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ABSTRACT. We generalize a bi-Lipschitz extension result of David and Semmes
from Euclidean spaces to complete metric measure spaces with controlled ge-
ometry (Ahlfors regularity and supporting a Poincaré inequality). In par-
ticular, we find sharp conditions on metric measure spaces X so that any
bi-Lipschitz embedding of a subset of the real line into X extends to a bi-
Lipschitz embedding of the whole line. Along the way, we prove that if the
complement of an open subset Y of X has small Assouad dimension, then it is
a uniform domain. Finally, we prove a quantitative approximation of continua
in X by bi-Lipschitz curves.

1. INTRODUCTION

Given metric spaces (X,dx) and (Y,dy), amap f: X — Y is said to be an
L-bi-Lipschitz embedding (or simply L-bi-Lipschitz or just bi-Lipschitz) if there is a
constant L > 1 such that

L7 dx (21, 22) < dy (f(21), f(22)) < Ldx (z1,22)

for all x1, 29 € X. A bi-Lipschitz arc in a metric space X is the image of an interval
in the real line R under a bi-Lipschitz map.

We will consider the following question: given a set £ C X which is the image
of a subset of R under a bi-Lipschitz map, is E contained in a bi-Lipschitz arc? If
F is any finite subset of R™, the answer is trivially “yes”. For general sets £ C R",
the question was answered in the positive when n > 3 by the following extension
theorem of David and Semmes [DS91]:

Theorem 1.1 ([DS91, Proposition 17.1]). Let n > 3 be an integer, let A C R,
and let f : A — R™ be a bi-Lipschitz embedding. Then there exists a bi-Lipschitz
extension F': R — R”™.

MacManus [Mac95] extended the result of David and Semmes to the case n = 2,
which is much more difficult since intersecting lines in R? may be easily modified
so that they no longer intersect, but this is not the case in R2. One may view these
extension results as rougher versions of the classical Whitney Extension Theorem
[Whi34]; while the maps considered here are analytically weaker (as they are bi-
Lipschitz rather than differentiable), they are metrically and topologically stronger.

Theoremis a special case of a more general result in [DS91] where A C R? and
n > 2d+1. The main motivation behind that result was to establish the equivalence
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of the boundedness of certain singular operators on R™ via quantitative rectifiability.
More precisely, Theorem was used in [DS91] to show that, when n > 3, every
Ahlfors 1-regular set A C R™ (see for the definition of Ahlfors regularity)
which admits a corona decomposition (roughly speaking, A can be decomposed
into a collection of subsets which are well-approximated by Lipschitz graphs and
a collection of subsets which are not, and both of these collections have controlled
measure) contains “big pieces” of bi-Lipschitz arcs i.e. for any € > 0, there exists
an M > 0 such that, for any x € A and any R > 0, there is an M-bi-Lipschitz
embedding p : R — R” such that

[EN (B(x, R) \ p(R))] < eR.

Another application of Theorem is in the problem of the bi-Lipschitz rectifia-
bility of sets in Euclidean spaces. In other words, one hopes to classify those subsets
of R™ that are contained in a bi-Lipschitz arc. While the classical characterization of
the Lipschitz rectifiability of sets in Euclidean spaces has been completely resolved
[Jon90l [Oki92], the problem of bi-Lipschitz rectifiability remains open mainly due to
topological constraints. Theorem can be used to show that, if a set £ C R™ has
Assouad dimension less than 1, then E is bi-Lipschitz rectifiable; see [BVI19l Corol-
lary 3.5] for a different approach. See Section [2f for the definition of the Assouad
dimension.

In this article, we generalize Theorem[I.1]to the setting in which Euclidean spaces
R™ are replaced by a large class of metric measure spaces. There are two main dif-
ficulties in this generalization. Firstly, the target metric space X must contain
many of rectifiable curves, and this notion of “many” must be understood quanti-
tatively. A notable example (and, in fact, the initial motivation for this project)
is the Heisenberg group H in which the classical Whitney Extension Theorem for
curves has been well-studied recently; see [Zim18, [PSZ19, [Zim22] [SZ23]. We will
not define the Heisenberg group here but only recall that it is a geodesic space
homeomorphic to R3, and there exists a distribution H : R* — Gr(2, R?) such that
if a curve vy : [0,1] — H is rectifiable, then it is differentiable almost everywhere
and y(t) € Hy ) for almost every ¢. This fact implies that there must be many
fewer rectifiable curves in H than in R3. Secondly, the proof in the Euclidean case
relies on the existence of differentiable bump functions ¢ : R — R™ with controlled
derivatives, and we cannot hope to recover this idea in a general metric space.

The class of metric measure spaces to which the bi-Lipschitz extension result
will be generalized will have two properties. The first is Ahlfors regularity: we say
that a metric measure space (X, d, u) is Ahlfors Q-regular (or simply Q-regular) if
the measure of any ball of radius 7 is comparable to r¢. The second property is
the existence of a Poincaré inequality. Such an inequality roughly states that, if we
use up to denote the average value of a function v : X — R on a ball B, then the
average of the variation |u —upg| is controlled by the average of a “weak derivative”
of uw on B. See Section [ for all relevant definitions. It is known that Ahlfors
regular spaces supporting a Poincaré inequality must contain quantitatively many
rectifiable curves. Moreover, such spaces admit a notion of differentiation [Che99].

The following is the main result of this paper:

Theorem 1.2. Let (X,d, u) be a Q-regular, complete metric measure space sup-
porting a p-Poincaré inequality for some 1 <p<Q—1. fACRand f: A— X
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is a bi-Lipschitz embedding, then f extends to a bi-Lipschitz embedding F : [ — X
where I is the smallest closed interval containing A.

In Theorem we prove a stronger quantitative version of this result in the
sense that the bi-Lipschitz constant of F' depends only the bi-Lipschitz constant of
f and on the data of Ahlfors Q-regularity and the Poincaré inequality. Moreover,
if X is unbounded, then we can choose I = R.

A large variety of metric spaces satisfy the assumptions of Theorem[I.2] including
orientable, n-regular, linearly locally contractible n-manifolds with n > 3 [Sem96],
Carnot groups [Var86l, [Jer86] (which include Euclidean spaces and the Heisenberg
group), certain hyperbolic buildings [BP99], Laakso spaces [Laa00], and certain
Menger sponges [MTW13| [EBG22].

The assumptions of the theorem are sharp in that neither Ahlfors regularity nor
the Poincaré inequality can be removed from the statement. For Ahlfors regularity,
let X = S? x R with the length metric and the induced Hausdorff 3-measure.
Then X is complete, has Ricci curvature bounded from below so it satisfies the
1-Poincaré inequality [ChaOll Chapter VI.5], but is not Ahlfors regular. Define
f:{2" :n € N} - X by f(2") = (po,(—2)") where py € S?. The map f is
bi-Lipschitz and if F' : R — X is any homeomorphic extension of f, then for any
n € N, F([2",2"*1]) intersects with (S? x {0}) so F can not be bi-Lipschitz.

Since the Poincaré inequality is an open ended condition [KZ08], we may assume
that p < @ —1 for the proof of the theorem. However, the bound @ — 1 is sharp. To
see this, let n > 2, let P;, P, be two n-dimensional planes in R?*~! intersecting on
a line ¢, and let py € . The metric space X = (Py U Pz2)\ B(po, 1) with the induced
Euclidean metric and n-dimensional Lebesgue measure is complete, n-regular, and
satisfies the p-Poincaré inequality for all p > n — 1 [HK98, Theorem 6.15]. Let
f (=00, —1Ju{—1%,2}U[1,00) — X be a map such that f(—3) € P\ (¢UB(po, 1)),
f(3) € P2\(€UB(po, 1)), and f maps R\ (—1,1) isometrically onto £\ B(py,1). Then
f is bi-Lipschitz but admits no homeomorphic (let alone bi-Lipschitz) extension
F:R— X.

1.1. Related results. The first corollary of Theorem gives a sufficient con-
dition for bi-Lipschitz rectifiability in Ahlfors regular spaces satisfying a Poincaré
inequality.

Corollary 1.3. Let X be a complete Q-regular metric measure space supporting a
p-Poincaré inequality for some 1 <p < Q — 1. If E C X has Assouad dimension
less than 1, then E is bi-Lipschitz rectifiable.

The proof of the corollary follows the same ideas as in the Euclidean case. Since
the Assouad dimension of F is less than 1, [DS97, Lemma 15.2] implies that FE
must be uniformly disconnected, and hence it is bi-Lipschitz equivalent to an ul-
trametric space Z of Assouad dimension less than 1 [DS97, Proposition 15.7]. By
[LML94, Theorem 3.8], there exists a bi-Lipschitz embedding g : £ — R, and, by
Theorem [I.2] there exists a closed interval I and a bi-Lipschitz extension f : I — X
of the map ¢! : g(E) — X. Thus E C f(I), so E is contained in a bi-Lipschitz
arc.

