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Abstract

This paper combines two strains in the literature on subgrid-scale parameter-
izations for eddying ocean models to develop six new parameterizations and
test them in an idealized quasigeostrophic model. The first strain develops
nonlinear, Smagorinsky-like Leith scalings for the viscous coefficient based
on reasoning about the turbulent forward enstrophy cascade of geophysical
turbulence. The second introduces backscatter whose amplitude is scaled
to re-inject a portion of the energy dissipated by other parameterizations.
In the new parameterizations developed here the backscatter and viscous
coefficients depend on each other and are set to simultaneously absorb the
forward enstrophy (or potential enstrophy) cascade and backscatter a por-
tion of the dissipated energy. The addition of backscatter to Leith-scaled
nonlinear viscosity improves the simulations at resolutions from 4 km to 24
km by increasing the total kinetic energy and by reducing the fraction of the
total energy dissipation rate associated with the net effect of viscosity and
backscatter. Versions that use biharmonic viscosity to absorb the enstrophy
cascade perform better than versions using a harmonic viscosity, and purely
viscous closures perform better than closures that dissipate both kinetic and
potential energy. Stochastic and deterministic backscatter schemes are devel-
oped, and though similar, the deterministic schemes perform slightly better.
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1. Introduction

Modeling the effects of unresolved length scales in simulations of fluid flow
is crucially important for accurate predictions in many contexts. Smagorin-
sky (1963) developed an early model — a parameterization — based on Kol-
mogorov’s theory of three-dimensional homogeneous isotropic turbulence. In
that theory, the fluid is forced at a large scale, and nonlinear interactions
transfer energy through an inertial range of scales to a dissipation scale where
energy is removed by viscosity. The cascade rate € is the rate of energy trans-
fer, and has dimensions of length squared over time cubed, i.e. L?/T3. (Here
and throughout, density is assumed constant and the total mass is scaled
out of kinetic energy, leaving a ‘kinetic energy’ with dimensions of velocity
squared.) If one assumes that the scale at which viscous dissipation arrests
the energy cascade depends only on the cascade rate € and the viscosity v, di-
mensional analysis predicts that this dissipation scale, called the Kolmogorov
scale, is proportional to (v3/€)'/4. Smagorinsky’s parameterization applies
when the grid scale lies in the inertial range of scales; the parameterization
increases the viscosity v until the resulting Kolmogorov scale is resolved on
the grid.

The behavior of two-dimensional (2D) turbulence is qualitatively different
from that of three-dimensional turbulence: Energy tends to be transferred
from the forcing scale to larger scales, while enstrophy (the square of vortic-
ity) is transferred towards smaller scales. Leith (1996) developed a param-
eterization for 2D turbulence that is conceptually similar to Smagorinsky’s
parameterization, but is based on 2D turbulence theory. The cascade rate
n for enstrophy has dimensions of 773, and the viscous dissipation scale is
proportional to (v3/n)Y/®. Leith’s parameterization applies when the grid
scale lies in the enstrophy inertial range of scales; it increases the viscosity v
until the dissipation scale for enstrophy is resolved on the grid.

The oceans’ aspect ratio and density stratification conspire to make the
large-scale circulation nearly 2D, so Fox-Kemper and Menemenlis (2008) de-
veloped Leith’s parameterization for ocean models. The quasigeostrophic
(QG) approximation is less restrictive and more appropriate than the 2D
approximation, and has its own turbulence theory which replaces the enstro-
phy cascade with a potential enstrophy cascade (Charney, 1971). Bachman
et al. (2017) developed a parameterization in the vein of Leith’s parameteri-
zation, but based on a cascade of potential enstrophy in QG turbulence; to
distinguish this parameterization from the earlier ones, the one based on 2D
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turbulence is called 2D-Leith while the one based on QG turbulence is called
QG-Leith. The performance of these closures in an eddying global ocean
model was explored by Pearson et al. (2017).

Viscous parameterizations, both nonlinear viscosities like the Leith pa-
rameterization and constant biharmonic hyperviscosities (Semtner and Mintz,
1977; Boning and Budich, 1992), tend to dissipate too much energy. The
problem can be compounded by poor numerical resolution of the baroclinic
instability processes that are largely responsible for ocean mesoscale eddy
generation (Barham et al., 2018; Barham and Grooms, 2019). A similar
problem of over-dissipative closures occurs in atmospheric models, and Shutts
(2005) developed a parameterization that re-injects energy to offset the en-
ergy spuriously dissipated by other parameterizations. Shutt’s parameteri-
zation is a backscatter parameterization because it transfers energy into the
resolved scales. Backscatter parameterizations whose primary aim is to mit-
igate the spurious dissipation of energy resulting from numerics and other
parameterizations were further developed in the atmospheric modeling con-
text by Berner et al. (2008, 2009), among others, and were introduced in
ocean modelling by Jansen and Held (2014). The Stochastic Kinetic Energy
Backscatter Scheme (SKEBS) of Berner et al. (2009) was recently adapted
for ocean models by Storto and Andriopoulos (2021).

Instantaneous backscatter occurs in the forward cascade of 3D turbu-
lence even when the mean energy transfer is from large to small scales, and
it also occurs in the forward enstrophy cascade range of 2D and QG tur-
bulence, where the mean energy transfer is very small. Backscatter param-
eterizations that attempt to represent physical backscatter processes have
appeared throughout the turbulence modeling community starting from the
work of Bertoglio (1985) and Leith (1990), and in the context of geophysical
models from at least the work of Mason and Thomson (1992). By 2005,
physical backscatter parameterizations had been developed for atmospheric
models by Schumann (1995) and Frederiksen and Davies (1997), among oth-
ers. Shutt’s backscatter parameterization differs from these in that it is not
a parameterization of a physical backscatter process per se; rather, it uses
backscatter to mitigate spurious dissipation that arises in other parts of the
model. Within the ocean modelling context, a popular approach to parame-
terizing backscatter sets the amplitude of backscatter based on a prognostic
model of subgrid-scale kinetic energy (e.g. Jansen et al., 2015; Klower et al.,
2018; Jansen et al., 2019; Juricke et al., 2019, 2020b). Whether these par-
ticular backscatter parameterizations are explicitly designed to represent a
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physical backscatter process or whether they are designed to make up for the
energetic failings of other parameterizations is not always clear, nor does the
distinction necessarily have a large practical import, since backscatter pa-
rameterizations in practice end up accomplishing, to some extent, both ends.
In contrast, Bachman (2019) developed a backscatter parameterization that
is clearly physical in nature. It ties the backscatter rate to a dissipation
rate, but instead of re-injecting energy to correct spurious dissipation the
backscatter represents a physical process whereby potential energy that is
transferred to unresolved scales via baroclinic instability cascades back to
the resolved scales via the QG inverse cascade.

Backscatter parameterizations can also be categorized based on the func-
tional form of the parameterization: Backscatter parameterizations are either
deterministic or stochastic, or in rare cases, a combination of both. The ear-
liest backscatter parameterizations (e.g. Bertoglio, 1985; Leith, 1990; Mason
and Thomson, 1992) were stochastic. Inspiration for a deterministic pa-
rameterization of backscatter goes back to at least Kraichnan (1976), whose
work inspired Sukoriansky et al. (1996) to develop a parameterization for 2D
turbulence in the form of a negative viscosity combined with a biharmonic
hyperviscosity. In the context of ocean models, Kitsios et al. (2013) and
Jansen and Held (2014) developed deterministic backscatter parameteriza-
tions based on combinations of viscosity and hyperviscosity. The backscatter
scheme described by Shutts (2005) is also deterministic, but is based on the
chaotic dynamics of cellular automata rather than on a negative viscosity.

The goal of this paper is to develop new parameterizations that combine
the Smagorinsky-like 2D- and QG-Leith parameterizations with backscatter
in a theoretically consistent way by building on the basic theory of the 2D and
QG turbulent enstrophy cascade, and to compare a wide range of parameter-
izations in an idealized model across a range of resolutions. The two primary
threads in the theoretical development pursued here, viz. absorbing a down-
scale cascade of enstrophy or potential enstrophy and setting the backscatter
amplitude to re-inject a portion of the dissipated energy, have appeared in
the literature, as have the components of the implementation (harmonic and
biharmonic operators, stochastic backscatter, spatial filters). The practical
effect of combining these two theoretical threads is that the amplitudes of
backscatter and dissipation are set simultaneously, rather than setting the
dissipation coefficient independently of backscatter. The parameterizations
are developed in section 2, and the idealized model results are described in
section 3.
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2. Energetically-constrained Leith parameterizations

The parameterizations developed here rely on quasigeostrophic (QG) the-
ory, but are intended for implementation in primitive-equation ocean models.
To clarify the connection, the QG vorticity and buoyancy-anomaly equations
are recorded here

atw_’_u'vw_fﬂazw_’_ﬁv = Bw+Dw> (1>
Ob+u-Vb+wN?*(2) = By,+D,. (2)

The vertical component of relative vorticity is w = d,v — 9,u = V*) where
u and v are the zonal and meridional components of velocity, respectively,
and ¢ is the QG streamfunction. The gradient V acts horizontally, and w
is the vertical component of velocity. The Coriolis parameter f; is twice the
angular rotation rate of the planet projected onto the local vertical direction,
and f is the meridional gradient of planetary vorticity. The mean buoyancy is
b(z) and the buoyancy frequency is N(z) = (9,b)'/?; the buoyancy anomaly
is related to the streamfunction via b = f,0.¢. The terms B, ; and D,
represent backscatter and dissipation terms, respectively.

