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Parametrizability of infinitely generated attractors

Eve Shaw and Vyron Vellis

Abstract. An infinite iterated function system (IIFS) is a countable collection of contraction

maps on a compact metric space. In this paper we study the conditions under which the attractor

of such a system admits a parameterization by a continuous or Hölder continuous map of the unit

interval.

Äärettömästi viritettyjen kiintojoukkojen parametrisoituvuus

Tiivistelmä. Ääretön iteroitu funktiojärjestelmä on kompaktin metrisen avaruuden kutistus-

kuvausten numeroituva kokoelma. Tässä työssä tutkimme riittäviä ehtoja sille, että tällaisen jär-

jestelmän kiintojoukko voidaan parametrisoida yksikkövälin jatkuvalla tai Hölderin-jatkuvalla ku-

vauksella.

1. Introduction

Iterated function systems are among the most standard and canonical methods
in mathematics of producing fractal sets. An iterated function system (abbv. IFS) is
a finite collection F of contraction maps on a complete metric space X. Hutchinson
[Hut81] showed that for each IFS F , there exists a unique nonempty compact set
K ⊂ X (called the attractor of F) such that K =

⋃

φ∈F φ(K). The similarity

dimension of an IFS F is the unique solution to the equation

(1.1) ψF(t) :=
∑

φ∈F

Lip(φ)t = 1

where Lip(φ) denotes the infimum of all L > 0 for which φ is L-Lipschitz. Here and
for the rest of the paper we only consider nondegenerate proper contractions, that
is, we always assume that Lip(φ) ∈ (0, 1).

The connection between the similarity dimension of an IFS F and the Hausdorff
dimension of its attractor K was established by Hutchinson [Hut81] who showed that
if F is an IFS of similarities on Rn satisfying the open set condition, then dimH(K) =
s-dim(F). Recall that a similarity in Rn is the composition of a dilation and an
isometry. An IFS F on Rn satisfies the open set condition (abbv. OSC) if there exists
a nonempty open set U ⊂ Rn such that φ(U) ⊂ U for all φ ∈ F , and φ(U)∩φ′(U) = ∅
for all distinct φ, φ′ ∈ F . Many well known fractals (such as the standard Cantor
set, the Sierpiński carpet, the von Koch snowflake, etc.) are attractors of IFS of
similarities on the plane with the OSC. See also [Sch94, Sch96, FF15, FHOR15] for
the necessity of the OSC.

A natural question in the theory of Dynamical Systems is the regularity of an IFS
attractor and whether it admits “good” parameterizations by the unit interval. Hata
[Hat85] showed that if the attractor K of an IFS is connected, then it is the image
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of a curve, that is, the image of [0, 1] under a continuous map. The second named
author and Badger [BV21] improved Hata’s result by proving that if the attractor K
of an IFS F is connected, then it is the image of [0, 1] under a 1

α
-Hölder continuous

map for any α > s-dim(F). Under the extra assumptions that X = Rn and that F is
an IFS of similarities on Rn satisfying the OSC, Remes [Rem98] showed earlier that
the attractor is the image of [0, 1] under a 1

α
-Hölder continuous map where one can

actually have α = s-dim(F). Remes’ result is sharp in that there exists no 1
α
-Hölder

parameterization if α < s-dim(F). The assumption X = Rn in Remes’ theorem can
be replaced by the assumption Hs-dim(F)(K) > 0 [BV21]. Here and for the rest of the
paper Hα denotes the Hausdorff α-dimensional measure.

In their celebrated paper, Mauldin and Urbański [MU96] (see also [Mau95]) fur-
ther extended Hutchinson’s theory and introduced the notion of an infinite iterated

function system (abbv. IIFS); i.e., an infinite countable collection of contractions
on a compact metric space X. Ever since their introduction, IIFSs have played
a major role in fractal geometry, geometric group theory, and number theory; see
[MU99, HU02, MU02, UZ02, KZ06, MSU09, JR12, SW15, RGU16, BF23] and the
references therein.

Here, unlike in most literature, we do not assume that contractions are conformal
or even injective. Given an IIFS F = {φi : i ∈ N} on a compact metric space X, we
define the attractor of F by

K =
⋃

(in)⊂N

∞
⋂

n=1

φi1 ◦ · · · ◦ φin(X).

The attractor K in the infinite setting may not be compact. Moreover, although
K =

⋃

φ∈F φ(K), there may exist multiple nonempty subsets of X with this property.
If, additionally, each φi ∈ F is injective, and if each x ∈ X is contained in at most
finitely many φi(X), then

(1.2) K =
⋂

n∈N

⋃

i1,...,in∈N

φi1 ◦ · · · ◦ φin(X).

In the infinite setting, the auxiliary function ψF in (1.1) is either infinite for all
t > 0, or it is continuous and strictly decreasing on an interval (a,∞) for some a ≥ 0.
Hence, unlike in the finite case, equation (1.1) may not have a solution. We define
the similarity dimension of an IIFS F as

s-dim(F) := inf{t ≥ 0: ψF(t) ≤ 1}.

By Fatou’s Lemma, the infimum above is in fact a minimum. As in the finite case, if
F is an IIFS of similarities on X = U ⊂ Rn where U is a bounded domain, satisfying
the OSC, then the Hausdorff dimension of the attractor K is equal to s-dim(F)
[MU96, Corollary 3.17].

The purpose of this paper is to study the parameterizability of IIFS attractors. In
the infinite case an interesting dichotomy appears. On the one hand, in Proposition
2.1 we show that if the attractor K of an IIFS F is a continuum and if s-dim(F) = 1,
then K is a line segment; see also [MMU01] for a similar phenomenon. On the
other hand, both Hata’s theorem and the Badger–Vellis theorem are false when the
similarity dimension is greater than 1, even if it is arbitrarily close to 1.

Theorem 1.1. (1) For each ε > 0, there exists an IIFS of similarities on
the unit square [0, 1]2 having the OSC such that s-dim(F) < 1 + ε, and its
attractor is a continuum but not path connected.
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(2) For each ε > 0, there exists an IIFS of similarities on the unit square [0, 1]2

having the OSC such that s-dim(F) < 1+ ε, and its attractor is the image of
a curve, but not the image of a Hölder curve.