The proof of Theorem [[.2 has two main ingredients. The first is the construction
of short curves in X \ f(A) that stay quantitatively far from f(A). To build such
curves, we will use the notion of the uniformity of a set. Given a set U C X, we
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say that U is c-uniform if, for every z,y € U, there exists a path y : [0,1] = U
joining x to y such that

(1) the length of vy is at most cd(z,y), and

(2) dist(y(t), X \U) > ¢ dist(y(t),{z,y}) for all t € [0,1].
In other words, U is uniform if, for any z,y € U, there exists a curve connecting
them which is short compared to d(z,y) and stays far from X \ U quantitatively. If
U satisfies only property (1) in this definition, then we say that U is c-quasiconvex.

It is an open problem to classify the closed sets Y C X for which X \ Y is
quasiconvex or uniform. Hakobyan and Herron [HHOS| showed that, if Y C R™ has
Hausdorff (n — 1)-measure H"~1(Y) = 0, then R" \ Y is quasiconvex. Moreover,
this assumption is sharp. Herron, Lukyanenko, and Tyson [HLTI8] proved the
same result in the Heisenberg group H where, in this setting, it is assumed that
H3(Y) = 0. The dimension 3 is natural as H is 4-regular while R" is n-regular. It
is unknown if a similar result exists in all Carnot groups.

The question of whether X \ Y is uniform has been studied in terms of uniform
disconnectedness of Y [Mac99] and quasihyperbolicity of X and Y [Her87, HVWI17,
Her22). Vaisald [VAi88] showed that, if R™ \ YV is uniform, then the topological
dimension of Y is at most n — 2. The following proposition, which we prove in
Section [3] works in the opposite direction: if X is Ahlfors regular and supports
a Poincaré inequality and if the Assouad dimension of Y is small, then X \ Y is
uniform.

Proposition 1.4. Let (X,d,u) be a complete Q-Ahlfors regular metric measure
space supporting a p-Poincaré inequality for some 1 <p < Q. IfY C X is a closed
set with Assouad dimension less than Q — p, then X \'Y is a uniform domain.

Note that if Y C X and has Assouad dimension less than Q —p, then H@P(Y) =
0. The assumption on the Assouad dimension is sharp. For example, let X = R™,
let P be an (n — 1)-dimensional hyperplane in R™, and let Y be a maximal 1-
separated subset of P. Then it is easy to see that dim4(Y) =n—1, H*~}(Y) =0,
and R™\ Y is not uniform.

The second ingredient in the proof of Theorem [1.2]is a standard “straightening”
argument for paths. In particular, Lytchak and Wenger [LW20l Lemma 4.2] proved
that, given any topological arc in a geodesic space, there exists a bi-Lipschitz arc
with the same endpoints that is close to the original one; see also [MW21l Lemma
4.2] for a similar result for topological circles. In Section we prove a quantitative
version of their result. Moreover, under the additional assumptions of Q-regularity
and a Poincaré inequality, we show as a corollary of Theorem that every con-
tinuum (i.e., every compact connected set) can be approximated by a bi-Lipschitz
curve in the Hausdorff distance.

Proposition 1.5. Let (X, d, u) be a complete Q-reqular metric measure space sup-
porting a p-Poincaré inequality for some 1 < p < Q—1, let K C X be a continuum,
and let € € (0,1). For any z,y € K with d(z,y) > ediam K, there exists a curve
v : [0,1] = X with y(0) = x and y(1) = y, and there exists a constant L > 1
depending only on €, the constants of Q-regularity, and the data of the Poincaré
inequality such that

1
Z'S —t|diam K < d(y(t),v(s)) < L|s — t|diam K
for all s,t € [0,1], and the Hausdorff distance disty (K,v([0,1])) < ediam K.
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In particular, every compact Ahlfors regular metric measure space supporting a
Poincaré inequality contains “almost space-filling” bi-Lipschitz curves.

1.2. Outline of the proof of Theorem We start with two simple reductions.
First, since bi-Lipschitz maps extend on the completion of their domain, we may
assume that A is a closed set. Second, it is well known that the Poincaré inequality,
completeness, and Ahlfors regularity imply that X is quasiconvex [Che99, Theorem
17.1]. Every complete quasiconvex space is bi-Lipschitz equivalent to a geodesic
metric space and since the properties of Ahlfors Q-regularity and the p-Poincaré
inequality are preserved under bi-Lipschitz mappings [HKST15 Lemma 8.3.18], we
may assume for the rest that X is geodesic.

For the proof of Theorem [I.2] similar to the proof of Theorem [I.I] and the
Whitney Extension Theorem, we construct a Whitney decomposition {Q;}ien of
I\ A, i.e., a collection of closed intervals in I \ A with mutually disjoint interiors
such that their union is I \ A and the length of each interval is comparable to its
distance from A.

In Section[5| we define two auxiliary embeddings. Specifically, in §5.1]we construct
a bi-Lipschitz embedding 7 of E into X, where E is the set of endpoints of the
Whitney intervals Q;. The final map F' will map elements of E very close to their
image under 7. In we use the results of Sections [3] and [d] to define a second
bi-Lipschitz embedding

€N
of f. Here, 0, denotes the middle third closed interval in Q;. If we write Q; = [z, ],
then the image g(Q;) is a bi-Lipschitz curve that has endpoints very close to m(z)
and 7(y).

In Section [6] we describe a method to modify and extend the map g near the
points 7(z) to build a curve on the entire interval I, and we verify that this curve
is indeed bi-Lipschitz to complete the proof of Theorem

Acknowledgements. We thank the referee for their valuable comments. The
second author would like to thank Sylvester Eriksson-Bique for a valuable conver-
sation at an early stage of this project, and Damaris Meier for a conversation on
the bi-Lipschitz approximation of curves.

2. PRELIMINARIES

Given quantities z,y > 0 and constants ai,...,a, > 0 we write  Sq,,. a, ¥ if
there exists a constant C' depending at most on aq, ..., a, such that x < Cy. If C'is
universal, we write S y. We write ¢, o, vif 2 Soy 6, yand y Sep,. a6, T

Given a metric space (X,d) and two points z,y € X, we say that y is a path
joining x with y if there exists some continuous vy : [0,1] — X with y(0) = « and
v(1) =y.

Given aset Y C X and r > 0, we write B(Y,r) := {z € X : dist(z,Y) < r}.

2.1. Porosity and regularity. For a constant C' > 1, a metric space X is called
C-doubling if every ball of radius r can be covered by at most C balls of radii at
most 7/2. Given another constant o > 0, X is called (C, a)-homogeneous if every
ball of radius R can be covered by at most C'(R/r)® balls of radii at most r. We will
occasionally refer to such a metric space as a-homogeneous when the constant C is
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not important. Clearly, a (C, @)-homogeneous space is (C2%)-doubling. Conversely,
given C > 0 there exists C’ > 0 and a > 0 such that a C-doubling space is (C’, «)-
homogeneous.

The Assouad dimension of a metric space X (denoted dim (X)) is the infimum
of all @ > 0 such that X is a-homogeneous.

A metric measure space (X, d, ) is said to be Q-Ahlfors reqular (or Q-regular)
for @ > 0 if there exists C' > 1 such that, for all z € X and all r € (0, diam X),

(2.1) C~ 1@ < u(B(x, 7)) < OrC.

It is easy to see that if (X,d,u) is Q-regular, then X is @-homogeneous and
dima(X) = Q. If we want to emphasize the constant C' in , then we say
that (X, d, p) is (C, Q)-regular.

Given Y C X we say that Y is p-porous for some p > 1 if, for all y € Y and all
r € (0,diam X), there exists some x € B(y,r) such that B(x,r/p) C B(y,r)\Y.
In other words, Y contains relatively large “holes” near every point.

Lemma 2.1 ([BHROI, Lemma 3.12)). Let (X, d, H?) be (C,Q)-regular, where HO
is the Q-dimensional Hausdorff measure. A setY C X is p-porous for some p > 1
if and only if dim4(Y) < Q — € for some € > 0. Here, ¢ and p depend only on each
other, Q, and C'.

2.2. Poincaré inequality. Given a locally Lipschitz function u defined on a metric
space (X, d), we say that a function g : X — [0, 00) is an upper gradient of u if

u(e) ~ uly)| < [ g
%
for all x,y € X and all paths vy in X joining = with y.

We say that a metric measure space (X, d, u) supports a (1, p)-Poincaré inequality
(or simply a p-Poincaré inequality) for some 1 < p < oo if there exist A > 1
and C > 1 with the following property: if v : X — R is locally Lipschitz and
g: X — [0,00) is an upper gradient of u, then, for all z € X and r > 0,

1/p
(2.2) 7[ [u — up(z,m|dp < Cdiam(B(x, Ar)) (7[ gP d,u> ,
B(z,r) B(x,\r)
where

]ifdMZﬁA)/Afdu

UB(z,r) = ]{3( ) Udﬂ

It follows from Holder’s inequality that if 1 < p < ¢ and (X, d, ) satisfies a p-
Poincaré inequality, then it satisfies a g-Poincaré inequality. Moreover, if the space
is geodesic and doubling, then one can choose A = 1; see for example [HKSTI5|
Remark 9.1.19]. Henceforth, given a geodesic doubling space X that satisfies the
p-Poincaré inequality, we will assume that A = 1 in and the constant C' will
be called the data of the Poincaré inequality.

