i

√
�tH̃

)
|0〉 ⊗ In

)
IA ⊗ ρ

(
〈0| ⊗ In exp

(
i
√

�tH̃
)

|j 〉 ⊗ In

)
.

This will be compared to the Stinespring form,

K[ρ] = TrA

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

F0 · · · · ·
· · · · · ·

F1,j · · · · ·
· · · · · ·

F2,j ,k · · · · ·

⎤
⎥⎥⎥⎦ |0〉〈0| ⊗ ρ

⎡
⎢⎢⎢⎣

F0 · · · · ·
· · · · · ·

F1,j · · · · ·
· · · · · ·

F2,j ,k · · · · ·

⎤
⎥⎥⎥⎦

†
⎞
⎟⎟⎟⎟⎠

=
J 2+J+1∑

j =1

(
〈j | ⊗ In

(
|j 〉〈0| ⊗ Fj

)
|0〉 ⊗ In

)
IA ⊗ ρ

(
〈0| ⊗ In

(
|0〉〈j | ⊗ F

†
j

)
|j 〉 ⊗ In

)
.
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By matching the above two equations, we see that, to arrive at Eq. (A3), we need to find H0, H1,j , and H2,j ,k so that

〈[·]| exp
(
−i

√
�tH̃

)
|0〉 = F[·] + O((�t)3), (A4)

where [·] is 0, (1, j ), or (2, j , k).

Next, we note that the matrix exponential can be expanded in the following Taylor expansion:

e−i
√

�tH̃ = I − i�t1/2H̃ −
�t

2
H̃ 2 +

i�t3/2

6
H̃ 3 +

�t2

24
H̃ 4 + · · ·

Plugging this formula into the left-hand side of Eq. (A4), we match terms in the blocks of the first column and find that

F0 = I − i
√

�tH0 −
�t

2
(H 2

0 + Q) + i
�t3/2

6

(
H 3

0 + H0Q + QH0

)

+
�t2

24

(
H 4

0 + Q2 + H 2
0 Q + QH 2

0 + H0QH0

)
+ O(�t5/2),

F1,j = −i
√

�tH1,j −
1

2
�tH1,j H0 + i

√
�t�t

6
H1,j (Q + H 2

0 ) + O(�t5/2), ∀1 ≤ j ≤ J ,

F2,j ,k = −i
√

�tH2,j ,k −
1

2
�tH2,j ,kH0 + i

√
�t�t

6
H2,j ,k(Q + H 2

0 ) + O(�t5/2), ∀1 ≤ j , k ≤ J ,

(A5)

where

Q =
J∑

j =1

H
†

1,j H1,j +
J∑

j ,k=1

H
†

2,j ,kH
†

2,j ,k.

We first match the first-order terms in the last two equations by taking the leading terms to obtain

H1,j = Vj + O(�t) =: X1,j ,0 + O(�t), H2,j ,k =
�t1/2

√
2

Vj Vk + O(�t3/2) =: �t1/2X2,j ,k,0 + O(�t3/2),

where we use X[·] to represent the coefficient of the order terms �tp .

We then substitute them into Q to obtain

Q =
J∑

j =1

V
†
j Vj + O(�t) =: Q0 + O(�t).

Plugging this into the first equation of Eq. (A5) and matching the first term, we obtain

H0 = i�t1/2

(
V0 +

1

2
Q0

)
= �t1/2H + O(�t3/2).

Next, we include the next-order terms in F1,j and F2,j ,k. Again, matching both sides of the last two equations, we obtain

the asymptotic expansion,

H1,j = X1,j ,0 + �tX1,j ,1 =: Vj + �t

⎛
⎝1

2
V0Vj +

1

2
Vj V0 +

1

6
Vj

J∑

j ′=1

V
†

j ′Vj ′ +
i

2
Vj H

⎞
⎠ ,

H2,j ,k = �t1/2X2,j ,k,0 + �t3/2X2,j ,k,1 =:
�t1/2

√
2

Vj Vk + �t3/2

⎛
⎝ 1

6
√

2
Vj Vk

J∑

j ′=1

V
†

j ′Vj ′ +
i

2
√

2
Vj VkH

⎞
⎠ .

020332-15



DING, LI, and LIN PRX QUANTUM 5, 020332 (2024)

We then substitute them into Q and obtain

Q =
J∑

j =1

V
†
j Vj + �t

J∑

j =1

⎛
⎜⎝V

†
j V0Vj +

1

2
V

†
j Vj V0 +

1

2
V0V

†
j Vj +

1

3

⎛
⎝

J∑

j ′=1

V
†

j ′Vj ′

⎞
⎠

2

+
i

2

(
V

†
j Vj H − HV

†
j Vj

)
⎞
⎟⎠+ O(�t2)

=: Q0 + �tQ1 + O(�t2).

Plugging this into the first equation of Eq. (A5) and matching the second term, we find that

H0 = �t1/2X0,1 + �t3/2X0,2,

where

X0,2 =
i

2

(
V2

0 + X 2
0,1 + Q1

)
+

1

6

{
X0,1, Q0

}
−

i

24
Q2

0 = −
1

12

⎧
⎨
⎩H ,

J∑

j =1

V
†
j Vj

⎫
⎬
⎭ .

We have left out higher-order terms, since they only contribute at most O(�t3) terms, which is comparable to the leading

error term in Eq. (A3). This completes the construction of the Hamiltonian H̃ .

