

Backscatter in energetically-constrained Leith parameterizations

Ian Grooms

Department of Applied Mathematics, University of Colorado, Boulder, CO 80309.

Abstract

This paper combines two strains in the literature on subgrid-scale parameterizations for eddying ocean models to develop six new parameterizations and test them in an idealized quasigeostrophic model. The first strain develops nonlinear, Smagorinsky-like Leith scalings for the viscous coefficient based on reasoning about the turbulent forward enstrophy cascade of geophysical turbulence. The second introduces backscatter whose amplitude is scaled to re-inject a portion of the energy dissipated by other parameterizations. In the new parameterizations developed here the backscatter and viscous coefficients depend on each other and are set to simultaneously absorb the forward enstrophy (or potential enstrophy) cascade and backscatter a portion of the dissipated energy. The addition of backscatter to Leith-scaled nonlinear viscosity improves the simulations at resolutions from 4 km to 24 km by increasing the total kinetic energy and by reducing the fraction of the total energy dissipation rate associated with the net effect of viscosity and backscatter. Versions that use biharmonic viscosity to absorb the enstrophy cascade perform better than versions using a harmonic viscosity, and purely viscous closures perform better than closures that dissipate both kinetic and potential energy. Stochastic and deterministic backscatter schemes are developed, and though similar, the deterministic schemes perform slightly better.

Keywords: Backscatter, Leith viscosity, Stochastic

Email address: `ian.grooms@colorado.edu` (Ian Grooms)

1 **1. Introduction**

2 Modeling the effects of unresolved length scales in simulations of fluid flow
3 is crucially important for accurate predictions in many contexts. Smagorinsky
4 (1963) developed an early model – a parameterization – based on Kol-
5 mogorov’s theory of three-dimensional homogeneous isotropic turbulence. In
6 that theory, the fluid is forced at a large scale, and nonlinear interactions
7 transfer energy through an inertial range of scales to a dissipation scale where
8 energy is removed by viscosity. The cascade rate ϵ is the rate of energy trans-
9 fer, and has dimensions of length squared over time cubed, i.e. L^2/T^3 . (Here
10 and throughout, density is assumed constant and the total mass is scaled
11 out of kinetic energy, leaving a ‘kinetic energy’ with dimensions of velocity
12 squared.) If one assumes that the scale at which viscous dissipation arrests
13 the energy cascade depends only on the cascade rate ϵ and the viscosity ν , di-
14 mensional analysis predicts that this dissipation scale, called the Kolmogorov
15 scale, is proportional to $(\nu^3/\epsilon)^{1/4}$. Smagorinsky’s parameterization applies
16 when the grid scale lies in the inertial range of scales; the parameterization
17 increases the viscosity ν until the resulting Kolmogorov scale is resolved on
18 the grid.

19 The behavior of two-dimensional (2D) turbulence is qualitatively different
20 from that of three-dimensional turbulence: Energy tends to be transferred
21 from the forcing scale to larger scales, while enstrophy (the square of vortic-
22 ity) is transferred towards smaller scales. Leith (1996) developed a par-
23 ameterization for 2D turbulence that is conceptually similar to Smagorinsky’s
24 parameterization, but is based on 2D turbulence theory. The cascade rate
25 η for enstrophy has dimensions of T^{-3} , and the viscous dissipation scale is
26 proportional to $(\nu^3/\eta)^{1/6}$. Leith’s parameterization applies when the grid
27 scale lies in the enstrophy inertial range of scales; it increases the viscosity ν
28 until the dissipation scale for enstrophy is resolved on the grid.

29 The oceans’ aspect ratio and density stratification conspire to make the
30 large-scale circulation nearly 2D, so Fox-Kemper and Menemenlis (2008) de-
31 veloped Leith’s parameterization for ocean models. The quasigeostrophic
32 (QG) approximation is less restrictive and more appropriate than the 2D
33 approximation, and has its own turbulence theory which replaces the enstro-
34 phy cascade with a potential enstrophy cascade (Charney, 1971). Bachman
35 et al. (2017) developed a parameterization in the vein of Leith’s parameteri-
36 zation, but based on a cascade of potential enstrophy in QG turbulence; to
37 distinguish this parameterization from the earlier ones, the one based on 2D

38 turbulence is called 2D-Leith while the one based on QG turbulence is called
39 QG-Leith. The performance of these closures in an eddying global ocean
40 model was explored by Pearson et al. (2017).

41 Viscous parameterizations, both nonlinear viscosities like the Leith pa-
42 rameterization and constant biharmonic hyperviscosities (Semtner and Mintz,
43 1977; Böning and Budich, 1992), tend to dissipate too much energy. The
44 problem can be compounded by poor numerical resolution of the baroclinic
45 instability processes that are largely responsible for ocean mesoscale eddy
46 generation (Barham et al., 2018; Barham and Grooms, 2019). A similar
47 problem of over-dissipative closures occurs in atmospheric models, and Shutts
48 (2005) developed a parameterization that re-injects energy to offset the en-
49 ergy spuriously dissipated by other parameterizations. Shutts's parameteri-
50 zation is a backscatter parameterization because it transfers energy into the
51 resolved scales. Backscatter parameterizations whose primary aim is to mit-
52 igate the spurious dissipation of energy resulting from numerics and other
53 parameterizations were further developed in the atmospheric modeling con-
54 text by Berner et al. (2008, 2009), among others, and were introduced in
55 ocean modelling by Jansen and Held (2014). The Stochastic Kinetic Energy
56 Backscatter Scheme (SKEBS) of Berner et al. (2009) was recently adapted
57 for ocean models by Storto and Andriopoulos (2021).

58 Instantaneous backscatter occurs in the forward cascade of 3D turbu-
59 lence even when the mean energy transfer is from large to small scales, and
60 it also occurs in the forward enstrophy cascade range of 2D and QG tur-
61 bulence, where the mean energy transfer is very small. Backscatter param-
62 eterizations that attempt to represent physical backscatter processes have
63 appeared throughout the turbulence modeling community starting from the
64 work of Bertoglio (1985) and Leith (1990), and in the context of geophysical
65 models from at least the work of Mason and Thomson (1992). By 2005,
66 physical backscatter parameterizations had been developed for atmospheric
67 models by Schumann (1995) and Frederiksen and Davies (1997), among oth-
68 ers. Shutts's backscatter parameterization differs from these in that it is not
69 a parameterization of a physical backscatter process per se; rather, it uses
70 backscatter to mitigate spurious dissipation that arises in other parts of the
71 model. Within the ocean modelling context, a popular approach to parame-
72 terizing backscatter sets the amplitude of backscatter based on a prognostic
73 model of subgrid-scale kinetic energy (e.g. Jansen et al., 2015; Klöwer et al.,
74 2018; Jansen et al., 2019; Juricke et al., 2019, 2020b). Whether these par-
75 ticular backscatter parameterizations are explicitly designed to represent a

76 physical backscatter process or whether they are designed to make up for the
77 energetic failings of other parameterizations is not always clear, nor does the
78 distinction necessarily have a large practical import, since backscatter pa-
79 rameterizations in practice end up accomplishing, to some extent, both ends.
80 In contrast, Bachman (2019) developed a backscatter parameterization that
81 is clearly physical in nature. It ties the backscatter rate to a dissipation
82 rate, but instead of re-injecting energy to correct spurious dissipation the
83 backscatter represents a physical process whereby potential energy that is
84 transferred to unresolved scales via baroclinic instability cascades back to
85 the resolved scales via the QG inverse cascade.

86 Backscatter parameterizations can also be categorized based on the func-
87 tional form of the parameterization: Backscatter parameterizations are either
88 deterministic or stochastic, or in rare cases, a combination of both. The ear-
89 liest backscatter parameterizations (e.g. Bertoglio, 1985; Leith, 1990; Mason
90 and Thomson, 1992) were stochastic. Inspiration for a deterministic pa-
91 rameterization of backscatter goes back to at least Kraichnan (1976), whose
92 work inspired Sukoriansky et al. (1996) to develop a parameterization for 2D
93 turbulence in the form of a negative viscosity combined with a biharmonic
94 hyperviscosity. In the context of ocean models, Kitsios et al. (2013) and
95 Jansen and Held (2014) developed deterministic backscatter parameteriza-
96 tions based on combinations of viscosity and hyperviscosity. The backscatter
97 scheme described by Shutts (2005) is also deterministic, but is based on the
98 chaotic dynamics of cellular automata rather than on a negative viscosity.

99 The goal of this paper is to develop new parameterizations that combine
100 the Smagorinsky-like 2D- and QG-Leith parameterizations with backscatter
101 in a theoretically consistent way by building on the basic theory of the 2D and
102 QG turbulent enstrophy cascade, and to compare a wide range of parameter-
103 izations in an idealized model across a range of resolutions. The two primary
104 threads in the theoretical development pursued here, viz. absorbing a down-
105 scale cascade of enstrophy or potential enstrophy and setting the backscatter
106 amplitude to re-inject a portion of the dissipated energy, have appeared in
107 the literature, as have the components of the implementation (harmonic and
108 biharmonic operators, stochastic backscatter, spatial filters). The practical
109 effect of combining these two theoretical threads is that the amplitudes of
110 backscatter and dissipation are set simultaneously, rather than setting the
111 dissipation coefficient independently of backscatter. The parameterizations
112 are developed in section 2, and the idealized model results are described in
113 section 3.

114 **2. Energetically-constrained Leith parameterizations**

115 The parameterizations developed here rely on quasigeostrophic (QG) the-
 116 ory, but are intended for implementation in primitive-equation ocean models.
 117 To clarify the connection, the QG vorticity and buoyancy-anomaly equations
 118 are recorded here

$$\partial_t \omega + \mathbf{u} \cdot \nabla \omega - f_0 \partial_z w + \beta v = \mathcal{B}_\omega + \mathcal{D}_\omega, \quad (1)$$

$$\partial_t b + \mathbf{u} \cdot \nabla b + w N^2(z) = \mathcal{B}_b + \mathcal{D}_b. \quad (2)$$

119 The vertical component of relative vorticity is $\omega = \partial_x v - \partial_y u = \nabla^2 \psi$ where
 120 u and v are the zonal and meridional components of velocity, respectively,
 121 and ψ is the QG streamfunction. The gradient ∇ acts horizontally, and w
 122 is the vertical component of velocity. The Coriolis parameter f_0 is twice the
 123 angular rotation rate of the planet projected onto the local vertical direction,
 124 and β is the meridional gradient of planetary vorticity. The mean buoyancy is
 125 $\bar{b}(z)$ and the buoyancy frequency is $N(z) = (\partial_z \bar{b})^{1/2}$; the buoyancy anomaly
 126 is related to the streamfunction via $b = f_0 \partial_z \psi$. The terms $\mathcal{B}_{\omega,b}$ and $\mathcal{D}_{\omega,b}$
 127 represent backscatter and dissipation terms, respectively.

128 The vorticity and buoyancy-anomaly equations can be combined into a
 129 single equation for QG potential vorticity

$$\partial_t q + \mathbf{u} \cdot \nabla q + \beta v = \mathcal{B}_\omega + \mathcal{D}_\omega + \partial_z \left[\frac{f_0}{N^2} (\mathcal{B}_b + \mathcal{D}_b) \right] \quad (3)$$

130 where

$$q = \nabla^2 \psi + \partial_z \left(\frac{f_0^2}{N^2} \partial_z \psi \right) \quad (4)$$

131 is the QG potential vorticity (QG PV). The energy conserved by the dynam-
 132 ics is a combination of kinetic and available potential energies

$$E = KE + APE = \frac{1}{2} \int_V \left[|\nabla \psi|^2 + \frac{f_0^2}{N^2} (\partial_z \psi)^2 \right] dV. \quad (5)$$

133 The parameterizations appearing in the vorticity equation directly affect
 134 the kinetic energy budget, while the parameterizations appearing in the
 135 buoyancy-anomaly equation directly affect the available potential energy
 136 budget.

137 The following subsections develop deterministic and stochastic param-
 138 eterizations that consistently incorporate backscatter into the 2D and QG

139 Leith parameterizations. In all cases it is crucial to achieve a scale separation
 140 between the backscatter and the dissipation: any energy backscattered
 141 at the grid scale is immediately dissipated, which defeats the purpose,
 142 and nonlinear processes that might otherwise transfer energy from the grid
 143 scale to larger scales are badly resolved by discretizations. The deterministic
 144 parameterizations developed here achieve this scale separation by using a
 145 combination of a dissipative biharmonic term and a backscattering harmonic
 146 term following Sukoriansky et al. (1996) and Jansen and Held (2014), while
 147 the stochastic parameterizations use either a harmonic or biharmonic dissipation
 148 term in combination with a stochastic backscatter that is designed to
 149 avoid backscattering at the grid scale.

150 The derivations in the following subsections follow the traditional approach
 151 to deriving the Smagorinsky and Leith parameterizations. Expressions
 152 for the viscous coefficients are derived under the assumption that these
 153 coefficients are constant and that the turbulence is homogeneous, but the
 154 derived expressions are then used to define spatially-varying viscous coefficients
 155 for use in simulations of inhomogeneous dynamics. The gap between
 156 the assumptions of the derivation and the use of the expressions is mitigated
 157 somewhat by smoothing the coefficients before use (cf. (28)).

158 2.1. Biharmonic 2D Leith + E

159 The biharmonic 2D Leith parameterization sets the vorticity dissipation
 160 term to

$$161 \mathcal{D}_\omega = -\nabla^2 (\nu_4 \nabla^2 \omega). \quad (6)$$

162 (In a primitive-equation model one might use $\nabla^2(\nu_4 \nabla^2 \mathbf{u})$ or $\nabla \cdot (\sqrt{\nu_4} \nabla (\nabla \cdot$
 163 $\sqrt{\nu_4} \nabla \mathbf{u}))$.) Re-injection of spuriously-dissipated energy is accomplished
 164 using a negative-viscosity harmonic operator

$$165 \mathcal{B}_\omega = \overline{\nabla^2(\nu_2 \overline{\omega})} \quad (7)$$

166 where $\nu_2 \leq 0$. In a primitive-equation model one might use $\nabla \cdot (\overline{\nu_2 \nabla \overline{\mathbf{u}}})$.
 167 There is no backscatter or dissipation in the buoyancy-anomaly equation:
 168 $\mathcal{B}_b = \mathcal{D}_b = 0$. The overline in (7) represents a self-adjoint low-pass spatial
 169 filter whose purpose is to enhance the scale separation between the dissipative
 170 action of the biharmonic term and the backscattering action of the harmonic
 171 term. The number of applications of the filter could be adjusted if needed to
 172 enhance scale separation.

