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ABSTRACT
Modern cyber attackers use advanced zero-day exploits, highly
targeted spear phishing, and other social engineering techniques
to gain access, and also use evasion techniques to maintain a pro-
longed presence within the victim networkwhile working gradually
towards the objective. To minimize damage, detecting these Ad-
vanced Persistent Threats as early in the campaign as possible is
crucial. This paper proposes, P���2���, a system for the contin-
uous monitoring of enterprise host’s behavior to detect attackers’
activities. It leverages the data provenance graph built using sys-
tem event logs to get complete visibility into the execution state
of an enterprise host and the causal relationship between system
entities. It proposes a novel provenance graph kernel to obtain the
canonical representation of the system behavior, which is compared
against its historical behaviors and that of other hosts to detect
the deviation from the norm. These representations are used in
several machine learning models to evaluate their ability to capture
the underlying behavior of an endpoint host. We have empirically
demonstrated that the provenance graph kernel produces a much
more compact representation compared to existing methods while
improving prediction ability.

CCS CONCEPTS
• Security and privacy! Intrusion/anomaly detection and
malware mitigation.
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1 INTRODUCTION
Large enterprises and government networks have seen a signi�cant
rise in targeted attacks from experienced cyber criminals with
substantial �nancial backing [45, 49, 56, 62]. These sophisticated
attacks often referred to as advanced persistent threats (APTs),
are carried out in multiple steps over a prolonged period, each
designed to blend in with benign activity. These att acks bypass
traditional signature-based defense mechanisms [57] via zero-day
exploits. While anomaly detection processes such as [9] can detect
the events that diverge from the norm, traditional sequence-based
contexts can not reliably capture the causality between involved
system entities and thus miss the ‘low and slow’ attacks.

To provide better visibility into attack campaigns, existing threat
detection systems [5, 20, 42, 43] combine the Provenance Graph
with alert generation capabilities of Endpoint Detection and Re-
sponse (EDR) systems. This integration allows for automated alert
correlation, reducing false positives and providing contextual in-
formation around alerts. By capturing the information �ow be-
tween system objects using a Directed Acyclic Graph (DAG), these
provenance graphs provide historical context and the impact of
an alert through backward and forward graph traversal [31]. For-
mally, we de�ne a provenance graph snapshot at time C as ⌧C =
(+C , ⇢C ,�E,�4 ), where +C and ⇢C are set of nodes and edges at time
C , and�E and�4 are functions that maps all nodes E 2 +C and edges
4 2 ⇢C in the graph to set of node and edge attributes respectively.

Unfortunately, several challenges remain for existing provenance
graph-based systems. First, �ne-grained causal analysis on lengthy
APT campaigns presents signi�cant computational challenges.With
a median dwell time of three weeks and the generation of several
terabytes of log events daily, holding the entire provenance graph
in memory is highly impractical. Storing graphs in databases and
conducting graph traversal [44] for alert correlation signi�cantly
escalates the cost. Achieving real-time detection using compute-
intensive alert correlation across the entire enterprise network is a
daunting task. It is important to note that the majority of compu-
tational resources allocated to alert correlation should contribute
minimally to the overall detection process. In a recent study [5]
involving a network with 500 hosts, out of 28 hosts that were com-
promised over a three-day evaluation period, the alert correlation
on a single host was able to detect the APT campaigns only on
5 hosts(1% of the total hosts). While alert correlation is crucial
for retracing the attackers’ steps and comprehending attacks on
compromised hosts, applying it as a proactive detection measure
universally across all hosts and at all times is cost-prohibitive.

Second, the detection capability of alert correlation-based sys-
tems is inherently limited by the coverage of rules employed in the
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alert generation process. These rules are manually crafted by secu-
rity practitioners, relying on the cyber threat intelligence reports
from security forums, blogs, social media, and previous attacks.
The matching semantics vary based on the platform and under-
lying sensors used for data collection. Replicating such rules in a
new platform requires a substantial manual e�ort and expertise.
Furthermore, although incorporating novelty detection on a node
or edge level [4, 10, 53] can potentially detect previously unseen
attacks, new benign activities also emerge constantly, necessitating
a broader perspective on activities for threat detection.

To tackle these challenges, we introduce P���2���, an innova-
tive system that leverages a novel provenance graph kernel to
derive a canonical form for a given graph snapshot, capturing the
aggregated host behavior at a speci�c time point in a �xed-size
vector representation. P���2��� operates by mining label-aware
backward walks, with a maximum length speci�ed by the user as
h, for each node in the provenance graph. These walks encompass-
ing the execution history of nodes over varying hop lengths from
0  8  ⌘ are then compressed into a label that succinctly describes
the nodes’ causal history. A node label histogram is constructed
by tallying the frequencies of distinct labels across all nodes in
the graph for each hop length from 0 to ⌘. These histograms are
stored in memory using a �xed-size probabilistic data structure
called histosketch [73], which is utilized by downstream machine
learning tasks to model the behavior of the hosts and detect when
they behave abnormally.

This work makes the following three contributions:

• We develop an end-to-end system for unsupervised anomaly
detection on network systems. Leveraging the provenance
graphs built from logs gathered during normal operations,
our system creates comprehensive benign host behavior pro-
�les. Any provenance graphs deviating from those generated
by benign activities are identi�ed as anomalies. We utilize
these anomalous graph snapshots, along with their associ-
ated users and hosts, to traverse the authentication graph
and uncover all compromised entities.

• We propose a novel graph kernel that enhances the general-
ization of similar provenance graph structures using compact
node label histograms. Our approach achieves superior or
comparable accuracy in downstream machine learning tasks
while maintaining the histogram of size an order magni-
tude smaller than Wesfeller-Lehman subtree (WLSubtree)
kernel [58] and temporally ordered WL subtree kernel from
Unicorn [18].

• We showcase the e�ectiveness of P���2��� in pro�ling
host behavior and detecting compromised network entities
through three machine learning tasks – graph classi�cation,
graph clustering, and graph anomaly detection – on prove-
nance graphs generated from Windows and Linux hosts.

2 THREAT MODEL
We focus on a typical APT life cycle, where adversaries gain unau-
thorized access to the enterprise hosts and aim to maintain stealth
for an extended period. To achieve their objectives, attackers carry
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Figure 1: The system diagram of P���2���.

out various post-exploitation activities, including internal recon-
naissance, privilege escalation, lateral movement, and data ex�l-
tration [63]. Our goal is to detect compromised hosts based on a
given snapshot of the provenance graph at a speci�c time C , using
P���2���. We assume that P���2��� has su�cient historical data
to establish a behavior pro�le of enterprise hosts during normal
operations.We also assume that the provenance graph obtained dur-
ing an attack exhibits distinct di�erences from the graphs observed
during prior normal operations.

