
1

Hybrid Quantum-Classical Benders’
Decomposition for Federated Learning

Scheduling in Distributed Networks
Xinliang Wei, Member, IEEE , Lei Fan, Senior Member, IEEE , Yuanxiong Guo, Senior Member, IEEE ,

Yanmin Gong, Senior Member, IEEE , Zhu Han, Fellow, IEEE and Yu Wang, Fellow, IEEE

Abstract—Scheduling multiple federated learning (FL) models within a distributed network, especially in large-scale scenarios, poses
significant challenges since it involves solving NP-hard mixed-integer nonlinear programming (MINLP) problems. However, it’s imperative
to optimize participant selection and learning rate determination for these FL models to avoid excessive training costs and prevent
resource contention. While some existing methods focus solely on optimizing a single global FL model, others struggle to achieve
optimal solutions as the problem grows more complex. In this paper, exploiting the potential of quantum computing, we introduce
the Hybrid Quantum-Classical Benders’ Decomposition (HQCBD) algorithm to effectively tackle the joint MINLP optimization problem
for multi-model FL training. HQCBD combines quantum and classical computing to solve the joint participant selection and learning
scheduling problem. It decomposes the optimization problem into a master problem with binary variables and small subproblems with
continuous variables, then leverages the strengths of both quantum and classical computing to solve them respectively and iteratively.
Furthermore, we propose the Hybrid Quantum-Classical Multiple-cuts Benders’ Decomposition (MBD) algorithm, which utilizes the
inherent capabilities of quantum algorithms to produce multiple cuts in each round, to speed up the proposed HQCBD algorithm.
Extensive simulation on the commercial quantum annealing machine demonstrates the effectiveness and robustness of the proposed
methods (both HQCBD and MBD), with improvements of up to 70.3% in iterations and 81% in computation time over the classical
Benders’ decomposition algorithm on classical CPUs, even at modest scales.

Index Terms—Federated Learning, Participant Selection, Learning Scheduling, Hybrid Quantum-Classical Optimization

F

1 INTRODUCTION

With the advancement of technology, quantum computing
(QC) has gained widespread attention due to the realization
of speedups offered by quantum techniques for complex
computational problems. This has resulted in transforma-
tional breakthroughs on specific tasks accomplished with
near-term quantum computers. QC has more computational
power than classical computers and may be faster at solving
complex optimization problems, e.g., random quantum cir-
cuit sampling [1], Gaussian boson sampling [2], and combi-
natorial optimization [3]–[5]. In this paper, by leveraging the
parallel computing capability of QC, we focus on designing

• X. Wei and Y. Wang are with the Department of Computer and In-
formation Sciences, Temple University, Philadelphia, PA 19112. Email:
{xinliang.wei, wangyu}@temple.edu. L. Fan is with the Department of
Engineering Technology and Department of Electrical and Computer
Engineering at the University of Houston, Houston, TX 77004. Email:
lfan8@central.uh.edu. Z. Han is with the Department of Electrical and
Computer Engineering at the University of Houston, Houston, TX
77004 USA, and also with the Department of Computer Science and
Engineering, Kyung Hee University, Seoul, South Korea, 446-701. Email:
hanzhu22@gmail.com. Y. Guo and Y. Gong are with the Department
of Information Systems and Cyber Security and the Department of
Electrical and Computer Engineering, University of Texas at San An-
tonio, San Antonio, TX 78249, respectively. Email: {yuanxiong.guo,
yanmin.gong}@utsa.edu. X. Wei and Y. Wang are the co-corresponding
authors. The work is partially supported by the US NSF (Grant No.
CCF-1908843, CNS-2006604, CNS-2107216, CNS-2128368, CMMI-
2222810, ECCS-2302469, CNS-2106761, and CMMI-2222670), the US
Department of Transportation, Toyota, Amazon and Japan Science and
Technology Agency (JST) Adopting Sustainable Partnerships for Innova-
tive Research Ecosystem (ASPIRE) JPMJAP2326.

a new quantum-inspired scheduling algorithm to solve a
complex joint participant selection and learning scheduling
problem for federated learning (FL) in distributed networks.

FL is a distributed artificial intelligence (AI) approach
that allows for the training of high-quality AI models by
aggregating local updates from multiple FL clients (or work-
ers), such as IoT devices, without direct access to the local
data [6]–[10]. This potentially prevents the disclosure of
sensitive user information and preferences, reducing the
risk of privacy leakage. Nevertheless, when deploying the
FL framework in distributed networks, there are two chal-
lenges. First, the computing power and network resources
of servers, as well as their data distributions, are diverse.
Some low-performance servers may cause the convergence
process to slow down and reduce training performance.
Furthermore, dispersed computing resources and high net-
work latency may result in high training costs. Second, in the
practical scenario, concurrently training multiple models in
the shared distributed network creates competition for com-
puting and communication resources. As shown in Fig. 1,
two FL models are trained concurrently and each FL model
requires one parameter server (PS) and three workers for
model training. In this case, which FL model is preferentially
served at which server directly affects the total training
cost of all FL models. To this end, appropriate participant
selection and learning schedules are fairly crucial for multi-
model FL training.

As a result, we concentrate primarily on the problem of
joint participant selection and learning scheduling in multi-
model FL training scenarios. It should be noted that in

2

FL Models

Distributed Server Model broadcas�ng & global aggrega�ng

Local computa�on

PS 1Worker 1 Worker 2

Worker 3
PS 2

Worker 2

Worker 1

Worker 3

Fig. 1: The training process of distributed federated learning.

distributed networks, any server can serve as either a PS
or a client, and that participant selection includes selecting
both the PS and clients for each FL model. For clarity, we
refer to a client as an FL worker. It is worth noting that
both participant (client) selection and learning scheduling
problems have been studied in FL using classical computers
recently [11]–[14]. However, most existing works focus on
optimizing a single global FL model rather than multiple
FL models. More importantly, none of these works take into
account the PS selection for multiple FL models. Recently,
Wei et al. [15] formulated a MINLP model for the joint
participant selection and learning scheduling problem in
multi-model federated edge learning, and proposed multi-
stage methods to solve the joint optimization problem. Nev-
ertheless, due to the nature of the formulated optimization
as a MINLP problem, the proposed methods may not lead to
optimal solutions and may not scale well when the problem
grows more complex.

To address the aforementioned issue, quantum comput-
ing has recently emerged as a powerful optimization tool
[3]–[5]. Such approaches, however, may not be competitive
until the shortcomings of QC, such as the limited number
of qubits, are overcome by further technological advance-
ments. To that end, several hybrid quantum-classical solu-
tions [16], [17] have been proposed to tackle optimization
problems by leveraging the complementary strengths of
quantum and classical computers. For example, Ajagekar et
al. [17] proposed a hybrid solution strategy for optimization
problems that uses quantum annealing (QA). Still, it may
result in longer computational times with no guarantee
of feasibility for large-scale scheduling problems due to
the inefficient use of quantum solution techniques. Subse-
quently, some researchers in [18]–[20] presented the novel
hybrid quantum-classical optimization technique through
the decomposition of the problem into smaller tractable
master problems and subproblems.

Inspired by the pioneers, we attempt to solve our joint
participant selection and learning scheduling problem by
the hybrid quantum-classical optimization approach com-
bined with decomposition techniques. Such an approach
enables us to fully utilize the capabilities of both quantum
and classical computers. In addition, commercial quantum
annealers can provide much more qubits, compared with
gated-based quantum computers at the current stage. The
quantum annealer can solve the quadratic unconstrained
binary optimization (QUBO) problem using the Ising model.

The constrained integer programming model of the master
problem can be reformulated as the QUBO model. As a re-
sult, we attempt to develop novel hybrid quantum-classical
algorithms on the quantum annealer.

Three research challenges exist in developing efficient
hybrid quantum-classical techniques with decomposition
schemes. First, how to convert our original MINLP problem
into an integer program (IP) problem and even further convert
it into a QUBO model as an input to the quantum annealer?
Second, how to design a novel hybrid quantum-classical strategy
that solves the corresponding problem in fewer iterations? Last,
how to derive an efficient number of integer cuts that iteratively
reduce the search space and accelerate the convergence of the
hybrid quantum-classical methods?