171 To motivate the spatial filter, consider an equispaced grid with grid scale
 172 Δx . Ignoring discretization errors and spatial variability of the viscous coef-
 173 ficients, the combined influence of the (unfiltered) harmonic and biharmonic
 174 terms on a discrete Fourier mode with wavenumber \mathbf{k} is a linear growth (or
 175 decay) with rate

$$-\nu_2 k^2 - \nu_4 k^4 \quad (8)$$

176 where $k = |\mathbf{k}|$. Wavenumbers with $0 < k < (-\nu_2/\nu_4)^{1/2}$ are forced while
 177 wavenumbers with $k > (-\nu_2/\nu_4)^{1/2}$ are damped. In order to successfully
 178 absorb an enstrophy cascade, one wants a reasonably-wide range of scales to
 179 be damped; e.g., one might want to ensure that all modes within a factor of
 180 two of the grid scale are damped. This sets a limit on the allowable values of
 181 the viscous coefficients. The smallest unambiguously representable Fourier
 182 mode on the grid has wavenumber $\pi/\Delta x$ in each direction, so the requirement
 183 that the crossover between forcing and damping occurs at a wavenumber less
 184 than half the grid wavenumber leads to the following constraint on the viscous
 185 coefficients

$$\left(-\frac{\nu_2}{\nu_4}\right)^{1/2} < \frac{\pi}{2\Delta x} \Rightarrow -\nu_2 < \nu_4 \left(\frac{\pi}{2\Delta x}\right)^2. \quad (9)$$

186 This effectively limits the allowable backscatter rates.

187 The filter allows this constraint to be relaxed. A simple moving-average
 188 filter with a three-point stencil in each direction with weights $[1/4, 1/2, 1/4]$ mul-
 189 tiplies a discrete Fourier mode with wavenumber $\mathbf{k} = (k_x, k_y)$ by a factor of
 190 $\cos(k_x \Delta x/2) \cos(k_y \Delta x/2)$, i.e. it leaves the largest scales unchanged and ze-
 191 roes out the smallest scales. The standard second-order discretization of the
 192 Laplacian multiplies a discrete Fourier mode with wavenumber $\mathbf{k} = (k_x, k_y)$
 193 by a factor of $-(4/\Delta x^2)(\sin^2(k_x \Delta x/2) + \sin^2(k_y \Delta x/2))$. For this specific filter
 194 the combined influence of the discrete harmonic and biharmonic terms on a
 195 discrete Fourier mode with wavenumber \mathbf{k} is a linear growth (or decay) with
 196 rate

$$\begin{aligned} & -\nu_2 \left(\cos\left(\frac{k_x \Delta x}{2}\right) \cos\left(\frac{k_y \Delta x}{2}\right) \right)^2 \left[\frac{4}{\Delta x^2} \left(\sin^2\left(\frac{k_x \Delta x}{2}\right) + \sin^2\left(\frac{k_y \Delta x}{2}\right) \right) \right] \\ & - \nu_4 \left[\frac{4}{\Delta x^2} \left(\sin^2\left(\frac{k_x \Delta x}{2}\right) + \sin^2\left(\frac{k_y \Delta x}{2}\right) \right) \right]^2. \end{aligned} \quad (10)$$

197 To ensure that wavenumbers between $\pi/\Delta x$ and $\pi/(2\Delta x)$ are damped, the

198 viscous coefficients must satisfy the following constraint

$$-\nu_2 < \frac{4\nu_4}{\Delta x^2}. \quad (11)$$

199 The largest allowable backscatter coefficient is twice as large with the filtering
200 as without. If, in a primitive equation model, the range of wavenumbers that
201 are damped needs to be increased, or if the number of applications of the
202 filter changes, the upper bound on $-\nu_2$ can be modified accordingly.

203 Bachman (2019) similarly used a spatial filter to enhance the scale sep-
204 aration between backscatter and dissipation, though both dissipation and
205 backscatter were achieved using harmonic operators. Both Berloff (2018) and
206 Juricke et al. (2020a) used spatial filters to define their backscatter schemes
207 instead of a combination of harmonic and biharmonic terms. In a model with
208 non-uniform grid spacing the weights would be updated to account for the
209 unequal grid cell sizes.

210

211 Having defined and motivated the filtering term, consider the enstrophy
212 budget for the dynamics. Enstrophy is injected by the wind forcing, cascades
213 towards small scales, and is dissipated by viscosity at small scales. In a
214 statistically steady state, the rate of injection, the cascade rate, and the
215 dissipation rate are all equal. The global-average enstrophy dissipation rate
216 associated with the parameterization is

$$\frac{1}{V} \int_V \nu_4 (\nabla^2 \omega)^2 dV. \quad (12)$$

217 When a backscatter scheme is present we assume it to act at small scales
218 (though at larger scales than dissipation), so that the cascade rate equals
219 the combined backscatter and dissipation rates. The global-average enstro-
220 phy dissipation and backscatter rates combine to form the net enstrophy
221 dissipation rate, which is

$$\frac{1}{V} \int_V \nu_2 |\nabla \bar{\omega}|^2 + \nu_4 (\nabla^2 \omega)^2 dV. \quad (13)$$

222 As usual in the derivation of Smagorinsky and Leith parameterizations, we
223 assume that the local net enstrophy dissipation rate is instantaneously bal-
224 anced by the local cascade rate η so that the final expressions for the dissipa-
225 tion and backscatter coefficients can vary in space and time. Henceforth

226 therefore, assume a local equilibrium such that the local enstrophy cascade
 227 rate η is equal to the local net enstrophy dissipation rate

$$\eta = \nu_2 |\nabla \bar{\omega}|^2 + \nu_4 (\nabla^2 \omega)^2. \quad (14)$$

228 Formulas for the coefficients ν_2 and ν_4 will be obtained by imposing
 229 two constraints: one on the energy cascade and one on the enstrophy cas-
 230 cade. The enstrophy cascade condition is that the enstrophy cascade should
 231 terminate within the range of scales represented on the grid. In the non-
 232 backscattering case one assumes that the dissipation scale for enstrophy de-
 233 pends only on the biharmonic coefficient ν_4 and the enstrophy cascade rate
 234 η , and dimensional analysis then implies that the dissipation scale must be
 235 proportional to

$$\ell_\eta = \left(\frac{\nu_4^3}{\eta} \right)^{1/12}. \quad (15)$$

236 In the backscattering case there is a second dimensional coefficient ν_2 that
 237 could, in principle, play a role in setting the dissipation scale for enstrophy.
 238 The application of the spatial filter effectively removes the backscatter term
 239 from the smallest resolved scales, which allows us to use the standard assump-
 240 tion that the dissipation scale for enstrophy depends only on the biharmonic
 241 coefficient ν_4 and the enstrophy cascade rate η . To ensure that the enstrophy
 242 cascade is absorbed on the grid, the grid wavenumber $\pi/\Delta x$ is set propor-
 243 tional to one over the dissipation scale for enstrophy with proportionality
 244 constant Υ

$$\frac{\pi}{\Delta x} = \Upsilon \left(\frac{\nu_4^3}{\eta} \right)^{-1/12}. \quad (16)$$

245 Inserting the appropriate expression for η and simplifying leads to the fol-
 246 lowing constraint

$$\nu_2 |\nabla \bar{\omega}|^2 + \nu_4 (\nabla^2 \omega)^2 = \nu_4^3 \left(\frac{\pi}{\Upsilon \Delta x} \right)^{12}. \quad (17)$$

247 Notice that when $\nu_2 = 0$ we recover exactly the biharmonic 2D-Leith scaling
 248 (Fox-Kemper and Menemenlis, 2008)

$$\nu_4 = \left(\frac{\Upsilon \Delta x}{\pi} \right)^6 |\nabla^2 \omega|. \quad (18)$$

249 A second constraint is obtained by requiring the backscatter term to re-
 250 inject a fraction c_K of the energy that is dissipated by the biharmonic term:

$$\nu_2 \bar{\omega}^2 = -\nu_4 c_K |\nabla \omega|^2. \quad (19)$$

251 (The expression for the local kinetic energy backscatter rate assumes that the
 252 filter commutes with spatial derivatives.) This leads to a local net energy
 253 dissipation rate of

$$\epsilon = \nu_2 \bar{\omega}^2 + \nu_4 |\nabla \omega|^2 = \nu_4 (1 - c_K) |\nabla \omega|^2. \quad (20)$$

254 Setting $c_K = 1$ re-injects all of the energy that is dissipated by the biharmonic
 255 term so that the combined effect has no net energy dissipation $\epsilon = 0$, while
 256 setting $c_K = 0$ leads to no backscatter.

257 The solution to the system is

$$\nu_4 = \left(\frac{\Upsilon \Delta x}{\pi} \right)^6 \left[(\nabla^2 \omega)^2 - c_K \frac{|\nabla \omega|^2 |\nabla \bar{\omega}|^2}{\bar{\omega}^2} \right]^{1/2}, \quad (21)$$

$$\nu_2 = -\nu_4 c_K \frac{|\nabla \omega|^2}{\bar{\omega}^2}. \quad (22)$$

258 There are several practical considerations that prevent direct use of the
 259 foregoing expressions. For example, the biharmonic term can be imaginary,
 260 which indicates that the constraints on the energy and enstrophy cascades
 261 cannot both be satisfied by any real combination of harmonic and biharmonic
 262 coefficients. Similarly, the coefficients produced by the above formulas may
 263 violate the constraint (11) that ensures scale separation between backscat-
 264 ter and dissipation on the grid, or the formulas may generate a biharmonic
 265 coefficient large enough to cause numerical instability.

266 To obtain a practical method, we first compare the energetic constraint
 267 (22) to the scale-separation constraint (11), and choose the constraint that
 268 produces a smaller value of ν_2 for a given ν_4 . This produces a backscatter
 269 coefficient

$$\nu_2 = -m \nu_4 \quad (23)$$

270 where

$$m = \begin{cases} c_K \frac{|\nabla \omega|^2}{\bar{\omega}^2} & \text{where } c_K \Delta x^2 |\nabla \omega|^2 < 4 \bar{\omega}^2 \\ \frac{4}{\Delta x^2} & \text{where } c_K \Delta x^2 |\nabla \omega|^2 \geq 4 \bar{\omega}^2 \end{cases} \quad (24)$$

271 Choosing the smaller of the two constraints means that the negative viscosity
 272 backscatters as much as possible without violating the scale separation
 273 between backscatter and dissipation. We then substitute this expression into
 274 the enstrophy constraint (17) and solve for the biharmonic coefficient, which
 275 yields the expression

$$\left(\frac{\Upsilon\Delta x}{\pi}\right)^6 \left[(\nabla^2\omega)^2 - m|\nabla\bar{\omega}|^2\right]_+^{1/2}. \quad (25)$$

276 The argument of the square root is truncated to non-negative values, and
 277 this truncation is reflected in the notation $[\cdot]_+$. In practice one wants to
 278 avoid having the biharmonic coefficient become too small, so we assume some
 279 minimum value ν_4^{\min} has been specified. There is also an upper limit ν_4^{\max} on
 280 the allowable values of the biharmonic coefficient associated with numerical
 281 stability. The final formulas are therefore

$$\nu_4 = \max \left\{ \nu_4^{\min}, \min \left\{ \nu_4^{\max}, \left(\frac{\Upsilon\Delta x}{\pi}\right)^6 \left[(\nabla^2\omega)^2 - m|\nabla\bar{\omega}|^2\right]_+^{1/2} \right\} \right\} \quad (26)$$

$$\nu_2 = -m\nu_4. \quad (27)$$

282 Direct application of these formulas can yield viscous coefficients with ex-
 283 treme spatial variability. To avoid this, the results of the above expressions
 284 could be smoothed using the spatial filter before use. This would have the
 285 effect of reducing dissipation in places where it was needed though; to smooth
 286 the fields while maintaining large values, the values produced by the above
 287 formulas were modified as follows before use:

$$\nu_4 \mapsto \left[\overline{\nu_4^2}\right]^{1/2} \quad (28)$$

288 and similarly for ν_2 , though maintaining its negative sign.

289

290 Note that for the same vorticity field the biharmonic viscous coefficient
 291 produced by this new parameterization is smaller than the biharmonic 2D-
 292 Leith coefficient. It is counterintuitive to *reduce* the biharmonic coefficient
 293 when backscatter is introduced. Intuitively, one expects from (14) that the
 294 local enstrophy cascade rate η will remain constant, so the introduction of
 295 enstrophy backscatter $\nu_2|\nabla\bar{\omega}|^2$ should also lead to a correspondingly greater
 296 gross enstrophy dissipation $\nu_4(\nabla^2\omega)^2$ so that the sum of backscatter and

297 gross dissipation, i.e. the net dissipation, can remain constant to match the
 298 cascade rate. This is in fact what happens, as noted at the end of section
 299 3.4: The gross enstrophy dissipation rate increases when backscatter is in-
 300 troduced. Nevertheless, the coefficient ν_4 remains approximately the same
 301 with and without backscatter, which indicates that changes in the vorticity
 302 field rather than changes in ν_4 are responsible for maintaining the balance
 303 of the net enstrophy dissipation rate. This also explains how the coefficient
 304 ν_4 can remain the same: The value produced by (21) is only smaller than
 305 the classical biharmonic Leith coefficient (18) if the resolved vorticity field in
 306 both expressions is the same. In simulations with and without backscatter
 307 the resolved vorticity field is different, and as reported at the end of section
 308 3 these differences conspire to keep the values of ν_4 produced by the classical
 309 and backscattering Leith schemes nearly identical.

310 *2.2. Biharmonic QG Leith + E*

311 The energetically-constrained biharmonic QG Leith parameterization adds
 312 backscatter to the QG-Leith parameterization of Bachman et al. (2017). It
 313 uses the same vorticity dissipation and backscatter terms as the energetically-
 314 constrained biharmonic 2D Leith parameterization, given in equations (6)
 315 and (7). The parameterization adds diffusion of buoyancy in the form

$$\mathcal{D}_b = -\nu_4 \nabla^4 b \quad (29)$$

316 which leads to a biharmonic horizontal dissipation of QG PV in equation (3).