P���2��� does not make assumptions about the speci�c actions
performed by an attacker, apart from the fact that their intent
and/or actions leave indicators in the audit logs and, consequently
on the provenance graph. To accurately capture this information,
P���2��� assumes the correctness of log collection frameworks.
The remainder of this paper assumes the validity of log collecting
frameworks and log data used in our experiments, focusing on
P���2���’s ability to model system behavior based on them. For
modeling the system behavior, this work assumes that provenance
graphs with similar structures indicate comparable operational
behavior. Therefore, the detection of abnormal behavior entails the
computation of (dis)similarities across provenance graphs.

3 PROV2VEC DESIGN
3.1 Overview
Figure 1 shows the high-level overview of the P���2��� system.
In the �rst step 1 , given the stream of log events generated by
auditing tools [11, 15, 27], P���2��� updates the provenance graph
continuously with new events. That is, periodically it creates the
snapshots of the provenance graph ⌧C = (+C , ⇢C ).

In the second step 2 , the provenance graph kernel is used to
convert the graph snapshots into node-label histograms. While
aggregating over the speci�ed neighborhood, these histograms can
have di�erent sizes depending on the number of distinct provenance
labels in a given graph snapshot.

In the third step 3 , to compare the histograms with one another,
we convert them into vectors of the same size. In the static setting,
this can be done by building a vector of size equal to node label
vocabulary, which is built using the histograms of all the graphs in
question. In the streaming setting, the vocabulary size is constantly
increasing. To enable easy comparison of streaming histograms, we
utilize a probabilistic data structure called histosketch [73] that uses
the consistent weighted hashing [34] to sample the histograms into
�xed size vectors while preserving the similarity between them.
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Figure 2: The sample provenance graphs captured. (a) the graph at time t = 0 and (b) the graph at time t = 1, with new nodes and
edges denoted in the red color.

In the �nal step, 4 , the series of feature vectors representing
provenance graph snapshots is fed to machine learning models to
learn the behavior of a network system. They can be designed for
one of many tasks such as graph classi�cation, outlier detection,
and graph clustering. During deployment, the �rst three steps are
performed and the resultant feature vector is tested against the
model learned to detect whether the behavior at any instance is
anomalous. The anomalies generated from these models serve as
the leads for analysts, providing indications of potentially malicious
activity. These anomalies can prompt further investigation to gain
insights into the underlying causes and potential countermeasures.
To extract subgraphs that capture the sequence of actions performed
by the attacker, alert generation and correlation can be conducted
using systems like Rapsheet [20] or SteinerLog [5]. We believe that
P���2��� can play a crucial role in identifying suspicious endpoint
hosts, enabling alert correlation systems to focus their �ne-grained
analysis on those speci�c hosts.

3.2 Provenance Graph Creation
The system logs are parsed into a triplet of (BD1 942C,02C8>=,>1 942C)
and inserted into a provenance graph. The direction of edges sig-
ni�es the �ow of data or information. For instance, an edge corre-
sponding to a process writing on a �le will point from the process
to the �le, whereas a process reading a �le will have the opposite
direction. Figure 2 shows two snapshots of a provenance graph at
time C = 0 and later at C = 1. The red edges and nodes on the second
snapshot represent the part added after the �rst snapshot.

To reduce the graph size and avoid dependency explosion dur-
ing the forensic analysis, we utilize causality preserving duplicate
elimination [72] and node versioning. When inserting an edge
(BA2, 4E4=C,3BC), if there already is another edge with the same
triplet in the provenance graph, and there are not any outgoing
edges from the latest version of 3BC , i.e., 3BC8 , we simply update the
time information of edge and avoid inserting the edge again.

On the other hand, if the newest version of the node 3BC , i.e., 3BC8
already has outgoing edges at time 8 , the insertion of an incoming
edge at time 8 + 1 changes the provenance of all neighboring nodes.
In this case, for time 8 + 1, we create a new version of that node
3BC8+1, and insert the edge (BA2, 4E4=C,3BC8+1) instead. In addition,
an edge needs to be inserted between 3BC8 and 3BC8+1 to indicate
that the latter is the newer version of the former node.

In our experiment data, an average of 1.2 node versions are cre-
ated for subjects and objects. With dependency preserving reduc-
tion, we were able to reduce the number of edges in the graph by a
factor of 3.38⇥ compared to the number of events. Node versioning
and redundant edge elimination enable e�cient incremental com-
putation of node-label histograms. By creating di�erent versions of
nodes in the provenance graph as subjects or objects change, we can
focus the computation only on newly inserted nodes. This approach
minimizes redundant processing and improves computational ef-
�ciency, ensuring that the node-label histograms are e�ciently
updated as the provenance graph evolves.

3.3 Provenance Graph Kernel
To capture the heterogeneity of the provenance graph, we perform
label-aware backward walks from each node in the given snapshot.
These walks traverse the graph up to a user-de�ned length h. By
accumulating the provenance labels of all nodes, we construct a
provenance label histogram for the snapshot. This approach allows
us to capture the diverse characteristics of the graph and gener-
ate a comprehensive representation of the node labels within the
speci�ed walk length.

D��������� 1. Label-aware backward walk: Given a node E 2
+C , a backward walk of length 8 starting at E is de�ned as ( ; (40),
; (41), ; (42), ... ; (48�1), ; (D) ), where (48�1, 48�2, ..., 40) is the sequence
of edges representing the information �ow from D to E , and ; (4⇤) and
; (D) represent the type of events and objects on the walk respectively.
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Backward walk set,8 (E) of a given node E is the set of all possible
backward walks of length 8 from E .

Each backward walk of length 8 describes how node E is impacted
by the set of nodes {D} with a sequence of 8 consecutive activities.
For 8 = 0, the walk corresponds to the node itself, i.e. (; (E)). For
instance, in Figure 2(a), length 2 backward walks for registry1 are
(⇢⇡�) ,⇠'⇢�)⇢, %'$⇠⇢(() and (⇢⇡�) ,'⇢�⇡, ��!⇢). Similarly, the
walks of length 1 and 0 for registry1 are (⇢⇡�) , %'$⇠⇢(() and
('⇢⌧�()'. ) respectively.

Given the set of backward walks,8 (E) consisting of every length
8 backward walks from node E , we group labels at equal distances
from E in these walks. Formally, g 98 (E) = {F [8 � 9] 8F 2,8 (E), 0 
9  8} for 0  8  ⌘. Here, each backward walkF of length 8 is the
sequence of labels ( ; (40), ; (41), ; (42), ... ; (48�1), ; (D) ) as de�ned in
De�nition 1. The labels g 98 for 0  9  8 are then stacked together
to form i-provenance label , i.e., k8 (E) = (g88 , g

8�1
8 , ..., g18 , g

0
8 ). If

no backward walk of length 8 exists, then the empty set {} is used
to denote both,8 (E) and i-provenance labelk8 (E). The process is
repeated for each depth 8 for 0  8  ⌘. Let’s look at the 0-, 1-, and
2-provenance labels of node registry1 in Figure 2(a),

• For i = 0,k0 (A468BCA~1) = ({'⇢⌧�()'. }), where
g00 = {'⇢⌧�()'. }.