For a detailed exposition on the Poincaré inequality on metric measure spaces,
the reader is referred to [HKST15].

and
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2.3. Modulus of curve families. The basic tool in the proof of Theorem [I.2]and
Proposition |1.4]is the notion of the modulus of curves. In a sense, the modulus is
a measurement of “how many” rectifiable curves are contained in a curve family.

Given a family T of rectifiable curves in a metric measure space (X, d, p), we say
that a Borel function p : X — [0, 00) is admissible for I" if

/pdle for all y e T
v

For p > 1, we define the p-modulus of I' by

Mod,(T") := inf {/ pP dp : p is admissible for I‘} .
X

It is well known that Mod,, is an outer measure on the space of all curve families
in X.

The next lemma relates the modulus of curve families with the locally Lipschitz
capacity between compact sets. Given two sets E and F' in a metric space, we say
that a curve y joins E with F' if there are points x € E and y € F such that y joins
x with y.

Lemma 2.2 ([KS0I, Theorem 1.1]). Suppose that (X,d,n) is a geodesic metric
measure space equipped with a doubling measure p and supporting a p-Poincaré
inequality with p > 1, and suppose that ) is a domain in X. Let E, F be disjoint,
compact, non-empty subsets of 2, and let I be the collection of curves in  that
join E with F. Then the p-modulus of T is equal to the p-capacity of E and F:

Mod,(T") = Cap,(E, F) := inf/ 9P du,
Q

where the infimum is taken over all Borel functions g : Q — [0, 00) such that each g

is an upper gradient of some locally Lipschitz function u: Q — R satisfying u|g > 1
and u|p < 0.

3. UNIFORMITY IN METRIC MEASURE SPACES

The goal of this section is the proof of Proposition[1.4] The next lemmas are the
crux of the proof.

Lemma 3.1. Let (X,d,u) be a (C1,Q)-Ahlfors regular geodesic metric measure
space supporting a p-Poincaré inequality with data C, for some C,Cy > 1, and
1<p<Q@Q. Let z,y € X, let r € (0, %d(m,y)), and let T' be the collection of paths
in B(x,2d(x,y)) that connect B(z,r) with B(y,r). Then

B d x, —Qp

Mod, (1) Zpc.c,0 ()@ (22)
Proof. Set D = d(x,y). Let u : B(x,2D) — R be a locally Lipschitz function
satisfying u|g(y,,) > 1 and u|p(y,y < 0. Let also g : B(x,2D) — [0,00) be an
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upper gradient of u. By the p-Poincaré inequality,

/ g" du
B(z,2D)

u(B(x,2D)) . ’
> Crldam(B(r, 2D)u(B (s, 2D)7 (/B(x,zm e = g 20 i )

p
2p0.cr.Q DR / |u — up(z,2p)| dp
B(z,m)UB(y,r)

> DO~ (Lmin{u(Bla, ). u(Bly.)})"

-Qp
_ D
ZP,Cl DQ P () :

r

Denote by T the collection of curves joining B(x,r) with B(y,r). By Lemma

2.2

D

—Qp
Mod, (T) 2p.0.01.0 DO () - O
T

Lemma 3.2. Let (X,d,un) be a (C1,Q)-Ahlfors regular metric measure space, let
R >0, let £ >0, and let T be the collection of paths in B(x, R) that have length at
least ¢R. Then,

Mod,, (T') <¢, £7PROP,

Proof. Note that the function p = (¢R) ' xp(s g is admissible for I'. Therefore
Mod,(T) < / pPdp < C 47 PROP, O
X

Lemma 3.3. Let (X,d,pu) be a (Cy,Q)-Ahlfors regular metric measure space, let
Y C X be a (Cy,«)-homogeneous set, let R > 0, let § > 0, and let T be the
collection of paths in B(x, R) with an endpoint outside of B(Y,25R) and which
intersect B(Y,0R). Then

Modp (F) §Q7cl7c2 s P RQ-P,
Proof. Define the function

= (6R) " 'XB(v.26 R)"B(x,R)

and note that p is admissible for I'. Indeed, if v € T', then the the total length of
the part of v that is inside B(Y,20R) must be at least dR.
If Vis a (6R)-net of Y N B(z, R), then

B(Y,206R) N B (x,R) C | | B(v,36R),
veV

and, by the homogeneity of X, it follows that card(V) <¢, . Therefore

Mod,(T') < / PP du So.0n,0; 897PTORATE. 0
X
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Corollary 3.4. Let (X,d,u) be a (C1,Q)-regular, geodesic metric measure space
supporting a p-Poincaré inequality with 1 < p < Q and data C. Let Y C X be a
(Co, a)-homogeneous set with 0 < a < Q — p. Given z,y € X \'Y, there exists a
path vy : [0,1] = X \'Y such that y(0) =z, y(1) =y,

(1) v([0,1]) € B(x,2d(x,y)),

(2)

. Q
length(Y) $p.c.c,.q d(@,y) max {1’ (ohst?fxfﬁy)> }

(3) for all z in the image of 7y,

dist({z, 3}, Y)) e }

dist(2,Y) Zp.0.0.0.01,00 d(x,y) min {1, ( ()

Proof. Set D := d(z,y) and

r:=tmin{D,dist({z,y},Y)}.

Let I'; be the collection of all curves in B(z,2D) that join B(z,7) to B(y,r). Let
I’y be the collection of all curves in B(z,2D) that have length at least 2D¢. Let I'§
be the collection of all curves in B(z,2D) that intersect a (2D¢)-neighborhood of
Y and have length at least 2DJ.

By Lemma [3.1] Lemma and Lemma [3.3] there exist

D Q T Qgpp—a
t=pceona | and 0 ~p 0,0,0,01,05 (5)

such that

Mod,(T'\ (T; UT%)) > 0.
It follows that I'\ (I'; UT") is non-empty. Fix now y € I'\ (I'; UT) and concatenate
v with geodesic segments [z,v(0)] and [y(1),y]. The resulting curve satisfies the
conclusions of the corollary. O

Proof of Proposition[I.J} By Lemmal[2.I] the regularity of X, and the homogeneity
of Y, there exists pg > 1 such that Y is pp-porous.

Fix now z,y € X \'Y and denote r := d(z,y). There exists z9 € B(z,r) \
(B(z,2 ') U B(y,27'r)) such that

B(z0,27'r/po) C B(z,r) \ (B(x,27'r) U B(y,27'r) UY)
by applying porosity of Y to a ball of radius 27! contained in
B(z,7) \ (B(z,27'r) U B(y, 27 7).
Moreover, for each n € N, there exist points z, € B(z,27"r) \ B(z,2 " !r) and
Z_n € B(y,27"r) \ B(y,27""1r) such that
B(2,,27" Y7 /po) € B(x,27"r) \ (B(z, 27" ) UY)
and
B(z_p, 27" ' /pg) € B(y,27"r)\ (B(y,2 " 'r)UY),

again by applying the porosity of Y to balls in the annuli B(z,27"r)\ B(x,27""!r)
and B(y,27"r) \ B(y,27 " !r).

Applying Corollary [3:4] there exists ¢ > 1 depending only on pg, p, @, C, and
(4 such that, for each n € Z, there exists a path vy, : [0,1] — X \ Y with
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(1) Yn(o) = Zn, Yn(l) = Zn+1,
(2> length(yn) < Cd(znvzn+1) < 23_‘71‘07"’ and
(3) for all t € [0,1], dist(yn(t),Y) > ¢~ 1272y,
Concatenating all the paths {y,, }»ez and adding the points z, y we obtain a path
v:[0,1] = X \ Y. Note that

length(y) = Z length(y,) < Z 2371l e = 24er = 24cd(z, y).
nez nez

Let now z € vy([0,1]). If z is either of z or y, then there is nothing to show.
Otherwise, there exists n € Z such that z is in the image of y,,. Assume as we may
that n > 0. Then

d(z,2) < d(zn,x) +d(zn,2) < (8c+1)27"r < 4¢(8c + 1) dist(z,Y),

which completes the proof. ([

4. BI1-LIPSCHITZ APPROXIMATION OF CURVES

In this section we show how paths in geodesic spaces can be approximated by
bi-Lipschitz arcs with the same endpoints. The main goal will be the proof of
Proposition [T.5]

The next lemma is important in the proof of Theorem [I.2]and is almost identical
to [LW20, Lemma 4.2]. The difference here is the quantitative control on the bi-
Lipschitz constant L.

Lemma 4.1. Given C > 1 and € > 0, there exist L = L(C,e) > 1 with the
following property. Let (X,d) be a C-doubling geodesic metric space and let o :
[0,1] = X be a curve with o(0) # o(1). There exists a curve y : [0,1] = X such

that y(0) = ¢(0), y(1) = (1), for all s,t € [0,1]
s — tldiam ([0, 1)) < d(v(s), ¥(1)) < Lls — t| diam ([0, 1),

and
dist(y(t),o([0,1])) < ediam o ([0, 1]).