The vorticity and buoyancy-anomaly equations can be combined into a
single equation for QG potential vorticity

8tq+u~Vq+ﬁv:Bw+Dw+82{%(Bb+Db)} (3)
where )

is the QG potential vorticity (QG PV). The energy conserved by the dynam-
ics is a combination of kinetic and available potential energies

I3

1
E:KE+APE:—/ [|v¢|2+N2
Vv

> (@W] av. (5)

The parameterizations appearing in the vorticity equation directly affect
the kinetic energy budget, while the parameterizations appearing in the
buoyancy-anomaly equation directly affect the available potential energy
budget.

The following subsections develop deterministic and stochastic param-
eterizations that consistently incorporate backscatter into the 2D and QG
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Leith parameterizations. In all cases it is crucial to achieve a scale sepa-
ration between the backscatter and the dissipation: any energy backscat-
tered at the grid scale is immediately dissipated, which defeats the purpose,
and nonlinear processes that might otherwise transfer energy from the grid
scale to larger scales are badly resolved by discretizations. The deterministic
parameterizations developed here achieve this scale separation by using a
combination of a dissipative biharmonic term and a backscattering harmonic
term following Sukoriansky et al. (1996) and Jansen and Held (2014), while
the stochastic parameterizations use either a harmonic or biharmonic dissi-
pation term in combination with a stochastic backscatter that is designed to
avoid backscattering at the grid scale.

The derivations in the following subsections follow the traditional ap-
proach to deriving the Smagorinsky and Leith parameterizations. Expres-
sions for the viscous coefficients are derived under the assumption that these
coefficients are constant and that the turbulence is homogeneous, but the
derived expressions are then used to define spatially-varying viscous coeffi-
cients for use in simulations of inhomogeneous dynamics. The gap between
the assumptions of the derivation and the use of the expressions is mitigated
somewhat by smoothing the coefficients before use (cf. (28)).

2.1. Biharmonic 2D Leith + F

The biharmonic 2D Leith parameterization sets the vorticity dissipation
term to

D, = —-V? (1 Vw). (6)

(In a primitive-equation model one might use V?(1,V?u) or V - (/s V(V -
(v/74aVu))).) Re-injection of spuriously-dissipated energy is accomplished
using a negative-viscosity harmonic operator

B, = V?(1w) (7)
where v, < 0. In a primitive-equation model one might use V - (1,Va).
There is no backscatter or dissipation in the buoyancy-anomaly equation:
B, = D, = 0. The overline in (7) represents a self-adjoint low-pass spatial
filter whose purpose is to enhance the scale separation between the dissipative
action of the biharmonic term and the backscattering action of the harmonic
term. The number of applications of the filter could be adjusted if needed to
enhance scale separation.
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To motivate the spatial filter, consider an equispaced grid with grid scale
Ax. Ignoring discretization errors and spatial variability of the viscous coef-
ficients, the combined influence of the (unfiltered) harmonic and biharmonic
terms on a discrete Fourier mode with wavenumber k is a linear growth (or
decay) with rate

—ok? — vkt (8)

where k = |k|. Wavenumbers with 0 < k < (—vy/vy)"/? are forced while
wavenumbers with k > (—15/v4)"/? are damped. In order to successfully
absorb an enstrophy cascade, one wants a reasonably-wide range of scales to
be damped; e.g., one might want to ensure that all modes within a factor of
two of the grid scale are damped. This sets a limit on the allowable values of
the viscous coefficients. The smallest unambiguously representable Fourier
mode on the grid has wavenumber 7/Ax in each direction, so the requirement
that the crossover between forcing and damping occurs at a wavenumber less
than half the grid wavenumber leads to the following constraint on the viscous

coefficients
Uy 1/2 ™ T \2
—— < ——=>-1n< — ) . 9
( 1/4) 2Az 2= <2Aaz> )

This effectively limits the allowable backscatter rates.

The filter allows this constraint to be relaxed. A simple moving-average
filter with a three-point stencil in each direction with weights [1/4, 1/2, 1/4] mul-
tiplies a discrete Fourier mode with wavenumber k = (k,, k,) by a factor of
cos(k,Ax/2) cos(k,Ax/2), i.e. it leaves the largest scales unchanged and ze-
roes out the smallest scales. The standard second-order discretization of the
Laplacian multiplies a discrete Fourier mode with wavenumber k = (k,, k)
by a factor of —(4/Ax?)(sin®(k,Ax/2)+sin®(k,Ax/2)). For this specific filter
the combined influence of the discrete harmonic and biharmonic terms on a
discrete Fourier mode with wavenumber k is a linear growth (or decay) with
rate

() () i o (22) s (2]
— [Aix? (sin2 (kx§x> + sin? (kyQAx))} . (10)

To ensure that wavenumbers between 7/Ax and 7/(2Ax) are damped, the
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viscous coefficients must satisfy the following constraint

—n < o (11)
The largest allowable backscatter coefficient is twice as large with the filtering
as without. If, in a primitive equation model, the range of wavenumbers that
are damped needs to be increased, or if the number of applications of the
filter changes, the upper bound on —u5 can be modified accordingly.
Bachman (2019) similarly used a spatial filter to enhance the scale sep-
aration between backscatter and dissipation, though both dissipation and
backscatter were achieved using harmonic operators. Both Berloff (2018) and
Juricke et al. (2020a) used spatial filters to define their backscatter schemes
instead of a combination of harmonic and biharmonic terms. In a model with
non-uniform grid spacing the weights would be updated to account for the
unequal grid cell sizes.

Having defined and motivated the filtering term, consider the enstrophy
budget for the dynamics. Enstrophy is injected by the wind forcing, cascades
towards small scales, and is dissipated by viscosity at small scales. In a
statistically steady state, the rate of injection, the cascade rate, and the
dissipation rate are all equal. The global-average enstrophy dissipation rate
associated with the parameterization is

1 2 2
= /V Va(V2)2dV. (12)

When a backscatter scheme is present we assume it to act at small scales
(though at larger scales than dissipation), so that the cascade rate equals
the combined backscatter and dissipation rates. The global-average enstro-
phy dissipation and backscatter rates combine to form the net enstrophy
dissipation rate, which is

1
x / V| VEP + va(V2w)2dV. (13)
Vv

As usual in the derivation of Smagorinsky and Leith parameterizations, we
assume that the local net enstrophy dissipation rate is instantaneously bal-
anced by the local cascade rate n so that the final expressions for the dissi-
pation and backscatter coefficients can vary in space and time. Henceforth

8
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therefore, assume a local equilibrium such that the local enstrophy cascade
rate 7 is equal to the local net enstrophy dissipation rate

n= I/Q\VEP + V4(V2w)2. (14)

Formulas for the coefficients v, and v, will be obtained by imposing
two constraints: one on the energy cascade and one on the enstrophy cas-
cade. The enstrophy cascade condition is that the enstrophy cascade should
terminate within the range of scales represented on the grid. In the non-
backscattering case one assumes that the dissipation scale for enstrophy de-
pends only on the biharmonic coefficient v, and the enstrophy cascade rate
1, and dimensional analysis then implies that the dissipation scale must be

proportional to
L3\ 1/12
l, = (—4) : (15)
Ui

In the backscattering case there is a second dimensional coefficient vy that
could, in principle, play a role in setting the dissipation scale for enstrophy.
The application of the spatial filter effectively removes the backscatter term
from the smallest resolved scales, which allows us to use the standard assump-
tion that the dissipation scale for enstrophy depends only on the biharmonic
coefficient v, and the enstrophy cascade rate n. To ensure that the enstrophy
cascade is absorbed on the grid, the grid wavenumber 7/Ax is set propor-
tional to one over the dissipation scale for enstrophy with proportionality

constant T
. 1/;2 ~1/12
—=7T(= . 16
Az ( n ) (16)

Inserting the appropriate expression for n and simplifying leads to the fol-
lowing constraint

—12 2, \2 g T\
V| VI |* 4+ 1y (VZw)” = vy <TA$> : (17)

Notice that when vy = 0 we recover exactly the biharmonic 2D-Leith scaling
(Fox-Kemper and Menemenlis, 2008)

TAz\°
u4=( f) V20| (18)
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A second constraint is obtained by requiring the backscatter term to re-
inject a fraction cx of the energy that is dissipated by the biharmonic term:

V? = —vyck |Vl (19)

(The expression for the local kinetic energy backscatter rate assumes that the
filter commutes with spatial derivatives.) This leads to a local net energy
dissipation rate of

€ = 1ow? + vy|Vw]? = vy (1 — ex)| V. (20)

Setting cx = 1 re-injects all of the energy that is dissipated by the biharmonic
term so that the combined effect has no net energy dissipation € = 0, while
setting cx = 0 leads to no backscatter.