While the first example may not be too surprising, the second example has the
additional property that for every two points there exists a Lipschitz curve in the
attractor that connects them. A common theme in both these examples is the exis-
tence of a “bad 1-skeleton” inside the attractor which is not the image of a curve (in
the first case) or not the image of a Hölder curve (in the second case). If such bad
structures are absent, we show that the attractor admits good parameterizations.

Theorem 1.2. Let F = {φi}i∈N be an IIFS on a compact metric space so that the
attractor K is compact, limi→∞ Lip(φi) = 0, and there exists a curve γ : [0, 1] → K
whose image intersects φi(K) for all i.

(1) The attractor K is the image of a curve.
(2) If γ is 1

s
-Hölder for some s ≥ 1, then for each α > max{s, s-dim(F)} the

attractor K is the image of a 1
α
-Hölder curve.

We leave it as an open question whether in the second part of the theorem one
can choose α = max{s, s-dim(F)}; this is unknown even for IFSs. Furthermore, in
the case that F is finite, the existence of the curve γ in both parts of Theorem 1.2
is guaranteed by [BV21, Theorem 1.1]. Finally, the condition limi→∞ Lip(φi) = 0 is
necessary for Theorem 1.2; see §3.1.

The construction of the two examples of Theorem 1.1 is given in Section 3 and
we prove Theorem 1.2 in Section 2.

1.1. Symbolic notation. Here and for the rest of the paper, given a countable
(infinite or finite) set A and an integer n ≥ 0, we denote by An the set of words
formed from A of length n, with the convention A0 = {ε} and ε is the empty word.
We denote A∗ =

⋃

n≥0A
n and by AN, the set of infinite words formed with letters

from A. Given w = i1i2 · · · ∈ AN we denote w(n) = i1 · · · in the truncated sub-word
of w.

Given an IFS or IIFS F = {fi : i ∈ A} and a finite word w = i1 · · · in ∈ An, we
denote the length n of w by |w| and

fw = fi1 ◦ · · · ◦ fin .

Given quantities x, y ≥ 0 and a constant a > 0 we write x .a y if there exists a
constant C depending on at most a such that x ≤ Cy. If C is universal, we write
x . y. We write x 'a y if x .a y and y .a x.

2. Parametrizations of infinite IFS attractors

In this section we prove Theorem 1.2. We start by proving the simple fact that
if an IIFS has similarity dimension equal to 1 and the attractor is a continuum, then
the attractor is a line segment. This was shown by Hutchinson for finite IFS of
similarities on Euclidean spaces [Hut81, Remark 3.4].

Proposition 2.1. Let K be the attractor of an infinite or finite IFS F on a
compact space. If K is a continuum and if s-dim(F) = 1, then K is isometric to a
closed line segment.
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Proof. Write F = {φi : i ∈ A}. We first claim that H1(K) ≤ diamK. Fix δ > 0
and let n ∈ N such that (diamK) Lip(φw) < δ for all w ∈ Nn. Since ψF(1) ≤ 1,

H1
δ(K) ≤

∑

w∈An

diamφw(K) ≤ diamK
∑

i1,...,in∈A

Lipφi1 · · ·Lipφin

= diamK(ψF(1))
n ≤ diamK

and the claim follows by taking δ → 0. Hence, K is the Lipschitz image of [0, 1]
[AO17, Theorem 4.4]. Fix p, q ∈ K such that d(p, q) = diamK and fix an arc γ ⊂ K
with endpoints p, q. Note that

diamK = H1(K) ≥ H1(γ) ≥ diam γ = diamK.

Therefore, K = γ. For each x, y ∈ γ denote by γ(x, y) the subarc of γ with endpoints
x, y.

Let x, y ∈ γ such that x is between p and y. Then,

diam γ ≤ d(p, x) + d(x, y) + d(y, q) ≤ H1(γ(p, x)) +H1(γ(x, y)) +H1(γ(y, q))

= H1(γ) = diam γ.

Therefore, H1(γ(x, y)) = d(x, y) for all x, y ∈ γ, which yields that K is isometric
to the line segment [0, diamK]. �

The rest of Section 2 is devoted to the proof of Theorem 1.2. Henceforth, we
assume that we have an IIFS F = {φ1, φ2, . . . } on a compact space X so that K is
compact, limi→∞ Lip(φi) = 0, and there exists a curve γ : [0, 1] → K whose image
intersect each set φi(K). We make some standard reductions.

First, if K is a point, then the claim of the theorem is trivial. Therefore, we may
assume that K is nondegenerate and, rescaling the metric, we may also assume that
diam(K) = 1. Second, since limi→∞ Lip(φi) = 0, we may assume that

Lip(φ1) = max
i∈N

Lip(φi).

Third, by traversing the image of γ backwards if necessary, we may assume that
γ(0) = γ(1). For any point p in the image of γ, by reparameterizing γ, we may assume
that γ(0) = γ(1) = p. Moreover, for any p, q in the image of γ, by reparameterizing
γ, we may assume that there exists [a, b] ⊂ [0, 1] such that γ(a) = p and γ(b) = q.

Here and for the rest of this section, given w = i1i2 . . . in ∈ N∗, we denote

Lw = Lip(φi1) Lip(φi2) . . .Lip(φin)

with the convention Lε = 1. Note that in general, Lw ≥ Lip(φw).

2.1. Path connectedness of IIFS attractors. The first step in the proof of
Theorem 1.2 is the following lemma which shows that K is pathwise connected.

Lemma 2.2. Let w ∈ N∗ and x, y ∈ φw(K). There exists a continuous map
f : [0, 1] → φw(K) such that f(0) = x and f(1) = y. If γ is 1

s
-Hölder for some

s > s-dim(F) and with Hölder constant H0, then f can be chosen to be 1
s
-Hölder

with Hölder constant H .ψF (s),s,H0,L1 Lw.

Proof. Clearly, we may assume that x 6= y. Moreover, it suffices to assume that
w = ε, and that there is no j ∈ N so that x, y ∈ φj(K), as otherwise we could pass to
the longest common word. By the Kuratowski embedding theorem, we may further
assume that K is a subset of `∞.
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We construct a sequence of continuous maps (fn : [0, 1] → `∞)n≥0, sequences of
finite collections of closed nondegenerate intervals (Bn)n≥0, (En)n≥0 in [0, 1], and an
injection w :

⋃

n≥0 En → N∗ with the following properties.

