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Parametrizability of infinitely generated attractors

EVE SHAW and VYRON VELLIS

Abstract. An infinite iterated function system (IIFS) is a countable collection of contraction
maps on a compact metric space. In this paper we study the conditions under which the attractor
of such a system admits a parameterization by a continuous or Hélder continuous map of the unit

interval.

Asrettomaisti viritettyjen kiintojoukkojen parametrisoituvuus

Tiivistelma. Asreton iteroitu funktiojirjestelmé on kompaktin metrisen avaruuden kutistus-
kuvausten numeroituva kokoelma. Téssé tyGssd tutkimme riittdvid ehtoja sille, ettd tdllaisen jér-
jestelmén kiintojoukko voidaan parametrisoida yksikkovélin jatkuvalla tai Holderin-jatkuvalla ku-
vauksella.

1. Introduction

[terated function systems are among the most standard and canonical methods
in mathematics of producing fractal sets. An iterated function system (abbv. IFS) is
a finite collection F of contraction maps on a complete metric space X. Hutchinson
[Hut81| showed that for each IFS F, there exists a unique nonempty compact set
K C X (called the attractor of F) such that K = (J,cr#(K). The similarity

dimension of an IFS F is the unique solution to the equation

(1.1) Yr(t) =) Lip(¢)' =1

peF
where Lip(¢) denotes the infimum of all L > 0 for which ¢ is L-Lipschitz. Here and
for the rest of the paper we only consider nondegenerate proper contractions, that
is, we always assume that Lip(¢) € (0, 1).

The connection between the similarity dimension of an IFS F and the Hausdorff
dimension of its attractor K was established by Hutchinson [Hut81| who showed that
if F is an IF'S of similarities on R™ satisfying the open set condition, then dimy(K) =
s-dim(F). Recall that a similarity in R™ is the composition of a dilation and an
isometry. An IFS F on R” satisfies the open set condition (abbv. OSC) if there exists
a nonempty open set U C R" such that ¢(U) C U for all ¢ € F, and p(U)N¢' (U) = ()
for all distinct ¢, ¢’ € F. Many well known fractals (such as the standard Cantor
set, the Sierpinski carpet, the von Koch snowflake, etc.) are attractors of IFS of
similarities on the plane with the OSC. See also [Sch94, Sch96, FF15, FHOR15] for
the necessity of the OSC.

A natural question in the theory of Dynamical Systems is the regularity of an IFS
attractor and whether it admits “good” parameterizations by the unit interval. Hata
|[Hat85| showed that if the attractor K of an IFS is connected, then it is the image
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of a curve, that is, the image of [0, 1] under a continuous map. The second named
author and Badger [BV21| improved Hata’s result by proving that if the attractor K
of an IFS F is connected, then it is the image of [0, 1] under a 1-Hélder continuous
map for any o > s-dim(F). Under the extra assumptions that X = R" and that F is
an IFS of similarities on R™ satisfying the OSC, Remes [Rem98| showed earlier that
the attractor is the image of [0, 1] under a é—Hélder continuous map where one can
actually have oo = s-dim(F). Remes’ result is sharp in that there exists no é—Hélder
parameterization if o < s-dim(F). The assumption X = R" in Remes’ theorem can
be replaced by the assumption H¥4™) (K) > 0 [BV21]. Here and for the rest of the
paper H® denotes the Hausdorff a-dimensional measure.

In their celebrated paper, Mauldin and Urbanski [MU96] (see also [Mau95]) fur-
ther extended Hutchinson’s theory and introduced the notion of an infinite iterated
function system (abbv. IIFS); i.e., an infinite countable collection of contractions
on a compact metric space X. Ever since their introduction, IIFSs have played
a major role in fractal geometry, geometric group theory, and number theory; see
[MU99, HU02, MU02, UZ02, KZ06, MSU09, JR12, SW15, RGU16, BF23| and the
references therein.

Here, unlike in most literature, we do not assume that contractions are conformal
or even injective. Given an IIFS F = {¢;: i € N} on a compact metric space X, we
define the attractor of F by

K= U ﬂgbilo---ogbin(X).

(in)CNn=1

The attractor K in the infinite setting may not be compact. Moreover, although
K = U,ecr ¢(K), there may exist multiple nonempty subsets of X with this property.
If, additionally, each ¢; € F is injective, and if each x € X is contained in at most
finitely many ¢;(X), then

(1.2) K= ﬂ U ¢y, 00 ¢y (X).

nENiy,...in€N

In the infinite setting, the auxiliary function ¥ # in (1.1) is either infinite for all
t > 0, or it is continuous and strictly decreasing on an interval (a, co) for some a > 0.
Hence, unlike in the finite case, equation (1.1) may not have a solution. We define
the similarity dimension of an IIFS F as

s-dim(F) :=inf{t > 0: ¥#(t) < 1}.

By Fatou’s Lemma, the infimum above is in fact a minimum. As in the finite case, if
F is an IIFS of similarities on X = U C R where U is a bounded domain, satisfying
the OSC, then the Hausdorff dimension of the attractor K is equal to s-dim(F)
[MU96, Corollary 3.17].

The purpose of this paper is to study the parameterizability of ITF'S attractors. In
the infinite case an interesting dichotomy appears. On the one hand, in Proposition
2.1 we show that if the attractor K of an IIFS F is a continuum and if s-dim(F) = 1,
then K is a line segment; see also [MMUO1| for a similar phenomenon. On the
other hand, both Hata’s theorem and the Badger—Vellis theorem are false when the
similarity dimension is greater than 1, even if it is arbitrarily close to 1.

