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Abstract. The Decomposition Problem in the class LIP(S?) is to decompose
any bi-Lipschitz map f : S> — S? as a composition of finitely many maps of
arbitrarily small isometric distortion. In this paper, we construct a decomposition
for certain bi-Lipschitz maps which spiral around every point of a Cantor set X
of Assouad dimension strictly smaller than one. These maps are constructed by
considering a collection of Dehn twists on the Riemann surface S?\ X. The decom-
position is then obtained via a bi-Lipschitz path which simultaneously unwinds
these Dehn twists. As part of our construction, we also show that X C S? is
uniformly disconnected if and only if the Riemann surface S? \ X has a pants de-
composition whose cuffs have hyperbolic length uniformly bounded above, which
may be of independent interest.

1 Introduction

A bi-Lipschitz homeomorphismf : X — Y between metric spaces is a homeomor-
phism that roughly preserves absolute distances; specifically, there exists L > 1
such that

Ll dx(x, y) < dy(f(x), f()) < Ldx(x, )

for all x,y € X. We then say that f is an L-bi-Lipschitz map. The smallest
such constant L is called the isometric distortion of f. Letting S" be the
sphere of dimension n, we denote by LIP(S") the class of orientation preserving
homeomorphisms of S".

A central problem in bi-Lipschitz geometry is whether a bi-Lipschitz map can
be decomposed into bi-Lipschitz mappings of arbitrarily small isometric distortion.

Conjecture 1.1 (Decomposition Problem). Let n > 1 and let f € LIP(S").
Then for every € > 0 we can find homeomorphisms fi, € LIP(S"), fork=1,...,m,
such that f can be written as a composition f = f,, o --- o fi, where each f; has
isometric distortion at most 1 + €.
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The case n = 1 is elementary: suppose I, J are intervalsin R and f : I — J is
an L-bi-Lipschitz map. Then f can be written as f = f> o f;, where

A = / oV dr,

xo is fixed, A = log; a, f is a-bi-Lipschitz and > = f o f"! is L/a-bi-Lipschitz.

However, for n > 2, the Decomposition Problem has been so far elusive. It
is clear that affine bi-Lipschitz mappings can be factored into affine mappings of
small isometric distortion, but beyond this, only certain specific examples have
been considered. Freedman and He [FH88] studied the logarithmic spiral map
si(z) = ze*1°2 1l which is an L-bi-Lipschitz map with |k| = L — 1/L. Gutlyanskii
and Martio [GMOI1] studied a related class of mappings in dimension 2, and
generalized this to a class of volume preserving bi-Lipschitz automorphisms of the
unit ball B? in three dimensions.

Although in this paper we focus on LIP(S?), the Decomposition Problem can
also be asked for the class of quasiconformal homeomorphisms of S*. In dimen-
sion 2, the fact that every quasiconformal map arises as a solution of the Beltrami
equation can be leveraged to show that the Decomposition Problem has a positive
solution here; see [Leh87, Theorem 4.7]. Since every orientation preserving bi-
Lipschitz map is also quasiconformal, in dimension 2 we are able to find a decompo-
sition of bi-Lipschitz maps, but only into quasiconformal maps of small conformal
distortion. Observe, however, that quasiconformal maps need not be bi-Lipschitz.

A similar problem was studied by the first named author and Markovic in
[FM12]. There it was shown that C' diffeomorphisms of S*, for n > 2, can
be decomposed into bi-Lipschitz maps of arbitrarily small isometric distortion.
This solves the Decomposition Problem for C! bi-Lipschitz maps, but of course,
bi-Lipschitz maps are only guaranteed to be differentiable almost everywhere.

In this paper, we study the Decomposition Problem for a class of maps in
LIP(S?) which spiral around every point of a Cantor set, with small Assouad
dimension; see below for definitions. Necessarily these maps are not differentiable
at any point of the Cantor set in question. This can be viewed as a generalization
of the result of Freedman and He, although they were motivated to give estimates
on the number of maps required in the decomposition. Our constructions will be
involved enough that we will not address this question here, and be content to just
find a decomposition.

Maps which spiral around every point of a Cantor set simultaneously are not
new. Such mappings were constructed by Astala et al. in [AIPS15] in order to
give sharp examples of the multifractal spectrum; see in particular the proof of
Theorem 5.1 and Figure 7 in [AIPS15].
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Here and for the rest of the paper, a Cantor set is defined to be a metric space
that is homeomorphic to the standard middle-third Cantor set.

1.1 Uniformly disconnected sets and hyperbolic geometry. Weiden-
tify the topological sphere S? with the one point compactification R? U { oo}, and
equip it with the chordal metric. If X C S? is a Cantor set, then by applying a
chordal isometry we may assume that X C R?. Having done this, we may then
view § := §? \ X as a Riemann surface of infinite type.

The bi-Lipschitz maps that we will decompose arise from a collection of Dehn
twists on the surface S. For the mappings we define to be bi-Lipschitz, we need
some control on the ring domains on which the Dehn twists are defined. Informally,
these ring domains cannot be too thin, and their boundaries cannot be too wiggly.

To address the first of these points, we recall some hyperbolic geometry. The
surface S has a pants decomposition, that is, S = |J; P;, where each P; is a
topological sphere with three disks removed. The collection of boundary curves
of the pairs of pants, called the cuffs of the decomposition, may be enumerated
by (@)7%). Each a; is a simple closed curve on § and generates a class [a;] of simple
closed curves that are freely homotopic to a;.

We denote by €s(a;) the hyperbolic length of a; and by £s[a;] the infimum
of hyperbolic lengths of closed curves in § homotopic to a;. We suppress the
subscript S if the context is clear. It is well-known that a Cantor set X c R? is
uniformly perfectif and only if for any pants decomposition of S*\ X, the associated
cuffs (ocj);-fl satisfy inf; £5[a;] > O; see [Pom79]. Recall that a non-degenerate
metric space X is uniformly perfect if there exists a constant C > 1 such that
for any x € X and every positive r < diam X, we have that B(x, r) \ B(x, r/C) % ().
Informally, this means that any ring domain separating X cannot be too thick.

Uniform disconnectedness is, in a sense, the opposite of uniform perfectness;
a metric space X is uniformly disconnected if there exists a constant ¢ > 1
such that for any x € X and every positive r < diam X, there exists X, , C X that
contains x such that diam X, , < r and

dist(Xy,, X \ Xy.») > r/c.
If we wish to emphasize the dependence on the constant ¢, we will say that X
is c-uniformly disconnected. It is natural to ask whether X being uniformly

disconnected implies analogous geometric properties of the surface S. Our first
result gives such a characterization.

Theorem 1.2. A Cantor set X C R? is uniformly disconnected if and only if
there exists a pants decomposition for S = S* \ X such that the associated cuffs
(@))% satisfy sup; £[a;] < oo.
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By a uniformization theorem of David and Semmes [DS97], a set X c R? is
quasisymmetrically homeomorphic to the standard ternary Cantor set € if and only
if it is compact, uniformly perfect, and uniformly disconnected. Therefore, by
Theorem 1.2 and [Pom79], it follows that a Cantor set X C R? is quasisymmetri-
cally homeomorphic to € if and only if there exist a constant C > 1 and a pants
decomposition for S = S? \ X such that the associated cuffs (@))% satisfy

C™' <(lo;] < C, forallj.

1.2 Dehn multi-twists. Here we outline how our bi-Lipschitz mappings
are constructed. Full definitions and discussion will follow in the sequel. The first
step is the following proposition which is a corollary of Theorem 1.2.

Proposition 1.3. Given ¢ > 1, there exist L > 1, k € N, and a finite set
{g,. - B(0, 1)\3(0, 1— %) N Rz};

of L-bi-Lipschitz conformal maps with the following property. Let X C R? be a
c-uniformly disconnected Cantor set and let (ocj);-fl be the cuffs from Theorem 1.2.
There exist mutually disjoint closed ring domains R; C R? \ X homotopic to o,
and similarities (¢;)7%, of R? such that for each j € N there exists i(j) € {1, ..., k)
with R; == ¢; o g,-(j)(E(O, H\BO,1 - %)). Moreover, for each j € N, the bounded
component of ¢J~_1(Rj) has diameter equal to 1.

This proposition says that given a pants decomposition of S? \ X, we can find
a collection of rings on which our map f will be supported with the property that,
up to similarity, the rings are chosen from a finite set. This finiteness will lead to
a certain uniformity in the Dehn twists that define f.

More precisely, fix a Cantor set X C R? for which the Assouad dimension sat-
isfies dimy X < 1. It then follows from [Luu98] that X is uniformly disconnected.
Let R; and f; := ¢; o gj;) be the ring domains and conformal maps, respectively,
from Proposition 1.3. Then, a Dehn twist can be defined on each IT] by

fIBy=foDof
where © : B(0, 1) \ B(0, 1 — %) — B(0,1)\ B(0, 1 — 1) is the Dehn twist
D(r,0)=(r,0+2xL(1 —7r)).

Letf : R* — R? be given by the Dehn twist in each R; as above, and the identity
elsewhere. The uniform bi-Lipschitz constant of the maps g; guarantees that f
is a bi-Lipschitz map; see Lemma 6.2. The main theorem of this paper reads as
follows:
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Theorem 1.4. If X ¢ R? is a Cantor set with dimyX < 1 and if f is the
bi-Lipschitz map defined above, then given € > 0, there exists N € N such that
f=fnvo---ofi, whereeachf, forj=1,...,N, is (1 + €)-bi-Lipschitz.

It is worth pointing out that if the rings R; can initially be chosen to be round
rings, such as those constructed in [AIPS15], then the assumption dimy X < 1 can
be replaced by uniform disconnectedness, and we can decompose f directly in this
case. In fact, the assumption dimy X < 1 can be dropped (see Section 8 for an
example), and we conjecture that it can be replaced by uniform disconnectedness.

1.3 Strategy of the proof. The crux of the proof is to construct a bi-
Lipschitz path from the identity to f. Bi-Lipschitz paths were introduced in
[FM12] to provide a way to deform one bi-Lipschitz mapping to another in a
controlled way. Partitioning the path into small subintervals yields the required
decomposition.

Consider first the special case where each of the rings R; are round; see Figure 1.
Writing V; for the bounded component of the complement of R;, we can unwind
the Dehn twist supported in R; in the obvious way, and extend this unwinding via
the identity in the unbounded component of the complement of R; and via a path of
rotations in V;. This unwinding can happen in each ring R; and the corresponding
domain V; simultaneously for all j. The point is that on a given R;, the unwinding
will act via finitely many rotations (one for each ring R; such that R; C V}) and
then via the unwinding on R;.

Figure 1. Round rings and Dehn twists.

This idealized case is, however, not the most general case. Complications arise
once R; are not round rings. In particular, it may certainly be the case that the
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two rings Ry, , Ry, contained in V;, cannot be flowed isometrically around D;; see
Figure 2.

Figure 2. Rings that are not round

Our resolution to this issue is to use the hypothesis that dimy X < 1 to show
that the intersection X M V; may be covered by small islands which can be flowed
into a relatively small ball contained in V;. The point is that while the next level
of rings down from R; may not be flowed around V;, we can pass through finitely
many levels, say N, to obtain a collection of rings which can be flowed around V;.

Consequently, to unwind the Dehn twist in R;, we concatenate three bi-Lipschitz
paths in V;: one to move the rings N levels down into a given disk contained in V;,
one to act as a conjugate of rotations in V;, and then the third to undo the first path.
It follows that we may apply this construction simultaneously in the collection of
levels that differ by N to yield a bi-Lipschitz path. Applying this construction N
times, we may concatenate the resulting bi-Lipschitz paths to obtain one path from
the identity to f itself.

1.4 Outline of the paper. In Section 2, we recall the basic definitions and
properties of the objects we will use. In Section 3, we prove Theorem 1.2. In
Section 4, we prove some technical results on bi-Lipschitz paths. In Section 5,
we study how to collapse sets of Assouad dimension less than 1 into small disks.
In Section 6, we prove Proposition 1.3, and in Section 7 we prove how the map f
in Theorem 1.4 can be decomposed into bi-Lipschitz mappings of small isometric
distortion. Finally, in Section 8 we construct a multitwist map with a singular set
of Assouad dimension close to 2 that can be decomposed using the techniques of
the paper.
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2 Preliminaries

2.1 Modulus of ring domains. Given a family I of curves in R”, define
the conformal modulus
Mod(T") =inf | p(x)"dx
P Jre
where the infimum is taken over all Borel p : R” — [0, co) such that fy pds > 1
for all locally rectifiable y € T'.

