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Abstract

This paper combines two strains in the literature on subgrid-scale parameter-
izations for eddying ocean models to develop six new parameterizations and
test them in an idealized quasigeostrophic model. The first strain develops
nonlinear, Smagorinsky-like Leith scalings for the viscous coefficient based
on reasoning about the turbulent forward enstrophy cascade of geophysical
turbulence. The second introduces backscatter whose amplitude is scaled
to re-inject a portion of the energy dissipated by other parameterizations.
In the new parameterizations developed here the backscatter and viscous
coefficients depend on each other and are set to simultaneously absorb the
forward enstrophy (or potential enstrophy) cascade and backscatter a por-
tion of the dissipated energy. The addition of backscatter to Leith-scaled
nonlinear viscosity improves the simulations at resolutions from 4 km to 24
km by increasing the total kinetic energy and by reducing the fraction of the
total energy dissipation rate associated with the net effect of viscosity and
backscatter. Versions that use biharmonic viscosity to absorb the enstrophy
cascade perform better than versions using a harmonic viscosity, and purely
viscous closures perform better than closures that dissipate both kinetic and
potential energy. Stochastic and deterministic backscatter schemes are devel-
oped, and though similar, the deterministic schemes perform slightly better.
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1. Introduction1

Modeling the effects of unresolved length scales in simulations of fluid flow2

is crucially important for accurate predictions in many contexts. Smagorin-3

sky (1963) developed an early model – a parameterization – based on Kol-4

mogorov’s theory of three-dimensional homogeneous isotropic turbulence. In5

that theory, the fluid is forced at a large scale, and nonlinear interactions6

transfer energy through an inertial range of scales to a dissipation scale where7

energy is removed by viscosity. The cascade rate ϵ is the rate of energy trans-8

fer, and has dimensions of length squared over time cubed, i.e. L2/T 3. (Here9

and throughout, density is assumed constant and the total mass is scaled10

out of kinetic energy, leaving a ‘kinetic energy’ with dimensions of velocity11

squared.) If one assumes that the scale at which viscous dissipation arrests12

the energy cascade depends only on the cascade rate ϵ and the viscosity ν, di-13

mensional analysis predicts that this dissipation scale, called the Kolmogorov14

scale, is proportional to (ν3/ϵ)1/4. Smagorinsky’s parameterization applies15

when the grid scale lies in the inertial range of scales; the parameterization16

increases the viscosity ν until the resulting Kolmogorov scale is resolved on17

the grid.18

The behavior of two-dimensional (2D) turbulence is qualitatively different19

from that of three-dimensional turbulence: Energy tends to be transferred20

from the forcing scale to larger scales, while enstrophy (the square of vortic-21

ity) is transferred towards smaller scales. Leith (1996) developed a param-22

eterization for 2D turbulence that is conceptually similar to Smagorinsky’s23

parameterization, but is based on 2D turbulence theory. The cascade rate24

η for enstrophy has dimensions of T−3, and the viscous dissipation scale is25

proportional to (ν3/η)1/6. Leith’s parameterization applies when the grid26

scale lies in the enstrophy inertial range of scales; it increases the viscosity ν27

until the dissipation scale for enstrophy is resolved on the grid.28

The oceans’ aspect ratio and density stratification conspire to make the29

large-scale circulation nearly 2D, so Fox-Kemper and Menemenlis (2008) de-30

veloped Leith’s parameterization for ocean models. The quasigeostrophic31

(QG) approximation is less restrictive and more appropriate than the 2D32

approximation, and has its own turbulence theory which replaces the enstro-33

phy cascade with a potential enstrophy cascade (Charney, 1971). Bachman34

et al. (2017) developed a parameterization in the vein of Leith’s parameteri-35

zation, but based on a cascade of potential enstrophy in QG turbulence; to36

distinguish this parameterization from the earlier ones, the one based on 2D37
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turbulence is called 2D-Leith while the one based on QG turbulence is called38

QG-Leith. The performance of these closures in an eddying global ocean39

model was explored by Pearson et al. (2017).40

Viscous parameterizations, both nonlinear viscosities like the Leith pa-41

rameterization and constant biharmonic hyperviscosities (Semtner and Mintz,42

1977; Böning and Budich, 1992), tend to dissipate too much energy. The43

problem can be compounded by poor numerical resolution of the baroclinic44

instability processes that are largely responsible for ocean mesoscale eddy45

generation (Barham et al., 2018; Barham and Grooms, 2019). A similar46

problem of over-dissipative closures occurs in atmospheric models, and Shutts47

(2005) developed a parameterization that re-injects energy to offset the en-48

ergy spuriously dissipated by other parameterizations. Shutt’s parameteri-49

zation is a backscatter parameterization because it transfers energy into the50

resolved scales. Backscatter parameterizations whose primary aim is to mit-51

igate the spurious dissipation of energy resulting from numerics and other52

parameterizations were further developed in the atmospheric modeling con-53

text by Berner et al. (2008, 2009), among others, and were introduced in54

ocean modelling by Jansen and Held (2014). The Stochastic Kinetic Energy55

Backscatter Scheme (SKEBS) of Berner et al. (2009) was recently adapted56

for ocean models by Storto and Andriopoulos (2021).57

Instantaneous backscatter occurs in the forward cascade of 3D turbu-58

lence even when the mean energy transfer is from large to small scales, and59

it also occurs in the forward enstrophy cascade range of 2D and QG tur-60

bulence, where the mean energy transfer is very small. Backscatter param-61

eterizations that attempt to represent physical backscatter processes have62

appeared throughout the turbulence modeling community starting from the63

work of Bertoglio (1985) and Leith (1990), and in the context of geophysical64

models from at least the work of Mason and Thomson (1992). By 2005,65

physical backscatter parameterizations had been developed for atmospheric66

models by Schumann (1995) and Frederiksen and Davies (1997), among oth-67

ers. Shutt’s backscatter parameterization differs from these in that it is not68

a parameterization of a physical backscatter process per se; rather, it uses69

backscatter to mitigate spurious dissipation that arises in other parts of the70

model. Within the ocean modelling context, a popular approach to parame-71

terizing backscatter sets the amplitude of backscatter based on a prognostic72

model of subgrid-scale kinetic energy (e.g. Jansen et al., 2015; Klöwer et al.,73

2018; Jansen et al., 2019; Juricke et al., 2019, 2020b). Whether these par-74

ticular backscatter parameterizations are explicitly designed to represent a75
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physical backscatter process or whether they are designed to make up for the76

energetic failings of other parameterizations is not always clear, nor does the77

distinction necessarily have a large practical import, since backscatter pa-78

rameterizations in practice end up accomplishing, to some extent, both ends.79

In contrast, Bachman (2019) developed a backscatter parameterization that80

is clearly physical in nature. It ties the backscatter rate to a dissipation81

rate, but instead of re-injecting energy to correct spurious dissipation the82

backscatter represents a physical process whereby potential energy that is83

transferred to unresolved scales via baroclinic instability cascades back to84

the resolved scales via the QG inverse cascade.85

Backscatter parameterizations can also be categorized based on the func-86

tional form of the parameterization: Backscatter parameterizations are either87

deterministic or stochastic, or in rare cases, a combination of both. The ear-88

liest backscatter parameterizations (e.g. Bertoglio, 1985; Leith, 1990; Mason89

and Thomson, 1992) were stochastic. Inspiration for a deterministic pa-90

rameterization of backscatter goes back to at least Kraichnan (1976), whose91

work inspired Sukoriansky et al. (1996) to develop a parameterization for 2D92

turbulence in the form of a negative viscosity combined with a biharmonic93

hyperviscosity. In the context of ocean models, Kitsios et al. (2013) and94

Jansen and Held (2014) developed deterministic backscatter parameteriza-95

tions based on combinations of viscosity and hyperviscosity. The backscatter96

scheme described by Shutts (2005) is also deterministic, but is based on the97

chaotic dynamics of cellular automata rather than on a negative viscosity.98

The goal of this paper is to develop new parameterizations that combine99

the Smagorinsky-like 2D- and QG-Leith parameterizations with backscatter100

in a theoretically consistent way by building on the basic theory of the 2D and101

QG turbulent enstrophy cascade, and to compare a wide range of parameter-102

izations in an idealized model across a range of resolutions. The two primary103

threads in the theoretical development pursued here, viz. absorbing a down-104

scale cascade of enstrophy or potential enstrophy and setting the backscatter105

amplitude to re-inject a portion of the dissipated energy, have appeared in106

the literature, as have the components of the implementation (harmonic and107

biharmonic operators, stochastic backscatter, spatial filters). The practical108

effect of combining these two theoretical threads is that the amplitudes of109

backscatter and dissipation are set simultaneously, rather than setting the110

dissipation coefficient independently of backscatter. The parameterizations111

are developed in section 2, and the idealized model results are described in112

section 3.113
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2. Energetically-constrained Leith parameterizations114

The parameterizations developed here rely on quasigeostrophic (QG) the-115

ory, but are intended for implementation in primitive-equation ocean models.116

To clarify the connection, the QG vorticity and buoyancy-anomaly equations117

are recorded here118

∂tω + u · ∇ω − f0∂zw + βv = Bω +Dω, (1)

∂tb+ u · ∇b+ wN2(z) = Bb +Db. (2)

