International Journal on Document Analysis and Recognition (IJDAR)
https://doi.org/10.1007/s10032-024-00486-7

SPECIAL ISSUE PAPER

®

Check for
updates

ChemScraper: leveraging PDF graphics instructions for molecular

diagram parsing

Ayush Kumar Shah' - Bryan Amador’ - Abhisek Dey’ - Ming Creekmore’ - Blake Ocampo? - Scott Denmark? -

Richard Zanibbi'

Received: 15 November 2023 / Revised: 31 May 2024 / Accepted: 5 June 2024

© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

Most molecular diagram parsers recover chemical structure from raster images (e.g., PNGs). However, many PDFs include
commands giving explicit locations and shapes for characters, lines, and polygons. We present a new parser that uses these
born-digital PDF primitives as input. The parsing model is fast and accurate, and does not require GPUs, Optical Character
Recognition (OCR), or vectorization. We use the parser to annotate raster images and then train a new multi-task neural
network for recognizing molecules in raster images. We evaluate our parsers using SMILES and standard benchmarks, along
with a novel evaluation protocol comparing molecular graphs directly that supports automatic error compilation and reveals
errors missed by SMILES-based evaluation. On the synthetic USPTO benchmark, our born-digital parser obtains a recognition
rate of 98.4% (1% higher than previous models) and our relatively simple neural parser for raster images obtains a rate of
85% using less training data than existing neural approaches (thousands vs. millions of molecules).

Keywords Graphics recognition - Data generation - Evaluation - PDF - Chemoinformatics

Ayush Kumar Shah and Bryan Amador have contributed equally to this
work.

B Ayush Kumar Shah
as1211@rit.edu

Bryan Amador
ma5339@rit.edu

Abhisek Dey
ad4529 @rit.edu

Ming Creekmore
mec5765 @rit.edu

Blake Ocampo
blakeo2 @illinois.edu

Scott Denmark
sdenmark @illinois.edu

Richard Zanibbi
rxzves @rit.edu
Document and Pattern Recognition Lab, Rochester Institute

of Technology, Rochester, NY, USA

Department of Chemistry, University of Illinois at
Urbana-Champaign, Champaign, IL, USA

Published online: 05 July 2024

1 Introduction

We address a pressing need for robust systems to extract
molecule drawings from PDF files. Such systems facilitate
data mining applications for chemoinformatics, multi-modal
chemical search, and chemical reaction planning.

Current molecule structure recognizers generally parse
images from pixel-based raster images, and produce chemi-
cal structure descriptions such as Simplified Molecular-Input
Line-Entry System strings (SMILES [45]) as output. A num-
ber of these approaches work well, and some include modern
variations of encoder/decoder models that recognize struc-
ture with high accuracy (see Sect.?2).

However, modern documents often use vector images to
depict molecules. Vector images encode diagrams as char-
acters, lines, and other graphic primitives. We wish to use
PDF drawing instructions directly to produce fast, accurate
methods for indexing molecule images. We were motivated
to use PDF instructions by earlier math formula recognition
work by Baker et al. using a combination of PDF instruc-
tions and image analysis [3]. In our approach, only PDF
instructions are used. In Sect.4 we describe our improved
SymbolScraper tool [38] that extracts PDF instructions
without image processing.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10032-024-00486-7&domain=pdf

A.K.Shah et al.

NO,

-

(c) Visual Graph
nodes: lines & characters
edges: connections/merges

(b) MST
nodes: lines & characters
edges: connections/merges

(a) PDF Image

o N0
I Il
H\ ~
(e) Molecular Graph

nodes: atoms & superatoms
edges: bonds

(d) Tokenized Visual Graph
nodes: bonds, atoms & superatoms
edges: connections

Fig.1 Parsing nitrobenzene (C¢H5sNO,) from a PDF image (a). b Min-
imum Spanning Tree (MST) over lines & characters. (¢) Visual Graph
with additional edges (dashed lines). (d) Tokenized Visual Graph with
merged nodes (bonds and named groups). (e) Molecular Graph. Blue
nodes show double bonds and atom/group names in (d, e). In e orange
nodes are ‘hidden’ carbon atoms, and single/double bonds are converted
from nodes to edges

In Sect.4 we describe the ChemScraper born-digital
parser, which is fast and simple in design.! As illustrated
in Fig. 1, starting from PDF graphical primitives, first a
Minimum Spanning Tree (MST) is constructed to identify
neighboring primitives. Additional edges between primitives
are added, and edges to floating objects removed to cap-
ture the visual structure of the diagram. Primitives are then
grouped (i.e., tokenized) into molecular entities including
atom/superatom names and bonds. Finally, graph transfor-
mations convert the tokenized visual graph into a graph
representing molecular structure.

This born-digital vector image parser is one component
in the online ChemScraper molecule extraction tool,2 which
includes a YOLOVS [43] detection module not described in
this paper. Figure 2 provides an overview of the full Chem-
Scraper born-digital extraction pipeline. The model locates
page regions where molecular diagrams appear, and then
parses their structure. Recognized molecules are stored in
ChemDraw?® CDXML files [26]. CDXML represents both
visual and chemical structure in molecular diagrams. The
ChemAxon molconvert command line tool* is used to
convert CDXML to vector images (SVG) and SMILES. Rec-
ognized molecules can then be used for editing, search, and
other applications (e.g., in chemoinformatics).

We also use the born-digital parser to annotate pixel-
based raster images, to address a shortage of such data. This
includes annotations for all graphical primitives, atoms, and

! Publicly available code/tools:
extraction/-/tree/icdar2024.

https://gitlab.com/dprl/graphics-

2 https://chemscraper.frontend.staging. mmli 1 .ncsa.illinois.edu/
configuration.

3 https://revvitysignals.com/products/research/chemdraw.

4 https://docs.chemaxon.com/display/docs/molconvert_index.md.

@ Springer

PROTable PRQOTable

YOLOv8

PDF

SMILES

Extract Characters

[% & Graphics .
T Build Visual Graph
.1 Build Chemical Graph

Build MST

SVG

Fig. 2 ChemScraper born-digital pipeline. Molecules are detected in
PNG page images, but symbols are extracted from PDF instructions.
Page-Region-Object tables store bounding boxes and the graphics they
contain. Molecules are recognized in three stages, producing CDXML
containing the page location, appearance, and chemical structure for
each. CDXML can then be converted to chemical structure file formats
(e.g., SMILES) or rendered as images (e.g., SVG)

bonds (see Sect.5). We use this data to train a new visual
parser, a novel multi-task neural network for recognizing
molecule diagrams in raster images (see Sect. 6). The visual
parser starts by creating line-shaped contour primitives from
a raster image that over-segment lines and characters. Just
as for the born-digital parser, the visual parser creates a
visual graph providing an explicit correspondence between
aninputimage and recognized structure, after which the same
tokenization and molecular graph generation steps used for
the born-digital parser are performed. In contrast to recent
approaches the neural network is segmentation-aware, and
in recurrent runs, input features associated with primitives
are updated.

In Sect. 7, we evaluate our born-digital and visual parsers
with two representations: SMILES and labeled directed
graphs. Direct comparison of molecular structure graphs in
evaluation is a contribution of this paper: it supports auto-
matic compilation of structural differences. In addition, we
report structural differences that are missed in SMILES-
based evaluation.

In the next section, we summarize prior work in chemical
structure recognition.

2 Related work

We begin by surveying approaches to parsing molecular
structure, categorizing them into (1) rule-based systems,
and (2) neural-based systems. For neural-based systems, we
further divide these into methods that produce string repre-
sentations of structure (e.g., SELFIES [18], DeepSMILES
[27], or InChI [13, 14]) and methods that produce graph rep-
resentations of structure.

While our focus is parsing molecular diagrams, we wish
to briefly acknowledge recent work in detecting diagrams.
This includes using YOLOVS8, an updated version of Scaled

https://gitlab.com/dprl/graphics-extraction/-/tree/icdar2024
https://gitlab.com/dprl/graphics-extraction/-/tree/icdar2024
https://chemscraper.frontend.staging.mmli1.ncsa.illinois.edu/configuration
https://chemscraper.frontend.staging.mmli1.ncsa.illinois.edu/configuration
https://revvitysignals.com/products/research/chemdraw
https://docs.chemaxon.com/display/docs/molconvert_index.md

ChemScraper: leveraging PDF graphics instructions for molecular diagram parsing

YOLOv4 [43] with performance and efficiency enhance-
ments. In earlier work, Sun et al. [41] use a convolutional
network, addressing scale issues using Spatial Pyramidal
Pooling (SPP) [11]. Their approach outperformed popular
detection models of the time, including Faster R-CNN and
SSD.

2.1 Rule-based parsers

The earliest parser for chemical diagrams in printed docu-
ments we know of is a rule-based parser by Ray et al. from
the late 1950s [33]. This approach first detected atoms in
scanned document images, and then connections between
atoms were identified in the regions between atoms. Rules
based on the number of connections for atoms were used to
determine the type of bonds, which worked well for common
compounds.

An important later development was the creation of the
Kekulé system [22]. Kekulé adds additional pre-processing
and improved visual detection of bond types over previous
methods. Kekulé used thinning and vectorization of raster
scans to eliminate variations in bond lines and characters,
and ensured that a consistent set of characters and lines
were recovered. Once a connection between a pair of atoms
was established, the system visually detected the bond type
instead of using chemical rules as Ray et al. did. In the same
period, CLiDE [17] added the use of connected component
analysis in disconnected bond groups to identify bond types.
The final adjacency matrix for structure was created similar to
Kekulé. Another system by Comelli et al. [6] used additional
processing to identify charges as subscripts or superscripts
attached to atoms.

A still-popular open-source system extending the rules of
CLiDE and Kekulé is OSRA by Filipov et al. [9]. OSRA
refined processing of raster images generated from born-
digital documents, which tend to have clearly rendered text
lines, characters, and graphics. A similar system is MolRec
[36], which uses horizontal and vertical grouping to detect
connected atoms, their charge, and stereochemical informa-
tion. The more recent CSR system [4] also uses rule-based
graphical processing to output SMILES representations for
molecules, using the OpenBabel [28] toolkit to generate a
valid connectivity table.

2.2 Neural networks

String Output. Recent advances in neural networks have
proven effective for parsing chemical diagrams. For exam-
ple, Staker et al. [40] use an end-to-end model for extracting
molecular diagrams from documents and converting them
into SMILES strings. For diagram extraction, they used a
U-Net [34] to segment diagrams, which were then passed
through an attention-based encoder network [42] to generate

a SMILES string representing molecular structure from the
segmented image.

DECIMER [32] also uses an encoder—decoder model
for extracting molecular structure from raster images. In
their work they explored using different structure represen-
tations, including SMILES, DeepSMILES, and SELFIES.
They found that SELFIES produced stronger results because
of the additional information encoded in comparison with
SMILES strings.

Additional encoder—decoder parsers include IMG2SMI
by Campos et al. [5] which uses a Resnet-101 [12] back-
bone to extract image features. Li et al. [19] modified a
TNT vision transformer encoder [10] by adding an additional
decoder. This use of a vision transformer was made possi-
ble by the BMS (Bristol-Myers—Squibb) dataset [2] released
by Kaggle, which provided a larger baseline for the conver-
sion of molecule images to InChl (International Chemical
Identifier names). The training dataset used by Li et al. con-
tained 4 million molecule images. Similarly, SwinOCSR by
Xu et al. [47] used the Swin transformer to encode image
features and another transformer-based decoder to generate
DeepSMILES, and used a focal loss to address the token
imbalance problem in text representations of molecular dia-
grams.