Here and for the rest, given a ring domain R in R? with boundary components y;
and y,, we denote by M(R) the modulus of the family of curves in R that join y;
with y,. Observe that the larger M (R) is, the thinner the ring domain R is. Itis well
known [Loe59] that there exists a decreasing function y : (0, c0) — (0, c0) such
that, if R is a ring domain with outer boundary component y; and inner boundary
component y,, then

dist(y1, y2)
2.1 M(R) > — ).
2.1 ()_W( diam y, )
2.2 Assouad dimension. A setXCRMis s-homogeneous for some s >0
if there exists C > 0 such that for every bounded set A C X, any € € (0, diamA),
and any e-separated set V C A,

cardV < C(e~ ! diamA)*.

Recall thataset V C A is e-separated if for any distinct x, y € V we have [x—y| > €.

If we want to emphasize on the constant C, we say that X is (C, s)-homoge-
neous. Note that every subset of R" is N-homogeneous. Moreover, if 0 < s; < 55
and X is s;-homogeneous, then it is also s,-homogeneous. The Assouad dimen-
sion of a set X ¢ R is defined as

dimy X = inf{s > 0 : X is s-homogeneous}.

2.3 Hyperbolic geometry. Suppose X C S?is a Cantor setand S = S\ X
is a hyperbolic Riemann surface with a pants decomposition. Here, we recall how
the cuffs (a;) of the decomposition can be related to the thickness of ring domains
embedded in the surface; see Figure 3.
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Figure 3. On the left, we have a pants decomposition for S? \ X with a particular
pair of pants shaded. On the right, we have a topological model of a pair of pants,
again shaded, with the arrowed curve a geodesic cuff a; and the ring domain in
black an example of R;.

Proposition 2.1. For each j there exists a ring domain R]’- c S?\ X that
contains o such that domains R]’- are mutually disjoint and

/ t(a))
MR)= ————.
(&) 2 arcsin(e—{@))

This result is assuredly standard. Maskit [Mas85] proves this for finite type
surfaces, but since we will be applying this to infinite type surfaces, we give a
proof for the convenience of the reader. We need the following Collar Lemma.

Lemma 2.2 ([ALP*11, Lemma 2.2]). There exist pairwise disjoint collars
(C))j of cuffs (aj); given by

Ci={zeS:ds(z y) < B},

where dg denotes the hyperbolic metric on S and

B(t):%log (1+eti1).

Proof of Proposition 2.1. Let C; be the collars from Lemma 2.2. These
collars are necessarily ring domains.

Since S is a hyperbolic Riemann surface, we can consider its lift to the strip
model of the hyperbolic plane. More precisely, let £ = {z € C : |Im(z)| < 7/2}.
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Then the hyperbolic metric density on X is given by Ax(z) = sec(Im(z)) (see for
example [BMO7, Example 7.9]). Since we can identify S with X /G, where G is a
covering group of deck transformations, we can lift a; so that its lift is contained
in the real axis in X. Moreover, C; can be lifted to a rectangle in X whose closure
is givenby R =[—r, r] x [—s, 5].

Here, we have dx(—r, r) = € and dx(—is, is) = 2B(£(a;)). Since the hyperbolic
metric and the Euclidean metric coincide on the real axis in X, we have r = €(a;)/2.
Next,

N

2B(t(a))) = ds(—is, is) = / sectdt = 2In(secs +tans).

)

Solving this for s, we see that
s = arcsin(tanh(B(£(a;))))

and hence

s = arcsin(e” ‘).
Finally, M(C;) is equal to the modulus of the path family joining the r-sides to the
s-sides of the rectangle R. Thus

r fs((lj)
MC)=-=+—"F""="F—.
() s 2arcsin(e{s@)) O
We will also need the following result of Wolpert.

Lemma 2.3 (Wolpert [Wol81]). Let f : S — S be a K-quasiconformal
homeomorphism between hyperbolic Riemann surfaces S, S’. Let a be a closed
geodesic in S, and let o/ be the unique closed geodesic in S’ that is homotopic to
f(a). Then

K~ 'ts[a] < Lsa'] < Ks[al.

2.4 Square thickenings We recall some terminology and notation from
[Mac99]. Given a > 0 define

4, ={an+ [0, al>:ne Zz} and %al :={e:eisanedge of some S € ¥,}.

Given a set W C R? define W* to be the collection of all squares in ¢, that intersect
with W. For ¢ > 0, define the J-square thickening

Ts(W) = (W),

see Figure 4.
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%

Figure 4. The shaded region is W. The black curve is the boundary of W*° and the
blue curve is the boundary of T5(W).

Lemma 2.4 ([Mac99, Lemma 2.1]). IfW is a bounded subset of the plane and
0 > 0, then the boundary of Ts(W) is a finite union of mutually disjoint polygonal
Jordan curves made of edges in %1 and

(2.2) o < dist(x, W) < 8 forall x € 87;.

2.5 Symbolic notation. At several junctures in this paper, it will be con-
venient to use symbolic notation to describe our constructions.

Given an integer k > 0, we denote by { 1, 2} the set of words formed from the
alphabet {1, 2} that have length exactly k. Conventionally, we set {1,2}° = {&}
where ¢ is the empty word. We also denote by

{12y = J{1, 28

k>0

the set of all finite words formed from { 1, 2}. Givena word w € {1, 2}*, we denote
by |w]| the length of w with the convention |g| = 0.

3 Uniformly disconnected Cantor sets and hyperbolic
geometry

In this section, we prove Theorem 1.2. One direction of the theorem is given in
Section 3.1 and the other direction is given in Section 3.2.
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3.1 Assuming uniformly disconnected. Here we prove the necessary
direction of Theorem 1.2.

Proposition 3.1. Let X C S? be a c-uniformly disconnected Cantor set. There
exists M > 0 depending only on c, and there exists a pants decomposition for the
Riemann surface S = S*\ X such that the associated cuffs (a ;) satisfy sup; £[a;] < M.

Denote by C the standard one-third Cantor set and by S, the Riemann surface
So=S?\C.

Lemma 3.2 ([Vel21, Corollary A)). If X c S? is a uniformly disconnected
set, then there exists a quasiconformal map f : S* — S? such that f(X) C C.

As observed in [Shi22, p. 5], the pairs of pants in the pants decomposition
of Sy can be chosen to be conformally equivalent to one another. It follows that
each such pair of pants has the same cuff lengths. To see this, suppose P and P’
are two pairs of pants in this decomposition with a conformal map 4 : P — P'.
Let R and R’ be the respective doubles of P and P, that is, R and R’ are genus two
surfaces. Then & extends via reflection to a conformal map h:R— R andhence h
is a hyperbolic isometry. Restricting I to the cuffs of P, we see that P and P’ have
the same cuff lengths.

In particular, we conclude that there exist a constant g > 0 and a pair of pants
decomposition of Sy with cuffs (C;) such that

3.1 sup s, [Cjl = q.
j

Proof of Proposition 3.1. Let X C R? be a uniformly disconnected Cantor
set, and let f be the quasiconformal map from Lemma 3.2 such that f(X) C C. We
will use the pants decomposition with cuffs (C;) for Sy. Since f(S) D So, we may
use a subset of the (C;) to generate a pair of pants decomposition for f(S). This
subset can be labelled as (Cj,) and we, for brevity, will denote it by (Si).

Suppose (#;) are the cuffs of a pants decomposition of S. Then each z; is
homotopic to f~1(f;) for some k and vice versa. Hence, if we assume for a
contradiction that £s[#;,1 — oo, it follows via Lemma 2.3 that €[Sk, ] — 0.

Since f(S) D Sp, the subordination principle for the hyperbolic metric implies
that if y is any path in Sy, then 5 (y) < €s,(y). In particular, we conclude that
Cs,[Pr,] = oo. This contradicts (3.1). O
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3.2 Towards uniformly disconnected. Here we prove the sufficient di-
rection of Theorem 1.2.

Proposition 3.3. Let X C R? be a Cantor set and suppose that the Riemann
surface S = S* \ X has a pants decomposition (P;) where the cuffs (a;) satisfy
sup; £[a;] < L < 0o. Then X is c-uniformly disconnected for some c depending
only on L.

Recall the symbolic notation from Section 2.5.

Lemma 3.4. A rotally bounded metric space X is uniformly disconnected if
and only if there exists a set W C {1, 2}*, a constant 6 > 0 and a collection of
subsets { X, : w € W} with the following properties.

(i) The empty worde € W and X, = X.
(ii) If wi € W for some i € {1,2} and w € {1, 2}*, then w € W and X,,; C X,
(iii) If X,, is a point for some w € W, then wl e W, w2 ¢ W, and X,,1 = X,
(v) If X, has at least two points for some w € W, then wl,w2 € W,
X = X1 U Xy, and

(3.2) dist(X,1, Xy2) > 0 max{diam X,,;, diam X,,»}.
The constant of uniform disconnectedness and J are quantitatively related.

Proof. Assume first that X is c-uniformly disconnected. Set X, = X. Assume
now that for some w € {1, 2}*, we have defined a nonempty set X,, C X. If X,, is
a single point, then set X,,; = X,,. Assume now that X, contains at least two points
and fix x € X,,. By the uniform disconnectedness of X, there exists £ C X,
such that x € E, diamE < %diame and dist(E, X,, \ E) > (2¢)~'diamX,,. Set
X1 = FEand X, = X, \ E. Note that

dist(X,1, Xuw2) > (2¢)"'diam X, > (2¢)7! max{diam X,,;, diam X,,»}.

Setting W to be the set of all words w € {1, 2}* for which X, has been defined, it
is easy to see that { X, : w € W} satisfies (i)—(iv) with § = (2¢)~!.

Suppose now that there exists W C {1, 2}*, 0 > 0 and a collection { X, : w € W}
satisfying (i)—(iv). We first show that if (i,) is a sequence in {1, 2} such that
ip---ip € Wfor all n € N, then lim,_,  diam Xj;,..;, = 0. Assume for a contradic-
tion that there exists d > 0 and a sequence (i,) in {1, 2} such thati;---i, € W
and diamX; .., > d forall n € N. Fix x; € X, \ X;, and for each n € N
fix x, € Xi...i,_, \ Xiy..i, - By (3.2), for any distinct i,j € N, |x; — x;| > dd. Then,
the set {x, : n € N} is not totally bounded and we reach a contradiction.
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We prove now that X is uniformly disconnected. If X contains a single point,
then the claim is trivial. Assume now that diamX > O and let x € X and
r € (0, diam X). Let w € W be the maximal word (in word-length) such thatx € X,
anddiam X,, > r. Write w =i, - - - i, and assume thatx € X,,; ,, wherei,4; € {1, 2}.
Setting E = X,,; ,, we have that diam E < r while

.....

> min {dist(le,sz), o 'r{lin diamXil...,-/}
i .

= min {dist(X,,1, X,2), 0diam X, } .
By the triangle inequality and (3.2),
diam X,, < diam X, + dist(Xo1, Xw2) + diam X,0 < (14267 ") dist(Xo1, Xuw2)-
Therefore,
dist(E, X \ E) > min{d, (1 +25~ ) '} diamX, > (1 +20" )~ !r

and X is c-uniformly disconnected with ¢ = (1 +26~1)~!. O
We now show Proposition 3.3 and thus complete the proof of Theorem 1.2.

Proof of Proposition 3.3. We assume that each a; has been chosen to
minimize £g(a;) in its homotopy class. By Proposition 2.1 there exist disjoint
ring domains R]’- in R? \ X containing the cuffs a; such that sup; M(R]’-) < m for
some m depending only on L. For each j let V; and U; be the bounded and
unbounded, respectively, components of R? \ R;. We relabel the ring domains R;
in the following way.

Firstly, we remark that there exist three indices ji, j», j3 such that Vj’1 , Vj’z, Vj’3
are mutually disjoint and X is contained in V; UV] U V] . Forl =1, 2, 3, we denote
R, = RJ’.I. Inductively, assume that for some [ € {1, 2, 3} and some w € {1, 2}*
we have defined R},w = R]’- for an index j. There exist two indices i;, i such that

@ Vi,V cViand V; NV] =0;
(ii) if V; C V] for some i, then V; C V] or V; C V..
Setnow R, ;= R; and R, := R},.

If for some j, [ € {1,2,3} and w € {1,2}" we have defined R}, = R}, then
define V; , := Vi and U, := U}. Setalso X;, =X NV} . Itis easy to see that for
each [ =1, 2, 3, the collection {X; , : w € {1, 2}*} satisfies (i)—(iii) of Lemma 3.4
for X ..

