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Abstract—Generic open-source software frameworks are sig-

nificantly valuable for robotics research and development. With

the intention of providing off the shelf AUV/ASV control,

guidance, and operation solution, we developed a new open source

framework called Robot Operating System Marine Vehicle Pack-

ages (ROS-MVP). The framework provides three sub-modules: a

low-level controller, plugin-based behavior interface, and a mis-

sion planner. MVP mission planner comes with several common

behaviors such as trajectory following and depth tracking. MVP

is tightly integrated with ROS infrastructure and can be easily

configured for different marine robots. In this paper, we present

the details of ROS-MVP framework design and the field test

results on an AUV in Narragansett Bay, Rhode Island.

Index Terms—Autonomous Underwater Vehicle (AUV), Au-

tonomous Surface Vehicle (ASV), Open-source robotics, Marine

robotics, Marine vehicle guidance and control

I. INTRODUCTION

The emergence of unmanned marine vehicles is speeding
up because of the increased availability of consumer-grade
actuators, pressure housings, single board computers, among
other components. Such advancements on the hardware side
have enabled research groups from all around the world to
come up with new Autonomous Underwater Vehicles (AUV)
designs for various applications [1] [2] [3]. In the meantime,
new software frameworks also have emerged in order to power
the marine vehicles, decreasing the software development time
drastically. Open-source simulation environments [4] [5] draw
attention and create the possibility to kick-start marine robotics
projects without needing a hardware platform. While these
advancements have continued, many well-maintained small
software projects grew bigger and stronger and became the
building blocks for marine autonomy.

It is important for a framework to have a broad user
base which ensures the healthy life-cycle of the software,
for instances users can identify issues and provide contribu-
tions. Such frameworks also provide a unified programming
interface, providing easy integration between different pack-
ages within its ecosystem. For instance, the Robot Operating
System (ROS) has been powering a wide variety of robots
[6] since its release. The ROS middleware has provided
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basic interfaces for easy software adoption and integration,
accelerating the robotics development. The ros control [7] and
robot localization packages are a good examples.

Marine vehicles usually use a similar types of actuators,
excluding the soft-bodied vehicles. These include propellers,
thrusters, control surfaces, etc. The similarity within actuators
can be exploited to create a control algorithm that fits most
scenarios with different configurations. For example, control
allocation methods use a specific approach, therefore, marine
vehicles with various actuators can be controlled in the same
approach using different control allocation matrices. Further-
more, vehicle navigation and guidance problems are well-
developed with standard approaches. For example, robot local-
ization package [8] is widely used in the robotics community,
and the line-of-sight guidance law [9] is commonly used in
marine robots for trajectory tracking [10].

To our best knowledge, there is no generic ROS compati-
ble marine vehicle Guidance Navigation and Control (GNC)
framework that is open-source and freely accessible. There-
fore, we started the development of the ROS-MVP, an open-
source (General Public License version 3 license) marine
vehicle framework to fill the current gap. The rest of the
paper is organized as follows. In the section II related work
in marine robot software framework is reviewed. In section
III, we describe the ROS-MVP design in details. We present
our experiment results in section IV. Finally, we conclude the
paper and discuss the future work in section V.

II. RELATED WORK

There are several existing marine vehicle guidance, nav-
igation, and control software middlewares running on dif-
ferent kinds of marine robots. The MOOS-IvP [11] is the
most notable one. It comprises two main components: the
MOOS [12] for inter-process communication (IPC), and IvP
Helm for guidance and autonomy. It also has sensor fusion
capabilities for localization through pNav, a navigation stack
program. MOOS-IvP allows users to write custom software
while keeping the existing packages for their ecosystem by
using the Mission Oriented Operating Suite (MOOS). The
work [13] is a good example of using the MOOS-IvP, where
the authors successfully customized the MOOS-IvP framework
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and implemented a vessel tracking application with a Bluefin-
21 AUV. Moreover, in [14], an autonomy payload for Bluefin
Sandshark AUV was developed using MOOS-IvP framework.
However, it does not have a generic vehicle controller, users
of MOOS-IvP must write their own control software for their
vehicle. In addition to that, it is not compatible with ROS due
to their fundamental differences. Therefore, advancements in
the ROS ecosystem can not be reflected easily in the MOOS-
IvP ecosystem, and the gap is widening between them as
robotics communities lean towards ROS [6]. Although there
are some efforts to bridge these two frameworks together, such
as the MOOS-IvP ROS bridge [15], combining two different
architectures, remains to be a challenging task.

Furthermore, COLA2 [16] is a notable ROS-based frame-
work specialized on AUVs [17]. COLA2 has the full-stack
guidance, navigation and control solutions and currently run-
ning on the two AUVs, Sparus II and Girona 500, for a various
missions [18]. Nonetheless, despite the fact of being an open-
access project, COLA2 is a proprietary software that hampers
the possibility of it becoming a defacto standard for ROS-
based AUV control software.