The vertical component of relative vorticity is ω = ∂xv − ∂yu = ∇2ψ where119

u and v are the zonal and meridional components of velocity, respectively,120

and ψ is the QG streamfunction. The gradient ∇ acts horizontally, and w121

is the vertical component of velocity. The Coriolis parameter f0 is twice the122

angular rotation rate of the planet projected onto the local vertical direction,123

and β is the meridional gradient of planetary vorticity. The mean buoyancy is124

b̄(z) and the buoyancy frequency is N(z) = (∂z b̄)
1/2; the buoyancy anomaly125

is related to the streamfunction via b = f0∂zψ. The terms Bω,b and Dω,b126

represent backscatter and dissipation terms, respectively.127

The vorticity and buoyancy-anomaly equations can be combined into a128

single equation for QG potential vorticity129

∂tq + u · ∇q + βv = Bω +Dω + ∂z

[

f0
N2

(Bb +Db)

]

(3)

where130

q = ∇2ψ + ∂z

(

f 2
0

N2
∂zψ

)

(4)

is the QG potential vorticity (QG PV). The energy conserved by the dynam-131

ics is a combination of kinetic and available potential energies132

E = KE + APE =
1

2

∫

V

[

|∇ψ|2 + f 2
0

N2
(∂zψ)

2

]

dV. (5)

The parameterizations appearing in the vorticity equation directly affect133

the kinetic energy budget, while the parameterizations appearing in the134

buoyancy-anomaly equation directly affect the available potential energy135

budget.136

The following subsections develop deterministic and stochastic param-137

eterizations that consistently incorporate backscatter into the 2D and QG138
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Leith parameterizations. In all cases it is crucial to achieve a scale sepa-139

ration between the backscatter and the dissipation: any energy backscat-140

tered at the grid scale is immediately dissipated, which defeats the purpose,141

and nonlinear processes that might otherwise transfer energy from the grid142

scale to larger scales are badly resolved by discretizations. The deterministic143

parameterizations developed here achieve this scale separation by using a144

combination of a dissipative biharmonic term and a backscattering harmonic145

term following Sukoriansky et al. (1996) and Jansen and Held (2014), while146

the stochastic parameterizations use either a harmonic or biharmonic dissi-147

pation term in combination with a stochastic backscatter that is designed to148

avoid backscattering at the grid scale.149

The derivations in the following subsections follow the traditional ap-150

proach to deriving the Smagorinsky and Leith parameterizations. Expres-151

sions for the viscous coefficients are derived under the assumption that these152

coefficients are constant and that the turbulence is homogeneous, but the153

derived expressions are then used to define spatially-varying viscous coeffi-154

cients for use in simulations of inhomogeneous dynamics. The gap between155

the assumptions of the derivation and the use of the expressions is mitigated156

somewhat by smoothing the coefficients before use (cf. (28)).157

2.1. Biharmonic 2D Leith + E158

The biharmonic 2D Leith parameterization sets the vorticity dissipation159

term to160

Dω = −∇2
(

ν4∇2ω
)

. (6)

(In a primitive-equation model one might use ∇2(ν4∇2
u) or ∇ · (√ν4∇(∇ ·161

(
√
ν4∇u))).) Re-injection of spuriously-dissipated energy is accomplished162

using a negative-viscosity harmonic operator163

Bω = ∇2(ν2ω) (7)

where ν2 ≤ 0. In a primitive-equation model one might use ∇ · (ν2∇u).164

There is no backscatter or dissipation in the buoyancy-anomaly equation:165

Bb = Db = 0. The overline in (7) represents a self-adjoint low-pass spatial166

filter whose purpose is to enhance the scale separation between the dissipative167

action of the biharmonic term and the backscattering action of the harmonic168

term. The number of applications of the filter could be adjusted if needed to169

enhance scale separation.170
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To motivate the spatial filter, consider an equispaced grid with grid scale171

∆x. Ignoring discretization errors and spatial variability of the viscous coef-172

ficients, the combined influence of the (unfiltered) harmonic and biharmonic173

terms on a discrete Fourier mode with wavenumber k is a linear growth (or174

decay) with rate175

−ν2k2 − ν4k
4 (8)

where k = |k|. Wavenumbers with 0 < k < (−ν2/ν4)1/2 are forced while176

wavenumbers with k > (−ν2/ν4)1/2 are damped. In order to successfully177

absorb an enstrophy cascade, one wants a reasonably-wide range of scales to178

be damped; e.g., one might want to ensure that all modes within a factor of179

two of the grid scale are damped. This sets a limit on the allowable values of180

the viscous coefficients. The smallest unambiguously representable Fourier181

mode on the grid has wavenumber π/∆x in each direction, so the requirement182

that the crossover between forcing and damping occurs at a wavenumber less183

than half the grid wavenumber leads to the following constraint on the viscous184

coefficients185
(

−ν2
ν4

)1/2

<
π

2∆x
⇒ −ν2 < ν4

( π

2∆x

)2

. (9)

This effectively limits the allowable backscatter rates.186

The filter allows this constraint to be relaxed. A simple moving-average187

filter with a three-point stencil in each direction with weights [1/4, 1/2, 1/4] mul-188

tiplies a discrete Fourier mode with wavenumber k = (kx, ky) by a factor of189

cos(kx∆x/2) cos(ky∆x/2), i.e. it leaves the largest scales unchanged and ze-190

roes out the smallest scales. The standard second-order discretization of the191

Laplacian multiplies a discrete Fourier mode with wavenumber k = (kx, ky)192

by a factor of −(4/∆x2)(sin2(kx∆x/2)+sin2(ky∆x/2)). For this specific filter193

the combined influence of the discrete harmonic and biharmonic terms on a194

discrete Fourier mode with wavenumber k is a linear growth (or decay) with195

rate196

−ν2
(

cos

(

kx∆x

2

)

cos

(

ky∆x

2

))2 [
4

∆x2

(

sin2

(

kx∆x

2

)

+ sin2

(

ky∆x

2

))]

− ν4

[

4

∆x2

(

sin2

(

kx∆x

2

)

+ sin2

(

ky∆x

2

))]2

. (10)

To ensure that wavenumbers between π/∆x and π/(2∆x) are damped, the197
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viscous coefficients must satisfy the following constraint198

−ν2 <
4ν4
∆x2

. (11)

The largest allowable backscatter coefficient is twice as large with the filtering199

as without. If, in a primitive equation model, the range of wavenumbers that200

are damped needs to be increased, or if the number of applications of the201

filter changes, the upper bound on −ν2 can be modified accordingly.202

Bachman (2019) similarly used a spatial filter to enhance the scale sep-203

aration between backscatter and dissipation, though both dissipation and204

backscatter were achieved using harmonic operators. Both Berloff (2018) and205

Juricke et al. (2020a) used spatial filters to define their backscatter schemes206

instead of a combination of harmonic and biharmonic terms. In a model with207

non-uniform grid spacing the weights would be updated to account for the208

unequal grid cell sizes.209

210

Having defined and motivated the filtering term, consider the enstrophy211

budget for the dynamics. Enstrophy is injected by the wind forcing, cascades212

towards small scales, and is dissipated by viscosity at small scales. In a213

statistically steady state, the rate of injection, the cascade rate, and the214

dissipation rate are all equal. The global-average enstrophy dissipation rate215

associated with the parameterization is216

1

V

∫

V

ν4(∇2ω)2dV. (12)

When a backscatter scheme is present we assume it to act at small scales217

(though at larger scales than dissipation), so that the cascade rate equals218

the combined backscatter and dissipation rates. The global-average enstro-219

phy dissipation and backscatter rates combine to form the net enstrophy220

dissipation rate, which is221

1

V

∫

V

ν2|∇ω|2 + ν4(∇2ω)2dV. (13)

As usual in the derivation of Smagorinsky and Leith parameterizations, we222

assume that the local net enstrophy dissipation rate is instantaneously bal-223

anced by the local cascade rate η so that the final expressions for the dissi-224

pation and backscatter coefficients can vary in space and time. Henceforth225
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therefore, assume a local equilibrium such that the local enstrophy cascade226

rate η is equal to the local net enstrophy dissipation rate227

η = ν2|∇ω|2 + ν4(∇2ω)2. (14)

Formulas for the coefficients ν2 and ν4 will be obtained by imposing228

two constraints: one on the energy cascade and one on the enstrophy cas-229

cade. The enstrophy cascade condition is that the enstrophy cascade should230

terminate within the range of scales represented on the grid. In the non-231

backscattering case one assumes that the dissipation scale for enstrophy de-232

pends only on the biharmonic coefficient ν4 and the enstrophy cascade rate233

η, and dimensional analysis then implies that the dissipation scale must be234

proportional to235

ℓη =

(

ν34
η

)1/12

. (15)

In the backscattering case there is a second dimensional coefficient ν2 that236

could, in principle, play a role in setting the dissipation scale for enstrophy.237

The application of the spatial filter effectively removes the backscatter term238

from the smallest resolved scales, which allows us to use the standard assump-239

tion that the dissipation scale for enstrophy depends only on the biharmonic240

coefficient ν4 and the enstrophy cascade rate η. To ensure that the enstrophy241

cascade is absorbed on the grid, the grid wavenumber π/∆x is set propor-242

tional to one over the dissipation scale for enstrophy with proportionality243

constant Υ244

π

∆x
= Υ

(

ν34
η

)−1/12

. (16)

