N)
ks Prov2vEc: Learning Provenance Graph Representation for

Anomaly Detection in Computer Systems

Bibek Bhattarai H. Howie Huang
GraphLab GraphLab
The George Washington University The George Washington University
USA USA

bhattarai_b@gwu.edu

ABSTRACT

Modern cyber attackers use advanced zero-day exploits, highly
targeted spear phishing, and other social engineering techniques
to gain access, and also use evasion techniques to maintain a pro-
longed presence within the victim network while working gradually
towards the objective. To minimize damage, detecting these Ad-
vanced Persistent Threats as early in the campaign as possible is
crucial. This paper proposes, PROV2VEC, a system for the contin-
uous monitoring of enterprise host’s behavior to detect attackers’
activities. It leverages the data provenance graph built using sys-
tem event logs to get complete visibility into the execution state
of an enterprise host and the causal relationship between system
entities. It proposes a novel provenance graph kernel to obtain the
canonical representation of the system behavior, which is compared
against its historical behaviors and that of other hosts to detect
the deviation from the norm. These representations are used in
several machine learning models to evaluate their ability to capture
the underlying behavior of an endpoint host. We have empirically
demonstrated that the provenance graph kernel produces a much
more compact representation compared to existing methods while
improving prediction ability.

CCS CONCEPTS

« Security and privacy — Intrusion/anomaly detection and
malware mitigation.

KEYWORDS

Provenance Graph, Machine Learning, Anomaly Detection

ACM Reference Format:

Bibek Bhattarai and H. Howie Huang. 2024. PROV2VEC: Learning Provenance
Graph Representation for Anomaly Detection in Computer Systems. In The
19th International Conference on Availability, Reliability and Security (ARES
2024), July 30-August 02, 2024, Vienna, Austria. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3664476.3664494

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ARES 2024, July 30-August 02, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1718-5/24/07

https://doi.org/10.1145/3664476.3664494

howie@gwu.edu

1 INTRODUCTION

Large enterprises and government networks have seen a significant
rise in targeted attacks from experienced cyber criminals with
substantial financial backing [45, 49, 56, 62]. These sophisticated
attacks often referred to as advanced persistent threats (APTs),
are carried out in multiple steps over a prolonged period, each
designed to blend in with benign activity. These att acks bypass
traditional signature-based defense mechanisms [57] via zero-day
exploits. While anomaly detection processes such as [9] can detect
the events that diverge from the norm, traditional sequence-based
contexts can not reliably capture the causality between involved
system entities and thus miss the ‘low and slow’ attacks.

To provide better visibility into attack campaigns, existing threat
detection systems [5, 20, 42, 43] combine the Provenance Graph
with alert generation capabilities of Endpoint Detection and Re-
sponse (EDR) systems. This integration allows for automated alert
correlation, reducing false positives and providing contextual in-
formation around alerts. By capturing the information flow be-
tween system objects using a Directed Acyclic Graph (DAG), these
provenance graphs provide historical context and the impact of
an alert through backward and forward graph traversal [31]. For-
mally, we define a provenance graph snapshot at time t as G; =
(Vi Et, A®, A®), where V; and E; are set of nodes and edges at time
t, and A” and A® are functions that maps all nodes v € V; and edges
e € E; in the graph to set of node and edge attributes respectively.

Unfortunately, several challenges remain for existing provenance
graph-based systems. First, fine-grained causal analysis on lengthy
APT campaigns presents significant computational challenges. With
a median dwell time of three weeks and the generation of several
terabytes of log events daily, holding the entire provenance graph
in memory is highly impractical. Storing graphs in databases and
conducting graph traversal [44] for alert correlation significantly
escalates the cost. Achieving real-time detection using compute-
intensive alert correlation across the entire enterprise network is a
daunting task. It is important to note that the majority of compu-
tational resources allocated to alert correlation should contribute
minimally to the overall detection process. In a recent study [5]
involving a network with 500 hosts, out of 28 hosts that were com-
promised over a three-day evaluation period, the alert correlation
on a single host was able to detect the APT campaigns only on
5 hosts(1% of the total hosts). While alert correlation is crucial
for retracing the attackers’ steps and comprehending attacks on
compromised hosts, applying it as a proactive detection measure
universally across all hosts and at all times is cost-prohibitive.

Second, the detection capability of alert correlation-based sys-
tems is inherently limited by the coverage of rules employed in the

https://doi.org/10.1145/3664476.3664494
https://doi.org/10.1145/3664476.3664494
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664476.3664494&domain=pdf&date_stamp=2024-07-30

ARES 2024, July 30-August 02, 2024, Vienna, Austria

alert generation process. These rules are manually crafted by secu-
rity practitioners, relying on the cyber threat intelligence reports
from security forums, blogs, social media, and previous attacks.
The matching semantics vary based on the platform and under-
lying sensors used for data collection. Replicating such rules in a
new platform requires a substantial manual effort and expertise.
Furthermore, although incorporating novelty detection on a node
or edge level [4, 10, 53] can potentially detect previously unseen
attacks, new benign activities also emerge constantly, necessitating
a broader perspective on activities for threat detection.

To tackle these challenges, we introduce PRov2VEc, an innova-
tive system that leverages a novel provenance graph kernel to
derive a canonical form for a given graph snapshot, capturing the
aggregated host behavior at a specific time point in a fixed-size
vector representation. PROV2VEC operates by mining label-aware
backward walks, with a maximum length specified by the user as
h, for each node in the provenance graph. These walks encompass-
ing the execution history of nodes over varying hop lengths from
0 < i < hare then compressed into a label that succinctly describes
the nodes’ causal history. A node label histogram is constructed
by tallying the frequencies of distinct labels across all nodes in
the graph for each hop length from 0 to h. These histograms are
stored in memory using a fixed-size probabilistic data structure
called histosketch [73], which is utilized by downstream machine
learning tasks to model the behavior of the hosts and detect when
they behave abnormally.

This work makes the following three contributions:

e We develop an end-to-end system for unsupervised anomaly
detection on network systems. Leveraging the provenance
graphs built from logs gathered during normal operations,
our system creates comprehensive benign host behavior pro-
files. Any provenance graphs deviating from those generated
by benign activities are identified as anomalies. We utilize
these anomalous graph snapshots, along with their associ-
ated users and hosts, to traverse the authentication graph
and uncover all compromised entities.

e We propose a novel graph kernel that enhances the general-
ization of similar provenance graph structures using compact
node label histograms. Our approach achieves superior or
comparable accuracy in downstream machine learning tasks
while maintaining the histogram of size an order magni-
tude smaller than Wesfeller-Lehman subtree (WLSubtree)
kernel [58] and temporally ordered WL subtree kernel from
Unicorn [18].

e We showcase the effectiveness of PROV2VEC in profiling
host behavior and detecting compromised network entities
through three machine learning tasks — graph classification,
graph clustering, and graph anomaly detection — on prove-
nance graphs generated from Windows and Linux hosts.

2 THREAT MODEL

We focus on a typical APT life cycle, where adversaries gain unau-
thorized access to the enterprise hosts and aim to maintain stealth
for an extended period. To achieve their objectives, attackers carry

Bibek Bhattarai and H. Howie Huang

1. Provenance 2. Provenance 3. Histosketching 4. Downstream

_ creation Graph Kernel Prediction tasks
3 -
ol olloa | | -e—
>
ml'-;:-f DDDD
’-.‘ *3
I 3K oo/ EEEEEE

Node label histograms Fix-sized sketch vectors

Figure 1: The system diagram of PRov2VEc.

out various post-exploitation activities, including internal recon-
naissance, privilege escalation, lateral movement, and data exfil-
tration [63]. Our goal is to detect compromised hosts based on a
given snapshot of the provenance graph at a specific time ¢, using
Prov2vEC. We assume that PRov2vEc has sufficient historical data
to establish a behavior profile of enterprise hosts during normal
operations. We also assume that the provenance graph obtained dur-
ing an attack exhibits distinct differences from the graphs observed
during prior normal operations.

Prov2vEC does not make assumptions about the specific actions
performed by an attacker, apart from the fact that their intent
and/or actions leave indicators in the audit logs and, consequently
on the provenance graph. To accurately capture this information,
ProOV2VEC assumes the correctness of log collection frameworks.
The remainder of this paper assumes the validity of log collecting
frameworks and log data used in our experiments, focusing on
PROV2VEC’s ability to model system behavior based on them. For
modeling the system behavior, this work assumes that provenance
graphs with similar structures indicate comparable operational
behavior. Therefore, the detection of abnormal behavior entails the
computation of (dis)similarities across provenance graphs.

3 PROV2VEC DESIGN

3.1 Overview

Figure 1 shows the high-level overview of the PROV2VEC system.
In the first step @ given the stream of log events generated by
auditing tools [11, 15, 27], PRov2VEC updates the provenance graph
continuously with new events. That is, periodically it creates the
snapshots of the provenance graph G; = (V;, E;).

In the second step @, the provenance graph kernel is used to
convert the graph snapshots into node-label histograms. While
aggregating over the specified neighborhood, these histograms can
have different sizes depending on the number of distinct provenance
labels in a given graph snapshot.

In the third step @, to compare the histograms with one another,
we convert them into vectors of the same size. In the static setting,
this can be done by building a vector of size equal to node label
vocabulary, which is built using the histograms of all the graphs in
question. In the streaming setting, the vocabulary size is constantly
increasing. To enable easy comparison of streaming histograms, we
utilize a probabilistic data structure called histosketch [73] that uses
the consistent weighted hashing [34] to sample the histograms into
fixed size vectors while preserving the similarity between them.