(P1) For each n ∈ N, intervals in Bn∪En intersect only at endpoints and the union
of all these intervals is [0, 1].

(P2) For each J ∈ En there exists unique S ∈ Bn+1 such that S ⊂ J . Conversely,
for each S ∈ Bn+1 \ Bn there exists unique JS ∈ En such that S ⊂ JS.

(P3) For any n ≥ 0 and any J ∈ En+1, there exists unique J ′ ∈ En such that
J ⊂ J ′. Moreover, there exists u ∈ N∗ such that |u| > 0 and w(J) = w(J ′)u.

(P4) For each n ≥ 0 and J ∈ En, there exist distinct i, j ∈ N such that fn|J is a
linear map mapping the left endpoint in φ

w(J)i(K) and the right endpoint in
φ
w(J)j(K).

(P5) For each n ≥ 1, and each S ∈ Bn there exists a closed nondegenerate interval
I and a linear map ζ : S → I such that

fn+1|S = fn|S = φ
w(JS) ◦ (γ|I) ◦ ζ.

(P6) For each n ≥ 0, fn(0) = x and fn(1) = y.
(P7) For each n ≥ 0, and each J ∈ En, ‖fn − fn+1‖J,∞ ≤ 2L

w(J).

Before the construction of (fn)n, (Bn)n, (En)n, and w we remark that (P3) and
a simple induction yield that

(P8) For all n ∈ N and all J ∈ En, |w(J)| ≥ n.

The construction is done in an inductive fashion. Define E0 = {[0, 1]}, B0 = ∅,
w([0, 1]) = ε, and f0 : [0, 1] → `∞ to be the linear map with f0(0) = x and f0(1) = y.
Property (P4) is immediate while the rest of the properties are vacuous.

Assume now that for some integer n ≥ 0 we have defined a continuous map
fn : [0, 1] → `∞, collections Bn, En in [0, 1], and an injection w :

⋃n
k=0 Ek → N∗ with

properties (P1)–(P7). The new collections of intervals will be

Bn+1 = Bn ∪
⋃

J∈En

Bn+1(J), En+1 =
⋃

J∈En

En+1(J).

If S ∈ Bn, then we set fn+1|S = fn|S.
Fix now J ∈ En and write J = [t, s]. By (P3) there exist distinct i, j ∈ N such

that |w(J)| ≥ n, fn(t) ∈ φ
w(J)i(K), and fn(s) ∈ φ

w(J)j(K). There also exists an
interval I = [a, b] ⊂ [0, 1] such that γ(a) ∈ φi(K) and γ(b) ∈ φj(K). We consider
three possible cases.

Case I: Suppose that φ
w(J)◦γ(a) = fn(t) and φ

w(J)◦γ(b) = fn(s). Set Bn+1(J) =
{J}, En+1(J) = ∅, and fn+1|J = φ

w(J) ◦ (γ|I) ◦ ζ where ζ : J → I is the orientation
preserving linear map.

Case II: Suppose that φ
w(J) ◦γ(a) 6= fn(t) and φ

w(J) ◦γ(b) = fn(s). Let z ∈ (t, s)
and let u ∈ N∗ be the shortest word such that there exist distinct i, j ∈ N with
φ
w(J) ◦ γ(a) ∈ φ

w(J)ui(K) and fn(t) ∈ φ
w(J)uj(K). By (P4) we have that |u| ≥ 1.

Set En+1(J) = {[t, z]}, Bn+1(J) = {[z, s]}, and w([t, z]) = w(J)u. Define fn+1

on J continuously so that fn+1|[z, s] is as in Case I, and fn+1|[t, z] is linear with
fn+1(t) = fn(t). We work similarly if φ

w(J) ◦ γ(a) = fn(t) and φ
w(J) ◦ γ(b) 6= fn(s).

Case III: Suppose that φ
w(J) ◦ γ(a) 6= fn(t) and φ

w(J) ◦ γ(b) 6= fn(s). Let t < z <
w < s and set En+1(J) = {[t, z], [w, s]}, Bn+1(J) = {[z, w]}. For the definitions of
w([t, z]), w([w, s]), and fn+1|J we work as in Cases I, II.

Properties (P1)–(P7) are easy to verify. Since w is injective on
⋃n
k=0 Ek, then by

(P3) and the fact that w is injective on En+1(J) for each J ∈ En we have that w is



86 Eve Shaw and Vyron Vellis

injective on
⋃n+1
k=0 Ek. Finally, continuity of fn+1 follows from the facts that fn+1 is

the same as fn outside of intervals in En, that fn+1|J is continuous for all J ∈ En,
and that fn+1|∂J = fn|∂J for all J ∈ En. This completes the inductive construction.

From (P5) and (P7) we have that (fn)n∈N converges to a continuous map f : [0, 1]
→ `∞. Fix J ∈

⋃

n≥0 En. By (P5) we have that for all S ∈
⋃

n≥0 Bn with S ⊂ J ,
f(S) ⊂ φ

w(J)(K). By this fact, by (P3), and by (P4) we have that for all m ≥ n,

sup
t∈J

dist(fm(t), φw(J)(K)) ≤ max
J ′⊂J
J ′∈Em

2L
w(J ′) ≤ 2L

w(J)L
m−n
1 .

Since K is closed, it follows that f(J) ⊂ φ
w(J)(K). This proves the first part of the

lemma.
Assume now that γ is 1

s
-Hölder for some s > s-dim(F) and with Hölder constant

H0. Then, ψF(s) ∈ (0, 1). Set E =
⋃

n≥0 En and B =
⋃

n≥0 Bn. For each J ∈ E , set

M(J) :=
∑

J ′∈E
J ′⊂J

(L
w(J ′))

s.

By injectivity of w and (P3) we have that for each J ∈ E

(L
w(J))

s ≤ M(J) ≤
∑

w∈N∗

(L
w(J)w)

s = (L
w(J))

s

∞
∑

n=0

(

∑

i∈N

Lsi

)n

=
(L

w(J))
s

1− ψF(s)
.

The only difference in the construction in this case is that we require that for all
S ∈ B and all J ∈ E

|S| = (L
w(JS))

s/M([0, 1]) and |J | = M(J)/M([0, 1]).