Graph Output. String representations of molecular struc-
ture lack direct geometric representation between input
objects (e.g., atoms and bonds) and the output strings, and
models trained upon them require extensive training data
[23]. In recent years, molecular diagram parsers that com-
bine rule-based and neural-based approaches and generate
graph representations have emerged. These methods usually
employ a graph decoder or graph construction algorithm.

MolScribe [30] uses a SWIN transformer to encode
molecular images and a graph decoder consisting of a 6-
layer transformer to jointly predict atoms, bonds, and layouts,
yielding a 2D molecular graph structure. They also incorpo-
rate rule-based constraints for chirality (i.e., 3D topology)
and algorithms to expand abbreviations.

MolGrapher [23] is another method employing a graph-
based output representation. It utilizes a ResNet- 18 backbone
to locate atoms, and constructs a supergraph incorporating all
feasible atoms and bonds as nodes, which is then constrained.
Subsequently, a Graph Neural Network (GNN) is applied to
the supergraph, accompanied by external Optical Character
Recognition (OCR) for node classification. Both these sys-
tems utilize multiple data augmentation strategies, including
diverse rendering parameters, such as font, bond width, bond
length, and random transformations of atom groups, bonds,
abbreviations, and R-groups (i.e., abbreviations for ‘rest of
molecule’) to bolster model robustness.

Likewise, Yoo et al. [48] and OCMR [44] produce graph-
based outputs directly from molecular images. Yoo et al.

@ Springer

A.K.Shah et al.

[48] leverage a ResNet-34 backbone, followed by a Trans-
former encoder equipped with auxiliary atom number and
label classifiers. A transformer graph decoder with self-
attention mechanisms is used for bonds. In contrast, Wang
et al. [44] employ multiple neural network models for dif-
ferent parsing steps. These steps include key-point detection,
character detection, abbreviation recognition, atomic group
reconstruction, atom and bond prediction. A graph construc-
tion algorithm is subsequently applied to the outputs.

These graph-based methods offer improved interpretabil-
ity and robustness, and represent chemical structures natu-
rally. In particular, atom-level alignment with input images
facilitates easy examination, geometric reasoning, and cor-
rection of predicted results.

3 ChemScraper parsers

In this paper we present two parsers: one parses molecule
diagrams in PDF directly from PDF drawing instructions
(vector images), while the other recognizes molecules from
raster images (pixel-based). Both parsers use a compiler-style
multi-step architecture that (1) identifies input primitives, (2)
recovers visible diagram structure, and then (3) converts vis-
ible structure to chemical structure information.

The born-digital parsers’ use of Minimum Spanning Trees
(MSTs) to recognize molecular diagrams is novel. The
detailed PDF graphics information recovered by Symbol-
Scraper is also novel: both as a new data source, and in its
application to fast and accurate structure recognition.

To simplify the recognition task, our visual parser oper-
ates bottom-up from image region primitives that over-
segment lines and characters. The parser is a multi-task,
segmentation-aware neural network. The network is run
repeatedly until the segmentation (i.e., merging) of primi-
tives remains unchanged. Unlike most recent models, the
learning framework utilizes explicit segmentation hypothe-
ses, in contrast to ‘segmentation-free’ models generating
descriptions of structure without image region correspon-
dences. To support recurrent execution of the network as
segmentation changes, we also introduce a novel discrete
attention mechanism: images used for classifier input are gen-
erated from primitive contours, and are dynamically updated
as larger candidate symbols and associated neighborhoods
are identified. Similar to other models described above, a
ResNet-based convolutional backbone is used for features.
However, images of the same size are used for both query
and context images, and they are passed separately through
the backbone.

Like previous methods, chemical constraints are used to
increase accuracy and simplify parser design. Both parsers
produce the same visual structure graph representation as
illustrated in Fig. lc, and then use the same subsequent

@ Springer

steps to tokenize names/bonds and then identify chemi-
cal structure. The regular structure of molecular diagrams
motivates using simple visual features, and taking a divide-
and-conquer approach to recovering structure. Structure is
recovered based on neighboring MST primitives for the born-
digital parser, and from small overlapping neighborhoods
(windows) in the visual parser.

An important attribute of ChemScraper output graphs is
that they contain both visual and chemical structure informa-
tion. This allows output graphs to closely match their original
appearance in addition to capturing chemical structure. The
additional visual information is helpful both for reusing the
appearance of molecules within documents, and for visual-
ization and checking of recognition results.

4 Born-digital parser

In this section we present the ChemScraper born-digital
parser for recognizing molecular diagrams directly from vec-
torized PDF images. As seen in Fig. 3, our born-digital parser
has four stages, including extracting graphics commands
using an improved SymbolScraper [38], constructing a Min-
imum Spanning Tree (MST), rewriting the MST as a visual
structure graph, and finally rewriting the visual graph into a
molecular structure graph. The final molecular graph replaces
line intersections by carbon atoms, and all bond tokens/nodes
(e.g., single, double, triple, solid/hashed wedge) are replaced
by edges.

This is a compiler-like recognition architecture, with some
similarities to the DRACULAE mathematical formula recog-
nition system [49]. Using a compiler-based architecture
provides a helpful separation of concerns that allows changes
to be implemented and tested across smaller modules.

We provide an overview of the outputs and processing for
stages shown in Fig. 3. Each stage is then described in more
detail in the remainder of this section. The full parsing pro-
cess has an asymptotic run-time complexity of O (n?logn)
for n nodes in the input graph (PDF character/graphics prim-
itives), reflecting the cost of MST construction.

Stages 1 & 2: Primitive Graph (MST). SymbolScraper recov-
ers primitive symbols from PDF, for which neighboring
objects are identified using an MST. Because molecule dia-
grams represent connections between atoms/groups using
line intersections and line/character proximity, MSTSs cap-
ture many valid connections. However MSTs prune cycles,
some primitives must be merged, and some diagrams contain
multiple molecules (e.g., parallel lines in bonds and floating
ions).

Stage 3: (Tokenized) visual graph. To capture structure
missing in the primitive MST, the MST is transformed to
provide a two-dimensional syntactic analysis for the visible

ChemScraper: leveraging PDF graphics instructions for molecular diagram parsing

Input: Born-Digital PDF Molecule Image

1. Extract Symbols from PDF
Characters and graphical objects (e.g., lines)

2. Build Minimum Spanning Tree (MST)
Connect neighboring lines, shapes, & characters

3. MST — Visual Graph

(a) Detect negative charges (vs. other lines)
(b) Restructure MST
(+) add edges: touching lines (e.g., in rings),
adjacent parallel lines and char/line pairs
(-) delete edges: ‘floating’ objects
(¢) Tokenization
- Neighboring characters — name nodes
- Neighboring parallel lines — bond nodes

4. Visual Graph — Molecular Graph
*NO TUNABLE PARAMETERS

(a) Convert line intersections into carbons

(b) Replace bond nodes by edges

(c) Annotate names with subgraphs (e.g., SO3)
(d) Generate CDXML

Output: Editable molecular diagram (CDXML)

Fig. 3 Molecule parsing from PDF symbols. Symbol information is
transformed into an MST (Fig. 1b), a visual structure graph (Fig. 1c),
a tokenized visual graph (Fig. 1d), finally a molecular structure graph
(Fig. le)

primitives. This is done by first adding/removing edges to
correct MST structure producing a visual structure graph
(Fig. 1c), followed by grouping characters and lines into
names and bond types (i.e., tokens) producing a tokenized
visual structure graph (Fig. 1d).

Stage 4: Molecular Graph. The final stage is semantic
analysis: visual syntax is mapped to represented informa-
tion/structure, including elements not visible in the diagram.
This includes identifying hidden carbon atoms at line inter-
sections, and structures represented only by name. In our
system, names are mapped to molecular subgraphs using a
dictionary. In Fig. le, NO;, will be replaced by a subgraph
with one nitrogen and two oxygen atoms connected to a hid-
den carbon.

The semantic analyzer can also be reused with any parser
producing visual graphs in the expected format, and we use
this with the visual parser presented later in Sect. 6.

4.1 Extracting symbols from PDF

SymbolScraper is a tool for extracting characters and
shapes from vectorized drawing instructions in PDF files,
ignoring embedded images [38]. This requires identifying

C C
~—

(a) Born-Digital PDF for Propane (C3Hg). Note non-
visible (implicit) carbon and hydrogen atoms

100 -1 0 75 cm
45.926 36.102 m
106.832 71.266 1

(b) Instructions for Leftmost Line in PDF Image

"typeFromPDF": "line",
"graphicObjectID": O,
"length": 70.32814383876341,

"angle": 330.00006986692745,
"lineWidth": 3.333334,
"points": [

"x": 44.48262170992254,

"y": 39.73133054974975},
"x": 108.27537771024348,
"y": 2.9006694197326697}

(c) SymbolScraper JSON for Leftmost Line in (a)

Fig.4 Extracting symbols from PDF image (a). b cm is a context matrix
defining an affine transformation for subsequent objects. m moves the
cursor to a point, and / draws a line from the cursor to the specified point.
¢ Line endpoints, angle, and width are extracted by SymbolScraper

and extracting character shapes (g/yphs) embedded in font
profiles, as well as instructions for other graphics such as lines
and polygons. Glyphs and drawing commands define how
and where objects are drawn in a PDF. Drawing commands
indicate a graphic type (e.g., for font characters, and straight
vs. curved lines).

As seen in Fig. 4, graphic objects in PDF files are defined
by instruction sequences. These terminate with an ‘end-
graphic’ command (not shown). The instructions are in a
postfix notation with arguments pushed on a stack before
the operations that apply them. Note that coordinates in the
JSON output shown in Fig. 4c do not match those in Fig. 4b,
because the final line endpoints depend upon the line thick-
ness and earlier context matrix. In a larger file, the context
matrices are processed cumulatively.

PDF graphics are defined primarily by instructions for
lines, rectangles, and Bezier curves. We use these as graph-
ical primitives along with their parameters such as (x, y)
points, line widths, whether objects are filled, etc. Graphical
primitives are converted to line strings (polylines),> each of
which is a sequence of straight line segments. We approxi-
mate Bezier curves in PDF as straight line segments, using

3 Java Topology Suite: https:/locationtech.github.io/jts/.

@ Springer

https://locationtech.github.io/jts/

A.K.Shah et al.

a parameter to limit the maximum distance that a point on
the original curve can deviate from the approximated line
segments, in points (i.e., 1/72 of an inch).

A small number of rules and additional parameters are
used to extract the final input tokens (parameters shown in
Table 1). Some straight lines are drawn as filled polygons,
which are approximated by a line if the two longest lines
cover more than a percentage of the polygon perimeter and
have their angles within a small tolerance. Solid wedges
(trapezoids) are identified in polygons based on the ratio
of long:short side lengths. Positive charges are sometimes
drawn with two overlapping lines tested for perpendicularity
within an angular tolerance.

The final input tokens produced by SymbolScraper for the
born-digital parser are bounding boxes, polygons, or poly-
lines. Each have associated parameters, types, and labels.®

4.2 Minimum spanning tree (MST)

MSTs are widely used for constraints and optimization tasks
involving point sets and other geometric object collections
in continuous space (i.e., R"), including agglomerative clus-
tering. For graphics recognition, MSTs have been used to
constrain symbol and spatial relationship types when recog-
nizing handwritten math formulas, e.g., by Matsakis [21] and
Eto and Suzuki [8].

As can be seen in Fig. 1, chemical diagrams are even
better suited to MST-based selection of spatial relationships
than math formulas. The visual structure of math formulas
may have as many as eight spatial relationship types, while
molecule diagrams contain only one spatial relationship
(connected). Symbols in formulas may be related at a dis-
tance, while connections in molecular diagrams are between
neighboring symbols. Lines or other graphical objects that
need to be combined into symbols (e.g., two parallel lines in
a double bond) are also neighboring objects.