ProOV2VEC: Learning Provenance Graph Representation for Anomaly Detection in Computer Systems

process3.exe module2.dll

YRITE [EDIT CREATE [LOAD
() w7

(a) Provenance graph snapshot att =0

ARES 2024, July 30-August 02, 2024, Vienna, Austria

(b) Provenance graph snapshotatt=1

Figure 2: The sample provenance graphs captured. (a) the graph at time t = 0 and (b) the graph at time t = 1, with new nodes and

edges denoted in the red color.

In the final step, @, the series of feature vectors representing
provenance graph snapshots is fed to machine learning models to
learn the behavior of a network system. They can be designed for
one of many tasks such as graph classification, outlier detection,
and graph clustering. During deployment, the first three steps are
performed and the resultant feature vector is tested against the
model learned to detect whether the behavior at any instance is
anomalous. The anomalies generated from these models serve as
the leads for analysts, providing indications of potentially malicious
activity. These anomalies can prompt further investigation to gain
insights into the underlying causes and potential countermeasures.
To extract subgraphs that capture the sequence of actions performed
by the attacker, alert generation and correlation can be conducted
using systems like Rapsheet [20] or SteinerLog [5]. We believe that
PRrROV2VEC can play a crucial role in identifying suspicious endpoint
hosts, enabling alert correlation systems to focus their fine-grained
analysis on those specific hosts.

3.2 Provenance Graph Creation

The system logs are parsed into a triplet of (subject, action, object)
and inserted into a provenance graph. The direction of edges sig-
nifies the flow of data or information. For instance, an edge corre-
sponding to a process writing on a file will point from the process
to the file, whereas a process reading a file will have the opposite
direction. Figure 2 shows two snapshots of a provenance graph at
time ¢ = 0 and later at t = 1. The red edges and nodes on the second
snapshot represent the part added after the first snapshot.

To reduce the graph size and avoid dependency explosion dur-
ing the forensic analysis, we utilize causality preserving duplicate
elimination [72] and node versioning. When inserting an edge
(src, event, dst), if there already is another edge with the same
triplet in the provenance graph, and there are not any outgoing
edges from the latest version of dst, i.e., dst;, we simply update the
time information of edge and avoid inserting the edge again.

On the other hand, if the newest version of the node dst, i.e., dst;
already has outgoing edges at time i, the insertion of an incoming
edge at time i + 1 changes the provenance of all neighboring nodes.
In this case, for time i + 1, we create a new version of that node
dstit1, and insert the edge (src, event, dstj;1) instead. In addition,
an edge needs to be inserted between dst; and dst;41 to indicate
that the latter is the newer version of the former node.

In our experiment data, an average of 1.2 node versions are cre-
ated for subjects and objects. With dependency preserving reduc-
tion, we were able to reduce the number of edges in the graph by a
factor of 3.38X compared to the number of events. Node versioning
and redundant edge elimination enable efficient incremental com-
putation of node-label histograms. By creating different versions of
nodes in the provenance graph as subjects or objects change, we can
focus the computation only on newly inserted nodes. This approach
minimizes redundant processing and improves computational ef-
ficiency, ensuring that the node-label histograms are efficiently
updated as the provenance graph evolves.

3.3 Provenance Graph Kernel

To capture the heterogeneity of the provenance graph, we perform
label-aware backward walks from each node in the given snapshot.
These walks traverse the graph up to a user-defined length h. By
accumulating the provenance labels of all nodes, we construct a
provenance label histogram for the snapshot. This approach allows
us to capture the diverse characteristics of the graph and gener-
ate a comprehensive representation of the node labels within the

specified walk length.

DEFINITION 1. Label-aware backward walk: Given a nodev €
Vi, a backward walk of length i starting at v is defined as (l(ep),
I(e1),1(e2), ... I(ei=1), I(u)), where (ej—1, €j—2, ..., €) is the sequence
of edges representing the information flow from u tov, and I(e«) and
I(u) represent the type of events and objects on the walk respectively.

ARES 2024, July 30-August 02, 2024, Vienna, Austria

Backward walk set W;(v) of a given node v is the set of all possible
backward walks of length i fromv.

Each backward walk of length i describes how node v is impacted
by the set of nodes {u} with a sequence of i consecutive activities.
For i = 0, the walk corresponds to the node itself, i.e. (I(v)). For
instance, in Figure 2(a), length 2 backward walks for registry1 are
(EDIT, CREATE, PROCESS) and (EDIT, READ, FILE). Similarly, the
walks of length 1 and 0 for registry1 are (EDIT, PROCESS) and
(REGISTRY) respectively.

Given the set of backward walks W;(v) consisting of every length
i backward walks from node v, we group labels at equal distances
from v in these walks. Formally, ri](v) ={wl[i—j]Vw e W;(v),0 <
j < i} for 0 < i < h. Here, each backward walk w of length i is the
sequence of labels ([(ep), [(e1), I(e2), ... [(ei—1), [(u)) as defined in
Definition 1. The labels le for 0 < j < i are then stacked together
to form i-provenance label , ie., ¥;(v) = (Tll Tii_l, Til, rl(.)). If
no backward walk of length i exists, then the empty set {} is used
to denote both W;(v) and i-provenance label ¥;(v). The process is
repeated for each depth i for 0 < i < h. Let’s look at the 0-, 1-, and
2-provenance labels of node registry1 in Figure 2(a),

e Fori=0, yy(registryl) = ({REGISTRY}), where
79 = {REGISTRY}.

e Fori=1, T?(registryl) = {PROCESS}, rll(registryl) =
{EDIT}, and ¢ (registryl) = ({EDIT}, {PROCESS}).

e Fori=2, rg(registryl) = {PROCESS, FILE}, rzl(registryl) =
{CREATE, READY}, 72 (registry1) = {EDIT}. Stacking all to-
gether, we get Y (registryl) = ({EDIT}, {CREATE, READ},
{PROCESS, FILE}).

For each provenance graph snapshot G;, a histogram is con-
structed containing the frequency of different provenance labels for
all nodes in the graph. The histogram keys are generated based on
the unique ¥; (v) values for all v € V; and 0 < i < h, where h is the
maximum walk length. The histogram size of the graph snapshots
obtained in PROV2VEC is significantly smaller compared to the WL
subtree kernel [58] and temporally sorted subtree kernel [18].

In contrast to the multi-set approach used in the WL subtree
kernel [58] and the temporally sorted multi-set approach in Uni-
corn [18], the provenance kernel in PRov2vEc utilizes a set to ag-
gregate labels from the neighborhood. This distinction is important
because the multi-set approach has been deemed to provide better
discrimination power necessary in many domains. However for the
provenance graph, since we use entity and event types as labels,
these can generate spurious labels and weaken the generalization.

For instance, take three graphs in Figure 3 all of which represent a
very similar set of actions, i.e., a process p1 reads from file(s), loads a
module, and edits a registry item. In PROV2VEC, after mining length
1 backward walks, the same provenance label ({LOAD, READ},
{FILE, MODULE}) is generated for p1 in each of the graphs G1, G2,
and G3. However, the WL-subtree kernel maps p1 in G3 to a differ-
entlabel ({LOAD, MODULE}, {READ, FILE}, {READ, FILE}) com-
pared to p1in Gl and G2, i.e., ({LOAD, MODULE}, {READ, FILE}).
Similarly, the Unicorn’s kernel also considers the temporal order of
m1 and f1, resulting in a different label for p1 in each graph. The
ability of the provenance graph kernel to map similar behaviors to

Bibek Bhattarai and H. Howie Huang

G3

Gl G2

FILE FILE
FILE MODULE FILE MODULE MODULE

=0(f1

REGISTRY REGISTRY REGISTRY

Figure 3: Three toy graphs representing a similar set of ac-
tions of a process reading from a file, loading module, and
editing a registry. The provenance graph kernel maps all of
them to an identical histogram while existing kernels make
distinctions based on temporal order or repeated events.

Algorithm 1: Incremental algorithm for computing prove-
nance label histogram

Data: Provenance graph snapshot G;, current histogram
hist, inserted edges AE, new nodes Ve, max walk
length h
Result: An updated provenance label histogram hist
> Initialize the labels
1 for v € Vjeyy do
2 for0<i<hdo

3 Yi(v) < (;
4 for 0<j< ido
5 RACKSRE

o | 79— {0} yo — ()
> Iterate over inserted edges to infer other
provenance labels
7 for1 <i<hdo
8 for e = (u,0) € AE do

9 if Yi—1(u) is empty then

10 L skip the edge;

11 rl? (v).insert(I(e));

12 for0<j<i-1do

13 L rl](v) <—rl.](0)Uri]71(u);

> Update the histogram, if there is an old
label, we need to remove it

14 if ¥;(v) is not empty then
15 L hist[¢;(0)] — —;

16 Yi(v) = (Tf(v),rii_l, . T?);
17 hist[Y;i(0)] ++;

identical labels helps better generalize underlying behavior, reduc-
ing false positives in downstream tasks. This means that PRov2vEc
can capture similarities between different instances of p1 across
the graphs, while the other kernels may treat them as distinct. By
providing consistent labels for similar behavior, the provenance
graph kernel enhances the accuracy and effectiveness of subsequent
analysis tasks.

ProOV2VEC: Learning Provenance Graph Representation for Anomaly Detection in Computer Systems

3.4 Incremental Provenance Graph Kernel

Algorithm 1 presents a real-time streaming approach for updating
the provenance label histogram. It iterates through the newly in-
serted edges to obtain the provenance labels for them and updates
the labels of the affected old nodes. First, it initializes the placehold-
ers (lines 1 - 6) for provenance labels to hold ; (v) for all new nodes
0 € Vpew and 0 < i < h. In order to get ¥;(v), we need placeholder
for rlj (v) for 0 < j < i. Once the initialization is done, we iterate
through all inserted edges for h iterations to obtain the provenance
labels corresponding to the backward walks of length 0 through h
(lines 7-17). Once the provenance labels are obtained, we update
the label histogram to reflect the newly formed provenance labels
(lines 14 - 17).