Besides the MOOS-IvP and COLA2, some robotics sim-
ulation projects come with vehicle control, guidance and
localization packages. For instance, UUV Simulator [4] project
contains a simple thruster control allocation implementation,
and its successor, Project DAVE [19], has more features,
such as localization stack and perception sensor simulators
available. Finally, using the vehicle controller inside the UUV
Simulator imposes a high coupling problem that increases the
complexity of the maintenance process, not to mention the fact
that it is an unmaintained project as of today.

III. DESIGN

A. Overview to the Framework

Motivated by the limitations on existing marine robotic
frameworks, we started the development of a new framework
called ROS-MVP, essentially, a GNC system. As shown in the
figure 1, the proposed framework has three main components:
a low-level vehicle controller (called MVP-Controller), a state-
oriented behavior-based mission planner (called MVP-Helm),
and the navigation system developed using the robot local-
ization package [8]. The MVP-Controller is responsible for
computing a set of actuator commands to satisfy the requested
vehicle pose (position, velocity or orientation). It runs a
control allocation method [20] with quadratic programming
optimization under the hood. Then, The MVP-Helm process is
responsible for guidance by utilizing behaviors. It dispatches
desired vehicle pose to the MVP-Controller using guidance
laws, such as the line-of-sight path following. The MVP-Helm
and the MVP-Controller communicate over ROS topics. It is
possible to replace the MVP-controller with a custom solution,
e.g., a model-predictive controller or fuzzy logic controller,
with the same ROS topics and services setup.
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Fig. 1. MVP Architecture overview

B. Low-Level Controller design

The MVP-Controller uses a control allocation method to
compute the desired forces for the actuators. The flow diagram
for the MVP-Controller is shown in Fig.2. It works by first
computing the necessary force and torque that should act on
the body frame to achieve the desired pose using a Mul-
tiple Input Multiple Output Proportional Integral Derivative
(MIMO-PID) controller for each degree of freedom (DOF).
Then it feeds the target body frame force and torque to the
control allocation matrix and ignores the DOFs that are not
controlled in the current controller mode (configured by the
user). Then, it applies the quadratic programming solver [21]
to find the optimum set of forces for the thrusters to match
the requested force and torque. Finally, the actual thruster
command is solved based on the given thruster curves defined
as polynomial functions.
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Fig. 2. MVP Controller flow diagram
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MVP-Controller is configured via a YAML file where user
could define the PID gains for each control mode and DOF,
thrust curves for each thruster, relevant transform tree link
names, and the odometry topic source. To make the PID tuning
convenient, gains can be configured dynamically on the fly
using the ROS dynamic reconfigure mechanism and its RQT
plugin. Thrust curves that describe the force generated by the
propulsion systems for a given control input are configured as
general polynomials.

1) Control Law: The MVP-Controller uses the MIMO-
PID controller. It computes the resultant force and torque,
⌧ , needed on the vehicle for each DOF. The controller uses
the feedback from the vehicle pose, ⌘ = [x, y, z,�, ✓, ] and
v = [u, v, w, p, q, r]> using the SNAME 1950 notations [22].

2) Control Allocation: As indicated in Eq. 1, controller
allocation matrix, T is used to project the forces from in-
dividual actuators, U , into the forces and torques, ⌧ , in the
body frame. The elements in each column in T indicates the
contribution of the forces and torques from each actuator. Then
the contribution vectors were concatenated to create the control
allocation matrix T = [t1, t2..., tn].

⌧ = TU (1)

To find the optimal values in U such that the resulted
forces and torques, ⌧ , matches the required values, ⌧ ⇤, from
the control law as close as possible, we define an objective
function as shown in Eq.2 which is the sum of the squares of
the difference between ⌧ ⇤ and ⌧

J =(TU � ⌧ ⇤)>(TU � ⌧ ⇤)

=U>T>TU �U>T>⌧ ⇤ � ⌧ ⇤>TU + ⌧ ⇤>⌧ ⇤

=U>T>TU � 2⌧ ⇤>TU + ⌧ ⇤>⌧ ⇤

(2)

As shown in Eq.2, the objective function can be further
expanded into a similar format as the standard quadratic
programming (QP) problem expressed in Eq.3 and 4 where
the symbol replacements are indicated and the inequality
constraints are used to limit the resulting thrusts for each
thrusters. Such a QP problem is solved using the OSQP solver
[21] in the MVP-Controller.

min
x

J = (
1

2
x>Qx+ c>x)

subject to Ax  b
(3)

min U>
|{z}
x>

T>T| {z }
1
2Q

U|{z}
x

+(�2⌧ ⇤>T )| {z }
c>

U|{z}
x

subject to AU  b

(4)

Thrust curves describe the characteristics of the thruster
with respect to the control commands (e.g., PWM signals). In
MVP-Controller, thrust curves are defined using general poly-
nomials. A polynomial solver from GNU Scientific Library
[23] computes the control command C = [c1, c2, ..., cn]>,

after QP solver has obtained the optimum forces, U , for each
thrusters.