We construct an MST to connect graphical primitives
with their nearest neighbor in a chemical diagram, breaking
ties arbitrarily when two or more neighbors are equidistant.
A complete undirected graph over all input PDF primitive
pairs is generated first, with edges weighted by distance. By
default, edge weights are the distance between the closest
points on two objects; however, for line pairs we use their
end-points to capture connection distances. This also pre-
vents overlapping lines from having distance O.

Invalid character connections are prevented by setting dis-
tances in our weighted adjacency matrix to oo when: (1) The
absolute value of the cosine for the angle between characters
falls between [0.1, 0.9], i.e., between [25.8, 84.3]°. This pre-
vents (illegal) superscript or subscript character connections.
(2) A line-character distance is more than 1.5 standard devi-

6 Represented using the Python Shapely library.

@ Springer

ations from the mean line-character distance in the diagram.
Pruning parameters are shown in Table 1.

We use Kruskal’s algorithm to extract an MST withn — 1
edges for n primitives, such that the sum of edge distances is
minimal in the pruned adjacency matrix. An example MST
over input graphics primitives is shown in Fig. 1b.

4.3 MST — visual structure graph

While an MST over PDF graphical primitives includes many
connections needed to recognize molecular structure, con-
nections often need to be added or removed. For example, an
MST cannot contain cycles, and so we need to insert edges
when three or more lines intersect. These and other changes
are needed to produce the final graph capturing the visual syn-
tax of a molecular diagram, e.g., as seen in Fig. 1d. The steps
used for this transformation are presented below; parameters
are shown in Table 1.

Negative Charges. We first distinguish negative charges from
other lines. Lines are considered negative charges if they are:
(1) roughly horizontal (0°), (2) no longer than a fraction of
the average line length in the diagram, and (3) right adjacent
to a character, with the line’s vertical center in the upper half
of the character’s bounding box.

Restructure MST. Next we correct connections for ‘floating’
bond lines such as the double bonds in Fig. 1. These floating
lines may not connect with their corresponding parallel line
in the MST when another line’s endpoint is closer. We con-
sider creating an edge between a candidate floating line with
degree 1 (one edge) in the MST with another nearby over-
lapping parallel line if it is within the five nearest neighbors
of the line, and the average endpoint distances between the
two lines is smaller than for the current neighbor. If so, the
line is disconnected from its current neighbor and connected
to the closer parallel line.

We then use distance-based clustering to add and remove
connections based on MST distances.

1. Line intersections. Add missing non-parallel line inter-
sections (e.g., for rings and multi-line intersections)
where the lines’ endpoints are within a ratio of the max-
imum distance between connected non-parallel lines.

2. Character-line connections. Filter MST char-line con-
nection distances via Z-scores (i.e., standard deviations
from the mean) before estimating the maximum char-
line connection distance. Add all char-line edges within
a ratio of this maximum distance.

3. Split Floating Structures. Prune edges with a distance
larger than aratio of amaximum distance. The connection
type used to determine the maximum distance is selected
in the following in order, based on first available distance

ChemScraper: leveraging PDF graphics instructions for molecular diagram parsing

Table 1 Parameters for PDF symbol parsing stages (see Fig. 3). For visual parsing of raster images (see Sect. 6) only tokenization is applied after

creating a structured MST directly

PARAMETER (VALUE)

3. MST — Visual Graph

Primitive graph (MST) (a) (b) (c)

1. Extract Symbols

2. Build MST —ve Charges Restr. MST Tokenization

PDF GRAPHIC PRIMITIVES
BEZIER_FLATNESS_PTS (0.25) v
RECT2LINE_LONG_RATIO (0.85) v
RECT2LINE_ANGLE_TOLERANCE (5.0) v
ANGLES & PROXIMITY
ANGLE_TOLERANCE_DEGREES
CLOSE_NONPARALLEL_ALPHA
CLOSE_CHAR_LINE_ALPHA
SYMBOLS
S-WEDGE_LENGTHS_DIFF_RATIO
NEG-CHARGE_Y_POSITION (0.5)
NEG-CHARGE_LENGTH_TOLERANCE
PRUNING EDGES
ABS_COS_CHAR_PRUNE
CHAR_LINE_Z_TOLERANCE
MAX_ ALPHA_ DIST (2.0)

(3.0) v
(1.75)

(1.5)

(0.7) v

(0.5)

(0.1)
(1.5)

type in the MST: (1) char-line distances, (2) parallel line
distances, or (3) non-parallel line distances.

Tokenization. There are two steps for merging lines into
bonds and characters into atom and group names: (1) merg-
ing adjacent characters and parallel lines, and (2) labeling
bond types.

Merge Characters and Parallel Lines. Characters connected
by edges are merged into text tokens, using the location of the
nearest character as the connection point for abond, if present
(see Fig. 1d). Double bonds, triple bonds, and hashed wedge
bonds are represented by adjacent parallel lines. Hashed and
solid wedge bonds have a shorter side that begins the bond
and a longer side that ends the bond, indicating the bond
direction. Solid wedge bonds are trapezoids, while hashed
wedge bonds are drawn as parallel lines of increasing length.
All neighboring parallel line groups in the MST are merged,
and annotated by the number of lines they contain. For exam-
ple,in Fig. 1d, three pairs of parallel lines representing double
bonds will each be merged and annotated with ‘2’.

Label Bonds in Line Groups/Wedges. Annotated line groups
can then be labeled as single, double, or hashed wedge bonds
by the number of lines they contain (i.e., 1, 2, or >3). Three
parallel lines are a special case: both triple bonds and hashed
wedge bonds may contain 3 parallel lines. We distinguish
these by sorting the 3 lines topologically (i.e., top-down, left-

to-right), and then determine whether these lines uniformly
increase or decrease in size within the sorted list.

For wedge bonds, we need to identify new endpoints
on the longest and shortest sides (for solid) or longest and
shortest lines (for hashed) and restructure the final visual
structure graph accordingly. Bond endpoints are important
in the semantic analysis step, which we describe next.

4.4 Visual — molecular structure

In the final stage of the born-digital parser, visual structure
is converted to molecular structure, and chemical informa-
tion not directly visible in the diagram is added to produce
a chemical graph. The chemical graph is then represented in
a CDXML file capturing both visual and chemical structure.
Note that this stage uses a deterministic process that involves
no tunable parameters.

We first need to define explicit intersection points where
line endpoints meet. These intersection points are defined
by the midpoint between adjacent endpoints for connected
lines in the visual structure graph. ‘Hidden’ carbon atoms
are then inserted as nodes at bond line intersections, and at
line endpoints without a neighbor. Nodes for bonds in the
tokenized visual structure graph are removed, and replaced
by edges labeled with the same bond type (see Fig. 1d, e).

CDXML Generation. CDXML is a file format representing
molecules and reactions along with related text on a canvas or
series of pages. For molecular data, both chemical structure

@ Springer

A.K.Shah et al.

and the appearance of molecules on a 2D canvas are encoded
in CDXML files. The format was created for the ChemDraw
chemical diagram editor.

In CDXML tags define molecules, nodes (e.g., atoms,
named groups), and bond connections in the diagram, along
with annotations for node positions and appearance. We
encode the locations of nodes on their associated page, so that
the appearance and location of recognized molecules match
the original document. Positions are also helpful with accu-
rate conversion to other chemical formats (e.g., SMILES),
and to capture spatial information in the chemical structure
(e.g., for wedge bonds).

Annotate Names with Subgraphs: Molecules are often rep-
resented more compactly using chemical formulas or other
names for substructures. For example, Fig. 1 shows an abbre-
viation node NO3, a nitro group with an external connection
available. We use a manually compiled dictionary of 612
common abbreviations with their associated subgraphs col-
lected from the RDKit Python library,7 ChemDraw, and our
own work. For the abbreviation NO,, we insert the full struc-
ture (* — Ni, Ny — O1,N; — O») into the CDXML as a
nested molecule ‘fragment.’ * represents where the structure
can be connected to other structures; O; and O; represents
two oxygen atoms connected to the nitrogen N; through a
single and double bond respectively.

5 Generating training data from visual
graphs

In designing ChemScraper, we noticed that authors often
copy molecular diagrams directly into their documents as
raster images, which become embedded in PDFs. To cre-
ate parsers for raster images with easily interpreted results,
we require explicit correspondences between image regions
and molecular symbols in generated visual structure graphs.
Unfortunately, there is a shortage of training data with direct
annotations of raster images. In addition to fast and accurate
recognition, this was the second key motivator for creating
our born-digital parser.

While one can create large datasets from SMILES using
their rendered raster images, the correspondence between
image regions and portions of SMILES strings is absent
in such datasets. One can also generate molecular diagram
images from MOL files, which include explicit molecular
structure (e.g., atoms and their connection by bonds), along
with optional 3d spatial positions. However, MOL files were
not designed to describe image regions for characters, bonds,
or other visual primitives in an image. For example, MOLs

7 https://www.rdkit.org.

@ Springer

NO, = NO, NG,
SO RNe 4

- . c) Visual Graph
(a) Raster Image (b) Visual primitives ,,o(de)s: “'nel; & charapde,s
nodes: lines

edges: connections/merges

(¥ oo
I 1
I N “\ -~

(d) Tokenized Visual Graph
nodes: bonds, atoms & superatoms
edges: connections

(e) Molecular Graph
nodes: atoms & superatoms
edges: bonds

Fig. 5 Parsing Nitrobenzene (C¢HsNO;) from a raster image (a). b
Visual primitives. The N is split into 3 lines. ¢ Visual Graph extracted
from visual parser. d Tokenized Visual Graph with merged nodes (bonds
and named groups). e Molecular Graph. Blue nodes show the primitives
of N merged into a character (¢) and double bonds and atom/group
names in (d, e). In e orange nodes are ‘hidden’ carbon atoms, and
single/double bonds are converted from nodes to edges

identify spatial locations of atom groups such as CHsz, but do
not give the locations for its constituent H and 3 in an image.

A new data generation technique is required. First, we
sought a stable visual primitive in pixel-based (raster)
molecule images that would avoid merging symbols, and
found that we could extract a type of line primitive reliably
for this purpose (see Fig. 5b). Given the born-digital parse
results for a molecule in PDF, we extract these line prim-
itives from the rasterized PNG for the molecule, and align
them with the PDF primitives based on maximum overlap.

The born-digital visual graphs annotated with line prim-
itives can then be used for training models using the same
line primitives as input. For these parsers, the visual primitive
extraction replaces the first step of the born-digital parsing
pipeline seen in Fig. 2, where rather than extract characters
and lines directly, we may also extract image regions that
over-segment (i.e., split) lines and characters.

Visual Primitives (Lines). From a raster image (PNG) for
a PDF molecule rendered by the Indigo chemoinformatics
toolkit, we extract connected component (CC) contours, and
convert these to polygons using a simplification algorithm
(provided by Shapely). These polygons are transformed
into a set of skeletal lines using pairs of adjacent parallel
lines on the contour boundary. Each pair of parallel lines is
replaced by their medial axis (i.e., line between the middle
of the parallel lines’ endpoints).” After the medial axis lines
have been identified, pixels in CCs are segmented by assign-
ment to the nearest axis line using a distance transform.
The resulting ‘visual’ line primitives can be seen in Fig. 5b.
Some CC shapes such as curved lines and closed curves are
unaltered by the process. The 2 is unsegmented because after

8 https://github.com/epam/Indigo.