To handle the above challenges, we develop two novel
hybrid quantum-classical algorithms to demonstrate the
potential of such hybrid approaches. To address the first
challenge, we leverage the linearization and Benders’ de-
composition (BD) technique which is widely employed for
solving MILP problems to convert our MINLP problem
into an integer programming (IP) master problem and
linear programming (LP) subproblems and then present a
HQCBD algorithm. The master problem will be solved by
the quantum annealer while subproblems will be solved by
the classical computer. For the second and third challenges,
we further design a multiple-cut version of HQCBD (MBD),
by employing quantum computers in solving the master
problem which can provide multiple feasible solutions. Fol-
lowing that, multiple subproblems are constructed based
on these feasible solutions and each subproblem returns a
Benders’ cut to the master problem. By doing so, multiple
cuts will be added to the master problem as constraints and
further hasten the convergence speed. At last, we investigate
the impact of different numbers of cuts of the MBD strategy
by setting up various cases. The major contributions of this
paper are summarised as follows.

• We first formulate a joint participant selection (both
PS and workers) and learning scheduling problem for
multi-model FL in a distributed network as a MINLP
problem, aiming to minimize the total learning cost.

• We then propose a novel HQCBD algorithm to tackle
the joint optimization problem. By leveraging the com-
bination of quantum computing and classical optimiza-
tion techniques, our HQCBD algorithm can quickly
converge to the desired solution as the classical BD
algorithm does but with much fewer iterations and
faster speeds.

• We further present a multiple-cuts version of HQCBD
(MBD), to accelerate the convergence speed by taking
multiple outputs from the quantum annealer to gener-
ate multiple cuts in each round. By selecting various
numbers of cuts, MBD can achieve varying levels of
performance improvement.

• We conduct extensive simulations with real FL tasks as
well as the commercial quantum computer to evaluate
our proposed algorithms. Numerous experiments have
demonstrated that our proposed HQCBD and MBD can
achieve significant advancement (up to 70.3% saving
of iterations and 81% reduction of computation time)
compared to the BD algorithm on classical CPUs even
at small scales.

3

The remainder of this article is organized as follows.
Section 2 presents an overview of the related works. In
Section 3, the system model and problem formulation are
introduced. Section 4 presents the Benders’ decomposition,
quantum formulation, and our proposed HQCBD and MBD
algorithms. Performance evaluation is discussed in Section 5
and conclusions are presented in Section 6. A preliminary
version of this paper appears as [21].

2 RELATED WORK

2.1 Federated Learning
Federated learning emerges as an efficient distributed ma-
chine learning approach to exploit distributed data and
computing resources, so as to collaboratively train ma-
chine learning models. Currently, the efforts of FL have
focused on the communication and energy efficiency [6],
[22], [23], the convergence and adaptive control [13], [24],
the resource allocation and model aggregation [25]–[27]. For
example, Yang et al. [22] studied the joint computation and
transmission optimization problem aiming to minimize the
total energy consumption for FL over wireless communi-
cation networks, then proposed an iterative algorithm to
derive a near-optimal solution. Li et al. [23] formulated a
compression control problem and proposed a convergence-
guaranteed FL algorithm with flexible communication com-
pression that allows participants to compress their gradients
to different levels before uploading to the central server.
Wang et al. [13] focused on FL training convergence and
adaptive control in edge computing without client selection.
They proposed a control algorithm to determine the trade-
off between local update and global parameter aggregation
so as to minimize the loss function. In addition, various
studies related to hierarchical federated learning (HFL) were
discussed, which focus on the use of edge computing and
mobile devices. Liu et al. [24] proved that HFL can achieve
convergence by using cloud and edge servers as two-tier pa-
rameter servers to aggregate the partial models from mobile
clients. Luo et al. [25] investigated the optimization problem
of resource allocation and edge association to minimize
global costs for device users under HFL. Wang et al. [26]
examined the formation of cluster structures in HFL, where
edge servers are clustered for model aggregation. Also,
Meng et al. [27] studied federated edge learning by using
decentralized P2P methods. While some of these works also
consider learning control of FL, they either consider differ-
ent FL topologies (e.g. HFL) or optimize different objectives.

2.2 Client Selection and Learning Scheduling
Client selection and learning scheduling are critical prob-
lems, particularly in distributed FL where it is inevitable
to communicate among servers. Hence, client selection or
client sampling has been well studied in FL recently [11],
[12], [28]–[32]. For example, Nishio and Yonetani [11] stud-
ied a client selection problem in edge computing where the
edge server acts as a PS and numerous mobile clients are
selected as workers. Their client selection aimed to maxi-
mize the number of selected workers under time constraints.
Cho et al. [28] conducted a convergence analysis of FL using
biased client selection and found that selecting clients with
higher local losses leads to faster convergence than using
unbiased client selection. Ribero and Vikalo [29] proposed a

modified FedAvg algorithm for updating the global model
in communication-constrained settings based on collecting
models from clients and only clients whose model difference
exceeds the threshold will be sampled for global updates.
Marnissi et al. [30] further designed a client selection strat-
egy based on the gradient norms importance to improve
the communication efficiency of FL. Similarly, Balakrishnan
et al. [32] also introduced diversity in the client selection
problem by leveraging submodular maximization. Lai et al.
[31] proposed a framework to guide participant selection
in FL aiming to improve the training performance and indi-
cated that clients with the greatest utility can improve model
accuracy and hasten the convergence speed. Furthermore,
Jin et al. [12] examined both the learning control of FL
and the edge provisioning problem in distributed networks.
Although their work is similar to ours, they did not take
into account the selection of PS, and in their scenario, the
remote cloud center always served as the PS. In addition, all
aforementioned works do not take the concurrent multiple
FL models training case into account which significantly
affects the total training performance of all FL models.

Recently, we have considered participant selection to
minimize the total learning cost in multi-model federated
edge learning [9], [15]. In [9], we studied a participant
selection problem for multiple hierarchical FL sessions with
a fixed learning rate, which is a completely different setting
from this paper. In [15], we formulated a joint participant
selection and learning scheduling problem in multi-model
FL and proposed both two/three-stage optimization meth-
ods and greedy heuristics to solve the joint optimization
problem. The studied optimization problem in [15] is similar
but different to the problem we formulate here since we
introduce a new learning cost item - participant cost which
the FL model owner needs to pay the participants of FL
training. In addition, in this paper, we use a quantum-
assisted approach to tackle the problem, while in [15] we
use classical optimization approaches. In Section 5, we will
compare the performance of a modified version of the two-
stage method in [15] with our hybrid quantum approach for
our problem.

2.3 Hybrid Quantum Optimization
Quantum computing (QC) [33] has been proven to be supe-
rior to solving many challenging computationally intensive
problems [3]–[5], [34]–[36]. However, the application of QC
is limited by the current state of a quantum computer (such
as availability or cost). To address this, a hybrid quantum-
classical computing framework has been developed for solv-
ing a complex optimization problem where both quantum
and classical computers are used.

Such hybrid quantum optimization has been newly ap-
plied in different areas including machine learning, mobile
computing, network communication, task scheduling, and
classification [16]–[20], [37]. For instance, Tran et al. [16]
first proposed a hybrid quantum-classical approach to solve
the complete tree search problem. They decomposed the
original problem into the master problem and subprob-
lems where both master problem and subproblems were
solved by quantum annealer, and the global search tree was
maintained by the classical computer. Ajagekar et al. [19]
proposed two hybrid QC-based optimization techniques

4

for solving large-scale mixed-integer linear programming
(MILP) and mixed-integer fractional programming (MIFP)
scheduling problems. Similarly, both [18] and [20] intro-
duced a hybrid quantum-classical algorithm by leveraging a
different decomposition technique (Benders’ Decomposition
(BD)) to solve the MILP optimization problem. Paterakis
[37] also provided a hybrid quantum-classical optimization
algorithm for unit commitment problems and further intro-
duced a method for employing various cut selection criteria
in order to control the size of the master problem.

Inspired by the aforementioned works, we apply the hy-
brid quantum-classical framework proposed by [18], [20] to
tackle a specific real-world optimization problem that jointly
optimizes the participant selection and learning schedule in
multi-model FL. For this particular problem, we propose a
distinct solving process where the binary master problem is
solved by quantum annealer and subproblems with con-
tinuous variables however are addressed by the classical
computer. Different from [18], [20], we also consider the
multiple-cuts strategy to hasten the convergence speed.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce our system model, feder-
ated learning model, and associated cost model. Then we
formulate the studied learning scheduling problem.

3.1 System Model
The distributed network connecting all computing servers
is modeled as a graph G(V,E), where V = {v1, · · · , vN}
and E = {e1, · · · , eL} are the sets of N servers and L
direct connection links, respectively. Generally, each server
vi owns a specific storage capacity sci and CPU frequency
sfi while each link ej has an available bandwidth bj . Each
server holds a distinct set of datasets for local training. We
assume that each server can keep multiple types of datasets
(e.g., text, image) for FL training and the dataset used by
the j-th FL model in the i-th server is denoted by Di,j .
In this paper, we focus on the participant selection based
on computing/communication resources in the distributed
network and do not consider training data distributions
(which is another important research topic and orthogonal
to our research).