• For i = 1, g01 (A468BCA~1) = {%'$⇠⇢((}, g11 (A468BCA~1) =
{⇢⇡�) }, andk1 (A468BCA~1) = ({⇢⇡�) }, {%'$⇠⇢((}).

• For i = 2,g02 (A468BCA~1) = {%'$⇠⇢((, ��!⇢},g12 (A468BCA~1) =
{⇠'⇢�)⇢,'⇢�⇡}, g22 (A468BCA~1) = {⇢⇡�) }. Stacking all to-
gether, we getk2 (A468BCA~1) = ({⇢⇡�) }, {⇠'⇢�)⇢,'⇢�⇡},
{%'$⇠⇢((, ��!⇢}).

For each provenance graph snapshot ⌧C , a histogram is con-
structed containing the frequency of di�erent provenance labels for
all nodes in the graph. The histogram keys are generated based on
the uniquek8 (E) values for all E 2 +C and 0  8  ⌘, where ⌘ is the
maximum walk length. The histogram size of the graph snapshots
obtained in P���2��� is signi�cantly smaller compared to the WL
subtree kernel [58] and temporally sorted subtree kernel [18].

In contrast to the multi-set approach used in the WL subtree
kernel [58] and the temporally sorted multi-set approach in Uni-
corn [18], the provenance kernel in P���2��� utilizes a set to ag-
gregate labels from the neighborhood. This distinction is important
because the multi-set approach has been deemed to provide better
discrimination power necessary in many domains. However for the
provenance graph, since we use entity and event types as labels,
these can generate spurious labels and weaken the generalization.

For instance, take three graphs in Figure 3 all of which represent a
very similar set of actions, i.e., a process ?1 reads from �le(s), loads a
module, and edits a registry item. In P���2���, after mining length
1 backward walks, the same provenance label ( {!$�⇡,'⇢�⇡},
{��!⇢,"$⇡*!⇢}) is generated for ?1 in each of the graphs G1, G2,
and G3. However, the WL-subtree kernel maps ?1 in G3 to a di�er-
ent label ({!$�⇡,"$⇡*!⇢}, {'⇢�⇡, ��!⇢}, {'⇢�⇡, ��!⇢}) com-
pared to ?1 in G1 and G2, i.e., ({!$�⇡,"$⇡*!⇢}, {'⇢�⇡, ��!⇢}).
Similarly, the Unicorn’s kernel also considers the temporal order of
<1 and 5 1, resulting in a di�erent label for ?1 in each graph. The
ability of the provenance graph kernel to map similar behaviors to
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Figure 3: Three toy graphs representing a similar set of ac-
tions of a process reading from a �le, loading module, and
editing a registry. The provenance graph kernel maps all of
them to an identical histogram while existing kernels make
distinctions based on temporal order or repeated events.

Algorithm 1: Incremental algorithm for computing prove-
nance label histogram
Data: Provenance graph snapshot ⌧C , current histogram

⌘8BC , inserted edges �⇢, new nodes +=4F , max walk
length ⌘

Result: An updated provenance label histogram ⌘8BC
ù Initialize the labels

1 for E 2 +=4F do
2 for 0  8  ⌘ do
3 k8 (E)  ();
4 for 0  9  8 do
5 g 98 (E)  {};

6 g00  {; (E)},k0  (g00 );
ù Iterate over inserted edges to infer other
provenance labels

7 for 1  8  ⌘ do
8 for 4 = (D, E) 2 �⇢ do
9 if k8�1 (D) is empty then
10 skip the edge;
11 g88 (E).insert(; (4));
12 for 0  9  8 � 1 do
13 g 98 (E)  g 98 (E) [ g

9
8�1 (D);

ù Update the histogram, if there is an old
label, we need to remove it

14 if k8 (E) is not empty then
15 ⌘8BC [k8 (E)] � �;
16 k8 (E) = (g88 (E), g

8�1
8 , ..., g08 );

17 ⌘8BC [k8 (E)] + +;

identical labels helps better generalize underlying behavior, reduc-
ing false positives in downstream tasks. This means that P���2���
can capture similarities between di�erent instances of ?1 across
the graphs, while the other kernels may treat them as distinct. By
providing consistent labels for similar behavior, the provenance
graph kernel enhances the accuracy and e�ectiveness of subsequent
analysis tasks.
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3.4 Incremental Provenance Graph Kernel
Algorithm 1 presents a real-time streaming approach for updating
the provenance label histogram. It iterates through the newly in-
serted edges to obtain the provenance labels for them and updates
the labels of the a�ected old nodes. First, it initializes the placehold-
ers (lines 1 - 6) for provenance labels to holdk8 (E) for all new nodes
E 2 +=4F and 0  8  ⌘. In order to getk8 (E), we need placeholder
for g 98 (E) for 0  9  8 . Once the initialization is done, we iterate
through all inserted edges for ⌘ iterations to obtain the provenance
labels corresponding to the backward walks of length 0 through ⌘
(lines 7-17). Once the provenance labels are obtained, we update
the label histogram to re�ect the newly formed provenance labels
(lines 14 - 17).

In the graph snapshot of Figure 2(b), three new edges are inserted
in the earlier snapshot, which creates three new nodes in the graph.
Once the placeholders fork8 and corresponding g

9
8 for each of these

nodes are initialized, it obtains the provenance labels of new nodes
registry2, process5.exe, and IP2, using the labels of their in-neighbors,
i.e., (process2.exe), (process3.exe), and (process2.exe) respectively. The
new labels are then updated in the histogram.

The runtime complexity of Algorithm 1 is O(⌘2 |�⇢ |) for a given
batch of edge insertions �⇢. For the initial snapshot, the runtime
complexity is O(⌘2 |⇢0 |), where ⇢0 represents the number of edges
in the initial snapshot. The initialization phase (lines 1-6) can be
completed in O(⌘2 |+=4F |), where+=4F is the set of newly inserted
nodes in the given snapshot, and the entire vertex set for the initial
snapshot. After the initialization, the computation of provenance
labels occurs in ⌘ ⇥ |�⇢ | ⇥ ⌘ operations, as the process needs to
update i-provenance labels for each inserted edge for 0  8  ⌘.