9 Parameters in Table 1 constrain angles and min. overlap.

https://www.rdkit.org
https://github.com/epam/Indigo

ChemScraper: leveraging PDF graphics instructions for molecular diagram parsing

identifying all skeletal lines for CCs in a molecule, to avoid
segmenting small CCs, we test whether the average skeletal
line length in a CC is less than the average for all skeletal
lines. If this average length is smaller than the global aver-
age, we do not segment the CC. We also remove skeletal
lines within CCs that are smaller than the global average
skeletal line length, which avoids over-segmenting lines at
dense intersections (e.g., at the connection point between
two single bonds and a double bond). We split a long line in
a triple or double bond by projecting the floating line onto it,
and then testing if the overlap ratio r for the longer line is in
the interval of one third to one half, with a margin of 10%
G-1 =<3+

For illustration, here we have manually broken the N into
three parts; in practice, both characters and lines may be over-
segmented. In Fig. 5b there are 15 visual primitives, versus
13 graphical primitives for the original PDF in Fig. 1a, b. 10
primitives are straight bond lines, and 5 primitives are for the
characters in NO;.

Visual Graph Generation. We now annotate raster images
using our visual primitives and visual graphs before tokeniza-
tion (see Fig. 1¢) from our born-digital parser. We use Indigo
to render PDFs from SMILES rather than PNG images as
done in previous methods (e.g., MolScribe [30]). The born-
digital parser is then run on the PDF images, and where the
recognized SMILES and original SMILES match (i.e., the
result is correct), we use the resulting visual graph as our
preliminary ground truth data (e.g., see Fig. 1c).

We next assign visual line primitives to PDF graphical
primitives in the born-digital visual graph. PDF images are
converted to 256 DPI PNG images, and we extract visual
line primitives as described above. The assignment of visual
primitives to PDF primitives/symbols is determined by max-
imum overlap. In Fig. 5c, 1 line primitive is attached to each
line node, 3 line primitives are attached to N, and one prim-
itive is attached to each of the O and 2. Finally, we validate
bonds between atoms against a MOL connection table gen-
erated from SMILES using Indigo.

To store visual graphs, we create label graph (Lg) files [24,
25] for both PDF primitives and visual line primitives. An
example is shown in Fig. 6a. Primitives are represented by
numeric identifiers and image contours, while typed objects
are comprised of one or more primitives (e.g., Single bond:
one line, character N: three lines).

A label graph file defines structure over declared primi-
tives, using primitive groups (objects) and their relationships.
In our label graph files, only CONNECTED relationships are
explicitly defined, however MERGE relationships are defined
implicitly between all primitive pairs in an object. In Fig. 6
MERGE edges exist between primitives 10, 11, and 12 for N
(Ob3j10), and the connection between this character and the
Single bond Obj9 is represented by CONNECTED edges

for (9,10), (9, 11) and (9,12). Similarly, all primitives in an
object share a label (e.g., for Obj 10, primitives 10, 11, and
12 are labeled N).

6 Visual parser

In Fig. 7 we present a multi-task neural network that parses
raster images using the line primitives described in the pre-
vious section. The parser produces visual structure graphs,
and is trained using our ground truth representation for
raster images illustrated in Fig. 6. For formulas that contain
MERGE edges, we use two versions of the input: (1) with no
labels, relations, or MERGE edges defined (i.e., raw primitive
input), and (2) with no labels or relations, but all ground-
truth MERGE edges provided. This allows the model to learn
more quickly how to classify symbols and relationships from
whole objects rather than their parts.

This parser extends the LGAP model (Line-of-Sight
Graph Attention Parser) [39] for parsing mathematical for-
mulas. The parser creates visual structure graphs by generat-
ing labels for individual primitives and primitive pairs in an
input graph, by classifying individual queries. Compared to
the born-digital parser, the visual parser uses line primitives
toreplace the first stage of the pipeline in Fig. 3, and the visual
parser replaces the second and third stage up to step 3(b) to
produce a visual graph (restructured MST). The remaining
tokenization and semantic analysis steps (steps 3(c) and 4)
are unchanged.

Input. The parser input is a Line-of-Sight (LOS) graph over
visual line primitives [7, 16], to prune edges between prim-
itives that are ‘blocked’ by a primitive between them. In
the LOS graph, edges are defined between primitives where
an uninterrupted line may be drawn from the center of one
primitive to a point on the convex hull of the other [20]. Con-
nections and merges exist only between nearby primitives in
molecular diagrams, as reflected by our use of MSTs in the
born-digital parser. Here we prune LOS edges not within the
k = 6 nearest neighbors of a primitive. There can be at most
4 lines or characters in a bond; we choose 6 neighbors to
accommodate over-segmentation in visual primitives.

Features. Visual features are created by drawing line prim-
itive contours directly into 28 x 28 binary images for (1)
individual primitives (node queries), (2) primitive pairs (edge
queries), and (3) context images containing the k = 6 nearest
neighbors centered around each query (one per node/edge
query). Query and context images are passed separately
through a single SE-ResNext backbone producing 32 feature
maps per image [15, 46]. The first layer of the SE-ResNext
encoder is modified, replacing the 7 x 7 convolutional kernel
by 3 x 3, using a stride of 1, and same padding. We also

@ Springer

A.K.Shah et al.

Single

Obj 0
#[OBJECTS] 0
Objects (0): 10
Format: O, objld, class, 1.0, [primitiveld list] |

0, Obj0, Single, 1.0, 0 Single Single
0, Obj1, Single, 1.0, 1 : :
0, Obj10, N, 1.0, 10, 11, 12 / OIZJ4 OI;JS
[RELATIONSHIPS] Single
Relationships (R): 11 Obj 1
Format: R, parentld, childld, class, 1.0 (weight) 1
R, Obj0, Obj4, CONNECTED, 1.0 \
R, Obj0, Obj1, CONNECTED, 1.0 Smgle N 0 2
R, Obj1, Obj3, CONNECTED, 1.0 Single Single 013 9 15)1;11122— Ot1>1311 021412
Single Obj 3 Obj 8 =—
9

[PRIMITIVE FEATURES] Obj 2 L—1 3 8
#contours, 0, 58, 139, 56, 141, 55, 141, ... 2
#contours, 0, 78, 98, 77, 99, 76, 99, ... =
#contours, 1, 80, 395, 80, 397, 81, 398, ... %";9';%
)

Single / 7

Obj 6

6

a.

Fig. 6 Ground truth visual graph generated for Fig. lc. a Label graph
file with Objects (O), Relationships (R) and Visual primitives with
contour points (#contours). b Visualization showing primitive iden-
tifiers, node labels, and edges (all edges labeled as CONNECTED).

Molecule Image Pruned LOS Graph
(Raster) (6 nearest neighbors)
Update query &

context features until
no new merges

Final Visual Graph Symbol-level Graph

W Prune

k\ < 'y
.‘@.ﬁ | | [|] |
] []			
] []			
[Merge			
Relations Segmentations Symbol

b.

Objects for single bond contain one line primitive each, while the char-
acter N contains three line primitives. A second file is created using 13
PDF primitives (vs. 15 visual line primitives shown here)

Nodes (primitives) Edges (primitive pairs)

e
....... »ll H__n
e 4 A

Query (Qn) Context (Cn) Query (Qe) Contex

AN
o Job

-

(Ce)

dropout (0.1) q,—,”Cn Qe“Ce

* dropout (0.1)
L] L ||
Symbol Relation Segmentation
classes (71) classes (2) classes (2)

]
]
]
||
s

Fig. 7 Parsing a raster image of nitrobenzene (C¢Hs NO3). Line con-
tours are extracted as primitives, over which a pruned LOS graph is
built. At top-right, four node and four edge queries are shown, at
bottom-left their classification tensors (rows: queries, columns: classes).
(Q)uery and (C)ontext features enter an SE-ResNext block. Two-layer
Multi-Layer Perceptrons (MLPs) estimate probabilities for symbol, seg-

@ Springer

mentation (MERGE), and relationship (CONNECTED) probabilities.
Merges are applied (e.g., for ‘N’), with symbol/relationship probabil-
ities averaged across primitives. The model runs recurrently, updating
queries and their contexts until no new merges are found (e.g., two
passes for this example)

ChemScraper: leveraging PDF graphics instructions for molecular diagram parsing

remove the first maxpool layer because feature images are
small.

Feature maps are average pooled in 7 pyramidal regions
(image, 3 vertical, 3 horizontal). The final query visual fea-
tures are the pooled convolution responses for a node/edge
and its associated context (i.e., g, ||c, or ge||ce). For 32 fea-
tures maps with 7 average-pooled regions, the query and
context images produce 2 x 224 = 448 features. We add
three positional encodings to query vectors in the form of
bounding boxes (BBS) (Xiin, Ymin, Xmaxs Ymax) With coor-
dinates normalized to be percentages of width/height:

1. Query BB relative to the formula window
2. Query BB relative to the context window
3. Context window BB relative to the formula

For edge queries, we use the combined primitive pair position
as the query position. Adding these three BBs each query
vector contains 448 + (3 x 4) = 460 features. Dropout is
applied for regularization (rate of 10%).

Classification. As seen in Fig. 7, node and edge queries
are classified using three two-layer multi-layer perceptrons
(MLPs):

1. Node symbol class (71 class)
2. Edge primitive merge (2 class)
3. Edge primitive connection (2 class)

For each classification, a hidden linear layer (512 units) is
fully connected to the class output layer. For node queries
the 71 classes include digits, characters, charges (+,-), paren-
theses, and straight lines. Edge queries are classified twice,
once to identify whether a primitive pair belongs to the same
symbol (MERGE), and then to test whether the primitive are
from two connected objects in the diagram (CONNECTED).

Recurrent Execution. The parser segments symbols bottom
up from input primitives, updating query and context images
during recurrent execution. Execution is performed recur-
rently until edge queries classified as MERGE with probability
> (.5 are unchanged from the previous pass (i.e., a fixed point
is reached). On a recurrent execution, query images, context
images, and positional encodings are all updated for merged
primitives. Merges are identified by connected components
along MERGE edges.

Note that this is not a conventional recurrent neural
network (RNN) where a state vector is updated across execu-
tions. Instead, we simply update input features directly as the
segmentation changes. For example, an N broken into three
primitives may be merged in the second pass to produce three
node queries containing all three primitives. This allows the
N to be classified in a single query, rather than in three parts
within the first iteration. Here the query images are identi-

cal for each merged primitive, but note the context image
for the primitives will differ because they are centered on
the original input primitive associated with each query. This
addresses class imbalance by representing multi-primitive
symbols multiple times, each with a slightly different con-
text image.

Recurrent execution stops when no change in MERGE
decisions is identified. Edges identified with a probability
of being CONNECTED > 0.5 are selected; any edges not
selected for MERGE or CONNECTED are removed. Symbol
and relationship probabilities are then computed by averag-
ing them across primitives in segmented symbols and their
connections.

Training. Random over-sampling of node queries is used to
balance edge and node queries. To balance positive and nega-
tive edge examples, we randomly over-sample positive edge
examples (MERGE and CONNECTED), so that each have the
same number of positive and negative examples.

Node and edge queries are processed together using a
batch size of 64. The sum of cross-entropy losses (X) for
node and edge queries computed for each batch is

> Xsn) + Y Xm(ge) + Xc(ge) (1)

qn€Qn Ge€Qe

where X, X, and X, are the cross entropy loss given the
correct target response vectors (1-hot) and softmax distri-
butions for (S)ymbol classification, primitive (M)ERGE, and
primitive (C)ONNECTED outputs. For backpropagation, we
use an Adam optimizer with learning rate 0.0005, 8 values
of (0.9, 0.999), and no weight decay.