The solution to the system is

YAz \° IVw|2|V@|2]?
Vy = < . ) |:(V2w>2—CKT s (21)
Vw|?
Vy = —V4CK| 52’ . (22)

There are several practical considerations that prevent direct use of the
foregoing expressions. For example, the biharmonic term can be imaginary,
which indicates that the constraints on the energy and enstrophy cascades
cannot both be satisfied by any real combination of harmonic and biharmonic
coefficients. Similarly, the coefficients produced by the above formulas may
violate the constraint (11) that ensures scale separation between backscat-
ter and dissipation on the grid, or the formulas may generate a biharmonic
coefficient large enough to cause numerical instability.

To obtain a practical method, we first compare the energetic constraint
(22) to the scale-separation constraint (11), and choose the constraint that
produces a smaller value of vy for a given v4. This produces a backscatter
coefficient

Uy = —miy (23)
where ,
waﬁ‘ where cx Az?|Vw|? < 4w?
m = (24)
~z  where cgA2?|Vw|? > 40°

10
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Choosing the smaller of the two constraints means that the negative viscos-
ity backscatters as much as possible without violating the scale separation
between backscatter and dissipation. We then substitute this expression into
the enstrophy constraint (17) and solve for the biharmonic coefficient, which
yields the expression

T +

(Tm)ﬁ [(V2w)? — m|vaf?] /2 (25)

The argument of the square root is truncated to non-negative values, and
this truncation is reflected in the notation [-],. In practice one wants to
avoid having the biharmonic coefficient become too small, so we assume some
minimum value v} has been specified. There is also an upper limit v;*** on
the allowable values of the biharmonic coefficient associated with numerical
stability. The final formulas are therefore

min : max TA:E ° 2 2 — |2 1/2
vy = maxquf"min g ( — [(VPw)? — m| V| ]+ (26)

Vy = —MNly. (27>

Direct application of these formulas can yield viscous coefficients with ex-
treme spatial variability. To avoid this, the results of the above expressions
could be smoothed using the spatial filter before use. This would have the
effect of reducing dissipation in places where it was needed though; to smooth
the fields while maintaining large values, the values produced by the above
formulas were modified as follows before use:
__11/2
vy [Vﬂ (28)

and similarly for v, though maintaining its negative sign.

Note that for the same vorticity field the biharmonic viscous coefficient
produced by this new parameterization is smaller than the biharmonic 2D-
Leith coefficient. It is counterintuitive to reduce the biharmonic coefficient
when backscatter is introduced. Intuitively, one expects from (14) that the
local enstrophy cascade rate n will remain constant, so the introduction of
enstrophy backscatter v,|V@|? should also lead to a correspondingly greater
gross enstrophy dissipation v4(V?w)? so that the sum of backscatter and

11
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gross dissipation, i.e. the net dissipation, can remain constant to match the
cascade rate. This is in fact what happens, as noted at the end of section
3.4: The gross enstrophy dissipation rate increases when backscatter is in-
troduced. Nevertheless, the coefficient v, remains approximately the same
with and without backscatter, which indicates that changes in the vorticity
field rather than changes in v4 are responsible for maintaining the balance
of the net enstrophy dissipation rate. This also explains how the coefficient
vy can remain the same: The value produced by (21) is only smaller than
the classical biharmonic Leith coefficient (18) if the resolved vorticity field in
both expressions is the same. In simulations with and without backscatter
the resolved vorticity field is different, and as reported at the end of section
3 these differences conspire to keep the values of v4 produced by the classical
and backscattering Leith schemes nearly identical.

2.2. Biharmonic QG Leith + FE

The energetically-constrained biharmonic QG Leith parameterization adds
backscatter to the QG-Leith parameterization of Bachman et al. (2017). It
uses the same vorticity dissipation and backscatter terms as the energetically-
constrained biharmonic 2D Leith parameterization, given in equations (6)
and (7). The parameterization adds diffusion of buoyancy in the form

Dy = —1, V4 (29)

which leads to a biharmonic horizontal dissipation of QG PV in equation (3).

In the QG-Leith perspective the cascade to be absorbed by dissipation
at small scales is one of potential enstrophy (¢?/2) rather than enstrophy
(w?/2). The local potential enstrophy cascade rate 7, is assumed to balance
the local net potential enstrophy dissipation rate

ng =12Vq- Vo + vs(V3q)2 (30)

This expression is derived under the traditional assumption that the viscous
coefficients are constant, and also under the assumption that the spatial filter
commutes with the derivatives. The condition that the dissipation scale of
the potential enstrophy cascade be proportional to the grid scale leads to the
constraint

TAx)w‘ (31)

VQV(j' V(D + V4|Vq|2 = l/i’ (

12
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The form of the KE backscatter rate remains the same as for the 2D
version, and one could require the backscatter rate to be equal to a fraction
of the KE dissipation rate associated with the biharmonic vorticity diffusion
term. The biharmonic buoyancy-anomaly diffusion in QG-Leith leads to a
dissipation of APE that is not present in the 2D version, so a more general
backscatter constraint would be to make the backscatter rate proportional
to some combination of the KE and APE dissipation rates. This produces
the constraint
(V2b)?

N2
where the second term in the square brackets is proportional to the local
APE dissipation rate associated with the biharmonic term. The local net
KE dissipation rate associated with the parameterization has the same form
as the 2D version (20). There is no APE backscatter associated with this pa-
rameterization, so the local net APE dissipation rate is simply v4(V?b)?/N?,
while the local dissipation rate of total energy is

vow? = —vy |cx|Vw|? + cp

(32)

(V20)?
N2

exsrare = V4 | (1 — cg)|V2w[* + (1 — cp) (33)
The GM+E parameterization (Bachman, 2019) and the approach of Jansen
et al. (2019) both similarly recycle dissipated APE into KE backscatter.

The two constraints (31) and (32) form a system of two equations for two
unknowns. As in the 2D case, the exact solution is not practical, and applying
the same practical constraints as in the 2D case produces the following recipe
for vy and vy

S o (TAN L, o q1/2
vy = max |y, min § v, | — [(V?q) —qu-Ver (34)

Vg = —MNly (35)

where

CK|V“"2+';ZW2{’)2/N2 where Ax?(ck|Vw|? + cp(V?h)? /N?) < 42
= where Az?(cx|Vw|? + cp(V?0)?/N?) > 452

(36)

The results of the above expressions are smoothed before use via (28) as in

the 2D case. Unlike in the 2D case, the biharmonic coefficient can actually be

13
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larger than the classical QG-Leith scaling obtained by setting m = 0 because
Vq - Vi can in principle be negative.

2.3. Biharmonic 2D Leith + Stochastic Backscatter

The foregoing methods backscattered kinetic energy using a determin-
istic negative harmonic viscosity. Many other backscatter schemes in the
literature use stochastic formulations of backscatter, and it is of interest to
compare the approaches. This subsection develops a parameterization with
a combination of biharmonic diffusion of vorticity and stochastic backscatter
of QG PV. The biharmonic viscosity takes the usual form

D, = —V1,Viw (37)

and there is no diffusion of buoyancy anomalies D, = 0.

One could in principle follow the approach of the previous subsections
by defining stochastic forcings of vorticity and buoyancy, B, and B,. The
stochastic forcing of vorticity would correspond to a stochastic kinetic energy
backscatter, while the stochastic forcing of buoyancy would correspond to a
stochastic backscatter of available potential energy. In practice though it is
impossible to separate stochastic forcing of KE and APE in a QG system,
unless the backscatter is barotropic (i.e. depth-independent), which is overly
limiting.

To understand this it is helpful to think in terms of the practical imple-
mentation of a stochastic forcing of QG PV. At the discrete level, a stochastic
increment is constructed and added to the QG PV ¢ at every time step, where
the amplitude of the increment is proportional to the square root of the time
step size VAt. When the noise is temporally uncorrelated, the mean rates
of energy and enstrophy injection associated with the forcing are the mean
energy and enstrophy of the increment, divided by the time step size. Notice
that scaling the increment by /At leads to energy and enstrophy injection
rates are independent of At. A peculiarity of the QG system is that a QG
PV increment Ag generally has both kinetic and available potential energy;
the only way to construct a QG PV increment that has only kinetic and no
available potential energy is for the QG PV increment to be barotropic. Even
if one formally constructs the stochastic increment to ¢ as a combination of a
stochastic increment to vorticity plus zero stochastic increment to buoyancy,
the resulting QG PV increment ends up backscattering both KE and APE.