317 In the QG-Leith perspective the cascade to be absorbed by dissipation
 318 at small scales is one of potential enstrophy ($q^2/2$) rather than enstrophy
 319 ($\omega^2/2$). The local potential enstrophy cascade rate η_q is assumed to balance
 320 the local net potential enstrophy dissipation rate

$$\eta_q = \nu_2 \nabla \bar{q} \cdot \nabla \bar{\omega} + \nu_4 (\nabla^2 q)^2. \quad (30)$$

321 This expression is derived under the traditional assumption that the viscous
 322 coefficients are constant, and also under the assumption that the spatial filter
 323 commutes with the derivatives. The condition that the dissipation scale of
 324 the potential enstrophy cascade be proportional to the grid scale leads to the
 325 constraint

$$\nu_2 \nabla \bar{q} \cdot \nabla \bar{\omega} + \nu_4 |\nabla q|^2 = \nu_4^3 \left(\frac{\Upsilon \Delta x}{\pi} \right)^{12}. \quad (31)$$

326 The form of the KE backscatter rate remains the same as for the 2D
 327 version, and one could require the backscatter rate to be equal to a fraction
 328 of the KE dissipation rate associated with the biharmonic vorticity diffusion
 329 term. The biharmonic buoyancy-anomaly diffusion in QG-Leith leads to a
 330 dissipation of APE that is not present in the 2D version, so a more general
 331 backscatter constraint would be to make the backscatter rate proportional
 332 to some combination of the KE and APE dissipation rates. This produces
 333 the constraint

$$\nu_2 \bar{\omega}^2 = -\nu_4 \left[c_K |\nabla \omega|^2 + c_P \frac{(\nabla^2 b)^2}{N^2} \right] \quad (32)$$

334 where the second term in the square brackets is proportional to the local
 335 APE dissipation rate associated with the biharmonic term. The local net
 336 KE dissipation rate associated with the parameterization has the same form
 337 as the 2D version (20). There is no APE backscatter associated with this pa-
 338 rameterization, so the local net APE dissipation rate is simply $\nu_4 (\nabla^2 b)^2 / N^2$,
 339 while the local dissipation rate of total energy is

$$\epsilon_{\text{KE+APE}} = \nu_4 \left[(1 - c_K) |\nabla^2 \omega|^2 + (1 - c_P) \frac{(\nabla^2 b)^2}{N^2} \right]. \quad (33)$$

340 The GM+E parameterization (Bachman, 2019) and the approach of Jansen
 341 et al. (2019) both similarly recycle dissipated APE into KE backscatter.

342 The two constraints (31) and (32) form a system of two equations for two
 343 unknowns. As in the 2D case, the exact solution is not practical, and applying
 344 the same practical constraints as in the 2D case produces the following recipe
 345 for ν_2 and ν_4

$$\nu_4 = \max \left\{ \nu_4^{\min}, \min \left\{ \nu_4^{\max}, \left(\frac{\Upsilon \Delta x}{\pi} \right)^6 \left[(\nabla^2 q)^2 - m \nabla \bar{q} \cdot \nabla \bar{\omega} \right]_+^{1/2} \right\} \right\} \quad (34)$$

$$\nu_2 = -m \nu_4 \quad (35)$$

346 where

$$m = \begin{cases} \frac{c_K |\nabla \omega|^2 + c_P (\nabla^2 b)^2 / N^2}{\bar{\omega}^2} & \text{where } \Delta x^2 (c_K |\nabla \omega|^2 + c_P (\nabla^2 b)^2 / N^2) < 4 \bar{\omega}^2 \\ \frac{4}{\Delta x^2} & \text{where } \Delta x^2 (c_K |\nabla \omega|^2 + c_P (\nabla^2 b)^2 / N^2) \geq 4 \bar{\omega}^2 \end{cases} \quad (36)$$

347 The results of the above expressions are smoothed before use via (28) as in
 348 the 2D case. Unlike in the 2D case, the biharmonic coefficient can actually be

349 larger than the classical QG-Leith scaling obtained by setting $m = 0$ because
 350 $\nabla \bar{q} \cdot \nabla \bar{\omega}$ can in principle be negative.

351 *2.3. Biharmonic 2D Leith + Stochastic Backscatter*

352 The foregoing methods backscattered kinetic energy using a determin-
 353 istic negative harmonic viscosity. Many other backscatter schemes in the
 354 literature use stochastic formulations of backscatter, and it is of interest to
 355 compare the approaches. This subsection develops a parameterization with
 356 a combination of biharmonic diffusion of vorticity and stochastic backscatter
 357 of QG PV. The biharmonic viscosity takes the usual form

$$\mathcal{D}_\omega = -\nabla^2 \nu_4 \nabla^2 \omega \quad (37)$$

358 and there is no diffusion of buoyancy anomalies $\mathcal{D}_b = 0$.

359 One could in principle follow the approach of the previous subsections
 360 by defining stochastic forcings of vorticity and buoyancy, \mathcal{B}_ω and \mathcal{B}_b . The
 361 stochastic forcing of vorticity would correspond to a stochastic kinetic energy
 362 backscatter, while the stochastic forcing of buoyancy would correspond to a
 363 stochastic backscatter of available potential energy. In practice though it is
 364 impossible to separate stochastic forcing of KE and APE in a QG system,
 365 unless the backscatter is barotropic (i.e. depth-independent), which is overly
 366 limiting.

367 To understand this it is helpful to think in terms of the practical imple-
 368 mentation of a stochastic forcing of QG PV. At the discrete level, a stochastic
 369 increment is constructed and added to the QG PV q at every time step, where
 370 the amplitude of the increment is proportional to the square root of the time
 371 step size $\sqrt{\Delta t}$. When the noise is temporally uncorrelated, the mean rates
 372 of energy and enstrophy injection associated with the forcing are the mean
 373 energy and enstrophy of the increment, divided by the time step size. Notice
 374 that scaling the increment by $\sqrt{\Delta t}$ leads to energy and enstrophy injection
 375 rates are independent of Δt . A peculiarity of the QG system is that a QG
 376 PV increment Δq generally has both kinetic and available potential energy;
 377 the only way to construct a QG PV increment that has only kinetic and no
 378 available potential energy is for the QG PV increment to be barotropic. Even
 379 if one formally constructs the stochastic increment to q as a combination of a
 380 stochastic increment to vorticity plus zero stochastic increment to buoyancy,
 381 the resulting QG PV increment ends up backscattering both KE and APE.

382 It is worth briefly noting that in a primitive equation model it is possible
 383 to increment the momentum and buoyancy separately, and thereby construct

384 a stochastic forcing that increments KE and APE separately. But if the
385 flow is approximately geostrophic, then geostrophic adjustment processes
386 will rapidly convert a purely KE increment into a combination of KE and
387 APE. Deterministic backscatter via negative viscosity presumably behaves
388 similarly: although the backscatter is purely kinetic, geostrophic adjustment
389 processes rapidly convert some of this kinetic energy to potential energy. At
390 scales larger than the deformation radius, one expects that a large fraction
391 of the backscattered KE will end up in APE after adjustment processes. The
392 stochastic scheme of Grooms (2016) backscatters only APE; the foregoing
393 reasoning suggests that some fraction of this backscattered APE will convert
394 to KE on the resolved scales.

395 The stochastic increment of QG PV is constructed to backscatter total
396 energy (rather than kinetic energy) at the desired rate. In order to connect
397 to a potential implementation in a primitive-equation model, an increment is
398 constructed for the QG streamfunction ψ , and the implied QG PV increment
399 is derived from this ψ increment.

400 Let S be a Gaussian random field that is depth-independent and un-
401 correlated in time and in the horizontal directions. The horizontal Fourier
402 transform of this field has a uniform 2D spectrum. If S were used directly
403 as an increment to ψ , the associated 1D kinetic energy forcing spectrum
404 would be proportional to k^3 , which is strongest at the smallest scales, and
405 violates the principle of separation of scales between backscatter and dissipa-
406 tion. (The 1D spectrum results from averaging the 2D spectrum, which
407 depends on both k_x and k_y , around circles so that the resulting 1D spectrum
408 is a function only of $k = |\mathbf{k}|$.) To create such a scale separation, the field
409 S is spatially filtered twice $\bar{\bar{S}}$. Using the spatial filter from section 2.1 (and
410 ignoring discretization errors in forming KE from ψ on the grid), the kinetic
411 energy forcing spectrum associated with a ψ increment of $\bar{\bar{S}}$ would be pro-
412 portional to $k^3(\cos(k_x\Delta x/2)\cos(k_y\Delta x/2))^4$. The peak of the 1D KE forcing
413 spectrum occurs at a wavenumber close to $\pi/(2\Delta x)$, i.e. the forcing peaks at
414 a scale approximately twice as large as the grid scale. More applications of
415 the filter could be used to push the peak of the forcing spectrum to larger
416 scales, but this would come at extra computational expense as well as com-
417 munication costs in a parallel code. The use of spatial filters to achieve scale
418 separation between the stochastic backscatter and dissipation goes back at
419 least to Schumann (1995), and its importance was underscored by Grooms
420 et al. (2015).

421 The amplitude of the stochastic forcing should be set so that it injects
 422 energy back into the system at a desired rate. To achieve this goal it is
 423 convenient to normalize the basic stochastic increment so that it has unit
 424 energy. Define

$$S_0 = \left(\frac{1}{2} \mathbb{E} \left[|\nabla \bar{S}|^2 \right] \right)^{1/2} \quad (38)$$

425 where \mathbb{E} denotes the mean across realizations of the random field. The nor-
 426 malizing constant S_0 can be calculated analytically or numerically, and de-
 427 pends only on the shape of the grid, the form of the spatial filter, and the
 428 discretization of the Laplacian; the computation is done offline. We define
 429 the increment to QG PV to be

$$\Delta q = \sqrt{\Delta t} \nabla \cdot \left(A(x, y, z, t) \nabla \left(\frac{\bar{S}}{S_0} \right) \right). \quad (39)$$

430 If it were possible to separately increment the velocity and buoyancy fields,
 431 then this QG PV increment would result from a random, non-divergent,
 432 isotropic Gaussian velocity field with amplitude A and zero buoyancy anomaly;
 433 indeed, one might implement the parameterization in a primitive-equation
 434 model by forming a velocity increment $\sqrt{\Delta t} A(x, y, z, t) \nabla (\bar{S}/S_0) = (\Delta v, -\Delta u)$.
 435 When A is depth-independent the mean local energy injection rate associated
 436 with this QG PV increment is

$$\epsilon_{\text{back}} = A^2. \quad (40)$$

437 Note that the dimensions of A are $L/T^{3/2}$; the unusual fractional scaling is
 438 associated with the factor of $\sqrt{\Delta t}$ in the definition of the QG PV increment.
 439 Precisely separating this into a KE backscatter rate and an APE backscatter
 440 rate requires solving for the associated increment to ψ and then comput-
 441 ing the KE and APE backscatter rates from the ψ increment; this is done
 442 in the code for diagnostic purposes, but is not required to implement the
 443 parameterization. When A is constant the local enstrophy backscatter rate
 444 associated with the QG PV increment is

$$\eta_{\text{back}} = A^2 Z \quad (41)$$

445 where Z can be computed analytically or numerically, and depends only on
 446 the shape of the grid, the form of the spatial filter, and the discretization of

447 the Laplacian; the computation of Z is done offline. The dimensions of Z
448 are L^{-2} .

449 We assume that the local net enstrophy dissipation rate associated with
450 the parameterization is balanced by the local enstrophy cascade rate η

$$\eta = -A^2 Z + \nu_4 (\nabla^2 \omega)^2. \quad (42)$$

451 Requiring this to be absorbed by the biharmonic term on the grid leads to
452 the constraint

$$-A^2 Z + \nu_4 (\nabla^2 \omega)^2 = \nu_4^3 \left(\frac{\Upsilon \Delta x}{\pi} \right)^{12}. \quad (43)$$

453 Requiring the local energy backscatter rate to be proportional to the local
454 rate of KE dissipation associated with the biharmonic term leads to the
455 constraint

$$A^2 = \nu_4 c_K |\nabla \omega|^2. \quad (44)$$

456 As with the previous, deterministic parameterizations, we want to provide
457 upper and lower bounds on ν_4 , so the final form of the parameterization is

$$\nu_4 = \max \left\{ \nu_4^{\min}, \min \left\{ \nu_4^{\max}, \left(\frac{\Upsilon \Delta x}{\pi} \right)^6 [(\nabla^2 \omega)^2 - c_K Z |\nabla \omega|^2]_+^{1/2} \right\} \right\} \quad (45)$$

$$A = [\nu_4 c_K]^{1/2} |\nabla \omega|. \quad (46)$$

458 The coefficients A and ν_4 are smoothed via (28) before use.

459 2.4. Biharmonic QG Leith + Stochastic Backscatter

460 The stochastic method from the foregoing section can be updated from
461 ‘2D’ to ‘QG’ by adding biharmonic diffusion of buoyancy anomalies. The
462 expressions for the KE, APE, and enstrophy dissipation rates remain the
463 same as in section 2.2, and the expressions for the enstrophy and net energy
464 backscatter rates remain as in the previous section. The updated formulas
465 for the backscatter amplitude and biharmonic coefficient are

$$\nu_4 = \max \left\{ \nu_4^{\min}, \min \left\{ \nu_4^{\max}, \left(\frac{\Upsilon \Delta x}{\pi} \right)^6 \left[(\nabla^2 q)^2 - Z \left(c_K |\nabla \omega|^2 + c_P \frac{(\nabla^2 b)^2}{N^2} \right) \right]_+^{1/2} \right\} \right\} \quad (47)$$

$$A = \left[\nu_4 \left(c_K |\nabla \omega|^2 + c_P \frac{(\nabla^2 b)^2}{N^2} \right) \right]^{1/2}. \quad (48)$$

466 2.5. Harmonic 2D and QG Leith + Stochastic Backscatter

467 The deterministic parameterizations of sections 2.1 and 2.2 achieved scale
 468 separation between the backscatter and dissipation by using a combination of
 469 harmonic and biharmonic terms; the scale separation was enhanced through
 470 the use of a spatial filter. The backscatter scheme in the GM+E param-
 471 eterization (Bachman, 2019) uses a combination of harmonic terms and a
 472 spatial filter to achieve scale separation; the backscatter is also confined to
 473 the barotropic part of the flow. The backscatter scheme of Juricke et al.
 474 (2020a) uses a combination of a harmonic operator and a spatial filter to
 475 achieve dissipation and backscatter on a non-rectangular grid.