3.2 Federated Learning Model
We assume that parallel FL was conducted where multiple
models are being trained concurrently in the network. We
consider a classical FL process that consists of a PS and mul-
tiple workers. Instead of using a single centralized server as
the PS of all models, we select a group of servers distributed
in the network with enough capacity as its participants
to jointly train the FL model. Assume that W FL models
(M = {m1, · · · ,mW }) are trained concurrently and each FL
model has certain requirements for the training task, i.e.,

1) j FL workers and one PS, with the minimum required
CPU frequency �j and model size µj , respectively.

2) the minimum required global convergence rate &j .
We further assume that each server can only play a role as
either the PS or the worker for any FL model at one time.

The training process of each FL model includes three
stages: (a) initializing and broadcasting the global model
of mj to each participant; (b) each worker performs the

local model computation using its own dataset; and (c)
aggregating the local models from workers, as illustrated
in Fig. 1 and detailed in the sequel.

Stage 1: Global Model Initialization. In Stage 1, we
initialize the global model parameter for each FL model as
!j and send the global model parameter to each selected
participant.

Stage 2: Local Model Computation. Let the local model
parameters of model mj on the server vi be !i,j and the loss
function on a training data sample s be fi,j(!i,j , dxs, dys),
where dxs is the input feature and dys is the required label.
Then the loss function on the whole local dataset of vi is
defined as

Fi,j(!i,j) =
1

|Di,j |
X

s2Di,j

fi,j(!i,j , dxs, dys). (1)

Generally, FL will perform round by round and we denote
the total number of global aggregation, and local updates as
↵̂ and �̂, where ↵ and � are their indexes, respectively. In
the ↵-th round, each worker runs a number of local updates
to achieve a local convergence accuracy %j 2 (0, 1). At the �-th
local iteration, each worker follows the same local update
rule as

!↵,�i,j = !↵,��1
i,j � ⌘rFi,j(!

↵,��1
i,j), (2)

where ⌘ is the learning rate of the loss function. This process
will run until

Fi,j(!
↵,�̂
i,j)� F ⇤

i,j  %j [Fi,j(!
↵,0
i,j)� F ⇤

i,j]. (3)

Here, we set !↵,0i,j = !j .
Stage 3: Global Aggregation. At this stage, one partic-

ipant has to be chosen as the PS. After �̂ local updates,
all workers send their local model parameter !↵,�̂i,j to the
PS. The PS performs FedAvg to aggregate the global model
parameters as

!↵j =
X

i2Sj

Di,j

Dj
!↵�1,�̂
i,j , (4)

where Dj =
S

i2Sj
Di,j is the total data sample from j

workers and Sj is the selected workers set. The global
convergence of the global model is defined as

Gj(!
↵̂
j)� G⇤

j  &j [Gj(!
0
j)� G⇤

j], (5)

where G⇤
j is the global optimum of FL model mj .

To achieve the desired local convergence rate %j and
global convergence rate &j , we must determine the number
of local updates �̂ = 'j and global iterations ↵̂ = #j based
on equations (3) and (5). As per the above observation,
we can predefine the global convergence rate &j for each
FL model and perform local updates and global iterations
accordingly. This leads to a relationship between the con-
vergence rate and the number of local updates and global
iterations [12], [22], [38]–[40].

#j �
2�2

�2⇠
ln

✓
1

&j

◆
1

1� %j
, #0 ln

✓
1

&j

◆
1

1� %j
, (6)

'j �
2

(2� ��)�� log2
✓

1

%j

◆
, '0log2

✓
1

%j

◆
, (7)

where ⇠ and � are two variables in ranges (0, ��] and (0, 2
L)

related to the �-Lipschitz parameter and �-strongly convex
parameter, respectively. #0 and '0 are two constants with
the definition #0 = 2�2

�2⇠ and '0 = 2
(2���)�� .

5

3.3 Cost Model
Our cost model consists of four parts: transmission cost,
local training cost, global aggregation cost, and participant cost,
defined as follows.

Transmission Cost: The primary component of the trans-
mission cost is attributed to the costs of uploading and
downloading the FL model. We use the model size µj of
FL model mj to represent the amount of data uploaded
and downloaded. To determine the transmission cost for
downloading models from the PS or uploading models to
the PS, we utilize the shortest path within the distributed
network. Let ⇢j(vi, vk) be the transmission cost of model
mj from server vi to vk, and it can be calculated by
⇢j(vi, vk) =

P
el2Pi,k

µj

bl
, where Pi,k is the shortest path

connecting vi to vk. Then, the total transmission cost is

Ctrans
j = 2·#j

NX

k=1

NX

i=1

xk,j · yi,j · ⇢j(vi, vk). (8)

Here, vi and vk represent the candidates for j-th FL model’
worker and PS, respectively. The decision variables, xk,j and
yi,j , determine whether server vk is selected as a PS and vi
is selected as an FL worker for the j-th FL model. Note that
in our model any server can only be assigned to train one
FL model and perform one role at a time, which will be a
constraint (12d) on xk,j and yi,j in our formulated problem.

Local Training Cost: The cost of local training for the
j-th FL model is defined below, where the function (·) is
used to define the CPU cycles required to process the sample
data Dj,i.

Clocal
j = #j ·'j ·

NX

i=1

yi,j ·
 (Dj,i)

sfi
. (9)

Global Aggregation Cost: The cost of global aggregation
of all uploaded models uses the similar (·) function and is
defined as follows.

Cglobal
j = #j ·

NX

i=1

xi,j ·
 (µj)

sfi
. (10)

Participant Cost: Each participant of FL model mj will
be paid a basic rental cost for utility management which is
related to their CPU frequency. Let pj be the unit price for a
CPU unit, accordingly, the participant cost for jth FL model
is defined as

Crent
j =

NX

i=1

(xi,j + yi,j)· pj · sfi. (11)

3.4 Problem Formulation
In the multi-model FL scenario introduced earlier, we aim
to determine the participants for each model and sched-
ule their local and global updates. We assume that each
model has only one parameter server and j workers,
i.e.,

PM
i=1 xi,j = 1 and

PM
i=1 yi,j = j . The maximal

local convergence rate of model mj is represented by
%j 2 [0.01, 0.99], while &j is the predetermined requirement
for the number of global iterations and local updates for
model mj . The decision variables for our optimization are
xi,j , yi,j , and %j .

We will now present the formulation of our problem,
which involves selecting the optimal PS and workers for

The O
riginal Problem

Master Problem – IP Problem
Solve X () via format & solve QUBO problem

Subproblem – LP Problem
Solve Y (and) via classical solver

Benders' Decom
posi�on

QPU

CPU

an op�m
ality or

feasibility cut
reach threshold

or max_itr ?yes

no

Proposed HQCBD Method

Fig. 2: The proposed HQCBD framework.

each model in the distributed network while achieving the
desired local convergence rate. The objective is to minimize
the total learning cost of all FL models, given by the follow-
ing expression.

min
x,y,⇢

WX

j=1

(Ctrans
j + Clocal

j + Cglobal
j + Crent

j) (12)

s.t. xi,jµjj  sci, xi,j�j  sfi, 8i, j, (12a)
yi,jµj  sci, yi,j�j  sfi, 8i, j, (12b)
NX

i=1

xi,j = 1,
NX

i=1

yi,j = j , 8j, (12c)

WX

j=1

(xi,j + yi,j)  1, 8i, (12d)

i 2 (1, . . . , N), j 2 (1, . . . ,W), (12e)
xi,j 2 {0, 1}, yi,j 2 {0, 1}, (12f)
%j 2 [0.01, 0.99]. (12g)

Constraints (12a) and (12b) ensure that the CPU and storage
capacity of each FL model are satisfied. Constraint (12c)
guarantees the number of PS and FL workers of each model
is 1 and j , respectively. Constraint (12d) states that each
server can only be assigned to train one FL model and
perform one role at a time. The decision variables and their
ranges are given in (12e)-(12g). Note that the formulated
problem (12) is a MINLP problem, which is NP-hard in
general and challenging to solve with classical computing.

4 HYBRID QUANTUM ASSISTED BENDERS’ DE-
COMPOSITION METHODS

Motivated by the advances in QC, we decouple the original
problem into a master problem and a subproblem by lever-
aging Benders’ Decomposition [18], [20] and solving them
using quantum and classical methods, respectively. Fig. 2
shows the framework of our proposed HQCBD.