7 Evaluation

We next evaluate the accuracy of our parsers. It is important to
remember that the ChemScraper born-digital parser utilizes
PDF information for characters, lines, and other graphical
objects that parsers working from raster (pixel) images do
not. Our analysis includes a graph-based analysis of recog-
nition errors at the level of molecule structure present that
provides information missing in standard SMILES-based
evaluation methods.

Datasets. For tuning born-digital parser parameters and gen-
erating visual parser training data, we use 5000 molecules
(46 unique SMILES characters) extracted from PubChem!°
prepared by the MolScribe team [30]. For benchmarking, we
use three datasets: (1) the USPTO synthetic dataset with 5179
PNG images generated by the Indigo toolkit from SMILES
strings (37 unique SMILES characters) [31], (2) UoB (5740

10 https://pubchem.ncbi.nlm.nih.gov.

@ Springer

https://pubchem.ncbi.nlm.nih.gov

A.K.Shah et al.

molecule PNG images + SMILES: 33 unique characters
[35]), and (3) CLEF (992 molecule PNG images + SMILES:
71 unique characters [29]).

The born-digital parser is run on Indigo-rendered PDFs
from SMILES ground truth, including for the UoB and CLEF
datasets. For the USPTO synthetic set, the rendered PNG
and PDF images are essentially identical, but this is not true
for the CLEF and UoB data sets where scanned images
of molecules were annotated with SMILES; in this case
rendering the SMILES using Indigo may produce images
in different styles, fonts, and orientations than the scanned
molecule images.

Additionally, as described in Sect.5, we generate anno-
tated visual graph data for training our visual parser that
recognizes from raster images. This comprises 3416 label
graph files from the original pool of 5000 molecules sourced
from PubChem that could be accurately converted into
exact SMILES strings. Errors include 240 diagrams mis-
recognized from valid visual primitives by the born-digital
parser, and 1344 diagrams with errors produced in primi-
tive extraction, alignment, and converting visual graphs to
SMILES strings. This training dataset includes molecules
represented by 32 unique symbol classes. A limitation is that
there are test set symbols missing in this training set. For the
USPTO dataset 4 symbols are absent (1, a, D, b),from
CLEF 26 symbols are absent (including *, R, X, 0),and
from the UoB dataset 2 symbols are missing (: , 0).

Implementation/Systems. SymbolScraper is built in Java
using Apache’s PDFBox andthe Java Topology Suite,
while the ChemScraper born-digital parser is implemented
in Python using the Shapely (2d geometry), networkx
(graphs), numpy, and mr4mp (map-reduce) libraries. The
ChemScraper born-digial and visual parsing pipelines are
Python-based, along with the visual line primitive extractor.

Born digital parsing runs were made on a Ubuntu 20.04
server, with a Intel(R) Xeon(R) CPU E5-2667 v4 (3.20 GHz)
and 512 GB RAM. Experiments for the visual parser were
run on another Ubuntu 20.04 server with hard drives (HDD),
an A40 (48GB) GPU, a 64-core Xeon Gold 6326 (2.9 GHz),
and 256 GB RAM.

7.1 Representations and metrics

We describe the molecule representations and associated
metrics used in our evaluation below.

SMILES strings: matches and similarity Simplified Mole-
cular-Input Line-Entry System or SMILES [45] represents
molecules by the sequence of atoms seen in a traversal
of the molecular structure graph. SMILES are compact,
and readable for domain experts. ChemScraper-generated
CDXMLs are first translated to SMILES using ChemAxon’s

@ Springer

molconvert tool. After this, we canonicalize both CDXML
and benchmark SMILES to remove differences in their atom
order, which can vary for the same molecule. SMILES canon-
icalization is performed using the RDKit library via the func-
tion CanonSmiles (), with ignore_chiral=False.

SMILES strings are compared by (1) the percentage of
exact matches, and (2) the inverse of the average Normal-
ized Levenshtein Distance (NLD). The levenshtein distance
is the minimum number of insertions, deletions, or substi-
tutions needed to convert one SMILES string to the other
[37]. The distance is normalized to [0, 1] using the mini-
mum/maximum possible edits based on the SMILES string
lengths. The inverse of the average NLD is given by subtract-
ing the average NLD from 1, giving a similarity in [0, 1], with
1 produced for identical SMILES strings.

Limitations. Molecular formulas are naturally represented
as graphs, where atoms and bonds have well-defined rela-
tionships and spatial arrangements. In contrast, SMILES
representations are linear character strings describing graph
structure. These SMILES characters have no direct connec-
tion with the atoms and bonds present in an input image (i.e.,
where atoms appear is not represented).

Levenshtein distances for SMILES strings may corre-
spond to multiple operation sequences of the same length.
In this case, Levenshtein-based SMILES metrics do not
uniquely identify which parts of the input are incorrectly rec-
ognized. Itis thus tempting to instead use graph edit distances
over molecule structure graphs directly, with operations that
insert/delete/relabel nodes and edges. Unfortunately, this can
also result in ambiguous minimal edit sequences, and errors
may again not be uniquely identified.

The main issue here is a missing correspondence between
input image regions and the nodes/edges in a molecular
structure graph representation. If molecular structure graphs
include input image locations (e.g., bounding boxes) their
nodes may be aligned spatially and then compared using
adjacency matrices. We describe the first application of this
approach to chemical structure recognition evaluation next.

Labeled graphs for molecular structure: label hamming dis-
tance and similarity Example molecular structure graphs
are shown in Figs. le and 5e, which are equivalent.!! For the
ChemScraper parsers, molecular structure graphs produced
using born-digital primitives (see Fig. 1b) or visual primi-
tives (see Fig. S5b) contain polygons representing the image
locations for hidden carbons and atom/group labels. We use
these graphs directly for evaluation.

Labeled graphs defined over the same nodes with known
input locations can be directly compared using their adja-

Il Note The graphs are mostly undirected, but wedge bonds going
‘in’/‘out’ of a page require directed graphs.

ChemScraper: leveraging PDF graphics instructions for molecular diagram parsing

cency matrix entries. Recognition errors are easily identified
by differing labels in adjacency matrix cells, and located
within an input image using the node locations. With a par-
ticular bottom-up representation for grouping nodes (i.e.,
segmentation), errors may be identified even when node
groupings disagree, or nodes are missing in one or the other
graph [50].

Handwritten math formula recognition was evaluated in
this manner for the early CROHME competitions, with
ground truth and recognizer outputs defined over the same
handwritten strokes [24]. The LgEval library!? was used
to compute metrics and visualize errors [24, 25, 38]. One
can view all errors using the confHist tool including
missing nodes and relationships. Repeated errors for nodes,
edges, and subgraphs are compiled in histograms that may
be explored in HTML pages.

Here we take a slightly different approach. Rather than
graphs sharing nodes, corresponding ground truth and output
nodes in molecular structure graphs are aligned (i.e., assigned
the same identifier) based on spatial overlap in a PDF image.
After this alignment, we apply the same adjacency matrix-
based evaluation metrics and tools used for CROHME.

We first assign identifiers to nodes in the ground truth
graph, which are atoms or named groups (e.g., SO>) and
hidden carbons at line intersections. We have adapted
MolScribe code to locate atom/group names and hidden
carbons in a PDF image for a molecular diagram gener-
ated using Indigo. Then, parser output graph nodes are
given the identifier of the ground truth node that they have
maximum overlap with, breaking ties arbitrarily. Where mul-
tiple output nodes overlap one ground truth node, or an
output node does not overlap a ground truth node (e.g.,
missed line intersections produce extra hidden carbons),
additional unique identifiers are created. Bonds are then
defined using labeled edges between nodes using these bond
types: (single, double, triple, solid
wedge, hashed wedge).

After alignment, adjacency matrices are used to identify
all structural differences from the labels in corresponding
cells. Both rows and columns of adjacency matrices for:
(1) ground truth, and (2) parser output, are labeled by the
node identifiers obtained during alignment. Node labels are
located in diagonal entries (e.g., (n1,7n1)) and edge labels
are provided in the off-diagonal entries (e.g., (n1, n2)). For
nodes, we compute the percentage of ground truth nodes
aligned with an output graph node with the same label (i.e.,
(R)ecall), and the percentage of output nodes aligned with an
identically labeled ground truth node (i.e., (P)recision). We
combine Recall and Precision using their harmonic mean F7:

wavy,

12 https://gitlab.com/dprl/lgeval.

Table 2 Grid search parameters

1. ANGLES & PROXIMITY

ANGLE_TOLERANCE_DEGREES
CLOSE_NONPARALLEL_ALPHA
CLOSE_CHAR_LINE_ALPHA

2. SYMBOLS
S-WEDGE_LENGTHS_DIFF_RATIO
NEG-CHARGE_Y_POSITION
NEG-CHARGE_LENGTH_TOLERANCE
3. PRUNING EDGES
ABS_COS_CHAR_PRUNE
CHAR_LINE_Z_TOLERANCE

MAX_ ALPHA_DIST

{1,3,5, 10, 15}
(1,1.25,1.5,1.75, 2.0}
{1,125, 1.5, 1.75, 2.0}

{0.70, 0.85, 0.90, 0.95}
{0,0.25,0.5)
{0.33,0.5,0.66}

{0.10, 0.15, 0.20}
(1.0, 1.5, 2.0}
(2.0,2.5,3.0}

Values tested are shown, with default values in bold

_ 2RP
' R+pP

We also report the analogous F measure for edges (bonds).
An output edge is correct if its end nodes and label match
ground truth. Finally, we report the percentages of molecules
with correct structure (i.e., correct MERGE and CONNECTED
relationships), and with both correct structure and node
labels.

7.2 SMILES-based evaluation

Parameter Tuning and Rendering. Each molecule in our
5,000 PubChem molecules for parameter fitting was rendered
with Indigo using 3 randomly selected parameters. The ren-
dering parameters are described below. For benchmarking
the born-digital parser, we use the Indigo default rendering
parameters. This is done to insure PDF molecules for the
born-digital parser have the same appearance as PNG images
in the USPTO dataset, which is our primary collection for
benchmarking.

The final parameter values seen earlier in Table 1 are
obtained using grid search, with the exception of the PDF
GRAPHICS PRIMITIVES ~ group belonging to
SymbolScraper. To keep the tuning process manageable,
we divided the grid search into 3 stages, one per group in the
order given in Table 1. Initial default values were identi-
fied. After each parameter group’s grid search was complete,
learned values replaced the default values. Value ranges and
defaults are shown in Table 2.

We also tested the effect of the MST pruning parame-
ters discussed in Sect.4.2: removing them harms accuracy.
For the USPTO dataset removing the absolute cosine angle
threshold for characters produces 93.72% SMILES matches,
removing the threshold for line-character distances produces
97.06% SMILES, matches and removing both produces

@ Springer

https://gitlab.com/dprl/lgeval

A.K.Shah et al.

Table 3 Molecular structure recognition benchmarks

Models SYNTHETIC IMAGE *SCANNED IMAGE
USPTO (5719) CLEF-2012 (992) UoB (5740)
Rule-based MolVec 0.9.7 95.40 83.80 80.60
OSRA 2.1 95.00 84.60 78.50
Imago 2.0 - 68.20 63.90
Neural Network Img2Mol 58.90 48.84 78.18
DECIMER 69.60 62.70 88.20
Graph Outputs OCMR - 65.10 85.50
SwinOCSR 74.00 30.00 44.90
Image2Graph - 51.70 82.90
MolScribe 97.50 88.90 87.90
MolGrapher - 90.50 94.90
ChemScraper Born-Digital Parser (PDF input)
(PDF rendering errors) (15) 98.16 (71) 89.32 (0) 94.41
*Skipping rendering errors 98.42 96.20 94.41
Visual Parser (PNG input) 85.02 - -

Percentages of generated SMILES matching ground truth are shown. For USPTO both PNG and PDF images are rendered using Indigo, but rendered
SMILES PDFs may differ from scanned PNGs for CLEF and UoB (indicated by italics)

93.20% matches. Including the pruning parameters produces
98.16% exact SMILES matches.