In the graph snapshot of Figure 2(b), three new edges are inserted
in the earlier snapshot, which creates three new nodes in the graph.
Once the placeholders for i/; and corresponding rl) for each of these
nodes are initialized, it obtains the provenance labels of new nodes
registry2, process5.exe, and IP2, using the labels of their in-neighbors,
i.e., (process2.exe), (process3.exe), and (process2.exe) respectively. The
new labels are then updated in the histogram.

The runtime complexity of Algorithm 1 is O(h?|AE|) for a given
batch of edge insertions AE. For the initial snapshot, the runtime
complexity is O(h?|Ey|), where Eq represents the number of edges
in the initial snapshot. The initialization phase (lines 1-6) can be
completed in O (h?|Vnew|), where Vyeyy is the set of newly inserted
nodes in the given snapshot, and the entire vertex set for the initial
snapshot. After the initialization, the computation of provenance
labels occurs in h X |AE| X h operations, as the process needs to
update i-provenance labels for each inserted edge for 0 < i < h.

While the complexity is higher than O(h|AE|) of WL subtree
kernel [58] with the h-hop neighborhood, it is important to note
that the value of A is typically small(e.g., < 4). In the WL subtree
kernel, the authors use cross-validation to find the best value of
tree depth and always land on values between 2, 3, or 4. In Unicorn,
the neighborhood radius R parameter equivalent to h is set to 3 for
all experiments. Due to this affinity to small h, the overhead from
the quadratic scaling is generally negligible.

3.5 Featurization of Histograms

Most machine learning algorithms require a fixed-size input vec-
tor. The node label histograms from different snapshots have a
different number of bins, i.e., distinct node labels. We need to con-
vert these variable-size histograms to fixed-sized vectors. Let us
assume histograms Hy, Hy, ..., H are generated from graph snap-
shots Gy, G, ..., Gg. A label vocabulary ¥ is the set of all the distinct
labels computed for all the nodes in all the graph snapshots, i.e.,
Y= U{;OLi, where L; is the bins (labels) from H;.

3.5.1 Sparse label frequency. In a static setting, where all the graph
snapshots are already available, we accumulate the unique labels
from all the graph snapshots to build a label vocabulary X. Then
we convert the histogram H; of each snapshot into a sparse vector
V; of size equal to |X|, where the element at the i h index is the
frequency of label i in the histogram of the given snapshot. The
vector elements corresponding to the labels not present in the

ARES 2024, July 30-August 02, 2024, Vienna, Austria

snapshot are set to 0. For each label 1 in vocabulary X,

H;[l] ifl e H;
vi[z]={ e
0 otherwise

1)

To assess the similarity between two vectors V; € R* and Vje
R, we can compute the distance between them using normalized
min-max, a popular distance measure for non-negative vectors.

2Ziex min(Vi[1], V5[11)
Yiex max(Vi[1], V5 (1)

3.5.2 Histosketch. In the streaming setting, where the label vo-
cabulary is continuously expanding, we utilize a histosketch data
structure to convert the variable-sized histogram H; into a fixed-size
sketch vector S; of size K. Histosketch employs consistent weighted
hashing to transform the histogram into a compact sketch. By apply-
ing this technique, we can represent each snapshot with a fixed-size
vector, regardless of the growing label vocabulary.

For a node label histogram H, where each label [has a frequency
value, H[I] > 0, Consistent Weighted Sampling (CWS) produces
(I,a;) : 0 < a; < HJ[I], which is both uniform and consistent.
This CWS sample (I, a;) corresponds to the node label histogram
bin (I) and its scaled weight (a;) and is uniformly sampled from
Ui{l} x [0, H[I]]. This means the probability of selecting label !
from H is proportional to its label frequency in the histogram, i.e.,
H[!I], and y is uniformly distributed on [0, H[I]]. The sample is
also consistent, which means given two histograms H; and Hp, if
VI, Hi[l] < H3[l], a sub-element (I, q;) is sampled from H; and
satisfies y < Ha[[], then (I, a;) will also be sampled from H> [34, 73].

To generate a consistent sample for a member of the node label
histogram, CWS uses three distributions using all labels from the
histogram. For each [€ H, and k = 1,2, ..., K, CWS samples from
Yik = gamma(2,1), B =~ uniform(0,1), and ¢;; ~ gamma(2,1).
Once these distributions have been sampled, CWS generates a
consistent sample for all labels in the histogram as follows.

Yk = exp(log(H[I]) = v Brk) (©)

Dnmm(Vi, V) = (2

B ClLk

* 7 yikexp(vip)
Equations 3 and 4 generate ‘active indices‘ and hash a label [in
proportion to its weight respectively. For each sketch element, it
chooses a label i.e., Sy = argminjcpa; ., and corresponding hash
value Ay = minjcgay k. Given two sketches S; and S; constructed
from two histograms H; and H; respectively, the collision prob-
ability in sketches is exactly the normalized min-max similarity
between the histograms(or sparse label frequency vectors):

©

Pr([S;[k] = Sj[k]] = Dnmm (Hi, Hj) (5
where k = 1,2,..,K. The normalized min-max similarity be-
tween two histograms can be approximated by computing the
hamming distance between two sketches. The computation over
sketches S, which are compact and of fixed size, is much more ef-
ficient than the one over the full histogram H, which is a large,
ever-growing vector.
Histosketch can support a real-time update where every single
update in the histogram can be reflected in sketch vector in O(K).

ARES 2024, July 30-August 02, 2024, Vienna, Austria

For each distinct label [in histogram H, it requires O(K) space
to store the pre-computed distributions y; ., B k., and c; j, where
k = 1,2,3,..K, thereby making the resultant space complexity
O(K x |HJ).

4 EVALUATION

We utilize the X-Stream [54], an edge-centric graph computing
framework, to implement the graph kernels. This framework sup-
ports both in-memory and out-of-core graphs, enabling scalable
computing on shared memory machines. In our implementation,
node labels are stored on the vertices, and in each iteration of the
graph kernel, the labels are scattered via edges and aggregated on
the affected nodes to compute the set of newly formed labels from
the streamed edges. This approach allows for efficient computation
and maintenance of histograms and sketches in memory, while
storing the provenance graph itself on disk. Other components of
the PROV2VEC system, such as downstream task modeling and data
parsing, are implemented using Python.
We evaluate PRov2vEc with three different datasets:
StreamSpot dataset generated by [39] contains information
flow graphs derived from one attack and five benign scenarios.
Each of the benign scenarios involves a normal task: watching
YouTube, downloading files, browsing cnn.com, checking Gmail,
and playing video games. The attack graphs are captured while a
drive-by-download is triggered by visiting a malicious URL that
exploits a flash vulnerability and gains root access to the visiting
host. Each task is run 100 times on a Linux machine collecting a
total of 600 graphs, where each graph encompasses all the system
calls on the machine from boot up to shut down. In total, there are
5 different subject/object types and 29 different event types.
SupplyChain attack scenarios dataset [18] contains a whole
system provenance including background activity captured by Cam-
Flow (v0.5.0) [46] while simulating two supply chain attacks SC-1
and SC-2 on a continuous integration (CI) platform. They follow a
typical cyber kill chain with 7 non-exclusive phases, i.e., reconnais-
sance, weaponization, delivery, exploitation, installation, command
and control (C&C), and actions on objective [40]. In SC-1, GNU
wget version 1.17 is exploited (CVE-2016-4971) using remote file
upload when the victim requests a malicious URL to a compromised
server. In SC-2, a vulnerability (CVE-2014-6271) from GNU Bash
version 4.3 is exploited to allow remote attackers to execute arbi-
trary code via crafted trailing strings after function definitions in
Bash scripts. Each scenario generates 125 graphs from the benign
activities and 25 graphs from the attacker’s activities.
Operational Transparent Cyber (OpTC) data [67] was col-
lected over nine days at National Cyber Range in a simulated net-
work with one thousand hosts, with half of the client machines
turned off during data collection. Each host was running Windows
10 on VMware and was scripted to mimic daily user activities by
performing common tasks such as creating, editing, and deleting
word, powerpoint, excel, and text files; sending, receiving, and
downloading files via emails; and browsing the internet. Three
red-team APT exercises were performed, each on a separate day,
where randomly chosen machines were targeted, compromised,
and used to laterally move on to the other network clients. This
dataset contains more than 17 billion events, from 500 hosts and 627

Bibek Bhattarai and H. Howie Huang

-=-Prov2vec WLSubtree -*-Unicorn

.

7

F1-Score
o
)
o u

o
o
&

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Fraction of data Used for training

Figure 4: Performance of graph classification.

different users. Among these log events, there are 11 object types
and 32 different event types. The most popular objects are FLOW
(71.7%), FILE (12.4%), PROCESS (8.6%), MODULE (3.9%), THREAD
(3.0%), and REGISTRY (0.3%). The rest of the objects constitute less
than 0.1% of overall events. Only 0.3 million, approximately 0.0016%
of the total events, are malicious [1].

For comparison, we implemented two other existing graph ker-

nels: (1) Weisfeiler-Lehman Subtree kernel (WLSubtree) [58] is
implemented to include both edge labels and node labels in their
aggregation. Using the edge and node label of each incoming neigh-
bor of the given node v, a sorted multi-set of labels is built which
is concatenated with the label of v. (2) The temporally ordered
Weisfeiler-Lehman Subtree (Unicorn) kernel [18] is implemented.
The underlying setups can be reused for each approach, where we
only need to re-implement the kernel functions.
Downstream Tasks: We utilize the representation obtained from
provenance graph kernel in three distinct downstream tasks to
measure the effectiveness of different representation for specific
applications.