Theorem 1.1. (1) For each € > 0, there exists an IIFS of similarities on
the unit square [0,1]* having the OSC such that s-dim(F) < 1 + ¢, and its
attractor is a continuum but not path connected.
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(2) For each € > 0, there exists an IIFS of similarities on the unit square [0, 1)*
having the OSC such that s-dim(F) < 1+ ¢, and its attractor is the image of
a curve, but not the image of a Hélder curve.

While the first example may not be too surprising, the second example has the
additional property that for every two points there exists a Lipschitz curve in the
attractor that connects them. A common theme in both these examples is the exis-
tence of a “bad 1-skeleton” inside the attractor which is not the image of a curve (in
the first case) or not the image of a Holder curve (in the second case). If such bad
structures are absent, we show that the attractor admits good parameterizations.

Theorem 1.2. Let F = {¢;}ien be an IIFS on a compact metric space so that the
attractor K is compact, lim;_,, Lip(¢;) = 0, and there exists a curve v: [0,1] — K
whose image intersects ¢;(K) for all i.

(1) The attractor K is the image of a curve.
(2) If v is L-Hélder for some s > 1, then for each o > max{s,s-dim(F)} the
attractor K is the image of a é—Hélder curve.

We leave it as an open question whether in the second part of the theorem one
can choose o« = max{s,s-dim(F)}; this is unknown even for IFSs. Furthermore, in
the case that F is finite, the existence of the curve v in both parts of Theorem 1.2
is guaranteed by [BV21, Theorem 1.1]. Finally, the condition lim; . Lip(¢;) = 0 is
necessary for Theorem 1.2; see §3.1.

The construction of the two examples of Theorem 1.1 is given in Section 3 and
we prove Theorem 1.2 in Section 2.

1.1. Symbolic notation. Here and for the rest of the paper, given a countable
(infinite or finite) set A and an integer n > 0, we denote by A" the set of words
formed from A of length n, with the convention A° = {¢} and ¢ is the empty word.
We denote A* = |, -, A" and by A", the set of infinite words formed with letters
from A. Given w = iyiy- -+ € AY we denote w(n) = i - - -4, the truncated sub-word
of w.

Given an IFS or IIFS F = {f;: i € A} and a finite word w = 4y ---4,, € A", we
denote the length n of w by |w| and

Jw=fiio---0fi,.

Given quantities z,y > 0 and a constant a > 0 we write © <, y if there exists a
constant C' depending on at most a such that x+ < Cy. If C' is universal, we write
xSy Wewrite x ~, yif v <,y and y <, .

2. Parametrizations of infinite IFS attractors

In this section we prove Theorem 1.2. We start by proving the simple fact that
if an ITF'S has similarity dimension equal to 1 and the attractor is a continuum, then
the attractor is a line segment. This was shown by Hutchinson for finite IFS of
similarities on Euclidean spaces [Hut81, Remark 3.4].

Proposition 2.1. Let K be the attractor of an infinite or finite IF'S F on a
compact space. If K is a continuum and if s-dim(F) = 1, then K is isometric to a
closed line segment.
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Proof. Write F = {¢;: i € A}. We first claim that H'(K) < diam K. Fix § > 0
and let n € N such that (diam K') Lip(¢,,) < § for all w € N™. Since ¥#(1) < 1,

MHi(K) < ) diam¢,(K) <diam K Y Lipg;, - Lip ¢,

weAT i1, yin EA

= diam K (¢#(1))" < diam K

and the claim follows by taking 6 — 0. Hence, K is the Lipschitz image of [0, 1]
[AO17, Theorem 4.4]. Fix p,q € K such that d(p,q) = diam K and fix an arc v C K
with endpoints p, q. Note that

diam K = H'(K) > H'(y) > diam v = diam K.

Therefore, K = . For each z,y € v denote by v(x, y) the subarc of v with endpoints

x,y.
Let z,y € v such that z is between p and y. Then,

diam~y < d(p, z) + d(z,y) + d(y,q) < H'(v(p,2)) + H' (v(z,y)) + H (v(y, )
= H'(y) = diam 1.

Therefore, H!(v(z,y)) = d(z,y) for all z,y € v, which yields that K is isometric
to the line segment [0, diam K. O

The rest of Section 2 is devoted to the proof of Theorem 1.2. Henceforth, we
assume that we have an ITFS F = {¢1, ¢o,... } on a compact space X so that K is
compact, lim; .., Lip(¢;) = 0, and there exists a curve v: [0,1] — K whose image
intersect each set ¢;(K). We make some standard reductions.

First, if K is a point, then the claim of the theorem is trivial. Therefore, we may
assume that K is nondegenerate and, rescaling the metric, we may also assume that
diam(K) = 1. Second, since lim;_,, Lip(¢;) = 0, we may assume that

Lip(¢1) = I?E%X Lip(¢;).

Third, by traversing the image of v backwards if necessary, we may assume that

~v(0) = ~(1). For any point p in the image of v, by reparameterizing v, we may assume

that v(0) = (1) = p. Moreover, for any p, g in the image of 7, by reparameterizing

v, we may assume that there exists [a,b] C [0, 1] such that y(a) = p and (b)) = q.
Here and for the rest of this section, given w = 4115 .. .1, € N*, we denote

L, = Lip(gbil) Lip(qbiz) . Llp(¢ln>
with the convention L. = 1. Note that in general, L,, > Lip(¢y,).