Benchmarking: Born-Digital Parser. Table 3 compares Chem-

Scraper and existing molecule parsing models. For the
USPTO dataset, we see that the born-digital parser obtains
the highest rates. Note that the ‘rendering failure’ for USPTO
applies to all systems, because the SMILES for these 15
molecules are missing in the collection itself. Given this,
the born-digital parser working from PDFs outperforms the
neural models working from raster images by nearly 1%, and
rule-based system working from raster images by roughly
3%. The strong performance of the born-digital parser is
because of the additional information available from PDF
instructions, and the robust design of the born-digital parser.

The model also obtains competitive rates for CLEF and
UoB, but note that this is for Indigo-rendered SMILES, and
not the provided PNGs because PDF images are not provided
in these collections.

In terms of execution time, running the born-digital parser
on the USPTO-Indigo dataset (5,719 molecules) with a sin-
gle process took 28.01 mins (293.39 ms/formula), i.e., 3.4
molecules/sec, with a peak CPU memory use of 230 MB.
With multiple processes (32) the total time is reduced to 1.81
mins (19.04 ms/formula), i.e., 52.5 molecules/sec. Perfor-
mance benchmarks from Rajan et al. [31] show that on a
Linux workstation with Ubuntu 20.04 LTS, two Intel Xeon
Silver 4114 CPUs and 64 GB of RAM, processing the
USPTO-Indigo dataset took 28.65 min for MolVec 0.9.7, and
145.04 min for OSRA 2.1. Thus, on comparable systems, our

@ Springer

c..Cc___O _C_ | Hz CHs
c~ c” C-¢ HsC. .C. __OH L
| " | | c” °C H.C C-CHs
.Cs .C._.C._.C. .O o w b
o ? C S (I3 9/ ¢?, \ﬁ; \ﬁ/ \\9/
-C__.C .C_ .C_ HsC - »
c 0" *c* ¢ e 0 Ol
C [l CHz Hz |
C CHs

(c) (term-h, T, 0.5)

(d) (term-h, T, 1.0)

Fig.8 Rendering a molecule with different parameters (Indigo toolkit).
Each of a—d indicate the label mode, whether implicit hydrogens are
shown, and the relative thickness. Parameters in d are the defaults. The
born-digital parser recognizes all four versions correctly

born-digital parser operates at similar or faster speeds com-
pared to other rule-based methods.

Rendering: Sensitivity Analysis. To check the robustness of
the born-digital parser, we used the rendering parameters
of Indigo to perform a sensitivity analysis. We tested three
rendering parameters visualized in Fig. 8. Parameters/values
considered are:

l. relative-thickness: Boldness of graphic and text
objects. Values considered: {0.5, 1, 1.5}. The default is
1.

ChemScraper: leveraging PDF graphics instructions for molecular diagram parsing

B Exactmatches [l Inverse Normalized Levenshtein Distance

99.36% 99.43%
98.83%
98.16% 98.16%

all hetero terminal-hetero

100.00%

97.50%

95.00%

92.50%

90.00%
Label Type

Fig. 9 Sensitivity of Born-Digital Parser to Label Rendering Parame-
ter. SMILES-based evaluation is used. Other parameters have default
values, with render-implicit-hydrogens-visible as True
and render-relative-thicknessto 1

2. render-implicit-hydrogens-visible:
Whether to show implicit hydrogens. Default is True.

3. render-1label-mode: Which atom labels to show:
{hetero, terminal-hetero, all}. all shows all atoms. There
is a none option we omit because it leads to ambiguous
molecules. Default is terminal-hetero.

This produces 18 parameter combinations for rendering.
We evaluated our parser with each of them for the USPTO
Indigo dataset, using SMILES matches and inverse normal-
ized levinshtein distances for evaluation.

Figure 9 shows how different atom labelings affect perfor-
mance of the parser. Including all atom labels slightly hurts
performance, in part because the more dense a molecule
becomes, the more probable it is for the parser to connect
atoms incorrectly. Figure 10 then shows the effect of render-
ing with different thicknesses. Lower thicknesses produce
stronger results, again because this decreases the density of
the molecule. As seen in Fig. 8, lower thickness increases the
distance between unconnected objects.

Figure 11 compares performance when rendering
molecules with or without implicit hydrogens. The differ-
ence between the conditions is minimal, with 14 fewer exact
matches (roughly 0.06%) than when showing implicit hydro-
gens. This difference is due to merging errors of different
groups that are close, similar to the crowding of Fig. 8b.

Overall, the born-digital parser is quite robust to these
changes in rendering parameters. This robustness was
achieved by gradually increasing the reliance of the born-
digital parser on graph properties while reducing the number
of parameters used; additional reductions in parameters are
likely possible.

Benchmarking: Visual Parser. For the synthetic USPTO
dataset, our visual parser trained using outputs from our
born-digital parser, obtains a recognition rate of 85.02%.
While this rate is lower than that seen for transformer-based

B Exactmatches [l Inverse Normalized Levenshtein Distance

99.43%
98.16% 97.93%
94.86%
1 1.5

Relative Thickness

100.00%

97.50% 98.11%

95.00%

92.50%

90.00%
0.5

Fig. 10 Sensitivity of Born-Digital Parser to Thickness Rendering
Parameter. Higher thickness reduces accuracy. Other param-
eters: render-implicit-hydrogens-visible is True,
render-label-mode is terminal-hetero

B Exactmatches [l Inverse Normalized Levenshtein Distance

100.00%

97.50%

95.00%

92.50%

90.00%

FALSE TRUE

Implicit Hydrogens Visible

Fig. 11 Sensitivty of Born-Digital Parser to Showing Implicit Hydro-
gens. Other parameters: render-label-mode is terminal-hetero
and render-relative-thicknessis 1

methods like MolScribe [30] and rule-based methods such as
MolVec and OSRA [9], this result still demonstrates poten-
tial. Notably, MolScribe is trained on 1.68 million examples
with various chemical structure-based and image-based aug-
mentations, and employs a SWIN transformer model with 88
million parameters. In contrast, our visual parser was trained
on a much smaller dataset of 3,416 annotated images, without
augmentation, and using a simpler SE-ResNeXt model with
4 million parameters. Despite these differences, our parser
outperforms SWIN-OCSR [47], which also uses a SWIN
transformer but is trained on 4.5 million molecules.

We have omitted results for the real datasets (CLEF and
UoB) due to limitations in our initial training dataset, which
is missing symbols from these sets and training using a sin-
gle set of Indigo rendering parameters as mentioned earlier.
This first training set does not adequately capture the diverse
styles and structural variations seen in the non-synthetic data
sets. We will address this in future work. We will note here
however, that the visual line primitives extracted from the
real images are accurate.

@ Springer

A.K.Shah et al.

We conducted training runs on the Pubchem dataset,
which consisted of queries for 3,416 molecules in three
forms: primitives, whole symbols, and symbols detected dur-
ing training. Each epoch averaged 155.6 min, with the model
completing 19 epochs in about 49h. This training time is
notably shorter than other systems, such as DECIMER [32],
which required 27 days to converge on 15 million structures,
demonstrating efficiency with fewer data to achieve compa-
rable results.

However, testing on the synthetic USPTO dataset (5,719
molecules) took 18.6h (11.74 secs/molecule), which is
slower compared to systems like MolGrapher [23] and
OCMR [44] that process a single molecule in less than a
second. The slow inference time is due to inefficiencies in
our first implementation. In particular, re-assembling query
outputs for formulas and writing visual graphs are currently
slower than they could be. Future versions will accelerate
these components.

7.3 Graph-based evaluation

For fine-grained evaluation of ChemScraper, we require
molecule graph representations for both ground truth and the
predicted molecules. Given we have already created chem-
ical structure graphs subsequently converted to CDXML
format, we can readily employ these graphs for evaluation.
It is important to note that the molecular graphs utilized for
evaluation differ from the visual graphs created in Sect.5 to
annotate raster images.

Molecular Graphs for Evaluation. The predicted graph cor-
responds to the final stage in the parsing algorithm, shown
in Fig. le. These graphs are generated in the final step of
the born-digital parsing pipeline (see Fig. 3). This graph
assumes the representation of atoms or atom groups as nodes,
with edges representing bond types associated with nodes,
which may have one of the following types: {Single,
Double, Triple, Solid Wedge, Hashed
Wedge}. To construct a ground truth molecular structure
graph, we use a MOL object generated by Indigo from the
corresponding SMILES representation. We then extract atom
positions along with the adjacency matrix for bonds between
atoms using MolScribe code [30] with minor modifications.

We identify correspondences between nodes in parser out-
put and ground truth graphs using atom coordinates from
Indigo (ground truth) and Symbol Scraper (parser output).
Minor discrepancies in atom coordinates are resolved using
minimum distances between corresponding atom pairs. Cor-
responding nodes are giving the same identifiers.

Finally, we create object-relationship label graph files (Lg
files) as described in Sect.5. ‘Object’ entries represent indi-
vidual atoms or atom groups, and the ‘Relationship’ entries
denote bond edges with bond type labels between the atoms,

@ Springer

as opposed to specifying the type of connections between
visual elements.

Analysis: Born-Digital Parser. We use LgEval to com-
pare molecular graphs to obtain the metrics in Table 4. The
table shows a disparity between recognition rates when using
labeled graphs (last column) vs. the exact SMILES matches
shown in Table 3. This arises because SMILES string-based
metrics lack sensitivity to direction and errors for 3D bonds,
such as hashed and solid wedge bonds. In this way, SMILES
exact matches may be misleading in terms of identifying
correct molecular structures. In contrast, our graph-based
metrics readily identify such errors.

Table 4 shows a large decline in recognition rates when
using the hardest rendering condition for the parser, despite
only a 0.83% reduction in accurate detection of edges in
molecular graphs. This is mainly due to the intricate network
of edges and relationships, particularly in large structures
with rings. Even a 1% error in relationships, as seen in the
USPTO-Indigo dataset with 382,058 target relationships for
5,719 molecules, substantially affects accuracy.

In the confHist tool error summary (an excerpt is
shown in Fig. 12), common errors for the default render-
ing include missed single and triple bonds. The run for the
hardest rendering parameters produces a notable increase in
the count for the most frequent errors, including missing sin-
gle and hashed wedge bonds. This unexpected difficulty with
easier-to-detect bonds is due to the density of molecules in the
hardest rendering condition, which produces short bond lines
and a compact structure (See Fig. 8b). This poses challenges
for our graph transformations using thresholds to accurately
detect bonds or establish correct connections between enti-
ties. This illustrates where greater use of visual features may
be beneficial within the born-digital parser itself.

Analysis: Visual Parser. For molecular diagrams produced
by the visual parser for USPTO, symbols including differ-
ent characters, numbers, and wedges are often misclassified
as Single bonds. This is mainly due to class imbalance
in the training data that predominantly features Single
lines (roughly 70% of symbols in training are single lines).
Errors also include incorrect segmentations, particularly for
characters like N, and H that are frequently over-segmented.
This is also likely due to their rarity in the training data.
Additionally, relationship errors, notably missed connections
between lines and characters, are comparatively more com-
mon due to the predominance of line-line connections over
line-character connections.