Inserting the appropriate expression for η and simplifying leads to the fol-245

lowing constraint246

ν2|∇ω|2 + ν4(∇2ω)2 = ν34

( π

Υ∆x

)12

. (17)

Notice that when ν2 = 0 we recover exactly the biharmonic 2D-Leith scaling247

(Fox-Kemper and Menemenlis, 2008)248

ν4 =

(

Υ∆x

π

)6

|∇2ω|. (18)
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A second constraint is obtained by requiring the backscatter term to re-249

inject a fraction cK of the energy that is dissipated by the biharmonic term:250

ν2ω
2 = −ν4cK |∇ω|2. (19)

(The expression for the local kinetic energy backscatter rate assumes that the251

filter commutes with spatial derivatives.) This leads to a local net energy252

dissipation rate of253

ϵ = ν2ω̄
2 + ν4|∇ω|2 = ν4(1− cK)|∇ω|2. (20)

Setting cK = 1 re-injects all of the energy that is dissipated by the biharmonic254

term so that the combined effect has no net energy dissipation ϵ = 0, while255

setting cK = 0 leads to no backscatter.256

The solution to the system is257

ν4 =

(

Υ∆x

π

)6 [

(∇2ω)2 − cK
|∇ω|2|∇ω|2

ω2

]1/2

, (21)

ν2 = −ν4cK
|∇ω|2
ω2 . (22)

There are several practical considerations that prevent direct use of the258

foregoing expressions. For example, the biharmonic term can be imaginary,259

which indicates that the constraints on the energy and enstrophy cascades260

cannot both be satisfied by any real combination of harmonic and biharmonic261

coefficients. Similarly, the coefficients produced by the above formulas may262

violate the constraint (11) that ensures scale separation between backscat-263

ter and dissipation on the grid, or the formulas may generate a biharmonic264

coefficient large enough to cause numerical instability.265

To obtain a practical method, we first compare the energetic constraint266

(22) to the scale-separation constraint (11), and choose the constraint that267

produces a smaller value of ν2 for a given ν4. This produces a backscatter268

coefficient269

ν2 = −mν4 (23)

where270

m =







cK
|∇ω|2

ω2 where cK∆x
2|∇ω|2 < 4ω2

4
∆x2 where cK∆x

2|∇ω|2 ≥ 4ω2

(24)
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Choosing the smaller of the two constraints means that the negative viscos-271

ity backscatters as much as possible without violating the scale separation272

between backscatter and dissipation. We then substitute this expression into273

the enstrophy constraint (17) and solve for the biharmonic coefficient, which274

yields the expression275

(

Υ∆x

π

)6
[

(∇2ω)2 −m|∇ω|2
]1/2

+
. (25)

The argument of the square root is truncated to non-negative values, and276

this truncation is reflected in the notation [·]+. In practice one wants to277

avoid having the biharmonic coefficient become too small, so we assume some278

minimum value νmin

4 has been specified. There is also an upper limit νmax

4 on279

the allowable values of the biharmonic coefficient associated with numerical280

stability. The final formulas are therefore281

ν4 = max

{

νmin

4 ,min

{

νmax

4 ,

(

Υ∆x

π

)6
[

(∇2ω)2 −m|∇ω|2
]1/2

+

}}

(26)

ν2 = −mν4. (27)

Direct application of these formulas can yield viscous coefficients with ex-282

treme spatial variability. To avoid this, the results of the above expressions283

could be smoothed using the spatial filter before use. This would have the284

effect of reducing dissipation in places where it was needed though; to smooth285

the fields while maintaining large values, the values produced by the above286

formulas were modified as follows before use:287

ν4 7→
[

ν24

]1/2

(28)

and similarly for ν2, though maintaining its negative sign.288

289

Note that for the same vorticity field the biharmonic viscous coefficient290

produced by this new parameterization is smaller than the biharmonic 2D-291

Leith coefficient. It is counterintuitive to reduce the biharmonic coefficient292

when backscatter is introduced. Intuitively, one expects from (14) that the293

local enstrophy cascade rate η will remain constant, so the introduction of294

enstrophy backscatter ν2|∇ω̄|2 should also lead to a correspondingly greater295

gross enstrophy dissipation ν4(∇2ω)2 so that the sum of backscatter and296
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gross dissipation, i.e. the net dissipation, can remain constant to match the297

cascade rate. This is in fact what happens, as noted at the end of section298

3.4: The gross enstrophy dissipation rate increases when backscatter is in-299

troduced. Nevertheless, the coefficient ν4 remains approximately the same300

with and without backscatter, which indicates that changes in the vorticity301

field rather than changes in ν4 are responsible for maintaining the balance302

of the net enstrophy dissipation rate. This also explains how the coefficient303

ν4 can remain the same: The value produced by (21) is only smaller than304

the classical biharmonic Leith coefficient (18) if the resolved vorticity field in305

both expressions is the same. In simulations with and without backscatter306

the resolved vorticity field is different, and as reported at the end of section307

3 these differences conspire to keep the values of ν4 produced by the classical308

and backscattering Leith schemes nearly identical.309

2.2. Biharmonic QG Leith + E310

The energetically-constrained biharmonic QG Leith parameterization adds311

backscatter to the QG-Leith parameterization of Bachman et al. (2017). It312

uses the same vorticity dissipation and backscatter terms as the energetically-313

constrained biharmonic 2D Leith parameterization, given in equations (6)314

and (7). The parameterization adds diffusion of buoyancy in the form315

Db = −ν4∇4b (29)

which leads to a biharmonic horizontal dissipation of QG PV in equation (3).316

In the QG-Leith perspective the cascade to be absorbed by dissipation317

at small scales is one of potential enstrophy (q2/2) rather than enstrophy318

(ω2/2). The local potential enstrophy cascade rate ηq is assumed to balance319

the local net potential enstrophy dissipation rate320

ηq = ν2∇q̄ · ∇ω̄ + ν4(∇2q)2. (30)

This expression is derived under the traditional assumption that the viscous321

coefficients are constant, and also under the assumption that the spatial filter322

commutes with the derivatives. The condition that the dissipation scale of323

the potential enstrophy cascade be proportional to the grid scale leads to the324

constraint325

ν2∇q̄ · ∇ω̄ + ν4|∇q|2 = ν34

(

Υ∆x

π

)12

. (31)
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The form of the KE backscatter rate remains the same as for the 2D326

version, and one could require the backscatter rate to be equal to a fraction327

of the KE dissipation rate associated with the biharmonic vorticity diffusion328

term. The biharmonic buoyancy-anomaly diffusion in QG-Leith leads to a329

dissipation of APE that is not present in the 2D version, so a more general330

backscatter constraint would be to make the backscatter rate proportional331

to some combination of the KE and APE dissipation rates. This produces332

the constraint333

ν2ω̄
2 = −ν4

[

cK |∇ω|2 + cP
(∇2b)2

N2

]

(32)

where the second term in the square brackets is proportional to the local334

APE dissipation rate associated with the biharmonic term. The local net335

KE dissipation rate associated with the parameterization has the same form336

as the 2D version (20). There is no APE backscatter associated with this pa-337

rameterization, so the local net APE dissipation rate is simply ν4(∇2b)2/N2,338

while the local dissipation rate of total energy is339

ϵKE+APE = ν4

[

(1− cK)|∇2ω|2 + (1− cP )
(∇2b)2

N2

]

. (33)

The GM+E parameterization (Bachman, 2019) and the approach of Jansen340

et al. (2019) both similarly recycle dissipated APE into KE backscatter.341

The two constraints (31) and (32) form a system of two equations for two342

unknowns. As in the 2D case, the exact solution is not practical, and applying343

the same practical constraints as in the 2D case produces the following recipe344

for ν2 and ν4345

ν4 = max

{

νmin

4 ,min

{

νmax

4 ,

(

Υ∆x

π

)6
[

(∇2q)2 −m∇q̄ · ∇ω
]1/2

+

}}

(34)

ν2 = −mν4 (35)

where346

m =







cK |∇ω|2+cP (∇2b)2/N2

ω2 where ∆x2(cK |∇ω|2 + cP (∇2b)2/N2) < 4ω2

4
∆x2 where ∆x2(cK |∇ω|2 + cP (∇2b)2/N2) ≥ 4ω2

(36)
The results of the above expressions are smoothed before use via (28) as in347

the 2D case. Unlike in the 2D case, the biharmonic coefficient can actually be348
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larger than the classical QG-Leith scaling obtained by setting m = 0 because349