While the complexity is higher than O(⌘ |�⇢ |) of WL subtree
kernel [58] with the h-hop neighborhood, it is important to note
that the value of ⌘ is typically small(e.g.,  4). In the WL subtree
kernel, the authors use cross-validation to �nd the best value of
tree depth and always land on values between 2, 3, or 4. In Unicorn,
the neighborhood radius R parameter equivalent to h is set to 3 for
all experiments. Due to this a�nity to small h, the overhead from
the quadratic scaling is generally negligible.

3.5 Featurization of Histograms
Most machine learning algorithms require a �xed-size input vec-
tor. The node label histograms from di�erent snapshots have a
di�erent number of bins, i.e., distinct node labels. We need to con-
vert these variable-size histograms to �xed-sized vectors. Let us
assume histograms �0,�1, ...,�: are generated from graph snap-
shots⌧0,⌧1, ...,⌧: . A label vocabulary ⌃ is the set of all the distinct
labels computed for all the nodes in all the graph snapshots, i.e.,
⌃ = [:8=0!8 , where !8 is the bins (labels) from �8 .

3.5.1 Sparse label frequency. In a static setting, where all the graph
snapshots are already available, we accumulate the unique labels
from all the graph snapshots to build a label vocabulary ⌃. Then
we convert the histogram �8 of each snapshot into a sparse vector
+8 of size equal to |⌃|, where the element at the 8C⌘ index is the
frequency of label 8 in the histogram of the given snapshot. The
vector elements corresponding to the labels not present in the

snapshot are set to 0. For each label l in vocabulary ⌃,

+8 [;] =

(
�8 [;] if ; 2 �8

0 otherwise
(1)

To assess the similarity between two vectors +8 2 R⌃ and +9 2
R⌃, we can compute the distance between them using normalized
min-max, a popular distance measure for non-negative vectors.

⇡#"" (+8 ,+9 ) =
Õ
;2⌃<8=(+8 [;],+9 [;])Õ
;2⌃<0G (+8 [;],+9 [;])

(2)

3.5.2 Histosketch. In the streaming setting, where the label vo-
cabulary is continuously expanding, we utilize a histosketch data
structure to convert the variable-sized histogram�8 into a �xed-size
sketch vector (8 of size . Histosketch employs consistent weighted
hashing to transform the histogram into a compact sketch. By apply-
ing this technique, we can represent each snapshot with a �xed-size
vector, regardless of the growing label vocabulary.

For a node label histogram � , where each label ; has a frequency
value, � [;] � 0, Consistent Weighted Sampling (CWS) produces
(;,0; ) : 0  0;  � [;], which is both uniform and consistent.
This CWS sample (;,0; ) corresponds to the node label histogram
bin (;) and its scaled weight (0; ) and is uniformly sampled from
[; {;} ⇥ [0,� [;]]. This means the probability of selecting label ;
from � is proportional to its label frequency in the histogram, i.e.,
� [;], and y is uniformly distributed on [0,� [;]]. The sample is
also consistent, which means given two histograms �1 and �2, if
8; , �1 [;]  �2 [;], a sub-element (;,0; ) is sampled from �1 and
satis�es~  �2 [;], then (;,0; ) will also be sampled from�2 [34, 73].

To generate a consistent sample for a member of the node label
histogram, CWS uses three distributions using all labels from the
histogram. For each ; 2 � , and : = 1, 2, ..., , CWS samples from
W;,: ⇡ gamma(2,1), V;,: ⇡ uniform(0,1), and 2;,: ⇡ gamma(2,1).
Once these distributions have been sampled, CWS generates a
consistent sample for all labels in the histogram as follows.

~;,: = 4G? (;>6(� [;]) � W;,:V;,: ) (3)

0;,: =
2;,:

~;,:4G? (W;,: )
(4)

Equations 3 and 4 generate ‘active indices‘ and hash a label ; in
proportion to its weight respectively. For each sketch element, it
chooses a label i.e., (: = 0A6<8=;2�0;,: , and corresponding hash
value �: =<8=;2�0;,: . Given two sketches (8 and ( 9 constructed
from two histograms �8 and � 9 respectively, the collision prob-
ability in sketches is exactly the normalized min-max similarity
between the histograms(or sparse label frequency vectors):

%A [(8 [:] = ( 9 [:]] = ⇡#"" (�8 ,� 9 ) (5)
where : = 1, 2, ..., . The normalized min-max similarity be-

tween two histograms can be approximated by computing the
hamming distance between two sketches. The computation over
sketches S, which are compact and of �xed size, is much more ef-
�cient than the one over the full histogram H, which is a large,
ever-growing vector.

Histosketch can support a real-time update where every single
update in the histogram can be re�ected in sketch vector in O( ).
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For each distinct label ; in histogram � , it requires O( ) space
to store the pre-computed distributions W;,: , V;,: , and 2;,: , where
: = 1, 2, 3, ... , thereby making the resultant space complexity
O( ⇥ |� |).

4 EVALUATION
We utilize the X-Stream [54], an edge-centric graph computing
framework, to implement the graph kernels. This framework sup-
ports both in-memory and out-of-core graphs, enabling scalable
computing on shared memory machines. In our implementation,
node labels are stored on the vertices, and in each iteration of the
graph kernel, the labels are scattered via edges and aggregated on
the a�ected nodes to compute the set of newly formed labels from
the streamed edges. This approach allows for e�cient computation
and maintenance of histograms and sketches in memory, while
storing the provenance graph itself on disk. Other components of
the P���2��� system, such as downstream task modeling and data
parsing, are implemented using Python.

We evaluate P���2��� with three di�erent datasets:
StreamSpot dataset generated by [39] contains information

�ow graphs derived from one attack and �ve benign scenarios.
Each of the benign scenarios involves a normal task: watching
YouTube, downloading �les, browsing cnn.com, checking Gmail,
and playing video games. The attack graphs are captured while a
drive-by-download is triggered by visiting a malicious URL that
exploits a �ash vulnerability and gains root access to the visiting
host. Each task is run 100 times on a Linux machine collecting a
total of 600 graphs, where each graph encompasses all the system
calls on the machine from boot up to shut down. In total, there are
5 di�erent subject/object types and 29 di�erent event types.

SupplyChain attack scenarios dataset [18] contains a whole
system provenance including background activity captured by Cam-
Flow (v0.5.0) [46] while simulating two supply chain attacks SC-1
and SC-2 on a continuous integration (CI) platform. They follow a
typical cyber kill chain with 7 non-exclusive phases, i.e., reconnais-
sance, weaponization, delivery, exploitation, installation, command
and control (C&C), and actions on objective [40]. In SC-1, GNU
wget version 1.17 is exploited (CVE-2016-4971) using remote �le
upload when the victim requests a malicious URL to a compromised
server. In SC-2, a vulnerability (CVE-2014-6271) from GNU Bash
version 4.3 is exploited to allow remote attackers to execute arbi-
trary code via crafted trailing strings after function de�nitions in
Bash scripts. Each scenario generates 125 graphs from the benign
activities and 25 graphs from the attacker’s activities.