Fix now [ € {1, 2, 3}. By (2.1) we have that there exists d > 0 depending only
on m such that for all w € {1, 2}*

dis«(U; ,,, V) = ddiam V] .
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Therefore, for each w € {1, 2}*
diSt(Xl,wla Xl,u>2) > mf”z( diSt(Xl,wia 6V[/’wi) > mf”z( diSt(V;,wia U[,’wi)
=1, =1,
>d max diamV} ,;
=1, ’
>d max diam X; ;.

i=1,

Working as above, we can deduce that for all distinct [, I’ € {1, 2, 3}, we have
dist(X; ., Xr ) > d max{diamX; ., diam Xy .}.

Since X is compact, by Lemma 3.4, X is C-uniformly disconnected with C depend-
ing only on d, hence only on m, hence only on L. ([l

4 Bi-Lipschitz paths

Our strategy to proving Theorem 1.4 is to use bi-Lipschitz paths to yield the
required decomposition. We recall the following definition from [FM12].

Definition 4.1. Let (X, dx) be a metric space. A path H : [0, 1] —» LIP(X)
is called a bi-Lipschitz path if for every € > 0, there exists d > 0 such that
if s, ¢ € [0, 1] with |s — ¢| < J, the following two conditions hold:

(i) forall x € X, dx(H, o H7'(x),x) < €;
(i) we have that H; o H~ is (1 + e)-bi-Lipschitz with respect to dy.

In this paper bi-Lipschitz paths are denoted by capital letters F, G, H, . . .. Given
two bi-Lipschitz mapsf, g : X — X, two bi-Lipschitz paths F, G : [0, 1] —» LIP(X),
and a subset E C X, we define

(i) the concatenation of F' with G to be the bi-Lipschitz path H : [0, 1] —» LIP(X)
with H; = F», for t € [0, 1/2] and H; = Gy fort € [1/2, 1], and we may
then concatenate finitely many bi-Lipschitz paths in the obvious way;

(i1) the restriction F|E : [0, 1] — LIP(E) by (F|E), = F,|E;
(iii) the composition F o G by (F o G); = F, o G, forall ¢t € [0, 1];
(iv) the compositionfoFogby (foFog),=foF,ogforallr e [0, 1].

We emphasize that in (iii) and (iv) here, the compositions need not be bi-
Lipschitz paths. Much of our work will involve showing that our constructions are
made carefully enough that when we do need to compose or conjugate, we do still
have a bi-Lipschitz path. For illustrative purposes, we include examples where (iii)
and (iv) fail to give a bi-Lipschitz path.
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Example 4.2. Let L > 1, B = B(0,1/3) c R? and let f : R> — R? be an
L-bi-Lipschitz map which is the identity on R? \ B. Then define

o) = f(z—n)+n, zeBm,1/3),ne{0,1,2,...},

Z, otherwise.

Clearly f~ is also an L-bi-Lipschitz map.
Set F, = ¢z fort € [0, 1]and H = Ido F o f where Id : R? — R? is the identity
map. Then,
H; ' o Hy(2) =~ (€“™"f(2)).

Suppose € < L — 1,0 > 0 and |s — ¢| = J. Then there exists N € N large enough
that B(Ne'“=97 1/3) N B(N, 1/3) = (). Hence on B(N, 1/3) we have that Ht_1 o Hy
agrees with a composition of a rotation and f. This means that H'oH,is not (1+€)-
bi-Lipschitz and hence H is not a bi-Lipschitz path. We conclude that Id o F o f is
not a bi-Lipschitz path.

Using the same example and setting G : [0, 1] — LIP(R?) to be the constant
path f we see that F o G is not a bi-Lipschitz path. Hence, compositions of
bi-Lipschitz paths are not always bi-Lipschitz paths.

It is worth pointing out that in a bi-Lipschitz path, the elements are bi-Lipschitz
with uniform constant.

Lemma 4.3. Suppose H : [0, 1] — LIP(X) is a bi-Lipschitz path. Then there
exists L > 1 such that H, is an L-bi-Lipschitz map for each t € [0, 1].

Proof. Clearly Hyis an Ly-bi-Lipschitz map forsome Ly > 1. Sete = 1 and the
corresponding 0 > 0 so that condition (ii) holds. In particular, for every #; € (0, J),
by condition (ii) applied to (H,, o Hy ') o Hy, the map H, is 2Lo-bi-Lipschitz. Next,
for every #; € [d, 20), there exists #; € (0, ) with |, — ;| < J. Applying condition
(i) to (H,, o H;") o (H,, o Hy'') o Ho, we see that H,, is 2?Lo-bi-Lipschitz.

Continuing inductively, we see that for any ¢ € [0, 1], H, is 2U/9*!L-bi-
Lipschitz. (]

Next we show that if the restrictions of H on three sets whose union is R? are
bi-Lipschitz paths, then H is a bi-Lipschitz path quantitatively.

Lemma 4.4. Let A, B, C C R? be closed sets such that R2 = AU B U C.
Suppose that for any € > 0, there exists 6 > 0 such that if s,t € [0, 1] with
|s — t| < 9, then the two conditions in Definition 4.1 hold simultaneously for H|A,
H|B, H|C. Then the two conditions in Definition 4.1 also hold for H with the
same O.



436 A.N. FLETCHER AND V. VELLIS

Proof. Fix € > 0 and let 0 > 0 such that the two conditions in Definition 4.1
hold simultaneously for H|A, H|B, H|C. Lets, t € [0, 1] such that |s — ¢| < 6. If
x € R?, then without loss of generality we may assume that x € A and we have

|H o H'(x) — x| = [(HIA); o (H|A); ' (x) — x| <€

and H satisfies (1).

For (ii), it suffices to show that Hy o H; ! is (1 + €)-Lipschitz. Letx, y € R2. If
both x and y belong to the same set from A, B, C, then (ii) follows immediately.
Assume without loss of generality that x € Aandy € B\ A. Letz € [x, y] N A such
that A N ([y, z] \ {z}) = 0. Since y € B\ A, we have that z # y.

There are now two cases. First, if z € B then

|Hy o H'(x) — Hy 0o H7'(y)| < |Hy o H'(x) — Hy 0 H'(2)]
+|Hy 0 H; '(2) — Hy o H ' ()]
< |(H|A); o (H|A); ' (x) — (H]A), o (H|A)[ ' (2)
+|(H|B), o (H|B);'(2) — (H|B); o (H|B); ()]
<{d+e(x—zl+|z—yD
=1 +eée)lx—yl.
Second, if z € C then we have two sub-cases. If also y € C, we have the same
argument as above, with the role of B played by C. If y ¢ C, thenlet w € CN |z, y]
be such that CN([w, y]\ {w}) = 0. We have w # y by construction. Sincez € ANC
and w € BN C, we have
|Hy o H; ' (x) — Hy o H' ()| < |Hy 0 H;'(x) — Hy 0 H ' (2)]
+|H, o H'(z) — Hy o H; ()
+|Hy o H Y(w) — Hy 0 H7\(y)]
< |(H|A), o (H|A)[ ' (x) — (H]A), o (H|A)[ ' (2)
+|(H|C)s o (H|C); ' (2) — (H|C)s o (H|C); " (w)
+|(H|B) o (H|B);'(w) — (H|B); o (H|B); ' ()]
<{d+e(x—zl+|z—wl+|w -yl

= (1+ el —yl. O

Our next result involves the removability of a Cantor set for a bi-Lipschitz path.

Proposition 4.5. Let X C R? be a Cantor set. For each 0 < t < 1, suppose
F, : R? = R? is a continuous mapping such that F|R?> \ X is a bi-Lipschitz path.
Then F extends to a bi-Lipschitz path on R?.



DECOMPOSING MULTITWISTS 437

Proof. First, it is well-known that a bi-Lipschitz map on U can be extended
to a bi-Lipschitz map on the metric closure of U. Hence the hypothesis that F'is a
bi-Lipschitz path on R? \ X, and Lemma 4.3 imply that there exists L > 1 so that
each F; is L-bi-Lipschitz on R

Next, we show that property (i) holds in the definition of a bi-Lipschitz path.
Suppose € > 0is given and find § > 0 so that if |s — 7| < ¢ then for any z € R?\ X,

|Fi(z) — Fs(2)| < €/2.

If x € X, find a sequence (x,,) in R? \ X with x,, = x. Then if we choose N € N so
that |x — x,,| < €/4L forn > N, we have

|[Fi(x) — Fs(0)] < [Fi(x) — Fy(x)| + [Fi(xn) — Fs(xn)| + [Fy(x) — Fy(x)]
<2L|x — x,| +€/2

< €.

Hence condition (i) is satisfied.

Turning now to property (ii), letx € X and y € R? and find sequences (x,,), (,)
in R? \ X with x, = xand y, — y. Given € > 0, find § > 0 so thatif |s —¢| < J
and z, w € R? \ X then

|Fi(z) = Fi(w)| < (1+¢€/3)|Fs(2) — Fy(w)|.

Next, choose N € N large enough thatif n > N then |x — x,| < L™%¢|x —y|/3 and
|y — yal < €L7%|x —y|/3. Hence

|Fy(x) — Fi(x,)] < Lix — x| < €BL)"'|x — y| < €|Fy(x) — Fs()I/3
and
IFi(yn) — Fi)| < Lly, — yl < €BL)'|x — y| < €|F,(x) — F,(»)|/3.

It follows that

|F:(x) = F()| < [Fi(x) = Fi(xp)| + |Fi(xn) = Fi(yn)| + 1Fi(yn) — Fi(y)
< +)IFy(x) — Fs(y)l.

We conclude that property (ii) is satisfied and hence F is a bi-Lipschitz path
on R2. O
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4.1 Uniform families of bi-Lipschitz paths. For the construction in the
proof of Theorem 1.4, it will be useful to consider collections of bi-Lipschitz paths
with uniform control. To that end we make the following definition.

Definition 4.6. A collection J{ of bi-Lipschitz paths H : [0, 1] - LIP(X) on
a common metric space X is a uniform family of bi-Lipschitz paths if
(i) there exists L > 1 so that Hy has isometric distortion bounded above by L for
all H € H,
(i) given € > 0, there exists 0 > 0 so thatif s, ¢ € [0, 1] with |s —#| < J then the
two conditions in Definition 4.1 hold simultaneously for all H € J.

It is clear from Definition 4.6 and Lemma 4.3 that there is a uniform bound
on the isometric distortion of any map from any path in a uniform family of
bi-Lipschitz paths. We have the following composition result.

Lemma 4.7. Let H and G be two uniform families of bi-Lipschitz paths so
that for each G € G and each t € [0, 1], G, is an isometry. Then the family
F={GoH:Ge§, H e H} is a uniform family of bi-Lipschitz paths.

Proof. Given € > 0, find 6 > 0 so that both conditions in Definition 4.1 and
Definition 4.6 hold for |s —#| < d, all H € H and all G € §. Fixing G € § and
H € J{, let F = G o H. Then using the fact that G, is an isometry,

|Fi(2) = Fs(2)| = |Gi(Hi(2)) — Gs(H,(2))]
|G:(H(2)) — Gi(H(2)) + Gi(Hy(2)) — Gs(H,(2))]
|H,(z) — Hy(2)| + |G:(H(2)) — G(H(2))]

< 2e,

IA

which verifies that condition (i) of Definition 4.1 holds uniformly for all paths in .
For condition (ii), we have

|Fi(2) — Fi(w)| = |G, (H(2)) — G,(H(w))]
= |H,(z) — H,(w)|
< (1 +6)|H(2) — Hy(w)|
= (1 + 6)|G(Hy(z)) — Gy(Hs(w))]
= (1 + O)|Fy(2) — Fs(w)l,
which verifies that condition (ii) of Definition 4.1 holds uniformly for all paths in .

Finally, since Gy is an isometry, and the isometric distortion of Hy is uniformly
bounded above, it follows that the same is true for any F' € J. O



DECOMPOSING MULTITWISTS 439

For our next result, we see that a family of conjugates of a bi-Lipschitz path by
controlled dilations is uniform.

Lemma 4.8. Let F : [0, 1] —» LIP(R") be a bi-Lipschitz path and let ¢ > 1.
The family

F={poFo¢':¢isasimilarity of R" with scaling factor at most c}
is a uniform family of bi-Lipschitz paths.