It is worth briefly noting that in a primitive equation model it is possible
to increment the momentum and buoyancy separately, and thereby construct
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a stochastic forcing that increments KE and APE separately. But if the
flow is approximately geostrophic, then geostrophic adjustment processes
will rapidly convert a purely KE increment into a combination of KE and
APE. Deterministic backscatter via negative viscosity presumably behaves
similarly: although the backscatter is purely kinetic, geostrophic adjustment
processes rapidly convert some of this kinetic energy to potential energy. At
scales larger than the deformation radius, one expects that a large fraction
of the backscattered KE will end up in APE after adjustment processes. The
stochastic scheme of Grooms (2016) backscatters only APE; the foregoing
reasoning suggests that some fraction of this backscattered APE will convert
to KE on the resolved scales.

The stochastic increment of QG PV is constructed to backscatter total
energy (rather than kinetic energy) at the desired rate. In order to connect
to a potential implementation in a primitive-equation model, an increment is
constructed for the QG streamfunction ¢, and the implied QG PV increment
is derived from this ¢/ increment.

Let S be a Gaussian random field that is depth-independent and un-
correlated in time and in the horizontal directions. The horizontal Fourier
transform of this field has a uniform 2D spectrum. If S were used directly
as an increment to v, the associated 1D kinetic energy forcing spectrum
would be proportional to k2, which is strongest at the smallest scales, and
violates the principle of separation of scales between backscatter and dissi-
pation. (The 1D spectrum results from averaging the 2D spectrum, which
depends on both k, and £, around circles so that the resulting 1D spectrum
is a function only of k = |k|.) To create such a scale separation, the field

S is spatially filtered twice S. Using the spatial filter from section 2.1 (and
ignoring discretization errors in forming KE from v on the grid), the kinetic

energy forcing spectrum associated with a 1) increment of S would be pro-
portional to k*(cos(k,Ax/2) cos(k,Az/2))*. The peak of the 1D KE forcing
spectrum occurs at a wavenumber close to 7/(2Az), i.e. the forcing peaks at
a scale approximately twice as large as the grid scale. More applications of
the filter could be used to push the peak of the forcing spectrum to larger
scales, but this would come at extra computational expense as well as com-
munication costs in a parallel code. The use of spatial filters to achieve scale
separation between the stochastic backscatter and dissipation goes back at
least to Schumann (1995), and its importance was underscored by Grooms
et al. (2015).
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a1 The amplitude of the stochastic forcing should be set so that it injects
a2 energy back into the system at a desired rate. To achieve this goal it is
23 convenient to normalize the basic stochastic increment so that it has unit

424  €nergy. Define 1/2
]_ —
- (357 »

»s  where E denotes the mean across realizations of the random field. The nor-
w2 malizing constant Sy can be calculated analytically or numerically, and de-
w27 pends only on the shape of the grid, the form of the spatial filter, and the
w8 discretization of the Laplacian; the computation is done offline. We define
w0 the increment to QG PV to be

Ag = VALV - (A(x,y, 2, )V (?)) . (39)

0

a0 If it were possible to separately increment the velocity and buoyancy fields,
s then this QG PV increment would result from a random, non-divergent,
a2 isotropic Gaussian velocity field with amplitude A and zero buoyancy anomaly;
a3 indeed, one might implement the parameterization in a primitive-equation
ss model by forming a velocity increment At A(z, y, 2,t)V(S/Sy) = (Av, —Au).
15 When A is depth-independent the mean local energy injection rate associated
a6 with this QG PV increment is

€oae = A (40)

s Note that the dimensions of A are L/T%/?; the unusual fractional scaling is
s associated with the factor of v/At in the definition of the QG PV increment.
10 Precisely separating this into a KE backscatter rate and an APE backscatter
wmo rate requires solving for the associated increment to i and then comput-
w1 ing the KE and APE backscatter rates from the 1 increment; this is done
a2 in the code for diagnostic purposes, but is not required to implement the
w3 parameterization. When A is constant the local enstrophy backscatter rate
aa associated with the QG PV increment is

nback = AZZ (41)

ws  where Z can be computed analytically or numerically, and depends only on
us  the shape of the grid, the form of the spatial filter, and the discretization of
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the Laplacian; the computation of Z is done offline. The dimensions of Z
are L2,

We assume that the local net enstrophy dissipation rate associated with
the parameterization is balanced by the local enstrophy cascade rate n

n=—A*Z + v, (V?w)>. (42)

Requiring this to be absorbed by the biharmonic term on the grid leads to
the constraint

12
— A7+ 1y(VPw)? = v (TM> ' (43)

™

Requiring the local energy backscatter rate to be proportional to the local
rate of KE dissipation associated with the biharmonic term leads to the
constraint

A? = yyeg | Vw2 (44)

As with the previous, deterministic parameterizations, we want to provide
upper and lower bounds on vy, so the final form of the parameterization is

min mo [ YAZ " 2 \2 271/2
vy = maxqup"min gy | — [(VAw) —CKZ\VWHJr (45)

A = [vex]? |Vl (46)

The coefficients A and v4 are smoothed via (28) before use.

2.4. Biharmonic QG Leith + Stochastic Backscatter

The stochastic method from the foregoing section can be updated from
2D’ to ‘QG’ by adding biharmonic diffusion of buoyancy anomalies. The
expressions for the KE, APE, and enstrophy dissipation rates remain the
same as in section 2.2, and the expressions for the enstrophy and net energy
backscatter rates remain as in the previous section. The updated formulas
for the backscatter amplitude and biharmonic coefficient are

' TA 6 2b 2
vy = max {ij”‘,min {l/jfa", < Wx> {(qu)z -7 (CK|VW|2 + CP(VNQ) >]

)]

A = |:V4 (CK|VCU‘2+CP N
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2.5. Harmonic 2D and QG Leith + Stochastic Backscatter

The deterministic parameterizations of sections 2.1 and 2.2 achieved scale
separation between the backscatter and dissipation by using a combination of
harmonic and biharmonic terms; the scale separation was enhanced through
the use of a spatial filter. The backscatter scheme in the GM+E param-
eterization (Bachman, 2019) uses a combination of harmonic terms and a
spatial filter to achieve scale separation; the backscatter is also confined to
the barotropic part of the flow. The backscatter scheme of Juricke et al.
(2020a) uses a combination of a harmonic operator and a spatial filter to
achieve dissipation and backscatter on a non-rectangular grid.

A similar deterministic parameterization could be developed here using
only a harmonic term and a spatial filter. Following Juricke et al. (2020a)
we could develop a scheme of the form

B, + D, = Vi — anViw. (49)

If we ignore discretization errors and spatial variability of the viscous coeffi-
cients, the influence of the combined parameterization on a discrete Fourier
mode with wavenumber k is a linear growth (or decay) with rate

- (1 —a (1 ~ Af;k2>) k2 (50)

where, for simplicity, it was assumed that the spatial filter has Fourier sym-
bol 1 — (Axk/7)?. This is exactly equivalent to a combination of a harmonic
backscatter with coefficient v5(1 — ) and a biharmonic dissipation with coef-
ficient voa(Az/7)?. (The scheme only backscatters for o > 1.) The resulting
scheme would be very similar to what was developed in sections 2.1 and 2.2,
so we do not develop such a scheme here. Note that this similarity enables
the scalings of v and v4 developed in the preceding sections to be converted
into scalings for 15 and « in the backscatter scheme of Juricke et al. (2020a).
In contrast to the use of filters and a harmonic viscosity, the combination
of a harmonic dissipation with a stochastic backscatter is not expected to
be effectively the same as a combination of a biharmonic dissipation and
a stochastic backscatter. We therefore develop two such parameterizations
here, one 2D and one QG. In the 2D case the vorticity dissipation term is

D,, = V3(rw) (51)
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and there is no diffusion of buoyancy anomalies. The stochastic backscatter
takes the same form as developed in section 2.3. The assumption that the
local enstrophy cascade rate matches the local net enstrophy dissipation rate
thus takes the form

n=—A*Z+ 1p|Vw? (52)

Following the same development as the previous sections, the parameteriza-
tion becomes

_ min 3 max TA'I ’ 2 Z 2 1/2
vy = max §vy",min 3™ | — [|Vw|? = e Zw?] . (53)
A = rack|wl. (54)

The QG version proceeds as above but adds a harmonic diffusion of buoy-
ancy anomalies

D, = V2(1b). (55)

Requiring the total energy backscatter rate to be proportional to a weighted
sum of the KE and APE dissipation rates leads to the following parameteri-
zation

, TAz\? b2\
Vg = max{yg““,min{yg“a", ( a:) {|Vq|2 -7 (cKw2 +CP|7V2‘ >] 9 )
T +

2\ 71/2
A = |:V2 (cKw2+CP|Vb| )} ) (57)

N2

2.6. Summary

This section has developed six new parameterizations which are summa-
rized here. The ‘2D’ parameterizations dissipate only KE via diffusion of
horizontal momentum; the ‘QG’ parameterizations diffuse both horizontal
momentum and buoyancy anomalies.