2.1. Path connectedness of IIF'S attractors. The first step in the proof of
Theorem 1.2 is the following lemma which shows that K is pathwise connected.

Lemma 2.2. Let w € N* and z,y € ¢, (K). There exists a continuous map
f:10,1] — ¢, (K) such that f(0) = z and f(1) = y. If v is i-Hélder for some
s > s-dim(F) and with Holder constant Hy, then f can be chosen to be -Holder
with Holder constant H Sy, (s).s,Ho, Ly Luw-

Proof. Clearly, we may assume that x # y. Moreover, it suffices to assume that
w = ¢, and that there is no j € N so that z,y € ¢;(K), as otherwise we could pass to
the longest common word. By the Kuratowski embedding theorem, we may further
assume that K is a subset of /.
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We construct a sequence of continuous maps (f,: [0,1] = loo)n>0, sequences of
finite collections of closed nondegenerate intervals (%,)n>0, (€,)n>0 in [0,1], and an
injection w: |J,,~o &, — N* with the following properties.

(P1) For each n € N, intervals in %,,Ué&, intersect only at endpoints and the union
of all these intervals is [0, 1].

(P2) For each J € &, there exists unique S € %, such that S C J. Conversely,
for each S € %,,.1 \ %, there exists unique Jg € &, such that S C Jg.

(P3) For any n > 0 and any J € &4, there exists unique J' € &, such that
J C J'. Moreover, there exists u € N* such that |u| > 0 and w(J) = w(J')u.

(P4) For each n > 0 and J € &,, there exist distinct i, € N such that f,|J is a
linear map mapping the left endpoint in ¢y, (/) and the right endpoint in
Pw ()3 (K)-

(P5) For each n > 1, and each S € %, there exists a closed nondegenerate interval
I and a linear map (: S — [ such that

fn+1|S = fn|S = gbw(Js) © (’7|[> ©
(P6) For each n > 0, f,,(0) =z and f,(1) = v.
(P7) For each n > 0, and each J € &, || fn — fat1lls00 < 2Lw(s)-
Before the construction of (f,,)n, (Bn)n, (én)n, and w we remark that (P3) and
a simple induction yield that

(P8) For alln € Nand all J € &,, |w(J)| > n.

The construction is done in an inductive fashion. Define & = {[0, 1]}, %, = 0,
w([0,1]) =€, and fy: [0,1] — £ to be the linear map with f,(0) = z and fo(1) = v.
Property (P4) is immediate while the rest of the properties are vacuous.

Assume now that for some integer n > 0 we have defined a continuous map
fn:10,1] = £, collections 4, &, in [0,1], and an injection w: J,_, &, — N* with
properties (P1)—(P7). The new collections of intervals will be

@n—i—l ,@ ) U '@n—‘rl n+1 U éﬂn—i—l
JEE JES
If S € A, then we set f,11]S = f.|S.

Fix now J € &, and write J = [t,s]. By (P3) there exist distinct i,j € N such
that |w(J)| > n, fu(t) € dw)i(K), and f,(s) € dw J)j( ). There also exists an
interval I = [a,b] C [0,1] such that vy(a) € ¢;(K) and v(b) € ¢;(K). We consider
three possible cases.

Case I: Suppose that ¢w(s)0y(a) = f(t) and dw(yoy(b) = fu(s). Set By (J) =
{7}, €1(J) =0, and fri1|J = dw(sy o (7|I) o ¢ where ¢: J — I is the orientation
preserving linear map.

Case II: Suppose that ¢w(y0v(a) # fo(t) and ¢w(yyov(b) = fu(s). Let z € (¢, 5)
and let u € N* be the shortest word such that there exist distinct 7,5 € N with
Pw(s) © Y(a) € dw(nui(K) and fo(t) € dwisy;(K). By (P4) we have that |u| > 1.
Set &,11(J) = {[t, 2]}, Bni1(J) = {[z,s]}, and w([t,z]) = w(J)u. Define f, 11
on J continuously so that f,i1][z,s| is as in Case I, and f,11][¢, 2] is linear with
fn-‘rl(t) = fn(t) We work Simﬂaﬂy if gbw(]) © y(a) = fn(t) and gbw(]) © ’Y(b) 7& fn(s)

Case I1I: Suppose that ¢w () 0y(a) # fu(t) and ¢y oy (b) # fuls). Let t < z <
w < s and set &,.1(J) = {[t, 2], [w, s]}, Bni1(J) = {[z,w]}. For the definitions of
w([t, z]), w([w,s]), and f,+1|J we work as in Cases I, II.

Properties (P1)-(P7) are easy to verify. Since w is injective on | J,_, &k, then by
(P3) and the fact that w is injective on &,,1(J) for each J € &, we have that w is
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injective on UZ;Lé &%. Finally, continuity of f,.; follows from the facts that f,,; is
the same as f, outside of intervals in &, that f,,1|J is continuous for all J € &,,
and that f,,1|0J = f,]|0J for all J € &,. This completes the inductive construction.
From (P5) and (P7) we have that (f,,),en converges to a continuous map f: [0, 1]
— . Fix J € |50 &0 By (P5) we have that for all S € |-, %, with S C J,
f(S) C ¢win(K). By this fact, by (P3), and by (P4) we have that for all m > n,

sup dist(f (1), dw(r)(K)) < max 2Ly () < 2Lwn L.
teJ J'cJ
J' €6m
Since K is closed, it follows that f(J) C ¢w(s) (/). This proves the first part of the
lemma.