Operational Transparent Cyber (OpTC) data [67] was col-
lected over nine days at National Cyber Range in a simulated net-
work with one thousand hosts, with half of the client machines
turned o� during data collection. Each host was runningWindows
10 on VMware and was scripted to mimic daily user activities by
performing common tasks such as creating, editing, and deleting
word, powerpoint, excel, and text �les; sending, receiving, and
downloading �les via emails; and browsing the internet. Three
red-team APT exercises were performed, each on a separate day,
where randomly chosen machines were targeted, compromised,
and used to laterally move on to the other network clients. This
dataset contains more than 17 billion events, from 500 hosts and 627
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Figure 4: Performance of graph classi�cation.

di�erent users. Among these log events, there are 11 object types
and 32 di�erent event types. The most popular objects are FLOW
(71.7%), FILE (12.4%), PROCESS (8.6%), MODULE (3.9%), THREAD
(3.0%), and REGISTRY (0.3%). The rest of the objects constitute less
than 0.1% of overall events. Only 0.3 million, approximately 0.0016%
of the total events, are malicious [1].

For comparison, we implemented two other existing graph ker-
nels: (1) Weisfeiler-Lehman Subtree kernel (WLSubtree) [58] is
implemented to include both edge labels and node labels in their
aggregation. Using the edge and node label of each incoming neigh-
bor of the given node E , a sorted multi-set of labels is built which
is concatenated with the label of E . (2) The temporally ordered
Weisfeiler-Lehman Subtree (Unicorn) kernel [18] is implemented.
The underlying setups can be reused for each approach, where we
only need to re-implement the kernel functions.
Downstream Tasks: We utilize the representation obtained from
provenance graph kernel in three distinct downstream tasks to
measure the e�ectiveness of di�erent representation for speci�c
applications.

• Graph classi�cation classi�es the provenance graphs based
on the underlying action being performed on the system. We
use XGBoost classi�er [69] for graph classi�cation.

• Novelty detection is used to detect anomalous behavior
in homogeneous systems using one-class support vector
machine [55].

• Anomaly detection using K-Medoids Clustering. It uses the
partitioning around medoids (PAM) algorithm to minimize
the distance between points labeled to be in a cluster and
a point designated as the center of that cluster [68]. It is
useful for detecting anomalous behavior in a heterogeneous
system, i.e., a system with multiple benign behavior pro�les.

The average performance from 5-fold cross-validation is reported
in all of the prediction task reporting. The �ve-fold split is only per-
formed in benign graphs for the task of anomaly/novelty detection,
i.e., four-�fths of benign data are used to train the model.

4.1 Graph Classi�cation
We obtain the static histograms on StreamSpot datasets, i.e., for
each task and each run, one graph is built, and one histogram is
constructed. We convert the histograms to sparse label frequency
vectors, i.e., the feature vectors used here have sizes equal to the
number of distinct node labels among all graphs, i.e., vocabulary
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size. We evaluate the ability of P���2��� to distinguish between
six activities (youtube, download, cnn, gmail, vgame, and attack)
based on the provenance label histogram they generate. We use h
= 3, i.e., the 3-hop neighborhood labels are collected for all of the
di�erent kernels. We use supervised learning by training the XGB
Classi�er with a varying number of graphs and use the remaining
graphs to test the classi�cation performance. As depicted in Figure 4,
all three kernel-based classi�ers can reach the peak classi�cation
performance in as little as around 20 graphs per task, and P���2���
performs slightly better than the other two methods. This depicts
the ability of the provenance kernel to identify similar tasks, via a
comparison of their provenance labels, with a reasonable amount
of data.

4.2 Static Novelty Detection
Using unsupervised learning, we can predict the graphs that corre-
spond to the attacks. We utilize 80% of all benign tasks (400 graphs
in StreamSpot and 100 graphs in SC-1 and SC-2) as normal behav-
ior pro�les and use them to train One-class SVM. The remaining
20% of the benign activity graphs and all the graphs generated
from the attack scenarios are used to test the anomaly detector, i.e.,
200 graphs in StreamSpot and 50 graphs each in SC-1 and SC-2
respectively. Table 1 shows the performance for all three graph
kernels and Figure 5 shows the area under ROC curve for three
kernel functions on the three datasets. P���2��� outperforms both
WLSubtree and time-ordered WL Subtree kernel from Unicorn [18].

Despite having a signi�cantly smaller histogram size (Figure 8),
the P���2��� outperforms both WLSubtree and time-ordered WL
Subtree kernel from Unicorn [18]. The lower dimension of features
helps the runtime of training and testing, while the better gen-
eralization of provenance using the concise histogram helps us
to minimize the false positives, thereby improving the prediction
ability of the anomaly detector.

Table 1: The performance of one-class svm based anomaly
detection on three di�erent graph kernels (used h = 3 on each
kernel). P, R, A, and F1 represents precision, recall, accuracy,
and f1-score respectively.

Dataset Kernel P R A F1 Runtime
(Sec)

StreamSpot
P���2��� 0.9708 1.0 0.985 0.9852 0.061
WLSubtree 0.76 0.99 0.84 0.8609 1.281
Unicorn 0.7353 1.0 0.82 0.8475 3.034

SC-1
P���2��� 0.7742 1.0 0.8571 0.8727 1.445
WLSubtree 0.6857 1.0 0.7755 0.8136 5.281
Unicorn 0.7059 1.0 0.7959 0.8276 8.016

SC-2
P���2��� 0.7353 1.0 0.82 0.8475 1.751
WLSubtree 0.7143 1.0 0.8 0.8333 10.687
Unicorn 0.6579 1.0 0.74 0.7937 14.539

4.3 Real-time Anomaly Detection
The OpTC data provides a much better representation of real-world
enterprise networks. The host logs for 500 di�erent Windows-10
hosts are collected over 9 days. During the �rst six of 9 data collec-
tion days, only normal activities are performed on each host such as
browsing the internet, playing video games, using Gmail, etc. Those
6 days are divided into 4 di�erent boot-up to shut down sessions,
i.e., (1) 17-18th, (2) 18-19th, (3) 19th, and (4) 20th - 23rd September

2019. We build di�erent graphs for each host during each of these
sessions, where the node label histogram is maintained incremen-
tally and a snapshot is taken periodically. The series of histogram
snapshots are then converted into �xed-sized sketch vectors of
length 2,048. Next, all the sketches are clustered using the k-medoid
algorithm where an optimal number of clusters is determined by
maximizing the silhouette coe�cient [48]. The trained k-medoid is
used for anomaly detection during the evaluation period.