The two deterministic parameterizations combine harmonic KE backscat-
ter with biharmonic dissipation. These are called biharmonic 2D Leith + E
and QG Leith + E, and are abbreviated 2DL4+E and QGL4+E, respec-
tively, where the ‘+E’ is inspired by GM+E (Bachman, 2019). The 2DL4+E
parameters are defined by (26), (27), and (24). The QGL4+E parameters
are defined by (34), (35), and (36).

Four of the new parameterizations are stochastic. Two of the stochas-
tic parameterizations use a stochastic backscatter paired with a biharmonic
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Table 1: Naming Conventions for Parameterizations

Abbrev. Backscatter Diffusion Details

2DL2 None V2 (vow) §2.5, Eq. (53), (54), cxk =0
2DL2+ES  Stochastic V2 (vow) §2.5, Eq. (53), (54), cx >0
QGL2 None V2(vaq) §2.5, Eq. (56), (57), cx = cp =0
QGL2+4ES Stochastic VZ(vaq) §2.5, Eq. (56), (57), cx,cp >0
2DL4 None  —V2(uVw) §2.1, Eq. (26), (27), cx = 0
2DLA+E  V2(mw)  —ViwViw) §2.1, Eq. (26), (27), cx >0
2DL4+ES Stochastic  —V?(1,V3w) §2.3, Eq. (45), (46), cx > 0
QGL4 None V31, V3q) §2.2, Eq. (34), (35), cxk = cp =0
QGLA+E  V2(1nw) —V3(1,V3q)  §2.2, Eq. (34), (35), ckx,cp >0
QGL4+ES Stochastic  —V?*(1,V%q) §2.4, Eq. (47), (48), cx,cp > 0
2DL4+e  V2(1nw) V(v V2w) §2.1, Eq. (26) with cx = 0,
(27) with cx >0

dissipation; the 2D version is abbreviated 2DL4+ES, where the trailing S
denotes ‘stochastic,” and the QG version is abbreviated QGL4+ES. The
2DLA+ES parameters are defined by (45) and (46), while the QGL4+ES
parameters are defined by (47) and (48).

Two of the stochastic parameterizations use a stochastic backscatter paired
with a harmonic dissipation; the 2D version is abbreviated 2DL2+4ES and the
QG version is abbreviated QGL2+ES. The 2DL2+ES parameters are defined
by (53) and (54), while the QGL2+ES parameters are defined by (56) and
(57).

For comparison we also consider the harmonic and biharmonic forms of
the 2D-Leith and QG-Leith parameterizations. The harmonic forms of 2D-
Leith and QG-Leith are obtained by setting cx = ¢p = 0 in (53) and (56),
respectively. The biharmonic forms of 2D-Leith and QG-Leith are obtained
by setting m = 0 in (26) and (34), respectively.

Finally, we consider parameterizations that use Leith scaling for the bi-
harmonic dissipation coefficient v, without including the effect of backscatter
on the enstrophy cascade rate. The 2D version is obtained by setting m = 0
in (26) and then using (27) to set the backscatter coefficient with m # 0 set
by (24). This scheme is called 2DL4+e to distinguish it from the 2DL4+E
scheme developed above.

The naming conventions and details of the parameterizations are summa-
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rized in Table 1.

For all of the parameterizations, the dissipation and backscatter coeffi-
cients are smoothed using (28) before use. The backscattering schemes all
use cx = cp = 1 except in section 3.5, which explores the sensitivity of the
2DL4+E scheme to cx. The coefficient T in the biharmonic 2D schemes was
set to 1.5, and in the biharmonic QG schemes to 1.3. The coefficient T in
the 2D harmonic schemes was set to 1.3, and in the harmonic QG schemes to
1.1. Section 3.6 explores the sensitivity of the 2DL4+E scheme to T. Values
of the minimum and maximum coefficients can be found in Appendix A.

3. Numerical Experiments

The parameterizations developed in the foregoing section are compared
in the context of a quasigeostrophic double-gyre model. The domain is a
square midlatitude basin of width 3,072 km and depth 4 km. Simulations
are run with grid sizes of 24, 16, 12, 7, and 4 km, where the 7 km run uses
a grid of 449 x 449 points, including boundary values; there are six layers
ranging from the 385 m thick top layer to the 2270 m thick bottom layer.
Shevchenko and Berloff (2017) found that there is a significant difference
between three and six layers in a very similar QG model, but found the six
layer results to be very similar to results with twelve layers. Simulations are
spun up from rest for 10 years (it takes about 5 years for the kinetic energy to
reach statistical equilibrium). Once spun up, the results are compared based
on the final 10 years of each simulation. The time mean streamfunction and
spatial pattern of kinetic energy are computed online. Full details on the
model configuration and numerical methods can be found in Appendix A.

Figure 1 shows the behavior of a simulation with constant biharmonic
diffusion of vorticity and no backscatter at 4 km resolution. The upper left
panel shows a snapshot of upper-layer QG PV. As usual for a double-gyre
model, the most prominent feature is an eastward jet separating from the
western boundary currents, along with its adjacent recirculation zones. In
addition to the jet and the associated QG PV front between the gyres, the
entire domain is populated with mesoscale vortices. The upper right panel
shows the time-mean streamfunction in the top layer. The time-mean jet is
not purely zonal, and the time-mean recirculation zones that flank the jet
are evident. The lower left panel shows the root-mean-square current speed,
i.e. the square root of the time mean of u? + v? in the upper layer. Although
eddies are present throughout the domain, most of the kinetic energy is found

21



-4 4
1x10 2000 — 6%10

2500 4
2000 2
0 > 1500 0
1000 -2
500 -4
1 0
0 1000 2000 3000
X X
00— 1.2 16
2500 1 1073
2000 0.8 a \
10 \
> 1500 0.6 \
107 \
1000 0.4
10
500 0.2
0 0 107 ‘ :
0 1000 2000 3000 1073 1072 10! 10°
x k

Figure 1: Results from a simulation at 4 km resolution with constant biharmonic diffusion
of vorticity. Upper left: A snapshot of QG PV in the upper layer (units s=!). Upper
right: Contours of time-mean streamfunction v in the upper layer; the contour interval
is 1.2x10* m?/s. Lower left: Square root of the time mean of u? 4+ v? in the upper layer
(units m/s). Lower right: Time-mean eddy kinetic energy spectrum of the upper layer;
the five vertical lines show the wavenumbers associated with the baroclinic deformation
radii. Units for the z and y axes are km, while units of the k axis are km™?!.
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in the jet and in the eddies that separate from it. The lower right panel shows
the kinetic energy spectrum of the deviations of the upper layer from its time
mean. The five baroclinic deformation radii, from 31 km to 6 km, are shown
as vertical lines in the figure. The kinetic energy spectrum peaks at a radius
(one over the wavenumber) of 70 km. The bump at the tail of the spectrum
suggests that a larger viscous coefficient could have been used, but the effect
is small, as seen in the smoothness of the upper left panel. Shevchenko
and Berloff (2015, 2017) provide an in-depth discussion of the dynamics of a
similarly-configured QG model.

Twelve schemes are compared: The six new schemes described in the pre-
ceding section, plus four nonlinear viscosities without backscatter (harmonic
and biharmonic versions of 2D and QG Leith), plus a constant biharmonic
viscosity. The constant biharmonic viscosity was set at each resolution to be
near the maximum coefficient produced by the biharmonic 2D Leith scheme
(2DL4) at that resolution. The final scheme uses the traditional 2D Leith
scaling for the biharmonic dissipation, and adds backscatter via negative vis-
cosity with a coefficient scaled so that 100% of the energy dissipated by the
biharmonic term is backscattered by the negative viscosity term.

Rather than pick a single scheme to generate a reference simulation at
the highest resolution of 4 km, all the schemes are run at all the resolutions.
The following subsection describes the differences between the methods at
the highest resolution (4 km), and the following subsections describe how the
results vary with resolution for each scheme.

3.1. Comparison at High Resolution

The total energy dissipation rate is a combination of dissipation due to the
frictional bottom boundary layer and the combined effect of the horizontal
viscous dissipation and backscatter. At high resolution one expects the total
energy dissipation to be dominated by the frictional component. The twelve
schemes compared here all have small viscous fractions of the total energy
dissipation rate, but there remain significant differences between the schemes.
These differences are shown in Figure 2, which also shows the total kinetic
energy for each scheme.

The kinetic energies produced by each scheme are different; the largest
difference amounts to 14%. There are also differences between the viscous
percentages produced by the schemes. In the harmonic QG Leith scheme
(QGL2) 12.6% of the total dissipation rate is associated with the parameter-
ization. Note that in all of the QG schemes (cf. the 2D schemes), viscous
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Figure 2: Results for each of the 12 schemes at 4 km resolution. The horizontal axis
measures the percent of the total energy dissipation rate that is attributable to the pa-
rameterization. The vertical axis shows the total kinetic energy, measured in units of
10 x m® s72 (i.e. (u? 4 v?)/2 integrated over the volume).
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dissipation of APE is included in the viscous percent of the dissipation rate
for total energy. In the 2DL4+e scheme the backscatter is slightly stronger
than the biharmonic dissipation, resulting in a viscous percentage of —0.11%.
The time-mean states produced by the 12 schemes are all very similar at 4
km resolution.