APPENDIX B: A SUMMARY OF FIRST-, SECOND-, AND THIRD-ORDER SCHEMES FOR SIMULATING

TIME-DEPENDENT LINDBLAD EQUATIONS

In this appendix, we extend the construction in the previous appendix and derive the numerical schemes to the time-

dependent Lindblad equation, which takes the form:

dρ

dt
= Lt(ρ) =: −i[H(t), ρ] +

J∑

j =1

Vj (t)ρV
†
j (t) −

1

2

{
V

†
j (t)Vj (t), ρ

}
. (B1)

In our derivation, we assume that H(t), Vj (t) ∈ C2[0, ∞). We note that when H(t), Vj (t) are smooth enough, we can

directly implement the strategy (Algorithm 1) in this paper to develop a high-order scheme. In this appendix, we sum-

marize the first-, second-, and third-order schemes for solving the time-dependent Lindblad equation in Eq. (B1). The

scheme for solving time-independent Lindblad equations can readily be obtained by removing the terms involving the

time derivatives of H and V.

We define V0(t) = −iH(t) − 1
2

∑J
j =1 V

†
j (t)V(t). For simplicity, we omit the first step and start by expressing the Kraus

operators in an asymptotic form (we omit −i in front of F for simplicity since it does not affect the Kraus representation),

F0 = I + V0�t +
1

2
(V2

0 + V′
0)�t2 +

1

6
(V3

0 + (V2
0)

′ + V′
0V0 + V′′

0)�t3

=: I + Y0,0�t + Y0,1�t2 + Y0,2�t3,

F1,j = �t1/2Vj +
�t3/2

2
(V′

j + Vj V0 + V0Vj ) +
�t5/2

6

(
V2

0Vj + V′
0Vj + V0Vj V0 + (V0Vj )

′

+Vj V2
0 + V′

j V0 + (Vj V0)
′ + V′′

j

)
, ∀ 1 ≤ j ≤ J ,

=: Y1,j ,0�t1/2 + Y1,j ,1�t3/2 + Y1,j ,2�t5/2,

F2,j =
√

�t�t
√

12

(
V0Vj − Vj V0 − V′

j

)
=: Y2,j ,1�t3/2, ∀ 1 ≤ j ≤ J ,

F3,j ,k,l =
√

�t�t
√

6
Vj VkVl =: Y2,j ,k,l,1�t3/2, ∀ 1 ≤ j , k, l ≤ J ,

F4,j ,k =
√

2�t

(
1

2
Vj Vk +

�t

6

(
V0Vj Vk + Vj V0Vk + V′

j Vk + Vj VkV0 + (Vj Vk)
′
))

, ∀ 1 ≤ j , k ≤ J ,

=: Y4,j ,k,0�t + Y4,j ,k,1�t2.

(B2)
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Here, Y[·] contains the coefficient of the order term �tp in each expansion.

We note that, in the time-independent case, all derivative terms with ′ and ′′ are equal to zero. After obtaining the above

formula, we can use our general strategy in Sec. IV B to derive H̃ . For simplicity, we omit the derivation process and

directly give the formulas of different-order schemes:

(i) The first-order scheme. H̃ = |0〉〈0| ⊗ H0 +
∑J

j =1

(
|j 〉〈0| ⊗ H1,j + |0〉〈j | ⊗ H

†

1,j

)
, where

H0 = �t1/2

(
iY0,0 + i

Q0

2

)
=: �t1/2X0,0, Hj ,0 = Y1,j ,0 =: X1,j ,0, (B3)

with Q0 =
∑J

j =1 Y
†

1,j ,0Y1,j ,0 for all 1 ≤ j ≤ J .

Direct calculations yield

X0,0 = H ,

X1,j ,0 = Vj ,

Q0 =
J∑

j =1

V
†
j Vj .

(B4)

Altogether, the dilated Hamiltonian is given by

H̃ =

⎡
⎢⎢⎢⎢⎢⎣

√
�tH V

†

1 V
†

2 · · · V
†
J

V1 0 0 · · · 0

V2 0 0 · · · 0
...

...
...

. . .
...

VJ 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

, (B5)

which is a direct generalization of Eq. (17).

(ii) The second-order scheme:

H̃ = |0〉〈0| ⊗ H0 +
J∑

j =1

((
|j 〉〈0| ⊗ H1,j + |0〉〈j | ⊗ H

†

1,j

)
+
(
|j + J 〉〈0| ⊗ H2,j + |0〉〈j + J | ⊗ H

†

2,j

))

+
J∑

j ,k,l=1

|j + kJ + lJ 2 − J 2 + J 〉〈0| ⊗ H3,j ,k,l + |0〉〈j + kJ + lJ 2 − J 2 + J | ⊗ H
†

3,j ,k,l

+
J∑

j ,k=1

|j + kJ + J 3 + J 〉〈0| ⊗ H4,j ,k + |0〉 〈j + kJ + J 3 + J | ⊗ H
†

4,j ,k. (B6)

Using X0,0, X1,j ,0, and Q0 in Eq. (B4) from the first-order scheme, we have the expressions for the entries of H̃ ,

j , k, l ∈ [J ],:

H1,j = X1,j ,0 + �t
(
Y1,j ,1 − X1,j ,0Z1

)
=: X1,j ,0 + �tX1,j ,1,

H2,j = �tY2,j ,1 =: �tX2,j ,1,

H3,j ,k,l = �tY3,j ,k,l,1 =: �tX3,j ,k,l,1,

H4,j ,k = �t1/2Y4,j ,k,0 =: �t1/2X4,j ,k,0,

(B7)

where

Z1 = −
i

2
X0,0 −

1

6
Q0. (B8)
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In addition, the first diagonal block is given by

H0 = �t1/2

(
iY0,0 + i

Q0

2

)
+ �t3/2

(
iY0,1 +

i

2
(Q1 + X 2

0,0) −
i

24
Q2

0 +
1

6
{Q0, X0,0}

)
,

where

Q1 =
J∑

j =1

(
X

†

1,j ,0X1,j ,1 + X
†

1,j ,1X1,j ,0

)
+

J∑

j ,k=1

X
†

4,j ,k,0X4,j ,k,0. (B9)