The doubling property is not necessary to guarantee the existence of the bi-
Lipschitz map y; see [LW20, Lemma 4.2]. It is, however, necessary to control the
constant L. For example, let X = /5, let ey, es,... be an orthonormal basis of
Uy, and let n € N. Define o : [0,1] — {2 so that o(0) = ey := 0, o(i/n) = ¢;
for i € {1,...,n}, and o[i—1)/n,i/n) is linear for each i € {1,...,n}. Note that
diam o ([0, 1]) = v/2. Tt is easy to see that, if ¢ < 1/6, then for eachi € {1,...,n—1}
the set

B(o([0,1]), V2€) \ B(a(i/n),3v2)
is disconnected. Therefore, if vy is a path in /s joining 0 with e, and satisfying
v([0,1]) € B(o([0,1]), v2€), then ([0, 1]) must intersect each ball B (o(i/n), 3v/2¢)
for i =1,...,n. In particular, the length of 7y is at least a fixed multiple of n, while
[y(0) —v(1)] = 1. It follows that, if v is L-bi-Lipschitz, then L must depend on n
and not just on e.

For the proof of Lemma [{.I] we require a simple lemma. Here and for the rest
of this section, all geodesic curves are parameterized by arc-length.
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Lemma 4.2. Let X be a geodesic metric space, let a > b > 0, let f:[0,a] - X
be L-bi-Lipschitz, let p € X, and suppose f(b) is the closest point in f([0,a]) to p,
i.e.,

¢ :=dist(f([0,a]), p) = d(f(b),p)-
If g : [b,b+4 c] = X is the geodesic from f(b) to p, then the concatenation of flio
and g is (2L)-bi-Lipschitz.

Proof. Let h:[0,b+ c] — X be the concatenation of f|j; and g. Clearly h|jo ) is
L-bi-Lipschitz and h|j p4.¢ is 1-bi-Lipschitz. Fix now s € [0,b] and ¢ € [b, ¢]. Then
d(h(s), h(t)) < d(f(s), f(b)) +d(g(b),g(t)) < L(b—s)+t—b< L(t —s).

For the lower bound, we claim that d(h(¢), h(s)) > d(h(t), h(b)). Indeed, if this
was not the case, then

dist(f([0,6]), p) < d(h(s), h(t)) + d(h(t),p)
< d(h(b), h(t)) + d(h(t),p)
= d(f(b),p)

which is impossible. Similarly, d(h(s),
d(h(s), h(t)) = 5d(h(s), (b)) + 5

We are now ready to show Lemma [41]

Proof of Lemma[/.1. Without loss of generality, assume that diamc([0,1]) = 1.
Since X is doubling, it is (C’, a)-homogeneous for some C’ > 0 and «a > 0.

Fix € > 0. If d(0(0),0(1)) < 2, then we can simply define y to be the geodesic
from ¢(0) to (1) which is 1-bi-Lipschitz. Assume now that d(c(0),0(1)) > 2e.

Let Y C 0([0,1]) be a maximal (e/4)-separated set that contains o(0) and o(1).
Since o ([0, 1]) is connected, there exists a finite sequence of distinct points xq, ..., z,
in Y such that o = ¢(0), x,, = 0(1), and d(x;—1,2;) < /2 for all i € {1,...,n}.
By the homogeneity of X, we have that n < C’(e/4)™¢.

We define a curve vy inductively. Let y; : [0, s1] — X be a geodesic with y1(0) =
0(0) and y1(s1) = z1. Clearly, vy is 1-bi-Lipschitz and for all ¢ € [0, s1]

dist(v1(t),o([0,1]) < length(yy) < €/2.
Suppose that for some k € {1,...,n — 1} we have defined s, > 0 and a 2¢~1-bi-
Lipschitz curve vy : [0, s5] — X parameterized by arc-length, such that v;(0) =
0(0), vk(sk) = =k, and v ([0, sx]) C B(c([0,1]),€¢/2). Let ry € [0, sk] be such that

cr = dist(vx ([0, 5x]), rt1) = d(Yi(Tk), Ths1)-
Define s 41 = 7% +c and let yi41 : [0, sp41] — X be the concatenation of vl
with a geodesic joining yi(rg) to zp+1 € o([0,1]). Note that
d(vr(rr), zre1) < d(@r, vp11) < €/2,
so for each t € [0, sg4+1], we have
dist(ir (1), 0([0, 1)) < e/2.

Moreover, by Lemma the curve yg41 is 2¥-bi-Lipschitz.
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By induction, we have defined a number 0 < s,, < n(e/2) and a 2"~ !-bi-Lipschitz
curve vy, : [0, s,] = X such that v, (0) = 0(0), Yn(sn) = o(1), and

¥n ([0, sn]) C B(a([0,1]), €).
The desired curve 7y : [0,1] — X is the reparameterization y(t) = vn(snt). O

4.1. Proof of Proposition The proof of Proposition [1.5] will rely on the
quantitative version of Theorem see Theorem

We first review some elementary notions from graph theory. A (combinatorial)
graph is a pair G = (V, E) of a finite vertex set V and an edge set E which contains
elements of the form {v,v’'} where v,v’ € V and v # v'. A graph G' = (V',E’) is
a subgraph of G = (V,E)if V' C V, E' C E, and E' C V! x V'. A simple path
joining z,y € V in G is a set v = {vg,...,,v,} C V of distinct points such that
vo =x, vy =y, and {v;_1,v;} € E for alli € {1,...,n}. A graph G is connected if
any two distinct vertices can be joined by a simple path in G.

Lemma 4.3. Given a graph G = (V, E) and two distinct v,v" € V, there exists a
finite sequence (v;)N. in V such that {vy,...,v,} =V, v1 = v, v, =/, for each
ie{l,...,n—1}, we have {v;,v;41} € E, and for each e € E there exists at most
two i € {1,...,n — 1} such that e = {v;,v41}.

Proof. We will use the fact that every connected graph admits a 2-to-1 Euler tour
along its edges, that is, for each vertex z there exists a finite sequence (z;)7L; of
vertices in G such that z1 = z,, = 2, {z;, 241} is an edge for all j, and for each
edge e there exists exactly two j such that e = {z;,2;11}. See for example the
Euler tour technique introduced in [TV&4].

Now let G,v,v" be as in the statement. Deleting some edges from FE, we may
assume that G is a (combinatorial) tree, that is, for any two distinct vertices there
exists unique simple path in G that connects them. Let V = {uvy,..., v} be the
unique such path with v; = v and vy = v'. Foreachi € {1,...,k}, let G, = (V;, E;)
be the maximal subgraph of G with the property that any simple path connecting
a vertex of G; with a vertex of V must contain v;. Since G is connected, it follows
that each G; is connected. Moreover, since G is a tree, for any i # j the graphs G;
and G; are trees with mutually disjoint vertices (and hence edges).

The construction of the finite sequence (v;); is as follows. Firstly, do a 2-to-1
tour of G starting and ending on v;. Then proceed to v and do a 2-to-1 tour of
G starting and ending on ve. Continue in this way until reaching vi where we do
a 2-to-1 tour of Gy, starting and ending on vy. O

Proof of Proposition[1.5 If diam K = 0, then there is nothing to prove. Assume
now that diam K > 0 and, rescaling, we may further assume that diam K = 1.
Let Y be a maximal (e/4)-separated subset of K that contains z and y. By the
regularity of X, the cardinality of Y is at most C’e~© for some C’ > 0 depending
only on the constants of Q-regularity. Define a graph G with vertex set Y such that
two points z, 2’ € G are connected by an edge if and only if d(z,2') < €/2. Since
K is connected, it follows that G is connected. By Lemma there exists a tour
T =yg,...,v, =y of the vertices Y such that each edge is visited at most twice.
For each z € Y, denote by m, the number of indices i such that v; = z. There
exists C”" > 0 depending only on the constants of Q-regularity such that each
vertex of G is contained in at most C” edges. Therefore, for each z € Y, m, <
C" and it follows that n < C”C’e~%. Moreover, there exists ¢ > 4 depending
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only on the constants of Q-regularity such that for each z € Y there exist points
Vzly---sVzm. € B(z,€/16) such that

d(v,i,v, ;) >c 'e, forallz€Y andi# j.

We may also assume that v, 1 =z and vy, = y.
Given ¢ € {0,...,n} let j(¢) be the number of indices I € {0,...,i} such that
vy = v;. Define now 9; = v,, j;)- Note that the new sequence 7y, ..., U, satisfies
(1) Ug =T, Uy =Y,
(2) for each distinct i, j € {0,...,n} we have d(9;,;) > ¢ e,
(3) for each z € K there exists ¢ € {0,...,n} such that d(z, ;) <€/2,
(4) for each i € {0,...,n}, dist(9;, K) < €/16.

Define a map f : {ie : ¢ = 0,...,n} — X by f(ie) = ¥; and note that f
is L'-bi-Lipschitz with L’ = max{nc,2/e}. Indeed, for any distinct ¢, we have
€ < lie — je| < ne and cte < d(f(ie), f(je)) < 1+ 2c e < 2.

By Theorem [6.1] there exists a constant L depending on €, the constants of Q-
regularity, and the data of the Poincaré inequality, and there exists a bi-Lipschitz
arc F : [0,ne] = X that extends f and

dist gy (K, F(]0,ne])) S e.
The arc v : [0,1] — X in question is obtained by reparameterizing F'. (I

5. WHITNEY INTERVALS AND A PRELIMINARY EXTENSION

Here and for the rest of this section we assume that X is a complete geodesic
(C1, Q)-Ahlfors regular metric measure space supporting a p-Poincaré inequality
with data C where p € (1,Q — 1) and C1,C > 1. We also assume that A C R is a
closed set and that f: A — X is an L-bi-Lipschitz embedding.