We first briefly introduce the basic idea of BD. BD is a
useful algorithm for solving convex optimization problems
with a large number of variables. It works best when a large
problem can be decomposed into two (or more) smaller
problems that are individually much easier to solve [18].
As can be seen in the right part of Fig. 2, at a high level,
the procedure will iteratively solve the master problem and
subproblem. Each iteration provides an updated upper and

6

lower bound on the optimal objective value. The result of
the subproblem either provides a new constraint to add to
the master problem or a certificate that no finite optimal
solution exists for the problem. The procedure terminates
when it is shown that no finite optimal solution exists
or when the gap between the upper and lower bound is
sufficiently small [41].

4.1 Problem Linearization and Reformulation
We now convert our original problem (12) to a form where
BD can be applied. We first reformulate it by extracting
all constant variables and further introducing additional
continuous variables uj and wj to replace %j as below

min
x,y,u,w

WX

j=1

[uj ·
NX

k=1

NX

i=1

a1,i,j,k·xk,j · yi,j + wj ·
NX

i=1

a2,i,j · yi,j

+ uj ·
NX

i=1

a3,i,j ·xi,j +
NX

i=1

a4,i· (xi,j + yi,j)] (13)

s.t. (12a)� (12g),

b1  uj  b2, (13a)
b3  wj  b4, (13b)

where the four sets of constant variables are a1,i,j,k =
2#0ln(

1
&j
)· ⇢j(vi, vk), a2,i,j = '0#0ln(

1
&j
)· (Dj,i)

fi
, a3,i,j =

#0ln(
1
&j
)· (µj)

fi
, and a4,i = �fi. Also, uj = 1

1�%j , wj =

uj log2(
uj

uj�1), b1 = 1.01, b2 = 100, b3 = 1.435 and
b4 = 6.725.

Note that Problem (13) consists of several terms that
are the products of integer and continuous variables, e.g.
uj ·xk,j · yi,j , wj · yi,j . Hence, we further introduce variables
ok,i,j , pi,j and qi,j to represent the product of an integer
variable and a continuous variable as below

min
x,y,u,w,o,p,q

WX

j=1

[
NX

k=1

NX

i=1

a1,i,j,k· ok,i,j +
NX

i=1

a2,i,j · pi,j

+
NX

i=1

a3,i,j · qi,j +
NX

i=1

a4,i· (xi,j + yi,j)] (14)

s.t. (12a)� (12g), (13a), (13b),

b1xk,jyi,j  ok,i,j  b2xk,jyi,j , (14a)
uj � ok,i,j  b2(1� xk,jyi,j), (14b)
uj � ok,i,j � b1(1� xk,jyi,j), (14c)
b3yi,j  pi,j  b4yi,j , (14d)
wj � pi,j  b4(1� yi,j), (14e)
wj � pi,j � b3(1� yi,j), (14f)
b1xi,j  qi,j  b2xi,j , (14g)
uj � qi,j  b4(1� xi,j), (14h)
uj � qi,j � b3(1� xi,j). (14i)

So far, we have linearized the product of binary and
continuous variables as (u,w, o, p, q), and therefore we can
apply BD. In problem (14), for each possible choice x̄ and
ȳ, we find the best choices for u,w, o, p, q by solving a
linear programming. So we regard u,w, o, p, q as a function
of x, y. Then we replace the contribution of u,w, o, p, q to
the objective with a scalar variable representing the value
of the best choice for a given x̄ and ȳ. We start with a
crude approximation to the contribution of u,w, o, p, q and

then generate a sequence of dual solutions to tighten up
the approximation. In addition, the problem (14) can be
rewritten as a general form as follows.

min
X,Y

c|X + h|Y (15)

s.t. A1X = a1, (15a)
A2X  a2, (15b)
X|BX + GY  a3, (15c)
X = [x, y]|, X 2 X, (15d)
Y = [u,w, o, p, q]|, Y 2 Y, (15e)

where c and h are coefficient vectors for binary and con-
tinuous variables in the objective function, respectively.
A1,A2,B,G are coefficient matrices in the constraints while
a1, a2 and a3 are constant vectors. Note X and Y are binary
and continuous decision variables, respectively. Next, we
will detail the formulation of the subproblem (LP problems)
and master problem (an integer program (IP)) after the BD.

4.2 Classical Optimization for Subproblem
Based on the structure of BD in Section 4.1, the subproblem
is defined as follows.

min
u,w,o,p,q

NX

i=1

WX

j=1

(
NX

k=1

a1,i,j,k· ok,i,j + a2,i,j · pi,j + a3,i,j · qi,j)

(16)
s.t. (13a), (13b), (14a)� (14i).

The general form of the subproblem can be further
represented as follows.

Subproblem: min
Y

h|Y (17)

s.t. �GY � X|BX� a3, (17a)
Y = [u,w, o, p, q]|, Y 2 Y. (17b)

In addition, the dual problem of the subproblem is
defined below and ⇡ is the dual variable, i.e.,

max
⇡

(X|BX� a3)|⇡ (18)

s.t. �G|⇡  h, (18a)
⇡ � 0. (18b)

This problem can be directly solved by a classical LP
solver in a classical computer, e.g. Scipy [42] or Gurobi [43].

4.3 Quantum Formulation for Master Problem
Based on the dual problem of the subproblem, the master
problem in a general form can be defined below.

Master: min
X

c|X + � (19)

s.t. A1X = a1, (19a)
A2X  a2, (19b)

� � �down, (19c)

� � (X|BX� a3)|⇡k, 8k 2 K̂, (19d)
X = [x, y]|, X 2 X, (19e)

where � is the optimal value of the subproblem at the cur-
rent iteration. Constraints (19c) is the feasible lower bound
of the subproblem and (19d) is the corresponding Benders’
cut, where K̂ is the stored index set of optimality cuts from
the previous iterations.

7

QUBO Formulation. Quantum annealers are capable
of solving optimization problems that are formulated as
QUBO. To make use of advanced quantum annealers, the
master problem must be transformed into its corresponding
QUBO formulation. A QUBO problem commonly involves
a vector of binary variables x and an upper-diagonal matrix
Q, a N 0 ⇥ N 0 matrix with upper-triangular properties. The
objective of QUBO is to minimize the following function:

f(x) =
X

i2N 0

Qi,ixi +
X

i<j

Qi,jxixj . (20)

where Qi,i is the diagonal terms with linear coefficients
and Qi,j is the nonzero off-diagonal terms with quadratic
coefficients. Furthermore, (20) can be expressed as a general
form defined below.

min
x2{0,1}N0

x|Qx. (21)

Due to the rule of QUBO setup, we have to reformu-
late our constrained master problem as the unconstrained
QUBO by using penalties. The basic idea is to find the
best penalty coefficients of the constraints. Following the
principle of constraint-penalty pairs in [44], the constraints
are converted as follows,
(19a)) ⇠1 : P 1(A1X� a1)2,

(19b)) ⇠2 : P 2(A2X� a2 +
l̄2X

l=0

2ls2l)
2,

where l̄2 = dlog2(a2 � A2X)e.

(19c)) ⇠3 : P 3(�down � �+
l̄3X

l=0

2ls3l)
2,

where l̄3 = dlog2(�� �down)e.

(19d)) ⇠4 : P 4((X|BX� a3)|⇡l � �+
l̄4X

l=0

2ls4l)
2,

where l̄4 = dlog2[��min
X,⇡

(X|BX� a3)|⇡l]e.

Here, P ⇤ is the predefined penalty vector when the corre-
sponding constraint is violated. s⇤l is a binary slack variable
and l̄⇤ is the upper bound of the number of slack variables.
Then, the reformulated unconstrained master problem is
defined as

max
X

c|X + �+ ⇠1 + ⇠2 + ⇠3 + ⇠4. (22)

Variable Representation. Problem (22) is still not the
QUBO formation due to the existence of the continuous
variable �. Thus, we need to represent the continuous
variable � using binary bits. We use a binary vector w with
the length of M bits to replace continuous variable � and
denote it as a new discrete number �̂ 2 Q. In general,
�̂ requires the binary numeric system assigning M bits to
replace continuous variable �. Then we can recover the �̂ by

� =
m̄+X

ii=�m

2iiwii+m �
m̄�X

jj=0

2jjwjj+1+m+m̄+ = �̂(w). (23)

In (23), m̄+ + 1 is the number of bits for the positive integer
part Z+, m is the number of bits for the positive decimal part
and m̄� + 1 is the number of bits for the negative integer

Algorithm 1 Hybrid Quantum-Classical Benders’ Decom-
position (HQCBD)

Input: Distributed network with N servers V , W FL mod-
els M , coefficient of the objective function and constraints
in master problem and subproblem
Output: All decision variables X and Y

1: Initialize upper/lower bound of �, � = +1, � = �1
2: Initialize threshold ✏ = 0.001, max itr = 100, itr = 1
3: while |�� �| > ✏ and itr < max itr do
4: P Appropriate penalty numbers or arrays
5: Q Reformulate both objective and constraints in

(14) and construct QUBO formulation as (24)
6: X0 Solve problem (24) by quantum computer
7: � Extract w and replace � with �̂(w) as (23)
8: SUP (X) Solve problem (18) with fixed X0

9: � SUP (X)
10: Add a Benders’ cut to the master problem as (19d)
11: itr+ = 1
12: end while
13: return X, Y

CPU

' optimality/feasibility cuts

- !"