Proof. Fix ¢ : R" — R”" to be a similarity of scaling factor 4 < c.
First, suppose Fy has isometric distortion L. Then we have

lpoFoodp™'(2) —poFoogd™ (w)=AFyod '(z) — Foog~ (w)]

from which it easily follows that ¢ o F o ¢~ is Ly-bi-Lipschitz.
Next, given € > 0, find J > O so that the two conditions in Definition 4.1 hold
for F;. If 5, ¢t € [0, 1] with |s — ¢| < J, then

lpoFiop™ (2) —poFyod™ ()| =AlF, 04 ' (z) = Fs 0™ (2)| < de < ce

and we conclude that property (i) of Definition 4.1 holds uniformly in F. Finally,

AF; 047 (2) = Fro ¢~ (w)]
21+ 6)|Fs0¢ ' (z) — Fy0 ¢~ (w)]
=(l+e)|poFs0¢ ' (2) —dpoF,o0p  (w),

lpoFo¢p™'(z) —poF,0¢ (w)

IA

from which we conclude condition (ii) in Definition 4.1 holds uniformly in . [

4.2 Bi-Lipschitz paths on triangles. As part of our construction, we
will be using specific bi-Lipschitz paths which deform triangles in R?. Let T be
a triangle in C. If the vertices are w;, w,, w3, taken in counterclockwise order,
then we may also denote this triangle by T(w;, w>, w3). In our construction, there
will be two triangles 7| and 7> which share a vertex, and a bi-Lipschitz path
G : [0, 1] = LIP(R?) such that Gy is the identity in 7 and G, is an affine map
from 7 onto 7,. We will focus on constructing G; inside 7.

After conjugating by an affine map, we may assume that 7} and T,
share O as a vertex, that 7} = 7(0, 1,a) and 7T, = T(0, ¢, b) for 0 < arga < =,
0 <argc <argh < m and argh — argc < m. These restrictions ensure that nei-
ther T nor T, degenerate to line segments.
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Proposition 4.9. There exists a bi-Lipschitz path G : [0, 1] — LIP(Ty) such
that Gy is the identity and G is the map given by

a0= (=5 ) (5=

Proof. First, every real-linear map in C is of the form Az + Bz for A, B € C,

and since we require our maps to be orientation-preserving, we have |[A| > |B]|.
Given T} = T(0, 1, @) and T> = (0, c, b), it is elementary to check that

b—dc ac—b\_
a0=(-—2)+(5=5)z
fixes 0, maps 1 to ¢ and maps a to b.

Set yi(t)=ct+(1—t)forO <t < land y,(t) =bt+(1 —tafor0 <r < 1.
Then define

72(2) — ﬁ_yl(t))Z+ (ayl(t) - yz(t))z

a—a a—a

G =(

For any ¢ € [0, 1], G, maps T} onto the triangle with vertices 0, y(?) and y, ().
For ease of notation, we define the map

h:=G, oG,

which maps 7'(0, y1(s), y2(s)) onto T(0, y1(2), y2(1)). Since h(z) = y1(H)a(z/y1(s)),
where a maps T(0, 1, y2(s)/y1(s)) onto T(0, 1, y2(¢)/y1(?)), we can compute that

P20 /1) — p2(8)/y1(5) ) (Vl(f)Z)
72(8)/71(5) — y2(s)/y1(s)/ \ y1(s)
+ ( 2(8)/71(s) — y2(8)/7:1(0) ) (yl(t)z)_
2(8)/71(8) — y2(5)/y1() 7\ 71(5)
We collect some estimates that we will need. First we may suppose there exists
R > 0 so that

h@ = (
“4.1)

4.2) LIl <R

forall r € [0, 1] and i € {1, 2}. Note also that |z] < R for z € T(0, yi(s), y2(s)).
Next, since the interior of every open triangle G,(T(0, 1, a)) is contained in the
upper half-plane and the triangles do not degenerate, there exists » > 0 so that

72(0) y2(8)
43 B .
@) zes[l(l),pl] 71(2) (yl(t))‘ =

We also observe that

44 @ =yl =lc=11-lr=sl, [y20) = 20| = |b—al - |t = s,
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and hence that

no_ o, @ =—n6)
71(s)1 — [71(s)]

Finally, via an elementary calculation we have

y2(s) _ y2(0) _ (b —ac)(s—1)
yi@s)  yi(@  (I+1(c = 1)(A+s(c—1))

and hence by (4.2) we have

(4.5) < 1+Rlc—1]|t—s|.

t
729 _ 1201 o el — 1.

4.6
*o 7iGs) -

We can now prove property (i) for showing G is a bi-Lipschitz path. Given € > 0,
we choose 0 < €/¢&, with & chosen below, so that if |t — s| < ¢ with s, ¢ € [0, 1],
then by (4.1),

== (G Gige) - (o —no) (5 -3

+Z< 72(8)/71(s) — yz(t)/yl(t)) (V](t))‘
72(8)/71(8) — y2()/71(s)/ \y1(s)/

Using (4.2), (4.3), (4.4) and (4.6), we obtain

R R3|b — ac
|h(z) — 2] < 7(R|b—a||t—s| +R3|c— 1]t —s]) + %lt—sl.

By choosing

‘- R?|b — a| . R c—1| . R|b — ac|
r r r

we obtain |h(z) — z| < € for z € T(0, y1(s), y2(s)) as required.

b

Next, we prove property (ii). If h(z) = Az + BZ is orientation preserving, then
|A] > |B| and h is bi-Lipschitz with isometric distortion given by

1
4. Al + |B|, ———— ;.
(4.7) max {41 +1Bl, o= |

In our setting,

y1(2) ‘Vz(f) YOI ‘Vz(s) _ r2(s) !

Al = :
Al ‘VI(S) 71 oy Tyils)  yi(s)

We can compute that

r20/y1(0) = y2(8)/71(5) _ 1+ 72(0)/y1() — y2(8)/y1(s)
72(8)/71(8) — y2(8)/71(5) 72(8)/71(s) — y2(8)/71(s)
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and hence by (4.5) and (4.6) we obtain

R*|b —
(4.8) IA] 5(1+R|c—l||t—s|)<1+¥|t—s|).

We also have that

i@ 720 pa(s)| yals)  yals)| !
711 1@ i@ s i)

and it follows from the comment after (4.2), (4.3) and (4.6) that

18] = |

R*|b —
(49) 3 < By
It then follows easily from (4.7), (4.8) and (4.9) that given € > 0 we can choose
0> Osothatifs, ¢t e [0, 1] with |s —¢] < 6, then G; o G;l is (1 + €)-bi-Lipschitz,
completing the proof that G, is a bi-Lipschitz path. O

4.3 Dehn twists and conjugates. Suppose R C R? is a ring domain.
Then we can define a Dehn twist © in R as follows. There exists # € (0, 1) and
a conformal map bijection g : $ — R, where S = B(0, 1) \ B(0, 1 — #) is a round
ring. By the conformal invariance of the modulus of ring domains, # is uniquely
defined. The Dehn twist in S is given in polar coordinates by

D(r, 6) = (r, 0+ 27[%(1 _ r)),

and then the Dehn twist in R is given by g o ® o g~ 1.

Lemma 4.10. Let n > 0, and consider S and ® as above. For 0 <t <1
and re®? € S, set

1
D1, 0) = (r,0+ 271~ (1= 1))
n
Then D is a bi-Lipschitz path in S connecting the identity to ®.

Proof. Forconvenience,forl—#n < r < 1,seth(r) = %(l—r). Letz=re? € S.
If s, € [0, 1], we have

|Dt(Z) _ Ds(Z)l — |Ze27rith(|z|) _ Ze271’ish(|z|)| — |Z||1 _ e2m‘(s—t)h(|z|)|_

Since |z|] < 1 and A(|z]) € [0, 1], it is clear that the first condition in the definition
of a bi-Lipschitz path is satisfied.
Next, it is clear that
Dt—l (re'®) = rel@=27th()
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and hence for z, w € S and s, ¢ € [0, 1] we have

|Ds o Dt_l(Z) _ Ds ° Dt_l(w)l — |Z6277:ih(|zl)(s—t) _ weZEih(IwD(S—t)l
=z — wehi(s—t)(h(lwl)—h(IZI))|.
Since A is linear, it follows that

|A(lw]) = h(lzD] = lIIwI —lzll < lIw —z].
n n
We conclude that there exists C > 0 independent of z, w such that
IDs 0 D' (2) — Dy 0 D7\ (w)| = |z — we?™=00wh=h(lz)
2ri(s—0)(h(Jw)—h(|z])) |

IN

|z — w|+|wl||l —e

< lz—wl|(1+Cls — 1)),

from which the second condition in the definition of a bi-Lipschitz path is satisfied.[]

We will need to know that conformal conjugates of D, are also bi-Lipschitz
paths. As was observed in [FM12, Remark 2.6], the conjugate of a bi-Lipschitz
path on a closed manifold by a conformal map is a bi-Lipschitz path and this cannot
be weakened to conjugation by a diffeomorphism. However, here we have closed
ring domains, and so this remark does not immediately apply.

Proposition 4.11. Suppose S is a round annulus, R is a ring domain with
smooth boundary components, g:S—> R is a conformal map and F :[0, 1] — LIP(S)
is a bi-Lipschitz path such that F/(S) = S forallt € [0,1]. IfH=goFog™,
then H is a bi-Lipschitz path with H,(R) = R for each t € [0, 1].

Proof. We start with condition (i) from Definition 4.1. Since the boundary
components of R are assumed smooth, the Riemann map g and all its derivatives

extend continuously to 85, see [BK87, p. 24]. In particular, there exists an upper

bound M for both |g’| and |(g~!)'| on S and R, respectively. Hence g and g~ are

M-bi-Lipschitz maps.
Given € > 0, find 6 > 0 so thatif 5, ¢ € [0, 1] satisfy |s — 7| < J then

|FsoF7 Y (2) —z] < e/M
for all z € R. Then

|HyoH '(z) —zl = |go Fso F; ' o g7 (2) — g(g7 ' (@)l
<M|F;oF; ' og7'(2) — g7 ' (@)l

<e€.

Hence condition (i) holds.
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Next, for condition (ii), given € > 0, find 6 > 0 so that if s, ¢ € [0, 1] with
(4.10) |s—t| <o, thenFyo F,_1 is (1 + €)-bi-Lipschitz.
Consider the functionsp : § x S — C and g : R x R — C defined by

g@)—gw) /(w) ifz4w
4.11) plz,w)y=4 ¥ ¢ . 7
0 ifz=w

and

F@= W _ (o—ly(p) ifzHw
(4.12) gz, w)y=q = T ) oo
0 if z=w.

By differentiability of g and g~!, both p and g are continuous functions on compact
sets in C? and hence bounded. That is, there exists C > 0 so that |p(z, w)| < C for
all (z, w) € S x S, and |q(z, w)| < C, for all (z, w) € R x R. Hence given € > 0,
there exists 7 > 0 so that if z, w € S with |z — w| < r, then

(4.13) Ip(z, w)| < €.

By reducing r if necessary, by the same reasoning we can also assume that if
z, w € R with |z — w| < r then

(4.14) lg(z, w)| < €.

Now, let z, w € R with |z — w| < r/[M(1 +¢€)]. Setu = Fy0 F, ' 0 g7(2)

and v = F; o F;'! o g7!(w). Then since F, o F; ! is (1 + €)-bi-Lipschitz and g~ is

M-bi-Lipschitz, we have |u — v| < r. Hence by (4.11) we have

(4.15) |H o H'(2) = Hy o H ' (w)] = |g(u) — g(0)| = |g'(0) + p(u, 0)] - [u = v].
Next, again using the fact that F o F; ! is (1 + €)-bi-Lipschitz, we obtain

(4.16) lu—v] < (1+6)lg7" (@) — g~ (w)l.

Using (4.12), we have

(4.17) lg™ @) — ¢~ (W) = (g7 (w) + ¢(z, )] - |z — w].

Combining (4.15), (4.16) and (4.17), we obtain

|H, o H; ' (2) — Hy 0 H ' (w)]

(4.18) , iy
< lg@)+pu,v)| - (1 +€)-[(g7) () +q(z, w)] - |z — w].
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Next, we have

lg'@)(g™" (w)]
= 1g' (g7 ()™ (w) + [¢'(F(F; (g7 () — g'(g™" (w)](g™ ) (w).
Using condition (i) of F being a bi-Lipschitz path, the fact that |(g~')’| is bounded
and the fact that g’ is uniformly continuous on S, by shrinking J if necessary, we
may conclude that
(4.19) lg @) Y (w) < 1+e
Combining (4.10), (4.13), (4.14), (4.18), (4.19), and the bounds for the derivatives
of g, g~! we obtain
|H, o H; ' (2) — Hy o Hy ()]
< (1 +61g'@)g™ Y )] + |pQu, v)I(g~)(w)|
+q(z, w)g' ()| + |p(u, v)q(z, W]z — w]
<A +e((1+6)+2Me +(€))]|z — w|.
In particular, given # > 0 we can find 6 > 0 and r > 0 so that if 5,7 € [0, 1]
with |s — t| < 6, then for any z, w € R with |z — w| < r we have

(4.20) |Hy o H7'(z) — Hy 0 H Y (w)| < (1+ )|z — w).