476 A similar deterministic parameterization could be developed here using
 477 only a harmonic term and a spatial filter. Following Juricke et al. (2020a)
 478 we could develop a scheme of the form

$$\mathcal{B}_\omega + \mathcal{D}_\omega = \nu_2 \nabla^2 \omega - \alpha \nu_2 \nabla^2 \bar{\omega}. \quad (49)$$

479 If we ignore discretization errors and spatial variability of the viscous coeffi-
 480 cients, the influence of the combined parameterization on a discrete Fourier
 481 mode with wavenumber \mathbf{k} is a linear growth (or decay) with rate

$$-\nu_2 \left(1 - \alpha \left(1 - \frac{\Delta x^2 k^2}{\pi^2} \right) \right) k^2 \quad (50)$$

482 where, for simplicity, it was assumed that the spatial filter has Fourier sym-
 483 bol $1 - (\Delta x k / \pi)^2$. This is exactly equivalent to a combination of a harmonic
 484 backscatter with coefficient $\nu_2(1 - \alpha)$ and a biharmonic dissipation with coef-
 485 ficient $\nu_2 \alpha (\Delta x / \pi)^2$. (The scheme only backscatters for $\alpha > 1$.) The resulting
 486 scheme would be very similar to what was developed in sections 2.1 and 2.2,
 487 so we do not develop such a scheme here. Note that this similarity enables
 488 the scalings of ν_2 and ν_4 developed in the preceding sections to be converted
 489 into scalings for ν_2 and α in the backscatter scheme of Juricke et al. (2020a).

490 In contrast to the use of filters and a harmonic viscosity, the combination
 491 of a harmonic dissipation with a stochastic backscatter is not expected to
 492 be effectively the same as a combination of a biharmonic dissipation and
 493 a stochastic backscatter. We therefore develop two such parameterizations
 494 here, one 2D and one QG. In the 2D case the vorticity dissipation term is

$$\mathcal{D}_\omega = \nabla^2(\nu_2 \omega) \quad (51)$$

495 and there is no diffusion of buoyancy anomalies. The stochastic backscatter
 496 takes the same form as developed in section 2.3. The assumption that the
 497 local enstrophy cascade rate matches the local net enstrophy dissipation rate
 498 thus takes the form

$$\eta = -A^2 Z + \nu_2 |\nabla \omega|^2. \quad (52)$$

499 Following the same development as the previous sections, the parameteriza-
 500 tion becomes

$$\nu_2 = \max \left\{ \nu_2^{\min}, \min \left\{ \nu_2^{\max}, \left(\frac{\Upsilon \Delta x}{\pi} \right)^3 [|\nabla \omega|^2 - c_K Z \omega^2]_+^{1/2} \right\} \right\}. \quad (53)$$

$$A = \sqrt{\nu_2 c_K} |\omega|. \quad (54)$$

501 The QG version proceeds as above but adds a harmonic diffusion of buoy-
 502 ancy anomalies

$$\mathcal{D}_b = \nabla^2(\nu_2 b). \quad (55)$$

503 Requiring the total energy backscatter rate to be proportional to a weighted
 504 sum of the KE and APE dissipation rates leads to the following parameteri-
 505 zation

$$\nu_2 = \max \left\{ \nu_2^{\min}, \min \left\{ \nu_2^{\max}, \left(\frac{\Upsilon \Delta x}{\pi} \right)^3 \left[|\nabla q|^2 - Z \left(c_K \omega^2 + c_P \frac{|\nabla b|^2}{N^2} \right) \right]_+^{1/2} \right\} \right\} \quad (56)$$

$$A = \left[\nu_2 \left(c_K \omega^2 + c_P \frac{|\nabla b|^2}{N^2} \right) \right]^{1/2}. \quad (57)$$

506 2.6. Summary

507 This section has developed six new parameterizations which are summa-
 508 rized here. The ‘2D’ parameterizations dissipate only KE via diffusion of
 509 horizontal momentum; the ‘QG’ parameterizations diffuse both horizontal
 510 momentum and buoyancy anomalies.

511 The two deterministic parameterizations combine harmonic KE backscat-
 512 ter with biharmonic dissipation. These are called biharmonic 2D Leith + E
 513 and QG Leith + E, and are abbreviated 2DL4+E and QGL4+E, respec-
 514 tively, where the ‘+E’ is inspired by GM+E (Bachman, 2019). The 2DL4+E
 515 parameters are defined by (26), (27), and (24). The QGL4+E parameters
 516 are defined by (34), (35), and (36).

517 Four of the new parameterizations are stochastic. Two of the stochas-
 518 tic parameterizations use a stochastic backscatter paired with a biharmonic

Table 1: Naming Conventions for Parameterizations

Abbrev.	Backscatter	Diffusion	Details
2DL2	None	$\nabla^2(\nu_2\omega)$	§2.5, Eq. (53), (54), $c_K = 0$
2DL2+ES	Stochastic	$\nabla^2(\nu_2\omega)$	§2.5, Eq. (53), (54), $c_K > 0$
QGL2	None	$\nabla^2(\nu_2q)$	§2.5, Eq. (56), (57), $c_K = c_P = 0$
QGL2+ES	Stochastic	$\nabla^2(\nu_2q)$	§2.5, Eq. (56), (57), $c_K, c_P > 0$
2DL4	None	$-\nabla^2(\nu_4\nabla^2\omega)$	§2.1, Eq. (26), (27), $c_K = 0$
2DL4+E	$\overline{\nabla^2(\nu_2\bar{\omega})}$	$-\nabla^2(\nu_4\nabla^2\omega)$	§2.1, Eq. (26), (27), $c_K > 0$
2DL4+ES	Stochastic	$-\nabla^2(\nu_4\nabla^2\omega)$	§2.3, Eq. (45), (46), $c_K > 0$
QGL4	None	$-\nabla^2(\nu_4\nabla^2q)$	§2.2, Eq. (34), (35), $c_K = c_P = 0$
QGL4+E	$\overline{\nabla^2(\nu_2\bar{\omega})}$	$-\nabla^2(\nu_4\nabla^2q)$	§2.2, Eq. (34), (35), $c_K, c_P > 0$
QGL4+ES	Stochastic	$-\nabla^2(\nu_4\nabla^2q)$	§2.4, Eq. (47), (48), $c_K, c_P > 0$
2DL4+e	$\overline{\nabla^2(\nu_2\bar{\omega})}$	$-\nabla^2(\nu_4\nabla^2\omega)$	§2.1, Eq. (26) with $c_K = 0$, (27) with $c_K > 0$

519 dissipation; the 2D version is abbreviated 2DL4+ES, where the trailing S
 520 denotes ‘stochastic,’ and the QG version is abbreviated QGL4+ES. The
 521 2DL4+ES parameters are defined by (45) and (46), while the QGL4+ES
 522 parameters are defined by (47) and (48).

523 Two of the stochastic parameterizations use a stochastic backscatter paired
 524 with a harmonic dissipation; the 2D version is abbreviated 2DL2+ES and the
 525 QG version is abbreviated QGL2+ES. The 2DL2+ES parameters are defined
 526 by (53) and (54), while the QGL2+ES parameters are defined by (56) and
 527 (57).

528 For comparison we also consider the harmonic and biharmonic forms of
 529 the 2D-Leith and QG-Leith parameterizations. The harmonic forms of 2D-
 530 Leith and QG-Leith are obtained by setting $c_K = c_P = 0$ in (53) and (56),
 531 respectively. The biharmonic forms of 2D-Leith and QG-Leith are obtained
 532 by setting $m = 0$ in (26) and (34), respectively.

533 Finally, we consider parameterizations that use Leith scaling for the bi-
 534 harmonic dissipation coefficient ν_4 without including the effect of backscatter
 535 on the enstrophy cascade rate. The 2D version is obtained by setting $m = 0$
 536 in (26) and then using (27) to set the backscatter coefficient with $m \neq 0$ set
 537 by (24). This scheme is called 2DL4+e to distinguish it from the 2DL4+E
 538 scheme developed above.

539 The naming conventions and details of the parameterizations are summa-

540 rized in Table 1.

541 For all of the parameterizations, the dissipation and backscatter coefficients
542 are smoothed using (28) before use. The backscattering schemes all
543 use $c_K = c_P = 1$ except in section 3.5, which explores the sensitivity of the
544 2DL4+E scheme to c_K . The coefficient Υ in the biharmonic 2D schemes was
545 set to 1.5, and in the biharmonic QG schemes to 1.3. The coefficient Υ in
546 the 2D harmonic schemes was set to 1.3, and in the harmonic QG schemes to
547 1.1. Section 3.6 explores the sensitivity of the 2DL4+E scheme to Υ . Values
548 of the minimum and maximum coefficients can be found in Appendix A.

549 3. Numerical Experiments

550 The parameterizations developed in the foregoing section are compared
551 in the context of a quasigeostrophic double-gyre model. The domain is a
552 square midlatitude basin of width 3,072 km and depth 4 km. Simulations
553 are run with grid sizes of 24, 16, 12, 7, and 4 km, where the 7 km run uses
554 a grid of 449×449 points, including boundary values; there are six layers
555 ranging from the 385 m thick top layer to the 2270 m thick bottom layer.
556 Shevchenko and Berloff (2017) found that there is a significant difference
557 between three and six layers in a very similar QG model, but found the six
558 layer results to be very similar to results with twelve layers. Simulations are
559 spun up from rest for 10 years (it takes about 5 years for the kinetic energy to
560 reach statistical equilibrium). Once spun up, the results are compared based
561 on the final 10 years of each simulation. The time mean streamfunction and
562 spatial pattern of kinetic energy are computed online. Full details on the
563 model configuration and numerical methods can be found in Appendix A.

564 Figure 1 shows the behavior of a simulation with constant biharmonic
565 diffusion of vorticity and no backscatter at 4 km resolution. The upper left
566 panel shows a snapshot of upper-layer QG PV. As usual for a double-gyre
567 model, the most prominent feature is an eastward jet separating from the
568 western boundary currents, along with its adjacent recirculation zones. In
569 addition to the jet and the associated QG PV front between the gyres, the
570 entire domain is populated with mesoscale vortices. The upper right panel
571 shows the time-mean streamfunction in the top layer. The time-mean jet is
572 not purely zonal, and the time-mean recirculation zones that flank the jet
573 are evident. The lower left panel shows the root-mean-square current speed,
574 i.e. the square root of the time mean of $u^2 + v^2$ in the upper layer. Although
575 eddies are present throughout the domain, most of the kinetic energy is found

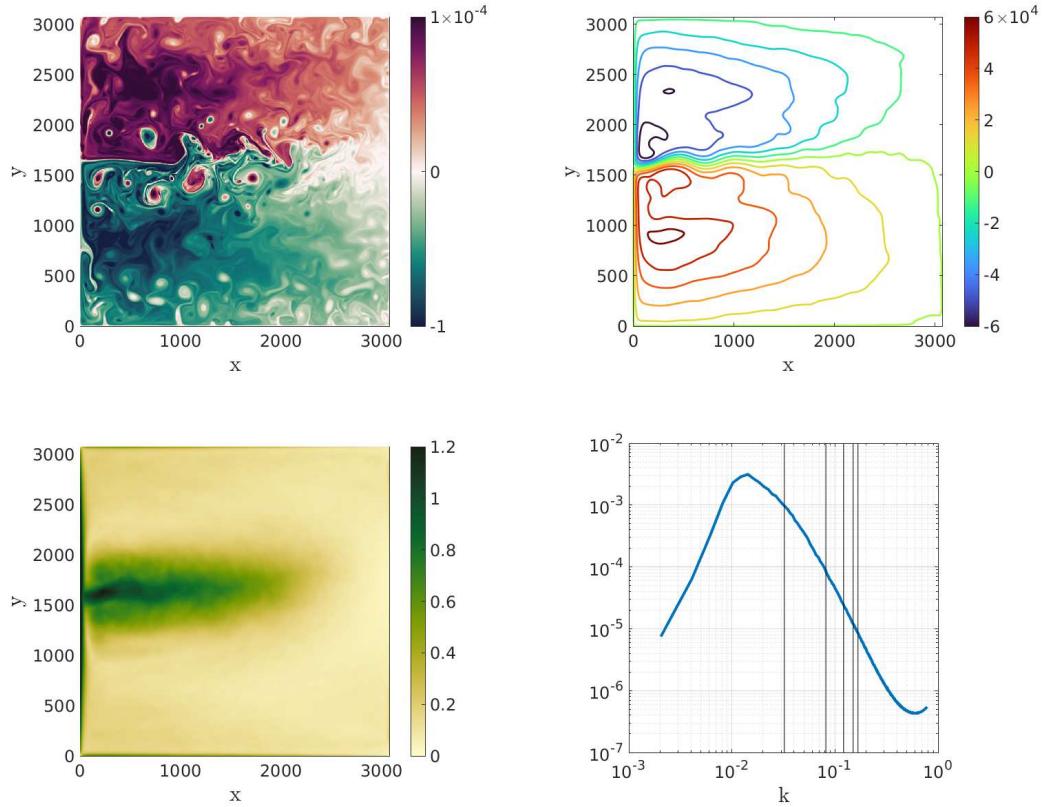


Figure 1: Results from a simulation at 4 km resolution with constant biharmonic diffusion of vorticity. Upper left: A snapshot of QG PV in the upper layer (units s^{-1}). Upper right: Contours of time-mean streamfunction ψ in the upper layer; the contour interval is $1.2 \times 10^4 \text{ m}^2/\text{s}$. Lower left: Square root of the time mean of $u^2 + v^2$ in the upper layer (units m/s). Lower right: Time-mean eddy kinetic energy spectrum of the upper layer; the five vertical lines show the wavenumbers associated with the baroclinic deformation radii. Units for the x and y axes are km, while units of the k axis are km^{-1} .

576 in the jet and in the eddies that separate from it. The lower right panel shows
577 the kinetic energy spectrum of the deviations of the upper layer from its time
578 mean. The five baroclinic deformation radii, from 31 km to 6 km, are shown
579 as vertical lines in the figure. The kinetic energy spectrum peaks at a radius
580 (one over the wavenumber) of 70 km. The bump at the tail of the spectrum
581 suggests that a larger viscous coefficient could have been used, but the effect
582 is small, as seen in the smoothness of the upper left panel. Shevchenko
583 and Berloff (2015, 2017) provide an in-depth discussion of the dynamics of a
584 similarly-configured QG model.

585 Twelve schemes are compared: The six new schemes described in the pre-
586 ceding section, plus four nonlinear viscosities without backscatter (harmonic
587 and biharmonic versions of 2D and QG Leith), plus a constant biharmonic
588 viscosity. The constant biharmonic viscosity was set at each resolution to be
589 near the maximum coefficient produced by the biharmonic 2D Leith scheme
590 (2DL4) at that resolution. The final scheme uses the traditional 2D Leith
591 scaling for the biharmonic dissipation, and adds backscatter via negative vis-
592 cosity with a coefficient scaled so that 100% of the energy dissipated by the
593 biharmonic term is backscattered by the negative viscosity term.