The APT attack exercises were performed during the last three
days, where one attack campaign was carried out each day. During
the evaluation period, we create a provenance graph on each host
every day and incrementally run graph kernels to compute node
label histograms. The snapshots of histograms are taken every
hour and are converted to sketch vectors. The resultant sketch
vector is then tested against the k-medoids model trained during
benign activity duration. If the sketch does not �t on any of the
underlying clusters in the trained model, the snapshot is considered
an anomaly. If a host on a given evaluation day has at least one
anomalous snapshot, we raise an alert indicating that the host may
have been compromised.

Table 2: The anomaly detection results on 3 attack campaigns
using k-medoids algorithm for h = 3 and sketch size = 2048.

Attack Kernel P R A F1

Day1- Powershell
Empire

P���2��� 1.0000 0.1765 0.9720 0.3000
WLSubtree 0.6000 0.1765 0.9680 0.2727
Unicorn 0.4000 0.1176 0.9640 0.1818

Day2-Deathstar
P���2��� 1.0000 0.3333 0.9880 0.5000
WLSubtree 0.6667 0.2222 0.9840 0.3333
Unicorn 0.3333 0.2222 0.9780 0.2667

Day3-Malicious
Update

P���2��� 1.0000 1.0000 1.0000 1.0000
WLSubtree 0.2000 1.0000 0.9840 0.3333
Unicorn 0.2857 1.0000 0.9900 0.4444

Table 2 shows the performance for detecting compromised hosts
on each day of the attack. We use a period of one hour between
snapshots, neighborhood size of h=3 for graph kernels, and sketch
the size of 2048. The precision represents the fraction of detected
hosts that were actually compromised, while recall represents the
fraction of compromised hosts that are detected. First, the preci-
sion of P���2��� kernel is much better than bothWLSubtree and
Unicorn kernels. This is down to the better generalization of la-
bels on histogram resulting from P���2���. This results in a more
succinct histogram for P���2��� kernel compared to the other
two techniques, thereby enabling a smaller sketch to capture the
system behaviors. Notice that the recall is noticeably low for all
of the kernels during day1 and day2. This is because, during these
campaigns, there is hardly any activity on some of the compro-
mised hosts where an attacker simply logs in after obtaining the
credential from the domain controller. Below we discuss each of
these attack campaigns in detail.
Attack Day 1 Analysis. The attack campaign on day 1 uses Pow-
erShell empire [14], where it manually connects to Sysclient201
as the user zleazer and downloads malicious Powershell Empire
stager. It then uses privilege escalation methods to obtain elevated
agents, Mimikatz to collect credentials, registry edits to establish
persistence, and discovery techniques to gather system and net-
work information. It then pivots to Sysclient402 using WMI invoke
as an elevated agent where it performs a ping sweep of the local
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Figure 5: ROC curve of one-class SVM based novelty detection for three di�erent graph kernels on di�erent datasets. The area
under ROC curve for P���2��� kernel is consistently better thanWLSubtree and Unicorn kernels.

Figure 6: Themovement of compromised user across network
during attack campaign of attack day 1.

network and pivots to Sysclient660. Finally, it obtains domain con-
troller information by using Powershell commands, pivots to DC1
(domain-controller 1), where it obtains the user hashes using lsa,
and pivots to 14 di�erent hosts.

All kernels including P���2��� �ags Sysclient201 and Sysclient660
as compromised, however the Unicorn kernel missed Sysclient402.
The remaining 14 hosts are missed as they do not have enough
log data produced during the attacker’s presence, and we could
not �ag the domain controller since there is no log collected for it.
Figure 6 shows the attacker’s movement across the network during
the attack day 1.
Attack Day 2 Analysis. The attack campaign was carried out
using Deathstar, which started with a phishing email containing
malicious Powershell stagers to two users bantonio and rsantilli.
On Sysclient501, bantonio opened the malicious attachment. Once
checked in the attacker runs a series of commands to list domain
controllers, SID, and admins. It used several UAC bypass techniques
available in Powershell Empire such as eventvwr, fodhelper, wmi in-
voke, and windir value modi�cation to escalate the privilege. It then
started reverse shell to the attacker, which downloaded a netcat
application with a di�erent alias, compressed the content of Docu-
ments folder into a �le named export.zip, and copied it to news.com

hosted at 132.197.158.98. The attacker pivoted to Sysclient974 and
explored �les in the Documents folder. Similarly, it pivoted to
Sysclient005, where it ex�ltrated the data from the Downloads folder.
The hosts Sysclient501, Sysclient974, and Sysclient005 were 3 out
of 9 compromised hosts that were detected by all three kernels.
Figure 7 shows the attacker’s movement across the network during
the attack day 2.
Attack Day 3 Analysis. Here two hosts installed notepad.exe sus-
ceptible to malicious upgrade, which when updated reached out
to the attacker’s server hosted at 53.192.68.50 and downloaded a
reverse tcp meterpreter payload that connected back to the attacker.
Once connected, it runs discovery techniques to gather information
on the local system, applications, domain controllers, and network
shares. It then migrated to the lsass process, which used Mimikatz
to collect clear-text passwords and hashes. Afterward, persistence
was maintained by installing run keys, and user ‘admin’ was added
to administrators and the RDP group. A similar approach was taken
on both hosts Sysclient351 and Sysclient051, where they left large
enough footprints for an anomaly detector to trigger the alert.

We utilize a user-host interaction graph built using the user-
session logs to �ag potentially compromised hosts and users to
quickly extract the impacted agents. The user-session logs in the
OpTC data contain information such as user logins, logouts, and
remote desktop protocol accesses. When we detect a compromised
host using real-time anomaly detection on provenance graph snap-
shots, we extract the metadata from such anomalies, mainly the
user, host, and the timestamp of the �rst anomaly. Following those
agents and time information, we perform a temporal traversal on
the user-host graph to obtain the potentially compromised hosts.

With the help of the temporal traversal, we can detect all the
compromised hosts on day 1 as shown in Figure 6, except domain
controller 1 (DC1) as we do not have user-session logs for DC1. In
addition, it produces one false positive sysclient0203 which was not
mentioned in the ground truth. On day 2 as shown in Figure 7, this
traversal led to a few false positives as bantonio logs into hundreds
of hosts following the detection of an anomaly on Sysclient501.
However, the user with the elevated privilege, i.e., Administrator
connected to all 9 hosts mentioned in the ground truth, which can
be traced from the user-session logs. Again with temporal traversal,
we can detect the compromised hosts that were missed by anomaly
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Figure 7: The movement of the compromised user across the network during the attack campaign of day 2.

detection as long as the anomaly detection �nds at least one of the
compromised hosts.

4.4 E�ect of Sketch Size
We evaluate the impact of using a �xed-size sketch vector in the
performance of downstream tasks compared to the use of a sparse
label histogram of size equal to the number of distinct labels among
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Table 3: The evaluation of e�ect of di�erent sized histosketches on the anomaly detection performance on StreamSpot data. K
is sketch vector size.