To see why this is possible, note that if J ∈ En and Bn+1(J) = {S} for some n ≥ 0,
then

|J | =
(L

w(J))
s

M([0, 1])
+
∑

J ′∈E
J ′(J

(L
w(J ′))

s

M([0, 1])
= |S|+

∑

J ′∈En+1(J)

|J ′|.

We claim that the map f defined above is 1
s
-Hölder continuous with Hölder

constant depending only on ψF(s), L1, s, and H0. To show the claim, fix p, q ∈ [0, 1].
Clearly, we may assume that p 6= q. There exist n ∈ N and J ∈ En so that p, q ∈ J
and n is maximal. Proving the claim falls to a case study.

Case 1. Suppose that p ∈ J1 and q ∈ J2 where J1, J2 ∈ En+1(J) are distinct. On
the one hand

|p− q| ≥ |S| &s,ψF (s) (Lw(J))
s

while on the other hand, by (P5) and (P7), f(p), f(q) ∈ φ
w(J)(K), so

d(f(p), f(q)) ≤ L
w(J).

Case 2. Suppose that p, q ∈ S where S ∈ Bn+1(J). By (P5),

d(f(p), f(q)) ≤ L
w(J)|S|

−1/sH0|p− q|1/s .s,ψF (s),H0 |p− q|1/s.

Case 3. Suppose that p ∈ J1 \ S and q ∈ S \ J1 where J1 ∈ En+1(J) and
S ∈ Bn+1(J). There exists integer m ≥ n + 1 and J ′ ∈ Em such that p ∈ J ′ ⊂ J1,
J ′ ∩ S 6= ∅, and if S ′ ∈ Bm+1(J

′), then S ′ separates p from q. Let z be the unique
point in J ′ ∩ S. By Case 1 for p, z and Case 2 for z, q

d(f(p), f(q)) ≤ d(f(p), f(z)) + d(f(z), f(q)) .L1,s,ψF (s),H0 |p− q|1/s

which completes the proof of the claim. �
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2.2. Parameterizations of IIFS attractors. The second step in the proof
of Theorem 1.2 is the following lemma that allows us to reparametrize γ so that
preimages of φi(K) have nonempty interior.

Lemma 2.3. Let p be in the image of γ. There exists a map Γ: [0, 1] → K
and a collection of nondegenerate closed intervals {In}n∈N with disjoint interiors
such that Γ has the same image as γ, satisfies Γ(0) = Γ(1) = p, and for each
n ∈ N, In ⊂ Γ−1(φn(K)). Moreover, if γ is 1

s
-Hölder with constant H0, and if

(an) ∈ `1 is a sequence of positive numbers, then Γ is 1
s
-Hölder with constant H ≤

21/sH0(1 + ‖(an)‖1)
1/s and for each n ∈ N, |In| = an(1 + ‖(an)‖1)

−1.

Proof. We may assume that γ(0) = γ(1) = p. For each n ∈ N fix a point
xn ∈ γ−1(φn(K)) ⊂ [0, 1]. It is possible that for some n 6= m we have xn = xm. Let
{pk}k∈B be an enumeration of the set {xn}n∈N where B is either a finite set, or N.
For each k ∈ B, define Ak = {n ∈ N : xn = pk}.

For the first claim, fix a decreasing sequence (bn)n∈N of positive numbers that
converges to 0. Identify R3 with C× R and define the set

E = ({0} × [0, 1]) ∪
⋃

k∈B

⋃

n∈Ak

(

{te2πi/n : t ∈ [0, bn]} × {pk}
)

⊂ R3.

Since bn → 0, it is easy to see that E is closed. Moreover, there exists a continuous
increasing map η : [0, 1] → [0, 1] such that η(0) = 0,

max
n∈Ak

bn ≤ η

(

min
j∈{1,...,k−1}

|pj − pk|

)

for all k ∈ B

and

bn ≤ η

(

min
m∈{1,...,n−1}

|e2πi/m − e2πi/n|

)

for all n ∈ N.

We claim that there exists a continuous ω : [0, 1] → [0, 1] with ω(0) = 0 such that
for all x, y ∈ E, there exists a curve σ : [0, 1] → E such that σ(0) = x, σ(1) = y and
the diameter of its image is at most ω(|x − y|). The proof of the claim is a simple
case study.

If x, y ∈ {0} × [0, 1], then use the line segment [x, y].
If x = (te2πi/n, pk) and y ∈ {0} × [0, 1] for some t ∈ [0, bn], n ∈ Ak and k ∈ B,

then use the union of line segments [x, (0, pk)] ∪ [(0, pk), y].
If x = (t1e

2πi/n, pk) and y = (t2e
2πi/n, pk) for some distinct t1, t2 ∈ [0, bn], n ∈ Ak

and k ∈ B, then use the line segment [x, y].
If x = (t1e

2πi/n, pk) and y = (t2e
2πi/m, pk) for some t1, t2 ∈ [0, bn], n,m ∈ Ak with

m < n, and k ∈ B, then use the union of line segments [x, (0, pk)] ∪ [(0, pk), y]. Note
that

|x− y| & |t1 − t2|+min{t1, t2}|e
2πi/m − e2πi/n|

≥ |t1 − t2|+min{t1, t2}η
−1(min{t1, t2})

while

diam(σ([0, 1])) ≤ t1 + t2 ≤ |t1 − t2|+min{t1, t2}.

Finally, suppose that x = (t1e
2πi/m, pk) and y = (t2e

2πi/n, pj), for some distinct
k, j ∈ B, m ∈ Ak, n ∈ Aj, t1 ∈ [0, bm], and t2 ∈ [0, bn]. Then,

|x− y| & |pk − pj|+ |t1 − t2|
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and if σ is the union of line segments [x, (0, pk)] ∪ [(0, pk), (0, pj)] ∪ [(0, pj), y],

diam(σ([0, 1])) ≤ t1 + t2 + |pk − pj| ≤ |t1 − t2|+min{t1, t2}+ |pk − pj|

. |x− y|+ η(|pk − pj|)

and the proof of the claim is complete.
Thus, E is connected and locally connected, and by the Hahn–Mazurkiewicz

Theorem [HY61, Theorem 3.30], there exists continuous surjection g : [0, 1] → E.
Note that for each n ∈ N, the preimage

g−1({te2πi/n : t ∈ [0, bn]} × {xn})

contains a nondegenerate closed interval. Define now γ̃ : E → K by γ̃|{0}× [0, 1] = γ
and for each n ∈ N and t ∈ [0, bn], γ̃(te

2πi/n, xn) = γ(xn). Then γ̃ is continuous and
Γ := γ̃ ◦ g satisfies the conclusions of the lemma.