594 Rather than pick a single scheme to generate a reference simulation at
595 the highest resolution of 4 km, all the schemes are run at all the resolutions.
596 The following subsection describes the differences between the methods at
597 the highest resolution (4 km), and the following subsections describe how the
598 results vary with resolution for each scheme.

599 *3.1. Comparison at High Resolution*

600 The total energy dissipation rate is a combination of dissipation due to the
601 frictional bottom boundary layer and the combined effect of the horizontal
602 viscous dissipation and backscatter. At high resolution one expects the total
603 energy dissipation to be dominated by the frictional component. The twelve
604 schemes compared here all have small viscous fractions of the total energy
605 dissipation rate, but there remain significant differences between the schemes.
606 These differences are shown in Figure 2, which also shows the total kinetic
607 energy for each scheme.

608 The kinetic energies produced by each scheme are different; the largest
609 difference amounts to 14%. There are also differences between the viscous
610 percentages produced by the schemes. In the harmonic QG Leith scheme
611 (QGL2) 12.6% of the total dissipation rate is associated with the parameter-
612 ization. Note that in all of the QG schemes (cf. the 2D schemes), viscous

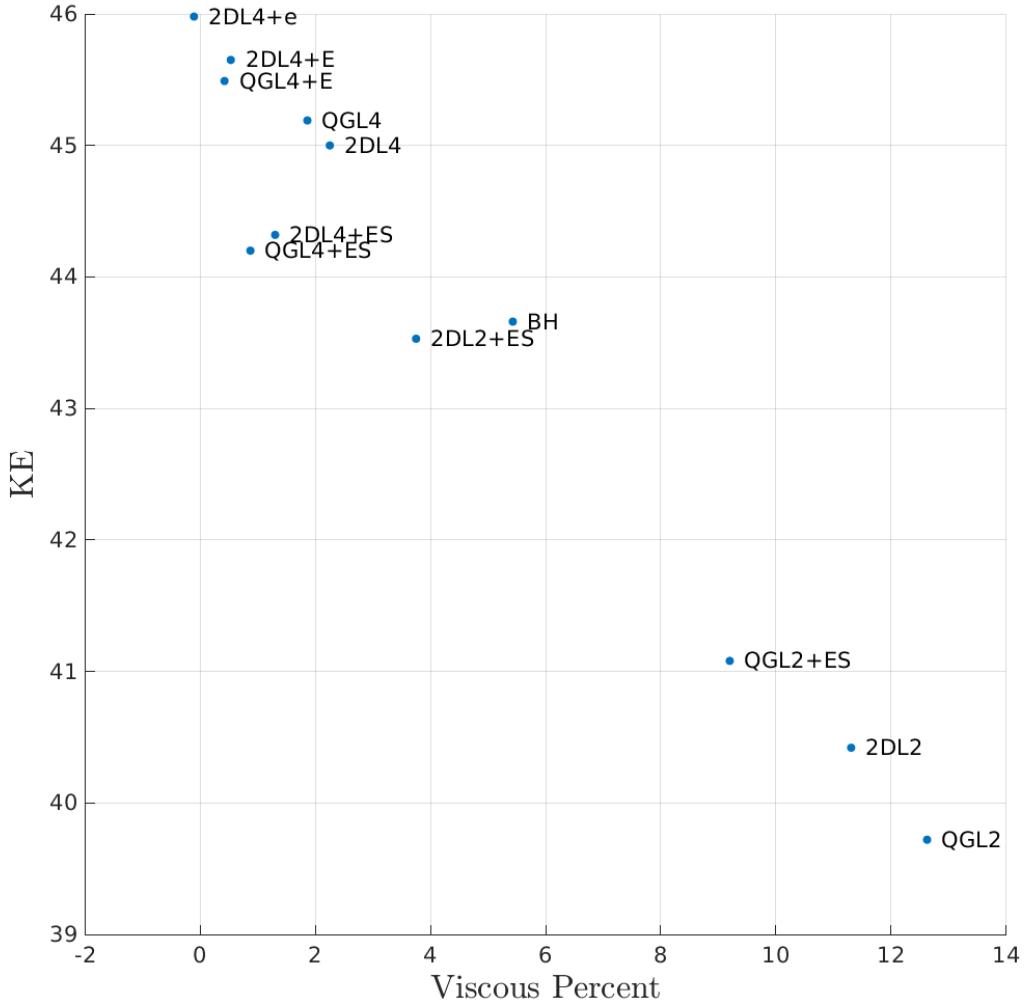


Figure 2: Results for each of the 12 schemes at 4 km resolution. The horizontal axis measures the percent of the total energy dissipation rate that is attributable to the parameterization. The vertical axis shows the total kinetic energy, measured in units of $10^{13} \times m^5 s^{-2}$ (i.e. $(u^2 + v^2)/2$ integrated over the volume).

613 dissipation of APE is included in the viscous percent of the dissipation rate
614 for total energy. In the 2DL4+e scheme the backscatter is slightly stronger
615 than the biharmonic dissipation, resulting in a viscous percentage of -0.11% .
616 The time-mean states produced by the 12 schemes are all very similar at 4
617 km resolution.

618 The next section presents the way that each scheme varies with resolution.
619 The differences at 4 km resolution underscore the importance of comparing
620 each scheme to its own reference at 4 km.

621 *3.2. Varying Resolution: Enstrophy Flux*

622 Since the parameterizations developed here are all intended to apply when
623 the grid scale lies within an enstrophy cascade range, the goal of this sub-
624 section is to establish that such a range exists. Figure 3 shows the spectral
625 potential enstrophy flux in the top layer, computed from the results of the
626 constant-coefficient biharmonic simulations at all resolutions. A positive flux
627 (i.e. towards small scales) is found all resolutions, though the flux amplitude
628 increases as the resolution improves. The flux profile is not flat, i.e. indepen-
629 dent of k , for any range of wavenumbers, as one might expect in a purely
630 inertial range. The potential reasons for this include the fact that the flow is
631 markedly inhomogeneous, with different cascade rates in different parts of the
632 domain, and the fact that enstrophy is not necessarily injected to the system
633 at a single length scale, but can be associated with higher-mode baroclinic
634 instabilities allowed by the use of 6 layers. The increase in the magnitude of
635 the flux from 24 km through 12 km grids is incremental, and is followed by
636 large jumps as the grid size reduces to 7 and 4 km.

637 *3.3. Varying Resolution: Kinetic Energy*

638 We begin by evaluating how the total kinetic energy for each scheme con-
639 verges as the resolution is varied. Figure 4 shows the ratio of the total KE
640 at a given resolution to the total KE at 4 km resolution for each scheme.
641 The schemes are differentiated in three ways: 2D schemes have open mark-
642 ers while QG schemes have filled markers; schemes with harmonic dissipa-
643 tion are marked with circles while schemes with biharmonic dissipation are
644 marked with squares; schemes without backscatter use solid lines, schemes
645 with deterministic backscatter use dashed lines, and schemes with stochastic
646 backscatter use dash-dotted lines. The results from the constant biharmonic
647 scheme are marked with triangles and the 2DL4+e scheme is marked by a
648 diamond. In the discussion that follows the phrases ‘higher KE’ and ‘lower

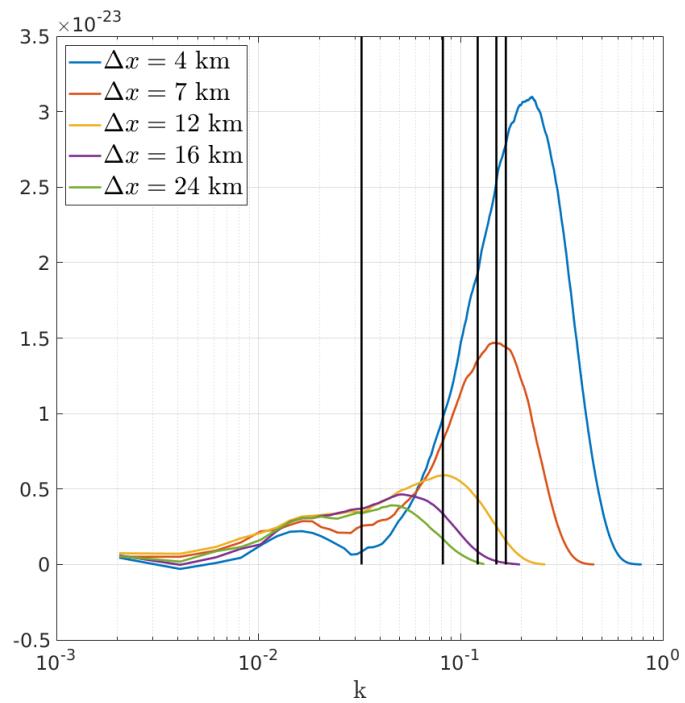


Figure 3: Spectral potential enstrophy flux in the top layer for the constant-coefficient biharmonic scheme at all resolutions. The five vertical lines show the wavenumbers associated with the baroclinic deformation radii. The horizontal axis unit is km^{-1} .

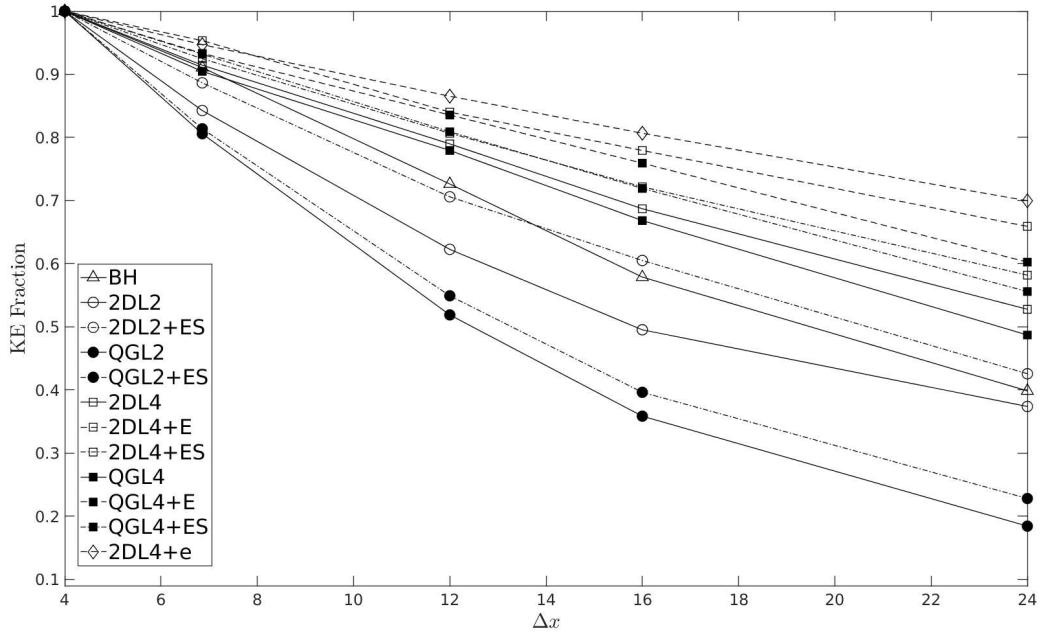


Figure 4: Convergence of total KE as a function of resolution. 2D schemes have open markers while QG schemes have filled markers; schemes with harmonic dissipation are marked with circles while schemes with biharmonic dissipation are marked with squares; schemes without backscatter use solid lines, schemes with deterministic backscatter use dashed lines, and schemes with stochastic backscatter use dash-dotted lines. The horizontal axis unit is km.

649 KE' should be understood in a relative sense, i.e. 'scheme A has higher KE
650 than scheme B' means that at a given resolution the KE from scheme A is
651 closer to its 4 km value than the KE from scheme B is to its 4 km value.

652

653 First compare the schemes without backscatter (solid lines). Both the
654 harmonic 2D and QG Leith schemes generate lower KE than the constant-
655 coefficient biharmonic scheme, which itself generates lower KE than the bi-
656 harmonic 2D and QG Leith schemes. For both harmonic and biharmonic
657 schemes the QG Leith scheme produces less KE than the 2D Leith scheme.

658 It is not surprising that the biharmonic Leith schemes have higher KE
659 than the constant-coefficient biharmonic scheme, because the harmonic co-
660 efficients ν_4 produced by the Leith scaling are lower than the constant co-
661 effient over most of the domain. It is somewhat surprising that the har-
662 monic Leith schemes have lower KE than the constant-coefficient biharmonic
663 scheme. This is presumably attributable to the fact that energy dissipation
664 in the harmonic schemes is less scale-selective than the biharmonic schemes.

665 It is also worth noting that 16 km resolution corresponds to 1.94 grid
666 points per deformation radius, and 2 grid points per deformation radius is
667 sometimes considered to be a rule-of-thumb for resolving mesoscale eddies.
668 Nevertheless, in these experiments the total KE at 16 km resolution is far
669 from the value at 4 km. The worst scheme in this regard is harmonic QG
670 Leith (QGL2), which at 16 km resolution has only 36% of its limiting value
671 at 4 km resolution. The best scheme in this regard is biharmonic 2D Leith
672 (2DL4), which at 16 km resolution has 69% of its limiting value at 4 km
673 resolution.

674 At 24 km resolution, which would be considered eddy-permitting for a de-
675 formation radius of 31 km, there is wide variation among the schemes. The
676 harmonic QG Leith scheme in particular does very poorly – significantly
677 worse than even than the harmonic 2D Leith scheme. This difference is pre-
678 sumably due to the fact that QG Leith dissipates both APE and KE while
679 2D Leith dissipates only KE, and also to the fact that the harmonic viscosity
680 is less scale-selective and thus more dissipative than the biharmonic viscosity.

681

682 Next compare the effect of adding backscatter to a Leith scheme. In
683 all cases the KE increases. The scheme which stands to gain the most from
684 backscatter is harmonic QG Leith, but the backscattering version (QGL2+ES)
685 still has less KE than the harmonic 2D Leith scheme (2DL2). The addition of
686 stochastic backscatter to the harmonic Leith schemes helps both of them, but

687 in neither case is it able to bring them to parity with the non-backscattering
688 biharmonic Leith schemes.

689 Considering the addition of backscatter to the biharmonic Leith schemes,
690 deterministic backscatter is more effective than stochastic backscatter at rais-
691 ing the total KE, though the difference is not large, and decreases as resolu-
692 tion improves. Biharmonic 2D Leith with deterministic backscatter already
693 has 66% of the limiting value at 4 km resolution, which, though too low, is a
694 huge improvement compared to the worst method (QGL2) which at 24 km
695 resolution has only 18% of the limiting KE. This underscores the huge impact
696 that the choice of parameterization can have at eddy-permitting resolution.