Assume now that v is ——Holder for some s > s-dim(F) and with Holder constant
Hy. Then, ¢x(s) € (0,1). Set & = Unso &n and B = J,5¢ B, For each J € &, set

M(J) = Z (LW(J/))S.
J'e&
J'cJ

By injectivity of w and (P3) we have that for each J € &

(L))" S M) £ D (Lwir)” = Z (Z LS) 1 —W@Ljr)() )

wEN* n=0 €N

The only difference in the construction in this case is that we require that for all
SePAandall Je&

5] = (Lw(ss))?/M([0,1]) and | J] = M(J)/M([0, 1]).

To see why this is possible, note that if J € &, and %,,1(J) = {S} for some n > 0,
then

8

7] = W“ +ZMW 1> =Is|+ > 171

J'€6ni1(J)
J’CJ

We claim that the map f defined above is %—Hblder continuous with Holder
constant depending only on 1 =(s), L1, s, and Hy. To show the claim, fix p,q € [0, 1].
Clearly, we may assume that p # ¢. There exist n € N and J € &, so that p,q € J
and n is maximal. Proving the claim falls to a case study.

Case 1. Suppose that p € J; and ¢ € J, where Jy, J € &,41(J) are distinct. On
the one hand

p—al = S| Zswrs) (Lw(n)®
while on the other hand, by (P5) and (P7), f(p), f(q) € ¢ws)(K), so
d(f(p), f(@)) < Lw(a)-
Case 2. Suppose that p,q € S where S € %,,.1(J). By (P5),

d(f®), £(9) < Lw S| Holp — a'* Ssprisrmy 0 — al'*.

Case 3. Suppose that p € J;\ S and ¢ € S\ J; where J; € &,.1(J) and
S € B,.1(J). There exists integer m > n+ 1 and J' € &, such that p € J' C Ji,
J'NS#0, and if 8" € B,,11(J'), then S’ separates p from ¢. Let z be the unique
point in J'NS. By Case 1 for p, z and Case 2 for z, ¢

d(f(p). f(9)) < d(f(p), f(2)) + d(f(2), (@) Srasartorinn [ —al'*
which completes the proof of the claim. O
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2.2. Parameterizations of IIFS attractors. The second step in the proof
of Theorem 1.2 is the following lemma that allows us to reparametrize v so that
preimages of ¢;(K) have nonempty interior.

Lemma 2.3. Let p be in the image of vy. There exists a map I': [0,1] — K
and a collection of nondegenerate closed intervals {Z,},en with disjoint interiors
such that I' has the same image as v, satisfies I'(0) = I'(1) = p, and for each
n €N, Z, C T"Y¢,(K)). Moreover, if v is t-Hélder with constant Hy, and if
(a,) € ¢ is a sequence of positive numbers, then T' is %-Hélder with constant H <
2V Hy(1 + ||(a,)||1)Y* and for each n € N, |L,,| = an(1 + ||(an)|l1)

Proof. We may assume that v(0) = (1) = p. For each n € N fix a point
T, € v (¢ (K)) C [0,1]. Tt is possible that for some n # m we have x,, = z,,. Let
{pr}rep be an enumeration of the set {,},en wWhere B is either a finite set, or N.
For each k € B, define Ay, = {n € N: z,, = p;.}.

For the first claim, fix a decreasing sequence (b,),en of positive numbers that
converges to 0. Identify R?® with C x R and define the set

E={oyx[01)ulJ [J {te*: t €[0,b,]} x {ps}) C R®.

keB neAyg

Since b, — 0, it is easy to see that F is closed. Moreover, there exists a continuous
increasing map 7: [0, 1] — [0, 1] such that n(0) = 0,

maxb, <7 ( min }|pj —pk|) forall k € B
-1

neAy
and

b, <1 ( min |e2™/™ — 62’”/”|> for all n € N.

We claim that there exists a continuous w: [0, 1] — [0, 1] with w(0) = 0 such that
for all z,y € E, there exists a curve o: [0,1] — E such that ¢(0) =z, o(1) = y and
the diameter of its image is at most w(|x — y|). The proof of the claim is a simple
case study.

If 2,y € {0} x [0,1], then use the line segment [z, y].

If 2 = (te*™/",p;) and y € {0} x [0, 1] for some t € [0,b,], n € Ay and k € B,
then use the union of line segments [z, (0, px)] U [(0, px), y].

If = (t,€2™/", ;) and y = (toe? /™, p;,) for some distinct t1,ty € [0,b,], n € Ay
and k € B, then use the line segment [z, y].