Master
problem
solved by
quantum
computer

CPU

CPU

…

-#"

…

"QPU QPU

an optimality/feasibility cut

-"

Subproblem
solved by
classical

computer

Master
problem
solved by
quantum
computer Subproblems

solved by
' classical
computers(a) (b)

Fig. 3: Flow of HQCBD: (a) single cut vs (b) multi cuts.

part Z�. Then, the final QUBO formulation of the master
problem is defined as follows.

max
X,w

c|X + �̂(w) + ⇠1 + ⇠2 + ⇠3 + ⇠4. (24)

4.4 HQCBD Algorithm
Our proposed HQCBD is described by Algorithm 1. Fig. 2
shows the overall flow of HQCBD, while Fig. 3(a) shows
the detailed interaction between the master problem and
subproblem. The master problem is solved by a quantum
computer and generates a binary solution (X0), then sends it
to general devices for distributed computation of subprob-
lems by a classical solver (e.g. Scipy). After subproblems are
solved, an optimality or feasibility cut is sent to the master
problem and it continues to the next round.

Specifically, as shown in Algorithm 1, we first initialize
the upper and lower bounds of the problem as well as
other parameters, e.g., convergence threshold ✏ and the
number of maximal iterations max itr (Lines 1-2). Then
appropriate penalty numbers or arrays will be generated
(Line 4). After that, we reformulate the master problem in
(14) in the QUBO format and solve the QUBO problem with
a quantum annealer and update the lower bound of the
problem � (Lines 5-7). Given X0 from the master problem,
we solve the subproblem (18) and update the upper bound
of the problem � (Lines 8-9). We finally add the Benders’ cut

8

to the master problem and continue the next iteration (Lines
10-11) until it converges (Line 3).

We use the quantum annealer to execute our proposed
algorithm for solving the QUBO master problem. Moreover,
it is crucial to adjust the penalties appropriately for a suit-
able QUBO model. Typically, a high penalty may cause a co-
efficient explosion, which could result in the malfunctioning
of the quantum annealer. Conversely, a low penalty might
cause the quantum annealer to ignore the constraints. Here,
given the lower and upper bound of a penalty, we leverage
the binary search method to iteratively determine a well-
tuned penalty for each constraint.

4.5 Multiple Cuts Version
In Algorithm 1 (Line 11), we only consider one single
Benders’ cut imported to the master problem in each round.
This cut is computed from the subproblem based on an
optimal feasible solution (X0) returned by the quantum
annealer (Line 6 of Algorithm 1). However, one of the
advances of the quantum algorithm is that it can gener-
ate multiple feasible solutions simultaneously. Therefore,
to accelerate the convergence of the master problem, we
further introduce a hybrid quantum-classical multiple-cuts
optimization method. In the multiple-cuts version of the
HQCBD algorithm (MBD), we leverage the multiple feasible
solutions generated by the quantum annealer and select the
top � feasible solutions to further generate multiple cuts.
Then multiple cuts are inserted into the master problem per
iteration. Fig. 3(b) illustrates this idea.

The detailed MBD algorithm is given by Algorithm 2.
Compared with the single-cut version of the HQCBD al-
gorithm, first, these top � feasible solutions are sent to �
subproblems and all subproblems execute in parallel (Lines
6 and 8). Second, each subproblem generates a Benders’ cut
and sends it back to the master problem (Line 9). Finally,
the master problem collects all Benders’ cuts, adds to the
constraints (Line 10), and continues the next iteration. Note
that if one of these subproblems reaches the threshold, the
iteration will be stopped since the upper bound and lower
bound converge to the predefined threshold.

5 PERFORMANCE EVALUATION

In this section, we simulated a distributed network envi-
ronment and conducted experiments of realistic FL tasks
using publicly available datasets. To confirm the practicality
of our hybrid quantum-classical optimization algorithm,
we implemented the proposed algorithms on a hybrid D-
Wave quantum processing unit (QPU). We utilized the D-
Wave system that is available via the Leap quantum cloud
service [45]. Based on the Pegasus topology, the D-Wave
system also has over 5k qubits and 35k couplers, which can
solve complex problems of up to 1M variables and 100k
constraints. We performed a number of test cases that can
be resolved in under 100 iterations, but only due to the high
cost of QPU utilization and the developer’s time constraints.

5.1 Simulation Setup
Network Setting: Our distributed computing environment
consists of 100 servers where the topology depends on
the real-world EUA-Dataset [46] and the Internet topology

Algorithm 2 Multiple-cuts Benders’ Decomposition (MBD)

Input: Distributed network with N servers V , W FL mod-
els M , coefficient of the objective function and constraints
in master problem and subproblem, number of cuts �
Output: All decision variables X and Y

1: Initialize upper/lower bound of �, � = +1, � = �1
2: Initialize threshold ✏ = 0.001, max itr = 100, itr = 1
3: while |�� �| > ✏ and itr < max itr do
4: P Appropriate penalty numbers or arrays
5: Q Reformulate both objective and constraints in

(14) and construct QUBO formulation as (24)
6: {X0}� Solve problem (24) by quantum computer

and return � feasible solutions
7: � Extract w with highest value and replace � with

�̂(w) as (23)
8: {SUP (X)}� Solve � subproblems (18) with fixed

X0 in parallel
9: � {SUP (X)}� with lowest value

10: Add all � benders’ cut to the master problem as (19d)
11: itr+ = 1
12: end while
13: return X, Y

zoo [47]. EUA-Dataset, which contains the geographical
locations of 125 cellular base stations in the Melbourne CBD
area, is a widely-used dataset in mobile computing, while
the Internet topology zoo is a popular network topology
dataset that includes a number of historical network maps
all over the world. We randomly select a set of servers
from these topology datasets to conduct simulations. In each
simulation, each server has a maximal storage capacity sci,
CPU frequency sfi and link bandwidth bj belonging to the
ranges of 1, 024�2, 048GB, 2�5GHz, and 512�1, 024Mbps,
respectively.

Datasets and FL models: We conduct extensive ex-
periments on the following real-world datasets: California
Housing dataset [48], MNIST [49], Fashion-MNIST (FM-
NIST) [50], and CIFAR-10 [51]. These are well-known ML
datasets for linear regression, logistic regression, or image
classification tasks. Two models with convex loss functions
are implemented on the above datasets for performance
evaluation: (i) Linear Regression with MES loss on the Cali-
fornia Housing dataset and (ii) Logistic Regression with the
cross-entropy loss on MNIST. We are also interested in the
performance of our proposed methods on FL models with
non-convex loss functions. Thus, three datasets, MNIST,
FMNIST, and CIFAR-10, are used to train convolutional
neural network (CNN) models with different structures.
Furthermore, Each FL task has a specific model size µj and
CPU requirement �j in ranges of 10�100MB and 1�3GHz,
respectively. The global convergence requirement and the
two constant variables are set based on [12]: &j = 0.001,
#0 = 15 and '0 = 4.

Benchmarks and Metrics: We compare our proposed
HQCBD and MBD algorithms with three baseline strategies:
classical Benders’ decomposition (CBD), random algorithm
(RAND), and two-stage iterative optimization algorithm
(TWSO) [15]. CBD uses a classical LP solver (Gurobi [43] or
Scipy [42]) to solve the master problem and subproblems.
RAND randomly generates the random decisions on the

9

(a) Case 1 (b) Case 2

(c) Case 3 (d) Master problem value

Fig. 4: Performance of HQCBD: its convergence.

model’s parameter server, FL workers, and local conver-
gence rate under certain constraints. TWSO is a previous al-
gorithm [15] that decomposes the original problem into two
subproblems (participant selection and learning schedul-
ing) and solves them iteratively. The following metrics are
adopted to compare the performances of our proposed
methods and the baselines: the total cost of FL training, the
loss or accuracy of FL models, the number of iterations, the solver
accessing time and the gain or advancement of our proposed
algorithms over CBD.