We find the explicit form of H̃ :

H̃ = |0〉〈0| ⊗
(√

�tH + �t3/2

(
1

2
H ′ −

1

12

{
H ,
∑

V
†
j Vj

}))

+
J∑

j =1

(
|j 〉〈0| ⊗

(
Vj +

�t

2

(
{Vj , V0} + V′

j +
1

6
Vj

(∑
V

†
j Vj

)
+

i

2
Vj H

))

+ |0〉〈j | ⊗
(

Vj +
�t

2

(
{Vj , V0} + V′

j +
1

6
Vj

(∑
V

†
j Vj

)
+

i

2
Vj H

))†
)

+
�t

√
12

J∑

j =1

(
|j + J 〉〈0| ⊗

(
[V0, Vj ] − V′

j

)
+ |0〉〈j + J | ⊗

(
[V0, Vj ] − V′

j

)†
)

+
�t
√

6

J∑

j ,k,l=1

|j + kJ + lJ 2 − J 2 + J 〉〈0| ⊗ Vj VkVl

+ |0〉〈j + kJ + lJ 2 − J 2 + J | ⊗ (Vj VkVl)
†

+
√

�t

2

J∑

j ,k=1

|j + kJ + J 3 + J 〉〈0| ⊗ Vj Vk + |0〉〈j + kJ + J 3 + J | ⊗ (Vj Vk)
†. (B10)

(iii) The third-order scheme:

H̃ = |0〉〈0| ⊗ H0 +
J∑

j =1

((
|j 〉〈0| ⊗ H1,j + |0〉〈j | ⊗ H

†

1,j

)
+
(
|j + J 〉〈0| ⊗ H2,j + |0〉〈j + J | ⊗ H

†

2,j

))

+
J∑

j ,k,l=1

|j + kJ + lJ 2 − J 2 + J 〉〈0| ⊗ H3,j ,k,l + |0〉〈j + kJ + lJ 2 − J 2 + J | ⊗ H
†

3,j ,k,l

+
J∑

j ,k=1

|j + kJ + J 3 + J 〉〈0| ⊗ H4,j ,k + |0〉〈j + kJ + J 3 + J | ⊗ H
†

4,j ,k, (B11)

Defining X[··· ],0,1, Q0, Q1, and Z1 as in the first- and second-order schemes, we have

H1,j = Y1,j ,0 + �t
(
Y1,j ,1 − X1,j ,0Z1

)
+ �t2

(
Y1,j ,2 − X1,j ,1Z1 − X1,j ,0Z2

)

=: · · · + �t2X1,j ,2,

H2,j = �tY2,j ,1 + �t2
(
Y2,j ,2 − X2,j ,1Z1

)
=: · · · + �t2X2,j ,2,

H3,j ,k,l = �tY3,j ,k,l,1 + �t2
(
Y3,j ,k,l,2 − X3,j ,k,l,1Z1

)
=: · · · + �t2X3,j ,k,l,2,

H4,j ,k = �t1/2Y4,j ,k,0 + �t3/2
(
Y4,j ,k,1 − X4,j ,k,0Z1

)
=: · · · + �t3/2X4,j ,k,1,
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where

Z2 = −
i

2
X0,1 −

1

6
X 2

0,0 −
1

6
Q1 +

i

24
{Q0, X0,0} +

1

120
Q2

0. (B12)

In addition,

H0 = �t1/2

(
iY0,0 + i

Q0

2

)
+ �t3/2

(
iY0,1 +

i

2
(Q1 + X 2

0,0) −
i

24
Q2

0 +
1

6
{Q0, X0,0}

)

+ �t5/2

(
iY0,2 +

i

2

(
{X0,0, X0,1} + Q2

)
+

1

6

(
X 3

0,0 + {Q0, X0,1} + {Q1, X0,0}
)

−
i

24

(
Q0X 2

0,0 + X0,0Q0X0,0 + X 2
0,0Q0 + {Q0, Q1}

)

−
1

120

(
Q0X0,0Q0 + Q2

0X0,0 + X0,0Q2
0

)
+

i

720
Q3

0

)
,

where

Q2 =
J∑

j =1

(
X

†

1,j ,0X1,j ,2 + X
†

1,j ,2X1,j ,0 + X
†

1,j ,1X1,j ,1 + X
†

2,j ,1X2,j ,1

)

+
J∑

j ,k,l=1

X
†

3,j ,k,l,1X3,j ,k,l,1 +
J∑

j ,k=1

(
X

†

4,j ,k,1X4,j ,k,0 + X
†

4,j ,k,0X4,j ,k,1

)
. (B13)

APPENDIX C: PROOF OF LEMMA 2

The purpose of Lemma 2 is to decompose the noise terms into uncorrelated random variables. According to Eq. (33),

the noise terms in the Itô-Taylor expansion [Eq. (30)] have the property that

E
[
Rn,αRn,α′

]
= 0, if α+ �=(α′)+. (C1)

We define the set of multipositive indices �+
k as

�+
k = {β = (j1, j2, . . . , j|β|) ∈ {1, 2, . . . , J }⊗|β| : |β| ≤ k}. (C2)

Using the normalized noise, we rewrite L[|ψ〉] in Eq. (30) as

L[|ψ〉] =
k∑

j =0

(�t)j

j !
V

j

0 |ψ〉 +
∑

β∈�+
k

∑

α+=β

Rn,α

(
�t

|α|+l=0(α)

2 Vα |ψ〉
)

.