∇q̄ · ∇ω̄ can in principle be negative.350

2.3. Biharmonic 2D Leith + Stochastic Backscatter351

The foregoing methods backscattered kinetic energy using a determin-352

istic negative harmonic viscosity. Many other backscatter schemes in the353

literature use stochastic formulations of backscatter, and it is of interest to354

compare the approaches. This subsection develops a parameterization with355

a combination of biharmonic diffusion of vorticity and stochastic backscatter356

of QG PV. The biharmonic viscosity takes the usual form357

Dω = −∇2ν4∇2ω (37)

and there is no diffusion of buoyancy anomalies Db = 0.358

One could in principle follow the approach of the previous subsections359

by defining stochastic forcings of vorticity and buoyancy, Bω and Bb. The360

stochastic forcing of vorticity would correspond to a stochastic kinetic energy361

backscatter, while the stochastic forcing of buoyancy would correspond to a362

stochastic backscatter of available potential energy. In practice though it is363

impossible to separate stochastic forcing of KE and APE in a QG system,364

unless the backscatter is barotropic (i.e. depth-independent), which is overly365

limiting.366

To understand this it is helpful to think in terms of the practical imple-367

mentation of a stochastic forcing of QG PV. At the discrete level, a stochastic368

increment is constructed and added to the QG PV q at every time step, where369

the amplitude of the increment is proportional to the square root of the time370

step size
√
∆t. When the noise is temporally uncorrelated, the mean rates371

of energy and enstrophy injection associated with the forcing are the mean372

energy and enstrophy of the increment, divided by the time step size. Notice373

that scaling the increment by
√
∆t leads to energy and enstrophy injection374

rates are independent of ∆t. A peculiarity of the QG system is that a QG375

PV increment ∆q generally has both kinetic and available potential energy;376

the only way to construct a QG PV increment that has only kinetic and no377

available potential energy is for the QG PV increment to be barotropic. Even378

if one formally constructs the stochastic increment to q as a combination of a379

stochastic increment to vorticity plus zero stochastic increment to buoyancy,380

the resulting QG PV increment ends up backscattering both KE and APE.381

It is worth briefly noting that in a primitive equation model it is possible382

to increment the momentum and buoyancy separately, and thereby construct383
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a stochastic forcing that increments KE and APE separately. But if the384

flow is approximately geostrophic, then geostrophic adjustment processes385

will rapidly convert a purely KE increment into a combination of KE and386

APE. Deterministic backscatter via negative viscosity presumably behaves387

similarly: although the backscatter is purely kinetic, geostrophic adjustment388

processes rapidly convert some of this kinetic energy to potential energy. At389

scales larger than the deformation radius, one expects that a large fraction390

of the backscattered KE will end up in APE after adjustment processes. The391

stochastic scheme of Grooms (2016) backscatters only APE; the foregoing392

reasoning suggests that some fraction of this backscattered APE will convert393

to KE on the resolved scales.394

The stochastic increment of QG PV is constructed to backscatter total395

energy (rather than kinetic energy) at the desired rate. In order to connect396

to a potential implementation in a primitive-equation model, an increment is397

constructed for the QG streamfunction ψ, and the implied QG PV increment398

is derived from this ψ increment.399

Let S be a Gaussian random field that is depth-independent and un-400

correlated in time and in the horizontal directions. The horizontal Fourier401

transform of this field has a uniform 2D spectrum. If S were used directly402

as an increment to ψ, the associated 1D kinetic energy forcing spectrum403

would be proportional to k3, which is strongest at the smallest scales, and404

violates the principle of separation of scales between backscatter and dissi-405

pation. (The 1D spectrum results from averaging the 2D spectrum, which406

depends on both kx and ky, around circles so that the resulting 1D spectrum407

is a function only of k = |k|.) To create such a scale separation, the field408

S is spatially filtered twice S. Using the spatial filter from section 2.1 (and409

ignoring discretization errors in forming KE from ψ on the grid), the kinetic410

energy forcing spectrum associated with a ψ increment of S would be pro-411

portional to k3(cos(kx∆x/2) cos(ky∆x/2))
4. The peak of the 1D KE forcing412

spectrum occurs at a wavenumber close to π/(2∆x), i.e. the forcing peaks at413

a scale approximately twice as large as the grid scale. More applications of414

the filter could be used to push the peak of the forcing spectrum to larger415

scales, but this would come at extra computational expense as well as com-416

munication costs in a parallel code. The use of spatial filters to achieve scale417

separation between the stochastic backscatter and dissipation goes back at418

least to Schumann (1995), and its importance was underscored by Grooms419

et al. (2015).420
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The amplitude of the stochastic forcing should be set so that it injects421

energy back into the system at a desired rate. To achieve this goal it is422

convenient to normalize the basic stochastic increment so that it has unit423

energy. Define424

S0 =

(

1

2
E

[

|∇S|2
]

)1/2

(38)

where E denotes the mean across realizations of the random field. The nor-425

malizing constant S0 can be calculated analytically or numerically, and de-426

pends only on the shape of the grid, the form of the spatial filter, and the427

discretization of the Laplacian; the computation is done offline. We define428

the increment to QG PV to be429

∆q =
√
∆t∇ ·

(

A(x, y, z, t)∇
(

S

S0

))

. (39)

If it were possible to separately increment the velocity and buoyancy fields,430

then this QG PV increment would result from a random, non-divergent,431

isotropic Gaussian velocity field with amplitudeA and zero buoyancy anomaly;432

indeed, one might implement the parameterization in a primitive-equation433

model by forming a velocity increment
√
∆t A(x, y, z, t)∇(S/S0) = (∆v,−∆u).434

When A is depth-independent the mean local energy injection rate associated435

with this QG PV increment is436

ϵback = A2. (40)

Note that the dimensions of A are L/T 3/2; the unusual fractional scaling is437

associated with the factor of
√
∆t in the definition of the QG PV increment.438

Precisely separating this into a KE backscatter rate and an APE backscatter439

rate requires solving for the associated increment to ψ and then comput-440

ing the KE and APE backscatter rates from the ψ increment; this is done441

in the code for diagnostic purposes, but is not required to implement the442

parameterization. When A is constant the local enstrophy backscatter rate443

associated with the QG PV increment is444

ηback = A2Z (41)

where Z can be computed analytically or numerically, and depends only on445

the shape of the grid, the form of the spatial filter, and the discretization of446
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the Laplacian; the computation of Z is done offline. The dimensions of Z447

are L−2.448

We assume that the local net enstrophy dissipation rate associated with449

the parameterization is balanced by the local enstrophy cascade rate η450

η = −A2Z + ν4(∇2ω)2. (42)

Requiring this to be absorbed by the biharmonic term on the grid leads to451

the constraint452

−A2Z + ν4(∇2ω)2 = ν34

(

Υ∆x

π

)12

. (43)

Requiring the local energy backscatter rate to be proportional to the local453

rate of KE dissipation associated with the biharmonic term leads to the454

constraint455

A2 = ν4cK |∇ω|2. (44)

As with the previous, deterministic parameterizations, we want to provide456

upper and lower bounds on ν4, so the final form of the parameterization is457

ν4 = max

{

νmin

4 ,min

{

νmax

4 ,

(

Υ∆x

π

)6
[

(∇2ω)2 − cKZ|∇ω|2
]1/2

+

}}

(45)

A = [ν4cK ]
1/2 |∇ω|. (46)

The coefficients A and ν4 are smoothed via (28) before use.458

2.4. Biharmonic QG Leith + Stochastic Backscatter459

The stochastic method from the foregoing section can be updated from460

‘2D’ to ‘QG’ by adding biharmonic diffusion of buoyancy anomalies. The461

expressions for the KE, APE, and enstrophy dissipation rates remain the462

same as in section 2.2, and the expressions for the enstrophy and net energy463

backscatter rates remain as in the previous section. The updated formulas464

for the backscatter amplitude and biharmonic coefficient are465

ν4 = max

{

νmin

4 ,min

{

νmax

4 ,

(

Υ∆x

π

)6 [

(∇2q)2 − Z

(

cK |∇ω|2 + cP
(∇2b)2

N2

)]1/2

+

}}

.(47)

A =

[

ν4

(

cK |∇ω|2 + cP
(∇2b)2

N2

)]1/2

. (48)
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2.5. Harmonic 2D and QG Leith + Stochastic Backscatter466

The deterministic parameterizations of sections 2.1 and 2.2 achieved scale467

separation between the backscatter and dissipation by using a combination of468

harmonic and biharmonic terms; the scale separation was enhanced through469

the use of a spatial filter. The backscatter scheme in the GM+E param-470

eterization (Bachman, 2019) uses a combination of harmonic terms and a471

spatial filter to achieve scale separation; the backscatter is also confined to472

the barotropic part of the flow. The backscatter scheme of Juricke et al.473

(2020a) uses a combination of a harmonic operator and a spatial filter to474

achieve dissipation and backscatter on a non-rectangular grid.475

A similar deterministic parameterization could be developed here using476

only a harmonic term and a spatial filter. Following Juricke et al. (2020a)477

we could develop a scheme of the form478

Bω +Dω = ν2∇2ω − αν2∇2ω. (49)

If we ignore discretization errors and spatial variability of the viscous coeffi-479

cients, the influence of the combined parameterization on a discrete Fourier480

mode with wavenumber k is a linear growth (or decay) with rate481

−ν2
(

1− α

(

1− ∆x2k2

π2

))

k2 (50)

where, for simplicity, it was assumed that the spatial filter has Fourier sym-482

bol 1− (∆xk/π)2. This is exactly equivalent to a combination of a harmonic483

backscatter with coefficient ν2(1−α) and a biharmonic dissipation with coef-484

ficient ν2α(∆x/π)
2. (The scheme only backscatters for α > 1.) The resulting485

scheme would be very similar to what was developed in sections 2.1 and 2.2,486

so we do not develop such a scheme here. Note that this similarity enables487

the scalings of ν2 and ν4 developed in the preceding sections to be converted488

into scalings for ν2 and α in the backscatter scheme of Juricke et al. (2020a).489