The class imbalance in symbols and relationships, espe-
cially the predominance of the Single class and line-line
connections, highlights the need for better recognition of
less frequent classes to improve the parser’s performance
on diverse molecular structures. Additionally, the training
set does not include all symbols present in the test sets,

ChemScraper: leveraging PDF graphics instructions for molecular diagram parsing

Table 4 Born-digital parser label graph metrics for different rendering parameters (5719 molecules)

RENDERING PARAMETERS

RENDER label_ mode implicit_ relative_ CORRECT CORRECT MOLECULES +CLASS
hydrogens__ thickness NODE EDGE STRUCT.
visible (LABELS) F (LABELS) F}
Default Terminal-hetero True 1 99.96 99.84 98.49 97.62
Hardest All True 1.5 99.65 99.01 81.89 81.12
Shown are F; measures for symbol labels, correct labels, and complete graphs
[J Object Targets Primitive Targets and Errors [J Object Targets Primitive Targets and Errors
1 163 errors T 1 633 errors 0 Targets
(J1 163 errors ()83 errors (1) 46 errors ()1 6833errors (378 errors [225 errors
..... smefigll gl Shele)
..... S)
© © © © 0O ! © © 0o © ©
2 35 errors Targets 2 320 errors Targets
()1 35errors [26 errors (J 8 errors [(J1 320errors (1) 285 errors [J 30 errors
..... meefal e el "EY’*.*’?
“Triple H Wedgey S Wedge
©-™0® ©0 | @0 ©® OO0

(a) Default Rendering Parameters

Fig. 12 Relationship Confusion Histograms for Renderings in Table 4
(truncated at right for space). Hyperlinks show molecules with specific
errors, check boxes allow selecting molecules with errors for export.
Default rendering: the top 2 errors are missing single and triple bonds.
We can observe that in both cases, at times a missing (ABSENT) hid-

which impacts the parser’s ability to accurately recognize
and interpret a full range of molecular symbols. Addressing
this imbalance and coverage is important for future enhance-
ments.

8 Conclusion

We have introduced the ChemScraper born-digital molecular
diagram parser, along with improved extraction for charac-
ters and graphics from PDF (SymbolScraper). To address a
shortage of training data for molecular diagrams in raster
images, we use the born-digital parser to annotate raster
images with visual structure graphs. This data is used to
train a visual parser for raster images that uses a novel multi-
task neural network run recurrently. Both the born-digital
and visual parsers produce molecular structure graphs in
CDXML which can be used with well-known chemical draw-
ing tools (ChemDraw, Marvin) and easily converted to other

(b) Hardest Rendering Parameters

den carbon is the cause. Hardest rendering: missing single bonds are
again the most frequent error, caused half of the time by a missing car-
bon. The second most-frequent error is missing hashed wedges between
carbons, where no bond is detected, or because of misclassification of
hashed wedges as solid wedges

molecular structure representations (e.g., SMILES, MOL,
and InChl).

We also apply the adjacency matrix-based evaluation met-
rics developed for CROHME to molecular diagrams. These
metrics and the LgEval tools offer a detailed assessment of
parser performance, and identify bond structure errors miss-
ing in conventional SMILES-based evaluation.

Limitations of this work include:

1. Images considered are noise-free vector and rasterized-
vector images from a single rendering model (Indigo)
created using a limited set of parameters. While modern
PDFs contain relatively clean images, noisy images (e.g.,
scans of older documents) would require modified image
primitives, annotation strategies, and parser designs.

2. Born-digital parser parameters may be improved with
larger grid searches, Bayesian optimization, and using
visual features.

@ Springer

A.K.Shah et al.

3. Graph transformations are manually defined; learned
transformations may be more robust.

4. Our first visual parser has slow inference and does not
yet generalize well to real images, due to limited class
coverage and variation in our first training dataset.

Opportunities for future work include:

1. PDF primitives extracted by SymbolScraper provide
high-precision locations for text and graphics. This can
be applied in extraction, search, and visualization appli-
cations.

2. Developing a more domain-agnostic technique for born-
digital parsing. Perhaps GNNs, graph rewriting sys-
tems, or encoder—decoder models could improve results
obtained from SymbolScraper output.

3. The visual parser and graph-based evaluation methods
are not domain-specific, and could be applied to other
graphics including mathematical formulas and tables.

4. Applying the presented techniques to index molecules
and other graphics in PDF collections for graphics-aware
search applications such as MathDeck [1]. This was the
original motivation for this work, and something that we
are eager to pursue.

Acknowledgements This work was supported by the National Science
Foundation USA (Grant #2019897, Molecule Maker Lab Institute). We
thank Matt Langsenkamp, Matt Berry, Kate Arneson, and other mem-
bers the NCSA team who helped create the online ChemScraper system.

Author Contributions S, A. K. refactored the system, enhanced some
functionalities and wrote around 35% of the paper. D, A wrote around
20% of the paper and coded the first version of the system. A, B wrote
around 15% of the paper, added some functionalities, coded most of
the evaluation. C, M wrote around 20% of the paper and refactored the
first version of parser. O, B wrote around 10% of the paper, provided
chemist related information and feedback. D, S provided data. Z, R
helped refactor the system, lead the research, rewrote and organized the

paper.

Data availability The training data generated and used in this study is
publicly available and can be accessed at https://www.cs.rit.edu/~dprl/
data/icdar2024/. The dataset generation script is provided in the repos-
itory code provided in the Introduction section above.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Amador, B., Langsenkamp, M., Dey, A., Shah, A.K., Zanibbi, R.:
Searching the ACL anthology with math formulas and text. In:
ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval, pp. 3110-3114 (2023). https://doi.org/10.1145/
3539618.3591803

@ Springer

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Bristol-Myers Squibb—molecular translation competition, Kaggle

(2021). https://www.kaggle.com/c/bms-molecular-translation

. Baker, J.B., Sexton, A.P,, Sorge, V.: A linear grammar approach to

mathematical formula recognition from PDF. In: Carette, J., Dixon,
L., Coen, C.S., Watt, S.M. (eds.) 16th Symposium on Intelligent
Computer Mathematics, LNCS, vol. 5625, pp. 201-216 (2009).
https://doi.org/10.1007/978-3-642-02614-0_19

. Bukhari, S.S., Iftikhar, Z., Dengel, A.: Chemical structure recogni-

tion (CSR) system: automatic analysis of 2D chemical structures in
document images. In: International Conference on Document Anal-
ysis and Recognition (ICDAR), pp. 1262-1267 (2019). https://doi.
org/10.1109/ICDAR.2019.00-41

. Campos, D., Ji, H.: IMG2SMI: translating molecular structure

images to simplified molecular-input line-entry system (2021).
arXiv:2109.04202

. Comelli, P, Ferragina, P., Granieri, M.N., Stabile, F.: Opt. Recognit.

44(4), 627-631 (1995)

. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Com-

putational geometry. In: de Berg, M., Cheong, O., van Kreveld,
M., Overmars, M. (eds.) Computational Geometry: Algorithms
and Applications, pp. 1-17. Berlin (2008). https://doi.org/10.1007/
978-3-540-77974-2_1

. Eto, Y., Suzuki, M.: Mathematical formula recognition using

virtual link network. In: International Conference on Document
Analysis and Recognition (ICDAR), pp. 762-767 (2001). https://
doi.org/10.1109/ICDAR.2001.953891

. Filippov, I.V., Nicklaus, M.C.: Optical structure recognition soft-

ware to recover chemical information: OSRA, an open source
solution. J. Chem. Inf. Model. 49(3), 740-743 (2009). https://doi.
org/10.1021/ci800067r

Han, K., Xiao, A., Wu, E., Guo, J.,, Xu, C, Wang, Y.
Transformer in transformer. In: Ranzato, M., Beygelzimer,
A., Dauphin, Y., Liang, P, Vaughan, J.W. (eds.) Advances
in Neural Information Processing Systems (NeurIPS), pp.
15908-15919 (2021). https://proceedings.neurips.cc/paper/2021/
file/854d9fca60b4bd07f9bb215d59ef556 1 -Paper.pdf

He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in
deep convolutional networks for visual recognition. Trans. Pattern
Anal. Mach. Intell. 37(9), 1904-1916 (2015). https://doi.org/10.
1109/TPAMI.2015.2389824

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for
image recognition. In: Conference on Computer Vision and Pat-
tern Recognition (CVPR), pp. 770-778 (2016). https://doi.org/10.
1109/CVPR.2016.90

Heller, S., McNaught, A., Stein, S., Tchekhovskoi, D., Pletnev,
I.: InChl—the worldwide chemical structure identifier standard. J.
Cheminform. 5(1), 7 (2013). https://doi.org/10.1186/1758-2946-
5-7

Heller, S.R., McNaught, A., Pletnev, 1., Stein, S., Tchekhovskoi,
D.: InChl, the IUPAC International Chemical Identifier. J. Chemin-
form. 7(1), 23 (2015). https://doi.org/10.1186/s13321-015-0068-
4

Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In:
Conference on Computer Vision and Pattern Recognition (CVPR),
pp- 7132-7141 (2018). https://doi.org/10.1109/CVPR.2018.00745
Hu, L., Zanibbi, R.: Line-of-sight stroke graphs and Parzen shape
context features for handwritten math formula representation and
symbol segmentation. In: International Conference on Frontiers in
Handwriting Recognition (ICFHR), pp. 180-186 (2016). https://
doi.org/10.1109/ICFHR.2016.0044

Ibison, P, Jacquot, M., Kam, F., Neville, A.G., Simpson, R.W.,
Tonnelier, C., Venczel, T., Johnson, A.P.: Chemical literature data
extraction: the CLiDE project. J. Chem. Inf. Comput. Sci. 33(3),
338-344 (1993). https://doi.org/10.1021/ci00013a010

Krenn, M., Hise, F., Nigam, A., Friederich, P., Aspuru-Guzik,
A.: Self-referencing Embedded Strings (SELFIES): a 100% robust

https://www.cs.rit.edu/~{}dprl/data/icdar2024/
https://www.cs.rit.edu/~{}dprl/data/icdar2024/
https://doi.org/10.1145/3539618.3591803
https://doi.org/10.1145/3539618.3591803
https://www.kaggle.com/c/bms-molecular-translation
https://doi.org/10.1007/978-3-642-02614-0_19
https://doi.org/10.1109/ICDAR.2019.00-41
https://doi.org/10.1109/ICDAR.2019.00-41
http://arxiv.org/abs/2109.04202
https://doi.org/10.1007/978-3-540-77974-2_1
https://doi.org/10.1007/978-3-540-77974-2_1
https://doi.org/10.1109/ICDAR.2001.953891
https://doi.org/10.1109/ICDAR.2001.953891
https://doi.org/10.1021/ci800067r
https://doi.org/10.1021/ci800067r
https://proceedings.neurips.cc/paper/2021/file/854d9fca60b4bd07f9bb215d59ef5561-Paper.pdf
https://proceedings.neurips.cc/paper/2021/file/854d9fca60b4bd07f9bb215d59ef5561-Paper.pdf
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1186/1758-2946-5-7
https://doi.org/10.1186/1758-2946-5-7
https://doi.org/10.1186/s13321-015-0068-4
https://doi.org/10.1186/s13321-015-0068-4
https://doi.org/10.1109/CVPR.2018.00745
https://doi.org/10.1109/ICFHR.2016.0044
https://doi.org/10.1109/ICFHR.2016.0044
https://doi.org/10.1021/ci00013a010

ChemScraper: leveraging PDF graphics instructions for molecular diagram parsing

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

molecular string representation. Mach. Learn. Sci. Technol. 1(4),
045024 (2020). https://doi.org/10.1088/2632-2153/aba947