In light of Eq. (C1), to ensure zero correlation between random variables, it suffices to focus on the set {Rn,α}α+=β for

each β ∈ �+
k .

In the remainder of the proof, we fix β ∈ �+
k . To construct R̃, we first fix an order of the noise terms

{
R̃n,α

}
α+=β

(the

order can be arbitrary and does not affect the statement) and reformulate the sequence as {Rβ,i}
Iβ
i=1. Here, Iβ denotes the

cardinality of the set. Consequently, we rewrite the original summation,
{
R̃n,α

}
α+=β

, as

∑

α+=β

Rn,α

(
�t

|α|+l=0(α)

2 Vα |ψ〉
)

=:

Iβ∑

i=1

Rβ,i

(
�tqβ,iVβ,i |ψ〉

)
.

We define Vβ,i = Vα and qβ,i = |α| + l=0(α)/2, where the index i is assigned based on the specified ordering.
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We define Covβ as the covariance matrix of {Rβ,i}. Because Covβ is a positive semidefinite matrix, we can write Covβ

in eigendecomposition form Covβ = Q
Q�, where 
 is a diagonal matrix the entries of which are non-negative and Q is

an orthogonal matrix. We define ⎡
⎢⎢⎢⎣

R̃β,1

R̃β,2

R̃β,3

...

⎤
⎥⎥⎥⎦ = (
+)−

1
2 Q�

⎡
⎢⎢⎣

Rβ,1

Rβ,2

Rβ,3

...

⎤
⎥⎥⎦ ,

where 
+ is a diagonal matrix such that

(
+)i,i =
{

1, if 
i,i = 0,


i,i, if 
i,i > 0.

We have that
{
R̃β,i

}
are not correlated, which means that E

(̃
Rβ,i, R̃β,j

)
= 0 if i �= j and

Rβ,i = (
+)i,i

i∑

j =1

Qi,j R̃β,j ,

where
∑i

j =1 |Qi,j |2 =
(
Covβ

)
i,i

= E(R2
β,i). In addition, if R̃β,i �= 0, then E(̃R2

β,i) = 1. This proves Eq. (36).

APPENDIX D: PROOF OF LEMMA 3

Recall that Sk + 1 = 2at . To fulfill Eq. (42), we need to construct a Hamiltonian,

H̃ =

⎡
⎢⎢⎢⎢⎢⎣

H0 H
†

1 H
†

2 . . . H
†

Sk

H1 0 0 0 0

H2 0 0 0 0
... 0 0 0 0

HSk
0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (D1)

that satisfies

〈j | exp
(
−i

√
�tH̃

)
|0〉 = Fj + O((�t)k). (D2)

for 0 ≤ j ≤ Sk.

Comparing Eq. (43) with Eq. (40), we reduce the power of �t by half because there is an extra
√

�t term in the

Hamiltonian simulation [Eq. (43)]. We identify the blocks in Eq. (D1) by asymptotically matching Eqs. (40) and (43). For

this purpose, we expand the matrix exponential in Eq. (40) using Taylor expansion:

e−i
√

�tH̃ = I − i�t1/2H̃ −
�t

2
H̃ 2 +

i�t3/2

6
H̃ 3 +

�t2

24
H̃ 4 −

i�t5/2

120
H̃ 5 −

�t3

720
H̃ 6 + · · · (D3)

To proceed, we first define

Q =
Sk∑

j =1

H
†
j Hj . (D4)

This is the part of the operations that map the |0〉 ancilla to the |0〉 ancilla. Using Eq. (43), we can also expand Q into an

asymptotic form:

Q = Q0 + �tQ1 + �t2Q2 + · · · (D5)
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We use asymptotic matching to obtain the form of Ql for all l ≤ k. Here sk is defined in Eq. (40) and refers to the number

of Kraus operators containing terms that scales as �tk+1/2.

Q0 =
sk∑

j =1

X
†

j ,0Xj ,0, (D6)

Q1 =
sk∑

j =1

(
X

†

j ,0Xj ,1 + X
†

j ,1Xj ,0

)
+

Sk∑

j =sk+1

X
†

j ,0Xj ,0, (D7)

Q2 =
sk∑

j =1

(
X

†

j ,0Xj ,2 + X
†

j ,2Xj ,0 + X
†

j ,1Xj ,1

)
+

Sk∑

j =sk+1

(
X

†

j ,1Xj ,0 + X
†

j ,0Xj ,1

)
, (D8)

· · ·

Ql =
sk∑

j =1

l∑

p=0

(
X

†
j ,pXj ,l−p

)
+

Sk∑

j =sk+1

l−1∑

p=0

(
X

†
j ,pXj ,l−1−p

)
.

· · · (D9)

We determine the first term in each asymptotic expansion [Eq. (40)]. We begin by matching the off-diagonal blocks in Eq.

(D2). Using Eqs. (40), (D3), and (43), we have

Yj ,0 + �tYj ,1 + �t2Yj ,2 + · · · = (Xj ,0 + �tXj ,1 + �t2Xj ,2 + · · · )(I + �tZ1 + �t2Z2 + · · · ) (D10)

for all j > 0. Here, {Zl}k
l=1 are also operations that correspond to mapping the |0〉 ancilla to the |0〉 ancilla. They are

defined as

Z1 = −
i

2
X0,0 −

1

6
Q0,

Z2 = −
i

2
X0,1 −

1

6
X 2

0,0 −
1

6
Q1 +

i

24
{Q0, X0,0} +

1

120
Q2

0,

· · ·

Zl = −
i

2
X0,l−1 + pz,l(X0,0, X0,1, . . . , X0,l−2, Q0, Q1, . . . , Ql−1),

· · ·
where pz,l is a polynomial of degree l.