In contrast to the use of filters and a harmonic viscosity, the combination490

of a harmonic dissipation with a stochastic backscatter is not expected to491

be effectively the same as a combination of a biharmonic dissipation and492

a stochastic backscatter. We therefore develop two such parameterizations493

here, one 2D and one QG. In the 2D case the vorticity dissipation term is494

Dω = ∇2(ν2ω) (51)
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and there is no diffusion of buoyancy anomalies. The stochastic backscatter495

takes the same form as developed in section 2.3. The assumption that the496

local enstrophy cascade rate matches the local net enstrophy dissipation rate497

thus takes the form498

η = −A2Z + ν2|∇ω|2. (52)

Following the same development as the previous sections, the parameteriza-499

tion becomes500

ν2 = max

{

νmin

2 ,min

{

νmax

2 ,

(

Υ∆x

π

)3
[

|∇ω|2 − cKZω
2
]1/2

+

}}

. (53)

A =
√
ν2cK |ω|. (54)

The QG version proceeds as above but adds a harmonic diffusion of buoy-501

ancy anomalies502

Db = ∇2(ν2b). (55)

Requiring the total energy backscatter rate to be proportional to a weighted503

sum of the KE and APE dissipation rates leads to the following parameteri-504

zation505

ν2 = max

{

νmin

2 ,min

{

νmax

2 ,

(

Υ∆x

π

)3 [

|∇q|2 − Z

(

cKω
2 + cP

|∇b|2
N2

)]1/2

+

}}

.(56)

A =

[

ν2

(

cKω
2 + cP

|∇b|2
N2

)]1/2

. (57)

2.6. Summary506

This section has developed six new parameterizations which are summa-507

rized here. The ‘2D’ parameterizations dissipate only KE via diffusion of508

horizontal momentum; the ‘QG’ parameterizations diffuse both horizontal509

momentum and buoyancy anomalies.510

The two deterministic parameterizations combine harmonic KE backscat-511

ter with biharmonic dissipation. These are called biharmonic 2D Leith + E512

and QG Leith + E, and are abbreviated 2DL4+E and QGL4+E, respec-513

tively, where the ‘+E’ is inspired by GM+E (Bachman, 2019). The 2DL4+E514

parameters are defined by (26), (27), and (24). The QGL4+E parameters515

are defined by (34), (35), and (36).516

Four of the new parameterizations are stochastic. Two of the stochas-517

tic parameterizations use a stochastic backscatter paired with a biharmonic518
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Table 1: Naming Conventions for Parameterizations

Abbrev. Backscatter Diffusion Details

2DL2 None ∇2(ν2ω) §2.5, Eq. (53), (54), cK = 0
2DL2+ES Stochastic ∇2(ν2ω) §2.5, Eq. (53), (54), cK > 0
QGL2 None ∇2(ν2q) §2.5, Eq. (56), (57), cK = cP = 0
QGL2+ES Stochastic ∇2(ν2q) §2.5, Eq. (56), (57), cK , cP > 0
2DL4 None −∇2(ν4∇2ω) §2.1, Eq. (26), (27), cK = 0

2DL4+E ∇2(ν2ω̄) −∇2(ν4∇2ω) §2.1, Eq. (26), (27), cK > 0
2DL4+ES Stochastic −∇2(ν4∇2ω) §2.3, Eq. (45), (46), cK > 0
QGL4 None −∇2(ν4∇2q) §2.2, Eq. (34), (35), cK = cP = 0

QGL4+E ∇2(ν2ω̄) −∇2(ν4∇2q) §2.2, Eq. (34), (35), cK , cP > 0
QGL4+ES Stochastic −∇2(ν4∇2q) §2.4, Eq. (47), (48), cK , cP > 0

2DL4+e ∇2(ν2ω̄) −∇2(ν4∇2ω) §2.1, Eq. (26) with cK = 0,
(27) with cK > 0

dissipation; the 2D version is abbreviated 2DL4+ES, where the trailing S519

denotes ‘stochastic,’ and the QG version is abbreviated QGL4+ES. The520

2DL4+ES parameters are defined by (45) and (46), while the QGL4+ES521

parameters are defined by (47) and (48).522

Two of the stochastic parameterizations use a stochastic backscatter paired523

with a harmonic dissipation; the 2D version is abbreviated 2DL2+ES and the524

QG version is abbreviated QGL2+ES. The 2DL2+ES parameters are defined525

by (53) and (54), while the QGL2+ES parameters are defined by (56) and526

(57).527

For comparison we also consider the harmonic and biharmonic forms of528

the 2D-Leith and QG-Leith parameterizations. The harmonic forms of 2D-529

Leith and QG-Leith are obtained by setting cK = cP = 0 in (53) and (56),530

respectively. The biharmonic forms of 2D-Leith and QG-Leith are obtained531

by setting m = 0 in (26) and (34), respectively.532

Finally, we consider parameterizations that use Leith scaling for the bi-533

harmonic dissipation coefficient ν4 without including the effect of backscatter534

on the enstrophy cascade rate. The 2D version is obtained by setting m = 0535

in (26) and then using (27) to set the backscatter coefficient with m ̸= 0 set536

by (24). This scheme is called 2DL4+e to distinguish it from the 2DL4+E537

scheme developed above.538

The naming conventions and details of the parameterizations are summa-539
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rized in Table 1.540

For all of the parameterizations, the dissipation and backscatter coeffi-541

cients are smoothed using (28) before use. The backscattering schemes all542

use cK = cP = 1 except in section 3.5, which explores the sensitivity of the543

2DL4+E scheme to cK . The coefficient Υ in the biharmonic 2D schemes was544

set to 1.5, and in the biharmonic QG schemes to 1.3. The coefficient Υ in545

the 2D harmonic schemes was set to 1.3, and in the harmonic QG schemes to546

1.1. Section 3.6 explores the sensitivity of the 2DL4+E scheme to Υ. Values547

of the minimum and maximum coefficients can be found in Appendix A.548

3. Numerical Experiments549

The parameterizations developed in the foregoing section are compared550

in the context of a quasigeostrophic double-gyre model. The domain is a551

square midlatitude basin of width 3,072 km and depth 4 km. Simulations552

are run with grid sizes of 24, 16, 12, 7, and 4 km, where the 7 km run uses553

a grid of 449 × 449 points, including boundary values; there are six layers554

ranging from the 385 m thick top layer to the 2270 m thick bottom layer.555

Shevchenko and Berloff (2017) found that there is a significant difference556

between three and six layers in a very similar QG model, but found the six557

layer results to be very similar to results with twelve layers. Simulations are558

spun up from rest for 10 years (it takes about 5 years for the kinetic energy to559

reach statistical equilibrium). Once spun up, the results are compared based560

on the final 10 years of each simulation. The time mean streamfunction and561

spatial pattern of kinetic energy are computed online. Full details on the562

model configuration and numerical methods can be found in Appendix A.563

Figure 1 shows the behavior of a simulation with constant biharmonic564

diffusion of vorticity and no backscatter at 4 km resolution. The upper left565

panel shows a snapshot of upper-layer QG PV. As usual for a double-gyre566

model, the most prominent feature is an eastward jet separating from the567

western boundary currents, along with its adjacent recirculation zones. In568

addition to the jet and the associated QG PV front between the gyres, the569

entire domain is populated with mesoscale vortices. The upper right panel570

shows the time-mean streamfunction in the top layer. The time-mean jet is571

not purely zonal, and the time-mean recirculation zones that flank the jet572

are evident. The lower left panel shows the root-mean-square current speed,573

i.e. the square root of the time mean of u2 + v2 in the upper layer. Although574

eddies are present throughout the domain, most of the kinetic energy is found575
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Figure 1: Results from a simulation at 4 km resolution with constant biharmonic diffusion
of vorticity. Upper left: A snapshot of QG PV in the upper layer (units s−1). Upper
right: Contours of time-mean streamfunction ψ in the upper layer; the contour interval
is 1.2×104 m2/s. Lower left: Square root of the time mean of u2 + v2 in the upper layer
(units m/s). Lower right: Time-mean eddy kinetic energy spectrum of the upper layer;
the five vertical lines show the wavenumbers associated with the baroclinic deformation
radii. Units for the x and y axes are km, while units of the k axis are km−1.
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in the jet and in the eddies that separate from it. The lower right panel shows576

the kinetic energy spectrum of the deviations of the upper layer from its time577

mean. The five baroclinic deformation radii, from 31 km to 6 km, are shown578

as vertical lines in the figure. The kinetic energy spectrum peaks at a radius579

(one over the wavenumber) of 70 km. The bump at the tail of the spectrum580

suggests that a larger viscous coefficient could have been used, but the effect581

is small, as seen in the smoothness of the upper left panel. Shevchenko582

and Berloff (2015, 2017) provide an in-depth discussion of the dynamics of a583

similarly-configured QG model.584

Twelve schemes are compared: The six new schemes described in the pre-585

ceding section, plus four nonlinear viscosities without backscatter (harmonic586

and biharmonic versions of 2D and QG Leith), plus a constant biharmonic587

viscosity. The constant biharmonic viscosity was set at each resolution to be588

near the maximum coefficient produced by the biharmonic 2D Leith scheme589

(2DL4) at that resolution. The final scheme uses the traditional 2D Leith590

scaling for the biharmonic dissipation, and adds backscatter via negative vis-591

cosity with a coefficient scaled so that 100% of the energy dissipated by the592

biharmonic term is backscattered by the negative viscosity term.593

Rather than pick a single scheme to generate a reference simulation at594

the highest resolution of 4 km, all the schemes are run at all the resolutions.595