697 Next note that the 2DL4+e scheme has the highest KE overall. Recall
698 that this scheme uses a traditional biharmonic 2D Leith scaling for ν_4 and
699 then adds on deterministic backscatter with a coefficient chosen so that the
700 backscatter exactly cancels the energy dissipation from the biharmonic term.
701 This method is only slightly better than the 2DL4+E scheme, which adjusts
702 the biharmonic coefficient ν_4 to account for the the backscatter of enstrophy.

703
704 Next note that the biharmonic Leith schemes all have significantly higher
705 KE than their harmonic counterparts. At 7 km resolution all of the bihar-
706 monic schemes have KE within 10% of their value at 4 km resolution, whereas
707 the harmonic schemes are still significantly lower. The 7 km resolution has
708 better than four grid points per deformation radius and nearly two points
709 per *second* baroclinic deformation radius, yet the schemes with harmonic vis-
710 cosity, even when backscatter is included, still have only 80 to 90% of their
711 KE at 4 km resolution.

712
713 Finally, note that it is not fair to compare KE across resolutions because
714 the total KE at 4 km resolution includes KE from scales that are simply not
715 present on the lower resolution grids. To examine the importance of this
716 effect, the flow field from the constant-coefficient biharmonic simulation at 4
717 km resolution was filtered using the Taper filter described by Grooms et al.
718 (2021) and implemented in the Python package `gcm-filters` (Loose et al.,
719 2022) across a range of filter scales out to a filter scale of 96 km. At a filter
720 scale of 24 km the KE of the filtered field was still 99.6% of the total KE,
721 and at a filter scale of 96 km the KE of the filtered field was still 90.2% of
722 the total KE. The conclusion is that the lack of energy in the low-resolution
723 simulations is almost entirely due to incorrect representation of the scales
724 that can be represented at those resolutions and not to the absence of KE

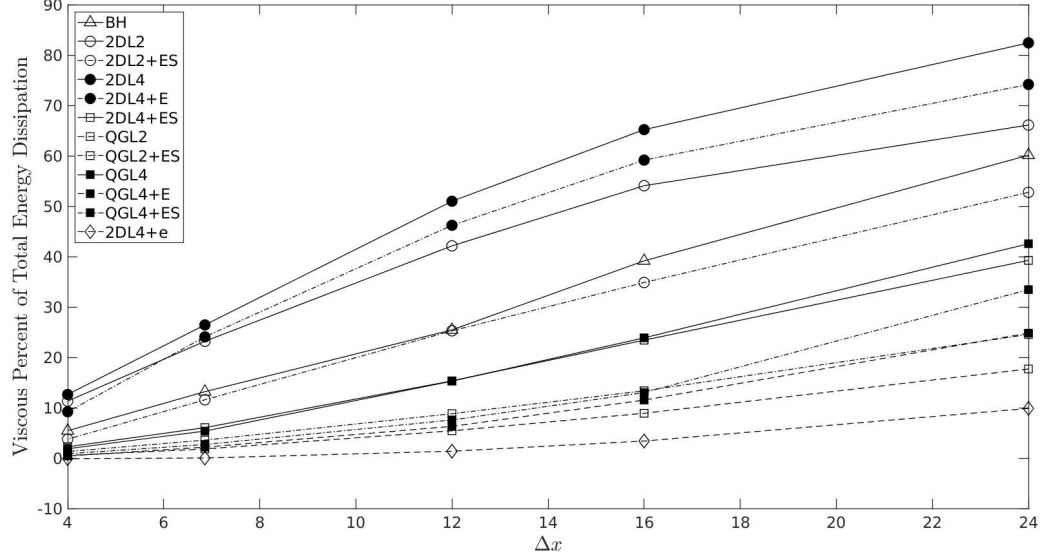


Figure 5: Percentage of the net dissipation rate for total energy that is attributable to the combined effect of viscosity and backscatter, shown for all schemes as a function of grid scale. 2D schemes have open markers while QG schemes have filled markers; schemes with harmonic dissipation are marked with circles while schemes with biharmonic dissipation are marked with squares; schemes without backscatter use solid lines, schemes with deterministic backscatter use dashed lines, and schemes with stochastic backscatter use dash-dotted lines. The horizontal axis unit is km.

725 from scales that cannot be represented at those resolutions.

726 3.4. Energy Dissipation Rates

727 This section compares how the dissipation rates vary across resolution
 728 for each scheme. The total energy dissipation rate must match the total
 729 energy generation rate, and the latter is set by shape of the upper layer
 730 streamfunction. To wit, the time-mean energy generation rate is

$$E_{\text{gen}} = -H_1 \int_A \bar{\psi}_1 F(x, y) dA \quad (58)$$

731 where the integral is over the horizontal domain and $F(x, y)$ is related to
 732 the wind stress curl (see Appendix A). Across all twelve schemes and all
 733 five resolutions the time-mean energy generation rate varies only a little, and
 734 therefore the net dissipation rate of total energy also varies only a little. (The
 735 terms ‘gross dissipation’ and ‘net dissipation’ are used to indicate whether

736 backscatter is included in the sum ['net'] or not ['gross']; the term 'total' refers
737 to the sum of KE and APE.) We therefore begin by comparing how much of
738 the total energy dissipation rate comes from the net effect of viscosity and
739 backscatter across all schemes and all resolutions. The results are shown in
740 Fig. 5.

741 The results in Fig. 5 mimic the results of Fig. 4 for KE: the harmonic
742 schemes have higher viscous percentages than the biharmonic schemes; the
743 addition of backscatter generally reduces the viscous percent; and the 2D
744 schemes have lower viscous percent than their QG counterparts. A striking
745 aspect of Fig. 5 is that the backscatter schemes, which were designed to have
746 zero net viscous dissipation, do not, in most cases, achieve that design goal.
747 Though one could increase the backscatter by increasing the values of the
748 coefficients c_K or c_P , it is of interest to discuss why setting $c_K = c_P = 1$ does
749 not, in practice, lead to an exact cancellation of backscatter and dissipation
750 rates.

751 The deterministic backscatter schemes have a built-in limiter that pre-
752 vents the backscatter coefficient from growing so large that it violates scale
753 separation between backscatter and dissipation (see the discussion in section
754 2.1 around the constraint 11); this limiter could partially account for the
755 failure of the backscatter to completely cancel the viscous dissipation. An-
756 other culprit is the smoothing that is applied to both the backscatter and
757 dissipation coefficients before use, which breaks the exact link between the
758 backscatter and dissipation rates.

759 The deterministic schemes perform better than the stochastic ones in
760 the sense that the deterministic schemes do a better job of canceling the
761 viscous dissipation. Like the deterministic schemes, the stochastic schemes
762 use smoothing of the backscatter and dissipation coefficients. The stochastic
763 schemes also suffer from two limitations that are different from the deter-
764 ministic schemes. First, the mean backscatter rate is computed under the
765 assumption that the amplitude is depth-independent, which is not correct
766 in practice. This relates to the difficulty, discussed in section 2.3, in cleanly
767 separating the KE and APE backscatter rates in a QG code, which would
768 be far more straightforward in a primitive-equation model. Second, as noted
769 in section 2.3, the spatial structure of the backscatter used here generates
770 a forcing spectrum that is peaked at a length scale approximately equal to
771 twice the grid scale. This may not be as well separated from the dissipation
772 range as the deterministic backscatter, whose spectrum is depends on the
773 resolved kinetic energy spectrum. The peak of the stochastic backscatter

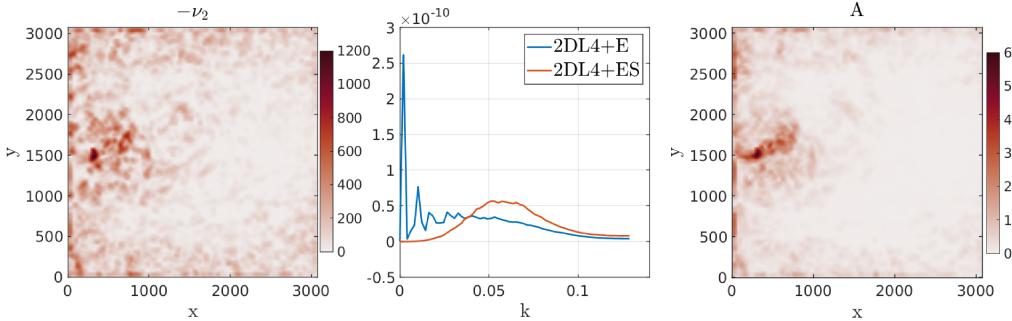


Figure 6: Left: A snapshot of the negative viscous coefficient from the 2DL4+E model (units $\text{m}^2 \text{s}^{-1}$). Center: The backscatter spectrum produced by the 2DL4+E model (blue) and by the 2DL4+ES model (red). Right: A snapshot of the backscatter amplitude (units $\text{m s}^{-3/2}$). Axis units in the left and right panels are km; axis units in the center panel are km^{-1} .

774 spectrum could be shifted to larger scales, and this could be accomplished
 775 by smoothing the noise many more times; the practical drawback, besides
 776 the computational expense of the smoothing, is that in a parallel primitive-
 777 equation implementation many smoothing cycles would require lots of slow
 778 communication between parallel processes (halo updates). Optimal perfor-
 779 mance in a parallel primitive-equation model may require a stochastic pattern
 780 generator that does not rely on smoothing spatially-white noise.

781 To illustrate the differences between the backscatter spectrum produced
 782 by the deterministic and stochastic schemes, we show in the middle panel
 783 of Fig. 6 the backscatter spectrum produced by the 2DL4+E and 2DL4+ES
 784 schemes at 24 km resolution. The stochastic backscatter spectrum has a
 785 broad peak at about half the smallest representable wavenumber, i.e. about
 786 twice the grid scale, while the deterministic backscatter spectrum is broader
 787 and has more backscatter at larger scales. A peculiarity of the deterministic
 788 backscatter spectrum is the spike at scales near the box size; this is presum-
 789 ably a result of aliasing arising from the product of the backscatter coefficient
 790 ν_2 and the vorticity, though it may also result from the action of the negative
 791 viscosity on the large-scale gyre circulation. For reference, the left and right
 792 panels of Fig. 6 show the negative viscous coefficient $-\nu_2$ and the backscat-
 793 ter amplitude A . These have broadly similar features, with a concentration
 794 of backscatter near the separation of the western boundary currents. The
 795 deterministic backscatter spectrum does not go exactly to zero at half the
 796 smallest representable wavenumber because the theoretical guarantee is ap-

plies to the combined backscatter and dissipation spectrum, and is based on the assumption that ν_2 and ν_4 are constant; nevertheless, the deterministic backscatter remains weak at small scales.

To dig more deeply into the behavior of the backscatter schemes, we show in Fig. 7 the breakdown of the total dissipation budget for all backscattering schemes at 24 km resolution, where the differences are greatest. All of the schemes achieve similar gross dissipation rates, but the deterministic schemes (the rightmost three columns) have somewhat more gross dissipation than the stochastic schemes. The deterministic schemes offset this increase in gross dissipation by a corresponding increase in backscatter rates so that, per Fig. 5, the net viscous percentage achieved by the deterministic schemes is slightly smaller than their stochastic counterparts.

Comparing the backscattering QG schemes to their 2D counterparts shows broad similarity. One significant difference in the biharmonic schemes is that while the gross dissipation of total energy in the QGL4+E and QGL4+ES schemes is similar to the gross dissipation of total energy in the 2DL4+E and 2DL4+ES schemes, the QG schemes achieve that total by dissipating less KE and more APE. The harmonic QG scheme (QGL2+ES) both dissipates and backscatters at higher rates than the harmonic 2D scheme (2DL2+ES). The rate of APE backscatter in the QGL2+ES scheme is simply not sufficient to match the very large rate of APE dissipation, with serious deleterious consequences for the overall KE level: QGL2+ES has by far the lowest KE of any backscattering scheme at 24 km resolution.

Finally note that although 2DL4+e, which does not adjust the 2D Leith scaling to account for enstrophy backscatter, has the lowest viscous fraction of any scheme across all resolutions, it achieves this by both dissipating and backscattering more energy than 2DL4+E. The goal of the backscatter is to correct spurious energy dissipation. Spurious energy dissipation is a model error, and the schemes developed here introduce a new model error associated with non-physical backscatter to compensate for the original model error of spurious energy dissipation. The 2DL4+e scheme, despite resulting in a slightly better total energy level and viscous percentage of dissipation, achieves this through a combination of two large and compensating model errors: it generates significantly more spurious energy dissipation than the 2DL4 or 2DL4+E schemes; it happens to also be able to correct this spurious dissipation slightly more efficiently than the 2DL4+E scheme, at least in the results reported here.

Similarly, the 2DL4+e scheme both dissipates and backscatters more en-

835 strophy than the 2DL4+E scheme. For example, at 12 km resolution the
836 2DL4 scheme leads to a net enstrophy dissipation rate integrated over the
837 top layer of $9.1 \times 10^4 \text{ m}^3 \text{ s}^{-3}$. (Henceforth all enstrophy rates will be given in
838 units of $10^4 \text{ m}^3 \text{ s}^{-3}$.) The 2DL4+e and 2DL4+E schemes generate slightly
839 higher net enstrophy dissipation rates of 10.3 and 10.4, respectively. How-
840 ever, the 2DL4+e scheme achieves this net enstrophy dissipation rate by
841 a combination of a gross dissipation rate of 15.3 and a backscatter rate of
842 5.1, while the 2DL4+E scheme has lower gross enstrophy dissipation and
843 backscatter rates of 13.9 and 3.5, respectively.

844 Finally, the 2DL4+e scheme, despite having the same formula for the
845 biharmonic coefficient ν_4 as the 2DL4 scheme, generates significantly larger
846 values of ν_4 than the 2DL4 scheme: at 12 km resolution the 2DL4 scheme
847 generates ν_4 whose median value over the top layer is $1.11 \times 10^9 \text{ m}^4 \text{ s}^{-1}$, while
848 the 2DL4+e scheme generates a median value of $1.35 \times 10^9 \text{ m}^4 \text{ s}^{-1}$, which
849 is 22% higher. The median value of the biharmonic coefficient ν_4 over the
850 top layer is also larger in the 2DL4+e scheme than in the 2DL4+E scheme:
851 At 4 km resolution the value is 14% higher and the ratio increases across
852 resolutions until at 24 km resolution the value is 43% higher. In contrast,
853 the 2DL4+E scheme produces values of ν_4 that are close to those generated
854 by the 2DL4 scheme across all resolutions. While in this idealized QG model
855 there do not appear to be severe consequences for combining high rates of
856 dissipation and backscatter, it remains to be seen whether this will prove
857 unstable in a more comprehensive primitive-equation model.