For the second part of the lemma, assume that γ is 1
s
-Hölder with constant H0,

and assume that (an) ∈ `1 is a sequence of positive numbers. Define E as above
replacing bn by an. Then,

H1(E) = 1 + ‖(an)‖1 <∞.

Therefore, by [AO17, Theorem 4.4], there exists a Lipschitz surjection g : [0, 1] → E
with constant speed equal to 2H1(E). Thus, for each n ∈ N, g−1({te2πi/n : t ∈
[0, an]} × {xn}) contains a closed subinterval of length

(1 + ‖(an)‖1)
−1an.

Define γ̃ as above and note that γ̃ is 1
s
-Hölder with constant H0. Setting Γ := γ̃ ◦ g,

we have for all x, y ∈ [0, 1]

d(Γ(x),Γ(y)) ≤ H0|g(x)− g(y)|1/s ≤ 21/sH0(1 + ‖(an)‖1)
1/s|x− y|1/s. �

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Fix p0 ∈ K. We construct a sequence of continuous
maps (fn : [0, 1] → K)n≥0, sequences of collections of closed nondegenerate intervals
(Nn)n≥0, (In)n≥0 in [0, 1], and a bijection w :

⋃

n≥0 Nn → N∗ with the following
properties.

(P1) For each n ≥ 0, intervals in Nn ∪ In intersect at most on endpoints.
(P2) For each n ≥ 0, each I ∈ Nn and each i ∈ N, there exists I ′ ∈ Nn+1 contained

in the interior of I such that w(I ′) = w(I)i. Conversely, for each n ≥ 0 and
each I ′ ∈ Nn+1, there exists I ∈ Nn and i ∈ N such that I ′ is contained in
the interior of I and w(I ′) = w(I)i.

(P3) For each n ≥ 0 and each I ∈ Nn, there exist exactly two intervals J, J ′ ∈ In+1

contained in I. Conversely, for each n ≥ 0 and each J ∈ In+1 \ In, there
exists unique interval IJ ∈ Nn such that J ⊂ IJ .

(P4) If n ≥ 1, I ∈ Nn−1 and J, J ′ ∈ In are contained in I, then there exists an
orientation reversing linear map ζJ : J

′ → J , such that fn|J
′ = (fn|J) ◦ ζJ .

Moreover, fn|J = g◦ζ where g : [0, 1] → φ
w(I)(K) is the map from Lemma 2.2

and ζ : J → [0, 1] is an increasing linear map.
(P5) For each n ≥ 0 and each I ∈ Nn, fn|I is constant and its image is in φ

w(I)(K).
Moreover, fn(I) ⊂ fn+1(I) ⊂ φ

w(I)(K).
(P6) For each n ∈ N, if x is not in the interior of some I ∈ Nn, then fn+1(x) =

fn(x).
(P7) For each n ∈ N, fn(0) = fn(1) = p0.
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For the construction, apply Lemma 2.3 and obtain a map Γ: [0, 1] → K and a
collection {Ii : i ∈ N} of closed nondegenerate intervals in [0, 1] such that for each
i ∈ N, Γ|Ii is constant and its image is in φi(K). The proof of the claim is done in
an inductive fashion.

For n = 0, let N0 = {[0, 1]} and I0 = ∅, let f0 : [0, 1] → K be the constant map
p0, and let w([0, 1]) = ε. Properties (P1), (P5) and (P7) are trivial while the rest of
them are vacuous.

Assume now that for some n ≥ 0 we have defined a continuous fn : [0, 1] → K,
collections of intervals Nn,In, and a bijection w : Nn → Nn satisfying assumptions
(P1)–(P7). The new collections of intervals will be

In+1 = In ∪
⋃

I∈Nn

In+1(I), Nn+1 =
⋃

I∈Nn

Nn+1(I).

We set
fn+1|[0, 1] \

⋃

Nn = fn|[0, 1] \
⋃

Nn.

Fix now I ∈ Nn. By (P5), there exists i ∈ N such that fn(I) ∈ φ
w(I)i(K).

Reparameterizing Γ, we may assume that Γ(0) ∈ φj(K) and 0 is the left endpoint
of Ij. Write I = [a, b], and let a < a1 < a2 < b. Let ξI : [a1, a2] → [0, 1] be an
increasing linear map and let ζI : [a, a1] → [0, 1] and ζ ′I : [a2, b] → [0, 1] be increasing
linear maps. Set

Nn+1(I) = {ξ−1
I (Ij) : j ∈ N} and In+1(I) = {[a, a1], [a2, b]}

and for each j ∈ N define w(ξ−1
I (Ij)) = w(I)j.

Let g : [0, 1] → φ
w(I)(K) be the map given from Lemma 2.2 that connects fn(I)

to φ
w(I)(Γ(Ij)) and define

(1) fn+1|[a, a1] = g ◦ ζI ,
(2) fn+1|[a1, a2] = φ

w(I) ◦ Γ ◦ ξI ,
(3) fn+1|[a2, b] = g ◦ h ◦ ζ ′I where h : [0, 1] → [0, 1] with h(x) = 1− x.

Properties (P1)–(P6) are clear from design and the properties of Γ. Note that
for all I ∈ Nn the function w : Nn+1(I) → {w(I)i : i ∈ N} is bijective. Therefore,
w : Nn+1 → Nn+1 is a bijection. Finally, since 0, 1 are not contained in the interior
of any I ∈ Nn, by (P6), fn+1(0) = fn+1(1) = p0.

It remains to prove continuity of fn+1. Fix x ∈ [0, 1]. We only show continuity
of fn+1 at x from the right. To this end, fix a sequence xm ⊂ (x, 1] that converges to
x and consider the following three cases.

Case 1. Suppose that for all m sufficiently large, xm ∈ [0, 1] \
⋃

Nn. Then
fn+1(xm) converges to fn+1(x) by (P6) and continuity of fn.