The following subsection describes the differences between the methods at596

the highest resolution (4 km), and the following subsections describe how the597

results vary with resolution for each scheme.598

3.1. Comparison at High Resolution599

The total energy dissipation rate is a combination of dissipation due to the600

frictional bottom boundary layer and the combined effect of the horizontal601

viscous dissipation and backscatter. At high resolution one expects the total602

energy dissipation to be dominated by the frictional component. The twelve603

schemes compared here all have small viscous fractions of the total energy604

dissipation rate, but there remain significant differences between the schemes.605

These differences are shown in Figure 2, which also shows the total kinetic606

energy for each scheme.607

The kinetic energies produced by each scheme are different; the largest608

difference amounts to 14%. There are also differences between the viscous609

percentages produced by the schemes. In the harmonic QG Leith scheme610

(QGL2) 12.6% of the total dissipation rate is associated with the parameter-611

ization. Note that in all of the QG schemes (cf. the 2D schemes), viscous612
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Figure 2: Results for each of the 12 schemes at 4 km resolution. The horizontal axis
measures the percent of the total energy dissipation rate that is attributable to the pa-
rameterization. The vertical axis shows the total kinetic energy, measured in units of
1013× m5 s−2 (i.e. (u2 + v2)/2 integrated over the volume).
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dissipation of APE is included in the viscous percent of the dissipation rate613

for total energy. In the 2DL4+e scheme the backscatter is slightly stronger614

than the biharmonic dissipation, resulting in a viscous percentage of −0.11%.615

The time-mean states produced by the 12 schemes are all very similar at 4616

km resolution.617

The next section presents the way that each scheme varies with resolution.618

The differences at 4 km resolution underscore the importance of comparing619

each scheme to its own reference at 4 km.620

3.2. Varying Resolution: Enstrophy Flux621

Since the parameterizations developed here are all intended to apply when622

the grid scale lies within an enstrophy cascade range, the goal of this sub-623

section is to establish that such a range exists. Figure 3 shows the spectral624

potential enstrophy flux in the top layer, computed from the results of the625

constant-coefficient biharmonic simulations at all resolutions. A positive flux626

(i.e. towards small scales) is found all resolutions, though the flux amplitude627

increases as the resolution improves. The flux profile is not flat, i.e. indepen-628

dent of k, for any range of wavenumbers, as one might expect in a purely629

inertial range. The potential reasons for this include the fact that the flow is630

markedly inhomogeneous, with different cascade rates in different parts of the631

domain, and the fact that enstrophy is not necessarily injected to the system632

at a single length scale, but can be associated with higher-mode baroclinic633

instabilities allowed by the use of 6 layers. The increase in the magnitude of634

the flux from 24 km through 12 km grids is incremental, and is followed by635

large jumps as the grid size reduces to 7 and 4 km.636

3.3. Varying Resolution: Kinetic Energy637

We begin by evaluating how the total kinetic energy for each scheme con-638

verges as the resolution is varied. Figure 4 shows the ratio of the total KE639

at a given resolution to the total KE at 4 km resolution for each scheme.640

The schemes are differentiated in three ways: 2D schemes have open mark-641

ers while QG schemes have filled markers; schemes with harmonic dissipa-642

tion are marked with circles while schemes with biharmonic dissipation are643

marked with squares; schemes without backscatter use solid lines, schemes644

with deterministic backscatter use dashed lines, and schemes with stochastic645

backscatter use dash-dotted lines. The results from the constant biharmonic646

scheme are marked with triangles and the 2DL4+e scheme is marked by a647

diamond. In the discussion that follows the phrases ‘higher KE’ and ‘lower648
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Figure 3: Spectral potential enstrophy flux in the top layer for the constant-coefficient
biharmonic scheme at all resolutions. The five vertical lines show the wavenumbers asso-
ciated with the baroclinic deformation radii. The horizontal axis unit is km−1.
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Figure 4: Convergence of total KE as a function of resolution. 2D schemes have open
markers while QG schemes have filled markers; schemes with harmonic dissipation are
marked with circles while schemes with biharmonic dissipation are marked with squares;
schemes without backscatter use solid lines, schemes with deterministic backscatter use
dashed lines, and schemes with stochastic backscatter use dash-dotted lines. The horizon-
tal axis unit is km.
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KE’ should be understood in a relative sense, i.e. ‘scheme A has higher KE649

than scheme B’ means that at a given resolution the KE from scheme A is650

closer to its 4 km value than the KE from scheme B is to its 4 km value.651

652

First compare the schemes without backscatter (solid lines). Both the653

harmonic 2D and QG Leith schemes generate lower KE than the constant-654

coefficient biharmonic scheme, which itself generates lower KE than the bi-655

harmonic 2D and QG Leith schemes. For both harmonic and biharmonic656

schemes the QG Leith scheme produces less KE than the 2D Leith scheme.657

It is not surprising that the biharmonic Leith schemes have higher KE658

than the constant-coefficient biharmonic scheme, because the harmonic co-659

efficients ν4 produced by the Leith scaling are lower than the constant co-660

efficient over most of the domain. It is somewhat surprising that the har-661

monic Leith schemes have lower KE than the constant-coefficient biharmonic662

scheme. This is presumably attributable to the fact that energy dissipation663

in the harmonic schemes is less scale-selective than the biharmonic schemes.664

It is also worth noting that 16 km resolution corresponds to 1.94 grid665

points per deformation radius, and 2 grid points per deformation radius is666

sometimes considered to be a rule-of-thumb for resolving mesoscale eddies.667

Nevertheless, in these experiments the total KE at 16 km resolution is far668

from the value at 4 km. The worst scheme in this regard is harmonic QG669

Leith (QGL2), which at 16 km resolution has only 36% of its limiting value670

at 4 km resolution. The best scheme in this regard is biharmonic 2D Leith671

(2DL4), which at 16 km resolution has 69% of its limiting value at 4 km672

resolution.673

At 24 km resolution, which would be considered eddy-permitting for a de-674

formation radius of 31 km, there is wide variation among the schemes. The675

harmonic QG Leith scheme in particular does very poorly – significantly676

worse than even than the harmonic 2D Leith scheme. This difference is pre-677

sumably due to the fact that QG Leith dissipates both APE and KE while678

2D Leith dissipates only KE, and also to the fact that the harmonic viscosity679

is less scale-selective and thus more dissipative than the biharmonic viscosity.680

681

Next compare the effect of adding backscatter to a Leith scheme. In682

all cases the KE increases. The scheme which stands to gain the most from683

backscatter is harmonic QG Leith, but the backscattering version (QGL2+ES)684

still has less KE than the harmonic 2D Leith scheme (2DL2). The addition of685

stochastic backscatter to the harmonic Leith schemes helps both of them, but686
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in neither case is it able to bring them to parity with the non-backscattering687

biharmonic Leith schemes.688

Considering the addition of backscatter to the biharmonic Leith schemes,689

deterministic backscatter is more effective than stochastic backscatter at rais-690

ing the total KE, though the difference is not large, and decreases as resolu-691

tion improves. Biharmonic 2D Leith with deterministic backscatter already692

has 66% of the limiting value at 4 km resolution, which, though too low, is a693

huge improvement compared to the worst method (QGL2) which at 24 km694

resolution has only 18% of the limiting KE. This underscores the huge impact695

that the choice of parameterization can have at eddy-permitting resolution.696

Next note that the 2DL4+e scheme has the highest KE overall. Recall697

that this scheme uses a traditional biharmonic 2D Leith scaling for ν4 and698

then adds on deterministic backscatter with a coefficient chosen so that the699

backscatter exactly cancels the energy dissipation from the biharmonic term.700

This method is only slightly better than the 2DL4+E scheme, which adjusts701

the biharmonic coefficient ν4 to account for the the backscatter of enstrophy.702

703

Next note that the biharmonic Leith schemes all have significantly higher704

KE than their harmonic counterparts. At 7 km resolution all of the bihar-705

monic schemes have KE within 10% of their value at 4 km resolution, whereas706

the harmonic schemes are still significantly lower. The 7 km resolution has707

better than four grid points per deformation radius and nearly two points708

per second baroclinic deformation radius, yet the schemes with harmonic vis-709

cosity, even when backscatter is included, still have only 80 to 90% of their710

KE at 4 km resolution.711

712

Finally, note that it is not fair to compare KE across resolutions because713

the total KE at 4 km resolution includes KE from scales that are simply not714

present on the lower resolution grids. To examine the importance of this715

effect, the flow field from the constant-coefficient biharmonic simulation at 4716

km resolution was filtered using the Taper filter described by Grooms et al.717

(2021) and implemented in the Python package gcm-filters (Loose et al.,718

2022) across a range of filter scales out to a filter scale of 96 km. At a filter719

scale of 24 km the KE of the filtered field was still 99.6% of the total KE,720

and at a filter scale of 96 km the KE of the filtered field was still 90.2% of721

the total KE. The conclusion is that the lack of energy in the low-resolution722

simulations is almost entirely due to incorrect representation of the scales723

that can be represented at those resolutions and not to the absence of KE724
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Figure 5: Percentage of the net dissipation rate for total energy that is attributable to
the combined effect of viscosity and backscatter, shown for all schemes as a function
of grid scale. 2D schemes have open markers while QG schemes have filled markers;
schemes with harmonic dissipation are marked with circles while schemes with biharmonic
dissipation are marked with squares; schemes without backscatter use solid lines, schemes
with deterministic backscatter use dashed lines, and schemes with stochastic backscatter
use dash-dotted lines. The horizontal axis unit is km.