If 2 = (t,*™/™, pi) and y = (t2e?™/™, py,) for some ty,ty € [0,b,], n,m € A, with
m < n, and k € B, then use the union of line segments [z, (0, px)] U [(0,pr),y]. Note
that

|z —y| 2 |ty — to| + min{ty, to}|e>™/™ — 77|
> |t — to| + min{ty, to 3 (min{t;, to})
while
diam(c([0,1])) < t1 + to < |t; — to] + min{ty, t2}.
27i/n

Finally, suppose that x = (t;e*™/™ p;) and y = (tze
k,je B, me Ay, neAjt €l0,by,], and t; € [0,b,]. Then,

,pj), for some distinct

lz —y| 2 [px — ps| + [t — Lo
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and if o is the union of line segments [z, (0, px)] U [(0, px), (0,p;)] U [(0,p;), 9],
diam(o([0,1])) <ty +t2 + |pr — pj| < [t — t2| + min{ty, t2} + [pe — pj
S |z =yl +n(lpx — pyl)
and the proof of the claim is complete.
Thus, F is connected and locally connected, and by the Hahn-Mazurkiewicz

Theorem [HY61, Theorem 3.30]|, there exists continuous surjection g: [0,1] — E.
Note that for each n € N, the preimage

g_l({te%i/”: t €[0,b,]} x {z,})

contains a nondegenerate closed interval. Define now 7: E'— K by 7|{0} x [0,1] =~
and for each n € N and t € [0, b,], 7(te*/™, x,)) = v(x,). Then 7 is continuous and
I' :== 7 o g satisfies the conclusions of the lemma.

For the second part of the lemma, assume that ~ is %—Hélder with constant Hy,
and assume that (a,) € ¢! is a sequence of positive numbers. Define E as above
replacing b, by a,. Then,

HU(E) =1+ ||(an)]l: < 0.

Therefore, by [AO17, Theorem 4.4|, there exists a Lipschitz surjection g: [0,1] — E
with constant speed equal to 2H!(E). Thus, for each n € N, g~'({te*™/": t €
[0,a,]} x {x,}) contains a closed subinterval of length

(1 + [l(@n)ll1) " an.

Define 4 as above and note that 7 is %—Hélder with constant Hy. Setting [' := o g,
we have for all z,y € [0, 1]

d(T(x),T(y)) < Holg(x) — g()[V* < 2 Ho(1 + |[(an)|[)*|z —y7>. O
We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Fix pg € K. We construct a sequence of continuous
maps (f,: [0,1] = K),>0, sequences of collections of closed nondegenerate intervals
(A )n>0, (Fn)n>o in [0,1], and a bijection w: (J,~, -4 — N* with the following
properties.

(P1) For each n > 0, intervals in .4;, U .%, intersect at most on endpoints.

(P2) For each n > 0, each I € A, and each i € N, there exists I’ € .4;,,; contained
in the interior of I such that w(I') = w(I)i. Conversely, for each n > 0 and
each I' € 4,1, there exists [ € .4, and i € N such that I’ is contained in
the interior of I and w(I’) = w(I)i.

(P3) For each n > 0 and each I € .4;,, there exist exactly two intervals J, J' € 7,4
contained in I. Conversely, for each n > 0 and each J € £, \ .#,, there
exists unique interval I; € 4, such that J C I;.

(P4) Iftn > 1,1 € A, 4 and J,J € .7, are contained in I, then there exists an
orientation reversing linear map (;: J' — J, such that f,|J" = (f.|J) o (.
Moreover, f,|J = go¢ where g: [0, 1] = ¢w(p) (/) is the map from Lemma 2.2
and ¢: J — [0,1] is an increasing linear map.

(P5) For each n > 0 and each I € .4;, f,|I is constant and its image is in ¢w (1) (K).
Moreover, fn([) - fn+1(I> - ¢W(I)(K)

(P6) For each n € N, if = is not in the interior of some I € A4, then f,.i(z) =
fule).

(P7) For each n € N, f,(0) = f,.(1) = po.
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For the construction, apply Lemma 2.3 and obtain a map I': [0,1] — K and a
collection {Z;: i € N} of closed nondegenerate intervals in [0, 1] such that for each
i € N, T'|Z; is constant and its image is in ¢;(K). The proof of the claim is done in
an inductive fashion.

For n =0, let A5 = {[0,1]} and % =0, let fy: [0,1] — K be the constant map
po, and let w([0, 1]) = . Properties (P1), (P5) and (P7) are trivial while the rest of
them are vacuous.

Assume now that for some n > 0 we have defined a continuous f,: [0,1] — K,
collections of intervals .4;,, .%,, and a bijection w: .4, — N" satisfying assumptions
(P1)~(P7). The new collections of intervals will be

Ini1 = I U U Ina(l), M= U N (1

Ie, Iety
We set
fn+1|[07 1] \ U% = anO? 1] \ U%

Fix now I € .4,. By (P5), there exists ¢ € N such that f,(I) € ¢wri(K).
Reparameterizing I', we may assume that I'(0) € ¢;(K) and 0 is the left endpoint
of Z;. Write I = [a,b], and let @ < a1 < as < b. Let &: [a1,a2] — [0,1] be an
increasing linear map and let (;: [a,a1] — [0,1] and (}: [az,b] — [0,1] be increasing
linear maps. Set

N (I) = {51 (Z;): 5 €N} and S, (1) = {[a, ai1], [az, 0]}

and for each j € N define w(&;1(Z;)) = w(I)j.
Let g: [0,1] = ¢w()(K) be the map given from Lemma 2.2 that connects f,(I)
to dw(n)(I'(Z;)) and define

(1) fasilla,a1] = go G,

(2) fatllar, as] = dwiny o T 0 &,

(3) futillaz,b] = go ho () where h: [0,1] — [0,1] with h(z) =1 — x.

Properties (P1)—(P6) are clear from design and the properties of I'. Note that
for all I € .A;, the function w: A, 1(I) — {w(l)i: i € N} is bijective. Therefore,
w: A1 — Nl s a bijection. Finally, since 0,1 are not contained in the interior
of any I € A;, by (P6), fni1(0) = furi(1) = po-

It remains to prove continuity of f,41. Fix x € [0,1]. We only show continuity
of f,+1 at = from the right. To this end, fix a sequence x,,, C (z, 1] that converges to
x and consider the following three cases.