To show that condition (ii) holds, suppose for a contradiction that it does not.
Then we can find # > 0 and sequences s,, #, in [0, 1] with |s, — #,] — O and
sequences z,,, w, in R for which
Hs,, o thl(zn) - Hs,, o thl(wn) <

n — Wy

(4.21)

1+9

for all n. By passing to subsequences, we may assume that z;, — zp and
w, = wg. If zp = wo then we obtain a contradiction to (4.20). Otherwise,
suppose |zo — wo| = ¢ and find N € N so that if n > N then |z, — w,| > /2. By
condition (i), we have
\H,, o H, ' (z,) = Hy, © H,, ' (0,)]
< |H,, o H; ' (22) = zal + |20 — wy] + |Hs, 0 Hy ' (w,) — w,

< |z — wal +2¢
4de
< (1 + ?)Izn — Wy].

Since |s, — t,| — 0, we can choose n large enough so that 4¢/¢ < # and hence
contradict (4.21). We conclude that condition (ii) holds and hence H; is a bi-
Lipschitz path. U
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4.4 Interpolation in an annulus. In this subsection, we will prove the
following interpolation result.

Proposition 4.12. Suppose T > 1, and let R = {z € C : 1 < |z] < T}
with boundary components S; = {z : |z| = 1} and St = {z : |z| = T}. Let
P :[0,1] —» LIP(S)) and Q : [0, 1] —» LIP(ST) be bi-Lipschitz paths such that
Py = Py is the identity on S1, Qo = Q) is the identity on St, and arg P, arg Q, are
strictly increasing in t. Then there exists a bi-Lipschitz path F : [0, 1] — LIP(R),
with Fy = F the identity on R and F, extends P; and Q, for each t.

We start with the following fairly elementary estimate.

Lemma 4.13. Suppose that ¢1,c; > 0, ¢c3 € [—3,3] and a € R. For any
€ > 0and any 8, 0, € (—¢, €), 03 € (—2¢, 2¢€), we have

|a+ i(C] + Co +C3)C) + i(5101 + 526‘2 +53a)| < (l + 86)|a+ i(Cl + Ccr + C3a)|.

Proof. We consider three cases.

Case 1: ac; > 0. Then,

|a + i(C1 +co + C3a) + i(51C1 + 52C2 + 53a)|
< la+i(cy + ¢z + cza)| +|d1|c1 + |da2]ca + |33 |al
< la+i(ci + cr+ cza)|+ (2¢)|i(c1 + 2 + c3a)| + 2¢€|al

< (1 +4e)|a+i(c, +cy+ c3a)l.

Case 2: ac; <Oand ¢y +cy +c3a < %(cl + ¢»). We have that

1
lal > (ci1+c2) > 8(61 +c2).

1
2|cs|

Therefore,

|a+i(cy + ¢y + c3a) + i(01¢1 + 623 + 630)|
< la+i(c1 + c2 + cza)| + |d1|c1 + [d2]ca + |63 14l
< |la+i(ci + cr+ c3a)| +e(cy + c2) + 2¢|al
< |la+i(c1 + c2 + c3a)| + 8¢|al

< (1+8¢e)|a+i(cy +cy+ c3a)l.
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Case 3: ac; <0Oand ¢y +c¢, +c3a > %(cl + ¢3). We have that

|a+i(cy + ¢y + c3a) + i(01¢c1 + 6r¢p + 30)|
< la+i(c1 +ca+c3a)| +|d1]cy + 022 + |63]al
< la+i(ci +cr+cza)| + €(cy + cr) + 2¢€lal
< |la+i(ci +cr+ cza)| + 2¢€li(cy + ¢ + c3a)| + 2€|al

< (1+4e€)|a+i(c; + cr + c3a)].

Next, we prove an interpolation result on strips.

Lemma 4.14. Suppose that F, G : [0, 1] = LIP(R) be bi-Lipschitz paths with
Fo(x) = Go(x) = x for all x € R, Fi(x) = G1(x) = x+ 27 for all x € R, F;, G,
are 2x-periodic for all t € [0, 1] and F(x), G:(x) are both strictly increasing in t
for a fixed x. Let M > 0 and let S be the strip S = {z € C : 0 < Re(z) < M}.
Then there exists a bi-Lipschitz path H : [0, 1] — LIP(S) which extends to 6S
with H,(iy) = iF;(y) and H(M + iy) = M +iG,(y) for 0 <t < 1 andy € R.
Movreover, Hy(z) = zand H\(z) = z+ 27 for all z € S.

Proof. We define H, via the obvious convex interpolation in S. That is, we set
Hy(x +1iy) =x+i(G,(y) + (1 —x/M)(F,(y) — G:()))

for0 <t < 1,0 <x <Mandy € R. Clearly Hy is the identity and H; is a
translation by 2zi. We need to show that H; is a bi-Lipschitz path.

We start by showing that each H; is a bi-Lipschitz map. Using Lemma 4.3,
suppose that F; is L-bi-Lipschitz and G, is A-bi-Lipschitz for all ¢ € [0, 1]. Setting
z=x+iyand w = x" +iy’, we have

|H,(z) — Hi(w)]
_/1_x_’/_1__x_’/‘
< k= x|+ [5G0 - TGN + (1= 2 )Fo) = (1= ZFO))
X X
< =1+ (1= Z)EG) = B0+ 2 1G() = GO
lx — x|

G0N = FG

< (1+2m)|x — x| + max{L, A}]y — y'|

< max{L, 4, L +2z}(lx — x| + [y — y'])
<2max{L, A, 1+2x}|z — w|.

M 1

For the lower bound, we consider two cases. First, set C = min{ s%’ Salc 21
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Case 1. Suppose that |[x — x'| > Cly — y'|. It follows that
/ C / / C
|H(z) — H(w)| > |x —x'| > E(lx—x|+|y—)’|) > Elz—w|-

Case 2. Suppose that |[x — x| < C|y — y'|. Without loss of generality, assume
that y’ < y. Then,

|H(2) = Hi(w)]
> |(1= 2) (F0) = FO) + 2(G0) = GO + (GO = FGN) = x)/M
> (1= Z)(FO) = FO) + 2(G0) = GO = GO = Fio — /M
> min{L™", A7y = V| = 2xlx — ¥'|/M

2rC
. —1 -1, _ =~+ Ly
> (min(Z7', 27"} = == )y =¥
>271'C| 7
=y y =Yy
C
> Sy (v =X+ =yD
T
> —lz—wl.

M
Next, we show that A&, satisfies condition (i) of Definition 4.1. From Defini-
tion 4.1 (i), by setting u = F;"!(x), it follows that given € > 0, we may find 6 > 0
so that if |s — #| < 9§, then |F(u) — F;(u)| < € for all u € R. The same holds true

for G,. Now suppose z € S and h; !(z) = x + iy. Then we have
z=x+i(G+ (1= + ) (FO) - GO))

and

HyoH '(z)=x+ i(GS(y) + (

Therefore, we obtain
|H, o (@) = 21 = [(G,) = Go + (1= 35 ) (FL0) = Fo)| < e.

Hence condition (i) of Definition 4.1 is satisfied.
Finally, we show that /4, satisfies condition (ii) of Definition 4.1. Note that

L= Z)(E0) = GOD)-

HS(Z) - Hs(w)

= =)+ = IR — (1 = TF O] +GL) — ¥ G0 /M
= (r—x)

+i] (1= ) 0= F0) + 7(Gi0) = G0 + (G0 = FG))x=x)/M]
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Fix € > 0. We know that there exists 6 > 0 such that if |t — 5| < J, then
IF,(v) — F0N < (1 +OIF(y) — F,()I,
1G,(y) — G,()| < (1 +)|Gi(y) — G, ()l

and

|[Fs(y) — F:(0)| <€, |G(y) —G(y)| <e.
Therefore,
HS(Z)_HS(w)
- N+il(1- 2\ (F F0)(1 +6)) + (G G,()(1+6
= =) +i| (1= 22 (Fi0) = FONA+0) + 2(Gily) = Gi(y))(L +62)
+ (G0N = FY) +03)x = ) /M|
=a+ i(C] + Co +C3(1+51€1 +52€2 +53a)

=a+i(ci+cy+cza)+ (5161 + 526‘2 + 53(1)i

= H,(Z) — H,(w) + (5101 + 5202 + 53a)i
where

a=x—Xx,
c1= (1= ) E0) = FO)),

c2 = x(G(y) — Gt(yl))/Ms
3 = (Gt()’,) - Fl(y,))/Ma

and Jy, 0, 95 are functions of x, y, X', y/, s, t satisfying
[01] <€, o] <€, |03] < 2e.
Now, it follows from Lemma 4.13 that
|H,(z) — H(w)| < (1 +8¢)|Hi(z) — H(w)|

and condition (ii) of Definition 4.1 is satisfied. ]
We are now in a position to prove Proposition 4.12.

Proof of Proposition 4.12. The idea is to lift via the exponential function
and then use Lemma 4.14. To that end, define P and Q via the functional equations

Poexp=exp oP and Qo exp = exp oé.
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Since the exponential function is conformal and has uniformly bounded deriva-
tive on the strip S = {7z : 0 < Re(z) < In T}, we conclude via the same argument as
in Proposition 4.11 that P and é are bi-Lipschitz paths in the lines {z : Re(z) = 0}
and {z : Re(z) = In T} respectively.

Applying Lemma 4.14 to the strip S$ = {z : 0 < Re(z) < InT} with boundary
bi-Lipschitz path P and Q, we obtain a bi-Lipschitz path F which extends the
boundary bi-Lipschitz paths.

Since F, is 2« i-periodic by construction, we obtain the required bi-Lipschitz
path F via F o exp = exp oF, again using the fact that the exponential function has
uniformly bounded derivative in S. g

5 Bi-Lipschitz collapsing for sets of small Assouad di-
mension

The goal in this section is to show that for a Cantor set X C R? withdimy X < 1, we
can cover it by small topological disks that can then be collapsed via a bi-Lipschitz
path into a small disk. This is the content of Proposition 5.1 below; see Figure 5
for a schematic.

e.,//
g

Figure 5. The larger domain is €, the shaded ball is B, the PL curves give
the boundaries of the components of T5(X) and the arrows indicate that the bi-
Lipschitz path H; constructed in Proposition 5.1 moves these components into B
in an isometric way.
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Proposition 5.1. Let C > 0, ¢ > 1, s € [0,1), 5 € (0, 1) and let Q C R?
be a domain with diamQ = 1 such that for any x,y € € there exists a path
Yxy - [0, 11 = Q such that y, ,(0) = x, y.,(1) =y and

(5.1) dist(y. ,, 0U) > (2¢)” ! min{dist(x, 8Q), dist(y, 6Q)}.

Let X C Q be (C, s)-homogeneous with dist(X, Q) > n. There exists € > 0 so
that if z, w € Q have distance at least 2¢ from 0€), then the disk B(z, €) can be
deformed continuously and isometrically to B(w, €) in €. There exists 6 > 0 so
that if B = B(z, €) C Q is a disk of radius € with center z satisfying dist(z, 0Q) > 2e,
there exists a bi-Lipschitz path H : [0, 1] — LIP(Q) such that

(1) Hi maps the closed neighborhood T5(X) of X into B;

(i1) for each t € [0, 1] and each component D of Ts(X), the map H,|D is an

isometry.
A couple of remarks are in order.

Remark 5.2. First, condition (5.1) on € is inspired by, but slightly weaker
than, the well-known c-John property. Second, for the rest of this section, we call
curves y,, c-cigar curves. Finally, if ¢’ > ¢, then there exists a piecewise linear
(abbv. PL) ¢’-cigar curve o joining x with y in Q. In light of this observation, we
will assume from now on that all cigar curves are PL.

5.1 Convex sets. Given a set E C R", we denote by Hull(E) the closed
convex hull of E, that is, the intersection of all closed convex sets that contain E.
Such a set is itself convex and diam(Hull(E)) = diam(E).

Lemma 5.3. Let E C RY be a bounded set. If x,y € Hull(E) and
|x — y| = diam(Hull(E)),
then x,y € E.

Proof. Fora contradiction, assume that x is notin E. Thatis, r:=dist(x, E) > 0.
Let P C RY be the (N — 1)-plane that contains x and is orthogonal to the line
segment [x, y]. Then, since |x — y| = diam(Hull(E)), it follows that Hull(E) lies
on H where H is one of the two components of RY \ P. Therefore,

EC (HNB(®y, |x—y))\ Bx, ).
Then, setting 0 = dist(éB(x, ) N 6B(y, |x — y|), P) we have that the set
{z € H : dist(z, P) > 6} N Hull(E)

is a convex set which contains E and is a proper subset of Hull(E), which is a
contradiction. OJ
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Lemma 5.4. Let Ey, ..., E, be sets in RY. There exists | € {1,...,n} and
there exist mutually disjoint convex closed sets Ay, ..., A;in RN such that each E;
is contained in some A; and

I n
Zdiam A; < Z diamE;.
j:] =1

Proof. If one of the sets E; is unbounded, then set [ = 1, A; = RY and the
claim is trivial.