Li, Y., Chen, G., Li, X.: Automated recognition of chemical
molecule images based on an improved TNT model. Appl. Sci.
12(2), 680 (2022). https://doi.org/10.3390/app12020680
Mahdavi, M., Condon, M., Davila, K., Zanibbi, R.: LPGA: Line-
of-sight Parsing with Graph-based Attention for math formula
recognition. In: International Conference on Document Analysis
and Recognition (ICDAR), pp. 647-654 (2019). https://doi.org/
10.1109/ICDAR.2019.00109

Matsakis, N.E.: Recognition of handwritten mathematical expres-
sions. Master’s Thesis, Massachusetts Institute of Technology
(1999)

McDaniel, J.R., Balmuth, J.R.: Kekule: OCR-Optical Chemical
(structure) Recognition. J. Chem. Inf. Comput. Sci. 32(4), 373—
378 (1992). https://doi.org/10.1021/ci00008a018

Morin, L., Danelljan, M., Agea, M.1., Nassar, A., Weber, V., Meijer,
1., Staar, P., Yu, F.: MolGrapher: graph-based visual recognition of
chemical structures (2023). https://doi.org/10.48550/arXiv.2308.
12234

Mouchere, H., Zanibbi, R., Garain, U., Viard-Gaudin, C.: Advanc-
ing the state of the art for handwritten math recognition: the
CROHME competitions, 2011-2014. Int. J. Doc. Anal. Recog-
nit. 19(2), 173-189 (2016). https://doi.org/10.1007/s10032-016-
0263-5

Mouchere, H., Viard-Gaudin, C., Zanibbi, R., Garain, U., Kim,
D.H., Kim, J.H.: ICDAR 2013 CROHME: third international
competition on recognition of online handwritten mathematical
expressions. In: International Conference on Document Analysis
and Recognition (ICDAR), pp. 1428-1432 (2013). https://doi.org/
10.1109/ICDAR.2013.288

Nguyen, A., Huang, Y.C., Tremouilhac, P., Jung, N., Brise,
S.: CHEMSCANNER: extraction and re-use(ability) of chemical
information from common scientific documents containing Chem-
Draw files. J. Cheminform. 11, 77 (2019). https://doi.org/10.1186/
s13321-019-0400-5

O’Boyle, N., Dalke, A.: DeepSMILES: an adaptation of SMILES
for use in machine-learning of chemical structures. ChemRxiv,
pp- 1-9 (2018). https://doi.org/10.26434/chemrxiv.7097960
O’Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeer-
sch, T., Hutchison, G.R.: Open Babel: an open chemical toolbox. J.
Cheminform. 3(1), 33 (2011). https://doi.org/10.1186/1758-2946-
3-33

Piroi, F,, Lupu, M., Hanbury, A., Sexton, A., Magdy, W., Filippov,
I.: CLEF-IP 2012: retrieval experiments in the intellectual prop-
erty domain. In: Forner, P., Karlgren, J., Womser-Hacker, C. (eds.)
CLEF 2012 Evaluation Labs and Workshop. CEUR Workshop Pro-
ceedings (CEUR-WS.org) (2012)

Qian, Y., Guo, J., Tu, Z., Li, Z., Coley, C.W., Barzilay, R.:
MolScribe: robust molecular structure recognition with image-to-
graph generation. J. Chem. Inf. Model. 63(7), 1925-1934 (2023).
https://doi.org/10.1021/acs.jcim.2c01480

Rajan, K., Brinkhaus, H.O., Zielesny, A., Steinbeck, C.: A review of
optical chemical structure recognition tools. J. Cheminform. 12(1),
60 (2020). https://doi.org/10.1186/s13321-020-00465-0

Rajan, K., Zielesny, A., Steinbeck, C.: DECIMER: towards deep
learning for chemical image recognition. J. Cheminform. 12(1),
1-9 (2020). https://doi.org/10.1186/s13321-020-00469-w

Ray, L.C., Kirsch, R.A.: Finding chemical records by digital com-
puters. Science 126(3278), 814-819 (1957). https://doi.org/10.
1126/science.126.3278.814

Ronneberger, O., Fischer, P., Brox, T.. U-Net: convolutional
networks for biomedical image segmentation. In: Navab, N.,
Hornegger, J., Wells, WM., Frangi, A.F. (eds.) Medical Image
Computing and Computer-Assisted Intervention (MICCAI), pp.
234-241 (2015)

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Sadawi, N.M., Sexton, A.P., Sorge, V.: Performance of MolRec at
TREC 2011 overview and analysis of results. In: Voorhees, E.M.,
Buckland, L.P. (eds.) Text REtrieval Conference (TREC). NIST
Special Publication, vol. 500-296 (2011). http://trec.nist.gov/pubs/
trec20/papers/UoB.chem.update.pdf

Sadawi, N.M., Sexton, A.P., Sorge, V.: Molrec at CLEF 2012—
overview and analysis of results. In: Forner, P., Karlgren,
J., Womser-Hacker, C. (eds.) CLEF 2012 Evaluation Labs
and Workshop. CEUR Workshop Proceedings (CEUR-WS.org),
vol. 1178 (2012). https://ceur-ws.org/Vol-1178/CLEF2012wn-
CLEFIP-SadawiEt2012.pdf

Schulz, K.U., Mihov, S.: Fast string correction with Levenshtein
automata. Int. J. Doc. Anal. Recognit. 5(1), 67-85 (2002). https://
doi.org/10.1007/s10032-002-0082-8

Shah, A.K., Dey, A., Zanibbi, R.: A math formula extraction and
evaluation framework for pdf documents. In: International Confer-
ence on Document Analysis and Recognition (ICDAR), pp. 19-34
(2021)

Shah, A.K., Zanibbi, R.: Line-of-sight with graph attention parser
(LGAP) for math formulas. In: International Conference on Doc-
ument Analysis and Recognition (ICDAR), pp. 401-419 (2023).
https://doi.org/10.1007/978-3-031-41734-4_25

Staker, J., Marshall, K., Abel, R., McQuaw, C.M.: Molecular struc-
ture extraction from documents using deep learning. J. Chem.
Inf. Model. 59(3), 1017-1029 (2019). https://doi.org/10.1021/acs.
jcim.8b00669

Sun, P, Lyu, X., Li, X., Wang, B., Yi, X., Tang, Z.: Understanding
Markush structures in chemistry documents with deep learning.
In: International Conference on Bioinformatics and Biomedicine
(BIBM), pp. 1126-1129 (2019). https://doi.org/10.1109/BIBM.
2018.8621264

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A.N., Kaiser, L.U., Polosukhin, I.. Atten-
tion is all you need. In: Advances in Neural Information
Processing Systems (NeurIPS), pp. 5998-6008 (2017).
https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Wang, C.Y., Bochkovskiy, A., Liao, H.Y.M.: Scaled-YOLOv4:
scaling cross stage partial network. In: Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 13024-13033 (2021).
https://doi.org/10.1109/CVPR46437.2021.01283

Wang, Y., Zhang, R., Zhang, S., Guo, L., Zhou, Q., Zhao, B., Mo,
X., Yang, Q., Huang, Y., Li, K., Fan, Y., Huang, L., Zhou, F.:
OCMR: a comprehensive framework for optical chemical molec-
ular recognition. Comput. Biol. Med. (2023). https://doi.org/10.
1016/j.compbiomed.2023.107187

Weininger, D.: SMILES, a chemical language and information sys-
tem: introduction to methodology and encoding rules. J. Chem.
Inf. Comput. Sci. 28(1), 31-36 (1988). https://doi.org/10.1021/
¢i00057a005

Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated resid-
ual transformations for deep neural networks. In: Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 5987-5995
(2017). https://doi.org/10.1109/CVPR.2017.634

Xu, Z., Li, J., Yang, Z., Li, S., Li, H.: SwinOCSR: end-to-end
optical chemical structure recognition using a Swin transformer.
J. Cheminform. 14(1), 41 (2022). https://doi.org/10.1186/s13321-
022-00624-5

Yoo, S., Kwon, O., Lee, H.: Image-to-graph transformers for chem-
ical structure recognition. In: International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 3393-3397
(2022). https://doi.org/10.1109/ICASSP43922.2022.9746088
Zanibbi, R., Blostein, D., Cordy, J.: Recognizing mathematical
expressions using tree transformation. Trans. Pattern Anal. Mach.
Intell. 24(11), 1455-1467 (2002). https://doi.org/10.1109/TPAMI.
2002.1046157

@ Springer

https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.3390/app12020680
https://doi.org/10.1109/ICDAR.2019.00109
https://doi.org/10.1109/ICDAR.2019.00109
https://doi.org/10.1021/ci00008a018
https://doi.org/10.48550/arXiv.2308.12234
https://doi.org/10.48550/arXiv.2308.12234
https://doi.org/10.1007/s10032-016-0263-5
https://doi.org/10.1007/s10032-016-0263-5
https://doi.org/10.1109/ICDAR.2013.288
https://doi.org/10.1109/ICDAR.2013.288
https://doi.org/10.1186/s13321-019-0400-5
https://doi.org/10.1186/s13321-019-0400-5
https://doi.org/10.26434/chemrxiv.7097960
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1186/1758-2946-3-33
https://doi.org/10.1021/acs.jcim.2c01480
https://doi.org/10.1186/s13321-020-00465-0
https://doi.org/10.1186/s13321-020-00469-w
https://doi.org/10.1126/science.126.3278.814
https://doi.org/10.1126/science.126.3278.814
http://trec.nist.gov/pubs/trec20/papers/UoB.chem.update.pdf
http://trec.nist.gov/pubs/trec20/papers/UoB.chem.update.pdf
https://ceur-ws.org/Vol-1178/CLEF2012wn-CLEFIP-SadawiEt2012.pdf
https://ceur-ws.org/Vol-1178/CLEF2012wn-CLEFIP-SadawiEt2012.pdf
https://doi.org/10.1007/s10032-002-0082-8
https://doi.org/10.1007/s10032-002-0082-8
https://doi.org/10.1007/978-3-031-41734-4_25
https://doi.org/10.1021/acs.jcim.8b00669
https://doi.org/10.1021/acs.jcim.8b00669
https://doi.org/10.1109/BIBM.2018.8621264
https://doi.org/10.1109/BIBM.2018.8621264
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1109/CVPR46437.2021.01283
https://doi.org/10.1016/j.compbiomed.2023.107187
https://doi.org/10.1016/j.compbiomed.2023.107187
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1186/s13321-022-00624-5
https://doi.org/10.1186/s13321-022-00624-5
https://doi.org/10.1109/ICASSP43922.2022.9746088
https://doi.org/10.1109/TPAMI.2002.1046157
https://doi.org/10.1109/TPAMI.2002.1046157

A.K.Shah et al.

50. Zanibbi, R., Pillay, A., Mouchere, H., Viard-Gaudin, C., Blostein,
D.: Stroke-based performance metrics for handwritten mathe-
matical expressions. In: International Conference on Document
Analysis and Recognition (ICDAR), pp. 334-338 (2011). https://
doi.org/10.1109/ICDAR.2011.75

@ Springer

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

https://doi.org/10.1109/ICDAR.2011.75
https://doi.org/10.1109/ICDAR.2011.75

	ChemScraper: leveraging PDF graphics instructions for molecular diagram parsing
	Abstract
	1 Introduction
	2 Related work
	2.1 Rule-based parsers
	2.2 Neural networks

	3 ChemScraper parsers
	4 Born-digital parser
	4.1 Extracting symbols from PDF
	4.2 Minimum spanning tree (MST)
	4.3 MST rightarrow visual structure graph
	4.4 Visual rightarrow molecular structure

	5 Generating training data from visual graphs
	6 Visual parser
	7 Evaluation
	7.1 Representations and metrics
	7.2 SMILES-based evaluation
	7.3 Graph-based evaluation

	8 Conclusion
	Acknowledgements
	References