¢ Graph classification classifies the provenance graphs based
on the underlying action being performed on the system. We
use XGBoost classifier [69] for graph classification.

e Novelty detection is used to detect anomalous behavior
in homogeneous systems using one-class support vector
machine [55].

e Anomaly detection using K-Medoids Clustering. It uses the
partitioning around medoids (PAM) algorithm to minimize
the distance between points labeled to be in a cluster and
a point designated as the center of that cluster [68]. It is
useful for detecting anomalous behavior in a heterogeneous
system, i.e., a system with multiple benign behavior profiles.

The average performance from 5-fold cross-validation is reported
in all of the prediction task reporting. The five-fold split is only per-
formed in benign graphs for the task of anomaly/novelty detection,
i.e., four-fifths of benign data are used to train the model.

4.1 Graph Classification

We obtain the static histograms on StreamSpot datasets, i.e., for
each task and each run, one graph is built, and one histogram is
constructed. We convert the histograms to sparse label frequency
vectors, i.e., the feature vectors used here have sizes equal to the
number of distinct node labels among all graphs, i.e., vocabulary

ProOV2VEC: Learning Provenance Graph Representation for Anomaly Detection in Computer Systems

size. We evaluate the ability of PRov2VEC to distinguish between
six activities (youtube, download, cnn, gmail, vgame, and attack)
based on the provenance label histogram they generate. We use h
= 3, i.e., the 3-hop neighborhood labels are collected for all of the
different kernels. We use supervised learning by training the XGB
Classifier with a varying number of graphs and use the remaining
graphs to test the classification performance. As depicted in Figure 4,
all three kernel-based classifiers can reach the peak classification
performance in as little as around 20 graphs per task, and PRov2vEc
performs slightly better than the other two methods. This depicts
the ability of the provenance kernel to identify similar tasks, via a
comparison of their provenance labels, with a reasonable amount
of data.

4.2 Static Novelty Detection

Using unsupervised learning, we can predict the graphs that corre-
spond to the attacks. We utilize 80% of all benign tasks (400 graphs
in StreamSpot and 100 graphs in SC-1 and SC-2) as normal behav-
ior profiles and use them to train One-class SVM. The remaining
20% of the benign activity graphs and all the graphs generated
from the attack scenarios are used to test the anomaly detector, i.e.,
200 graphs in StreamSpot and 50 graphs each in SC-1 and SC-2
respectively. Table 1 shows the performance for all three graph
kernels and Figure 5 shows the area under ROC curve for three
kernel functions on the three datasets. PRov2vEc outperforms both
WLSubtree and time-ordered WL Subtree kernel from Unicorn [18].

Despite having a significantly smaller histogram size (Figure 8),
the Prov2vEc outperforms both WLSubtree and time-ordered WL
Subtree kernel from Unicorn [18]. The lower dimension of features
helps the runtime of training and testing, while the better gen-
eralization of provenance using the concise histogram helps us
to minimize the false positives, thereby improving the prediction
ability of the anomaly detector.

Table 1: The performance of one-class svim based anomaly
detection on three different graph kernels (used h = 3 on each
kernel). P, R, A, and F1 represents precision, recall, accuracy,
and f1-score respectively.

Dataset Kernel P R A F1 Runtime
(Sec)
Prov2vec | 0.9708 | 1.0 0.985 0.9852 | 0.061
StreamSpot | WLSubtree | 0.76 0.99 | 0.84 0.8609 1.281
Unicorn 0.7353 1.0 0.82 0.8475 3.034
PRrROV2VEC | 0.7742 1.0 0.8571 | 0.8727 | 1.445
SC-1 WLSubtree | 0.6857 1.0 0.7755 0.8136 5.281
Unicorn 0.7059 1.0 0.7959 0.8276 8.016
Prov2vEC | 0.7353 1.0 0.82 0.8475 1.751
SC-2 WLSubtree | 0.7143 1.0 0.8 0.8333 10.687
Unicorn 0.6579 1.0 0.74 0.7937 14.539

4.3 Real-time Anomaly Detection

The OpTC data provides a much better representation of real-world
enterprise networks. The host logs for 500 different Windows-10
hosts are collected over 9 days. During the first six of 9 data collec-
tion days, only normal activities are performed on each host such as
browsing the internet, playing video games, using Gmail, etc. Those
6 days are divided into 4 different boot-up to shut down sessions,
ie., (1) 17-18th, (2) 18-19th, (3) 19th, and (4) 20th - 23rd September

ARES 2024, July 30-August 02, 2024, Vienna, Austria

2019. We build different graphs for each host during each of these
sessions, where the node label histogram is maintained incremen-
tally and a snapshot is taken periodically. The series of histogram
snapshots are then converted into fixed-sized sketch vectors of
length 2,048. Next, all the sketches are clustered using the k-medoid
algorithm where an optimal number of clusters is determined by
maximizing the silhouette coefficient [48]. The trained k-medoid is
used for anomaly detection during the evaluation period.

The APT attack exercises were performed during the last three
days, where one attack campaign was carried out each day. During
the evaluation period, we create a provenance graph on each host
every day and incrementally run graph kernels to compute node
label histograms. The snapshots of histograms are taken every
hour and are converted to sketch vectors. The resultant sketch
vector is then tested against the k-medoids model trained during
benign activity duration. If the sketch does not fit on any of the
underlying clusters in the trained model, the snapshot is considered
an anomaly. If a host on a given evaluation day has at least one
anomalous snapshot, we raise an alert indicating that the host may
have been compromised.

Table 2: The anomaly detection results on 3 attack campaigns
using k-medoids algorithm for h = 3 and sketch size = 2048.

Attack Kernel P R A F1
PrROV2VEC 1.0000 | 0.1765 0.9720 | 0.3000
‘WLSubtree 0.6000 0.1765 0.9680 0.2727
Unicorn 0.4000 0.1176 0.9640 0.1818
PrROV2VEC 1.0000 | 0.3333 | 0.9880 | 0.5000
WLSubtree | 0.6667 | 0.2222 | 0.9840 | 0.3333
Unicorn 0.3333 0.2222 0.9780 0.2667
PROV2VEC 1.0000 1.0000 1.0000 1.0000
WLSubtree 0.2000 1.0000 0.9840 0.3333
Unicorn 0.2857 1.0000 0.9900 0.4444

Day1- Powershell
Empire

Day2-Deathstar

Day3-Malicious
Update

Table 2 shows the performance for detecting compromised hosts
on each day of the attack. We use a period of one hour between
snapshots, neighborhood size of h=3 for graph kernels, and sketch
the size of 2048. The precision represents the fraction of detected
hosts that were actually compromised, while recall represents the
fraction of compromised hosts that are detected. First, the preci-
sion of PRov2vEc kernel is much better than both WLSubtree and
Unicorn kernels. This is down to the better generalization of la-
bels on histogram resulting from Prov2vec. This results in a more
succinct histogram for PRov2vEc kernel compared to the other
two techniques, thereby enabling a smaller sketch to capture the
system behaviors. Notice that the recall is noticeably low for all
of the kernels during day1 and day2. This is because, during these
campaigns, there is hardly any activity on some of the compro-
mised hosts where an attacker simply logs in after obtaining the
credential from the domain controller. Below we discuss each of
these attack campaigns in detail.

Attack Day 1 Analysis. The attack campaign on day 1 uses Pow-
erShell empire [14], where it manually connects to Sysclient201
as the user zleazer and downloads malicious Powershell Empire
stager. It then uses privilege escalation methods to obtain elevated
agents, Mimikatz to collect credentials, registry edits to establish
persistence, and discovery techniques to gather system and net-
work information. It then pivots to Sysclient402 using WMI invoke
as an elevated agent where it performs a ping sweep of the local

ARES 2024, July 30-August 02, 2024, Vienna, Austria

Streamsopt

1.0 1.0

SC-1 (wget)

Bibek Bhattarai and H. Howie Huang

SC-2 (Shellshock)

0.8 1 e 0.8

0.6 e 0.6

0.4 4 e 0.4 4

—— Prov2vec auc-roc = 0.98

,/ —— Unicorn auc-roc = 0.82 0.2 1
,/’ —— WLSubtree auc-roc = 0.82 e
s s

True Positive Rate
\
True Positive Rate

0.2 1

-’

0.0

Prov2vec auc-roc = 0.84
,/ —— WLSubtree auc-roc = 0.78
—— Unicorn auc-roc = 0.82 e

1.0

0.8 e

0.6 id

0.4 1 e

Prov2vec auc-roc = 0.82

4
L7 T WLSubtree auc-roc = 0.80
~— Unicorn auc-roc = 0.74

True Positive Rate
\

0.2 1

’

T T T T 0.0 T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2

False Positive Rate

0.4

False Positive Rate

0.0

02 0.4 0.6 0.8
False Positive Rate

0.6 0.8 1.0 0.0 1.0

Figure 5: ROC curve of one-class SVM based novelty detection for three different graph kernels on different datasets. The area
under ROC curve for PRov2vEc kernel is consistently better than WLSubtree and Unicorn kernels.

Administrator

sysclient0104

Figure 6: The movement of compromised user across network
during attack campaign of attack day 1.

network and pivots to Sysclient660. Finally, it obtains domain con-
troller information by using Powershell commands, pivots to DC1
(domain-controller 1), where it obtains the user hashes using Isa,
and pivots to 14 different hosts.

All kernels including Prov2vEec flags Sysclient201 and Sysclient660
as compromised, however the Unicorn kernel missed Sysclient402.
The remaining 14 hosts are missed as they do not have enough
log data produced during the attacker’s presence, and we could
not flag the domain controller since there is no log collected for it.
Figure 6 shows the attacker’s movement across the network during
the attack day 1.