from scales that cannot be represented at those resolutions.725

3.4. Energy Dissipation Rates726

This section compares how the dissipation rates vary across resolution727

for each scheme. The total energy dissipation rate must match the total728

energy generation rate, and the latter is set by shape of the upper layer729

streamfunction. To wit, the time-mean energy generation rate is730

Egen = −H1

∫

A

ψ1F (x, y)dA (58)

where the integral is over the horizontal domain and F (x, y) is related to731

the wind stress curl (see Appendix A). Across all twelve schemes and all732

five resolutions the time-mean energy generation rate varies only a little, and733

therefore the net dissipation rate of total energy also varies only a little. (The734

terms ‘gross dissipation’ and ‘net dissipation’ are used to indicate whether735
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backscatter is included in the sum [‘net’] or not [‘gross’]; the term ‘total’ refers736

to the sum of KE and APE.) We therefore begin by comparing how much of737

the total energy dissipation rate comes from the net effect of viscosity and738

backscatter across all schemes and all resolutions. The results are shown in739

Fig. 5.740

The results in Fig. 5 mimic the results of Fig. 4 for KE: the harmonic741

schemes have higher viscous percentages than the biharmonic schemes; the742

addition of backscatter generally reduces the viscous percent; and the 2D743

schemes have lower viscous percent than their QG counterparts. A striking744

aspect of Fig. 5 is that the backscatter schemes, which were designed to have745

zero net viscous dissipation, do not, in most cases, achieve that design goal.746

Though one could increase the backscatter by increasing the values of the747

coefficients cK or cP , it is of interest to discuss why setting cK = cP = 1 does748

not, in practice, lead to an exact cancellation of backscatter and dissipation749

rates.750

The deterministic backscatter schemes have a built-in limiter that pre-751

vents the backscatter coefficient from growing so large that it violates scale752

separation between backscatter and dissipation (see the discussion in section753

2.1 around the constraint 11); this limiter could partially account for the754

failure of the backscatter to completely cancel the viscous dissipation. An-755

other culprit is the smoothing that is applied to both the backscatter and756

dissipation coefficients before use, which breaks the exact link between the757

backscatter and dissipation rates.758

The deterministic schemes perform better than the stochastic ones in759

the sense that the deterministic schemes do a better job of canceling the760

viscous dissipation. Like the deterministic schemes, the stochastic schemes761

use smoothing of the backscatter and dissipation coefficients. The stochastic762

schemes also suffer from two limitations that are different from the deter-763

ministic schemes. First, the mean backscatter rate is computed under the764

assumption that the amplitude is depth-independent, which is not correct765

in practice. This relates to the difficulty, discussed in section 2.3, in cleanly766

separating the KE and APE backscatter rates in a QG code, which would767

be far more straightforward in a primitive-equation model. Second, as noted768

in section 2.3, the spatial structure of the backscatter used here generates769

a forcing spectrum that is peaked at a length scale approximately equal to770

twice the grid scale. This may not be as well separated from the dissipation771

range as the deterministic backscatter, whose spectrum is depends on the772

resolved kinetic energy spectrum. The peak of the stochastic backscatter773
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plies to the combined backscatter and dissipation spectrum, and is based on797

the assumption that ν2 and ν4 are constant; nevertheless, the deterministic798

backscatter remains weak at small scales.799

To dig more deeply into the behavior of the backscatter schemes, we show800

in Fig. 7 the breakdown of the total dissipation budget for all backscattering801

schemes at 24 km resolution, where the differences are greatest. All of the802

schemes achieve similar gross dissipation rates, but the deterministic schemes803

(the rightmost three columns) have somewhat more gross dissipation than804

the stochastic schemes. The deterministic schemes offset this increase in805

gross dissipation by a corresponding increase in backscatter rates so that,806

per Fig. 5, the net viscous percentage achieved by the deterministic schemes807

is slightly smaller than their stochastic counterparts.808

Comparing the backscattering QG schemes to their 2D counterparts shows809

broad similarity. One significant difference in the biharmonic schemes is that810

while the gross dissipation of total energy in the QGL4+E and QGL4+ES811

schemes is similar to the gross dissipation of total energy in the 2DL4+E and812

2DL4+ES schemes, the QG schemes achieve that total by dissipating less KE813

and more APE. The harmonic QG scheme (QGL2+ES) both dissipates and814

backscatters at higher rates than the harmonic 2D scheme (2DL2+ES). The815

rate of APE backscatter in the QGL2+ES scheme is simply not sufficient to816

match the very large rate of APE dissipation, with serious deleterious conse-817

quences for the overall KE level: QGL2+ES has by far the lowest KE of any818

backscattering scheme at 24 km resolution.819

Finally note that although 2DL4+e, which does not adjust the 2D Leith820

scaling to account for enstrophy backscatter, has the lowest viscous fraction821

of any scheme across all resolutions, it achieves this by both dissipating and822

backscattering more energy than 2DL4+E. The goal of the backscatter is to823

correct spurious energy dissipation. Spurious energy dissipation is a model824

error, and the schemes developed here introduce a new model error associated825

with non-physical backscatter to compensate for the original model error826

of spurious energy dissipation. The 2DL4+e scheme, despite resulting in827

a slightly better total energy level and viscous percentage of dissipation,828

achieves this through a combination of two large and compensating model829

errors: it generates significantly more spurious energy dissipation than the830

2DL4 or 2DL4+E schemes; it happens to also be able to correct this spurious831

dissipation slightly more efficiently than the 2DL4+E scheme, at least in the832

results reported here.833

Similarly, the 2DL4+e scheme both dissipates and backscatters more en-834

33



strophy than the 2DL4+E scheme. For example, at 12 km resolution the835

2DL4 scheme leads to a net enstrophy dissipation rate integrated over the836

top layer of 9.1×104 m3 s−3. (Henceforth all enstrophy rates will be given in837

units of 104 m3 s−3.) The 2DL4+e and 2DL4+E schemes generate slightly838

higher net enstrophy dissipation rates of 10.3 and 10.4, respectively. How-839

ever, the 2DL4+e scheme achieves this net enstrophy dissipation rate by840

a combination of a gross dissipation rate of 15.3 and a backscatter rate of841

5.1, while the 2DL4+E scheme has lower gross enstrophy dissipation and842

backscatter rates of 13.9 and 3.5, respectively.843

Finally, the 2DL4+e scheme, despite having the same formula for the844

biharmonic coefficient ν4 as the 2DL4 scheme, generates significantly larger845

values of ν4 than the 2DL4 scheme: at 12 km resolution the 2DL4 scheme846

generates ν4 whose median value over the top layer is 1.11×109 m4 s−1, while847

the 2DL4+e scheme generates a median value of 1.35 × 109 m4 s−1, which848

is 22% higher. The median value of the biharmonic coefficient ν4 over the849

top layer is also larger in the 2DL4+e scheme than in the 2DL4+E scheme:850

At 4 km resolution the value is 14% higher and the ratio increases across851

resolutions until at 24 km resolution the value is 43% higher. In contrast,852

the 2DL4+E scheme produces values of ν4 that are close to those generated853

by the 2DL4 scheme across all resolutions. While in this idealized QG model854

there do not appear to be severe consequences for combining high rates of855

dissipation and backscatter, it remains to be seen whether this will prove856

unstable in a more comprehensive primitive-equation model.857

3.5. Sensitivity to cK858

This section explores the sensitivity of the 2DL4+E scheme to the coef-859

ficient cK , which is the fraction of the rate of kinetic energy dissipation by860

the biharmonic term that is backscattered by the harmonic term. At 16 km861

resolution, the value of cK was varied from 0 (which reduces to the 2DL4862

scheme) to 1. Figure 8 shows that the rates of kinetic energy dissipation863

from friction and from the biharmonic term increase monotonically with cK .864

The rate of kinetic energy backscatter also increases monotonically with cK ,865

but faster than the rate at which viscous dissipation increases so that the net866

rate of dissipation that results from the combined backscatter and dissipa-867

tion terms reduces monotonically with cK , as does the viscous percentage of868

total dissipation. The kinetic energy level increases monotonically with cK869

(not shown).870
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Figure 7: Dissipation and backscatter rates for all of the backscattering models at 24 km
resolution. Blue: Frictional KE dissipation rate; Red: viscous KE dissipation rate; Purple:
viscous APE dissipation rate; Yellow: KE backscatter rate; Green: APE backscatter rate.
The units are 106× m5 s−3 (volume integral of rates of change of energy).