5.2 Simulation Results
5.2.1 Performance of HQCBD
To demonstrate the feasibility and performance of our pro-
posed HQCBD, we conduct three sets of small-scale experi-
ments with different case settings (servers are selected from
100 servers). As shown in Table 1, there are three cases. The
first case includes 7 servers, 1 FL model, and 3 workers per
model with a total of 63 binary variables. The second case
has 7 servers, 2 FL models, and 2 workers per model with
a total of 126 binary variables. The third case consists of 9
servers, 2 FL models, and 3 workers per model with a total
of 198 binary variables. For each case, we perform both CBD
and HQCBD. Fig. 4 and Table 1 show the related results of
their performances.

In Figs. 4(a)-(c), the blue dashed line denotes the upper
bound of value � used in HQCBD, and the orange dashed
line denotes the lower bound of � in HQCBD. As we can see,
the upper bound and lower bound finally converge and we
obtain the non-negative lower bound at 31st, 45th, and 89th
round for each case, respectively. This result proves that our
proposed algorithm is mathematically consistent with the
classical BD algorithm. Fig. 4(d) shows the trend of the mas-
ter problem value of case 2 calculated by (22) compared with
the solution of CBD. We can see that the value of the master
problem keeps increasing until it converges. Specifically, the
master problem value keeps static in the first few rounds
since only an unbounded ray is found in the subproblem
and a feasibility cut is added to the master problem. As we
run more iterations, the optimality cut is found and added to

TABLE 1: Iteration comparison of CBD and HQCBD over
three different cases. The set up column shows {# of servers,
of models, # of workers per model} used in each case.

Case Set up # of Variables Itr. of CBD Itr. of HQCBD
1 {7, 1, 3} 63 32 31
2 {7, 2, 2} 126 55 45
3 {9, 2, 3} 198 91 89

TABLE 2: Solver accessing time (ms) comparison of CBD
and HQCBD.

Case CBD HQCBD
Max. / Min. Avg. / Std. Max. / Min. Avg. / Std.

1 190.5 / 6.7 117.1 / 50.1 32.1 / 15.9 31.5 / 2.8
2 235.3 / 9.1 129.6 / 50.1 32.1 / 15.9 24.2 / 7.9
3 395.5 / 14.5 120.3 / 63.2 32.1 / 16.1 25.5 / 8.0

(a) CBD vs HQCBD (b) MBD gains over CBD

Fig. 5: (a) Comparison of the real solver accessing time of
CBD and HQCBD in Case 2. (b) Gains of MBD over CBD
with the different number of cuts � in different cases.

the master problem. Once the difference between the upper
bound and lower bound reaches a threshold, the problem is
solved. The solution from HQCBD is similar to the one from
CBD.

Table 1 further demonstrates the detailed comparison
between CBD and HQCBD in terms of the number of
iterations used to solve the problem. We can find that
HQCBD takes fewer iterations to converge to the optimal
solution compared with CBD (for example, for Case 2, the
improvement of iterations is around 18%).

Moreover, we show the comparison of real solver access-
ing time (i.e., the computation time of the solvers) for CBD
and HQCBD in Table 2 and plot the detailed accessing time
of Case 2 in Fig. 5. The solver accessing time is the real
accessing time of the QPU solver and local solver without
considering other overheads, such as variables setting time,
parameters transmission time, and so on. As we can see
in Table 2, the minimal accessing time of CBD is relatively
lower than that of HQCBD. However, the maximal and
average accessing time as well as the standard deviation
value of CBD are significantly higher than HQCBD. For
example, for Case 2, the mean accessing time of HQCBD
is 81% less than the one of CBD, and more significantly the
standard deviation of accessing time of HQCBD is 84% less
than the one of CBD. We also confirm via Fig. 5(a) that the
solver accessing time of CBD in each round/iteration varies
significantly while the solver accessing time of HQCBD in
each round keeps stable and is even smaller than that of
CBD. This finding proves the efficiency and robustness of
leveraging the hybrid quantum-classical technique to solve
the optimization problem in terms of either the convergence
iteration or the solver accessing time.

10

TABLE 3: Iteration of CBD and MBD with different �.

Case # of Binary var. Itr. of CBD Itr. of MBD (� = 1/3/5)
1 63 32 31 / 29 / 24
2 126 55 45 / 44 / 29
3 198 91 89 / 36 / 27

(a) Case 1 (b) Case 2

(c) Case 3 (d) Convergence comparison

Fig. 6: Performance of MBD: its convergence.

5.2.2 Performance of MBD
We now evaluate the efficiency of our proposed MBD al-
gorithm. Similarly, we consider three different cases with
different numbers of servers, FL models, and workers. We
study the impact of the number of cuts � used in MBD and
we select the value from 1, 3, and 5. Recall that when � = 1,
MBD is our standard HQCBD. Table 3 and Fig. 6 show
the result of multiple cuts and convergence comparison
with CBD. In Fig. 6(a)-(c), MBD-1 is our proposed HQCBD
algorithm where only a single cut is added to the master
problem, while MBD-3 or MBD-5 means 3 or 5 cuts are
added to the master problem. In this scenario, we can find
that our MBD-1 (HQCBD) converges faster than the CBD.
But with more cuts (larger �), the convergence speed of
MBD-� becomes faster. Table 3 lists the detailed compar-
ison between CBD and MBD for different cases. Fig. 6(d)
further demonstrates the upper and lower bound detailed
convergence comparison between our proposed algorithm
MBD with � = 5 and the CBD in Case 2. We can see that
our proposed methods use fewer rounds (29) to converge
the optimal value compared with the classical one (55).

We also plot the gain or advancement of MBD over
CBD in terms of iteration reduction for different numbers
of cuts in Fig. 5(b). Obviously, different numbers of cuts
have achieved different positive gains or advancements in
different cases. The largest improvement is up to 70.3% for
Case 3 with � = 5. This further proves the efficiency of both
proposed algorithms HQCBD and MBD.

5.2.3 Comparison with Existing Methods
We now compare our proposed method HQCBD with the
random method (RAND) and a two-stage iterative opti-
mization method (TWSO) [15] in terms of solving the joint
optimization problem.

(a) Impact of server number (b) Impact of worker number

Fig. 7: Performance comparison with existing methods: with
different numbers of servers or FL workers.

(a) R2 score (b) LR over CA housing

(c) Accuracy (d) LR over MNIST

Fig. 8: Training loss of linear and logistic regression models
and impact from worker numbers: (a)(b) R2 scores and loss
of linear regression model over California housing dataset;
(c)(d) accuracy and loss of logistic regression model over
MNIST dataset.

Firstly, we focus on the necessity of the optimization
problem and study the impact of different numbers of
servers. We concurrently train 2 FL models with 2 workers
per model and the number of servers varies from 7 to 11.
Fig. 7(a) shows the results. Obviously, RAND has the worst
performance due to its randomness. Our HQCBD algorithm
gets further improvements compared with our proposed
TWSO and demonstrates the effectiveness of the HQCBD
algorithm. In addition, as the number of servers increases,
the total cost of HQCBD first decreases and increases then
decreases again. This is because the topology may change
when the server number varies and lead to the change of
selection decision as well as the total cost.

Next, We examine how varying numbers of FL workers
affect the total costs. We set the number of servers and FL
models to 15 and 2, respectively. The number of FL workers
is in the range of [2, 6]. As shown in Fig. 7(b), the total costs
increase as the number of workers increases. This is obvious
since the more workers, the more total costs consumed.
Our proposed HQCBD still outperforms RAND and TWSO.
With more qubits supporting, we expect that the speed of
HQCBD will have a more significant advantage over TWSO
on large-scale optimization problems.

11

(a) Accuracy (b) CNN over CIFAR-10

(c) CNN over FMNIST (d) CNN over MNIST

Fig. 9: Training accuracy of CNN models (non-convex) and
impact from the number of workers: (a) accuracy of all CNN
models; (b)-(d) accuracy convergence with different number
of workers over different datasets.