Attack Day 2 Analysis. The attack campaign was carried out
using Deathstar, which started with a phishing email containing
malicious Powershell stagers to two users bantonio and rsantilli.
On Sysclient501, bantonio opened the malicious attachment. Once
checked in the attacker runs a series of commands to list domain
controllers, SID, and admins. It used several UAC bypass techniques
available in Powershell Empire such as eventvwr, fodhelper, wmi in-
voke, and windir value modification to escalate the privilege. It then
started reverse shell to the attacker, which downloaded a netcat
application with a different alias, compressed the content of Docu-
ments folder into a file named export.zip, and copied it to news.com

hosted at 132.197.158.98. The attacker pivoted to Sysclient974 and
explored files in the Documents folder. Similarly, it pivoted to
Sysclient005, where it exfiltrated the data from the Downloads folder.
The hosts Sysclient501, Sysclient974, and Sysclient005 were 3 out
of 9 compromised hosts that were detected by all three kernels.
Figure 7 shows the attacker’s movement across the network during
the attack day 2.
Attack Day 3 Analysis. Here two hosts installed notepad.exe sus-
ceptible to malicious upgrade, which when updated reached out
to the attacker’s server hosted at 53.192.68.50 and downloaded a
reverse tcp meterpreter payload that connected back to the attacker.
Once connected, it runs discovery techniques to gather information
on the local system, applications, domain controllers, and network
shares. It then migrated to the Isass process, which used Mimikatz
to collect clear-text passwords and hashes. Afterward, persistence
was maintained by installing run keys, and user ‘admin’ was added
to administrators and the RDP group. A similar approach was taken
on both hosts Sysclient351 and Sysclient051, where they left large
enough footprints for an anomaly detector to trigger the alert.
We utilize a user-host interaction graph built using the user-
session logs to flag potentially compromised hosts and users to
quickly extract the impacted agents. The user-session logs in the
OpTC data contain information such as user logins, logouts, and
remote desktop protocol accesses. When we detect a compromised
host using real-time anomaly detection on provenance graph snap-
shots, we extract the metadata from such anomalies, mainly the
user, host, and the timestamp of the first anomaly. Following those
agents and time information, we perform a temporal traversal on
the user-host graph to obtain the potentially compromised hosts.
With the help of the temporal traversal, we can detect all the
compromised hosts on day 1 as shown in Figure 6, except domain
controller 1 (DC1) as we do not have user-session logs for DC1. In
addition, it produces one false positive sysclient0203 which was not
mentioned in the ground truth. On day 2 as shown in Figure 7, this
traversal led to a few false positives as bantonio logs into hundreds
of hosts following the detection of an anomaly on Sysclient501.
However, the user with the elevated privilege, i.e., Administrator
connected to all 9 hosts mentioned in the ground truth, which can
be traced from the user-session logs. Again with temporal traversal,
we can detect the compromised hosts that were missed by anomaly

ProOV2VEC: Learning Provenance Graph Representation for Anomaly Detection in Computer Systems ARES 2024, July 30-August 02, 2024, Vienna, Austria

Sysclient0358
Sysclient0618 Sysclient0851

@ Sysclient0010

Sysclient0203

Sysclient0069

Sysclient0062 |) Sysclient0070

Sysclient0063

‘ Sysclient0974

Sysclient0005

Sysclient0067

1k

Sysclient0016 lient0060

ienmsz Sysclient0811
Sysclient0007 d w
>

Sysclient00
Sysclient0002 Sysclient0072

DCl sysclient.com

Figure 7: The movement of the compromised user across the network during the attack campaign of day 2.

Other 425 Hosts

detection as long as the anomaly detection finds at least one of the 4.4 Effect of Sketch Size

compromised hosts. We evaluate the impact of using a fixed-size sketch vector in the
performance of downstream tasks compared to the use of a sparse
label histogram of size equal to the number of distinct labels among

ARES 2024, July 30-August 02, 2024, Vienna, Austria

Bibek Bhattarai and H. Howie Huang

Table 3: The evaluation of effect of different sized histosketches on the anomaly detection performance on StreamSpot data. K

is sketch vector size.

Sketch Prov2vec Kernel WLSubtree kernel Unicorn Kernel

P R A F1 P R A F1 P R A F1

32 0.81 1 0.88 0.89 0.82 1 0.89 0.9 0.84 1 0.91 0.91
64 0.83 1 0.9 0.9 0.8 1 0.88 0.89 0.83 1 0.9 0.9
128 0.9 11094 | 095 | 0.83 1 0.9 0.91 0.76 1 0.85 0.87
256 0.9 1 0.94 | 0.95 0.88 1 093 | 094 | 0.85 1 0.91 0.92
512 0.89 | 1 094 | 094 | 0.89 | 1| 094 | 0.94 | 0.86 1 0.92 0.92
1024 0.89 1 094 | 094 | 0.89 | 1 | 0.94 | 0.94
2048 0.89 1 0.94 0.94 0.89 1 0.94 0.94

all graphs. We vary the size of the sketch from 32 to 2,048, doubling
each time to represent the node label histogram obtained by running
all three kernels for h = 3. The histogram sketch obtained is thus
used as the feature representation for the given graph. We train the
k-medoids clustering algorithm using 80% of the graphs generated
by benign activities. The remaining 100 benign graphs and 100
graphs generated during the attack are used for testing. During
testing, each graph is tested against every cluster formed during
training and flagged as an anomaly if it does not fit in any of the
clusters. A graph is considered to fit in a cluster if its distance
from the given clusters’ medoid is within d standard deviation
of the mean distance of all training samples in that cluster. In
our experiments, we used d = 2, i.e., if a sample is farther than
mean + 2std away from all the medoids, it is considered an anomaly.
The performance for varying sizes of sketches is shown in Table 3
for anomaly detection on StreamSpot data.

The results in Table 3 show that sketch size much smaller than
the node label vocabulary size can match the performance for all
kernels. The performance for PRov2vEc kernel saturates after a
sketch size of 128. Similarly the performance for WLSubtree and Uni-
corn kernels saturates at sketch sizes of 512 and 1,024 respectively.
The peak performance of WLSubtree and Unicorn kernels match
that of their sparse histogram vector counterpart from Table 1.
However, the precision of PrRov2vEc kernel is slightly amiss from
its static counterpart. Nevertheless, sketching constantly changing
and different-sized histograms with fixed-size feature sketches pre-
serves their similarity and provides a viable option for comparing
continuously changing provenance graphs.

4.5 Effect of Neighborhood Size

We compare the resource consumption for using different kernels to
compute the node label histograms in different datasets. We varied
the value of h, i.e., the size of the neighborhood, and recorded the
histogram size as well as the runtime for different graph kernels.
As illustrated in Figure 8(a)-(f), the histogram for the 0-hop neigh-
borhood is identical for all kernels, i.e., histograms built on node
types. As the value of h increases, the differences between the sizes
of the histogram for Unicorn and WLSubtree kernels compared to
Prov2vEec kernel get larger.

We evaluate the impact of neighborhood size (h) based on the
performance of corresponding histograms in downstream machine-
learning tasks. We use two SupplyChain datasets to evaluate the
impact of neighborhood size on anomaly detection. We convert
the histograms of corresponding snapshots to sketch vectors of

size 2,048. The performance for anomaly detection is shown in
Table 4 for two attack scenarios SC-1 (wget) and SC2 (shellshock). As
expected, the performance for each kernel improves as we increase
the neighborhood size, reaches the peak for the value of h = 3 or 4,
and start to decline afterward. The provenance graph kernel does
incur longer runtime as presented in Figure 8(g)-(i). However, the
optimal value of h is usually small, thereby alleviating the impact
of quadratic scaling.

The comparison of histogram size growth over time for three
kernels is shown in Figure 9. The number of labels and rate of
arrival of unseen labels are much smaller in the provenance graph
kernel. Despite this succinct representation, the performance on
downstream task for PRov2vEc kernel is consistently better or
comparable to the other two kernels as illustrated earlier.

5 DISCUSSIONS AND LIMITATIONS

PrOV2VEC makes certain assumptions and has limitations that
should be considered.

First, it operates under the closed-world assumption, assuming
that all benign behaviors have been observed during training [60].
However, in real enterprise networks, it is challenging to cover all
possible benign cases. This may result in false alarms for previously
unseen normal behaviors. To address this, system administrators
can periodically update the model with new benign data. The incre-
mental nature of PROV2VEC makes it easy for the model to update.

Second, PROV2VEC assumes an integrity of training data dur-
ing a modeling period. It assumes that the newly observed normal
behavior used for model updates is not corrupted by poisoning
attacks [61] or graph backdoors [70]. The robustness of PRov2VEC
against such attacks is an area for future study.

The datasets used in the experiments are synthetic, which
limits the representation of real-world APT attacks. While efforts
have been made to make the datasets realistic, they lack some char-
acteristics of APT attacks in the wild. Testing PROV2VEC against
actual enterprise systems or more realistic APT scenarios is a pri-
ority for future research.