The next section presents the way that each scheme varies with resolution.
The differences at 4 km resolution underscore the importance of comparing
each scheme to its own reference at 4 km.

3.2. Varying Resolution: Enstrophy Flux

Since the parameterizations developed here are all intended to apply when
the grid scale lies within an enstrophy cascade range, the goal of this sub-
section is to establish that such a range exists. Figure 3 shows the spectral
potential enstrophy flux in the top layer, computed from the results of the
constant-coefficient biharmonic simulations at all resolutions. A positive flux
(i.e. towards small scales) is found all resolutions, though the flux amplitude
increases as the resolution improves. The flux profile is not flat, i.e. indepen-
dent of k, for any range of wavenumbers, as one might expect in a purely
inertial range. The potential reasons for this include the fact that the flow is
markedly inhomogeneous, with different cascade rates in different parts of the
domain, and the fact that enstrophy is not necessarily injected to the system
at a single length scale, but can be associated with higher-mode baroclinic
instabilities allowed by the use of 6 layers. The increase in the magnitude of
the flux from 24 km through 12 km grids is incremental, and is followed by
large jumps as the grid size reduces to 7 and 4 km.

3.3. Varying Resolution: Kinetic Energy

We begin by evaluating how the total kinetic energy for each scheme con-
verges as the resolution is varied. Figure 4 shows the ratio of the total KE
at a given resolution to the total KE at 4 km resolution for each scheme.
The schemes are differentiated in three ways: 2D schemes have open mark-
ers while QG schemes have filled markers; schemes with harmonic dissipa-
tion are marked with circles while schemes with biharmonic dissipation are
marked with squares; schemes without backscatter use solid lines, schemes
with deterministic backscatter use dashed lines, and schemes with stochastic
backscatter use dash-dotted lines. The results from the constant biharmonic
scheme are marked with triangles and the 2DL4+-e scheme is marked by a
diamond. In the discussion that follows the phrases ‘higher KE’ and ‘lower
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Figure 3: Spectral potential enstrophy flux in the top layer for the constant-coefficient

biharmonic scheme at all resolutions. The five vertical lines show the wavenumbers asso-
ciated with the baroclinic deformation radii. The horizontal axis unit is km—1!.
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Figure 4: Convergence of total KE as a function of resolution. 2D schemes have open
markers while QG schemes have filled markers; schemes with harmonic dissipation are
marked with circles while schemes with biharmonic dissipation are marked with squares;
schemes without backscatter use solid lines, schemes with deterministic backscatter use
dashed lines, and schemes with stochastic backscatter use dash-dotted lines. The horizon-

tal axis unit is km.
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KE’ should be understood in a relative sense, i.e. ‘scheme A has higher KE
than scheme B’ means that at a given resolution the KE from scheme A is
closer to its 4 km value than the KE from scheme B is to its 4 km value.

First compare the schemes without backscatter (solid lines). Both the
harmonic 2D and QG Leith schemes generate lower KE than the constant-
coefficient biharmonic scheme, which itself generates lower KE than the bi-
harmonic 2D and QG Leith schemes. For both harmonic and biharmonic
schemes the QG Leith scheme produces less KE than the 2D Leith scheme.

It is not surprising that the biharmonic Leith schemes have higher KE
than the constant-coefficient biharmonic scheme, because the harmonic co-
efficients v, produced by the Leith scaling are lower than the constant co-
efficient over most of the domain. It is somewhat surprising that the har-
monic Leith schemes have lower KE than the constant-coefficient biharmonic
scheme. This is presumably attributable to the fact that energy dissipation
in the harmonic schemes is less scale-selective than the biharmonic schemes.

It is also worth noting that 16 km resolution corresponds to 1.94 grid
points per deformation radius, and 2 grid points per deformation radius is
sometimes considered to be a rule-of-thumb for resolving mesoscale eddies.
Nevertheless, in these experiments the total KE at 16 km resolution is far
from the value at 4 km. The worst scheme in this regard is harmonic QG
Leith (QGL2), which at 16 km resolution has only 36% of its limiting value
at 4 km resolution. The best scheme in this regard is biharmonic 2D Leith
(2DL4), which at 16 km resolution has 69% of its limiting value at 4 km
resolution.

At 24 km resolution, which would be considered eddy-permitting for a de-
formation radius of 31 km, there is wide variation among the schemes. The
harmonic QG Leith scheme in particular does very poorly — significantly
worse than even than the harmonic 2D Leith scheme. This difference is pre-
sumably due to the fact that QG Leith dissipates both APE and KE while
2D Leith dissipates only KE, and also to the fact that the harmonic viscosity
is less scale-selective and thus more dissipative than the biharmonic viscosity.

Next compare the effect of adding backscatter to a Leith scheme. In
all cases the KE increases. The scheme which stands to gain the most from
backscatter is harmonic QG Leith, but the backscattering version (QGL2+ES)
still has less KE than the harmonic 2D Leith scheme (2DL2). The addition of
stochastic backscatter to the harmonic Leith schemes helps both of them, but
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in neither case is it able to bring them to parity with the non-backscattering
biharmonic Leith schemes.

Considering the addition of backscatter to the biharmonic Leith schemes,
deterministic backscatter is more effective than stochastic backscatter at rais-
ing the total KE, though the difference is not large, and decreases as resolu-
tion improves. Biharmonic 2D Leith with deterministic backscatter already
has 66% of the limiting value at 4 km resolution, which, though too low, is a
huge improvement compared to the worst method (QGL2) which at 24 km
resolution has only 18% of the limiting KE. This underscores the huge impact
that the choice of parameterization can have at eddy-permitting resolution.

Next note that the 2DL4+-e scheme has the highest KE overall. Recall
that this scheme uses a traditional biharmonic 2D Leith scaling for v, and
then adds on deterministic backscatter with a coefficient chosen so that the
backscatter exactly cancels the energy dissipation from the biharmonic term.
This method is only slightly better than the 2DL4+E scheme, which adjusts
the biharmonic coefficient v4 to account for the the backscatter of enstrophy.

Next note that the biharmonic Leith schemes all have significantly higher
KE than their harmonic counterparts. At 7 km resolution all of the bihar-
monic schemes have KE within 10% of their value at 4 km resolution, whereas
the harmonic schemes are still significantly lower. The 7 km resolution has
better than four grid points per deformation radius and nearly two points
per second baroclinic deformation radius, yet the schemes with harmonic vis-
cosity, even when backscatter is included, still have only 80 to 90% of their
KE at 4 km resolution.

Finally, note that it is not fair to compare KE across resolutions because
the total KE at 4 km resolution includes KE from scales that are simply not
present on the lower resolution grids. To examine the importance of this
effect, the flow field from the constant-coefficient biharmonic simulation at 4
km resolution was filtered using the Taper filter described by Grooms et al.
(2021) and implemented in the Python package gecm-filters (Loose et al.,
2022) across a range of filter scales out to a filter scale of 96 km. At a filter
scale of 24 km the KE of the filtered field was still 99.6% of the total KE,
and at a filter scale of 96 km the KE of the filtered field was still 90.2% of
the total KE. The conclusion is that the lack of energy in the low-resolution
simulations is almost entirely due to incorrect representation of the scales
that can be represented at those resolutions and not to the absence of KE
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Figure 5: Percentage of the net dissipation rate for total energy that is attributable to
the combined effect of viscosity and backscatter, shown for all schemes as a function
of grid scale. 2D schemes have open markers while QG schemes have filled markers;
schemes with harmonic dissipation are marked with circles while schemes with biharmonic
dissipation are marked with squares; schemes without backscatter use solid lines, schemes
with deterministic backscatter use dashed lines, and schemes with stochastic backscatter
use dash-dotted lines. The horizontal axis unit is km.

from scales that cannot be represented at those resolutions.

3.4. Energy Dissipation Rates

This section compares how the dissipation rates vary across resolution
for each scheme. The total energy dissipation rate must match the total
energy generation rate, and the latter is set by shape of the upper layer
streamfunction. To wit, the time-mean energy generation rate is

E,. = —H, /A P F(x,y)dA (58)

where the integral is over the horizontal domain and F(z,y) is related to
the wind stress curl (see Appendix A). Across all twelve schemes and all
five resolutions the time-mean energy generation rate varies only a little, and
therefore the net dissipation rate of total energy also varies only a little. (The
terms ‘gross dissipation” and ‘net dissipation’ are used to indicate whether
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backscatter is included in the sum [‘net’] or not [‘gross’]; the term ‘total’ refers
to the sum of KE and APE.) We therefore begin by comparing how much of
the total energy dissipation rate comes from the net effect of viscosity and
backscatter across all schemes and all resolutions. The results are shown in
Fig. 5.