3) Configuration: The control allocation matrix can be con-
figured in two ways, either manually entered or automatically
computed from the given transform tree link names of the
actuators. The transform tree based thruster allocation matrix
generation works by computing the distances and rotation to
an defined center of gravity link. To acquire body frame force
and torque contribution per actuator for the allocation matrix
T , the distance and the rotation of an actuator to a center of
gravity link were computed.

In the MVP-Controller, user can define different control
modes, and in each mode user can decide which DOF to
control. For example, in the flight mode, the surge velocity
and yaw and pitch angles are controlled, and in the hold mode,
the X , Y , and Z position of the vehicle are controlled. For
the same DOF, user could also define different PID gains in
different modes. For instance, the PID gains for heading can be
different in surge and hovering modes as the vehicle’s regions
of operation are different.

C. Mission planner design
The MVP mission planner is designed to manage behaviors

using a finite state machine (FSM). The main actor in the
MVP mission planner is a ROS node called MVP-Helm.
The mission planner exploits the MVP controller’s ability to
separately control each DOFs. Each behavior is responsible for
generating control inputs for DOFs that they are programmed
to control. In addition to that, behaviors can trigger an FSM
state change. MVP Mission stack provides an abstract C++
class via Pluginlib package in ROS middleware for behavior
development, so the users of MVP mission planner can intro-
duce their behavior by using that library.

Figure 3 explains how the MVP-Helm node handles the
control inputs from active behaviors. As shown in Fig.3,
MVP-Helm is configured to have two states; ”survey” and
”start”. The ”survey” state controls the vehicle in flight mode
(Mflight = [u, , ✓]) while the ”start” uses the controller
in hold position mode (Mhold = [x, y, z]). As indicated by
different colors in Fig. 3, the vehicle is currently in the
”survey” state where path tracking, depth tracking, and the
periodic surfacing behaviors are active. By design, both depth
tracking and periodic surfacing behaviors controls the pitch
theta. To avoid conflicts, we have designed a priority-based
DOF selector to select the desired pose from different behav-
iors based on the priorities. For example, when the periodic
surfacing behavior is activated using a timer, the MVP-Helm
will send the desired pitch angle from the periodic surfacing
behavior rather than that from the depth tracking behavior to
the MVP-Controller because the periodical surfacing has a
higher priority rank (p = 2). We, currently, have implemented
several commonly used behaviors such as line-of-sight path
tracking, depth tracking and periodic surfacing, etc.

IV. RESULTS

The MVP is deployed on the recently developed prototype
ALPHA AUV [24] shown in figure 4, and field trials were
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Fig. 3. MVP Helm flow diagram. Priorities for desired vehicle pose requested from behaviors are shown in letter p. Green boxes indicate active state and
executed behaviors.

conducted to validate the performance. The ALPHA AUV
has three BlueRobotics T200 thrusters; horizontal and vertical
thrusters near the bow and one main thruster at the stern.
It is equipped with a Waterlinked A50 DVL, Xsens MTI-
630 AHRS (Attitude and heading reference system), and an
Adafruit Ultimate GPS for navigation. It can be operated with
and without a tether cable. Prior the field tests in the pond
and in Narragansett Bay, Rhode Island., several missions and
control scenarios were executed in the simulation to test the
premise of the MVP architecture.

Fig. 4. ALPHA AUV at the loading dock of the Graduate School of
Oceanography University of Rhode Island. The two tunnel thrustes can be
seen on the nose and the main thruster on the stern side. The mast on the
stern end of the vehicle is equipped WiFi, long range radio, and GPS.

A. Simulation Results

The simulation environment were developed leveraging the
Stonefish simulator [5]. In the figure 5, test results of MVP
architecture from the Stonefish simulator are shown. The con-
ducted mission is a similar mission that is shown in the figure
3. The vehicle starts its mission by diving to 2 meters depth
and moving towards the first goal point (x = 0, y = 0). When
the vehicle approaches the 3rd goal point (x = 20, y = 20),
the periodic surfacing is triggered and the behavior commands
the vehicle to climb up to the surface. After surfacing was done
within 10 seconds, the vehicle dives to the desired depth and
continues its survey. Note that during the simulation tests, the
simulated vehicle was equipped with two vertical thrusters;
one in the stern and one in the bow.