858 3.5. Sensitivity to c_K

859 This section explores the sensitivity of the 2DL4+E scheme to the coef-
860 ficient c_K , which is the fraction of the rate of kinetic energy dissipation by
861 the biharmonic term that is backscattered by the harmonic term. At 16 km
862 resolution, the value of c_K was varied from 0 (which reduces to the 2DL4
863 scheme) to 1. Figure 8 shows that the rates of kinetic energy dissipation
864 from friction and from the biharmonic term increase monotonically with c_K .
865 The rate of kinetic energy backscatter also increases monotonically with c_K ,
866 but faster than the rate at which viscous dissipation increases so that the net
867 rate of dissipation that results from the combined backscatter and dissipa-
868 tion terms reduces monotonically with c_K , as does the viscous percentage of
869 total dissipation. The kinetic energy level increases monotonically with c_K
870 (not shown).

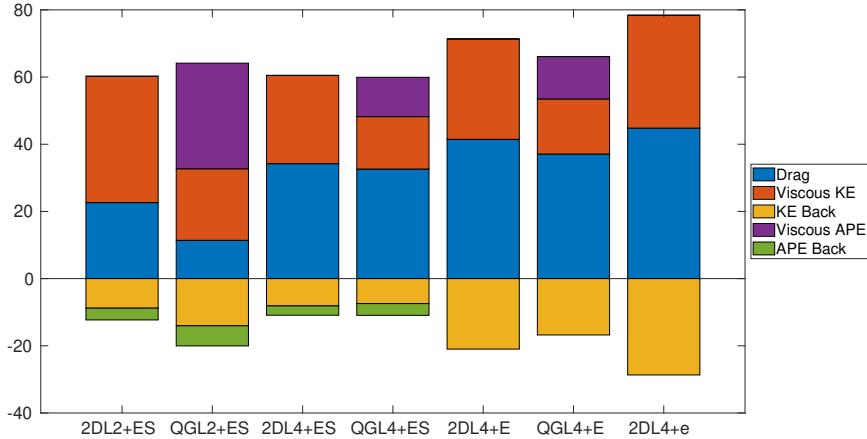


Figure 7: Dissipation and backscatter rates for all of the backscattering models at 24 km resolution. Blue: Frictional KE dissipation rate; Red: viscous KE dissipation rate; Purple: viscous APE dissipation rate; Yellow: KE backscatter rate; Green: APE backscatter rate. The units are $10^6 \times m^5 s^{-3}$ (volume integral of rates of change of energy).

871 *3.6. Sensitivity to Υ*

872 This section explores the sensitivity of the 2DL4+E scheme to the co-
 873 efficient Υ . The coefficient Υ is the ratio of the viscous dissipation scale
 874 for enstrophy to the grid scale. Raised to the sixth power, it controls the
 875 magnitude of the biharmonic dissipation coefficient. Since the backscatter
 876 coefficient is simply $-m\nu_4$, it is clear that the factor of Υ^6 simultaneously
 877 controls the amplitude of the backscatter and dissipation.

878 To investigate the effect of Υ on the dynamics, simulations with the
 879 2DL4+E scheme were run at 16 km resolution with the following values of
 880 Υ^6 : 1, $(1.2)^6 \approx 3$, $(1.4)^6 \approx 7.5$, $(1.5)^6 \approx 11.4$, $(1.6)^6 \approx 16.8$, and $(1.7)^6 \approx 24$.
 881 The time-mean eddy kinetic energy spectra for each of these simulations are
 882 shown in Fig. 9. Differences are seen mainly in the small-scale end of the KE
 883 spectrum. At small Υ there is too much energy accumulation at small scales,
 884 as the parameterization is not strong enough to dissipate enstrophy near the
 885 grid scale. Once Υ reaches 1.4 the KE spectrum rolls off more smoothly
 886 at the grid scale. At values of Υ larger than 1.5 the total KE begins to
 887 degrade, and the viscous percentage of total dissipation also begins to rise
 888 (not shown). For this reason $\Upsilon = 1.5$ has been used in all the 2D Leith
 889 schemes. Qualitatively similar behavior in the QG schemes led to a choice

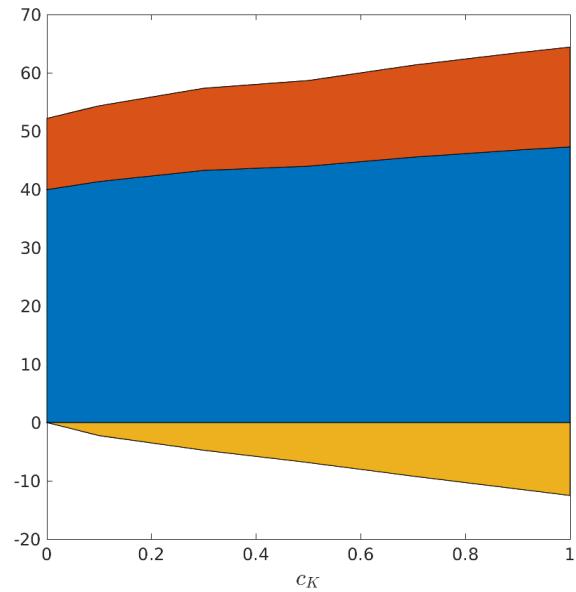


Figure 8: Kinetic energy dissipation and backscatter rates for the 2DL4+E scheme at 16 km resolution as a function of c_K . Blue: Frictional KE dissipation rate; Red: viscous KE dissipation rate; Yellow: KE backscatter rate. The units are $10^6 \times m^5 s^{-3}$ (volume integral of rates of change of energy).

890 of $\Upsilon = 1.3$. The lower value in the QG schemes results from the fact that
891 the QG schemes are more dissipative than their 2D counterparts at the same
892 value of Υ because they dissipate APE in addition to KE.

893 **4. Conclusions**

894 Leith-scaled nonlinear viscosities are promising parameterizations for ed-
895 dying ocean models (Fox-Kemper and Menemenlis, 2008; Bachman et al.,
896 2017; Pearson et al., 2017). These parameterizations can still dissipate
897 too much energy, similar to their constant-coefficient counterparts, but less
898 severely. One way to rectify excess dissipation by a viscous or diffusive closure
899 is to backscatter some of the dissipated energy. Backscatter parameteriza-
900 tions based on this idea go back to Shutts (2005) and are well-developed in
901 an atmospheric context (Frederiksen and Kepert, 2006; Berner et al., 2008,
902 2009); parameterizations based on this idea were introduced in ocean mod-
903 eling by Jansen and Held (2014) and Storto and Andriopoulos (2021). This
904 paper combines these ideas – arresting the forward enstrophy cascade on the
905 grid, and backscattering dissipated energy – to develop six new energetically-
906 constrained Leith parameterizations. The six parameterizations are divided
907 in two groups of three: 2D-Leith parameterizations that are based on en-
908 strophy and dissipate KE, and QG-Leith parameterizations that are based
909 on potential enstrophy and dissipate both KE and APE. Within each group
910 there are two kinds of backscatter: deterministic backscatter using a neg-
911 ative viscosity and stochastic backscatter. Stochastic backscatter can be
912 paired with either harmonic or biharmonic viscosity, but the deterministic
913 backscatter schemes are only paired with biharmonic viscosity. The schemes
914 are compared with each other and with non-backscattering Leith schemes in
915 a six-layer QG double-gyre model across a range of resolutions from 4 km to
916 24 km.

917 Although the QG schemes seem to have better theoretical motivation,
918 at least insofar as the QG approximation is a better approximation than
919 2D dynamics for ocean mesoscales, the QG schemes did not perform as
920 well as their 2D counterparts in the tests reported here: They dissipate
921 too much energy and result in simulations with less total KE, especially at
922 lower eddy-permitting resolutions. The addition of backscatter uniformly
923 improves the results, especially at the lower resolutions. The schemes with
924 harmonic viscosity are uniformly worse than their biharmonic counterparts.

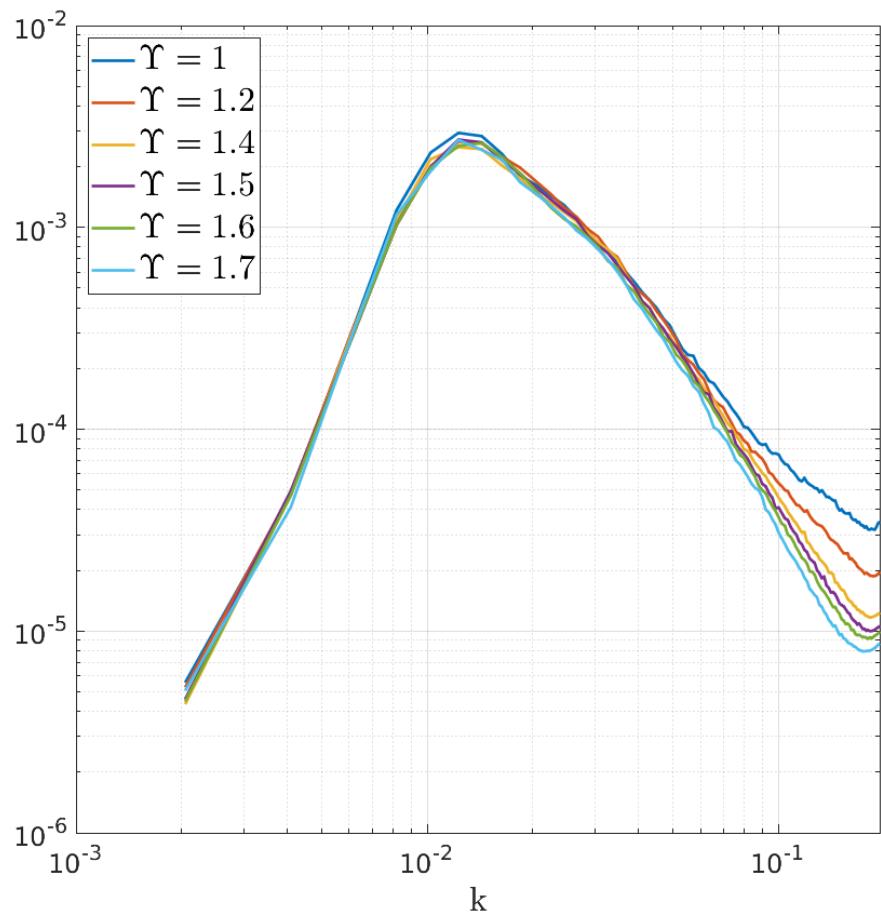


Figure 9: Time-mean eddy kinetic energy spectra from the 2DL4+E model at 16 km resolution for varying values of Υ . Units of the k axis are km^{-1} .

925 Both stochastic and deterministic backscatter perform well, though the deterministic schemes have an edge in terms of total KE and backscatter efficiency.

926
927 Extrapolating towards global ocean models, one strongly expects the addition of backscatter to lead to improvements compared to non-backscattering Leith schemes, even at resolutions that might be considered eddy-resolving.

928
929 One also expects biharmonic Leith schemes to perform significantly better than harmonic ones, especially at lower resolutions. One does not expect these schemes to perform well at non-eddying resolutions, or even at the lowest eddy-permitting resolutions (e.g. $1/3^\circ$) because they are based on ideas about the forward enstrophy cascade, and need such a cascade to be represented on the resolved scales. Backscatter remains important in the inverse cascade range (Loose et al., 2023), but one expects different parameterizations to be used to represent backscatter on this range of scales (e.g. Bachman, 2019; Jansen et al., 2019).

930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956 It will be of interest to compare the performance of the new backscattering Leith schemes to other backscatter schemes for ocean models. Many of these are based on a prognostic budget for subgrid-scale kinetic energy (e.g. Jansen et al., 2015; Klöwer et al., 2018; Jansen et al., 2019; Juricke et al., 2019, 2020b); others include the GM+E parameterization of Bachman (2019), the Stochastic Kinetic Energy Backscatter Scheme (SKEBS) developed by Storto and Andriopoulos (2021) on the basis of the atmospheric scheme of the same name developed by Berner et al. (2009), the kinematic scheme of Juricke et al. (2020a), and the stochastic transport schemes based on the work of Mémin (2014) and Holm (2015). It will also be of interest to modify the schemes so that they backscatter not only the energy dissipated by the Leith closure, but also the potential energy removed from resolved scales by the mixed-layer eddy parameterization of Fox-Kemper et al. (2008). Such a modification might enable an ocean model that does not resolve submesoscales to nevertheless capture the seasonal variations in mesoscale kinetic energy that are driven by seasonal fluctuations in the rates of submesoscale eddy activity (Qiu et al., 2014; Callies et al., 2015; Dong et al., 2020; Steinberg et al., 2022).

957 Acknowledgements

958 This research was supported by the NSF OCE grant 1912332. The author
959 thanks two anonymous reviewers for their suggestions, which improved the
960 clarity of the presentation.