5.2.4 Performance of FL Model
Now, we look into the performance of our proposed meth-
ods in the real FL training process. We concurrently train
2 FL models with convex loss functions on the non-IID
dataset settings: (i) Linear Regression with MSE loss over
the California Housing dataset, (ii) Logistic Regression with
cross-entropy loss over the MNIST dataset. Each dataset is
split into 15 servers unequally and the number of global
training rounds is set to 100 for clear comparison. We further
introduce the R2 score metric to evaluate the performance of
linear regression model training. R2 score is the proportion
of the variance in the dependent variable that is predictable
from the independent variable(s). In Fig. 8(a), the R2 score of
the linear regression model rises as the number of workers
increases. Also, with more FL workers, the training loss
of the linear regression model decreases as illustrated in
Fig. 8(b). Similarly, the accuracy of the logistic regression
model also increases with more FL workers while the train-
ing loss declines with the rise of the number of workers as
shown in Figs. 8(c)-(d). These results further indicate the
feasibility and effectiveness of our proposed algorithm.

Finally, to demonstrate the performance of our proposed
algorithms on FL models with non-convex loss functions,
we conduct two sets of FL training with CNN models: (i)
CNN models over CIFAR-10 and FMNIST datasets, and
(ii) CNN models over CIFAR-10 and MNIST datasets. The
experimental setting is similar to that in the convex experi-
ment. Figs. 9(a)-(d) show the training accuracy of all CNN
models under different numbers of workers. Obviously,
with more workers, the training accuracy also increases,
especially for the CIFAR-10 dataset as illustrated in Figs. 9(a)
and (b). However, the training accuracy of FMNIST and
MNIST datasets keep similar when the number of workers
is larger than 2 as shown in Figs. 9(c) and (d). This is
mainly due to the non-IID setting and simplicity of FMNIST
and MNIST datasets since MNIST and FMNIST are both
grayscale images from 10 categories.

6 CONCLUSION

In this paper, a joint participant selection and learning
scheduling problem for multi-model FL has been stud-
ied. Motivated by the powerful parallel computing capa-
bilities of quantum computers, we proposed a quantum-
assisted HQCBD algorithm by employing the complemen-
tary strengths of classical optimization and quantum an-
nealing to optimally select participants (both PS and FL
workers) and determined the learning schedule to minimize
the total cost of all FL models. In order to accelerate the
convergence speed of our proposed algorithm, we further
introduced a multiple-cuts version of HQCBD (MBD) to
hasten the solving process. Extensive simulations on the D-
Wave quantum annealing machine demonstrated the effi-
ciency and robustness of our proposed HQCBD and MBD
algorithms which not only achieved the same result as the
classical algorithm but also took much fewer iterations (up
to 70.3% improvement) and less accessing time (up to 81%
reduction) to obtain the desired solution even at relevantly
small scales.

This work is our first attempt toward quantum-assisted
optimization for distributed computing. There are a few
possible directions for further study. (1) We plan to fur-
ther study and improve the performance of the proposed
HQCBD with more diverse FL datasets and applications.
(2) We plan to extend our general hybrid quantum-classical
optimization framework so that it can be applied to more
types of joint optimization problems (beyond FL) in dis-
tributed systems. (3) We are also interested in designing a
new hybrid quantum-classical optimization framework on
other types of quantum machines, e.g., gate-based quantum
computers. With the new development of robust and di-
verse quantum computers with more available qubits, we
believe the hybrid quantum-classical optimization can play
a more important role in the next generation distributed
intelligent systems.

REFERENCES

[1] F. Arute, et al., “Quantum supremacy using a programmable su-
perconducting processor,” Nature, v.574,no.7779,pp.505-510, 2019.

[2] H.-S. Zhong, et al., “Quantum computational advantage using
photons,” Science, vol. 370, no. 6523, pp. 1460–1463, Dec. 2020.

[3] S. Niu and A. Todri-Sanial, “Effects of dynamical decoupling
and pulse-level optimizations on IBM quantum computers,” IEEE
Trans. on Quantum Engineering, vol. 3, pp. 1–10, Aug. 2022.

[4] Ö. Salehi, A. Glos, and J. A. Miszczak, “Unconstrained binary
models of the travelling salesman problem variants for quantum
optimization,” Quantum Info. Process., vol. 21, no. 2, pp. 67, 2022.

[5] D. An and L. Lin, “Quantum linear system solver based on time-
optimal adiabatic quantum computing and quantum approximate
optimization algorithm,” ACM Transactions on Quantum Comput-
ing, vol. 3, no. 2, pp. 1–28, Jun. 2022.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Ar-
cas, “Communication-efficient learning of deep networks from
decentralized data,” in Proc. of AISTATS, Ft. Lauderdale, Apr. 2017.

[7] S. Ji, W. Jiang, A. Walid, and X. Li, “Dynamic sampling and se-
lective masking for communication-efficient federated learning,”
IEEE Intelligent Systems, vol. 37, no. 02, pp. 27–34, Mar. 2022.

[8] F. Sattler, et al., “Robust and communication-efficient federated
learning from non-iid data,” IEEE Trans. on Neural Networks and
Learning Systems, vol. 31, no. 9, pp. 3400–3413, Nov. 2019.

[9] X. Wei, J. Liu, X. Shi, and Y. Wang, “Participant selection for
hierarchical federated learning in edge clouds,” in Proc. of IEEE
NAS, Philadelphia, PA, Oct. 2022.

[10] J. Liu, X. Wei, X. Liu, H. Gao, and Y. Wang, “Group-based hi-
erarchical federated learning: convergence, group formation, and
sampling,” in Proc. of ICPP, 2023.

12

[11] T. Nishio and R. Yonetani, “Client selection for federated learning
with heterogeneous resources in mobile edge,” in Proc. of IEEE
ICC, Shanghai, China, May 2019.

[12] Y. Jin, et al., “Learning for learning: Predictive online control
of federated learning with edge provisioning,” in Proc. of IEEE
INFOCOM, Virtual, May 2021.

[13] S. Wang, et al., “Adaptive federated learning in resource con-
strained edge computing systems,” IEEE Journal on Selected Areas
in Communications, vol. 37, no. 6, pp. 1205–1221, Mar. 2019.

[14] Y. Li, F. Li, L. Chen, L. Zhu, P. Zhou, and Y. Wang, “Power
of redundancy: Surplus client scheduling for federated learning
against user uncertainties,” IEEE Transactions on Mobile Computing,
vol. 22, no. 9, pp. 5449–5462.

[15] X. Wei, J. Liu, and Y. Wang, “Joint participant selection and
learning scheduling for multi-model federated edge learning,” in
Proc. of IEEE MASS, Denver, CO, Oct. 2022.

[16] T. Tran, et al., “A hybrid quantum-classical approach to solving
scheduling problems,” in Proc. of Int’l Symp. on Combinatorial
Search, New York, Jul. 2016.

[17] A. Ajagekar, et al., “Quantum computing based hybrid solution
strategies for large-scale discrete-continuous optimization prob-
lems,” Computers & Chemical Eng., vol. 132, pp. 106630, Jan. 2020.

[18] Z. Zhao, L. Fan, and Z. Han, “Hybrid quantum Benders’ decom-
position for mixed-integer linear programming,” in Proc. of IEEE
WCNC, Austin, TX, Apr. 2022.

[19] A. Ajagekar, K. Al Hamoud, and F. You, “Hybrid classical-
quantum optimization techniques for solving mixed-integer pro-
gramming problems in production scheduling,” IEEE Trans. on
Quantum Engineering, vol. 3, pp. 1–16, Jun. 2022.

[20] L. Fan and Z. Han, “Hybrid quantum-classical computing for fu-
ture network optimization,” IEEE Net.,vol.36,no.5,pp.72-76, 2022.

[21] X. Wei, et al., “Quantum assisted scheduling algorithm for feder-
ated learning in distributed networks,” in Proc. of ICCCN, 2023.

[22] Z. Yang, et al., “Energy efficient federated learning over wireless
communication networks,” IEEE Transactions on Wireless Commu-
nications, vol. 20, no. 3, pp. 1935–1949, Nov. 2020.

[23] L. Li, et al., “To talk or to work: Flexible communication compres-
sion for energy efficient federated learning over heterogeneous
mobile edge devices,” in Proc. of IEEE INFOCOM, May 2021.

[24] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in Proc. of IEEE ICC, Jun. 2020.

[25] S. Luo, et al., “HFEL: Joint edge association and resource allocation
for cost-efficient hierarchical federated edge learning,” IEEE Trans.
on Wireless Commu., vol. 19, no. 10, pp. 6535–6548, Oct. 2020.

[26] Z. Wang, et al., “Resource-efficient federated learning with hierar-
chical aggregation in edge computing,” in Proc. INFOCOM, 2021.