Fig. 5. Path tracking performance from the Stonefish simulator

B. Field test Results

Several field tests were conducted at Beach Pond, RI,
USA, and Narragansett Bay, RI, USA, to validate the MVP
architecture. In both of the tests, the vehicle was programmed
to conduct path-tracking and depth-following behaviors. The
programmed path was a 50m-by-50m square and the depth was
3 meters, and the result of one run is shown in 6. The vehicle
was able to follow the programmed path. However, the depth
tracking performance was poor due to improper PID gains and
ocean currents. In this mission periodic surfacing behavior was
disabled.

Fig. 6. Path tracking performance from the field test conducted at Narragansett
Bay.
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V. CONCLUSION AND FUTURE WORK

In this paper, a generic ROS-based software framework,
ROS-MVP, is presented for marine robotic platforms, such
as AUVs and ASVs. The introduced architecture has three
main components; a low-level controller (MVP-Controller),
a mission planner (MVP-Helm), and behaviors. The first
component, MVP-Controller, provides a generic multiple DOF
vehicle controller using MIMO-PID with QP optimization. It
requires odometry information from a navigation source, such
as the ROS robot localization package. The second component,
MVP-Helm, pilots the vehicle by executing behaviors and
sending their outputs to the vehicle controller. A finite state
machine decides behavior execution and a priority pool selects
the actions with the highest priority from the behavior results.
The last component, MVP behaviors, are customizable and
are managed and executed by the MVP-Helm. In order to
validate the system performance and functionality, simulations
and field tests have been conducted using ALPHA AUV, and
the results were presented.

The proposed framework is planned to be further tested on
an ASV platform. The research team successfully integrated
MVP framework to Heron ASV (from Clearpath Robotics)
in the simulation environment, and will move forward with
hardware integration.

The current version of the MVP architecture has several
limitations. First, it currently doesn’t support control surfaces
such as fins and masts, and azimuth thrusters. The availability
of testing platforms is the main reason behind this limitation.
However, within the development process, the Stonefish [5]
simulator is found to be a sufficient sandbox environment
for developing and testing such a feature. Secondly, MVP
is only tested in Ubuntu 20.04 operating system and is only
compatible with ROS1. As the robotics community migrates to
ROS2 [25], it remains to be a crucial limitation. The research
team has planned actions to resolve these two limitations
in the near future. Overall, with these changes and further
developments, we expect to provide an customizable ROS
compatible GNC framework for marine vehicles. We hope to
provide this vital resource to the community, and have it be
openly accessible for new marine vehicle projects in the future.
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generic and simple control framework for ros. The Journal of Open
Source Software, 2(20):456–456, 2017.

[8] T. Moore and D. Stouch. A generalized extended kalman filter imple-
mentation for the robot operating system. In Proceedings of the 13th
International Conference on Intelligent Autonomous Systems (IAS-13).
Springer, July 2014.

[9] Anastasios M Lekkas and Thor I Fossen. Line-of-sight guidance for
path following of marine vehicles. Advanced in marine robotics, pages
63–92, 2013.

[10] Zhi Li, Ralf Bachmayer, and Andrew Vardy. Path-following control for
unmanned surface vehicles. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 4209–4216, 2017.

[11] Michael R Benjamin, Henrik Schmidt, Paul M Newman, and John J
Leonard. Nested autonomy for unmanned marine vehicles with moos-
ivp. Journal of Field Robotics, 27(6):834–875, 2010.

[12] Paul Michael Newman. Moos-mission orientated operating suite. 2008.
[13] Artur Wolek, James McMahon, Benjamin R. Dzikowicz, and Brian H.

Houston. Tracking multiple surface vessels with an autonomous un-
derwater vehicle: Field results. IEEE Journal of Oceanic Engineering,
47(1):32–45, 2022.

[14] Oscar A. Viquez, Erin M. Fischell, Nicholas R. Rypkema, and Henrik
Schmidt. Design of a general autonomy payload for low-cost auv r&d.
In 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), pages 151–
155, 2016.

[15] Kevin DeMarco, Michael E West, and Thomas R Collins. An imple-
mentation of ros on the yellowfin autonomous underwater vehicle (auv).
In OCEANS 2011, pages 1–7. IEEE, 2011.

[16] Narcis Palomeras, Andres El-Fakdi, Marc Carreras, and Pere Ridao.
Cola2: A control architecture for auvs. IEEE Journal of Oceanic
Engineering, 37(4):695–716, 2012.

[17] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, Andrew Y Ng, et al. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[18] Nuno Gracias, Pere Ridao, Rafael Garcia, Javier Escartı́n, Michel
L’Hour, Franca Cibecchini, Ricard Campos, Marc Carreras, David Ribas,
Narcı́s Palomeras, Lluis Magi, Albert Palomer, Tudor Nicosevici, Ricard
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