Case 1. Suppose that for all m sufficiently large, z,, € [0,1] \ U-#,. Then
frt1(zy) converges to f,i1(x) by (P6) and continuity of f,.

Case 2. Suppose that for all m sufficiently large, x,, € I for some I € .4;. Then,
fax1(xy,) converges to f,1(x) by design.

Case 3. Suppose that for for all m sufficiently large, there exists I,, € .4, such
that z,, € I, and that the collection {I,,}, is infinite. Fixing ¢ > 0, there exists
ip € N such that for every i > ig, L; < €/2. Since the collection {w(1,,)}, is infinite,
there exists V € N such that for every m > N, some character of the word w(1,,) is
larger than 7. It follows that Lyw(,) < €/2 for every m > N. By continuity of f,,
we may further assume that for every m > N, d(f,.(x), fu(zm)) < €/2. By (P5), for
every m > N,

d(fn+1(:13), fn-&-l(xm)) < d(fn@), fn(xm)) + d(fn(xm)7 fn—i—l(xm)) <€
This completes the induction and the proof of (P1)—(P7).
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By (P5) and (P6),
anJrl - fn”oo S sup an fn+1HIoo S sup L w(I) S L?
Ien,

Ie Ay,

so the maps f,, converge uniformly to a continuous map f: [0,1] — K. By (P5) and
the bijectivity of w, we have f([0,1]) N ¢, (K) # 0 for all w € N*. Therefore, for all
re€ KandnéeN,

dist(z, f(]0,1])) < iéll\f]’n diam ¢,,(K) < LY.

Hence, K C f([0,1]) and it follows that f([0,1]) = K. This proves the first part of
Theorem 1.2.

For the second part of the theorem, assume that v is i—Hélder for some s >
s-dim(F) and with Holder constant Hy. Define for all w € N*

Working as in the proof of Lemma 2.2, we have that for all w € N*,

M,y =3 (L) (1= ¢7(s))
For each i € N set a; = M; > 0 and note that ||(a;)||: = < 1. We apply on

E ~S, 1/1]:( )
each stage of the construction, the second part of Lemma 2.3 with a; = M; and we
may assume that I is %—Hélder with constant H S,y ,(s),0, Ho-
The other change in the construction, is that we require that if n > 0, I € A4,

and J € Z,11(1), then
[I| = M "My and |J| =M " (Lwmn)’.
To see why this is p0851b1e, fixn>0and I € .4;,. By Lemma 2.3
1] = M Moy = 2MH (L) + M (L) + D M Mo

€N

D YA A IN R0 Fa S P!

JE fnt1(I) JeMr1(I)

We claim that the limit f of the maps f, is %-Hélder continuous. To this end,
fix distinct p, g € [0,1] and let n > 0 be the maximal integer such that there is some
I € A, with p,q € I. Denote by J, J' the two elements in _#,,1([), by I’ the closure
of I'\ (JU.J"), and by By the closure of the set of points in I which are not contained
in any interval in A;,41 (1) U _Z,41(1). The proof of the claim falls to a case study.

Case 1. Suppose that p,q € J or p,q € J'. By (P6) and Lemma 2.2,

d(f(p), f(q)) = d(g o C(p), g0 () Svrs)Lrstte LwnlJ]™*Ip — q|'*

f,zp;(s) s,L1,Ho |p - Q|1/s

Case 2. Suppose that p and ¢ are separated by the interior of one of I’, J, J'.
Then [p — q| Zswr(s) (Lw(n))® while, by (P5), f(I) C ¢w)(K) and

d(f(p), (@) < Lw()-

Case 3. Suppose that p,q € B;. By (P6) and design of f,.1, f|Br = fur1|Br =
¢w(ry © I' 0 &;. Therefore, by Lemma 2.3 we have

d(f(p), F(@)) Stosvres) Lwn 17510 — a1"* Showrs)s 10— al'”.

~os,F(
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Case 4. Suppose that p € I and g € I, where I}, I, € A;,1(I). By maximality
of n, we have I} # I. Let a € I; and b € I, such that |a — b| = dist(/[y, I3). Then
the pair p, a satisfy either Case 1 or Case 2, with [ replaced by [;. Similarly for ¢, b.
Moreover, a,b € By, and hence satisfy Case 3. Therefore, by triangle inequality,

d(f(p>7 f(q)) 5¢F(5),57H07L1 ’p - Q|1/s~

Case 5. Suppose that p € I for some Iy € A;,,1(I) and q € B;. Let a € I} be
such that |a — ¢g| = dist(1,q). Note that points a, p satisfy one of Case 1 or Case 2
(with I replaced by I;), while points a, ¢ satisfy Case 3. Therefore, by the triangle
inequality,

d(f(p)a f(Q)) Sw}‘(s),S,HO,Ll |p - Q|1/S'

Case 6. Suppose that p € JU J' (say J) and ¢ € I'. Let a € J such that
la — q| = dist(J,q). Note that points a,p satisfy Case 1, while points a,q satisfy
Case 3 or Case 5. Therefore, by the triangle inequality,

d(f(p>v f(q» STZJI(S),S,HO,Ll ’p - Q|1/s‘ 0

3. Examples of IIFS

In this section we provide three examples of IIFS. In §3.1 we show that the
condition lim,, ., Lip(¢,) = 0 is necessary in Theorem 1.2, in §3.2 we prove Theo-
rem 1.1(1), and in §3.3 we prove Theorem 1.1(2).