3.6. Sensitivity to Υ871

This section explores the sensitivity of the 2DL4+E scheme to the co-872

efficient Υ. The coefficient Υ is the ratio of the viscous dissipation scale873

for enstrophy to the grid scale. Raised to the sixth power, it controls the874

magnitude of the biharmonic dissipation coefficient. Since the backscatter875

coefficient is simply −mν4, it is clear that the factor of Υ6 simultaneously876

controls the amplitude of the backscatter and dissipation.877

To investigate the effect of Υ on the dynamics, simulations with the878

2DL4+E scheme were run at 16 km resolution with the following values of879

Υ6: 1, (1.2)6 ≈ 3, (1.4)6 ≈ 7.5, (1.5)6 ≈ 11.4, (1.6)6 ≈ 16.8, and (1.7)6 ≈ 24.880

The time-mean eddy kinetic energy spectra for each of these simulations are881

shown in Fig. 9. Differences are seen mainly in the small-scale end of the KE882

spectrum. At small Υ there is too much energy accumulation at small scales,883

as the parameterization is not strong enough to dissipate enstrophy near the884

grid scale. Once Υ reaches 1.4 the KE spectrum rolls off more smoothly885

at the grid scale. At values of Υ larger than 1.5 the total KE begins to886

degrade, and the viscous percentage of total dissipation also begins to rise887

(not shown). For this reason Υ = 1.5 has been used in all the 2D Leith888

schemes. Qualitatively similar behavior in the QG schemes led to a choice889
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Figure 8: Kinetic energy dissipation and backscatter rates for the 2DL4+E scheme at 16
km resolution as a function of cK . Blue: Frictional KE dissipation rate; Red: viscous
KE dissipation rate; Yellow: KE backscatter rate. The units are 106× m5 s−3 (volume
integral of rates of change of energy).
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of Υ = 1.3. The lower value in the QG schemes results from the fact that890

the QG schemes are more dissipative than their 2D counterparts at the same891

value of Υ because they dissipate APE in addition to KE.892

4. Conclusions893

Leith-scaled nonlinear viscosities are promising parameterizations for ed-894

dying ocean models (Fox-Kemper and Menemenlis, 2008; Bachman et al.,895

2017; Pearson et al., 2017). These parameterizations can still dissipate896

too much energy, similar to their constant-coefficient counterparts, but less897

severely. One way to rectify excess dissipation by a viscous or diffusive closure898

is to backscatter some of the dissipated energy. Backscatter parameteriza-899

tions based on this idea go back to Shutts (2005) and are well-developed in900

an atmospheric context (Frederiksen and Kepert, 2006; Berner et al., 2008,901

2009); parameterizations based on this idea were introduced in ocean mod-902

eling by Jansen and Held (2014) and Storto and Andriopoulos (2021). This903

paper combines these ideas – arresting the forward enstrophy cascade on the904

grid, and backscattering dissipated energy – to develop six new energetically-905

constrained Leith parameterizations. The six parameterizations are divided906

in two groups of three: 2D-Leith parameterizations that are based on en-907

strophy and dissipate KE, and QG-Leith parameterizations that are based908

on potential enstrophy and dissipate both KE and APE. Within each group909

there are two kinds of backscatter: deterministic backscatter using a neg-910

ative viscosity and stochastic backscatter. Stochastic backscatter can be911

paired with either harmonic or biharmonic viscosity, but the deterministic912

backscatter schemes are only paired with biharmonic viscosity. The schemes913

are compared with each other and with non-backscattering Leith schemes in914

a six-layer QG double-gyre model across a range of resolutions from 4 km to915

24 km.916

Although the QG schemes seem to have better theoretical motivation,917

at least insofar as the QG approximation is a better approximation than918

2D dynamics for ocean mesoscales, the QG schemes did not perform as919

well as their 2D counterparts in the tests reported here: They dissipate920

too much energy and result in simulations with less total KE, especially at921

lower eddy-permitting resolutions. The addition of backscatter uniformly922

improves the results, especially at the lower resolutions. The schemes with923

harmonic viscosity are uniformly worse than their biharmonic counterparts.924
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Figure 9: Time-mean eddy kinetic energy spectra from the 2DL4+E model at 16 km
resolution for varying values of Υ. Units of the k axis are km−1.
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Both stochastic and deterministic backscatter perform well, though the deter-925

ministic schemes have an edge in terms of total KE and backscatter efficiency.926

Extrapolating towards global ocean models, one strongly expects the ad-927

dition of backscatter to lead to improvements compared to non-backscattering928

Leith schemes, even at resolutions that might be considered eddy-resolving.929

One also expects biharmonic Leith schemes to perform significantly better930

than harmonic ones, especially at lower resolutions. One does not expect931

these schemes to perform well at non-eddying resolutions, or even at the932

lowest eddy-permitting resolutions (e.g. 1/3◦) because they are based on933

ideas about the forward enstrophy cascade, and need such a cascade to be934

represented on the resolved scales. Backscatter remains important in the935

inverse cascade range (Loose et al., 2023), but one expects different param-936

eterizations to be used to represent backscatter on this range of scales (e.g.937

Bachman, 2019; Jansen et al., 2019).938

It will be of interest to compare the performance of the new backscatter-939

ing Leith schemes to other backscatter schemes for ocean models. Many of940

these are based on a prognostic budget for subgrid-scale kinetic energy (e.g.941

Jansen et al., 2015; Klöwer et al., 2018; Jansen et al., 2019; Juricke et al.,942

2019, 2020b); others include the GM+E parameterization of Bachman (2019),943

the Stochastic Kinetic Energy Backscatter Scheme (SKEBS) developed by944

Storto and Andriopoulos (2021) on the basis of the atmospheric scheme of945

the same name developed by Berner et al. (2009), the kinematic scheme of946

Juricke et al. (2020a), and the stochastic transport schemes based on the947

work of Mémin (2014) and Holm (2015). It will also be of interest to modify948

the schemes so that they backscatter not only the energy dissipated by the949

Leith closure, but also the potential energy removed from resolved scales by950

the mixed-layer eddy parameterization of Fox-Kemper et al. (2008). Such951

a modification might enable an ocean model that does not resolve subme-952

soscales to nevertheless capture the seasonal variations in mesoscale kinetic953

energy that are driven by seasonal fluctuations in the rates of submesoscale954

eddy activity (Qiu et al., 2014; Callies et al., 2015; Dong et al., 2020; Stein-955

berg et al., 2022).956
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Appendix A. QG Model Configuration and Numerics961

In each layer the QG PV evolution equation is962

∂tqn + J [ψn, qn] + βvn = δ1nF (x, y)− δ6nrω6 + Bn +Dn (A.1)

where δij is the Kronecker delta, J [a, b] = (∂xa)(∂yb) − (∂xb)(∂ya) is the963

advection term, Bn is the backscatter term, and Dn is the horizontal dissi-964

pation term. The layer index n = 1, . . . , 6 starts at the top. The form of965

the backscatter and dissipation terms depends on the parameterization, as966

detailed in section 2; boundary conditions on the harmonic and biharmonic967

operators are stress-free. The beta parameter is β = 2× 10−11 m−1 s−1 and968

the drag coefficient is r = 2.2 × 10−7 s−1. The forcing F is similar to the969

asymmetric double-gyre pattern used by Porta Mana and Zanna (2014)970

F (x, y) =







−τ0 2π
0.9Ly

sin
(

πy
g(x)

)

τ0
2π

0.9Ly
sin
(

π(y−g(x))
Ly−g(x)

) (A.2)

where τ0 is the amplitude of the wind stress forcing, Lx = Ly = 3,072 km,971

and972

g(x) =
Lx

2
+ 0.2

(

x− Lx

2

)

. (A.3)

The QG PV qn and streamfunction ψn are related by the system of equations973

q1 = ∇2ψ1 +
f 2
0

H1

(

ψ2 − ψ1

g′1

)

− f 2
0

gH1

ψ1 (A.4)

for 2 ≤ n ≤ 5, qn = ∇2ψn +
f 2
0

Hn

(

ψn−1 − ψn

g′n−1

− ψn − ψn+1

g′n

)

(A.5)

q6 = ∇2ψ6 +
f 2
0

H6

(

ψ5 − ψ6

g′5

)

(A.6)

The Coriolis parameter is f0 = 10−4 s−1. The layer thicknesses are (top to974

bottom) 385, 289, 269, 305, 482, and 2270 m. The reduced gravities are (top975

top bottom) 0.0041, 0.0049, 0.0048, 0.0038, and 0.0017 m s−2. The boundary976

conditions on the QG PV inversion from q to ψ are mass-conserving, i.e. the977

value of ψn on the boundary is set so that
∫

A
ψndA = 0 where the integral978

is over the horizontal domain. The baroclinic deformation radii are 30.93,979

12.25, 8.24, 6.66, and 5.98 km.980
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The numerical discretization follows Nadeau and Straub (2009). The981

discretization is via second-order finite differences, and the nonlinear terms982

are discretized using the energy and enstrophy conserving method of Arakawa983

(1966). The QG PV inversion is accomplished by converting to a system of984

six independent 2D screened-Poisson equations (one for each vertical mode),985

each of which is solved using a multigrid V(2,2) cycle with red/black Gauss-986

Seidel smoothing. The time coordinate is discretized using the third-order987

Adams-Bashforth scheme.988

The grid sizes are ∆x = 4, 6.86, 12, 16, and 24 km. The time steps989

at these resolutions are ∆t = 400, 400, 600, 900, and 1200 s. The maxi-990

mum biharmonic viscous coefficient is set to νmax

4 = ∆x4/(320∆t), and the991

maximum harmonic coefficient is set to νmax

2 = ∆x2/(80∆t). The mini-992

mum biharmonic viscous coefficient at each resolution (smallest to largest) is993

νmin

4 = 5× 106, 107, 1.5× 108, 6.5× 108, and 5× 109 m4 s−1. The minimum994

harmonic coefficient at each resolution is νmin

2 = 0.15, 1, 5, 10, and 35 m2 s−1.995

In the runs with constant-coefficient biharmonic viscosity, the coefficients are996

ν4 = 5× 108, 3× 109, 2× 1010, 7× 1010, and 3× 1011.997
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