From the asymptotic analysis and the matching O(1) term in Eq. (D10), we find the first coefficient in the off-diagonal

blocks of the Hamiltonian matrix [Eq. (43)]:

Xj ,0 = Yj ,0, j > 0. (D11)

Next, we match the first block diagonal. By inserting the asymptotic expansion of H0 and Q into Eq. (D3), we find

I + �tY0,0 + O(�t2) = I + �t

(
−iX0,0 −

Q0

2

)
+ O(�t2), (D12)

which leads to

X0,0 = iY0,0 + i
Q0

2
. (D13)

We now move on to the second term. Returning to Eq. (D10), we can match the �t terms to obtain

Xj ,1 = Yj ,1 − Xj ,0Z1, j > 0. (D14)
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Additionally, equating the terms �t2 in the first block diagonal yields the second component of H0 (for the sake of

simplicity, we will not write down the asymptotic expansion):

X0,1 = iY0,1 +
i

2
(Q1 + X 2

0,0) −
i

24
Q2

0 +
1

6
{Q0, X0,0}. (D15)

To show that the above derivation process can always continue until we obtain the last term, we implement the induction

argument. Assume that we have already matched K terms and obtained

X0,0, X0,1, . . . , X0,K−1,

Xj ,0, X0,1, . . . , Xj ,K−1, j = 1, 2, . . . , sk,

Xj ,0, X0,1, . . . , Xj ,K−1, j = sk + 1, . . . , Sk.

(D16)

We can use the above terms, Eq. (D9), and Eq. (D11) to calculate

Q0, Q1, . . . , QK−1,

Z0, Z1, . . . , ZK .
(D17)

To continue, we first match the �tK term in the off-diagonal blocks in Eq. (D2). Similarly to Eq. (D14), we obtain

Xj ,K = Yj ,K −
K∑

i=1

Xj ,K−iZi, j > 0. (D18)

Using Xj >0,k≤K , we can construct QK according to Eq. (D9). We then match the �tK+1 term in the first diagonal block in

Eq. (D2):

I + �tY0,0 + · · · + �tK+1Y0,k + O(�tK+2)

= I + �t

(
−iX0,0 −

Q0

2

)
+ · · · + �tK+1

(
−iX0,K + qx,K(X0,0:K−1, Q0,0:K)

)
+ O(�tK+2),

(D19)

where qx,K is a polynomial of degree K + 1. Thus, we obtain

X0,K = iY0,K − iqx,K(X0,0:K−1, Q0,0:K). (D20)

This concludes the induction.

In summary, to determine all the coefficients, we can follow the steps

{Yj ,0}sk
j =1 →

Eq. (D11)
{Xj ,0}Sk

j =1 →
Eq. (D6)

Q0 →
Eq. (D13)

X0,0 →
Eq. (D11)

Z1

→
Eq. (D14)

{Xj ,1}Sk
j =1 →

Eq. (D7)
Q1 →

Eq. (D15)
X0,1 →

Eq. (D11)
Z2

· · ·

→
Eq. (D18)

{Xj ,k−1}sk
j =1 →

Eq. (D9)
Qk−1 →

Eq. (D20)
X0,k−1.

(D21)

For clarity, we provide a graph to show the generation of H̃ in Fig. 5. Here, we note that in the last line, we only calculate

Xj ≤sk ,k−1 because Yj >sk ,k−1 = 0.

By Eq. (38), we find that each Yj ,q is a polynomial of H , Vj that satisfies ‖Yj ,q‖ = O(‖L‖q+1/2

be ) for 1 ≤ j ≤ sk and

‖Yj ,q‖ = O(‖L‖q+1

be ) otherwise. Inserting this into the preceding derivation, we find that each Xj ,q is a polynomial of H

and Vj with the desired norm bound.

020332-22



SIMULATING OPEN QUANTUM SYSTEMS PRX QUANTUM 5, 020332 (2024)

FIG. 5. The generation of H̃ . We need to compare terms of the same order in the asymptotic expansion. Specifically, in each row of

the two matrices, we need to match the terms with the same color. Here, poly([·]) means that the term can be written as a polynomial

of elements in [·].

APPENDIX E: PROOF OF LEMMA 4

To show that H̃ is a Hermitian matrix, we only need to prove that H0 is a Hermitian matrix.

We show this using the proof by contradiction. First, according to Eq. (25), we have

∣∣∣∣∣∣
Tr

⎛
⎝

Sk∑

j =0

F
†
j ρ(0)Fj

⎞
⎠− 1

∣∣∣∣∣∣
= O(�tk+1), (E1)

for all ρ(0). We define Ũ = exp
(
−iH̃

√
�t
)

. Then, from Lemma 3,

∥∥∥∥∥∥
TrA

(
Ũ |0〉〈0| ⊗ ρ(0)Ũ†

)
−

Sk∑

j =0

F
†
j ρ(0)Fj

∥∥∥∥∥∥
1

= O(�tk+1). (E2)

This implies that

∣∣Tr
(
Ũ |0〉〈0| ⊗ ρ(0)Ũ†

)
− 1

∣∣ =
∣∣Tr
(
TrA

(
Ũ |0〉〈0| ⊗ ρ(0)Ũ†

))
− 1

∣∣ = O(�tk+1). (E3)

If we assume that H0 is non-Hermitian, it can be represented as

H0 = D0 − iD1(�t)p . (E4)