3.1. An IIFS without vanishing Lipschitz norms. For this example we use
complex coordinates. For each n € N define a contraction ¢, : B2 — B2 on the closed
unit disk B? by

dn(2) = e L(Re(2) + 1).
Note that Lip(¢,) = 1/2 for all n € N, and let F = {¢,,: n € N}.
Set G = {te’+ : n € N,t € [0,1]}; see Figure 1 below for the first generation of

images of the system used in this section. Note that the figure shows only the images
of finitely many maps in the family, the images in fact accumulate to the real interval

0, 1].

Figure 1. Attractor of IIFS of §3.1.

We claim that G is the attractor K of the IIF'S F. Note that for all n € N we
have ¢,(B?) = ¢,(G). Therefore, ¢, (B?) = ¢,,(G) for all w € N*. Moreover, it is
easy to see that

U (bn(]B?) =G,

which yields that K C G. For the opposite inclusion, fix x € G. There exists

ni € N such that z € ¢, (B?). Assume now that for some m € N we have defined a
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word w € N™ such that z € ¢,,(B2) = ¢,(G). Since G = |J, . ¢n(B2), there exists

nm+1 € N such that © € ¢yp,,,, (B?). It follows that there exists an infinite word
w = nyny - € NN such that x € (", ey Pnr-n, (B2) which yields that G C K.

To complete the example, note that there exists a curve 7: [0,1] — K (namely
the constant curve with image the origin) whose image intersects every ¢, (K), and
the attractor K is a continuum but it is not locally connected.

3.2. An IIFS where the attractor is a continuum but not path con-
nected. Fix s > 1 and fix M € N such that M > max {45%1, 7}. For each n € N
let

1+ MMM+ 1)
in = M+1
Note that a, € (0, 1] for each n, that a, is strictly decreasing, that a; = 1, and that
for all n € N

and b, = M "(ap, — apy1 — M™").

M
2M +1
The construction of the IIFS F is done in three subfamilies

-F = {¢n,i}n,i U {Tn,i}n,i U {Un}n-
First, for n € Nand i € {1,..., M"}, define ¢,,;: [0,1]* — [0, 1]* by
Oni((7,y)) = (an — M™", M7"(i = 1)) + M™"(z,y).
Second, for n € N and i € {1,..., M"}, define 7,,;: [0,1]> — [0,1]* by

an—an+1—M_”:< > - M > M

Tni((x,y)) = (an - M= (i— 1)bn,0) + b, (z,y) if nis even,
Tni((2,y)) = (an - M= (i—1)b,,1— bn) + b, (z,y) if nis odd.

Third, for i € {1,..., M + 1}, define o;: [0,1]* — [0,1]* by

oi((x,y)) = (O, AZ_J:I) + ﬁ(m,y)

[ T 1]

[T T T T 1]

aj

]
]
]
n
]
]
]

T

EEEH
_‘_‘_

[T T TTT]

Figure 2. First iteration of IIF'S of §3.2.
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See Figure 2 for the first generation of images of the system used in this section.
Note that this figure shows only finitely many of the first generation images, and the
images in fact accumulate to the boxes along the left edge of the square.

Using the definition of M we now compute

oo M™ 0o M™ M+1
ZZLIP ¢nz +ZZLIP ’7'7” —|—ZLlp Un
n=1 i=1 n=1 i=1

_ ZM(I—s)n + ZMnbfL + (M+ 1)1_

< 2 n 1
=M1 (Mt 1)

Therefore, the similarity dimension of F is no more than s. We are now ready to
prove the first part of Theorem 1.1.

Proof of Theorem 1.1(1). Define K, = [0, 1] and for each m € N define K,
User f(Km-1). By (1.2), (Kn)men is a nested family of sets with K = (0, ., K
Thus in order to show that K is a continuum, it suffices to show that each K,, is a
continuum.

To show compactness, we proceed by induction. The base case m = 0 is trivial.
Suppose now that K, is compact Let (px) be a sequence in K,,;; converging to
some p = (z,y) € R% If & < 537, then for all k large enough, p;, € |J, 0(K,,,) which
is compact. If x > then there exists a finite set 7' C F such that for all k large

then

< 1.

2M 1
enough, p;. is contained in Ufe]-" f(K,,) which is compact. Finally, if z =
p € U, 0i(Ky,). In either case, p € Kypp1.

Connectedness is also shown inductively. The case m = 0 is trivial. Suppose now
that for some m > 0, the set K, is connected. Let

2M 1

2M—1
L= U O'Z'(f(m)7 R = Km+1\L U¢nz UUTnz
=1 n,%

Note that L is connected since for every i € {1,...,2M — 2}
0i+1((1,0)) € 0i(Kp) N 031 (Kp)

and each o,;(K,,) is connected by the inductive hypothesis. We also claim that R is
connected. This follows from the fact that sets 7, ;(K,,) and ¢, ;(K,,) are connected
and from the fact that for all n € N

Oni+1((1,0)) € Gni(Kim) NP1 (Kim),
Tn,i-i-l(( )) S Z( ) anH—l(K )7
T, ((0,0)) € Toarn (Kim) N dngr 1 (Kim),
G017 ((0,0)) € 1 (Kin) N G aan (Kim).-

Therefore if we were to have some partition K,,,; = AU B by disjoint nonempty
open sets A, B, we must have that A = L or B = L. However, R is not a closed set,
as it is disjoint from {ﬁ} x [0,1] but its sequential closure contains (ﬁ,O).
Thus, K,, 1 is connected.