Let I be the smallest closed interval with A C I (possibly R). We need a
Whitney decomposition of I\ A as in Whitney’s classical proof of his extension
theorem [Whi34]. We may assume that A is not a closed interval itself, as then
there is no extension to be made.

Lemma 5.1 ([Ste70, Theorem VI.1.1,Proposition VI.1.1]). There exists a collection
of closed intervals {Q;}ien such that

(i) UiZy Qi =T\ 4,
(i) the intervals {Q;} have disjoint interiors, and
(i1i) diam Q; < dist(Q;, A) < 4diam Q; for all i € N.
Moreover, if the intervals Q; and Q; share an endpoint, then
(5.1) i diam Q; < diam Q; < 4diam Q;.
Henceforth, the intervals {Q;};en will be called Whitney intervals.

5.1. Reference points. Let E denote the collection of endpoints of {Q;};en. For
each z € F, fix a point a, € A that is a closest point of A to z, that is, | — a,| =
dist(z, A).

Proposition 5.2. There exists £ € (0,1) and L > 1 depending only on L, Cy, and
Q, and there exists an L-bi-Lipschitz map m : E — X such that, for all distinct
T,y € L,

(1) jlo —az| < d(m(2), f(as)) < 4|z — aq



14 JACOB HONEYCUTT, VYRON VELLIS, AND SCOTT ZIMMERMAN

(2) dist(m(z), f(A)) = {|z — az,
(3) d(m(x),7(y)) > & (lz — az| + |y — ayl).
Moreover, if Q; = [z,y], then

(5.2) d(n(z),m(y)) < d(f(az), f(ay)) + 36 diam Q; < 46L diam Q,.

We start with a result that allows us to partition E into a finite number of
subsets such that elements of the same subset are far apart quantitatively. Recall
that by Lemma[2.1] there exists pp > 1 depending only on L, C4, and @ such that
f(A) is po-porous.

Lemma 5.3. There exists n € N depending only on L, Cy, and Q, and there
erists a partition of E into mutually disjoint sets FEn, ..., E, such that for any
i1€{l,...,n} and for any x,y € E;, either

(F1) |z —y| > (12L) max{|z — as|, |y — ay|}, or

(F2) max{|z — a.l, |y — ay|} > (8po) min{|z — az|, [y — ay[}.

Proof. Enumerate F = {x1,z2,...}, and for each i € N, define V; be the set of all
indices j € N such that

2 — ;] < (12L) max{lo; — s, |, 2 — s, |}
and
(8p0) " Hwi — ag,| < |y — ag;| < (8po)li — aq,|.
Note that i € V; if and only if j € V;.
We claim that there exists n € N depending only on L, C7, and @ such that
card(V;) < n for each ¢ € N. To this end, fix i € N and note that for any j, k € V;
with j # k,

(5.3) |zj — k| < (24L0) max{|z; — ag,|, |2k — Az, |, [T — ag, |} < (192poL)|z; — a,

Moreover, let j,k € V; with j # k, and let Q;, and Q;, be the two Whitney
intervals which share the endpoint z; and Qy, and Oy, be the two Whitney intervals
which share the endpoint x;. We have

diSt(le,A) Z ‘IL’j — axj| — diam le Z |ZZ?]‘ — axj\ — diSt(le,A),
80 |7 — a,,| < 2dist(Qy,, A). By Lemma iii),
diam Q;, > 1 dist(Q;,, 4) > §|z; — ag,|,

and a similar estimate holds for Q;,, Q,, and Qg,. Since z; # xj, one of the
intervals for which they are endpoints lies between them. That is,

|z; — zx| > min{diam Q;,, diam Q,,, diam Qy, , diam Qj, }
2 éminﬂxj — g, |, |zk — ag, [}
> (64po) ~'|ai — ag,
Combining this with (5.3), we conclude that card(V;) < 192L(8py)? =: n.
Define now a map ¢ : N — {1,...,n} such that ¢(1) = 1, and for each i > 2,
c(i):==min{f e N: L #c(k) forall k e V;N{1,...,i—1}}.

It is clear that if 4 € V; and ¢ # j then c(i) # c(j). For each i € {1,...,n}, define
E; = {z; : c(j) = i}. Given zj,z, € E;, c(i) = c(j), so j ¢ Vi (equivalently,
k ¢ V;). Properties (F1) and (F2) follow. O
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We now turn to the proof of Proposition [5.2]

Proof of Proposition[5.3 Let n € N and E1,..., E, be the integer and partition,
respectively, from Lemma For each k € {1,...,n}, define E*) = By U---UE}.

Leti € {1,...,n}, z € E;, and ' € IB(f(az), | —a,|). By the porosity of f(A)
there exists a point £ € X such that

B(z, (2po) |z — as|) € B (2, 5l2 — au]) \ f(A).

Then

(5.4) Y — ay < d(# f(a2)) < 3o — aal
and

(5.5) dist(z, f(A)) > (2p0) |z — az-

For any i € {1,...,n}, and for any z,y € E;, we will show that
(5.6) d(#,9) > (8po) " |z — az| + |y — ay) -

Fix such ¢, z, and y, and assume without loss of generality that |z —az| > |y — a,].
If (F1) holds, then by (5.4),

d(2,9) = d(f(az), f(ay)) = d(f(az), 2) — d(f(ay),y)
> L7 ag — ay| — 5 (| — as| + |y — ayl)
> L7 o —y| = 6l — aq
> 6|l — ay
2 3|z — az] + [y — ay)).
Assume now that (F2) holds and (F1) fails. By and (5.5),

d(z,9) = d(z, f(ay)) — d(f(ay),y)
> (2po) e — az| — 31y — ay
> (8p0) "M (o — as| + |y — ay)).
We define the map 7 on each E(*) in an inductive manner. Define 7 : By — X

by m(x) = &. Properties (1)—(3) of the proposition for F; follow from (5.4)), (5.5),
and (5.6) with & = (8po)~*.

Assume now that for some k € {1,...,n — 1} we have defined a constant &, €
(0,1) and a function 7 : E®) — X such that for all distinct x,y € E®*),

(5.7) il —aq| < d(n(2), far)) < 4l — a,l,
(5.8) dist(m(z), f(A)) = (4po) "o — aql,
and
(5.9) d(m(z),7(y)) 2 &k(lz — az| + [y — ayl).
Fix # € Ey11, and assume that there exist yi,...,yn € E® such that

(5.10) d(z,m(y;)) < (8p0) (|2 — aa| + ly; — ay,])
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for each j € {1,..., N}. First, for each such j, by (5.7), (5.5)), and (5.10),

lyj — ay;| = 3d(m(y)), f(%))
> 1 (d(z, f(ay,)) — d(z,7(y;)))
Z%( 1|x_aw‘_(8p0) 1(|x_al’|+|yj_ayj|))'
This gives
(5.11) 195 — 0y, | > (12p0) "z — a .
Next, for any j,£ € {1,...,N}, (5.9) and (5.11) yield
(5.12) Ar(y), 7)) > (12p0) el — s,

50 {m(y1), -, 7(yn)} is & ((12p0) L&kl — a,])-separated set. By (54), (5:5), and
(-10), for any j € {1,..., N},

|z — az| > 3d(%, f(az))
> 2 (d(n(y;), flaz)) — d(Z,7(y;)))
> (6p0) " y; — ay, | — (12p0) " (|2 — ax| + |y; — ay, [).

V

Therefore,
(5.13) ly; — ay,| < 24po|z — a,|.

By Ahlfors regularity, (]5 10)), (5.13), and (5.12)), we obtain N <r. ;.0 fk .

By Lemma[2.1] {m(y1), 7(yn)} is pr-porous for some p, > 1 depending only
on C1, @, L, and k. Hence, there exists a point 7(x) € B(Z, (32pg) |z — a,|) such
that

(5.14) B(m(x), (32p0pk)*1|x —ag|) C X\ {n(y1),...,7(yn)}

To complete the inductive step, we show that 7 defined on E**1) satisfies prop-
erties (1)—(3) of the proposition for some appropriate &+1 € (0,1).
For the first property, fix ¢ € Ex41. By (5.4),

d(7(x), f(az)) < d(r(2), ) + d(f(az), 7) < 2Jx — aq|

and
d(r (@), f(a2) = d(f(a,), &) — d(n(2),7) = Lz — a,].
For the second property, fix € Ex41. By (5.5)
dist(m(z), f(A)) > dist(Z, f(A)) — d(n(x), &) > (4po) " |z — am.
For the third property, fix distinct z,y € F**+1 and assume that = € Eryq. If
Y€ Ek‘-‘rlv then by "

d(n(x),7(y)) > d(&,9) — d(n(x), ) — d(7(y),§) = (16p0) " (|2 — az| + |y — ay|).
Assume now that y € E®)_ If
d(z,9) = (8p0) ™" (| — az| + |y — ay|),
then we work as in the preceding case. If
d(,5) < 8po) ™" (lz — az| + |y — ay 1),
then by (5-13) and (5.14),

d(r (), 7(y)) > (32popr) ™ |z — ax| > (2°3pgpr) ™" (|2 — x| + |y — ay ).
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After n steps, we have defined £ := &, and the map 7 : E — X that satisfies
properties (1)—(3) in the statement of the lemma.