Case 2. Suppose that for all m sufficiently large, xm ∈ I for some I ∈ Nn. Then,
fn+1(xm) converges to fn+1(x) by design.

Case 3. Suppose that for for all m sufficiently large, there exists Im ∈ Nn such
that xm ∈ Im and that the collection {Im}m is infinite. Fixing ε > 0, there exists
i0 ∈ N such that for every i ≥ i0, Li < ε/2. Since the collection {w(Im)}m is infinite,
there exists N ∈ N such that for every m ≥ N , some character of the word w(Im) is
larger than i0. It follows that L

w(Im) < ε/2 for every m ≥ N . By continuity of fn,
we may further assume that for every m ≥ N , d(fn(x), fn(xm)) < ε/2. By (P5), for
every m ≥ N ,

d(fn+1(x), fn+1(xm)) ≤ d(fn(x), fn(xm)) + d(fn(xm), fn+1(xm)) < ε.

This completes the induction and the proof of (P1)–(P7).
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By (P5) and (P6),

‖fn+1 − fn‖∞ ≤ sup
I∈Nn

‖fn − fn+1‖I,∞ ≤ sup
I∈Nn

L
w(I) ≤ Ln1

so the maps fn converge uniformly to a continuous map f : [0, 1] → K. By (P5) and
the bijectivity of w, we have f([0, 1]) ∩ φw(K) 6= ∅ for all w ∈ N∗. Therefore, for all
x ∈ K and n ∈ N,

dist(x, f([0, 1])) ≤ inf
w∈Nn

diamφw(K) ≤ Ln1 .

Hence, K ⊂ f([0, 1]) and it follows that f([0, 1]) = K. This proves the first part of
Theorem 1.2.

For the second part of the theorem, assume that γ is 1
s
-Hölder for some s >

s-dim(F) and with Hölder constant H0. Define for all w ∈ N∗

Mw := 3
∑

u∈N∗

(Lwu)
s.

Working as in the proof of Lemma 2.2, we have that for all w ∈ N∗,

Mw = 3 (Lw)
s (1− ψF(s))

−1.

For each i ∈ N set ai = Mi > 0 and note that ‖(ai)‖1 = Mε .s,ψF(s)
1. We apply on

each stage of the construction, the second part of Lemma 2.3 with ai = Mi and we
may assume that Γ is 1

s
-Hölder with constant H .s,ψF (s),L1 H0.

The other change in the construction, is that we require that if n ≥ 0, I ∈ Nn,
and J ∈ Jn+1(I), then

|I| =M−1
ε M

w(I) and |J | =M−1
ε

(

L
w(I)

)s
.

To see why this is possible, fix n ≥ 0 and I ∈ Nn. By Lemma 2.3

|I| =M−1
ε M

w(I) = 2M−1
ε

(

L
w(I)

)s
+M−1

ε

(

L
w(I)

)s
+
∑

i∈N

M−1
ε M

w(I)i

=
∑

J∈Jn+1(I)

|J |+
∣

∣

∣
I \
⋃

Jn+1(I) \
⋃

Nn+1(I)
∣

∣

∣
+

∑

J∈Nn+1(I)

|J |.

We claim that the limit f of the maps fn is 1
s
-Hölder continuous. To this end,

fix distinct p, q ∈ [0, 1] and let n ≥ 0 be the maximal integer such that there is some
I ∈ Nn with p, q ∈ I. Denote by J, J ′ the two elements in Jn+1(I), by I ′ the closure
of I \ (J ∪J ′), and by BI the closure of the set of points in I which are not contained
in any interval in Nn+1(I) ∪ Jn+1(I). The proof of the claim falls to a case study.

Case 1. Suppose that p, q ∈ J or p, q ∈ J ′. By (P6) and Lemma 2.2,

d(f(p), f(q)) = d(g ◦ ζI(p), g ◦ ζI(q)) .ψF (s),L1,s,H0 Lw(I)|J |
−1/s|p− q|1/s

.ψF (s),s,L1,H0 |p− q|1/s.

Case 2. Suppose that p and q are separated by the interior of one of I ′, J , J ′.
Then |p− q| &s,ψF (s) (Lw(I))

s while, by (P5), f(I) ⊂ φ
w(I)(K) and

d(f(p), f(q)) ≤ L
w(I).

Case 3. Suppose that p, q ∈ BI . By (P6) and design of fn+1, f |BI = fn+1|BI =
φ
w(I) ◦ Γ ◦ ξI . Therefore, by Lemma 2.3 we have

d(f(p), f(q)) .H0,s,ψF (s) Lw(I)|I
′|−1/s|p− q|1/s .H0,ψF (s),s |p− q|1/s.
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Case 4. Suppose that p ∈ I1 and q ∈ I2 where I1, I2 ∈ Nn+1(I). By maximality
of n, we have I1 6= I2. Let a ∈ I1 and b ∈ I2 such that |a − b| = dist(I1, I2). Then
the pair p, a satisfy either Case 1 or Case 2, with I replaced by I1. Similarly for q, b.
Moreover, a, b ∈ BI , and hence satisfy Case 3. Therefore, by triangle inequality,

d(f(p), f(q)) .ψF (s),s,H0,L1 |p− q|1/s.

Case 5. Suppose that p ∈ I1 for some I1 ∈ Nn+1(I) and q ∈ BI . Let a ∈ I1 be
such that |a − q| = dist(I1, q). Note that points a, p satisfy one of Case 1 or Case 2
(with I replaced by I1), while points a, q satisfy Case 3. Therefore, by the triangle
inequality,

d(f(p), f(q)) .ψF (s),s,H0,L1 |p− q|1/s.

Case 6. Suppose that p ∈ J ∪ J ′ (say J) and q ∈ I ′. Let a ∈ J such that
|a − q| = dist(J, q). Note that points a, p satisfy Case 1, while points a, q satisfy
Case 3 or Case 5. Therefore, by the triangle inequality,

d(f(p), f(q)) .ψF (s),s,H0,L1 |p− q|1/s. �

3. Examples of IIFS

In this section we provide three examples of IIFS. In §3.1 we show that the
condition limn→∞ Lip(φn) = 0 is necessary in Theorem 1.2, in §3.2 we prove Theo-
rem 1.1(1), and in §3.3 we prove Theorem 1.1(2).