The results in Fig. 5 mimic the results of Fig. 4 for KE: the harmonic
schemes have higher viscous percentages than the biharmonic schemes; the
addition of backscatter generally reduces the viscous percent; and the 2D
schemes have lower viscous percent than their QG counterparts. A striking
aspect of Fig. 5 is that the backscatter schemes, which were designed to have
zero net viscous dissipation, do not, in most cases, achieve that design goal.
Though one could increase the backscatter by increasing the values of the
coefficients cx or cp, it is of interest to discuss why setting cx = cp = 1 does
not, in practice, lead to an exact cancellation of backscatter and dissipation
rates.

The deterministic backscatter schemes have a built-in limiter that pre-
vents the backscatter coefficient from growing so large that it violates scale
separation between backscatter and dissipation (see the discussion in section
2.1 around the constraint 11); this limiter could partially account for the
failure of the backscatter to completely cancel the viscous dissipation. An-
other culprit is the smoothing that is applied to both the backscatter and
dissipation coefficients before use, which breaks the exact link between the
backscatter and dissipation rates.

The deterministic schemes perform better than the stochastic ones in
the sense that the deterministic schemes do a better job of canceling the
viscous dissipation. Like the deterministic schemes, the stochastic schemes
use smoothing of the backscatter and dissipation coefficients. The stochastic
schemes also suffer from two limitations that are different from the deter-
ministic schemes. First, the mean backscatter rate is computed under the
assumption that the amplitude is depth-independent, which is not correct
in practice. This relates to the difficulty, discussed in section 2.3, in cleanly
separating the KE and APE backscatter rates in a QG code, which would
be far more straightforward in a primitive-equation model. Second, as noted
in section 2.3, the spatial structure of the backscatter used here generates
a forcing spectrum that is peaked at a length scale approximately equal to
twice the grid scale. This may not be as well separated from the dissipation
range as the deterministic backscatter, whose spectrum is depends on the
resolved kinetic energy spectrum. The peak of the stochastic backscatter
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Figure 6: Left: A snapshot of the negative viscous coefficient from the 2DL4+FE model
(units m? s~1). Center: The backscatter spectrum produced by the 2DL4+E model (blue)
and by the 2DL4+ES model (red). Right: A snapshot of the backscatter amplitude (units
m s~%/2). Axis units in the left and right panels are km; axis units in the center panel are
km~!.

spectrum could be shifted to larger scales, and this could be accomplished
by smoothing the noise many more times; the practical drawback, besides
the computational expense of the smoothing, is that in a parallel primitive-
equation implementation many smoothing cycles would require lots of slow
communication between parallel processes (halo updates). Optimal perfor-
mance in a parallel primitive-equation model may require a stochastic pattern
generator that does not rely on smoothing spatially-white noise.

To illustrate the differences between the backscatter spectrum produced
by the deterministic and stochastic schemes, we show in the middle panel
of Fig. 6 the backscatter spectrum produced by the 2DL4+4+E and 2DL4+ES
schemes at 24 km resolution. The stochastic backscatter spectrum has a
broad peak at about half the smallest representable wavenumber, i.e. about
twice the grid scale, while the deterministic backscatter spectrum is broader
and has more backscatter at larger scales. A peculiarity of the deterministic
backscatter spectrum is the spike at scales near the box size; this is presum-
ably a result of aliasing arising from the product of the backscatter coefficient
vo and the vorticity, though it may also result from the action of the negative
viscosity on the large-scale gyre circulation. For reference, the left and right
panels of Fig. 6 show the negative viscous coefficient —v5 and the backscat-
ter amplitude A. These have broadly similar features, with a concentration
of backscatter near the separation of the western boundary currents. The
deterministic backscatter spectrum does not go exactly to zero at half the
smallest representable wavenumber because the theoretical guarantee is ap-
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plies to the combined backscatter and dissipation spectrum, and is based on
the assumption that v, and v4 are constant; nevertheless, the deterministic
backscatter remains weak at small scales.

To dig more deeply into the behavior of the backscatter schemes, we show
in Fig. 7 the breakdown of the total dissipation budget for all backscattering
schemes at 24 km resolution, where the differences are greatest. All of the
schemes achieve similar gross dissipation rates, but the deterministic schemes
(the rightmost three columns) have somewhat more gross dissipation than
the stochastic schemes. The deterministic schemes offset this increase in
gross dissipation by a corresponding increase in backscatter rates so that,
per Fig. 5, the net viscous percentage achieved by the deterministic schemes
is slightly smaller than their stochastic counterparts.

Comparing the backscattering QG schemes to their 2D counterparts shows
broad similarity. One significant difference in the biharmonic schemes is that
while the gross dissipation of total energy in the QGL4+E and QGL4+ES
schemes is similar to the gross dissipation of total energy in the 2DL4+E and
2DL4+ES schemes, the QG schemes achieve that total by dissipating less KE
and more APE. The harmonic QG scheme (QGL2+ES) both dissipates and
backscatters at higher rates than the harmonic 2D scheme (2DL2+ES). The
rate of APE backscatter in the QGL2+ES scheme is simply not sufficient to
match the very large rate of APE dissipation, with serious deleterious conse-
quences for the overall KE level: QGL2+ES has by far the lowest KE of any
backscattering scheme at 24 km resolution.

Finally note that although 2DL44-e, which does not adjust the 2D Leith
scaling to account for enstrophy backscatter, has the lowest viscous fraction
of any scheme across all resolutions, it achieves this by both dissipating and
backscattering more energy than 2DL4+E. The goal of the backscatter is to
correct spurious energy dissipation. Spurious energy dissipation is a model
error, and the schemes developed here introduce a new model error associated
with non-physical backscatter to compensate for the original model error
of spurious energy dissipation. The 2DL4+e scheme, despite resulting in
a slightly better total energy level and viscous percentage of dissipation,
achieves this through a combination of two large and compensating model
errors: it generates significantly more spurious energy dissipation than the
2DL4 or 2DL4+E schemes; it happens to also be able to correct this spurious
dissipation slightly more efficiently than the 2DL4+E scheme, at least in the
results reported here.

Similarly, the 2DL4+-e scheme both dissipates and backscatters more en-
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strophy than the 2DL4+E scheme. For example, at 12 km resolution the
2DL4 scheme leads to a net enstrophy dissipation rate integrated over the
top layer of 9.1x10* m? s73. (Henceforth all enstrophy rates will be given in
units of 10* m3 s73.) The 2DL4+e and 2DL4+E schemes generate slightly
higher net enstrophy dissipation rates of 10.3 and 10.4, respectively. How-
ever, the 2DL4+e scheme achieves this net enstrophy dissipation rate by
a combination of a gross dissipation rate of 15.3 and a backscatter rate of
5.1, while the 2DL4+E scheme has lower gross enstrophy dissipation and
backscatter rates of 13.9 and 3.5, respectively.

Finally, the 2DL4+e scheme, despite having the same formula for the
biharmonic coefficient v, as the 2DL4 scheme, generates significantly larger
values of v, than the 2DL4 scheme: at 12 km resolution the 2DL4 scheme
generates 14, whose median value over the top layer is 1.11 x 10% m* s~*, while
the 2DL4+4-e scheme generates a median value of 1.35 x 10° m* s~!, which
is 22% higher. The median value of the biharmonic coefficient v, over the
top layer is also larger in the 2DL44-e scheme than in the 2DL4+E scheme:
At 4 km resolution the value is 14% higher and the ratio increases across
resolutions until at 24 km resolution the value is 43% higher. In contrast,
the 2DL4+E scheme produces values of v, that are close to those generated
by the 2DL4 scheme across all resolutions. While in this idealized QG model
there do not appear to be severe consequences for combining high rates of
dissipation and backscatter, it remains to be seen whether this will prove
unstable in a more comprehensive primitive-equation model.

3.5. Sensitivity to ci

This section explores the sensitivity of the 2DL4+E scheme to the coef-
ficient cg, which is the fraction of the rate of kinetic energy dissipation by
the biharmonic term that is backscattered by the harmonic term. At 16 km
resolution, the value of cx was varied from 0 (which reduces to the 2DL4
scheme) to 1. Figure 8 shows that the rates of kinetic energy dissipation
from friction and from the biharmonic term increase monotonically with ck.
The rate of kinetic energy backscatter also increases monotonically with cg,
but faster than the rate at which viscous dissipation increases so that the net
rate of dissipation that results from the combined backscatter and dissipa-
tion terms reduces monotonically with ¢, as does the viscous percentage of
total dissipation. The kinetic energy level increases monotonically with cg
(not shown).
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3.6. Sensitivity to T

This section explores the sensitivity of the 2DL4+E scheme to the co-
efficient T. The coefficient T is the ratio of the viscous dissipation scale
for enstrophy to the grid scale. Raised to the sixth power, it controls the
magnitude of the biharmonic dissipation coefficient. Since the backscatter
coefficient is simply —muy, it is clear that the factor of Y% simultaneously
controls the amplitude of the backscatter and dissipation.