To show that 7 is bi-Lipschitz, fix distinct x,y € E and assume without loss of
generality that |z — a,| > |y — ay|. By Lemma iii), | — az| < 4|z — y|. By
property (3),

d(m(z),w(y)) < d(r(z), f(az)) + d(f(az), f(ay)) + d(x(y), f(ay))

<Az — ag| + Llag — ay| + 4|y — ay|

<A4l1L|z —y|.
For the lower bound, suppose first that |a; — ay| > 16L|x — az|. Then, |z —y| <
2|az — ay| and by property (1)
d(n(x),m(y)) > d(f(as), f(ay)) = d(n(2), f(az)) = d(n(y), f(ay)) > (2L) " |a — ay|-
Suppose now that |a; — a,| < 16L|x — ay|. Then, |z —y| < (2+ 16L)|z — a,| and
by property (3), d(r(x), 7(y)) > |z — a,|.

For , fix a Whitney interval Q; = [z, y] and assume, without loss of gener-
ality, that | — agz| < |y — ay|. There are two cases to consider. Assume first that

az = ay. By property (1),
d(m(x),7(y)) < 4|z —ay| + 4|y — az| < 8|z — az| + 4diam Q; < 36diam Q;.
Assume now that a, # a,. Then
ly—ayl <y —as| < |z —y|+ |z —az| < 5diam Q;
which yields that |a; — a,| < 11diam Q;. By property (1),
dm(@), 7(y)) < o — ax] + d(f (), f(ay)) + 4y — ay)

< d(f(as), f(ay)) + 40 diam Q;

< L|ay — ay| + 40 diam Q;

< 51Ldiam 9;. O
5.2. The middle third of each Whitney interval. The goal of this subsection
is to extend f to the union of the middle-thirds of all Whitney intervals {Q;};en
in a bi-Lipschitz way. From here on, for each Whitney interval Q;, we denote by

O, the middle third interval of Q;. Recall the constants ¢ € (0,1) and L from
Proposition [5.2] depending only on L, C1, and Q.

Proposition 5.4. There exists a constant L>1 depending only on p, C, C1, L,
and ), and there exists an L-bi-Lipschitz extension of f
g: AU U QAI — X
ieN
such that for each i € N, if Q; = [w, 2], and 9, = [w, 2], then
(1) d(g(), m(w)) < (2°L) "¢ diam Q;,
(2) d(g(2),7(2)) < (28L)~'¢ diam Q;, and

(3) 9(Q;) C B(m(w),4R;) N B (7(z),4R;), where R; = d(m(w), 7(2)).
Recall that, since f is bi-Lipschitz, the set f(A) is 1-homogeneous in X.

Lemma 5.5. There exist constants By, lo,do > 0 depending only on p, C, Cy, L,
and Q with the following property. Let Q; = [w, z] be a Whitney interval and T'; be
the collection of curvesy :[0,1] = X such that
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(1) v([0,1]) C B(w(w),3R;) N B(n(2),3R;) where R; = d(m(w),7(2)),
(2) max{d(y(0), m(w)),d(y(1),7(2))} < (2°L)~ ' diam Q;,
(3) length(y) < £y diam Q;,
(4) dist(y(t), f(A)) > o diam Q; for all t € [0,1].
Then,
MOdp(Fi) > ,Bo(diam Qi)Q_p
Proof. Since B(mw(w),2R;) C B(n(w),3R;) N B(n(2),3R;), we may apply Lemma
Proposition 3), and (5.2) to conclude that the family I‘El) of curves
v :[0,1] = B(w(w),3R;) N B(w(z),3R;)
such that y(0) lies in the closed ball B(r(w), (28L) "¢ diam Q;) and (1) lies in the
closed ball B(r(z), (28L)~'¢ diam Q;) has p-modulus
Mod,,(T'") > a(diam Q;)? 7
where o > 0 is some constant depending only on p, C, C1, @, and L.

By Lemma [3.2] there exists £y > 0 depending only on p, C, C1, @, and L such
that the subfamily

= {y eV length(y) < to diam Q; }

satisfies

Mod,, (T 2)) > La(diam Q; y@-p,
By Lemma[3.3] there exists §y > 0 depending only on @, p, C, C, and L such that
the subfamily

T, :— {y e TP - dist(y(t), f(A)) > do diam Q; for each € [0, 1]},

satisfies

Mod,(T;) > ta(diam Q;)9 7. O

We now need a filtration of the Whitney decomposition, in the vein of the fol-
lowing result of David and Semmes. The proof of the lemma is almost identical to
that of Lemma [E.3] and is left to the reader.

Lemma 5.6 ([DS91, Proposition 17.4]). There exists an integer N depending only
on L, C1, and Q, and there exists a partition of N into sets {41,..., N} such that
forany k € {1,...,N} and for any i,j € %, either

(i) dist(Q;, Q;) > 800L? max{diam Q;, diam Q;}, or

(ii) max{diam Q;,diam Q;} > 800LJ, ! min{diam Q;, diam Q;}.

We are now ready to prove Proposition

Proof of Proposition[5.4} The construction is in an inductive fashion. Let N and
S, ..., 9N be the integer and sets of indices from Lemma Denote Ag := A
and for each k € {1,..., N} denote

k
Ak::AOUU U Qi~

j=1i€.9;

For each k € {0,...,N}, we find some Ly > 1 depending only on p, C, Ci,
L, @, and k, and we find an Lg-bi-Lipschitz embedding f, : A — X such that
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for all k € {1,...,N}, fxla,_, = fr—1 and such that, if i € 7, Q; = [w, 2], and
Q; = [, 2], then

(a) d(fr(@),m(w)) < (25L) "€ diam Q;,

(b) d(fi(2),7(2)) < (2°L) "¢ diam Q,

(c) fx(Qs) C B (n(w),4R;) N B (n(2),4R;) where R; = d(n(w), 7(2)).
The map g of Proposition [5.4] will then be the map fy.

For k =0, set Lo = L and fo = f. Properties (a)—(c) are vacuous.

Assume now that for some k € {0,..., N — 1}, there exists a constant Ly and
an Lj-bi-Lipschitz map f : Ar — X satisfying (a)—(c).

Fix i € S, and write Q; = [w, z] and Q; = [, 2]. Recall the family of curves
I'; from Lemma By Lemma there exists 041 € (0,&) depending only on
Q, p, C, C1, L, and k (in particular on the homogeneity constant of f(Ay)) such
that the subfamily

Ui o= {y e Ty : dist(y(t), fu(Ar)) > Op41 diam Q; for each ¢ € [0,1]},
satisfies
Mod,( ;”) > %Bo(diam Q)P > 0.
In particular, T ; is nonempty, so we can pick a curve o; € T' ;. Applying

Lemma, to o; with a suitable reparameterization, we find a constant Lj_ , de-
pending only on @, p, C, C1, L, and k, and we find an Lj_ ,-bi-Lipschitz curve

vi : Q; = X such that v; () = 0,(0), vi(2) = 0:(1), and inductive hypothesis (c)
for fi gives
(5.15)  vi(Qi) C B (0:([0,1]), 16511 diam Q)
C B(m(w),3R; + 30141 diam Q;) N B(w(2), 3R; + $0k11 diam Q;)
C B(w(w),4R;) N B(w(z),4R;).

In particular, we have that dist(yi(Qi), fu(Ag)) > L6441 diam Q;.

Define now fx41 : Ags1 — X by setting fri1|Ar = fr and fk+1|Qi = v, for
each i € F11. By (5.2) we have for all i € F

Clearly, fri1|Ar = fix. Properties (a)—(c) are clear from the design of fi,1 and
Lemma To complete the inductive step, we claim that fi1 is Li41-bi-Lipschitz
for some Li11 > 1 depending only on @, p, C, C1, L, and k. Fix z,y € Ax41.

Firstly, if x,y € Ay, then the claim follows by the fact that fii1|Ar = fr and
the inductive hypothesis that fx is Lx-bi-Lipschitz.

Secondly, assume that z € Q; for some i € Fr+1 and y € A. Let w be the
endpoint of Q; closest to A, let @ be the endpoint of 0, between z and w, and

note that |w — z| < |z — ay| < |z — y|. By (5.16), Proposition [5.2[1), the fact
diam Q; < |w — ay|, and properties (a), (b) for fri1.
d(frr1(x), fe+1(y))
< (1@, fisr (9)) + d(ficra (), 7)) + dr(w), Flaw)) +d(f (@), F(3)
< (414L + 5)|w — ayw| + L|aw — y|
< (414L + 5)|x — ay| + L|ay — y
< (416L + 5)|x — y|.
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For the lower bound, we have by Lemma [5.5(4) and the design of y;
d(frs1(2), frs1(y)) = dist(fes1(2), f(A)) > £ diam Q; > £do|w — aw|,
and, by , property (¢) for fry1, and Proposition 2)
d(frr1(2), f(aw)) < d(frr1(2), frg1(@)) + d(frra (@), m(w)) + d(f (aw), T(w))
< 414L diam Q; + (28L) "¢ diam Q; + 4w — ay|
< 419L|w — ay)-
Therefore, since |z — a,| < 2Jw — ay|,
|z =yl < |z — aw| +[aw -yl
< 2w — aw| + LId(f(aw), fer1 () + d(fer1(2), £(y))]
< 19L2w — ay| + Ld( e (@), F())
< 3352L%00 M d(fri1(x), fri1(y))

Thirdly, assume that = € Qi andy € Qj, for some i,j € A U---UI4q1. Assume
that diam Q; > diam Q;. For the upper bound, note that

(5.17) |z —y| > dist(Q;, Q;) > diam Q; + diam Q; = & (diam Q; + diam Q).