3.1. An IIFS without vanishing Lipschitz norms. For this example we use
complex coordinates. For each n ∈ N define a contraction φn : B2 → B2 on the closed
unit disk B2 by

φn(z) = e
2πi

n
1
2
(Re(z) + 1).

Note that Lip(φn) = 1/2 for all n ∈ N, and let F = {φn : n ∈ N}.

Set G = {te
2πi

n : n ∈ N, t ∈ [0, 1]}; see Figure 1 below for the first generation of
images of the system used in this section. Note that the figure shows only the images
of finitely many maps in the family, the images in fact accumulate to the real interval
[0, 1].

Figure 1. Attractor of IIFS of §3.1.

We claim that G is the attractor K of the IIFS F . Note that for all n ∈ N we
have φn(B2) = φn(G). Therefore, φw(B2) = φw(G) for all w ∈ N∗. Moreover, it is
easy to see that

⋃

n∈N

φn(B2) = G,

which yields that K ⊂ G. For the opposite inclusion, fix x ∈ G. There exists
n1 ∈ N such that x ∈ φn1(B

2). Assume now that for some m ∈ N we have defined a
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word w ∈ Nm such that x ∈ φw(B2) = φn(G). Since G =
⋃

n∈N φn(B
2), there exists

nm+1 ∈ N such that x ∈ φwnm+1(B
2). It follows that there exists an infinite word

w = n1n2 · · · ∈ NN such that x ∈
⋂

m∈N φn1···nm
(B2) which yields that G ⊂ K.

To complete the example, note that there exists a curve γ : [0, 1] → K (namely
the constant curve with image the origin) whose image intersects every φn(K), and
the attractor K is a continuum but it is not locally connected.

3.2. An IIFS where the attractor is a continuum but not path con-

nected. Fix s > 1 and fix M ∈ N such that M > max
{

4
1

s−1 , 7
}

. For each n ∈ N
let

an =
1 +Mn(2M + 1)1−n

M + 1
and bn =M−n(an − an+1 −M−n).

Note that an ∈ (0, 1] for each n, that an is strictly decreasing, that a1 = 1, and that
for all n ∈ N

an − an+1 −M−n =

(

M

2M + 1

)n

−M−n > M−n.

The construction of the IIFS F is done in three subfamilies

F = {φn,i}n,i ∪ {τn,i}n,i ∪ {σn}n.

First, for n ∈ N and i ∈ {1, . . . ,Mn}, define φn,i : [0, 1]
2 → [0, 1]2 by

φn,i((x, y)) = (an −M−n,M−n(i− 1)) +M−n(x, y).

Second, for n ∈ N and i ∈ {1, . . . ,Mn}, define τn,i : [0, 1]
2 → [0, 1]2 by

τn,i((x, y)) =
(

an −M−n − (i− 1)bn, 0
)

+ bn(x, y) if n is even,

τn,i((x, y)) =
(

an −M−n − (i− 1)bn, 1− bn
)

+ bn(x, y) if n is odd.

Third, for i ∈ {1, . . . ,M + 1}, define σi : [0, 1]
2 → [0, 1]2 by

σi((x, y)) =
(

0, i−1
M+1

)

+ 1
M+1

(x, y).

Figure 2. First iteration of IIFS of §3.2.
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See Figure 2 for the first generation of images of the system used in this section.
Note that this figure shows only finitely many of the first generation images, and the
images in fact accumulate to the boxes along the left edge of the square.

Using the definition of M we now compute

ψF(s) =
∞
∑

n=1

Mn

∑

i=1

Lip(φn,i)
s +

∞
∑

n=1

Mn

∑

i=1

Lip(τn,i)
s +

M+1
∑

n=1

Lip(σn)
s

=
∞
∑

n=1

M (1−s)n +
∞
∑

n=1

Mnbsn + (M + 1)1−s

≤
2

M s−1 − 1
+

1

(M + 1)s−1
< 1.

Therefore, the similarity dimension of F is no more than s. We are now ready to
prove the first part of Theorem 1.1.

Proof of Theorem 1.1(1). Define K0 = [0, 1]2 and for each m ∈ N define Km =
⋃

f∈F f(Km−1). By (1.2), (Km)m∈N is a nested family of sets with K =
⋂

m≥0Km.
Thus in order to show that K is a continuum, it suffices to show that each Km is a
continuum.

To show compactness, we proceed by induction. The base case m = 0 is trivial.
Suppose now that Km is compact. Let (pk) be a sequence in Km+1 converging to
some p = (x, y) ∈ R2. If x < 1

2M−1
, then for all k large enough, pk ∈

⋃

i σi(Km) which

is compact. If x > 1
2M−1

then there exists a finite set F ′ ⊂ F such that for all k large

enough, pk is contained in
⋃

f∈F ′ f(Km) which is compact. Finally, if x = 1
2M−1

, then

p ∈
⋃

i σi(Km). In either case, p ∈ Km+1.
Connectedness is also shown inductively. The case m = 0 is trivial. Suppose now

that for some m ≥ 0, the set Km is connected. Let

L =
2M−1
⋃

i=1

σi(Km), R = Km+1 \ L =
⋃

n,i

φn,i(Km) ∪
⋃

n,i

τn,i(Km).

Note that L is connected since for every i ∈ {1, . . . , 2M − 2}

σi+1((1, 0)) ∈ σi(Km) ∩ σi+1(Km)

and each σi(Km) is connected by the inductive hypothesis. We also claim that R is
connected. This follows from the fact that sets τn,i(Km) and φn,i(Km) are connected
and from the fact that for all n ∈ N

φn,i+1((1, 0)) ∈ φn,i(Km) ∩ φn,i+1(Km),

τn,i+1((1, 0)) ∈ τn,i(Km) ∩ τn,i+1(Km),

τn,Mn((0, 0)) ∈ τn,Mn(Km) ∩ φn+1,1(Km),

φn,Mn((0, 0)) ∈ τn,1(Km) ∩ φn,Mn(Km).

Therefore if we were to have some partition Km+1 = A∪B by disjoint nonempty
open sets A,B, we must have that A = L or B = L. However, R is not a closed set,
as it is disjoint from

{

1
2M−1

}

× [0, 1] but its sequential closure contains
(

1
2M−1

, 0
)

.
Thus, Km+1 is connected.