To investigate the effect of T on the dynamics, simulations with the
2DL4+E scheme were run at 16 km resolution with the following values of
Y6 1, (1.2)6 ~ 3, (1.4)° =~ 7.5, (1.5)% ~ 11.4, (1.6)5 ~ 16.8, and (1.7)® ~ 24.
The time-mean eddy kinetic energy spectra for each of these simulations are
shown in Fig. 9. Differences are seen mainly in the small-scale end of the KE
spectrum. At small T there is too much energy accumulation at small scales,
as the parameterization is not strong enough to dissipate enstrophy near the
grid scale. Once T reaches 1.4 the KE spectrum rolls off more smoothly
at the grid scale. At values of T larger than 1.5 the total KE begins to
degrade, and the viscous percentage of total dissipation also begins to rise
(not shown). For this reason T = 1.5 has been used in all the 2D Leith
schemes. Qualitatively similar behavior in the QG schemes led to a choice
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Figure 8: Kinetic energy dissipation and backscatter rates for the 2DL4+E scheme at 16
km resolution as a function of cx. Blue: Frictional KE dissipation rate; Red: viscous
KE dissipation rate; Yellow: KE backscatter rate. The units are 10°x m® s=2 (volume

integral of rates of change of energy).
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of T = 1.3. The lower value in the QG schemes results from the fact that
the QG schemes are more dissipative than their 2D counterparts at the same
value of T because they dissipate APE in addition to KE.

4. Conclusions

Leith-scaled nonlinear viscosities are promising parameterizations for ed-
dying ocean models (Fox-Kemper and Menemenlis, 2008; Bachman et al.,
2017; Pearson et al., 2017). These parameterizations can still dissipate
too much energy, similar to their constant-coefficient counterparts, but less
severely. One way to rectify excess dissipation by a viscous or diffusive closure
is to backscatter some of the dissipated energy. Backscatter parameteriza-
tions based on this idea go back to Shutts (2005) and are well-developed in
an atmospheric context (Frederiksen and Kepert, 2006; Berner et al., 2008,
2009); parameterizations based on this idea were introduced in ocean mod-
eling by Jansen and Held (2014) and Storto and Andriopoulos (2021). This
paper combines these ideas — arresting the forward enstrophy cascade on the
grid, and backscattering dissipated energy — to develop six new energetically-
constrained Leith parameterizations. The six parameterizations are divided
in two groups of three: 2D-Leith parameterizations that are based on en-
strophy and dissipate KE, and QG-Leith parameterizations that are based
on potential enstrophy and dissipate both KE and APE. Within each group
there are two kinds of backscatter: deterministic backscatter using a neg-
ative viscosity and stochastic backscatter. Stochastic backscatter can be
paired with either harmonic or biharmonic viscosity, but the deterministic
backscatter schemes are only paired with biharmonic viscosity. The schemes
are compared with each other and with non-backscattering Leith schemes in
a six-layer QG double-gyre model across a range of resolutions from 4 km to
24 km.

Although the QG schemes seem to have better theoretical motivation,
at least insofar as the QG approximation is a better approximation than
2D dynamics for ocean mesoscales, the QG schemes did not perform as
well as their 2D counterparts in the tests reported here: They dissipate
too much energy and result in simulations with less total KE, especially at
lower eddy-permitting resolutions. The addition of backscatter uniformly
improves the results, especially at the lower resolutions. The schemes with
harmonic viscosity are uniformly worse than their biharmonic counterparts.
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Both stochastic and deterministic backscatter perform well, though the deter-
ministic schemes have an edge in terms of total KE and backscatter efficiency.

Extrapolating towards global ocean models, one strongly expects the ad-
dition of backscatter to lead to improvements compared to non-backscattering
Leith schemes, even at resolutions that might be considered eddy-resolving.
One also expects biharmonic Leith schemes to perform significantly better
than harmonic ones, especially at lower resolutions. One does not expect
these schemes to perform well at non-eddying resolutions, or even at the
lowest eddy-permitting resolutions (e.g. 1/3°) because they are based on
ideas about the forward enstrophy cascade, and need such a cascade to be
represented on the resolved scales. Backscatter remains important in the
inverse cascade range (Loose et al., 2023), but one expects different param-
eterizations to be used to represent backscatter on this range of scales (e.g.
Bachman, 2019; Jansen et al., 2019).

It will be of interest to compare the performance of the new backscatter-
ing Leith schemes to other backscatter schemes for ocean models. Many of
these are based on a prognostic budget for subgrid-scale kinetic energy (e.g.
Jansen et al., 2015; Klower et al., 2018; Jansen et al., 2019; Juricke et al.,
2019, 2020b); others include the GM+E parameterization of Bachman (2019),
the Stochastic Kinetic Energy Backscatter Scheme (SKEBS) developed by
Storto and Andriopoulos (2021) on the basis of the atmospheric scheme of
the same name developed by Berner et al. (2009), the kinematic scheme of
Juricke et al. (2020a), and the stochastic transport schemes based on the
work of Mémin (2014) and Holm (2015). It will also be of interest to modify
the schemes so that they backscatter not only the energy dissipated by the
Leith closure, but also the potential energy removed from resolved scales by
the mixed-layer eddy parameterization of Fox-Kemper et al. (2008). Such
a modification might enable an ocean model that does not resolve subme-
soscales to nevertheless capture the seasonal variations in mesoscale kinetic
energy that are driven by seasonal fluctuations in the rates of submesoscale
eddy activity (Qiu et al., 2014; Callies et al., 2015; Dong et al., 2020; Stein-
berg et al., 2022).
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Appendix A. QG Model Configuration and Numerics

In each layer the QG PV evolution equation is
8th + J[wm Qn] + ﬂvn = 51nF<37> y) - 56117'006 + Bn + Dn (A1>

where ¢;; is the Kronecker delta, J[a,b] = (0,a)(0,b) — (0,0)(0ya) is the
advection term, B, is the backscatter term, and D, is the horizontal dissi-
pation term. The layer index n = 1,...,6 starts at the top. The form of
the backscatter and dissipation terms depends on the parameterization, as
detailed in section 2; boundary conditions on the harmonic and biharmonic
operators are stress-free. The beta parameter is 8 = 2 x 107" m~! s~! and
the drag coefficient is 7 = 2.2 x 1077 s~!. The forcing F is similar to the

asymmetric double-gyre pattern used by Porta Mana and Zanna (2014)

2 i [ Ty

Togor, Sil (g(z)>
2 i [ T(y—g(2))

T0g.9L, SN ( Ly—g(z)

F(z,y) =

(A.2)
)

where 7¢ is the amplitude of the wind stress forcing, L, = L, = 3,072 km,
and

L L
g(z) = f +0.2 (x — f) : (A.3)
The QG PV g, and streamfunction v, are related by the system of equations
2 2
2 fO wQ - wl fO
— 0 — A4
n v ¢1+H1 ( 9 > ngwl (8.4)
2 _ _
for2<n<5,¢q, = V¥, + Jo (w“, Yo _ ¥n w”“) (A.5)
Hn In—1 g’;],
2
2 Jo (Vs — Vs
= — A.
w = Voo g (B20) (A0

The Coriolis parameter is fy = 107* s7!. The layer thicknesses are (top to
bottom) 385, 289, 269, 305, 482, and 2270 m. The reduced gravities are (top
top bottom) 0.0041, 0.0049, 0.0048, 0.0038, and 0.0017 m s~2. The boundary
conditions on the QG PV inversion from ¢ to 1 are mass-conserving, i.e. the
value of ¢, on the boundary is set so that [ 4 ¥ndA = 0 where the integral
is over the horizontal domain. The baroclinic deformation radii are 30.93,
12.25, 8.24, 6.66, and 5.98 km.
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The numerical discretization follows Nadeau and Straub (2009). The
discretization is via second-order finite differences, and the nonlinear terms
are discretized using the energy and enstrophy conserving method of Arakawa
(1966). The QG PV inversion is accomplished by converting to a system of
six independent 2D screened-Poisson equations (one for each vertical mode),
each of which is solved using a multigrid V(2,2) cycle with red/black Gauss-
Seidel smoothing. The time coordinate is discretized using the third-order
Adams-Bashforth scheme.

The grid sizes are Az = 4, 6.86, 12, 16, and 24 km. The time steps
at these resolutions are At = 400, 400, 600, 900, and 1200 s. The maxi-
mum biharmonic viscous coefficient is set to vy = Az*/(320At), and the
maximum harmonic coefficient is set to vy = Axz?/(80At). The mini-
mum biharmonic viscous coefficient at each resolution (smallest to largest) is
v =5 x 10%, 107, 1.5 x 108, 6.5 x 10%, and 5 x 10° m* s7!. The minimum
harmonic coefficient at each resolution is 5" = 0.15, 1, 5, 10, and 35 m? s~*.
In the runs with constant-coefficient biharmonic viscosity, the coefficients are
vy =5 x 108 3 x 10%, 2 x 10%°, 7 x 10'°, and 3 x 10!,
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