Let a; be the closest point of A to Q;, let a; be the closest point of A to Q;, let
e; be the endpoint of Q; that lies between x and a;, and let e; be the endpoint of

Q; that lies between y and a;. By Proposition 1), (5.15)), (5.2), Lemma iii),
and (5.17)),

A(frr1(2), frs1(y)) < d(frqr(2),7(es)) + d(m(es), f(ai)) + d(f(ai), f(a;))
+d(f(a;),m(e5)) + d(m(e;), frr1(y))
< (16 + 184L)(diam Q; + diam Q;) + L|a; — a;|
< (16 + 189L)(diam Q; + diam Q;) + L|z — y|
< 616L|z — y

since |z — a;| < diam Q; + |e; — a;| < 5diam Q; and, similarly, |y — a;| < 5diam Q;.
For the lower bound, there are two cases to consider.
Case 1: dist(Q;, Q;) > 800L%diam Q;. By Proposition 1), (5.15), and
Lemma iii),

d(fe+1(2), fer1(y)) = d(f(as), flaz)) — d(f(ai), 7(e;)) — d(m(ei), frrr(x))
— d(f(aj),7(e;)) — d(n(e;), fis1(y))

> L™ Ya; — a;| — (184L + 16)(diam Q; + diam Q;)
> L2 —y| — L7 (Jo — ai| + |a; — y|) — 400L diam Q;
> LYo —y| — (10L~" + 400L) diam Q;
> L7z — y| — 410L(800L?) ! dist(Q;, Q;)
> (L) a —yl.

Case 2: dist(Q;, Q;) < 800L? diam Q;. In this case, we have

|z — y| < diam Q; + dist(Q;, Q;) + diam Q; < 802L* diam Q;.

Case 2 splits now into two subcases.
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Case 2.1: i € Fpy1 and j € A U---UI. According to the line following (5.15)),
d(fes1(2), frr1(y)) = d(fria (@), fr(Ar)) > §0k11 diam Q,
> 6341 (1604L2) 7z — y).

Case 2.2: i,j € Sy41. By Lemmawe have that diam Q; > 800L60_1 diam Q;.
By Lemma 4), the design of y;, Proposition 1), and (5.15),

A(frs1(2), frsr1(y)) > dist(fer1(Q0), fra1(y))
> dist(fr+1(Ds), flaj)) — d(r(e;), flaj)) — d(m(e;), fre1(y))

> 10o diam Q; — (16 + 184L) diam Q;
Z i(SO diam Ql
> 160(802L%) "z — y|. O

6. PROOF OF THEOREM

In this section, we will give the proof of the following quantitative version of
Theorem 2

Theorem 6.1. Given C,C; >0, Q > 2, p€ (1,Q — 1), and L > 1, there exists
L' > 1 with the following property.

Let (X, d, p) be a complete geodesic (C1,Q)-Ahlfors reqular metric measure space
supporting a p-Poincaré inequality with data C. Let A C R be a closed set, let T
be the smallest closed interval of R containing A, and let f : A — X be an L-bi-
Lipschitz embedding. Then there exists an L'-bi-Lipschitz extension F : I — X of
f-

Moreover, if (x,y) is a component of I \ A, then

(6.1) diam F([z, y]) < 75 max{|z — yl, d(f(x), f(y))}.

The remainder of this section is devoted to the proof of this theorem. Let {Q;}ien
be the Whitney decomposition of I \ A from Lemma and let

d=aulo.
ieN
Recall that Q; denotes the middle third of the Whitney interval Q; and that E
denotes the set of endpoints of Whitney intervals {Q;}ien.
There is a map 7 : E — X satisfying the properties of Proposition[5.2] and there
exist a constant L > 1 depending only on C', C1, @, p, and L, and there exists an
i—bi—Lipschitz extension

g: A X
of f satisfying the properties outlined in Proposition In particular, if (z,y) is
a component of I\ 4, if Q; C (z,y), and if x is the closest point of A to Q;, then

by (2) and (E13).

(6.2) max d(f(x),9(z)) < 2d(f(x), f(y)) + 73 diam Q;.

We introduce several pieces of notation. Given z € E, we denote by L, (resp.
R.) the Whitney interval for which z is the right (resp. left) endpoint. As above,
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L, and R, are the middle thirds of intervals £, and R.. By (5.1), for any z € E
we have
idiam £, < diam R, < 4diam £,.

Further, for any x € E we write

L, =[zp,x], L, = [Tl 72] Rz = [z, xR], R, = [T;Z’,r;‘].

T 'x

’C.’IJ R.’L‘
LT, Ti x Ti i TR
® ® ® ) ® ® ®
L. R
FIGURE 1.

Since g is I:—bi—LipschitzA7 there exists Co > 0 depending only on C, Cy, @, p,
and L such that the set g(A) (and each of its subsets) is (Cs, 1)-homogeneous.

6.1. Local modifications around points in E. We divide F into two sets E’
and E” such that for any two points in E’ there exists a point in E” between them
and vice-versa. That is, for any x € E’ we have x,rg € E”, and for any x € E”
we have zy,rp € F'.

We perform local modifications around points in F starting with points in E’.

6.1.1. Local modifications around points in E'. Fix a point z € E’. By the (Cq,1)-

homogeneity of g(A\ (£, UR,)), by Corollary and Proposition 1,2), there

exists a constant C’ > 1 depending only on C, C1, @, p, L, and there exists a curve
» : [0,1] — X such that

(1) 02(0) = g(12), o (1) =g(r, ),
(2) 0.([0,1]) € B(g(72),2d(g(72), g(72))), so for each t € [0,1]

d(os(t), m(x)) < 2d(g(77), (7)) + d(g(73), ()
< 5(28L) "¢ max{diam L, diam R, }

(3) length(c,) < €' max{diam £, diam R, }
(4) dist(04([0,1]),9(A\ (£ UR,))) > (C")~' min{diam £, diam R, }.
By Lemma [£.1] there exists L* > 1 depending only on C, C1, @, p, and L, and
there exists an L*-bi-Lipschitz map

Yo: |2, 73] = B ( (), 6(28i)_1§max{diam£$,diam’Rw})
such that v, (73) = 04(0) = g(72), v«(73) = 0.(1) = g(73), and for all t € [77, 7],
dist (v, (t), 0.([0,1])) < (21 C'L) "¢ max{diam £, diam R, }.
In particular,
(6.3) dist ( (72, 73), g(A\ (L. UR ))) > (20")~! max{diam £,, diam R, }.
Set € = (2°9LLL*C")~2¢. Define
£ = min{t € [r2,72] : dist(g(t), V. ([r2, 7)) = e(diam £, + diam R}
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and
t2 = max{t € [72, 73] : d(g(t}),v.(t)) = e(diam £, 4+ diam R)}.
By (5.1] , Proposition (3), and Proposition 1,2),
d(g(73),9(3)) = d(m(xr), w(2)) — d(n(x1), g(7;)) — d(x(2), g(77)) > 3& diam Ly,
so we have that
(6.4) d(g(t3), 9(72))
>d(g(ry),9(r2)) = max_d(y.(t),9(72)) — dist(g(t3), v ([72,72]))

te[r2,72]

1¢diam £, — m[a)i] d(o(t),9(72))

— (2" C'L) ¢ max{diam £, diam R, } — e(diam £, + diam R,)
> (36 —27°¢ —279¢ — 5¢) diam £,
> ifdiam Lo

and

(6.5) d(g(ty),9(72)) > dist(g(t,), v ([77, 73])) = e(diam £, + diam R,).
Moreover,

d(ya(t2),¥a(72)) = dist(g(r), g([rz, 72])) — dist(ve (£2), ([, 721)
> %IA/ (diam £, + diam R ;) — e(diam £, + diam R )
> if/ '(diam £, + diam R,,).

Define now

th =max{t € [72, 73] : d(g9(t), v ([72,73])) = e(diam L, + diam R,)}
and
t3 =min{t € [t2,73] : d(y.(t), g(t})) = e(diam £, + diam R,)}.

xy 7_}r 7 x 7’2 ’i’i TR
® & 000 ® —0—0 -0 L]
4 1 2 3 4 1
th ty t; t, t, t.r

FIGURE 2.