Sketch Prov2vec Kernel WLSubtree kernel Unicorn Kernel
P R A F1 P R A F1 P R A F1

32 0.81 1 0.88 0.89 0.82 1 0.89 0.9 0.84 1 0.91 0.91
64 0.83 1 0.9 0.9 0.8 1 0.88 0.89 0.83 1 0.9 0.9
128 0.9 1 0.94 0.95 0.83 1 0.9 0.91 0.76 1 0.85 0.87
256 0.9 1 0.94 0.95 0.88 1 0.93 0.94 0.85 1 0.91 0.92
512 0.89 1 0.94 0.94 0.89 1 0.94 0.94 0.86 1 0.92 0.92
1024 0.89 1 0.94 0.94 0.89 1 0.94 0.94
2048 0.89 1 0.94 0.94 0.89 1 0.94 0.94

all graphs. We vary the size of the sketch from 32 to 2,048, doubling
each time to represent the node label histogram obtained by running
all three kernels for ⌘ = 3. The histogram sketch obtained is thus
used as the feature representation for the given graph. We train the
k-medoids clustering algorithm using 80% of the graphs generated
by benign activities. The remaining 100 benign graphs and 100
graphs generated during the attack are used for testing. During
testing, each graph is tested against every cluster formed during
training and �agged as an anomaly if it does not �t in any of the
clusters. A graph is considered to �t in a cluster if its distance
from the given clusters’ medoid is within 3 standard deviation
of the mean distance of all training samples in that cluster. In
our experiments, we used 3 = 2, i.e., if a sample is farther than
<40= + 2BC3 away from all the medoids, it is considered an anomaly.
The performance for varying sizes of sketches is shown in Table 3
for anomaly detection on StreamSpot data.

The results in Table 3 show that sketch size much smaller than
the node label vocabulary size can match the performance for all
kernels. The performance for P���2��� kernel saturates after a
sketch size of 128. Similarly the performance forWLSubtree andUni-
corn kernels saturates at sketch sizes of 512 and 1,024 respectively.
The peak performance of WLSubtree and Unicorn kernels match
that of their sparse histogram vector counterpart from Table 1.
However, the precision of P���2��� kernel is slightly amiss from
its static counterpart. Nevertheless, sketching constantly changing
and di�erent-sized histograms with �xed-size feature sketches pre-
serves their similarity and provides a viable option for comparing
continuously changing provenance graphs.

4.5 E�ect of Neighborhood Size
We compare the resource consumption for using di�erent kernels to
compute the node label histograms in di�erent datasets. We varied
the value of h, i.e., the size of the neighborhood, and recorded the
histogram size as well as the runtime for di�erent graph kernels.
As illustrated in Figure 8(a)-(f), the histogram for the 0-hop neigh-
borhood is identical for all kernels, i.e., histograms built on node
types. As the value of h increases, the di�erences between the sizes
of the histogram for Unicorn andWLSubtree kernels compared to
P���2��� kernel get larger.

We evaluate the impact of neighborhood size (h) based on the
performance of corresponding histograms in downstream machine-
learning tasks. We use two SupplyChain datasets to evaluate the
impact of neighborhood size on anomaly detection. We convert
the histograms of corresponding snapshots to sketch vectors of

size 2,048. The performance for anomaly detection is shown in
Table 4 for two attack scenarios SC-1 (wget) and SC2 (shellshock). As
expected, the performance for each kernel improves as we increase
the neighborhood size, reaches the peak for the value of h = 3 or 4,
and start to decline afterward. The provenance graph kernel does
incur longer runtime as presented in Figure 8(g)-(i). However, the
optimal value of h is usually small, thereby alleviating the impact
of quadratic scaling.

The comparison of histogram size growth over time for three
kernels is shown in Figure 9. The number of labels and rate of
arrival of unseen labels are much smaller in the provenance graph
kernel. Despite this succinct representation, the performance on
downstream task for P���2��� kernel is consistently better or
comparable to the other two kernels as illustrated earlier.

5 DISCUSSIONS AND LIMITATIONS
P���2��� makes certain assumptions and has limitations that
should be considered.

First, it operates under the closed-world assumption, assuming
that all benign behaviors have been observed during training [60].
However, in real enterprise networks, it is challenging to cover all
possible benign cases. This may result in false alarms for previously
unseen normal behaviors. To address this, system administrators
can periodically update the model with new benign data. The incre-
mental nature of P���2��� makes it easy for the model to update.

Second, P���2��� assumes an integrity of training data dur-
ing a modeling period. It assumes that the newly observed normal
behavior used for model updates is not corrupted by poisoning
attacks [61] or graph backdoors [70]. The robustness of P���2���
against such attacks is an area for future study.

The datasets used in the experiments are synthetic, which
limits the representation of real-world APT attacks. While e�orts
have been made to make the datasets realistic, they lack some char-
acteristics of APT attacks in the wild. Testing P���2��� against
actual enterprise systems or more realistic APT scenarios is a pri-
ority for future research.

Granularity of data provenance: Some attacks do not produce
the attack pattern in the data provenance graphs. For example,
malicious code in a �le and thread-based attacks have the text
information on the corresponding �les and threads that are too
�ne granular to be recorded in the provenance graph. Like all
provenance-based detection methods, P���2��� will fail to detect
those attacks. Incorporating more host-based data into the threat
detection process or improving the information capture process



P���2���: Learning Provenance Graph Representation for Anomaly Detection in Computer Systems ARES 2024, July 30–August 02, 2024, Vienna, Austria

Table 4: The evaluation of the e�ect of di�erent sized neighborhoods on the anomaly detection performance on SupplyChain
data.

Prov2vec WLSubtree Unicorn

SC-1

h P R A F1 P R A F1 P R A F1
1 0.5333 0.3333 0.5306 0.4103 0.5333 0.3333 0.5306 0.4103 0.5333 0.3333 0.5306 0.4103
2 0.7778 0.875 0.8163 0.8235 0.7308 0.7917 0.7551 0.76 0.6667 0.8333 0.7143 0.7407
3 0.8148 0.9167 0.8571 0.8627 0.7778 0.875 0.8163 0.8235 0.8148 0.9167 0.8571 0.8627
4 0.7333 0.9166 0.7959 0.8148 0.84 0.875 0.8571 0.8571 0.8148 0.9167 0.8571 0.8627
5 0.75 0.875 0.7959 0.8077 0.8333 0.8333 0.8367 0.8333 0.7586 0.9167 0.8163 0.8302

SC-2

h P R A F1 P R A F1 P R A F1
1 0.5 0.04 0.5 0.0741 0.5 0.04 0.5 0.0741 0.5 0.04 0.5 0.0741
2 0.7222 0.52 0.66 0.6047 0.6 0.6 0.6 0.6 0.5862 0.68 0.6 0.6296
3 0.7407 0.8 0.76 0.7692 0.7143 0.8 0.74 0.7547 0.6552 0.76 0.68 0.7037
4 0.7727 0.68 0.74 0.7234 0.6333 0.76 0.66 0.6909 0.75 0.72 0.74 0.7347
5 0.75 0.48 0.66 0.5853 0.5909 0.52 0.58 0.5532 0.6552 0.76 0.68 0.7037
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Figure 8: The comparison of resource consumption for di�erent kernels. The plots (a)-(c) shows the average size of the histogram
per graph, plots (d)-(f) shows the vocabulary size for di�erent kernels, and plots (g)-(i) compares the runtime of di�erent
kernels for increasing neighborhood size.

for �ner-grained provenance graph generation can be the research
directions to further investigate this limitation.