Granularity of data provenance: Some attacks do not produce
the attack pattern in the data provenance graphs. For example,
malicious code in a file and thread-based attacks have the text
information on the corresponding files and threads that are too
fine granular to be recorded in the provenance graph. Like all
provenance-based detection methods, PrRov2vEc will fail to detect
those attacks. Incorporating more host-based data into the threat
detection process or improving the information capture process

ProOV2VEC: Learning Provenance Graph Representation for Anomaly Detection in Computer Systems

ARES 2024, July 30-August 02, 2024, Vienna, Austria

Table 4: The evaluation of the effect of different sized neighborhoods on the anomaly detection performance on SupplyChain

data.
Prov2vec WLSubtree Unicorn
h P R A F1 P R A F1 P R A F1
1 | 05333 | 0.3333 | 0.5306 | 0.4103 | 0.5333 | 0.3333 | 0.5306 | 0.4103 | 0.5333 | 0.3333 | 0.5306 | 0.4103
SC-1 2 | 0.7778 0.875 0.8163 | 0.8235 | 0.7308 | 0.7917 | 0.7551 0.76 0.6667 | 0.8333 | 0.7143 | 0.7407
3 | 0.8148 | 0.9167 | 0.8571 | 0.8627 | 0.7778 0.875 0.8163 | 0.8235 | 0.8148 | 0.9167 | 0.8571 0.8627
4 | 0.7333 | 0.9166 | 0.7959 | 0.8148 0.84 0.875 | 0.8571 | 0.8571 | 0.8148 | 0.9167 | 0.8571 | 0.8627
5 0.75 0.875 0.7959 | 0.8077 | 0.8333 | 0.8333 | 0.8367 | 0.8333 | 0.7586 | 0.9167 | 0.8163 | 0.8302
h P R A F1 P R A F1 P R A F1
1 0.5 0.04 0.5 0.0741 0.5 0.04 0.5 0.0741 0.5 0.04 0.5 0.0741
SC-2 2 | 0.7222 0.52 0.66 0.6047 0.6 0.6 0.6 0.6 0.5862 0.68 0.6 0.6296
3 | 0.7407 0.8 0.76 0.7692 | 0.7143 0.8 0.74 0.7547 | 0.6552 0.76 0.68 0.7037
4 | 0.7727 0.68 0.74 0.7234 | 0.6333 0.76 0.66 0.6909 0.75 0.72 0.74 0.7347
5 0.75 0.48 0.66 0.5853 | 0.5909 0.52 0.58 0.5532 | 0.6552 0.76 0.68 0.7037
——WLSubtree Unicorn Prov2vec ——WLSubtree Unicorn Prov2vec ——WLSubtree Unicorn Prov2vec
ey
& 400 3.E45 8.E+4
oo
9] 300 2.E+5 6.E+4
2200 4.E+4
€ 100 LE+S 2E44
@ 0 0.E+0 0.E+0
2 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
- h h h
(a) StreamSpot (b) SupplyChain (c) OpTC
——WLSubtree Unicorn Prov2vec ——WLSubtree Unicorn Prov2vec ——WLSubtree Unicorn Prov2vec
__ 1500 6.E+6 2.E+6
fl
£ 1000 4.E+6 1.E+6
3 500 / 2.E46 / 5.E45 /
o
= 0 0.E+0 0.E40
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
h h h
(d) StreamSpot (e) SupplyChain (f) OpTC
——WLSubtree Unicorn Prov2vec ——W/LSubtree Unicorn Prov2vec ——WLSubtree Unicorn Prov2vec
3 100 15
S
&2 10
o 50 ——— — e ——
E1 o - 5 -
€
20 0 0
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
h h h
(g) StreamSpot (h) SupplyChain (i) OpTC

Figure 8: The comparison of resource consumption for different kernels. The plots (a)-(c) shows the average size of the histogram
per graph, plots (d)-(f) shows the vocabulary size for different kernels, and plots (g)-(i) compares the runtime of different

kernels for increasing neighborhood size.

for finer-grained provenance graph generation can be the research
directions to further investigate this limitation.

The explainability of anomalies is a challenge in black-box ma-
chine learning systems. PROV2VEC may struggle to provide detailed
explanations for the detected anomalies. However, methods such as
LIME and EDR systems can be used to explain individual predictions
and understand the series of activities leading to an anomaly.

The provenance graph kernel only supports discrete labels,
which limits its ability to capture continuous attributes. Including
such attributes may require the use of deep learning techniques or

graph kernels that support continuous attributes. Overall, while
Prov2vEC has shown promising results, addressing these limita-
tions will be crucial for its broader applicability and effectiveness
in detecting sophisticated attacks.

6 RELATED WORKS

Provenance graph has been popular tool for threat hunting re-
search in last few years. Several works have been proposed to
improve the provenance data collection [3, 46, 50], redundancy
elimination [19, 33, 38, 72], intrusion detection using provenance

ARES 2024, July 30-August 02, 2024, Vienna, Austria

——Prov2vec WLSubtree ——Unicorn

1 4 7 10 13 16 19 22 25 28 31 34
#snapshot

Figure 9: The histogram size trend with each hourly snapshot
on host 201 during 16-17Sep on OpTC data.

graphs [5, 9, 12, 13, 18, 20, 22, 24, 36, 42, 43]. We refer interested
readers to the comprehensive survey on threat detection techniques
using provenance graph [77]. Traditional query systems are not
optimized for provenance analysis. Several provenance query
systems [12, 13, 47, 59] have been proposed to provide threat in-
vestigation abilities such as streaming queries, causality tracking,
graph pattern matching, and anomaly analysis. These systems are
implemented on top of mature stream processors or databases and
take the provenance graphs specific data model and query engine.

Provenance data reduction is important for storage and com-
putational efficiency. Causality preserving reduction [72] and sub-
sequent dependence preserving reduction [25] merge the events if
they do not alter the causality or forward and backward reachability
respectively. LogGC [33] proposes a provenance garbage collec-
tion, that finds the isolated "temporary” nodes and removes them.
Since garbage collection and causality/dependency preserving re-
duction can remove correlation between alerts or alert themselves,
we modified these reduction systems to preserve alerts.

Threat detection with provenance graphs: Sleuth [24] uses
policy based rules to trigger alerts and uses tag propagation tech-
nique to store and transmit the system execution history. The ab-
normal behavior detection systems [21, 37] learn host behavior
from historical data or parallel systems and try to find abnormal
interaction between system entities. The graph pattern match-
ing and alignment based works such as Holmes [43], Poirot [42],
Rapsheet [20], and SteinerLog [5] use indicator of attacks (IOAs) to
generate suspicious events and chain them together using graph
exploration techniques. They use those chain of alerts to detect
the attacks as well as to reconstruct the individual steps taken by
an attacker. However, a substantial amount of manual effort and
domain expertise is required to come up with the relevant IOAs
for matching. For example, Poirot requires one to write a different
query for each of the attack campaigns and find their alignment on
a provenance graph. Holmes [43], Rapsheet [20] and SteinerLog [5]
use more fine-grained behavioral patterns representing different
TTPs relevant to their system and follow the causal dependency in
provenance graph to construct the attack campaigns.

Recent works have applied machine learning techniques on the
provenance graph for providing behavioral modeling based threat
detection approaches. Shadewatcher [75] formulates the threat
detection as recommendation problem by likening the system in-
teractions on audit logs to the entity relations on recommendation
systems. PROGRAPHER [74] uses graph2vec in to obtain the repre-
sentations of the graph snapshots, and provides detection on node

37

Bibek Bhattarai and H. Howie Huang

level granularity. ANUBIS [2] uses rather probabilistic approach
by using Poisson distribution to model the causal neighborhood
of a given event. Log2Vec [36] combines the random walk with
word2vec to obtain the node representations. PRov2vEc follows the
graph kernel based representation such as Unicorn [18] closely,
where it uses discretely mined features to obtain graph represen-
tation and perform anomaly detection based on it. In PROV2VEC,
more compact histogram and consequently better generalization is
achieved and we are able to outperform Unicorn in series of tasks.

Graph kernels are widely used for learning node and graph
representations in machine learning tasks. These techniques itera-
tively accumulate and compress information from a node’s neigh-
borhood to derive a new node label. Various methods, such as
random walks [28, 66, 76], subtrees [52, 58], cyclic patterns [23],
shortest paths [6], and graphlets [51], are employed to capture node
neighborhoods. Recently, Graph Neural Networks (GNNs) [16, 32,
35, 65, 71] have gained popularity for representation learning, with
promising results in cybersecurity applications [26, 29, 30]. GNNs
utilize recursive aggregation to compute a node’s representation
vector by incorporating information from its neighborhood, with
each iteration encompassing a larger one-hop neighborhood. Node
representations are then aggregated to obtain the feature vector for
the entire graph.

Sequence-based learning techniques, which involve convert-
ing log sequences into key vectors representing system events, have
gained popularity in operational anomaly detection [17, 41, 64].
Models based on recurrent neural networks (RNNs) or Transform-
ers are then trained with these key sequences [7-9]. During de-
ployment, these models predict anomalous behavior by forecasting
the next event based on the observed sequence. However, their
effectiveness is limited as they mainly examine short system call
sequences and struggle to capture long-term behavior, leaving them
vulnerable to evasion techniques. To detect stealthy and slow Ad-
vanced Persistent Threat attacks, which require a broader context,
graph-based techniques leveraging the causal relationships among
events in provenance graphs offer more promising solutions.

7 CONCLUSION

We design and implement a fully unsupervised technique in PROV2VEc,
which is able to successfully learn the system host behaviors from
their provenance graphs and identify the potentially malicious be-
haviors that differ from the normality. The new provenance graph
kernel, while incurs a slight overhead in histogram computation
compared to state-of-the-art graph kernels, achieves an order mag-
nitude smaller node label histogram sizes and significantly improves
the performance of downstream machine learning tasks. The re-
sult from PROV2VEC can be used as the first level of filtering for
fine-grained alert correlation systems, where the anomalous hosts
are further inspected to understand the context around underlying
behavior.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation
grant 212720.

ProOV2VEC: Learning Provenance Graph Representation for Anomaly Detection in Computer Systems

REFERENCES

(1]

(2]

3

=

[10]

[11]
[12]

[13]

[14
[15]

[16

[17]

[18]

=
o

[20]

[21

[22

[23]

[24

Md. Monowar Anjum, Shahrear Igbal, and Benoit Hamelin. 2021. Analyzing the
Usefulness of the DARPA OpTC Dataset in Cyber Threat Detection Research.
CoRR abs/2103.03080 (2021). arXiv:2103.03080 https://arxiv.org/abs/2103.03080
Md Monowar Anjum, Shahrear Igbal, and Benoit Hamelin. 2022. ANUBIS: a
provenance graph-based framework for advanced persistent threat detection. In
Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing. 1684—
1693.