In this expression, both D0 and D1 are Hermitian matrices. Additionally, p satisfies p ≤ k − 1
2

and the norm of D1 is of

order 1; i.e., ‖D1‖ = �(1). Based on this representation, to construct Ĥ , one can extract the term iD1 from H̃ as

H̃ = Ĥ − i |0〉〈0| ⊗ D1(�t)p , Ũ = exp
(
−i

√
�tĤ − (�t)p+1/2 |0〉〈0| ⊗ D1

)
. (E5)

Pick |ψ〉 such that ‖D1 |ψ〉 ‖ = �(1). We can apply Trotter splitting,

∥∥∥Ũ |0〉 ⊗ |ψ〉 − exp
(
−i

√
�tĤ

)
exp
(
−(�t)p+1/2 |0〉〈0| ⊗ D1

)
|0〉 ⊗ |ψ〉

∥∥∥ = O
(
�tp+1

)
, (E6)
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which leads to

∣∣∣‖Ũ |0〉 ⊗ |ψ〉 ‖ −
∥∥∥exp

(
−i

√
�tĤ

)
exp
(
−(�t)p+1/2 |0〉〈0| ⊗ D1

)
|0〉 ⊗ |ψ〉

∥∥∥
∣∣∣ = O

(
�tp+1

)
. (E7)

Because ‖D1 |ψ〉 ‖ = �(1), there exists a constant C independent of �t such that

∣∣∣
∥∥∥exp

(
−i

√
�tĤ

)
exp
(
−(�t)p+1/2 |0〉〈0| ⊗ D1

)
|0〉 ⊗ |ψ〉

∥∥∥− 1

∣∣∣ ≥ C(�t)p+1/2. (E8)

Combining the above two equalities, we obtain that there exists another constant C′ > 0 such that |‖U |0〉 ⊗ |ψ〉 ‖ − 1| ≥
C′(�t)p+1/2. Since p < k − 1/2, we conclude that

∣∣Tr
(
Ũ |0〉〈0| ⊗ |ψ〉〈ψ | Ũ†

)
− 1

∣∣ =
∣∣‖Ũ |0〉 ⊗ |ψ〉 ‖2 − 1

∣∣ = �(�tk), (E9)

which contradicts Eq. (E3). This implies that H0 must be a

Hermitian matrix.

APPENDIX F: BLOCK ENCODING OF H̃

In this appendix, we describe a method to construct the

block encoding of the dilated Hamiltonian H̃ . For simplic-

ity, we assume access to the block encodings {Uj }Sk
j =0 of

{Hj }Sk
j =0 [48]. In particular, we have

(〈0B| ⊗ In) U0 (|0B〉 ⊗ In) =
H0

2D
and

(〈0B| ⊗ In) Uj (|0B〉 ⊗ In) =
Hj

D
, for j > 0, (F1)

where D = �(maxj ‖Hj ‖). At the end of this section, we

will take a closer look at the derivation of Hj and give an

upper bound for ‖Hj ‖.

Without loss of generality, we also assume that Sk =
2P − 1 for some P ∈ N. The construction of the block

encoding of H̃ can be divided into three steps:

(1) Construction of the block encoding of |0〉〈0| ⊗
(H0/2) +

∑Sk
j =1 |j 〉〈j | ⊗ H

†
j .

We note that U =
∑Sk

j =0 |j 〉〈j | ⊗ U
†
j provides a

block encoding of |0〉〈0| ⊗ (H0/2) +
∑Sk

j =1 |j 〉〈j | ⊗

U0 U1 U2 U3

FIG. 6. The quantum circuit for directly implementing U =∑3
j =0 |j 〉〈j | ⊗ U

†
j .

H
†
j by the following equation:

(IA ⊗ 〈0B| ⊗ In)

Sk∑

j =0

|j 〉〈j | ⊗ U
†
j (IA ⊗ |0B〉 ⊗ In)

=
1

D

⎛
⎝|0〉〈0| ⊗

H0

2
+

Sk∑

j =1

|j 〉〈j | ⊗ H
†
j

⎞
⎠ s,

(F2)

where IA is the identity map that acts on the P ancilla

qubits. In the worst case, this selected oracle U can

be constructed using Sk + 1 controlled logic gates.

We give an example with Sk = 3 in Fig. 6.

(2) Construction of the block encoding of |0〉〈0| ⊗
(H0/2) +

∑Sk
j =1 |0〉〈j | ⊗ H

†
j . To construct the block

encoding of |0〉〈0| ⊗ (H0/2) +
∑Sk

j =1 |0〉〈j | ⊗ H
†
j ,

we apply a block encoding of
∑Sk

j =0 |0〉〈j | ⊗ IB ⊗ In

to U. In particular, we add P ancilla qubits and

define the operator

W =
(
H⊗P ⊗ IA ⊗ IB ⊗ In

)
SWAPA ⊗ IB ⊗ In,

(F3)

where SWAPA |0A〉 |bA〉 = |bA〉 |0A〉 and H is the

Hadamard gate that is used to recover (1/
√

Sk + 1)

|0A〉 + |⊥〉. The unitary gate W can be implemented

using P Hadamard gates and 3P controlled logic

gates. We draw the circuit in Fig. 7.

H
⊗P

FIG. 7. The quantum circuit for W =
(
H⊗P ⊗ IA

)
SWAPA.
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H H

W W
†

U U
†

FIG. 8. The quantum circuit for the block encoding of H̃ .

We note that W satisfies our requirement, which

means that

W (IA ⊗ U) =
1

√
Sk + 1

|0A〉〈0A|

⊗

⎛
⎝

Sk∑

j =0

|0〉〈j | ⊗ U
†
j

⎞
⎠+ |⊥〉〈⊥| .