Assume now that all sets E; are bounded. In this case, the construction of the
convex sets A; is in an inductive fashion.

Step 1. Foreachi e {1,...,n},let AED = Hull(E;). If the sets AED are mutually
disjoint, then set A; = Agl) and the procedure terminates; if some intersect, proceed
to the next step.

Inductive Step. Suppose that for some k € {1,...,n — 1} we have defined
(k)
n—k+

particular, let 1 < iy < jo < n— k+ 1 be such that

closed convex sets A% s, A | such that at least two of them intersect. In

AP N AR 0.

We now define A§k+l) forie{1,...,n— k} as follows:
o if i <igorifiy <i<jo,thenset A" = AW,
o if i = o, then set A{*D = Hull(A{Y U AW);
e if jo <i <n—k, thenset A¥ = Agf)l.
Note that
diam A = diam(A® U AY) < diam AP + diam AP

L] Jo Jo °

If the sets Agk“) are mutually disjoint, then set A; = Agk“) and the procedure
terminates; if some intersect, proceed to the next step.

It is clear that the procedure above will terminate in m steps for some
me{l,...,n}. Thesets Ay, ..., A,_+1 produced are convex, mutually disjoint,

and each E; is contained in some A;. It remains to show that
n—m+1 n

(5.2) > diamA; <> diamE;.
i=1 i=1

To prove (5.2), first note that foralli € {1, ..., n}, diam E; = diam Agl). Therefore,
if m = 1, then (5.2) follows.
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Suppose now that m>2. Fix ke{l,...,m—1} and let iy, joe{1, ..., n—k+1}
be as in the construction of domains A§k+1). Then,

n—k+1

> diam AP = > diam A{" + diam A + diam A"

0 Jo
i=1 ie{1,....,n—k+1}\{io.jo}
Z diam A**D 4+ diam A%‘“)
ie{1,....n—k}\{io}
n—k
= diam A{D.
i=1

A%

Now by induction, (5.2) follows. ]

Lemma 5.5. Let Q C R? be a domain with nonempty boundary, and let
A C Q be a compact convex set with PL boundary. Let 6 € (0, 1), let

0 <r<(—9)dist(A, 0Q),

and let y : [0, 1] > Q be a PL curve in Q with y(0) € A and |y(t) — y(0)| < r for
all t € [0, 1]. Then there exists a bi-Lipschitz path H : [0, 1] — LIP(Q) such that
(1) for eacht € [0, 1], H,|0Q is the identity;
(i1) for eacht € [0, 1], H,| A is a translation mapping with H,(y(0)) = y(t).

Proof. Without loss of generality, we may assume that y is a straight line
segment; in the general case of PL curves y, concatenate the bi-Lipschitz paths
from the various segments of y and re-parameterize if necessary. Assume then,
that y : [0, 1] —> Q with y(¢) = y(0) + tv for some v € C with |[v| < r.

By the hypotheses, A is a convex polygon with vertices vy, ..., v,. Fixzp € A
and for i € {1,...,n} let w; be the point on the ray from zy through o; that is
distance (1 — §/2) dist(A, 6Q2) away from v; (and outside A). Let Y be the convex
hull of wy, ..., w, and set d = dist(A, oY) > 0.

Triangulate the PL ring domain Y \ A via triangles T4, ..., T, which have,

alternately, one or two vertices contained in 9Y.
Given a direction e, we will construct a bi-Lipschitz path which moves A onto
A ={z:2=7+de?/2,7 € A}. Forz € A we just define

H(z)=(z+ deig/Z)t +(1 —1)z.

If T; has two vertices on 0Y and third vertex &; € 0A, then we apply the bi-Lipschitz
path from Proposition 4.9 (conjugated by a suitable similarity) which fixes the two
vertices in Y and moves & to & +de?/2 e Y.
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If T; has one vertex on J0Y and two vertices &, & in 6X, then we apply the
bi-Lipschitz path from Proposition 4.9 (again conjugated by a suitable similarity)
which fixes the vertex in 8Y and moves & to & + de” /2 for j = 1, 2.

This piecewise construction yields a bi-Lipschitz path which moves A to A;
and fixes every point of Y and hence can be extended to fix every point of Q \ Y.
By concatenating a finite number of bi-Lipschitz paths, we may move X along
any PL path in Q, as long as we avoid €, such that the path acts as a translation
on X. (]

For the rest of the paper, given a bounded set X C R?, a number » > 0 and a
curve y : [0, a] — R? with y(0) € X, we denote

N, y. 1) = | (@ — p(0) + N(X, r).
tel0,a]

5.2 Proof of Proposition 5.1. The first claim about the existence of such
an € follows by following a c-cigar curve from z to w. Henceforth, fix B = B(zy, €).

Suppose first that diam X = 0, that is X = {xp} for some xy € Q. Let y be
a PL c-cigar path that joins xp with x¢ in Q. Let A be a compact convex set with
PL boundary contained in B(xg, r) with » < min{e, % dist(xp, 0Q2)}. We then apply
Lemma 5.5 to find the required bi-Lipschitz path H : [0, 1] — LIP(L) such that
for any ¢ € [0, 1], H;(xg) = y(2).

Suppose now and for the rest of the proof of Proposition 5.1 that diam X > 0.
Set

min{ 7, €}\
5.3 o0=———"— .
(5-3) ( 216¢C )
We may assume that C > 1, hence J is less than 1. Then let V be a d-net of X and
let Dy, ..., D, be the components of JT5(X).

Since 6 < 1/20, we have that
dist(T5(X), 6Q2) > dist(X, 6Q) — disty(Ts5(X), X) > n— 85 > 5/2

where disty denotes the Hausdorff distance.

Leti e {1,...,n}. Foreach x € 0D, there exists z € X such that |[x — z| < 89
and there exists v € V such that |z — v| < d. Therefore, for every x € oD,
dist(x, V) < 96 and it follows that

(5.4) diam D; < 18d card(V N D;).

Therefore,

(5.5) ZdiamDi < 18dcard(V) < 18C5'~* = (12¢)~! min{ #, €}.
i=1
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The construction of the bi-Lipschitz path H consists of two parts. In the first
part we construct at most n — 1 many bi-Lipschitz paths that “gather the sets D;
together” and in the second part we construct a bi-Lipschitz path that leads the
cluster of gathered sets D; into the disk B.

5.2.1 Part1. The construction in this part is in an inductive manner.

Step 0. Apply Lemma 5.4 for the sets Dy, ..., D, and obtain closed mutually
disjoint convex sets A(ll), e, A,((?)) for some positive integer kg € {1, ..., n}. Note
that

k() n
> diam A{” < " diam D; < (12¢)”" min{7, €}.
i=1 i=1

0
1 see-

Moreover, the sets A s A,(C? are contained in Q and foreachi € {1, ..., ko}

1
dist(A\”, 6Q) > dist(T5(X), 6Q) — diam A? > /2 — (12¢)71y > 37

If kp = 1, then the procedure terminates and we proceed to Part 2; otherwise
proceed to the next step.

Inductive step. Suppose that for some positive integer m € {0, ..., n — 2}
we have defined disjoint closed convex sets A(lm_l), e, A,(;’,’__ll) c Q such
that 2 < k,,—; < n — m+ 1 and the following three properties hold.

(P1) Foreachie {1,...,k,_}thereexistsj e {1,...,n} withD; C AE""“.

(P2) We have
kim—1

> diam A" < (6¢)7 min{, €}.
i=1
(P3) Foreachie {1,...,k,_1},dist(A" ™", 6Q) > 5/3.
Let y,, : [0,1] — Q be a PL c-cigar curve with ,,(0) € X N A(lm_l) and
ym(1) € XN A(Zm_l). By (5.1) and inductive assumption (P3), we have that for
allr € [0, 1],

(5.6) dist(yn(?), 9Q) > (2¢)~" min{dist(y,,(0), 8Q), dist(ym(1), 0Q)} > (2¢) 7.

Using inductive assumption (P2), we can find a number r,, > 0 such that
(i) rm < Tdist(AY""D, AV D) foralli € {2, ..., knet)s
(ii) 7 < (6¢)~' min{7, €} — S diam A7V,
The second property of r,, implies that

rm < (2¢)"dist(A" P, Q) — diam A"V
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which, along with (5.6), implies that N(A("™", y,,.. 2r,,) C Q. Let

kin—1
T, = sup {z € [0, 11: N yliou k) O | APV = @}'
Jj=2
Since dist(A(lm_l), Agm_l)) > 3r, for all i & 1, we have that T,, > 0. Let
ip €{2,...,k,—1} be such that

Ny lior,gs ) 0 AT =0,

o
For simplicity, we may assume that ip = 2. Denote by H™ the bi-Lipschitz path
given from Lemma 5.5 for the curve y = y,,|0.7,,. Consider now the disjoint closed
sets
Er=H" A" YUAY Y =AY, B = AT
and apply Lemma 5.4 to the sets E; to obtain mutually disjoint closed convex
sets A(lm), e, A,(;:) with k,, < k,—; — 1. We note that
(i) foreachie {1,...,k,} thereexistsj € {1,...,n} with D; C Agm);
(i)
ko k-1
> diam A{™ <Y " diam A{""V + 7, < (6c)7" min{7, €}.
i=1 i=1
It follows that A(lm), e A,(('Z) are contained in Q and, in fact, for each
ie{l,..., kn}

dist(A?, 6Q) > dist(T5(X), 0Q) — diam A > /2 — (6¢)~' > /3.

Therefore, we have verified that inductive assumptions (P1)—(P3) hold for m. If
k, = 1 the procedure terminates and we proceed to Part 2; otherwise proceed to
the next step.

After p steps, for some p € {0, ...,n — 1}, we have k, = 1. By the choice of §
and numbers ry, ..., r,, the final convex set A(lp) satisfies properties (P1)—(P3);
precisely, we have

(i) diam AY < (6¢)"' min{7, €},
(ii) there exists i € {1, ..., n} such that D; ¢ A",
(iii) AV c Qanddist(AY, 6Q) > 5/3.

5.2.2 Part2. Letzoe Qbe the center of B and let y,,( : [0,1] = Qbea
PL c-cigar curve in Q with y,,1(0) € X N A(lp) and yp1(1) = z0. If zo € X N A(p),
then we can choose y,.| to be constant. By (5.1), we have that for all ¢ € [0, 1],

dist(ype1(1), 0) = (2¢) " min{dist(yps1(0), 6), dist(yps1 (1), 5Q)

5.7
6D > (2¢)" ! min{e, n}.
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Let 7,4 be a positive number with r,,,; < (6¢)~! min{#, €}. Then (5.7) implies
that

N(A(lp), Vp+ls Fps1) C Q.

Let now H?*D be the bi-Lipschitz path given from Lemma 5.5 for y = y,4;.
If p = 0, then we define H : [0,1] — LIP(RY) with H = H?*D, If p > 1,
we concatenate the bi-Lipschitz paths HV, ..., H?*D and we obtain the desired
bi-Lipschitz path H.

6 A multitwist bi-Lipschitz map

In §6.1 we prove Proposition 1.3 while in §6.2 we show that the multitwist map in
Theorem 7.1 is bi-Lipschitz.

6.1 Proof of Proposition 1.3. In this subsection we prove Proposition 1.3.
To that end, we require the following “egg-yolk principle” lemma which is a simple
application of Koebe’s Distortion Theorem.

Lemma 6.1. Givenod > 0, there exists Ly > 1 with the following property. If U
isadomaininR%, K c Uisa compact connected set with dist(K, oU) > 6 diam K,
xo € K is a point, and f : U — R? is a conformal map, then for all x,y € K,

L' Go)llx =yl < If () = FO)I < Lolf' (xo)llx = yl.

Proof. If K is a single point, the claim is trivial. Assume for the rest that
diam K = d > 0. Let V be a maximal (dd/4)-separated subset of K containing xo.
By the doubling property of R?, there exists N € N depending only on J such that
cardV < N.

By the Koebe Distortion Theorem (see for example [GMOS5, Theorem 1.4.5]
and [Pom92, Theorem 1.3]), there exists a universal A > 1 such that for any z € K
and for any w, w;, w; € B(z, %5d) we have

6.1) AT ()llw — wa] < [f(wr) — f(wa)] < Alf' (w)llwy — zal,
(6.2) AT @) < If (w)] < Al @),
(6.3) dist(f(2), af (U)) = A~ ad|f (2)|.