To finish the proof, we show that there is no path in K1 connecting p =
(

1
2M−1

, 0
)

to q = (1, 0). Since both of these points are in K, and K ⊂ K1 the latter implies
that K is not path connected. To this end, assume for a contradiction that f =
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(f1, f2) : [0, 1] → K1 is a continuous map with f(0) = p, f(1) = q. By design of K1,
for any n ∈ N

(1) for any t ∈ [0, 1] with

1
2M−1

+ 2−2n < f1(t) <
1

2M−1
+ 2−2n+1 −M−2n

we have that f2(t) ≤ (2M)−2n and
(2) for any t ∈ [0, 1] with

1
2M−1

+ 2−2n−1 < f1(t) <
1

2M−1
+ 2−2n −M−2n−1

we have that f2(t) ≥ 1− (2M)−2n−1.

It follows now that f2 (and consequently f) is not continuous at t = 0. �

3.3. An IIFS where the attractor is the image of a curve but not the

image of a Hölder curve. Fix s > 1 and fix an even integer M ≥ max{10, 7
1

s−1}.
For each n ∈ N let

an =
log(2)

Mn log(n+ 1)
and bn =

4 + 2M(2−1 −M−1)n

M + 2
.

A simple calculation shows that for all n ∈ N, bn+1 < bn − 2an < bn. Additionally,
for each n ∈ N let Nn be an integer such that

2a−1
n+1(bn − an − bn+1) ≤ Nn ≤ 4a−1

n+1(bn − an − bn+1).

The construction of the IIFS F is done in three subfamilies

F = {φn,i}n,i ∪ {τn,i}n,i ∪ {σ}.

First, for each n ∈ N and i ∈ {1, . . . ,Mn} define φn,i : [0, 1]
2 → [0, 1]2 by

φn,i((x, y)) = (bn − an, (i− 1)an) + an(x, y).

Second, for n ∈ N and i ∈ {1, . . . , Nn} define τn,i : [0, 1]
2 → [0, 1]2 by

τn,i((x, y)) =
(

bn+1 + (i− 1) bn−an−bn+1

Nn
, 0
)

+ bn−an−bn+1

Nn
(x, y).

Third, we define σ : [0, 1]2 → [0, 1]2 such that

σ((x, y)) = 4
M+2

(x, y).

See Figure 3 for the first generation of images of the system used in this section.
Note that this figure shows only finitely many of the first generation images, and the
images in fact accumulate to the box in the bottom left corner of the square.

Using the definition of M we compute

ψF(s) =
∞
∑

n=1

Mn

∑

i=1

(Lip(φn,i))
s +

∞
∑

n=1

Nn
∑

i=1

(Lip(τn,i))
s + (Lip(σ))s.

=
∞
∑

n=1

Mnasn +
∞
∑

n=1

Nn

(

bn − an − bn+1

Nn

)s

+

(

4

M + 2

)s

≤
M1−s

1−M1−s
+

M1−s

1−M1−s
+

4s

M s
< 1.

Therefore, the similarity dimension of F is at most s.
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Figure 3. First iteration of IIFS of §3.3.

Lemma 3.1. The attractor K of the IIFS F is the image of a curve.

Proof. Define Lb, Lr to be the bottom and left, respectively, edges of the unit
square [0, 1]2. Define alsoK0=[0, 1]2, and for eachm ∈ N defineKm=

⋃

f∈F f(Km−1).

We claim that for every f ∈ F , f(Lb∪Lr) ⊂ f(K). Assuming the claim, we note
that the set

E = Lb ∪
⋃

n,i

φn,i(Lr)

is contained in K and, working as in the proof of Lemma 2.3, it follows that E is the
image of a curve. Now, by Theorem 1.2(1), it follows that K is the image of a curve.

To prove the claim, we show that Lb ∪ Lr ⊂ Km for every m ∈ N. By a simple
inductive argument, this immediately implies that f(Lb ∪ Lr) ⊂ f(K) for all f ∈ F .
The proof is by induction onm. Clearly Lb∪Lr ⊂ K0. Assume now that Lb∪Lr ⊂ Km

for some integer m ≥ 0. First,

Lr =
M
⋃

i=1

(

{1} ×

[

i− 1

M
,
i

M

])

=
M
⋃

i=1

φ1,i(Lr) ⊂ Km+1.

Second,

Lb =
∞
⋃

n=1

([bn − an, bn]× {0}) ∪
∞
⋃

n=1

([bn+1, bn − an]× {0}) ∪
(

[0, 4
M+2

]× {0}
)

=
∞
⋃

n=1

φn,1(Lb) ∪
⋃

n,i

τn,i(Lb) ∪ σ(Lb) ⊂
⋃

f∈F

f(Km). �

Proof of Theorem 1.1(2). We show that the attractor K of the IIFS F is not
the image of a Hölder curve. Assume for a contradiction that there exists α ≥ 1,
H > 0 and a surjection f : [0, 1] → K such that for all x, y ∈ [0, 1]

|f(x)− f(y)|α ≤ H|x− y|.
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For each n ∈ N let

An =
Mn

⋃

i=1

φn,i(K).

Note that the height of each “tower” An is equal to log(2)/ log(n+ 1).
Recall that M was chosen even and for each n ∈ N define pn = φn,Mn((1, 1)) and

qn = φn, 1
2
Mn((1, 1)). Following the proof of Lemma 3.1, for each n ∈ N, the vertical

segment [qn, pn] ⊂ An. Moreover, for any n ∈ N, pn is the point of An with the
highest y-coordinate, and the y-coordinate of qn is 1

2
log(2)/ log(n+ 1). Setting

Bn =
Mn

⋃

i= 1
2
Mn+1

φn,i(K),

we have Bn∩K \Bn = {qn}. Given that Bn is connected, there exists for each n ∈ N
an interval In ⊂ [0, 1] such that

{pn, qn} ⊂ f(In) ⊂ Bn.

It follows that the intervals I1, I2, . . . are mutually disjoint and

1 ≥
∞
∑

n=1

diam In ≥
∞
∑

n=1

H−1|pn − qn|
α =

(log 2)α

2αH

∞
∑

n=1

1

(log(n+ 1))α
.

However, the latter series diverges and we reach a contradiction. �
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