(F4)

Furthermore, plugging in the formula of U, we

obtain

(〈0A| ⊗ IA ⊗ 〈0B| ⊗ In) W (IA ⊗ U) (|0A〉 ⊗ IA

⊗ |0B〉 ⊗ In)

=
1

√
Sk + 1D

⎛
⎝|0〉〈0| ⊗

H0

2
+

Sk∑

j =1

|0〉〈j | ⊗ H
†
j

⎞
⎠.

(F5)

Thus, W (IA ⊗ U) is the block encoding of |0〉〈0| ⊗
(H0/2) +

∑Sk
j =1 |0〉〈j | ⊗ H

†
j .

(3) Construction of the block encoding of |0〉〈0| ⊗
H0 +

∑Sk
j =1

(
|j 〉〈0| ⊗ Hj + |0〉〈j | ⊗ H

†
j

)
.

This step can be completed by a linear combina-

tion of unitaries (LCU) circuit, as drawn in Fig. 8.

More specifically, the circuit implements the block

encoding of (W (IA ⊗ U)) + (W (IA ⊗ U))†.

In summary, we define the operator generated by Fig. 8

as Q. According to the above derivation, Q is a block

encoding of H̃ , meaning that

(〈0| ⊗ 〈0A| ⊗ IA ⊗ 〈0B| ⊗ In) Q (|0〉

⊗ |0A〉 ⊗ IA ⊗ |0B〉 ⊗ In) =
1

√
2(Sk + 1)D

H̃ . (F6)

The success probability of the block encoding is inversely

proportional to (Sk + 1)D2. The next step is to determine

an upper bound for D, which is equivalent to finding the

maximum value of ‖Hj ‖.
We first consider the norm of the asymptotic expansion

term Yj ,q defined in Eq. (40). We upper bound ‖Yj ,q‖ in the

following lemma.

Lemma 5. Fix k ≥ 1. Given 0 ≤ j ≤ Sk and 0 ≤ q ≤ k,

‖Yj ,q‖ =
{

(4‖L‖be)
q+1/2, ∀ 1 ≤ j ≤ sk,

(4‖L‖be)
q+1, otherwise.

(F7)

Proof. Recall the construction of F in Eq. (38). For

any α ∈ �k/0 and �tp terms, where 2p ∈ N and 0 ≤ 2p ≤
2k + 1, the coefficient has the bound

∑

|α′|+l=0(α′)
2

=p ,(α′)+=α+

∣∣cα′,α
∣∣ ≤

∑

|α′|+l=0(α′)
2

=p ,(α′)+=α+

C
1/2

α′,α′

≤
∑

|α′|+l=0(α′)
2

=p ,(α′)+=α+

1 ≤ 4p . (F8)

Here, we use |cα′,α|2 ≤ E(R2
n,α′) = Cα′,α′ ≤ 1 in the first

and second inequalities. Combining this and ‖Vα′‖2 ≤
‖L‖|α′|

be , we prove Eq. (F7). �

Next, we recall the formula of Hj in Lemma 3 [Eq. (43)].

To bound ‖Hj ‖, we first give the bound for ‖Xj ,q‖ in the

following lemma.

Lemma 6. Fix k ≥ 1. Assume that 0 ≤ j ≤ Sk and 0 ≤ q ≤ k. Then,

∥∥Xj ,q

∥∥ ≤
{(

4(q + 1)!(J + 1)4k(q+1/2)‖L‖be

)q+1/2
, 1 ≤ j ≤ sk,(

4(q + 1)!(J + 1)4k(q+1)‖L‖be

)q+1
, otherwise.

(F9)

Proof. According to the matching Eq. (D2) and the asymptotic form given in Eqs. (40) and (43), in H̃ we should have

terms Xj ,q�tq for 1 ≤ j ≤ sk and Xj ,q�tq+1/2 for other j . Furthermore, by matching the power of �t on both sides of Eq.

(D2), we can rewrite Eqs. (D18) and (D20) as

020332-25



DING, LI, and LIN PRX QUANTUM 5, 020332 (2024)

Xj ,q =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

iY0,q +
∑

ξ∈�
j
q,γ∈�

j
q

cξ ,γ ;j ,qX0,γ1
X

†
ξ1,γ2

Xξ2,γ3
· · · , j = 0,

Yj ,q +
∑

ξ∈�
j
q,γ∈�

j
q

cξ ,γ ;j ,qXj ,γ1
X

†
ξ1,γ2

Xξ2,γ3
· · · , j > 0.

(F10)

Here, |cξ ,γ ;j ,q| ≤ 1 and cξ ,γ ;j ,q = 0 if |ξ | �= |γ | − 1,

�j
q =

{
ξ = (ξ1, . . . , ξ|ξ |) ∈ {0, 1, 2, . . . , Sk}⊗|ξ | : |ξ | ≤ 2q − 1

}

and

�j
q =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
γ = (γ1, . . . , γ|γ |) ∈ {0, 1, 2, . . . , q − 1}⊗|γ | :

|γ |∑

i=1

(γi + 1/2) ≤ q + 1/2

}
, 1 ≤ j ≤ sk,

{
γ = (γ1, . . . , γ|γ |) ∈ {0, 1, 2, . . . , q − 1}⊗|γ | :

|γ |∑

i=1

(γi + 1/2) ≤ q + 1

}
, otherwise,

for q > 0 and �
j

0 = ∅. We note that to match the power of �t, cξ ,γ ;j ,q = 0 whenever the power of �t corresponds to

Xj ,γ1
X

†
ξ1,γ2

Xξ2,γ3
. . . exceeds q + 1 − (11≤j ≤sk

+ |γ |/2).