By (6.2), we have that for all x € K,

(6.4) AN (o)l < IF ) < ANIF (o).
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We show that f|K is (Li|f’(xo)|)-Lipschitz for some L; > 0 depending only
on 0. Fix x,y € K and consider two cases. If |x —y| < dd/2, then by (6.1) and
(6.4)

AT o)l =yl < IF) =01 < AV (o)l lx = .-

Suppose now that |x—y| > dd/2. Then, there existz, 7 € V suchthatx € B(z, dd/4)
and y € B(Z/, dd/4), and by connectedness of K, there exist distinct z1, ...,z € V
suchthatz; =z,zy=7,andforallj € {1,...,1—1}, |z —zj+1| < dd/2. Therefore,

-1

) —fDI < [F) —f@I+ D 1 Git) — [l + [F &) — f(2)

i=1
< [ o)V + DAY(5d/2)
< [F' (o) IV + DAY |x — .

By (6.3) we have that dist(w, 3f(U)) > A=Néd|f"(xo)| for all w € f(K). On
the other hand, since f|K is L;-Lipschitz, we have that diamf(K) < L;|f'(xo)|d.
Therefore,

dist(f(K), of (U)) > (L, AN) 16 diam f(K).

Then, working as above, we can find L, > 0 depending only on L; and N (hence
only on ¢) such that f~!|f(K) is (La|(f~!) (f(x0))|)-Lipschitz. Therefore, for all
x,ye K

L
S G

and the proof is complete. (]

[F(x) =

We can now prove Proposition 1.3.

Proof of Proposition 1.3. Let X ¢ R? be a c-uniformly disconnected
set. By Theorem 1.2 we know that there is a geodesic pants decomposition of
the hyperbolic Riemann surface S := S? \ X so that the cuffs () have uniformly
bounded hyperbolic length. By Proposition 2.1, there exist mutually disjoint ring
domains (R]’-) which are thickenings of (a;) with a uniform upper bound M on their
moduli.

For each j, denote by V; and U; the bounded and unbounded, respectively,
components of R \ R}. Let ¢; be a similarity of R* such that diam ¢;'(V)) = 1
and 0 € (j_l(V;). By (2.1), there exists €y depending only on M, (hence only on c)
such that dist(@g“j_l(U;), 6(]-_1(V;)) > €p. By Lemma 2.4, there exists a polygonal
Jordan curve y; with edges in %10/16 which encloses g“j_l(Vj’) and satisfies

€0/16 < dist(x, & '(V))) < €0/2, forallx € y;.
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Applying Lemma 2.4, there exists a polygonal Jordan curve I'; with edges in 54610 /3
which encloses y; and satisfies

€0/32 < dist(x, y;) < €o/4, forallxeI;.

The ring domain R} bounded by y; and I'; satisfies
(i) dist(;, T) > €0/32,
(i) 1 < diamR} < 1+ 3¢o and
(iii) dist(x, g(R})) > €0/16, for all x € R}.
It follows that RJ’/ cl[—1-— %eo, 1+ %60]2 and since the boundary curves of R]’-’ are

1

made of edges in &, ,, there are at most k many different domains R?, with k

€
depending only on €, hence only on c.
There exists dy € (0, 1) depending only on €y (hence only on ¢) and for each j

there exists d; € (0, 1 — dp), and there exists a conformal map
w;j : B(0, 1)\ B(0, 5, — RJ’.’.
Setting
K = {1—35 < |x] < 1—15 } c U :=B(0, 1)\ B(0, 6,
= 4 0 = = 4 0 = 5 > Uj)s

we have dist(K, oU) > dyp/4 and diam K = 2 — dp/2. Hence by Lemma 6.1, we
have that Ig//}(l — %50)|_l w; restricted on K is a Lo-bi-Lipschitz, where Ly depends
only on dy (hence only on ¢). Moreover,

1 - diam ;(K) - ‘W"(l _ §50)‘ <L diam y;(K)
Lo(2 — 6p/2) = LodiamK — [/ 4 - diam K
<L V2(2 +3¢0)
2 —0p/2

For each j € N, let 4; = diam y;(éB(0, 1 — %50)) € [1,1 + 3¢p/2]. It follows
that the map
)~ wilK
is Ly-bi-Lipschitz for some L; depending on Ly, €9, dy, hence only on c.
To complete the proof set

4—0y 4L, }

L=
max { 200 " 4—

define conformal maps

g :BO, 1)\ B(,1—1/L) > R* with gj(x)= () " w|K({(1 — do/4)x),
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and define similarities

¢t R — R with ¢;(x) = (1)~ ().

Since L > 4;(5;’0, we have that (1 — dy/4)x € K for all x € B(0, 1) \ B(0, 1 — 1/L).

Moreover, since L > 44_%0, we have that g; is L-bi-Lipschitz. Since there are at
most kK many domains R?, there are at most kK many conformal maps g;. (|

Setting
f) = ¢j o g,'(]') and Rj :fJ(B(O, 1) \ B(O, 1-— l/L))

where ¢; and g;;) are as in the statement of Proposition 1.3, and applying Lemma
6.1 to the ring
K =B(0,1—€/8)\ B0, 1 —7¢/8),

we see that there exists & > 0 so that
(6.5) dist(dR;, R;) > dist(9Kj, R;) > & diam R;
for all j.

6.2 A multitwist bi-Lipschitz map. For the rest of this section we fix
a c-uniformly disconnected Cantor set X C R?. By Proposition 1.3, we obtain
k e N, L > 1, afinite set {gy, ..., g} of L-bi-Lipschitz conformal maps defined

on B(0,1)\ B, 1 — %), similarities (¢;)jen and ring domains R; such that for
eachj € N there exists i(j) € {1,...,k}

(6.6) R =;(BO, D\ B(0, 1 - %)) with f; = ¢; 0 gi()-

Let f : R? — R? be a map such that f is the identity outside of the union of R;,
while for eachj € N, f|R; = fj 0 @ o f;”! with

D(r,0)=(r,0+2xL(1 —r)).
Lemma 6.2. The map f is Lo-bi-Lipschitz with Lo depending only on c.

Proof. Itis fairly elementary to see that ® is L;-bi-Lipschitz for some L; > 1
depending only on L (hence only on c¢). It follows that for each j € N, f|R; is
L?L;-bi-Lipschitz. Since f is the identity outside of the union of R; (and hence
bi-Lipschitz), we get that f is an L,-bounded length distortion map for some L, > 1
depending only on L. That is,

Ly'e(y) < €(f()) < Lal(y)
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for any rectifiable curve y, with ¢ denoting length. The proof is completed by
recalling that every bounded length distortion homeomorphism of R? (or any
quasiconvex space) is bi-Lipschitz quantitatively. (]

7 Decomposition and proof of Theorem 1.4

In this section we will prove the following result, which immediately implies
Theorem 1.4.

Theorem 7.1.  Suppose the Assouad dimension of X is less than 1 and f
is the bi-Lipschitz map from §6.2.  Then there exists a bi-Lipschitz path
H : [0, 1] = LIP(R?) such that Hy = f and H, is the identity.

The proof comprises of 4 steps. In the first step we relabel the ring domains R;
obtained from Proposition 1.3. In the second step we use Proposition 5.1 to unwind
the Dehn twists in each R; without changing small neighborhoods of X. In the
third step we compose the bi-Lipschitz paths from the second step to perform
unwindings arbitrarily close to X. Finally, in the fourth step, we use the uniformity
of our maps to take a limit in the sequence of bi-Lipschitz paths obtained from the
third step and recover the desired bi-Lipschitz path.

For the rest, we denote by (R))jen, (¢))jen, 1815 - - -, &k}, and

(fjen = (@ © &i())jeN

the ring domains, similarities, and conformal maps, respectively, from Proposi-
tion 1.3.

7.1 Step 1: Relabelling the ring domains R;. This step is similar to
the proof of Proposition 3.3.
For each j € N let V; and U; be the bounded and unbounded, respectively,
components of R? \ R;.
Let ¢ be the empty word. There exist three distinct [y, [, I3 € N such that
(i) forallj € N, there exists i € {1, 2, 3} such that R; C V;, and
(ii) forallje Nandalli e {1,2,3},R, NV, =0.
Foreach! e {1, 2, 3}, we denote R; . = R;, where & denotes the empty word.
Inductively, suppose that for some [ € {1, 2,3} and for some finite word
w € {1,2}* we have labelled R; ,, = R, where jo € N. Then there exist exactly
two distinct ji, j, € N such that
(i) R;,R;, C Vj, and
(ii) forallj € N\ {ji,j2} with R; C Vj , either R; C V;,or R; C V},.
We denote R; ;1 = R;, and R; ,» = R;,.
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Thus, we have that {R; : j € N} = {R;,, : | € {1,2,3}, w € {1,2}*}. Given
le{1,2,3} and w € {1, 2}* we denote by V;,, and U,, the bounded and un-
bounded, respectively, components of R? \ R;,. Further, denote by X;, the
intersection X; , = X N V.

Moreover, if R; = R; ,, we set ¢, = ¢ and f; ,, = f;. In particular,

fl,w = ¢l,w O Zi(l,w)-
By Proposition 1.3 we have that foralll € {1,2,3}, w € {1,2}*and i € {1, 2}

diam Ry ,,; - diamV;, - diamR;,, — 2dist(V; , U w)
diamR;,, ~ diamR;, ~ diamRy, )

(7.1)

Suppose dist(V; ,, Up,y,) is realized by [x — y|. Then since x, y € oR;,, and f is
the identity there, we have by (6.6) that for some j € N,

) diamR;, . ., iy
dist(Ve, Utw) = [FG) =01 2 =107 @) = () O

(7.2) diamR;,,

> ——.

> 2
We conclude via (7.1) that

diam R ,,; 1

73 damR,,

7.2 Step 2: Unwinding the Dehn twist in R; , while acting as isome-
tries on neighborhoods of X;,,. Foreach!/ e {1,2,3} and w € {1,2}" we
define a bi-Lipschitz path H;,, : [0, 1] — LIP(R?) as follows.

First, set H;,|U;,, to be the identity. Second, define H;,|R;, so that for
eachr e [0, 1]

(Hiw|R1,0)i = firw © D1y © (fiw) ™

recalling D, from Lemma 4.10.
Lemma 7.2. The family of bi-Lipschitz paths
F={H wlRiw:1e{1,2,3},we{l,2}"},

which unwinds the Dehn twist in each Ry, is a uniform family of bi-Lipschitz
paths.

Proof. Foreachie {1,...,k}andeacht e [0, 1]setH =g;oD;_,0g7!. By
Proposition 4.11, each H' is a bi-Lipschitz path. Now foreachi € {1, ..., k} let

G ={drwoH o) :1e{1,2,3},we{l,2}*}.
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Since X is bounded, there exists ¢ depending on the diameter of X such that
each ¢y, has a scaling factor at most c. Therefore, by Lemma 4.8, ' is a uniform
family of bi-Lipschitz paths. Note that ¥ C Ule G’ so F is a uniform family of
bi-Lipschitz paths as a finite union of uniform families of bi-Lipschitz paths. [J

Before defining H; ,,| Vi, we make some remarks.

First, there exist C > 0 and s € (0, 1) such that for any [ € {1, 2,3} and
w € {1, 2} the set qﬁzul)(X,,w) is (C, s)-homogeneous.

Second, since {¢Zz})(‘/l,u>)}l,zu is a finite collection of Jordan domains with
smooth boundary, there exists ¢ > 1 such thatforall/ € {1,2,3}and w € {1, 2}*,
the domain gzﬁljul)(Vl,w) satisfies (5.1) with constant c.

Third, by the bi-Lipschitz Schoenflies Theorem [Tuk80, Theorem A], there
exists L' > 1 depending only on L such that every g; extends to be an L'-bi-
Lipschitz map on B(0, 1). Therefore, for each ! € {1,2,3} and w € {1, 2}* there
exists a disk By, C qﬁZI})(Vl’w) such that

radius(By,) > € and  dist(By,u, 0 (Vi) > €

with € := L)~ '(1 — LY.
Fourth, by (6.5), there exists # > Osuchthatforall/ € {1,2,3}andw € {1, 2}*

dist(¢ , (X1,0), 07 (Vi) = ndiam e (Vi) = 7.