The explainability of anomalies is a challenge in black-box ma-
chine learning systems. P���2��� may struggle to provide detailed
explanations for the detected anomalies. However, methods such as
LIME and EDR systems can be used to explain individual predictions
and understand the series of activities leading to an anomaly.

The provenance graph kernel only supports discrete labels,
which limits its ability to capture continuous attributes. Including
such attributes may require the use of deep learning techniques or

graph kernels that support continuous attributes. Overall, while
P���2��� has shown promising results, addressing these limita-
tions will be crucial for its broader applicability and e�ectiveness
in detecting sophisticated attacks.

6 RELATEDWORKS
Provenance graph has been popular tool for threat hunting re-
search in last few years. Several works have been proposed to
improve the provenance data collection [3, 46, 50], redundancy
elimination [19, 33, 38, 72], intrusion detection using provenance
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Figure 9: The histogram size trend with each hourly snapshot
on host 201 during 16-17Sep on OpTC data.

graphs [5, 9, 12, 13, 18, 20, 22, 24, 36, 42, 43]. We refer interested
readers to the comprehensive survey on threat detection techniques
using provenance graph [77]. Traditional query systems are not
optimized for provenance analysis. Several provenance query
systems [12, 13, 47, 59] have been proposed to provide threat in-
vestigation abilities such as streaming queries, causality tracking,
graph pattern matching, and anomaly analysis. These systems are
implemented on top of mature stream processors or databases and
take the provenance graphs speci�c data model and query engine.

Provenance data reduction is important for storage and com-
putational e�ciency. Causality preserving reduction [72] and sub-
sequent dependence preserving reduction [25] merge the events if
they do not alter the causality or forward and backward reachability
respectively. LogGC [33] proposes a provenance garbage collec-
tion, that �nds the isolated "temporary" nodes and removes them.
Since garbage collection and causality/dependency preserving re-
duction can remove correlation between alerts or alert themselves,
we modi�ed these reduction systems to preserve alerts.

Threat detection with provenance graphs: Sleuth [24] uses
policy based rules to trigger alerts and uses tag propagation tech-
nique to store and transmit the system execution history. The ab-
normal behavior detection systems [21, 37] learn host behavior
from historical data or parallel systems and try to �nd abnormal
interaction between system entities. The graph pattern match-
ing and alignment based works such as Holmes [43], Poirot [42],
Rapsheet [20], and SteinerLog [5] use indicator of attacks (IOAs) to
generate suspicious events and chain them together using graph
exploration techniques. They use those chain of alerts to detect
the attacks as well as to reconstruct the individual steps taken by
an attacker. However, a substantial amount of manual e�ort and
domain expertise is required to come up with the relevant IOAs
for matching. For example, Poirot requires one to write a di�erent
query for each of the attack campaigns and �nd their alignment on
a provenance graph. Holmes [43], Rapsheet [20] and SteinerLog [5]
use more �ne-grained behavioral patterns representing di�erent
TTPs relevant to their system and follow the causal dependency in
provenance graph to construct the attack campaigns.

Recent works have applied machine learning techniques on the
provenance graph for providing behavioral modeling based threat
detection approaches. Shadewatcher [75] formulates the threat
detection as recommendation problem by likening the system in-
teractions on audit logs to the entity relations on recommendation
systems. PROGRAPHER [74] uses graph2vec in to obtain the repre-
sentations of the graph snapshots, and provides detection on node

level granularity. ANUBIS [2] uses rather probabilistic approach
by using Poisson distribution to model the causal neighborhood
of a given event. Log2Vec [36] combines the random walk with
word2vec to obtain the node representations. P���2��� follows the
graph kernel based representation such as Unicorn [18] closely,
where it uses discretely mined features to obtain graph represen-
tation and perform anomaly detection based on it. In P���2���,
more compact histogram and consequently better generalization is
achieved and we are able to outperform Unicorn in series of tasks.

Graph kernels are widely used for learning node and graph
representations in machine learning tasks. These techniques itera-
tively accumulate and compress information from a node’s neigh-
borhood to derive a new node label. Various methods, such as
random walks [28, 66, 76], subtrees [52, 58], cyclic patterns [23],
shortest paths [6], and graphlets [51], are employed to capture node
neighborhoods. Recently, Graph Neural Networks (GNNs) [16, 32,
35, 65, 71] have gained popularity for representation learning, with
promising results in cybersecurity applications [26, 29, 30]. GNNs
utilize recursive aggregation to compute a node’s representation
vector by incorporating information from its neighborhood, with
each iteration encompassing a larger one-hop neighborhood. Node
representations are then aggregated to obtain the feature vector for
the entire graph.

Sequence-based learning techniques, which involve convert-
ing log sequences into key vectors representing system events, have
gained popularity in operational anomaly detection [17, 41, 64].
Models based on recurrent neural networks (RNNs) or Transform-
ers are then trained with these key sequences [7–9]. During de-
ployment, these models predict anomalous behavior by forecasting
the next event based on the observed sequence. However, their
e�ectiveness is limited as they mainly examine short system call
sequences and struggle to capture long-term behavior, leaving them
vulnerable to evasion techniques. To detect stealthy and slow Ad-
vanced Persistent Threat attacks, which require a broader context,
graph-based techniques leveraging the causal relationships among
events in provenance graphs o�er more promising solutions.

7 CONCLUSION
Wedesign and implement a fully unsupervised technique in P���2���,
which is able to successfully learn the system host behaviors from
their provenance graphs and identify the potentially malicious be-
haviors that di�er from the normality. The new provenance graph
kernel, while incurs a slight overhead in histogram computation
compared to state-of-the-art graph kernels, achieves an order mag-
nitude smaller node label histogram sizes and signi�cantly improves
the performance of downstream machine learning tasks. The re-
sult from P���2��� can be used as the �rst level of �ltering for
�ne-grained alert correlation systems, where the anomalous hosts
are further inspected to understand the context around underlying
behavior.
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