To finish the proof, we show that there is no path in K; connecting p = (ﬁ, 0)
to ¢ = (1,0). Since both of these points are in K, and K C K; the latter implies
that K is not path connected. To this end, assume for a contradiction that f =
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(f1, f2): [0,1] — K is a continuous map with f(0) = p, f(1) = ¢q. By design of K,
for any n € N

(1) for any ¢ € [0, 1] with
T T2 < A < g 2T oM

we have that fo(t) < (2M)~2" and
(2) for any t € [0, 1] with

1 +272n71 < fl(t) < 1 _'_27271 _ M72n71

2M—1 2M—1
we have that fo(t) > 1 — (2M)~2"" L.
It follows now that f, (and consequently f) is not continuous at ¢ = 0. O

3.3. An IIFS where the attractor is the image of a curve but not the

image of a Holder curve. Fix s > 1 and fix an even integer M > max{10, 73%1}.
For each n € N let

1 -1 _ —1\n
Mmlog(n+ 1) M +2

A simple calculation shows that for all n € N, b,,.1 < b, — 2a,, < b,. Additionally,
for each n € N let V,, be an integer such that

Qa;}rl(bn —ap —bpy1) <N, < 4a;}r1(bn —ap — bpy1).
The construction of the IIFS F is done in three subfamilies
F =A{bnitni U{Tnitni U{c}.
First, for each n € Nand i € {1,..., M"} define ¢,: [0,1]> — [0, 1]* by
Oni((z,y)) = (bn — an, (1 — Day,) + an(z,y).
Second, for n € Nand i € {1,...,N,} define 7,,;: [0, 1] — [0, 1]* by

Tuil(@,9) = (buga + (= )=t ) 4 Bomtgtos (g, ),
Third, we define o: [0,1]> — [0, 1]? such that

o((z,y) = 575, ).

See Figure 3 for the first generation of images of the system used in this section.
Note that this figure shows only finitely many of the first generation images, and the
images in fact accumulate to the box in the bottom left corner of the square.

Using the definition of M we compute

oo M™ oo Np
Ur(s) =Y Y (Lip(6n:)° + D> (Lip(7m))* + (Lip(a))*.

n=1 i=1 n=1 i=1

> > bn — Ay — bn—i—l ® 4 ®
— Mn s Nn

2o L (5 ()
< les N les N 45 _
S1—Mi= 1 -M- M

Therefore, the similarity dimension of F is at most s.

1.




Parametrizability of infinitely generated attractors 95

| By i

P3i |
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| IEEEEEEEEEEEEEEEE|

—_— T4

Figure 3. First iteration of IIFS of §3.3.

Lemma 3.1. The attractor K of the IIF'S F is the image of a curve.

Proof. Define Ly, L, to be the bottom and left, respectively, edges of the unit
square [0, 1]°. Define also Ko= [0, 1]*, and for each m € N define Ky, = ez f(Km-1)-

We claim that for every f € F, f(L,UL,) C f(K). Assuming the claim, we note
that the set

E=LyU|Joni(L,)

is contained in K and, working as in the proof of Lemma 2.3, it follows that F is the
image of a curve. Now, by Theorem 1.2(1), it follows that K is the image of a curve.

To prove the claim, we show that L, U L, C K,, for every m € N. By a simple
inductive argument, this immediately implies that f(L, U L,) C f(K) for all f € F.
The proof is by induction on m. Clearly L,UL, C Ky. Assume now that L,UL, C K,,
for some integer m > 0. First,

L=U(w x5 5]) - Qmi(m C Ko

=1

Second,
Ly = U ([bn — an, bn] x {0}) U U ([brs1,bn —an] x {0}) U ([()’ ML—W] % {0})
= | dua(Lo) U mnal L) Ua(Ly) € | F(Kom). .
n=l mt feF

Proof of Theorem 1.1(2). We show that the attractor K of the IIFS F is not
the image of a Holder curve. Assume for a contradiction that there exists o > 1,
H > 0 and a surjection f: [0,1] — K such that for all z,y € [0, 1]

[f(z) = ()" < Hlz —yl.
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For each n € N let i
i=1

Note that the height of each “tower” A, is equal to log(2)/log(n + 1).
Recall that M was chosen even and for each n € N define p,, = ¢, y=((1,1)) and
qn = qbn’%Mn((l, 1)). Following the proof of Lemma 3.1, for each n € N, the vertical

segment [q,,pn] C A,. Moreover, for any n € N, p, is the point of A, with the
highest y-coordinate, and the y-coordinate of ¢, is %log(Q) /log(n 4+ 1). Setting

M™

B,= |J onilK),

i=1Mn41

we have B, NK \ B, = {¢,}. Given that B, is connected, there exists for each n € N
an interval I, C [0, 1] such that

It follows that the intervals I, I5, ... are mutually disjoint and

= . =~ log 2)* 1
1> diam/l,> > H Yp, —q.|% = ( .
- HZ:; o = ; [P = nl 20H Z (log(n + 1))«

n=1

However, the latter series diverges and we reach a contradiction. 0
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