As in , we have that
(6.:6) d(9(t3), (7)) = 3¢ diam R,
and
d(g(t2), g(m3)) > e(diam L, + diam R,).
Moreover, if t € [72, 73] satisfies d(v.(t), g(t2)) = e(diam £, + diam R,), then
«(t

A1) 2 i ). 72) 2 £+ o )
(% — 2¢)(diam £, + diamR)
%I: (diam £, + diam R,).

v

Vv
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Therefore, t2 is well defined and
(6.7) t3 — 2 > (4LL*)"Y(diam £, + diam R,,).
6.1.2. Local modifications amund pomts in BE”. Fix x € E”. We proceed to define

Y. and points 1, ... % asin § The only difference is that we take into account
the modifications done for pomts in xp,xr € E’. In particular, we define

to =min{t € [t; ,72] : dist(g(t), V. ([r2,72])) = e(diam £, + diam R,)}

t2 =max{t € [72, 73] : d(g(t}),v+(t)) = e(diam L, + diamR,)}

(137 (12'

t4 = max{t € [r3,£] 1:d(g(t),v.([72,7])) = e(diam £, + diam R,)}

3 =min{t € [t2,73] : d(y.(t), 9(t})) = e(diam £, + diam R,)}.

Equations (6.4)), (6.6), (6.7) are still valid for z € E” as well.
Furthermore, suppose that x < y are consecutive points in F; that is, z = y,

(or equivalently y = xg). Then,
(6.8) dlg(tz), g(t,))
> d(m(x), () — d(r(2), g(t1) — d(x(y), g(t}))
> ¢ diam £, — e(diam £, + diam R,,) — 6(28L)~*¢(diam £, 4 diam R,,)
— e(diam £, + diam R,) — 6(2°L)~'¢(diam £, + diam R,)
(& — 10e — 60(28L)~1¢) diam £,
1¢diam £,

\/I\/

6.2. Definition of the extension F' and proof of Theorem Set
A=A\ )

zelE
Define the map F': I — X so that

(1) FIA=g|4

(2) for each z € E, F|[t2,t3] = v,|[t2,£3],

(3) for each x € E, F|[tL,2] is the geodesic from g(tl) to v, (t2) of constant
speed,

(4) for each z € E, F|[t3,t1] is the geodesic from v, (t3) to g(t1) of constant
speed.

Clearly, F' is an extension of f. In view of (6.2]), the following proposition
completes the proof of Theorem

Proposition 6.1. The map F is an L'-bi-Lipschitz embedding for some L' > 1
depending only on C, C1, Q, p, and L.
Proof. Fix s,t € I with s < t. We may assume that one of s, ¢ is in [t}, #2] for some
x € F, since, otherwise F' = g, which is f/—bi—Lipschitz. Assume without loss of
generality that ¢ € [tL,#1] for some x € E. The proof is a case study.

Case 1. Assume that s € [t1,¢1]. There are a few subcases to consider.

Case 1.1. Assume that s,t € [tL,¢2] or s,t € [t3,¢1]. Without loss of generality,
assume the former. In thls case, F(s) and F(t) lie on a geodesic of unit speed

joining g(t}) and v, (t2), and by (6.5),
L7 te(diam £, 4 diam R,) < [t} — 72| < |t} — 2| < diam £, + diam R,
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SO

AF().FO) _ o) ve) _ .
s - e bk

Case 1.2. Assume that s,t € [t2,¢3]. Here F|[t2,t3] = v,[[t2,¢3], and v, is
L*-bi-Lipschitz.
Case 1.3. Assume that s € [t1,#2] and t € [t2,#3] or s € [t2,¢3] and t € [t3,¢1].

T rx T Yx T x T x

Without loss of generality, we assume the former. Then F(s) lies on a geodesic of
unit speed joining g(t1) and v, (¢2), and F(t) = y.(t). Sincey,(¢2) is a closest point
of v ([t2,3]) to g(tl), Lemmaimplies that the gluing F([tL,3]) = g([tL,£2]) U

v ([t2,t3]) is bi-Lipschitz with a constant depending only on that of y,,, which itself
depends only on C, C4, @, p, and L.

Case 1.4. Assume that s € [t},#2] and t € [t3,¢1]. By (6.7),

(ALL*)~(diam £, + diam R,) < [t2 — 3| < |s — t| < diam £, + diam R,..

On one hand, using the fact that F(s) and F(¢2), and F(t3) and F(t) lie on unit
speed geodesics joining g(tL) to v, (t2) and v, (t3) to g(t1) respectively and

d(F(s), F(t)) < d(F(s), F(t3)) + d(v.(t2), v2(t3)) + d(F(t3), F(1))
<d(g(ty), va(£2)) + d(va(t3), v2 (£)) + d(v2(13), 9(3))
< (26 +12(28L)~1¢)(diam £, 4 diam R,).

On the other hand, arguing similarly gives
d(F(s), F(t)) > d(va(t3), v2(t3)) — d(F(s), F(t3)) — d(F(t), F(t3))
> (L) Ht2 — 3| — 2¢(diam £, + diam R,)
> ((4L(L*)?) ™! — 2¢)(diam £, + diam R,,)
> (8L(L*)?)~!(diam £, + diam R,).
Case 2. Assume that s € [t;, t;] for some y € E with y < z. First, using (6.8),
(10L)~'¢(diam Ry, + diam £,) < [tg — 1] < |s —¢.
As with Case 1.4,
d(F(s), F(t,)) < d(E(ty), F(t;)) + d(vy(t;), vy(t})) + d(E(t;), F(t,))
< (26 +12(28L)71¢)(diam £, + diam R,
and similarly
d(F(tL), F(t)) < (2¢ +12(28L)71¢)(diam £, 4 diam R,,).
Thus
d(F(s), F(t)) < d(F(s), F(ty)) + d(g(t,). g(t;)) + d(F(t;), F(t))
< 5(2¢ + 1)(diam R, + diam £,) + L[ty — t}|
< BILETY(2e +1)|s — t].
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For the lower bound, if y = 2, then |s —t| < 9|z — y| and gives
d(F(s), F(1)) > d(g(t,), g(t3)) — d(F(s), F(ty)) — d(F(t3), F(t))
> lediam £, — 10(2¢ + 12(28L) ~'¢) diam £,
%f diam L,
s —t.

A\VARLYS

|
450
If inStead y < Iy 5 ‘hen

d(F(s), F(t)) = d(n(x), 7 (y)) — d(w(y), F(s)) — d(m(x), F(¢))

> LYo —y| — 5(12(25L) ¢ + 2¢)(diam R, + diam L)
> (L7 —10(12(2%L) 71 + 2¢))|z — y|
> (18L) s —t].

Case 3. Assume that s € A. Then, y € [t*
subcases to consider.

Case 3.1. Assume that y = x. There are further subcases here.

Case 3.1.1 Assume that t € [t} ¢2]. As in Case 1.3, g(t1) is a closest point of
g([t3, . tL]) to va(t2), so Lemmatells us that F([t3,,tL]) is bi-Lipschitz with a
constant depending only on C, C, @, p, and L.

Case 3.1.2. Assume that t € [t2,t3]. By .,

gL y] for some y € E. There are two

eL ' (diam £, + diam R,) < |t} — 72| < |s — t| < diam £, + diam R,,,
so our desired bounds come from
d(F(s), F(t)) > dist(g ([ (o z]) yx([ti,ti])) = ¢(diam £, + diam R)

and
d(F(s), F(t)) < diam g(Ly) + diam v, ([r2, 73])
< (L +12(28L)7'¢)(diam £, + diam R,,).
Case 3.1.3. Assume that ¢ € [t3,t1]. By (6.7),
(4LL*)~(diam £, + diam R,) < [t2 — 3| < |t — s| < diam £, + diam R,
Now on one hand,
d(F(s), F(t)) < diam g(£,) + diam y,([r7, 77]) + diam g(R,)
< (L +12(28L)t¢)(diam L, + diam R,,).
On the other hand,
d(F(s), F(t)) = dist(g (E ),9(tz)) — diam F([t;,13])
> ((38L)~! — €)(diam £, + diam R,).
Case 3.2. Assume that y < . Then

37! (diam R, + diam £,) < |Ty2 — T < s~
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As in Case 2, we have
d(F(s), F(t)) < d(g(s),9(t,)) + d(g(ty), g(t;)) + d(F(t;), F(t))

< Ls—ty| + LIt} — th] + (2¢ + 12(2°L) 7' ¢)(diam £, + diam R,,)
<3(L+L* +2+1)|s — .

For the lower bound, set M := (2¢ + 6(28L)'¢). If |s — t| < M diam L., then the
desired bound is a result of the following application of (6.3):

A(F(s), F(1)) = dist (F(t5,2)), 9(A\ (£, UR,)))
> ((2C")7! — 4¢) max{diam £, diam R}
> (16C")~* diam L,

If |s — t| > M diam L, then
d(F(s), F(t)) > d(g(s), g(t,)) — d(F(t;), F(t))

> L7's — ty] — diam F([t},, t3])

L L7 s —t| — (2e + 6(2°L)'¢)(diam £, + diam R)
LL7Ys —t| — 5(2e + 6(2°L) " '¢) diam £,

L7 s — 1. O

AVARNAY]

v

6.3. The unbounded case. Assuming that X is unbounded, one can replace I in
Theorem by R. The difference here is that we consider a Whitney decomposition
of R\ A. The unboundedness of X guarantees the existence of function 7 : £ — X
as in Proposition [5.2] The rest of the proof is verbatim.
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