Adam Bates, Dave Jing Tian, Kevin RB Butler, and Thomas Moyer. 2015. Trust-
worthy whole-system provenance for the linux kernel. In 24th { USENIX} Security
Symposium ({ USENIX} Security 15). 319-334.

Siddharth Bhatia, Bryan Hooi, Minji Yoon, Kijung Shin, and Christos Falout-
50s. 2020. Midas: Microcluster-based detector of anomalies in edge streams. In
Proceedings of the AAAI Conference on Artificial Intelligence.

Bibek Bhattarai and Howie Huang. 2022. SteinerLog: Prize Collecting the Audit
Logs for Threat Hunting on Enterprise Network. In Proceedings of the 2022 ACM
on Asia Conference on Computer and Communications Security (ASIA CCS °22).
Association for Computing Machinery, 97-108. https://doi.org/10.1145/3488932.
3523261

Karsten M Borgwardt and Hans-Peter Kriegel. 2005. Shortest-path kernels on
graphs. In Fifth IEEE international conference on data mining (ICDM05). IEEE,
8-pp.

Biplob Debnath, Mohiuddin Solaimani, Muhammad Ali Gulzar Gulzar, Nipun
Arora, Cristian Lumezanu, Jianwu Xu, Bo Zong, Hui Zhang, Guofei Jiang, and
Latifur Khan. 2018. LogLens: A real-time log analysis system. In 2018 IEEE
38th international conference on distributed computing systems (ICDCS). IEEE,
1052-1062.

Min Du, Zhi Chen, Chang Liu, Rajvardhan Oak, and Dawn Song. 2019. Lifelong
anomaly detection through unlearning. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security. 1283-1297.

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. Deeplog: Anomaly
detection and diagnosis from system logs through deep learning. In Proceedings
of the 2017 ACM SIGSAC conference on computer and communications security.
1285-1298.

Dhivya Eswaran and Christos Faloutsos. 2018. SedanSpot: Detecting Anomalies
in Edge Streams. 2018 IEEE International Conference on Data Mining (ICDM)
(2018).

FreeBSD. 2018. DTrace on FreeBSD. https://wiki.freebsd.org/DTrace.

Peng Gao, Xusheng Xiao, Ding Li, Zhichun Li, Kangkook Jee, Zhenyu Wu,
Chung Hwan Kim, Sanjeev R Kulkarni, and Prateek Mittal. 2018. {SAQL}: A
Stream-based Query System for Real-Time Abnormal System Behavior Detection.
In 27th { USENIX} Security Symposium ({ USENIX} Security 18).

Peng Gao, Xusheng Xiao, Zhichun Li, Fengyuan Xu, Sanjeev R Kulkarni,
and Prateek Mittal. 2018. {AIQL}: Enabling Efficient Attack Investigation
from System Monitoring Data. In 2018 { USENIX} Annual Technical Conference
({USENIX} { ATC} 18).

Github. 2022. Powershell Empire. https://github.com/EmpireProject/Empire.
Steve Grubb. 2022. auditd - The Linux Audit daemon. https:/linux.die.net/man/
8/auditd.

William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 (2017).
Hossein Hamooni, Biplob Debnath, Jianwu Xu, Hui Zhang, Guofei Jiang, and
Abdullah Mueen. 2016. Logmine: Fast pattern recognition for log analytics.
In Proceedings of the 25th ACM International on Conference on Information and
Knowledge Management. 1573-1582.

Xueyuan Han, Thomas Pasquier, Adam Bates, James Mickens, and Margo Seltzer.
2020. Unicorn: Runtime provenance-based detector for advanced persistent
threats. arXiv preprint arXiv:2001.01525 (2020).

Wajih Ul Hassan, Lemay Aguse, Nuraini Aguse, Adam Bates, and Thomas Moyer.
2018. Towards scalable cluster auditing through grammatical inference over
provenance graphs. In Network and Distributed Systems Security Symposium.
Wajih Ul Hassan, Adam Bates, and Daniel Marino. 2020. Tactical provenance
analysis for endpoint detection and response systems. In 2020 [EEE Symposium
on Security and Privacy (SP). IEEE.

Wajih Ul Hassan, Shengjian Guo, Ding Li, Zhengzhang Chen, Kangkook Jee,
Zhichun Li, and Adam Bates. 2019. Nodoze: Combatting threat alert fatigue
with automated provenance triage. In Network and Distributed Systems Security
Symposium.

Wajih Ul Hassan, Mohammad A Noureddine, Pubali Datta, and Adam Bates. 2020.
OmegaLog: High-fidelity attack investigation via transparent multi-layer log
analysis. In Proc. NDSS.

Tamas Horvath, Thomas Gértner, and Stefan Wrobel. 2004. Cyclic pattern kernels
for predictive graph mining. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining. 158-167.

Md Nahid Hossain, Sadegh M Milajerdi, Junao Wang, Birhanu Eshete, Rigel
Gjomemo, R Sekar, Scott Stoller, and VN Venkatakrishnan. 2017. SLEUTH: Real-
time attack scenario reconstruction from COTS audit data. In 26th { USENIX}

[25

[26

[27

S
&

[29

[30

[31

[32

[34

[35

[36

[40

[41]

[42

[43

[44

[45]

[46

[47

[49

ARES 2024, July 30-August 02, 2024, Vienna, Austria

Security Symposium ({ USENIX} Security 17).

Md Nahid Hossain, Junao Wang, R. Sekar, and Scott D. Stoller. 2018. Dependence-
Preserving Data Compaction for Scalable Forensic Analysis. In 27th USENIX
Security Symposium (USENIX Security 18). USENIX Association.

Yuede Ji and H. Howie Huang. 2022. NestedGNN: Detecting Malicious Network
Activity with Nested Graph Neural Networks. In ICC 2022 - IEEE International
Conference on Communications. 2694-2699.

Karl-Bridge-MlIcrosoft, v kents, DCtheGeek, mcleanbyron, drewbatgit, and
msatranjr. 2021. Event Tracing. https://docs.microsoft.com/en-us/windows/
win32/etw/event-tracing-portal.

Hisashi Kashima, Koji Tsuda, and Akihiro Inokuchi. 2003. Marginalized kernels
between labeled graphs. In Proceedings of the 20th international conference on
machine learning (ICML-03). 321-328.

Isaiah J. King and H. Howie Huang. 2022. Euler: Detecting Network Lateral
Movement via Scalable Temporal Link Prediction. In the Network and Distributed
System Security Symposium (NDSS °22).

Isaiah J. King, Xiaokui Shu, Jiyong Jang, Kevin Eykholt, Taesung Lee, and
H. Howie Huang. 2023. EdgeTorrent: Real-time Temporal Graph Representa-
tions for Intrusion Detection. In Proceedings of the 26th International Symposium
on Research in Attacks, Intrusions and Defenses (Hong Kong, China) (RAID °23).
77-91.

Samuel T King and Peter M Chen. 2003. Backtracking intrusions. In Proceedings
of the nineteenth ACM symposium on Operating systems principles.

Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

Kyu Hyung Lee, Xiangyu Zhang, and Dongyan Xu. 2013. LogGC: garbage
collecting audit log. In SIGSAC.

Ping Li. 2015. 0-bit consistent weighted sampling. In Proceedings of the 21th
ACM SIGKDD International conference on knowledge discovery and data mining.
665-674.

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. 2015. Gated
graph sequence neural networks. arXiv preprint arXiv:1511.05493 (2015).
Fucheng Liu, Yu Wen, Dongxue Zhang, Xihe Jiang, Xinyu Xing, and Dan Meng.
2019. Log2vec: A heterogeneous graph embedding based approach for detecting
cyber threats within enterprise. In Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. 1777-1794.

Yushan Liu, Mu Zhang, Ding Li, Kangkook Jee, Zhichun Li, Zhenyu Wu, Jungh-
wan Rhee, and Prateek Mittal. 2018. Towards a Timely Causality Analysis for
Enterprise Security.. In Network and Distributed Systems Security Symposium.
Shiqing Ma, Xiangyu Zhang, and Dongyan Xu. 2016. Protracer: Towards Practical
Provenance Tracing by Alternating Between Logging and Tainting.. In NDSS.
Emaad Manzoor, Sadegh M Milajerdi, and Leman Akoglu. 2016. Fast memory-
efficient anomaly detection in streaming heterogeneous graphs. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 1035-1044.

Lochheed Martin. 2022. The Cyber Kill Chain. https://www.lockheedmartin.
com/en-us/capabilities/cyber/cyber-kill-chain.html.

Salma Messaoudi, Annibale Panichella, Domenico Bianculli, Lionel Briand, and
Raimondas Sasnauskas. 2018. A search-based approach for accurate identifica-
tion of log message formats. In 2018 IEEE/ACM 26th International Conference on
Program Comprehension (ICPC). IEEE, 167-16710.

Sadegh M Milajerdi, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan.
2019. Poirot: Aligning attack behavior with kernel audit records for cyber threat
hunting. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 1795-1812.

Sadegh M Milajerdi, Rigel Gjomemo, Birhanu Eshete, Ramachandran Sekar, and
VN Venkatakrishnan. 2019. Holmes: real-time apt detection through correlation
of suspicious information flows. In 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 1137-1152.

Neo4]. 2022. Neo4j Graph Database. https://neo4j.com/product/neo4;j-graph-
database/.