961 **Appendix A. QG Model Configuration and Numerics**

962 In each layer the QG PV evolution equation is

$$\partial_t q_n + J[\psi_n, q_n] + \beta v_n = \delta_{1n} F(x, y) - \delta_{6n} r \omega_6 + \mathcal{B}_n + \mathcal{D}_n \quad (\text{A.1})$$

963 where δ_{ij} is the Kronecker delta, $J[a, b] = (\partial_x a)(\partial_y b) - (\partial_x b)(\partial_y a)$ is the
964 advection term, \mathcal{B}_n is the backscatter term, and \mathcal{D}_n is the horizontal dissipation term.
965 The layer index $n = 1, \dots, 6$ starts at the top. The form of the backscatter and dissipation terms depends on the parameterization, as
966 detailed in section 2; boundary conditions on the harmonic and biharmonic operators are stress-free.
967 The beta parameter is $\beta = 2 \times 10^{-11} \text{ m}^{-1} \text{ s}^{-1}$ and the drag coefficient is $r = 2.2 \times 10^{-7} \text{ s}^{-1}$. The forcing F is similar to the
968 asymmetric double-gyre pattern used by Porta Mana and Zanna (2014)
969

$$F(x, y) = \begin{cases} -\tau_0 \frac{2\pi}{0.9L_y} \sin\left(\frac{\pi y}{g(x)}\right) \\ \tau_0 \frac{2\pi}{0.9L_y} \sin\left(\frac{\pi(y-g(x))}{L_y-g(x)}\right) \end{cases} \quad (\text{A.2})$$

971 where τ_0 is the amplitude of the wind stress forcing, $L_x = L_y = 3,072 \text{ km}$,
972 and

$$g(x) = \frac{L_x}{2} + 0.2 \left(x - \frac{L_x}{2} \right). \quad (\text{A.3})$$

973 The QG PV q_n and streamfunction ψ_n are related by the system of equations

$$q_1 = \nabla^2 \psi_1 + \frac{f_0^2}{H_1} \left(\frac{\psi_2 - \psi_1}{g'_1} \right) - \frac{f_0^2}{g H_1} \psi_1 \quad (\text{A.4})$$

$$\text{for } 2 \leq n \leq 5, q_n = \nabla^2 \psi_n + \frac{f_0^2}{H_n} \left(\frac{\psi_{n-1} - \psi_n}{g'_{n-1}} - \frac{\psi_n - \psi_{n+1}}{g'_n} \right) \quad (\text{A.5})$$

$$q_6 = \nabla^2 \psi_6 + \frac{f_0^2}{H_6} \left(\frac{\psi_5 - \psi_6}{g'_5} \right) \quad (\text{A.6})$$

974 The Coriolis parameter is $f_0 = 10^{-4} \text{ s}^{-1}$. The layer thicknesses are (top to
975 bottom) 385, 289, 269, 305, 482, and 2270 m. The reduced gravities are (top
976 bottom) 0.0041, 0.0049, 0.0048, 0.0038, and 0.0017 m s^{-2} . The boundary
977 conditions on the QG PV inversion from q to ψ are mass-conserving, i.e. the
978 value of ψ_n on the boundary is set so that $\int_A \psi_n dA = 0$ where the integral
979 is over the horizontal domain. The baroclinic deformation radii are 30.93,
980 12.25, 8.24, 6.66, and 5.98 km.

981 The numerical discretization follows Nadeau and Straub (2009). The
982 discretization is via second-order finite differences, and the nonlinear terms
983 are discretized using the energy and enstrophy conserving method of Arakawa
984 (1966). The QG PV inversion is accomplished by converting to a system of
985 six independent 2D screened-Poisson equations (one for each vertical mode),
986 each of which is solved using a multigrid V(2,2) cycle with red/black Gauss-
987 Seidel smoothing. The time coordinate is discretized using the third-order
988 Adams-Basforth scheme.

989 The grid sizes are $\Delta x = 4, 6.86, 12, 16$, and 24 km. The time steps
990 at these resolutions are $\Delta t = 400, 400, 600, 900$, and 1200 s. The maxi-
991 mum biharmonic viscous coefficient is set to $\nu_4^{\max} = \Delta x^4 / (320\Delta t)$, and the
992 maximum harmonic coefficient is set to $\nu_2^{\max} = \Delta x^2 / (80\Delta t)$. The mini-
993 mum biharmonic viscous coefficient at each resolution (smallest to largest) is
994 $\nu_4^{\min} = 5 \times 10^6, 10^7, 1.5 \times 10^8, 6.5 \times 10^8$, and $5 \times 10^9 \text{ m}^4 \text{ s}^{-1}$. The minimum
995 harmonic coefficient at each resolution is $\nu_2^{\min} = 0.15, 1, 5, 10$, and $35 \text{ m}^2 \text{ s}^{-1}$.
996 In the runs with constant-coefficient biharmonic viscosity, the coefficients are
997 $\nu_4 = 5 \times 10^8, 3 \times 10^9, 2 \times 10^{10}, 7 \times 10^{10}$, and 3×10^{11} .

998 References

999 Arakawa, A., 1966. Computational design for long-term numerical integra-
1000 tion of the equations of fluid motion: Two-dimensional incompressible flow.
1001 Part I. *J. Comput. Phys.* 1, 119–143.

1002 Bachman, S.D., 2019. The GM+E closure: A framework for coupling
1003 backscatter with the Gent and McWilliams parameterization. *Ocean*
1004 *Model.* 136, 85–106.

1005 Bachman, S.D., Fox-Kemper, B., Pearson, B., 2017. A scale-aware sub-
1006 grid model for quasi-geostrophic turbulence. *J. Geophys. Res.-Oceans* 122,
1007 1529–1554.

1008 Barham, W., Bachman, S., Grooms, I., 2018. Some effects of horizontal dis-
1009 cretization on linear baroclinic and symmetric instabilities. *Ocean Model.*
1010 125, 106–116.

1011 Barham, W., Grooms, I., 2019. Exact instantaneous optimals in the non-
1012 geostrophic eady problem and the detrimental effects of discretization.
1013 *Theor. Comp. Fluid Dyn.* 33, 125–139.

1014 Berloff, P., 2018. Dynamically consistent parameterization of mesoscale ed-
 1015 dies. Part III: Deterministic approach. *Ocean Model.* 127, 1–15.

1016 Berner, J., Doblas-Reyes, F., Palmer, T., Shutts, G., Weisheimer, A., 2008.
 1017 Impact of a quasi-stochastic cellular automaton backscatter scheme on the
 1018 systematic error and seasonal prediction skill of a global climate model.
 1019 *Philosophical Transactions of the Royal Society A: Mathematical, Physical
 1020 and Engineering Sciences* 366, 2559–2577.

1021 Berner, J., Shutts, G., Leutbecher, M., Palmer, T., 2009. A spectral stochas-
 1022 tic kinetic energy backscatter scheme and its impact on flow-dependent
 1023 predictability in the ECMWF ensemble prediction system. *J. Atmos. Sci.*
 1024 66, 603–626.

1025 Bertoglio, J.P., 1985. A stochastic subgrid model for sheared turbulence, in:
 1026 *Macroscopic modelling of turbulent flows*. Springer, pp. 100–119.

1027 Böning, C.W., Budich, R.G., 1992. Eddy dynamics in a primitive equation
 1028 model: Sensitivity to horizontal resolution and friction. *J. Phys. Ocean.*
 1029 22, 361–381.

1030 Callies, J., Ferrari, R., Klymak, J.M., Gula, J., 2015. Seasonality in subme-
 1031 soscale turbulence. *Nature communications* 6, 6862.

1032 Charney, J.G., 1971. Geostrophic turbulence. *J. Atmos. Sci.* 28, 1087–1095.

1033 Dong, J., Fox-Kemper, B., Zhang, H., Dong, C., 2020. The seasonality of
 1034 submesoscale energy production, content, and cascade. *Geo. Res. Lett.* 47,
 1035 e2020GL087388.

1036 Fox-Kemper, B., Ferrari, R., Hallberg, R., 2008. Parameterization of mixed
 1037 layer eddies. part i: Theory and diagnosis. *J. Phys. Ocean.* 38, 1145–1165.

1038 Fox-Kemper, B., Menemenlis, D., 2008. Can Large Eddy
 1039 Simulation Techniques Improve Mesoscale Rich Ocean Mod-
 1040 els?. American Geophysical Union (AGU). pp. 319–337.
 1041 URL: <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/177GM19>,
 1042 doi:<https://doi.org/10.1029/177GM19>,
 1043 arXiv:<https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/177GM19>.

1044 Frederiksen, J.S., Davies, A.G., 1997. Eddy viscosity and stochastic backscatter parameterizations on the sphere for atmospheric circulation models. J. Atmos. Sci. 54, 2475–2492.

1047 Frederiksen, J.S., Kepert, S.M., 2006. Dynamical subgrid-scale parameterizations from direct numerical simulations. J. Atmos. Sci. 63, 3006–3019.

1049 Grooms, I., 2016. A Gaussian-product stochastic Gent-McWilliams parameterization. Ocean Model. 106, 27–43.

1051 Grooms, I., Lee, Y., Majda, A.J., 2015. Numerical schemes for stochastic backscatter in the inverse cascade of quasigeostrophic turbulence. Multiscale Modeling & Simulation 13, 1001–1021.

1054 Grooms, I., Loose, N., Abernathey, R., Steinberg, J., Bachman, S.D., Marques, G., Guillaumin, A.P., Yankovsky, E., 2021. Diffusion-based smoothers for spatial filtering of gridded geophysical data. J. Adv. Model. Earth Syst. 13, e2021MS002552.

1058 Holm, D.D., 2015. Variational principles for stochastic fluid dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 471, 20140963.

1061 Jansen, M.F., Adcroft, A., Khani, S., Kong, H., 2019. Toward an energetically consistent, resolution aware parameterization of ocean mesoscale eddies. J. Adv. Model. Earth Syst. 11, 2844–2860.

1064 Jansen, M.F., Held, I.M., 2014. Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Model. 80, 36–48.

1066 Jansen, M.F., Held, I.M., Adcroft, A., Hallberg, R., 2015. Energy budget-based backscatter in an eddy permitting primitive equation model. Ocean Model. 94, 15–26.

1069 Juricke, S., Danilov, S., Koldunov, N., Oliver, M., Sein, D., Sidorenko, D., Wang, Q., 2020a. A kinematic kinetic energy backscatter parametrization: From implementation to global ocean simulations. J. Adv. Model. Earth Syst. 12, e2020MS002175.

1073 Juricke, S., Danilov, S., Koldunov, N., Oliver, M., Sidorenko, D., 2020b. Ocean kinetic energy backscatter parametrization on unstructured grids:

1075 Impact on global eddy-permitting simulations. *J. Adv. Model. Earth Syst.*
1076 12, e2019MS001855.

1077 Juricke, S., Danilov, S., Kutsenko, A., Oliver, M., 2019. Ocean kinetic energy
1078 backscatter parametrizations on unstructured grids: Impact on mesoscale
1079 turbulence in a channel. *Ocean Model.* 138, 51–67.

1080 Kitsios, V., Frederiksen, J.S., Zidikheri, M.J., 2013. Scaling laws for param-
1081 eterisations of subgrid eddy–eddy interactions in simulations of oceanic
1082 circulations. *Ocean Modelling* 68, 88–105.

1083 Klöwer, M., Jansen, M.F., Claus, M., Greatbatch, R.J., Thomsen, S., 2018.
1084 Energy budget-based backscatter in a shallow water model of a double
1085 gyre basin. *Ocean Model.* 132, 1–11.

1086 Kraichnan, R.H., 1976. Eddy viscosity in two and three dimensions. *J. At-
1087 mos. Sci.* 33, 1521–1536.

1088 Leith, C., 1996. Stochastic models of chaotic systems. *Physica D* 98, 481–491.

1089 Leith, C.E., 1990. Stochastic backscatter in a subgrid-scale model: Plane
1090 shear mixing layer. *Physics of Fluids A: Fluid Dynamics (1989-1993)* 2,
1091 297–299.

1092 Loose, N., Abernathey, R., Grooms, I., Busecke, J., Guillaumin, A.,
1093 Yankovsky, E., Marques, G., Steinberg, J., Ross, A.S., Khatri, H., Bach-
1094 man, S., Zanna, L., Martin, P., 2022. Gcm-filters: A Python package
1095 for diffusion-based spatial filtering of gridded data. *Journal of Open
1096 Source Software* 7, 3947. URL: <https://doi.org/10.21105/joss.03947>,
1097 doi:10.21105/joss.03947.

1098 Loose, N., Bachman, S., Grooms, I., Jansen, M., 2023. Diagnosing scale-
1099 dependent energy cycles in a high-resolution isopycnal ocean model.
1100 *J. Phys. Ocean.* 53, 157–176.

1101 Mason, P.J., Thomson, D.J., 1992. Stochastic backscatter in large-eddy sim-
1102 ulations of boundary layers. *J. Fluid Mech.* 242, 51–78.

1103 Mémin, E., 2014. Fluid flow dynamics under location uncertainty. *Geo-
1104 phys. Astro. Fluid* 108, 119–146.

1105 Nadeau, L.P., Straub, D.N., 2009. Basin and channel contributions to a
1106 model Antarctic circumpolar current. *J. Phys. Ocean.* 39, 986–1002.

1107 Pearson, B., Fox-Kemper, B., Bachman, S., Bryan, F., 2017. Evaluation of
1108 scale-aware subgrid mesoscale eddy models in a global eddy-rich model.
1109 *Ocean Model.* 115, 42–58.

1110 Porta Mana, P., Zanna, L., 2014. Toward a stochastic parameterization of
1111 ocean mesoscale eddies. *Ocean Model.* 79, 1–20.

1112 Qiu, B., Chen, S., Klein, P., Sasaki, H., Sasai, Y., 2014. Seasonal mesoscale
1113 and submesoscale eddy variability along the north pacific subtropical coun-
1114 tercurrent. *J. Phys. Ocean.* 44, 3079–3098.

1115 Schumann, U., 1995. Stochastic backscatter of turbulence energy and scalar
1116 variance by random subgrid-scale fluxes. *Proceedings of the Royal Society
1117 of London. Series A: Mathematical and Physical Sciences* 451, 293–318.

1118 Semtner, A., Mintz, Y., 1977. Numerical simulation of the gulf stream and
1119 mid-ocean eddies. *J. Phys. Ocean.* 7, 208–230.

1120 Shevchenko, I., Berloff, P., 2015. Multi-layer quasi-geostrophic ocean dynam-
1121 ics in eddy-resolving regimes. *Ocean Model.* 94, 1–14.

1122 Shevchenko, I., Berloff, P., 2017. On the roles of baroclinic modes in eddy-
1123 resolving midlatitude ocean dynamics. *Ocean Model.* 111, 55–65.

1124 Shutts, G., 2005. A kinetic energy backscatter algorithm for use in ensemble
1125 prediction systems. *Q. J. Roy. Meteor. Soc.* 131, 3079–3102.

1126 Smagorinsky, J., 1963. General circulation experiments with the primitive
1127 equations: I. the basic experiment. *Mon. Weather Rev.* 91, 99–164.

1128 Steinberg, J.M., Cole, S.T., Drushka, K., Abernathey, R.P., 2022. Seasonality
1129 of the mesoscale inverse cascade as inferred from global scale-dependent
1130 eddy energy observations. *J. Phys. Ocean.* 52, 1677–1691.

1131 Storto, A., Andriopoulos, P., 2021. A new stochastic ocean physics package
1132 and its application to hybrid-covariance data assimilation. *Q. J. Roy. Me-
1133 teor. Soc.* 147, 1691–1725.

1134 Sukoriansky, S., Chekhlov, A., Orszag, S.A., Galperin, B., Staroselsky, I.,
1135 1996. Large eddy simulation of two-dimensional isotropic turbulence. *J.*
1136 *Sci. Comput.* 11, 13–45.