[27] Z. Meng, et al., “Learning-driven decentralized machine learning
in resource-constrained wireless edge computing,” in Proc. of IEEE
INFOCOM, Virtual, May 2021.

[28] Y. J. Cho, J. Wang, and G. Joshi, “Client selection in federated
learning: Convergence analysis and power-of-choice selection
strategies,” arXiv preprint arXiv:2010.01243, Oct. 2020.

[29] M. Ribero and H. Vikalo, “Communication-efficient feder-
ated learning via optimal client sampling,” arXiv preprint
arXiv:2007.15197, Oct. 2020.

[30] O. Marnissi, et al., “Client selection in federated learning based on
gradients importance,” arXiv preprint arXiv:2111.11204, Nov. 2021.

[31] F. Lai, et al., “Oort: Efficient federated learning via guided partici-
pant selection.” in Proc. of USENIX OSDI, Virtual, Jul. 2021.

[32] R. Balakrishnan, et al., “Diverse client selection for federated
learning via submodular maximization,” in Proc. of ICLR, 2022.

[33] J. Preskill, “Quantum computing in the NISQ era and beyond,”
Quantum, vol. 2, pp. 79, Aug. 2018.

[34] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum
computation,” Proceedings: Mathematical and Physical Sciences, vol.
439, no. 1907, pp. 553–558, Dec. 1992.

[35] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proc. of ACM STOC, New York, NY, May 1996.

[36] P. W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer,” SIAM J. Com-
put., vol. 26, no. 5, p. 1484–1509, Oct. 1997.

[37] N. G. Paterakis, “Hybrid quantum-classical multi-cut benders
approach with a power system application,” arXiv preprint
arXiv:2112.05643, Dec. 2021.

[38] Y. Jin, et al., “Resource-efficient and convergence-preserving on-
line participant selection in federated learning,” in Proc. of IEEE
ICDCS, Singapore, Feb. 2020.

[39] M. Chen, et al., “A joint learning and communications framework
for federated learning over wireless networks,” IEEE Trans. on
Wireless Communications, vol. 20, no. 1, pp. 269–283, Oct. 2020.

[40] C. Ma, et al., “Distributed optimization with arbitrary local
solvers,” Optimi. Meth. & Software, vol.32, no.4, pp.813-848, 2017.

[41] R. Rahmaniani, et al., “The benders decomposition algorithm: A
literature review,” European J. of Operational Research, vol.259, no.3,
pp.801-817, Jun 2017.

[42] P. Virtanen, et al., “SciPy 1.0: Fundamental Algorithms for Scien-
tific Computing in Python,” Nature Meth., vol.17, pp.261-272, 2020.

[43] Gurobi Optimization, LLC, “Gurobi Optimizer Reference
Manual,” Jan. 2023. [Online]. Available: https://www.gurobi.com

[44] F. Glover, G. Kochenberger, R. Hennig, and Y. Du, “Quantum
bridge analytics i: a tutorial on formulating and using qubo
models,” 4OR-Q J Oper Res, vol. 17, pp. 335–371, Nov. 2019.

[45] D-wave hybrid solver service: An overview. [Online]. Available:
https://www.dwavesys.com/resources/white-paper/d-wave-
hybrid-solver-service-an-overview/

[46] P. Lai, et al., “Optimal edge user allocation in edge computing
with variable sized vector bin packing,” in International Conference
on Service-Oriented Computing, Hangzhou, China, Nov. 2018.

[47] S. Knight, et al., “The internet topology zoo,” IEEE J. on Selected
Areas in Communications, vol. 29, no. 9, pp. 1765–1775, Oct. 2011.

[48] F. Pedregosa, et al., “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[49] Y. LeCun, et al., “Gradient-based learning applied to document
recognition,” Proc. of the IEEE, vol. 86, no. 11, pp.2278-2324, 1998.

[50] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” ArXiv,
vol. abs/1708.07747, Aug. 2017.

[51] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Tech. Rep., Apr. 2009.

Xinliang Wei (S’21-M’23) holds a Ph.D. in Com-
puter and Information Sciences from Temple
University, Philadelphia, USA in 2023. He re-
ceived his M.S. and B.E. degrees both in Soft-
ware Engineering from SUN Yat-sen University,
Guangzhou, China in 2016 and 2014, respec-
tively. His research interests include edge com-
puting, federated learning, reinforcement learn-
ing, and Internet of Things. He is a recipient of
Outstanding Research Assistant from College of
Science and Technology (2022) and Scott Hibbs

Future of Computing Award from Department of Computer & Information
Sciences (2023) at Temple University. He is currently an Assistant Pro-
fessor in Shenzhen Institute of Advanced Technology, Chinese Academy
of Sciences.

Lei Fan (M’15-SM’20) is an Assistant Professor
in the Department of Engineering Technology
as well as in the Department of Electrical and
Computer Engineering at University of Houston.
Before this position, he worked in the electricity
energy industry for several years. He received
the Ph.D. degree in operations research from
the Industrial and System Engineering Depart-
ment at University of Florida. His research in-
cludes quantum computing, optimization meth-
ods, complex system operations, power system

operations and planning.

13

Yuanxiong Guo (M’14-SM’19) received the
B.Eng. degree in electronics and information en-
gineering from the Huazhong University of Sci-
ence and Technology, China, in 2009, and the
M.S. and Ph.D. degrees in electrical and com-
puter engineering from the University of Florida,
in 2012 and 2014, respectively. He is currently
an Associate Professor in the Department of
Information Systems and Cyber Security at the
University of Texas at San Antonio. His current
research interests include distributed machine

learning, applied data science, and trustworthy AI with application to
digital health, energy sustainability, and human-robot collaboration. He
is on the Editorial Board of IEEE Transactions on Vehicular Technology
and servers as the track co-chair for IEEE VTC 2021-Fall. He is a
recipient of the Best Paper Award in the IEEE GLBOECOM 2011.

Yanmin Gong (SM, IEEE) received the B.Eng.
degree in electronics and information engineer-
ing from Huazhong University of Science and
Technology in 2009, the M.S. degree in elec-
trical engineering from Tsinghua University in
2012, and the Ph.D. degree in electrical and
computer engineering from University of Florida
in 2016. She is currently an Associate Professor
of Electrical and Computer Engineering with the
University of Texas at San Antonio. Her research
interests lie at the intersection of machine learn-

ing, cybersecurity, and networking systems. Dr. Gong is a recipient of
the NSF CAREER Award, the NSF CRII Award, the IEEE Computer
Society TCSC Early Career Researchers Award for Excellence in Scal-
able Computing, the Rising Star in Networking and Communications
Award by IEEE ComSoc N2Women, and the Best Paper Award at
IEEE GLOBECOM. She is currently an Editor of the ACM COMPUTING
SURVEYS and IEEE WIRELESS COMMUNICATIONS.

Zhu Han (S’01-M’04-SM’09-F’14) received the
B.S. degree in electronic engineering from Ts-
inghua University, in 1997, and the M.S. and
Ph.D. degrees in electrical and computer engi-
neering from the University of Maryland, College
Park, in 1999 and 2003, respectively. Currently,
he is a John and Rebecca Moores Professor
in the Electrical and Computer Engineering De-
partment as well as in the Computer Science
Department at the University of Houston. His re-
search targets on the novel game-theory related

concepts critical to enabling efficient and distributive use of wireless
networks with limited resources. He received an NSF Career Award in
2010, the Fred W. Ellersick Prize of the IEEE Communication Society
in 2011, and the 2021 IEEE Kiyo Tomiyasu Award. He was an IEEE
Communications Society Distinguished Lecturer from 2015-2018, AAAS
fellow since 2019, and ACM fellow since 2024. He is a 1% highly cited
researcher since 2017 according to Web of Science.

Yu Wang (S’02-M’04-SM’10-F’18) is a Profes-
sor in the Department of Computer and Infor-
mation Sciences at Temple University. He holds
a Ph.D. from Illinois Institute of Technology, an
MEng and a BEng from Tsinghua University,
all in Computer Science. His research interest
includes wireless networks, smart sensing, and
distributed computing. He has published over
300 papers in peer reviewed journals and confer-
ences. He is a recipient of Ralph E. Powe Junior
Faculty Enhancement Awards from Oak Ridge

Associated Universities (2006), Outstanding Faculty Research Award
from College of Computing and Informatics at the University of North
Carolina at Charlotte (2008), Fellow of IEEE (2018), ACM Distinguished
Member (2020), and IEEE Benjamin Franklin Key Award (2024). He
has served as Associate Editor for IEEE Transactions on Parallel and
Distributed Systems, IEEE Transactions on Cloud Computing, among
others.