Thor Olavsrud. 2014. 11 Steps Attackers Took to Crack Target. https://www.
csoonline.com/article/2601021/11-steps-attackers-took-to-crack-target. html.
Thomas Pasquier, Xueyuan Han, Mark Goldstein, Thomas Moyer, David Eyers,
Margo Seltzer, and Jean Bacon. 2017. Practical whole-system provenance capture.
In Proceedings of the 2017 Symposium on Cloud Computing. 405-418.

Thomas Pasquier, Xueyuan Han, Thomas Moyer, Adam Bates, Olivier Hermant,
David Eyers, Jean Bacon, and Margo Seltzer. 2018. Runtime analysis of whole-
system provenance. In Proceedings of the 2018 ACM SIGSAC Conference on Com-
puter and Communications Security.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Nicole Perlroth. 2017. All 3 Billion Yahoo Accounts Were Affected by 2013
Attack. https://www.nytimes.com/2017/10/03/technology/yahoo-hack-3-billion-
users.html.

https://arxiv.org/abs/2103.03080
https://arxiv.org/abs/2103.03080
https://doi.org/10.1145/3488932.3523261
https://doi.org/10.1145/3488932.3523261
https://wiki.freebsd.org/DTrace
https://github.com/EmpireProject/Empire
https://linux.die.net/man/8/auditd
https://linux.die.net/man/8/auditd
https://docs.microsoft.com/en-us/windows/win32/etw/event-tracing-portal
https://docs.microsoft.com/en-us/windows/win32/etw/event-tracing-portal
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
https://neo4j.com/product/neo4j-graph-database/
https://neo4j.com/product/neo4j-graph-database/
https://www.csoonline.com/article/2601021/11-steps-attackers-took-to-crack-target.html
https://www.csoonline.com/article/2601021/11-steps-attackers-took-to-crack-target.html
https://www.nytimes.com/2017/10/03/technology/yahoo-hack-3-billion-users.html
https://www.nytimes.com/2017/10/03/technology/yahoo-hack-3-billion-users.html

ARES 2024, July 30-August 02, 2024, Vienna, Austria

[50]

[51

[52]

[53

o
=t

[55]

[56

[57]

(58]

[59]

[60]

[61

[62

[63]

[64

[65]

[66

[67

[68]
[69

[70

[71]

[72

[73

[74]

[75]

Devin J Pohly, Stephen McLaughlin, Patrick McDaniel, and Kevin Butler. 2012.
Hi-Fi: collecting high-fidelity whole-system provenance. In Proceedings of the
28th Annual Computer Security Applications Conference. 259-268.

Natasa Przulj. 2007. Biological network comparison using graphlet degree distri-
bution. Bioinformatics 23, 2 (2007), e177-e183.

Jan Ramon and Thomas Gértner. 2003. Expressivity versus efficiency of graph
kernels. In Proceedings of the first international workshop on mining graphs, trees
and sequences. 65-74.

Stephen Ranshous, Steve Harenberg, Kshitij Sharma, and Nagiza F Samatova.
2016. A scalable approach for outlier detection in edge streams using sketch-
based approximations. In Proceedings of the 2016 SIAM International Conference
on Data Mining. SIAM.

Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-stream: Edge-
centric graph processing using streaming partitions. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. ACM, 472-488.
scikit-learn developers. 2022. One Class SVM. https://scikit-learn.org/stable/
modules/generated/sklearn.svm.OneClassSVM.html.

Security-X. 2018. [FireEye]Operation DeputyDog: Zero-Day (CVE-2013-3893)
Attack Against Japanese. https://forum.security-x.fr/news/(fireeye)operation-
deputydog-zero-day-(cve-2013-3893)-attack-against-j-27872/.

SentinalOne. 2022. What Is A Malware File Signature (And How Does It
Work)? https://www.sentinelone.com/blog/what-is-a-malware-file- signature-
and-how-does-it-work/.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn,
and Karsten M Borgwardt. 2011. Weisfeiler-lehman graph kernels. Journal of
Machine Learning Research 12, 9 (2011).

Xiaokui Shu, Frederico Araujo, Douglas L Schales, Marc Ph Stoecklin, Jiyong
Jang, Heqing Huang, and Josyula R Rao. 2018. Threat intelligence computing. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security.

Robin Sommer and Vern Paxson. 2010. Outside the closed world: On using
machine learning for network intrusion detection. In 2010 IEEE symposium on
security and privacy. IEEE, 305-316.

Xianfeng Tang, Yandong Li, Yiwei Sun, Huaxiu Yao, Prasenjit Mitra, and Suhang
Wang. 2020. Transferring Robustness for Graph Neural Network Against Poisoning
Attacks. Association for Computing Machinery, 600-608. https://doi.org/10.
1145/3336191.3371851

SecureWorld News Team. 2020. Data Breach a 'Huge Cyber Espionage Campaign
Targeting the U.S. Government’. https://www.secureworldexpo.com/industry-
news/data-breach-cyber-espionage-campaign- targeting-u.s.-government.

The Mitre Corporation. 2022. ATT&CK Matrix for Enterprise. https://attack.
mitre.org/.

Risto Vaarandi and Mauno Pihelgas. 2015. Logcluster-a data clustering and
pattern mining algorithm for event logs. In 2015 11th International conference on
network and service management (CNSM). IEEE, 1-7.

Petar Veli¢ckovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

S Vichy N Vishwanathan, Nicol N Schraudolph, Risi Kondor, and Karsten M
Borgwardt. 2010. Graph kernels. Journal of Machine Learning Research 11 (2010),
1201-1242.

Dr. Carl Weir, Rody Arantes, Henry Hannon, and Marisha Kulseng. 2021. Op-
erationally Transparent Cyber (OpTC). https://dx.doi.org/10.21227/edq8-nk52.
https://doi.org/10.21227/edq8-nk52

Wikipedia. 2022. k-medoids. https://en.wikipedia.org/wiki/K-medoids.

xgboost developers. 2022. XGBoost Classifier. https://xgboost.readthedocs.io/en/
stable/python/python_api.html.

Zhaohan Xi, Ren Pang, Shouling Ji, and Ting Wang. 2021. Graph backdoor. In
30th USENIX Security Symposium (USENIX Security 21). 1523-1540.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

Zhang Xu, Zhenyu Wu, Zhichun Li, Kangkook Jee, Junghwan Rhee, Xusheng
Xiao, Fengyuan Xu, Haining Wang, and Guofei Jiang. 2016. High fidelity data
reduction for big data security dependency analyses. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security.

Dinggqi Yang, Bin Li, Laura Rettig, and Philippe Cudré-Mauroux. 2017. His-
toSketch: Fast Similarity-Preserving Sketching of Streaming Histograms with
Concept Drift. In 2017 IEEE International Conference on Data Mining (ICDM).
545-554. https://doi.org/10.1109/ICDM.2017.64

Fan Yang, Jiacen Xu, Chunlin Xiong, Zhou Li, and Kehuan Zhang. 2023.
{PROGRAPHER}: An Anomaly Detection System based on Provenance Graph
Embedding. In 32nd USENIX Security Symposium (USENIX Security 23). 4355—
4372.

Jun Zengy, Xiang Wang, Jiahao Liu, Yinfang Chen, Zhenkai Liang, Tat-Seng
Chua, and Zheng Leong Chua. 2022. Shadewatcher: Recommendation-guided
cyber threat analysis using system audit records. In 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, 489-506.

Bibek Bhattarai and H. Howie Huang

[76] Zhen Zhang, Mianzhi Wang, Yijian Xiang, Yan Huang, and Arye Nehorai. 2018.

Retgk: Graph kernels based on return probabilities of random walks. Advances
in Neural Information Processing Systems 31 (2018).

[77] Michael Zipperle, Florian Gottwalt, Elizabeth Chang, and Tharam Dillon. 2022.

Provenance-Based Intrusion Detection Systems: A Survey. ACM Comput. Surv.
(2022). https://doi.org/10.1145/3539605

https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.OneClassSVM.html
https://forum.security-x.fr/news/(fireeye)operation-deputydog-zero-day-(cve-2013-3893)-attack-against-j-27872/
https://forum.security-x.fr/news/(fireeye)operation-deputydog-zero-day-(cve-2013-3893)-attack-against-j-27872/
https://www.sentinelone.com/blog/what-is-a-malware-file-signature-and-how-does-it-work/
https://www.sentinelone.com/blog/what-is-a-malware-file-signature-and-how-does-it-work/
https://doi.org/10.1145/3336191.3371851
https://doi.org/10.1145/3336191.3371851
https://www.secureworldexpo.com/industry-news/data-breach-cyber-espionage-campaign-targeting-u.s.-government
https://www.secureworldexpo.com/industry-news/data-breach-cyber-espionage-campaign-targeting-u.s.-government
https://attack.mitre.org/
https://attack.mitre.org/
https://dx.doi.org/10.21227/edq8-nk52
https://doi.org/10.21227/edq8-nk52
https://en.wikipedia.org/wiki/K-medoids
https://xgboost.readthedocs.io/en/stable/python/python_api.html
https://xgboost.readthedocs.io/en/stable/python/python_api.html
https://doi.org/10.1109/ICDM.2017.64
https://doi.org/10.1145/3539605

	Abstract
	1 Introduction
	2 Threat Model
	3 Prov2vec Design
	3.1 Overview
	3.2 Provenance Graph Creation
	3.3 Provenance Graph Kernel
	3.4 Incremental Provenance Graph Kernel
	3.5 Featurization of Histograms

	4 Evaluation
	4.1 Graph Classification
	4.2 Static Novelty Detection
	4.3 Real-time Anomaly Detection
	4.4 Effect of Sketch Size
	4.5 Effect of Neighborhood Size

	5 Discussions and Limitations
	6 Related Works
	7 Conclusion
	Acknowledgments
	References