We prove Eq. (F9) by induction. From Eq. (F7), we obtain that, when q = 0, Eq. (F9) is true.

Assume that Eq. (F9) is true for q ≤ Q − 1:

(i) Fix 1 ≤ j ≤ sk. Using Eq. (F10),

∥∥Xj ,Q

∥∥ ≤
∥∥Yj ,Q

∥∥+
∑

γ∈�Q

cξ ,γ ;j ,Q

(
(J + 1)k

)|γ |−1 (
4Q!(J + 1)4kQ‖L‖be

)Q+1/2

< (4‖L‖be)
Q+1/2 +

(
(J + 1)4k(Q+1/2)

)Q+1/2
(4Q!‖L‖be)

Q+1/2
∑

γ∈�Q

1

≤ (4‖L‖be)
Q+1/2 +

(
(J + 1)4k(Q+1/2)

)Q+1/2
(4Q!Q‖L‖be)

Q+1/2

≤
(
4(Q + 1)!(J + 1)4k(Q+1/2)‖L‖be

)Q+1/2
.

Here, we use the induction bound and |
{
ξ |ξ ∈ �q, |ξ | = |γ | − 1

}
| = ((J + 1)k)|γ |−1 in the first inequality. Fur-

thermore, the power of Q + 1
2

comes from the fact that the power of �t corresponds to Xj ,γ1
X

†
ξ1,γ2

Xξ2,γ3
. . . cannot

exceed Q + 1
2

− (|γ |/2), which implies that the power of
(
4Q!(J + 1)2k‖L‖be

)
cannot exceed Q + 1

2
. In the second

inequality, we use Eq. (F7), |cγ | < 1, and |γ | ≤ 2Q. In the third inequality, we use |�Q| ≤ QQ.

(ii) Fix j = 0 or j > sk. Similar to before, using Eq. (F10),

∥∥Xj ,Q

∥∥ ≤
∥∥Yj ,Q

∥∥+
∑

γ∈�Q

cξ ,γ ;j ,Q

(
(J + 1)k

)|γ |−1 (
4Q!(J + 1)4kQ‖L‖be

)Q+1

< (4‖L‖be)
Q+1 +

(
(J + 1)4k(Q+1)

)Q+1
(4Q!‖L‖be)

Q+1
∑

γ∈�Q

1

≤ (4‖L‖be)
Q+1 +

(
(J + 1)4k(Q+1)

)Q+1
(4Q!Q‖L‖be)

Q+1

≤
(
4(Q + 1)!(J + 1)4k(Q+1)‖L‖be

)Q+1
.

The above two inequalities conclude the induction and prove Eq. (F9).
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Finally, using Lemma 6 [Eq. (F9)], it is straightforward to obtain

∥∥Hj

∥∥ ≤

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k−1∑

q=0

(
4(q + 1)!(J + 1)4k(q+1/2)‖L‖be

)q+1/2
�tq, 1 ≤ j ≤ sk,

k−1∑

q=0

(
4(q + 1)!(J + 1)4k(q+1)‖L‖be

)q+1
�tq+1/2, otherwise,

for all 0 ≤ j ≤ Sk. Choosing �t = O

((
kk+2(J + 1)4(k+1)2‖L‖be

)−1
)

, the above equation suggests that

D = O

⎛
⎝(J + 1)2k‖L‖1/2

be

k−1∑

q=1

((
4(q + 1)!(J + 1)4k(q+1)

)1+1/q ‖L‖be

)q

�tq

⎞
⎠ = O

(
(J + 1)2k‖L‖1/2

be

)
. (F11)

Recall Sk = O((J + 1)k+1) from Theorem 1. We obtain the bound for the subnormalization factor of the block encoding:

√
2(Sk + 1)D = O

(
(J + 1)(5k+1)/2‖L‖1/2

be

)
. (F12)

It should be noted that the bound presented in Eq. (F11) significantly overstates the size of
∥∥Hj

∥∥. In the proof of Lemma 6,

we upper bound the small coefficient c by 1 and do not take into account possible cancelation of terms in the summation. In

practice, considerable cancelation occurs within asymptotic expansion and matching, resulting in a substantially reduced∥∥Hj

∥∥.

A concrete illustration of this idea can be seen from the first order to the third order provided in Appendix B. Let us

consider k = 2 for example, where the dilated Hamiltonian H̃ takes the form of Eq. (B10). We have

‖H0‖2 ≤
√

�t‖L‖be +
�t3/2

12
‖L‖2

be,
∥∥Hj

∥∥
2

≤ ‖L‖1/2

be +
5�t

6
‖L‖3/2

be , 1 ≤ j ≤ J ,

∥∥Hj +J

∥∥
2

≤
�t

√
12

‖L‖3/2

be , 1 ≤ j ≤ J ,

∥∥H2J+(l−1)J 2+(k−1)J+j

∥∥
2

≤
�t
√

6
‖L‖3/2

be , 1 ≤ j , k, l ≤ J ,

∥∥HJ 3+2J+(k−1)J+j

∥∥
2

≤
√

�t

2
‖L‖be, 1 ≤ j , k ≤ J .

We note that S2 = J 3 + J 2 + J and S2 + 1 ≤ (J + 1)3. Then, we can choose �t = 5
6
‖Lbe‖−1 and D = 2‖L‖1/2

be . This

gives us the subnormalization factor:

√
2(Sk + 1)D = 2

√
2(J + 1)3/2‖L‖1/2

be .

We observe that the choice �t is independent of J and the power of J in the subnormalization factor is significantly

smaller than that of Eq. (F12).
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