Let ¢ be the constant given in (5.3) depending only on C, s, ¢, 7, € above. Recall
from the proof of Proposition 1.3 that for all/ € {1, 2, 3} and w € {1, 2}*,

- 3
¢l,ul>(Vl,w) Cl—1—=¢€,1+=¢

3
o1+ 560

Therefore, there exist at most k; different configurations for Tg((ﬁ,fl})(X;,w)) inside
¢Zul;(Vz,w)- Applying Proposition 5.1 for each of these finitely many cases we obtain
bi-Lipschitz paths {Hy, ..., Hg,} such that for each / € {1, 2,3} and w € {1, 2}",
there exists j(/, w) € {1, ..., k;} for which

(@) Hig.w : [0, 11 = LIPGL(Viw),

(i1) Hjq,.) is an isometry on each component of ‘.Tg((ﬁ,fl})(Xl’w)),

(111) (I—Ij(l,w))l maps T§(¢Z_,1})(Xl,w)) onto Bl,w-
By (7.3) there exists p € N, so thatif u € {1, 2}’ then

Rl,wu - ¢l,w(r'Tz5(¢[Tl})(Xl,w)))-

We define H; ,,|V},,, as follows.
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(a) For0 <r < 1/3, we set

—1
(Hl,wlvl,w)t = ¢l,w o (Hi(l,w))3t o ¢Z,w

to be the path which moves ¢l’w(iT(5(¢Zl})(Xl’w))) into the disk ¢y ,(By,»)-
(b) For2/3 <t <1, weset

(H1,0\Viw)e = (HY Vi) -

(c) For 1/3 <t < 2/3, we define H; |V}, as a path of rotations. Fix /, w and

suppose that B; ,, = B(zp, r). Find a conformal map

Yiw - ¢Z_,z})(vl,w) \ m — {Z 1< |Z| < pl,w}

for some p;,, > 1. Since the boundary ¢Zz})(‘/l,u>) is smooth, y;,, extends

smoothly on 6¢[1})(V1,w). We apply Proposition 4.12 with P, Q given by

0:1(2) = Wi,w © P © (Hyu|0V,0)(@),

Pi(2) = yiw(z0 + (2 — 20)e”™ 7).

Here H, |0V, agrees with H;,, on the inner boundary component of R; ,,,

recalling the construction in Lemma 7.2. This yields a bi-Lipschitz path

Py [0, 1] = LIP({z: 1 < |z| < pruw}).

By Proposition 4.11, Gy, := (y,)~! o P!, o /!, is a bi-Lipschitz path. Since

there are finitely many different pairs (qﬁlfl})(w’u)), Bi.,), the set
{Gl,w :le {1a 23 3}9 w e {15 2}*}
is finite. Set now for 1/3 <1 < 2/3,

(Hy,0 Vi) = 1,0 © (Grw)s—1 © B

By the finiteness of the family { Gy}, and working as in Lemma 7.2, we
see that {H; ,|Vi, : 1 € {1,2,3}, w € {1,2}*} is a uniform family of bi-Lipschitz

paths.

By Lemma 4.4, {H;,, : | € {1,2,3}, w € {1,2}*} is a uniform family of bi-
Lipschitz paths. The key point in the construction of H;,, is that it unwinds the

Dehn twist in R, and acts as an isometry on R; ,,, for any u € {1, 2}*.
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7.3 Step 3: Composing unwindings in a controlled way. The next
step is to combine the paths H; ,, defined above. Letk € {0, 1, ..., p — 1}. Define

(Hi,w)i(2), z€ Ry UV, for|w| =k, 1 e{1,2,3},
(FOu(z) = ’ _
Z, otherwise.

This is a bi-Lipschitz path. For example, for k£ = 0O, this path unwinds the Dehn
twists in the three outermost rings Ry ¢, Ry ¢, R3 . Then for j € N, suppose that
FJ(‘_ | has been defined. We then define

Z € Rl,w U Vl,w: |w| = k+jp,
le{l,2,3},

(FDi(@), otherwise.

F* .o (H;.)i(2),
(7.4) (F;‘)t(z)z (1—1) (Hp,)(2)

If lw| =k+jpand ! € {1, 2,3}, then (FJ’?_I), acts as an isometry on Ry, U V.
Hence Lemma 4.7 implies that the composition in (7.4) gives a bi-Lipschitz path,
and we conclude that F{‘ is a bi-Lipschitz path which unwinds the Dehn twists
inR;, for |w| =k, k+p,k+2p,....,k+jpandi=1,2,3.

7.4 Step 4: Taking a limit. Set F* by (FY), = lim;,.(F}), for all
t € [0, 1]. We claim that F* is a bi-Lipschitz path. To that end, first consider,
for n € N, the domain

u,, = U U[,w.

|w|=k+np
e{1,2,3}

By construction, on this set we have F¥|U, = FX|U,, and hence F¥|U, is a bi-
Lipschitz path.

Next, note from (7.4) that F]’-‘ is obtained from FJ’.‘_1 by modifications from a
uniform family of bi-Lipschitz paths (namely, the family {H; ,};.,) on a region

where F¥ | acts as a family of isometries in a uniform way. By Lemma 4.7, it

J
follows that the family
{F;“UU,,:jeN}
neN

is a uniform family of bi-Lipschitz paths. Hence F¥|J,.;y U, is a bi-Lipschitz path.

Since [,y Un = R? \ X, an application of Proposition 4.5 shows that F* is
in fact a bi-Lipschitz path on all of R? which unwinds the Dehn twists in R
for |w| € k+pN, [ = 1,2, 3. Hence the concatenation of the finitely many paths
FO,F', ..., FP~! yields a bi-Lipschitz path which connects f to the identity.
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8 A decomposable multitwist with singular set of large
Assouad dimension

Let D, be the rectangle [—Vv2, V2] x [—1,1],let a € (0, 1) and let

D, = [—ﬁ(l—%a),—\/i%a} x[a—1,1—al

D, = [\/E%a, \5(1 _ %a)} x[oa—1,1—al

as in Figure 6. Here ¢ denotes the empty word. For eachi € {1, 2} let ¢; be the
similarity of R? mapping D, onto D; with scaling factor %(1 — a). Let X be the
Cantor set attractor of the iterated function system { ¢y, ¢»}.

Figure 6. The first two steps in the construction of X.

By self-similarity, X is uniformly disconnected and its Assouad dimension is

log?2

dimy X =
77 log V2 — log(1 — a)

which is greater than 1 when a is sufficiently small. Moreover, there exists a
multitwist bi-Lipschitz map f as in Section 6.2, and by self-similarity, the set of
maps {g;} in Proposition 1.3 contains one single element.

We claim that the map f is decomposable. To prove the claim, we follow the
arguments in Section 7. We may assume that the domains {V;,,} are exactly the
interiors of the rectangles { D, }. For simplicity, we drop the index /. The only step
in the proof that we need to check (and the only one that requires the assumption
on the Assouad dimension) is the existence of bi-Lipschitz paths Hj,). Since the
collection { g;} contains only one element, we only need to construct for each e > 0
a “collapsing” bi-Lipschitz path H : [0, 1] — D, which, for some small é > 0, is
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an isometry on each component of T5(X) and maps T5(X) into a ball B in D, of
radius €.

We give a rough sketch of the construction of H and leave the details to the
reader. Fix € > 0. Choose f € (0, 1) such that (1 —a)(1+ /) < 1 and choosen € N
such that ]

1+ —-a) < Ze.

The bi-Lipschitz path H is a concatenation of n bi-Lipschitz paths Hy, ..., H,.
Let H; be the bi-Lipschitz path that is identity outside of |J,,¢(; 21 Di and for
each w € {1,2}"!, it moves D, towards D, so that they both end up in a
rectangle D), with sides parallel to the axes and side-lengths

1 1
V2 V2

The choice of B ensures that D, is contained in D,,. Moreover, H; acts as an
w w

n n
s .

4(1+ﬁ)( (1—a)) 2xf2(1+ﬁ)( (1—a))

isometry on D,,; for all wi € {1, 2}".
Assume now that for some m € {1,...,n — 1} we have defined the paths
H,,...,H, and assume that

(i) the concatenation of these paths is the identity outside of U, 2yr-n D>

(i) foreachw € {1, 2}, the concatenation has moved XND,, inside arectangle

D), c D,, with sides parallel to the axes and side-lengths
m mf 1 n 1 n
222"+ (s - ) = :

(iii) for each u € {1,2}" the concatenation of these paths acts as an isometry

22" 1+ (51— @)

onD,.
Let H,.1 be the bi-Lipschitz path that is identity outside of {J,¢(} 2)u-n-1 Dy and
for each w € {1, 2}""~!, it moves D/, towards D/ , so that they both end up in a
rectangle D), with sides parallel to the axes and side-lengths

1 n 1 n
m+1 m+l (=~ 1 _ m+1 m+lf = 1 _
2V2(v2)" (1 + ) (ﬂ(l @), 2"+ p) (\/5(1 ).
Note that H,,,; acts as an isometry on D,, for all u € {1, 2}".
Finally, the concatenation H of paths Hy, ..., H, is the identity outside of D,

acts as an isometry on D, for all u € {1, 2}", and H(X) is contained in a rectangle
D’ C D with side-lengths

2v2(1 + AH'd—a), 21+ 5"l —a).

By the choice of n, the rectangle D’ has diameter less than € and the proof is
complete.



468

[AIPS15]

[ALP*11]

[BK87]

[BMO7]

[DS97]

[FH88]

[FM12]

[GMO1]

[GMO5]

[Leh87]
[Loe59]
[Luu9s]

[Mac99]

[Mas85]

[Pom79]

[Pom92]
[Shi22]

[Tuk80]

[Vel21]

[Wol81]

A.N. FLETCHER AND V. VELLIS

REFERENCES

K. Astala, T. Iwaniec, 1. Prause and E. Saksman, Bilipschitz qnd quasiconformal rotation,
stretching and multifractal spectra, Publ. Math. Inst. Hautes Etudes Sci. 121 (2015), 113—
154.

D. Alessandrini, L. Liu, A. Papadopoulos, W. Su, and Z. Sun, On Fenchel-Nielsen coor-
dinates on Teichmiiller spaces of surfaces of infinite type, Ann. Acad. Sci. Fenn. Math. 36
(2011), 621-659.

S.R. Bell and S. G. Krantz, Smoothness to the boundary of conformal maps, Rocky Mount.
J. Math. 17 (1987), 23-40.

A. F. Beardon and D. Minda, The hyperbolic metric and geometric function theory, in
Quasiconformal Mappings and their Applications, Narosa New Delhi, 2007, pp. 9-56.

G. David and S. Semmes, Fractured Fractals and Broken Dreams, Clarendon Press, Oxford
University Press, New York, 1997.

M. Freedman and Z.-X. He, Factoring the logarithmic spiral, Invent. Math. 92 (1988),
129-138.

A. Fletcher and V. Markovic, Decomposing diffeomorphisms of the sphere, Bull. Lond.
Math. Soc. 44 (2012), 599-609.

V. Gutlyanskii and O. Martio, Rotation estimates and spirals, Conform. Geom. Dyn. 5
(2001), 6-20.

J. B. Garnett and D. E. Marshall, Harmonic Measure, Cambridge University Press, Cam-
bridge, 2005.

O. Lehto, Univalent Functions and Teichmiiller Spaces, Springer, New York, 1987.
C. Loewner, On the conformal capacity in space, J. Math. Mech. 8 (1959), 411-414.

J. Luukkainen, Assouad dimension : antifractal metrization, porous sets, and homogeneous
measures, J. Kor. Math. Soc. 35 (1998), 23-76.

P. MacManus, Catching sets with quasicircles, Rev. Mat. Iberoamericana 15 (1999), 267—
2717.

B. Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. 10
(1985), 381-386.

C. Pommerenke, Uniformly perfect sets and the poincaré metric, Arch. Math. 32 (1979),
192-199.

Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, Berlin, 1992.

H. Shiga, On the quasiconformal equivalence of dynamical cantor sets, J. Anal. Math. 147
(2022), 1-28.

P. Tukia, The planar Schonflies theorem for Lipschitz maps, Ann. Acad. Sci. Fenn. Ser. A 1
Math. 5 (1980), 49-72.

V. Vellis, Uniformization of Cantor sets with bounded geometry, Conform. Geom. Dyn. 25
(2021), 88-103.

Scott Wolpert, The length spectrum as moduli for compact Riemann surfaces, in Riemann
Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (State Univ.
New York, Stony Brook, NY, 1978), Princeton University Press, Princeton, NJ, 1981, pp.
515-517.



DECOMPOSING MULTITWISTS 469

Alastair N. Fletcher
DEPARTMENT OF MATHEMATICAL SCIENCES
NORTHERN ILLINOIS UNIVERSITY
DEKALB, IL 60115, USA
email: fletcher@math.niu.edu
Vyron Vellis
DEPARTMENT OF MATHEMATICS
THE UNIVERSITY OF TENNESSEE
KNOXVILLE, TN 37966, USA
email: vvellis@utk.edu

(Received February 10, 2022 and in revised form October 12, 2022)



